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Abstract

The common wisdom that goal orderings can be used to improve planning perfor-
mance is nearly as old as planning itself. During the last decades of research several
approaches emerged that computed goal orderings for different planning paradigms,
mostly in the area of state-space planning. For partial-order, plan-space planners goal
orderings have not been investigated in much detail. Mechanisms developed for state-
space planning are not directly applicable because partial-order planners do not have a
current (world) state. Further, it is not completely clear how plan-space planners should
make use of goal orderings. This paper describes an approach to extract goal orderings
to be used by the plan-space planner CAPLAN. The extraction of goal orderings is
based on the analysis of an extended version of operator graphs which previously have
been found useful for the analysis of interactions and recursion of plan-space planners.

1 Introduction

Research in classical AI planning produced a number of approaches with significant concep-
tual differences in terms of search space and representation of actions and plans. Because of
the fact that planning in general is intractable, research always tried to improve algorithms
and representations in order to be able to solve larger problems. The common wisdom says
that knowledge about the order in which planning goals should be processed by a planner
and/or achieved in a plan can greatly affect the performance (e.g., [DC89, CI89]). It led
to so-called goal orderings which are given to a planner in order to improve performance.
This idea remained during all of these different planning algorithms and approaches.

For some of the planning approaches the question of how such goal orderings can be com-
puted automatically has been subject of research and can be found in literature. On one
hand, learning approaches have been studied [Min88, RI92], that need different amounts
of a priori knowledge about the domain to learn goal orderings, for example, from failures.
On the other hand, preprocessing of a domain and/or a problem specification in order to
get information about the orders of planning goals has been proposed. For state-space
planners the most comprehensive investigations about the use of goal orderings have been
made [Min88, R192, Etz93].

How these goal orderings can be interpreted by a planner depends on the type of planner.
The interpretation of goal orderings for state-space planners typically is that, if a goal ¢ is
ordered before a goal go this means that the planner will work on g; before go, thus creating
a subplan achieving g; before creating one achieving go. A wrong order for goal selection



in worst case can cause backtracking over goal selection or non-minimal solution plans.
Likewise, for the Graphplan algorithm [BF97] there is an approach to compute so-called
goal agendas [Koe98] which are up to a certain degree comparable with goal orderings of
state-space planners. A goal agenda partitions the goals in different, increasing sets of goals
which are ordered with respect to each other and processed by the planner in that order.

For partial-order, plan-space planners like SNLP [MR91], UCPOP [PW92] and, descen-
dants goal selection is not a backtracking point but it is an important aspect for a control
strategy. In that context, Barrett and Weld described a study focusing on how the goal
structure of a problem affects the efficiency of a planner [BW94]. Their distinction between
trivially serializable and laboriously serializable subgoal collections characterizes problems
for which the exponential costs of backtracking on a small but significant number of subgoal
orderings dominate the average planning time. However, research did not investigate in
detail whether for plan-space planners something like goal orderings is also appropriate. A
direct application of the methods for state-space planning (e.g., STATIC [Etz93]) does not
work because of the fact that plan-space planners do not have a current world state.

This paper describes a new approach to precompute goal orderings to be used by partial-
order planners with a domain representation that is based on the STRIPS formalism. All
mechanisms are fully implemented and part of the planner CAPLAN [Web95]. We will
clarify how goal orderings can be used by a partial-order, plan-space planner and what
are the assumptions. Our approach to extract goal orderings uses an extended version of
operator graphs [SP93] as the basic structure on which analysis is performed. It does not
need any additional knowledge about the domain for that.

The rest of the paper is organized as follows: In Section 2 we summarize important basic
concepts, in particular, the structure called operator graph and its extension. Section 3
presents mechanisms to extract goal orderings from operator graphs for the plan-space
planner CAPLAN. Section 4 compares and discusses the approach with respect to related
approaches and makes some concluding remarks.

2 Preliminaries

For the purposes of this paper we consider a SNLP style planner and partially ordered
plans [MR91, BW94]. Our intention is to present an approach for the computation of goal
orderings to be used by such a planner. So, we first have to make clear how a partial-order
planner can take profit from goal orderings. Then we explain the basic structure that is
used to extract such goal orderings.

Goal orderings for partial-order planning. Problem specifications (I, G) tradition-
ally consist of an initial situation I and the planning goals G. The planner CAPLAN
[Web95] allows to make use of additional knowledge about a planning problem expressed
as goal orderings. The input consists of so-called extended problem specifications, (I,G,<g),
which allow to specify a partial order <5 on the given planning goals. The goal ordering
<@ can be interpreted and used by the planner in two ways: (1) if two goals are ordered
by < then the plan steps achieving those goals in the plan are ordered accordingly, (2)

IState-space planning should not be mixed up with total-order planning although most state-space
planners use a totally ordered plan representation. For example, the planner TO [MBD94] does not have
to backtrack over goal selection but it is a total-order planner.



motivated by the idea of serializability [Kor87, BW94] goals are processed by the planner
in an order that is consistent with the goal orderings.? Both interpretations can be found
in the planning literature. For example, [CI89] gives a definition of goal orderings that is
comparable with (1), while others define goal orderings as the problem of deciding on which
goal to work next [DC89]. However, until now both mechanisms have not been explicitly
distinguished as two completely different ideas. This is mainly a result of the underlying
planning paradigm for which such investigations have been made.

In approaches based on state-space planners [Min88, RI92, Etz93] a certain goal ordering
typically is used for both purposes at the same time as goal selection also defines in which
order operators are added to the plan. The same is true for a new preprocessing approach
which computes so-called goal agendas [Koe98] that are used in the context of the Graph-
plan algorithm to decide in which order the algorithm should achieve certain goal sets.
Here we also have the assumption that goals that are processed first are achieved first in
the overall solution plan. Otherwise, the planner does not find minimal plans.

For plan-space planners we have that there is not necessary a relation between the order
in which goals are processed and the order in which they are achieved in the plan.? In
particular, if we have a mechanism that computes goal orderings based on an analysis of
operators and their relation in possible solution plans, these orders can be used as specified
by interpretation (1) to order plan steps, but they cannot be guaranteed to be useful for the
control problem of goal selection (see [WMA98]). With respect to the two interpretations
of goal orderings mentioned above, we cannot expect that a goal ordering that is optimal
with respect to interpretation (1) is also optimal or at least good for goal selection.

In the context of this paper we always compute goal orderings that are primary intended
to be used for ordering the establishers of goals rather than for defining a control strategy.
Whether the computed orderings are also useful for goal selection depends on the domain.
In addition, we only consider so-called necessary goal orderings, which have the property
that they are true in all minimal* solutions that exist for a certain problem.

Extending operator graphs. Our analysis makes use of operator graphs [SP93] which
are computed for a problem (I,G) based on the action definitions of the domain. An
operator graph captures information about relevant operators for goals and preconditions
of operators. It can be understood as a kind of generalized view on the solution space of a
problem. This structure was first used to analyze possible interactions (threats) that occur
during planning [SP93] and later to recognize recursion for causal-link planners [SP96].

More precisely, an operator graph is a directed bipartite graph consisting of two kinds of
nodes: it contains an operator node for each operator relevant to the problem (and the
dummy operators from the null plan); for each precondition of each operator node there is
a precondition node. Operator graphs have an implicit AND/OR structure. An operator
node is connected to all its precondition nodes (AND connection) and the precondition
nodes are called predecessors of that operator node. A precondition node is connected to
all operator nodes representing an operator with an effect that unifies with the precondition
(OR connection), i.e., operator nodes representing applicable operators are predecessors of
precondition nodes. In general, operator graphs can contain cycles because all ground

Interpretation (1) and (2) are also discussed in more detail in [WMA98].

3The same is true for the total-order planner TO [MBD94] as goal selection is no backtracking point and
TO is able to insert a step at an arbitrary place in its totally ordered plan.

* A solution plan is minimal if no subplan is also a solution plan. SNLP finds minimal solutions if simple
establishment is preferred to step addition (see also [Kam95]).
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Figure 1: Operator graph for a problem of an artificial domain

instances of a certain operator are represented by exactly one operator node. Figure 1
shows an example of an operator graph. The operator node for FINISH is displayed on the
left side, the START node on the right. Predecessors of a node are on the right side of the
node and connected with a solid line. In the example, FINISH has three preconditions (the
planning goals), G1(a), G1(b), G2(a) and Op2(z1) and Op3(z0) are operators applicable
to G2(a). Op2(z1) has a precondition p2(z1). We will write p2(z1)@Op2(z1) to indicate
the precondition node p2(z1) that is a direct predecessor of Op2(z1).

Operator graphs also contain information about possible interactions [SP93] that might
occur during planning (indicated by dashed lines). Figure 1 shows interactions between
Op2(z1) and the precondition nodes G1(a) and G1(b) because Op2(z1) deletes G1(z1).

There are two extensions of the original operator graphs that are implemented in CAPLAN
and that are important for the process of extracting goal orderings. Both are connected
with the fact that CAPLAN does not use ground instances of operators but operators with
variables: (1) CAPLAN allows to use different kinds of constraints in its operator specifi-
cations, codesignation constraints and type constraints [Web95]. Types can be organized
in hierarchies with single or multiple inheritance. The expansion of operator graphs, in
particular, the test for applicability of an operator has to take into account that such type
constraints should also be considered. This results in operator graphs with less nodes
and/or edges. (2) Operator graphs are very compact since all ground instances of an op-
erator are represented by one node. The disadvantage (in comparison with representing
all ground instances separately) is that there is no information about possible bindings
of variables. To overcome this, constant propagation in the operator graph precomputes
additional knowledge in the operator nodes (for more details see [Hiil98]).

An operator node for the operator O contains for each goal g of the problem a list with
the constants of the problem which can be bound to the individual variables of O when O
is used to achieve g. Constant propagation enables a further advantage: an empty set of
possible bindings for at least one variable of an operator O w.r.t. a goal g denotes that O
can’t achieve (directly or indirectly) ¢ in this problem. In this situation we say O is blocked
for g. This information can make the analysis more efficient and also more powerful.

Figure 1 shows the importance of the extensions of the operator graphs for analyzing goal
orderings. The definition of the domain (the operators) of this example and the goals can
be derived from the operator graph. The initial state is {+p1(a),+p1(b),+p2(a),+p3(b)}.
Since there is no p3(a) the operator Op3(z0) is blocked for the goal G2(a) (this is detected
during constant propagation since there is no possible binding for z0 in Op& for solving
G2(a). So, the only possibility for solving G2(a) is Op2(z1). Further, there exist two
potential threats to G1(a) and to G1(b) and there are no structural differences with respect
to these two goals. But with the knowledge of variable bindings the important difference
can be discovered. Operator node Op2(zl1) contains the possible bindings for z1 when



Op2(z1) is used to achieve G2(a). The only possibility is (z1 — a) whereas the threat
to G1(b) needs the binding (z1 — b). So the necessary ordering G2(a) < G1(a) can be
detected with the goal clobbering criterion (Section 3) whereas G1(b) and G2(a) remain
unordered. Without the information of blocked operators no ordering would be detected
and without consideration of variable bindings the ordering G2(a) < G1(b) (which is no
necessary ordering) would be detected. The consideration of type constrains can have
analogous consequences: suppose, there is +p3(a) in the initial state but Op3(z0) has a
type constraint which prohibits the binding (z0 — a).

To take advantage of the information of possible bindings we use the relation imply for
variable bindings. Variable bindings v imply variable bindings w if all bindings in w also
occurs in v, i.e., {(z — a),(y — b), (z = ¢)} implies {(z — a), (y — b)} but not vice versa.

Operator graphs with cycles. We call domains which have operator graphs with cycles
recursive domains. Whereas the effort for constant propagation in non recursive domains is
not critical (the time for constant propagation is less than one percent of the total solving
time in all tested non recursive domains) it could get problematic in recursive domains.
Therefore, we formulate an efficient propagation algorithm for recursive domains which
approximates the possible bindings. The criteria in Section 3 work correctly with this
approximation if the relation imply is adapted (for more details see [Hiil98]). However it
can happen that with this approximation less orderings are found.

3 Extracting Goal Orderings From Operator Graphs

In our approach the structure of an extended operator graph for the considered problem
is analyzed to extract goal orderings without using any additional knowledge about the
problem or domain. In general, different reasons for goal orderings exist in domains. We
formulate three criteria (goal subsumption, goal clobbering, precondition wviolation) which
cover these different reasons. For a better understanding we present these criteria separately
although in the implementation they are tested simultaneously since the combination forms
a more powerful composite criterion.

All criteria compare two goals g1, go and decide if g1 <G g2 holds, i.e., g1 is always achieved
in solution before go is achieved. To analyze the whole problem the composite criterion
has to be tested for all ordered pairs of goals. One can use transitivity and irreflexivity (if
no inconsistent problems are considered) of < to speed up this procedure. For all three
criteria we give a colloquial description and explain how an efficient implementation using
operator graphs looks like. All criteria are correct but not necessarily complete. The formal
definitions and proofs can be found in [Hil98].

Goal subsumption. For a problem (I,G) the goal ordering g1 <G g2 holds because of
goal subsumption if every solution plan achieving go also achieves g; previously and there
is no goal g € G\{g1} whose solution could negate® g;.

In the artificial domain LinkRepeat [VB94] we can find goal subsumption. Figure 2 shows
the operator graph for a problem where G1 < G2 holds because of goal subsumption. This
ordering can be detected by analyzing the operator graph as follows: We have to examine
if every possibility for solving G2 also solves G1. Therefore we look at all operators which

5We say negate instead of delete since CAPLAN and our operator graph implementation allow negative
as well as positive goals and preconditions.
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Figure 2: Operator graph for a problem of the LinkRepeat domain

can solve G2. This are exactly the predecessors of G2 (here A2). A2 itself doesn’t solve
G1 (A2 is not a predecessor of G1) but we have to check the preconditions of A2 (here
G*@A2 and G1@A2). For both we have to make the same test as for G2. G*@A2 could
be solved by A* or by START which both do not solve GI; GI@A2 can only be solved by
A1 which also solves GI@QFINISH. So, GI has to be solved before G2 and, furthermore,
there is no threat to G1, i.e., there exists no goal whose solution could negate G1.

The goal subsumption criterion can be formulated recursively by testing if the predecessors
of go solve g1. To generalize the example the following aspects have to be considered:

e The implicit AND/OR structure of operator graphs has to be considered: All pre-
decessors of a precondition node which are not blocked for g, (i.e., the applicable
operators) must lead to an establisher of g; (since one arbitrary not blocked operator
could be chosen) but it is sufficient if one predecessor of an operator node always
leads to an establisher of g; (since all preconditions have to be solved to execute the
operator).

e If an operator in the first level (here A2) solves g1 then g; <@ g2 doesn’t hold since
then the goals could be achieved simultaneously.

e If operators have variables then the possible variable bindings have to be considered.
The bindings for solving a subgoal of g have to imply the bindings for solving g;. A
detailed explanation of this problem can be found in [Hiil98].

e We must test if there are threats to g; from operators which could be executed to
solve other goals. So, in the problem from above G* <g G2 doesn’t hold although
G* is a precondition of A2 since there exist threats from A2 and A1 to G*

Now we define a recursive predicate subsumption for a precondition node p and two goals
g1, go of an extended operator graph. This predicate is true if solving p also guarantees that
g1 is solved. The condition p # g, ensures that g; is achieved before gy (not simultaneously).
The formulation of subsumption shows that this predicate can be tested very efficient using
operator graphs.

Definition 1 Given a problem with goals g1,gs and the corresponding operator graph OG
then subsumptiong,(p,g1) holds for a precondition node p € OG if and only if for all
predecessors O of p the following statement holds:

O s blocked for go \%
( O is predecessor of g AN p#gs A
the variable bindings of p in O imply the variable bindings of g1 Y

there exists a predecessor q of O such that subsumptiong,(q,g1) holds



Theorem 1 For a problem (I,G) with g1,92 € G we have that g1 <G g2 is a necessary
goal ordering if subsumptiong,(g2,g1) holds in the corresponding operator graph and there
s no threat to g1 from an operator which could be executed with the right variable bindings
to solve another goal.

This is a formal description of the idea of goal subsumption which can be proved to be
correct [Hl98]. If the property subsumption is stored locally for each node in the OG this
criterion can be tested with time cost O(n) (for n being the number of nodes in OG).

Goal clobbering. For a problem (I, G) the goal ordering g1 < g2 holds because of goal
clobbering if every solution plan for g; negates go. So it is of no use to achieve g first since
after solving g1 it has to be solved again.

In LinkRepeat also goal clobbering occurs. G1 <g G* and G2 < G* hold because of
goal clobbering (see Figure 2). GI <g G* can be found by analyzing the operator graph
as follows (G2 <g G* works similar): All possibilities for solving GI have to be examined.
The only predecessor of G1 is Al and there exist a threat from A1 to G*.

In this example the test is very simple but it gets much more complicated if indirect
predecessors of g; negate go (the implemented composite criterion covers such cases). The
AND/OR structure has to be considered as in the subsumption criterion. If variables occur
the bindings for solving ¢g; have to imply the bindings of the threat to go.

Precondition violation. For a problem (I,G) the ordering g1 <G g2 holds because of
precondition violation if every solution plan for gs results in a state in which g; can’t be
solved afterwards.

Figure 3 shows an operator graph for a problem of a variant of the D'S? domain [BW94].6
For this problem G1 <g G2 holds because of precondition violation and is detected by
this criterion as follows:” Again the possibilities for solving G2 have to be examined. The
only candidate is A22 which threatens P1. So, after achieving G2 with A22 goal G1
can’t be solved only using A12 because of the missing precondition P1. But PI could be
achieved with A11 since I1 wasn’t threatened by A22. The preconditions of A22 have to
be examined in the same way as for G2. The only operator which can solve P2 is A21
which threatens P! and I1. Consequently, there is no possibility to solve G1 after G2.

The precondition violation criterion can be formulated analogously to the subsumption
criterion with the same properties regarding AND/OR structure and variable bindings.

Composite criterion. The three criteria are implemented together in one composite
criterion. When they are tested simultaneously they can complement each other to find
more goal orderings. A very important aspect is that using operator graphs results in
an efficient implementation since they represent all potential solutions in an abstract way
such that questions like ‘what operators can solve or threaten a certain predicate‘ can be
answered immediately.

5The modification consists of the following variants of the operators in D' S? (notation: {preconditions}
operator {effects}): {L} A {+P;,—Pi—1, —Ii_1} and {P;} Ai» {+G;,—P;—1}. In D*S? the action A;»
has the additional effects —I;v; instead of the effect —P;_1 in A;;.

"This ordering also holds in the original version of D'S? (although there are different solution plans)
and is also detected by the precondition violation criterion but the variant we use here points out more
distinctly the properties and difficulties of this criterion.
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Figure 3: Operator graph for a problem from a D'S$? variant

Analysis in recursive domains. Recursive domains are in general difficult to analyze.
Nevertheless, the criteria presented above are also correct for recursive domains. And since
each node has to be examined at most once there are no problems with termination or
efficiency. But the results for many recursive domains are very poor.? This is a consequence
of using operators with variables instead of ground instances of operators. The approach
with possible variable bindings is not meaningful enough in this situation.

Empirical Results

The general efficiency improvement of planning with goal orderings in CAPLAN has been
investigated in [WMA98]. Here we summarize which orderings can be found with the
presented criteria and how costly is the preprocessing. We tested the analysis in the domains
D™S™ 0, D™S™ [BW94], LinkRepeat [VB94|, process planning [MAW96] and Blocksworld.

Effort of preprocessing: Since even for complex problems the operator graphs are rela-
tively compact the time for preprocessing is negligible. The only critical part is the constant
propagation in recursive domains. Using the approximation (see Section 2) the whole anal-
ysis (construction of the operator graph, constant propagation and testing the presented
criteria) needs less than 3% of the overall problem solving time in all tested domains.

Results of preprocessing: In the problems of the artificial domains D™S", 8, D™S™ and
LinkRepeat all existing necessary orderings were found. In the process planning a subset
of the necessary orderings were found (depending on the problems). In Blocksworld no
orderings were found. This is a result of the fact that Blocksworld is highly recursive and
operator graphs for nearly all problems have the same structure (only different variable
bindings).

4 Related Work and Conclusion

As said in the introduction there are a number of approaches dealing with the computation
of goal orderings in planning. Early approaches like [CI89] or [DC89] pointed out the
different interpretations of goal orderings without noticing in detail that two completely
different ideas are behind these interpretations.

Our operator graph analysis is comparable with some other analytic approaches. STATIC
[Etz93] is an example that computes goal orderings to be used by the state-space plan-
ner PRODIGY. It evaluates so-called problem space graphs (PSGs) which are similar to
operator graphs, but which are computed for each predicate of the domain instead of a

8Blocksworld is an example. It consists of only a few operator (most of them in cycles) and the difficulty
is to dispose them in various instantiations.



problem-specific computation. Goal orderings are obtained by the analysis of the PSGs for
the goals that are compared. A major problem is that PSGs need a priori knowledge about
the domain (a specific form of domain axioms) which is easy to define for Blocksworld but
not for larger and more realistic domains. A lack of such axioms makes PSGs and their
analysis become very complicated and inefficient. Further, PSGs do not focus on a certain
problem but on the hole domain. This makes it difficult to find useful problem-specific
orderings.

Operator graphs are also in some way comparable with the planning graphs of Graphplan
[BF97]. The major difference is that planning graphs always use ground instances of oper-
ators and are built in a forward-chaining manner. Instead of threats in the operator graph,
Graphplan propagates a certain mutual exclusion relation among the nodes. The idea of
greedy regression-match graphs [McD96], which also have similarities with operator graphs,
has been applied to extract information about relevant operators and facts in order to re-
duce the size of planning graphs [NDK97]. In [Koe98] so-called goal agendas are computed
from a relation on the goal atoms which is obtained from the planning graph or computed
from the operator definitions. This atomic relation is not a necessary or possible ordering
(Section 2) as it might contain relations like A < B and B < A at the same time. But
from it an order over increasing subsets of goal atoms is derived which, in best case, can
dramatically speed up Graphplan on some large problems. It seems that this approach is
very good in highly recursive domains like Blocksworld or Tyreworld where our approach
fails to find goal orderings. This can be explained by the fact that it only uses ground in-
stances of operators. An important difference is, however, that for a computed goal agenda
it cannot guaranteed that plans with minimal length® are still found while our approach
computes necessary goal orderings which hold in every solution plan.

A limitation of our approach is that operator graphs depend on nearly the same simple
domain representation language as the original Graphplan. In particular, it cannot deal
with conditional effects or quantification which are commonly seen as important for being
able to represent domains easily and naturally. Unlike most other planners CAPLAN
and our operator graph analysis allows additional type hierarchies and type constraints.
On one hand, one could think about extending the algorithms for operator graphs in a
similar way as planning algorithms have been extended to deal with ADL operators in
UCPOP and Graphplan descendants. On the other hand, there is also work in the area
of automatically translating domain specifications with language elements like conditional
effects or quantification into simpler domain representation languages [GK97] which could
also be applied to domains to be processed with these operator graphs and CAPLAN.

Future work: We think about extending the operator graph such that in recursive do-
mains some of the recursive operator nodes are unfolded into a certain number of partially
instantiated operator nodes. This might produce better results in recursive domains.
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