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Abstract

We study simply connected compact twistor spaces Z of positive type. Assum-
ing that the fundamental linear system | — %K | is at least a pencil, we prove
the following theorem: the existence of an irreducible curve C' C Z which is
invariant under the real structure of Z and has the property C.(—1K) < 0 im-
plies that the twistor space is Moishezon but does not contain effective divisors
of degree one. Furthermore, we prove the existence of such twistor spaces with
arbitrary Picard number p(Z) > 5. These are the first examples of Moishezon

twistor spaces without divisors of degree one.

1 Introduction

After the appearence of the result of Hitchin [H2] and Friedrich, Kurke [FK] stating
that precisely two compact twistor spaces are Kahlerian, the study of Moishezon
twistor spaces was started. A deep result of Campana [C2] shows that such spaces

are simply connected. This can be used to deduce that the self-dual Riemannian
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manifold M associated to the twistor space Z is homeomorphic to the connected
sum nCP? of complex projective planes. In [Po2], Poon has shown in the Moishezon
case that M has to be of positive type, that means the scalar curvature of M is
positive. On the other hand, Poon’s computation of the algebraic dimension [Po2]
together with the Riemann-Roch formula and Hitchin’s vanishing theorem shows
that every twistor space of positive type over M = nCP? with n < 3 is Moishezon.
The structure of these manifolds is nowadays fairly well known (see [H2], [FK],
[Pol], [KK] and [Po3]). The case n > 4 (which is equivalent to ¢;(Z)3 < 0) is much
more interesting. In this case Donaldson and Friedman [DonF] have firstly shown
the existence of self-dual metrics. They also proved that the generic twistor space
has algebraic dimension zero (if n > 5) respectively one (if n = 4). The first explicit
examples for any n > 3 were discovered by LeBrun [LeB1] and studied by Kurke
[Ku]. We call these spaces Kurke-LeBrun twistor spaces (see section 3). They are
Moishezon spaces.

The goal of this paper is a question stated by Pedersen and Poon in [PP2]:
Question: If Z is a Moishezon twistor space, does it contain an effective divisor
of degree one?

We shall answer this question with NO!

This is achieved by the following two theorems, which form the main results of this

paper:

Theorem 2.1. Assume hO(K_%) > 2 and the existence of an irreducible real curve

Co C Z with Cy.(—3K) < 0. Then the following holds:

(i) Co is a smooth rational curve and Cy.(—3K) = (—5K)3 —2 = 2(3 —n), in

particular n > 4.
(ii) a(Z) = 3, that is Z is Moishezon.

(iti) The linear system | — LK| is two—dimensional and its base locus is precisely
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Cop.
(iv) Z does not contain effective divisors of degree one.

Theorem 4.2. For any n > 4 there exists a twistor space Z with ¢1(Z)3 = 16(n —
4) and containing a smooth rational curve Cy C Z with Co.(—3K) = 2(3 — n).

Furthermore, dim| — %K| =2 and Z fulfills all conditions of Proposition 2.1.

It is remarkable that we can compute with Theorem 2.1 the algebraic dimension
of a twistor space Z from the numerical properties of a single curve in Z. In the
work of Poon [Po3] the algebraic dimension was computed from the structure of a
divisor on Z. Moreover, his computation of algebraic dimension depends havily on
the existence of a divisor of degree one. As we are dealing with twistor spaces not
containing a divisor of degree one, we cannot use his results.

It would be interesting to study the question wether in Theorem 2.1 the assumption
on the dimension of the linear system | — %K | is really necessary. Our results
contradict some statements in the paper [PP2]. This will be commented in section
5.

We start now to collect some necessary but well known facts and to introduce
terminology. For details, the reader is referred to [AHS], [B], [ES], [H2], [K1], [Ku]
and [Pol].

We consider twistor spaces merely from the viewpoint of complex geometry. In this
paper, by a twistor space we mean a compact complex three-manifold together with

the following additional data:

¢ a proper differentiable submersion 7 : Z — M onto a real differentiable four—
manifold M. The fibres of © are holomorphic curves in Z being isomorphic to

CP! and having normal bundle in Z isomorphic to O(1) & O(1);

¢ an anti-holomorphic fixed point free involution ¢ : Z — Z with 7o = 7.
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The fibres of 7 are called “real twistor lines” and the involution o is called the
“real structure”. A geometric object will be called “real” if it is o—invariant. For
example, a line bundle £ on Z is real if 0*£ =2 £, and a complex subvariety D C Z
is real if 0(D) = D. Instead of o(D) we shall often write D. In particular, by a
“real curve” C C Z we mean a compact complex subspace which is o—invariant,
that means C' = C.

The twistor—space structure on Z defines a conformal class of self~-dual Riemannian
metrics on M. By a result of Schoen [Sch] such a conformal class contains a metric
with constant scalar curvature. The sign of this constant will be called the type of
Z. The relations between the type and the algebraic dimension of Z are clarified
in [Po2] and [Pon]. Technically important will be the assumption of positive type,

because of the following vanishing theorem.

Theorem 1.1 (Hitchin [H1]). If Z is of positive type then we have for any L €
Pic(2)

deg(L) < -2 = HYZ,L)=0.

The degree deg(L) of a line bundle £ € Pic(Z) is by definition the degree of the
restriction £ ® Op to a twistor fibre F C Z.

This vanishing theorem is what we really need, not the assumption of positive type.
Therefore, we introduce the following definition.

Definition: A twistor space will be called Hitchin twistor space if and only if
it is compact and the statement of theorem 1.1 holds, that is: deg(L) < —2 =
HY(Z,L) =0.

We can restate Hitchins vanishing theorem by saying: a compact twistor space of
positive type is a Hitchin twistor space.

For simply connected twistor spaces of positive type it is well known (see [Pol])
that the associated Riemannian manifold is homeomorphic to the connected sum

nCP?. This remains true if we replace “positive type” by “Hitchin”.
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Proposition 1.2. If Z is a simply connected Hitchin twistor space and Z — M the

corresponding twistor fibration, then M is homeomorphic to nCP? for some n > 0.

Proof: Tt is well known (see e.g. [ES]) that H(M;C) = HY(Z;Oz) and H2(M;C) =
H?(Z;0z) holds. As m1(Z) = 71 (M) = {1} by assumption, we obtain h'(Oz) = 0.
Hitchins vanishing theorem and deg(Qz) = 0 imply h?(Oz) = 0, hence H? (M;C) =
0. Therefore, M is a simply connected manifold with positively definite intersection
form. From [Don] and [F] the result now follows. O
If Z is a simply connected Hitchin twistor space, then h*(Oz) = 0 for i # 0. Using
the exp—sequence this implies that the first Chern class defines an isomorphism of
free abelian groups c; : Pic(Z) —» H?(Z;Z). It is well known, that the degree-
morphism deg : Pic (Z) — Z is a surjective homomorphism. The Chern numbers of
Z are the following: ¢} = 16(4 —n),cico = 24,c3 = 2(n+2), where n+1 = p(Z) :=
rank Pic(Z) is the Picard number of Z. This follows from a detailed description of
the cohomology ring of Z which is obtained via Proposition 1.2 and the Laray—Hirsch
theorem applied to the twistor fibration Z — M. On Z there exists a unique line
bundle, denoted by K _%, whose square is the anticanonical bundle K 21. Following
Poon, we call this the fundamental line bundle. The divisors in | — %K | are called
fundamental divisors. The adjunction formula implies deg(K 7%) = 2. As the real
twistor fibres cover Z, an effective divisor must have positive degree. This gives
the following vanishing result: deg(£) < —1 = H%(Z,L£) = 0. By Serre-duality
we obtain for any compact twistor space: deg(£) > —3 = H3(Z,L£) = 0 and for
Hitchin twistor spaces: deg(L) > —2 = H?*(Z,L) = 0.

A typical example of an application of these vanishing results will be the following.
Let S € | — K| be a smooth fundamental divisor. By adjunction we obtain K3' =
K_% ® Og. There exist exact sequences 0 — K% -0z 505 >0and 0 — Oz —
K™2 = K5' — 0. As deg(K2) = —2 we obtain hi(K2) = 0 for all . The first

sequence gives, therefore, h'(Og) = h*(Oy), which is zero for i > 1. Using h!(0z) =
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0 and h°(Oz) = 1 we deduce from the second sequence hO(K*%) =1+ hO(Kg).

By a(Z) we denote the algebraic dimension of Z. This is by definition the transcen-
dence degree of the field of meromorphic functions of Z over C. If dim Z = a(Z),
then Z is called Moishezon. We need here only the following facts on the alge-
braic dimension: dimZ > a(Z) and if f : Z — PV is a meromorphic map, then
a(Z) > dim f(Z). The reader may find this and many other things on algebraic

dimension in [U].

2 Algebraic Dimension

In this section we shall generalize a result of [K2] to the case of arbitray n > 4.
Let Z denote a simply connected Hitchin twistor space with ¢;(Z)? < 0. We
know c¢1(Z)3 = 16(4 — n) and the Riemannian manifold M corresponding to Z

is homeomorphic to the connected sum nCP?.

Theorem 2.1. Assume hO(K_%) > 2 and the existence of an irreducible real curve

Co C Z with Cy.(—3K) < 0. Then the following holds:

(i) Cy is a smooth rational curve and Co.(—3K) = (—3K)® —2 =23 —n), in

particular n > 4.
(ii) a(Z) = 3, that is Z is Moishezon.

(iii) The linear system | — L K| is two-dimensional and its base locus is precisely

Co.
(iv) Z does not contain effective divisors of degree one.

Proof: First we show the following
Claim: If Cy C Z is an irreducible real curve with Cy.(—3K) < 0, then Z does

not contain effective divisors of degree one.
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Assume Z contains an effective divisor D C Z of degree one. Then D+ D € |— %K l,
hence, by assumption, Co.D < 0 or Cy.D < 0. This implies Cy C D or Cy C D.
But Cp is assumed to be real, hence Cy C D N D. The intersection of a conjugate
pair of divisors of degree one is always a real twistor fibre F = D N D. Hence,
Co = F. But F.(—3K) = 2 contradicts the assumption Cj.(—3K) < 0. This proves
the claim.

The claim immediately yields statement (iv). In particular, as each effective divi-
sor has positive degree, all fundametal divisors are irreducible. As by assumption
hO(K 7%) > 1, we obtain the existence of an irreducible real fundamental divisor
S € | — $K|. The structure of such divisors is well understood (see e.g. [PP2] or
[K2]). In [K2] Lemma 3.3 and Lemma 3.4 the following was shown: S is a smooth ra-
tional surface and contains real twistor fibres F' C S, which form the real members of
apencil | F| of curves in S. If we equip P! x P! with the real structure given by the an-
tipodal map on the first factor and the usual real structure on the second factor, then
there exists a sequence of n blow—ups § = S — =1 5 5 §00) = pl x P!,
where at each step a conjugate pair of points is blown up. Each SU) can be
equipped with a unique real structure without real points and being compatible
with the morphisms SU1) — SU). As we do not blow up a real point, the im-
age C} of Cj in S0 = Pl x P! is a curve. By assumption, Cj is irreducible and
Cy.S < 0, hence Cy C S. By adjunction formula we have K> ®0s = Kgl. Hence,
Co.(—Ks) = Co.(—1K) < 0. Therefore, any member of | — K| must contain Cp.
As WK = hO(K_%) — 1 > 1 by assumption, we have | — Kg| # (. As we have
seen above, any member of | — Kg| has Cj as a real component. We can now apply
[K2] Prop. 3.6 to obtain the existence of a real member of | — Kg| having the form
Cy + F with a real twistor fibre F C S. If the blow—down o : S — P! x P! is chosen
appropriately, the image C} = o(C)) is a smooth rational curve being a member of

0(2,1)].
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From [K2] Lemma 3.3 we know that none of the blown—up points lie on a real
member of [0(0,1)|. On the other hand, K3 = 0*0(2,2) ® Os(—E), where E is
the exceptional divisor (more precisely, the sum of the pull backs of the exceptional
divisors of each step of blow—up SUt) — § (j)). Hence, all the blown—up points lie
on C}j and no two of them are infinitesimally near each other. In particular, C3 =
(C4)? —2n =4—2n and Cyy C S is the strict transform of the smooth rational curve
Cj. By adjunction formula we obtain Cp.(—3K) = Co.(—Ks) = CZ +2 = 6 — 2n.
In particular, n > 4. This proves the assertion (ii).

Furthermore, we see |— Kg| = Co+|F|. This implies dim|— K| = dim |- Kg|+1 =
dim|F| +1 = 2. As h'(Oz) = 0 the restriction map HO(Kfé) — HYKZY) is
surjective. Hence, the linear systems | — £ K| and | — Kg| have the same base locus.
As |F| does not have base-points, the base locus of | — 3 K| is Cy. Thus, we obtained
(iii).

To compute the algebraic dimension of Z we study the rational map defined by the
two—dimensional linear system | — %K |. This can be done precisely as in the case
n =4 (see [K2] Prop. 5.1). For convenience of the reader, we repeat the argument
here. Let o : Z — Z be the blow—up of the smooth rational curve Cy. By E C Z we
denote the exceptional divisor. Then we obtain a morphism 7 : Z — P? defined by
the linear system | — 1 K| such that 7*O(1) K73 Q@ O;(—E). As the restriction
map | — K| — | — K| is surjective, the restriction 7| is given by the linear system
| — Ks| = Cp + |F|. This means 7 exibits S as the blow—up of a ruled surface
and 7(S) is a line in P2. As 7(Z) is not contained in a linear subspace, 7 must be
surjective. If we equip P? with the usual real structure, 7 becomes compatible with
real structures since the linear system | — %K | and the blown—up curve Cj are real.
As we have seen above, any real fundamental divisor S is irreducible and smooth.
By S C Z we denote the strict transform of S € | — $K|. As Cy is a smooth curve

in a smooth surface, ¢ : § — S is an isomorphism. Furthermore, E N S will be
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mapped isomorphically onto Cyp C S. As F.Cy = 2 and the restriction of 7 onto S
is the map defined by the linear system |F|, the restriction of 7 exibits EN S as a
double covering over 7(S) = P!. As real lines cover P?, the morphism 7 : E — P?
does not contract curves and is of degree two.

As generic fibres of 7 are smooth rational curves, the line bundle O (E) restricts to
Op1(2) on such fibres. Hence, after replacing (if necessary) P? by the open dense set
U of points having smooth fibre, the adjunction morphism 7*7,04(E) — Oz (E)
is surjective. This defines a U-morphism & : Z — P(m,.0;(E)). m.0;(E) is a
locally free sheaf of rank three. The restriction of ® to smooth fibres coincides
with the Veronese embedding P! < P? of degree two. Therefore, the image of
® is a three-dimensional subvariety of the P?~bundle P(r,O;(E)) — U. Hence,
Z is bimeromorphically equivalent to a quasiprojective variety and has, therefore,

algebraic dimension three. O

3 Kurke—-LeBrun twistor spaces

To prove our existence theorem, we need some knowledge about the Moishezon
twistor spaces discovered by LeBrun [LeBl] and studied by Kurke [Ku]. In the
sequel we call these twistor spaces, which are bimeromorphic to some conic—bundles
over P! x P!, Kurke-LeBrun twistor spaces. In this section we merely collect well
known properties of such twistor spaces from [LeB1] and [Ku].

The construction starts with a set of n hyperplane sections of P! x P! embedded
as a smooth quadric into P3. This quadric is equipped with the real structure
defined by (z,y) — (7,Z), where conjugation denotes the usual real structure on
PL. Let ¢1,...,pn be sections of the line bundle O(1,1) on P! x P!, such that their
corresponding divisors A; are smooth rational real curves without real points. For
our purposes it is enough to assume that these curves A; are in general position,

that is the curve A = """ | A; defined by the product ¢ = ¢ - ... - ¢ has only
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ordinary nodes as singularities.

On P! xP! we consider the locally free sheaf £ := O®0O(1—n, —1)®0O(—1,1—n) with
constant non-zero sections zo € H%(E),z1 € HY(E(n —1,1)),20 € H'(E(1,n — 1)).
Let p : P(£) — P! x P! be the corresponding P?-bundle (we use Grothendieck’s
notation, see e.g. [H] II §7). Then there exists a natural isomorphism H°(P! x
P!, S%(€) ® O(n,n)) = H(P(E), Op(£)(2) ® p*O(n,n)). Hence, the section F :=
2120 + - 25 € HO(P! x P1,5%(€) ® O(n,n)) defines a divisor X C P(€), whose
fibres are conics. The discriminant of the conic bundle p : X — P! x P!, which is
the locus of critical values, is the curve A C P! x P!. The singularities of X are
ordinary nodes and are mapped under p bijectively onto the set of singularities of
A.

This conic bundle has two sections, namely the divisors £ = {zp = z; = 0} and
E = {zy = 22 = 0}. These divisors do not contain singular points of X. By choosing
certain small resolutions of the singularities of X and appropriate contractions of
E and E to smooth rational curves B and B, one obtains a twistor space Zj.

Let Hy C P! x P! be a real irreducible hyperplane section containing real points, but
missing the singular points of A. Then, the inverse image of Hy in X is a blow—up
of a smooth ruled surface. The projection to Hy has 2n reducible fibres. These
reducible fibres are precisely the fibres over Hy N A and each of them consists of
two rational curves. This surface does not meet the set of singularities of X but it
intersects E and E along sections. The contraction of E and E performed to get
Zy maps this surface isomorphically onto a real fundamental divisor Sy containing
the disjoint curves B and B. The real fibres of the morphism Sy — Hy are precisely
the real twistor fibres contained in Sy. The self-intersection number of B and B
in Sy is equal to —n. If we contract conjugate pairs of irreducible components of
reducible fibres of Sy — Hj, we obtain a morphism ¢ : Sg — P! x Hy which is the

blow-up on n pairs of conjugate points on P! x Hy. The two curves B’ = o(B) and
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B’ = ¢(B) are fibres of the projection P! x Hy — P!. On B’ lie n distinct points
which are blown—up under o. The conjugate set of blown—up points lie, of course,
on B’. As Hy does not meet the singularities of A, the set of 2n blown—up points

on P! x Hy is projected onto the 2n distinct points Hy N A.

4 Existence

In this section we prove the main theorem of our paper, stating for each n > 4 the
existence of a twistor space with the properties of Theorem 2.1. An important tool
to achieve this result will be the following theorem on the deformation theory of
twistor spaces. This theory was first developed by Donaldson and Friedman [DonF]

and later by Campana and LeBrun.

Theorem 4.1 ( [C1], [C3], [DonF], [PP2]). Let Z be a Kurke-LeBrun twistor
space, n >4 and S € | — K| a smooth real divisor. Then:

Any real member of a small deformation of Z is again a twistor space. Furthermore,
any small deformation of S with real structure is induced by a deformation of Z in
the sense that the deformed surfaces are members of the fundamental system of the

deformed twistor spaces.

Theorem 4.2. For any n > 4 there exists a simply connected twistor space Z
of positive type with c1(Z)3 = 16(n — 4) and containing a smooth rational curve
Co C Z with Cy.(—1K) = 2(3—n). Furthermore, dim|— 1 K| =2 and Z fulfills all

conditions of Proposition 2.1.

Proof: Let Zy be a (generic) Kurke-LeBrun twistor space and Sy C Zj a real
fundamental divisor as described in section 3. Then we can choose a real blow—
down map o : Sy — P! x P! such that the 2n blown—up points lie on a conjugate
pair of lines B’, B’ € |O(1,0)|. We can take Zy, Sp and & in such a way that n

distinct points on B’ and their conjugates on B’ are blown-up and no member of
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|O(0,1)] contains more than one of these 2n points. The real members of |O(0, 1)]
do not contain blown—up points. The idea of the proof is to move the 2n points on
P! x P! such that they lie on a smooth real member of |O(2,1)| and to apply then
Theorem 4.1.

To make this more precise, let F' € |0(0,1)| be a real fibre. Define Cy := B’ +
F'+B'€]0(2,1)|. Let T := |0(2,1)| = P> be the parameter space of the universal
family C = {(C,z) | z € C} C |0(2,1)| x (P! x P!) of curves of type (2,1). Then
C — T is a flat family being a deformation of Cy. By 0 € T we denote the point,
corresponding to Cy. If t € T' is a point, we shall denote the fibre of C — T over ¢
by C4.

Let us equip P! x P! with the real structure given by the antipodal map on the
first factor and the usual real structure on the second factor. As this real structure
preserves the type of a divisor, we obtain a real structure on 7'. This induces a real
structure on C, such that C — T x (P! x P!) and C — T are real morphisms. If
we set Ty := T', we can recursively define the spaces T} := Tj_1 X7 C — T for any
k > 1. We obtain a flat family Ty,1 — T}, whose fibres are curves of type (2,1) on

P! x PL. This family has k natural sections P’

2Ty — Tgy1 (1 =1,...,k) given by
the k£ projections T, — C which we obtain recursively.

As we want to blow up 2n distinct points on a curve of type (2,1), we introduce
the open subset T C T}, defined as follows. Let Ty := Ty and T, C Ty | X7 C
be the complement of the union Py_; := Uf;ll P,gi_)l(T,;Ll) of the images of the
k — 1 natural sections of Ty — Tj_1 restricted to T ;. The closed subvariety
Prt1 C Ti41 is by definition étale of degree k over T},. Using the closed embedding
C C T x P! x P! we obtain, recursively, closed embeddings T} 1 C Ty, x (P! x P!)
and Pyy1 C TP x (P x P1).

As Pyi1 — Ty is flat, the blow-up S — Ty x (P! x P') along Pj1 defines a flat

family Sy — T} whose fibres are surfaces, isomorphic to a blow—up of P! x P! at k
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distinct points, lying on a curve of type (2,1). A point z € T} corresponds to an
ordered set of k distinct points (z1,...,z) on P! x P!, which lie on the curve Cj,
where ¢ is the image of z under T, — Ty =T

The given set of 2n blown—up points on the given curve Cy € |O(2,1)| defines a
point 0 € T3, such that the fibre of Sy, — T3, over 0 is isomorphic to the surface
So we started with. Assume we ordered the points z1, ..., %2, in such a way that
Ti = Tp+i (1 = 1,...,n). We then introduce on T5, the real structure given by
(Wi,--,¥2n) = (Upy1s---1Y2m: U1y -+, Up). With this real structure, T, C T, is
real and 0 € Ty, (R) is a real point. If we equip To, x (P! x P!) with the real
structure given by the real structures on both factors, the subvariety Pop 1 is real.
Hence, we obtain on Sy, a real structure, such that Sy, — T, is a real morphism.
By assumption, the originally blown—up points z1,...,zs, do not lie on F’  that
means they are smooth points of Cy. Hence, T3, is smooth at 0. This implies, the
subset of real points T'5, (R) is near 0 a real manifold whose real dimension is equal
to the (complex) dimension of T7, .

We can apply Theorem 4.1 to obtain an open analytic neighbourhood of 0 € 75, C
Ts,, such that for any real ¢ € T5,(R) there exists a twistor space Z; containing a
fundamental divisor isomorphic to S; (the fibre of So, — T55,, over t).

By construction, the morphism T3, — T is flat, hence, open. The image of T3, in
T is, therefore, open. As the subset of points on T' corresponding to non—-smooth
curves Cy C P! x P! is a Zariski-closed subset and T' = P3 is irreducible, there
exists a Zariski-open dense subset of T3, whose image in 7" corresponds to points
parametrizing smooth curves C;. As Ty, (R) is Zariski-dense in Ty, (at least in
a neighbourhood of 0), there exist points ¢t € Ty, (R) whose image in T'(R), also
denoted by ¢, corresponds to a smooth real divisor C; € |O0(2,1)].

This proves the existence of twistor spaces Z; with a fundamental divisor S; and a

blow-up S; — P! x P!, such that the 2n distinct blown-up points in P! x P! lie on
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a smooth real curve Cy € |0(2,1)|. The strict transform C, C Z; of C, is a smooth
real curve contained in S; which has there the self-intersection number 4 —2n and is
isomorphic to P!. Furthermore, (—Kg,)? = 8—2n. By adjunction formula we obtain
Cr.(—1K) = Cp.(—Ks,) = C/° +2 =2(3 —n) and (—1K)? = (—Ks,)? = 2(4 — n).

As the Z; are small deformations of Z, they are also simply connected. The twistor
space Zy is Moishezon, thus of positive type (see [Po2]). A small deformation of
a twistor space of positive type is again of positive type. So, we obtain, Z; is of
positive type. As we have by construction |Kg,| # () we obtain hO(Zt,K_%) =

1+ h%(—Ksg,) > 2. Hence, we can apply Theorem 2.1 to get the result. O

5 Comment to a paper of Pedersen and Poon

As the twistor spaces we constructed in the previous section are small deformations
of Kurke-LeBrun twistor spaces, our result contradicts obviously Theorem 4.7 in
[PP2] which claims that any Moishezon twistor space being a small deformation of
a Kurke—LeBrun twistor space contains an effective divisor of degree one. So, there
are some comments in order.

The solution for this contradiction is, that the proof of Lemma 4.1 in [PP2] has
a gap, which appears on page 697. They did not consider in their case (ii) the
possibility that a real curve of type (2,2) on P! x P! can split as the sum of two
real curves Cy + F with Cy € |0(2,1)| and F € |O(0,1)| a real twistor fibre. (A
complete treatment of this situation can be found in [K2].)

As a consequence of this gap, the proofs of Corollary 4.3, Theorems 4.7 and 4.8
in [PP2] are not correct. Our existence theorem shows that these results are even

false.
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