TOYING WITH JORDAN MATRICES

Eberhard Schock

It is shown that an important resolvent estimate is instable under small perturbations.

In many applications operators T are of interest which fulfill the condition: the resolvent set $\rho(T)$ contains the negative reals, and there is a constant $\gamma > 0$, such that for all positive reals s the "resolvent estimate" holds

(res) \[\| (sI + T)^{-1} \| \leq \frac{\gamma}{s}. \]

In the theory of semigroups (see e.g. J.A. GOLDSTEIN [1, p. 20]) or in the theory of evolutionary integral equations (J. PRUSS [4, p. 69]) this condition is well known. In the investigation of regularization methods for ill-posed equations in Banach spaces the condition (res) is necessary for the convergence of the so-called Lavrentiev regularization (see R. PLATO [3], E. SCHOCK/V. PHONG [6], SPECKERT [7]).

The following simple example will show that the condition (res) is unstable under arbitrary small perturbations. We will construct operators J built up with Jordan matrices which act on block subspaces of ℓ_p.

By $J_n(\lambda)$ we denote an $(n \times n)$-Jordan matrix with the eigenvalue λ and with 1’s in the upper diagonal. The following Lemma is well known.

Lemma 1. Let $\lambda \in \mathbb{C}$, $\lambda \neq 0$. Then

\[
J_n(\lambda)^{-1} = \begin{pmatrix}
\lambda^{-1} & -\lambda^{-2} & \cdots & (-1)^{n-1} & \lambda^{-n} \\
\lambda^{-1} & \cdots & (-1)^{n-2} & \lambda^{-n+1} \\
\vdots & \ddots & \ddots & \ddots \\
0 & & \ddots & \ddots \\
& & & & \lambda^{-1}
\end{pmatrix}
\]

Lemma 2. In $X = \ell_p^n = \left(\mathfrak{F}^n, \| \cdot \|_p \right)$ for $0 < \lambda \leq 1$ holds

\[\| J_n(\lambda)^{-1} \| \geq \lambda^{-n}. \]
Proof. Let e_n be the n^{th} unit vector, then
\[\| J_n(\lambda)^{-1} e_n \|^p_p = \sum_{k=1}^{n} \lambda^{-pk} \geq \lambda^{-pn}. \]

Let $D_n(\lambda)$ be the $(n \times n)$-diagonal matrix with the eigenvalue λ, then for $\varepsilon > 0$
\[D_n(\lambda) + \varepsilon J_n(0) = \varepsilon J_n \left(\frac{\lambda}{\varepsilon} \right). \]

Proposition 3. Let (λ_k) be a sequence of non-negative reals converging to zero, $\varepsilon > 0$, $n \in \mathbb{N}$ and
\[J_\varepsilon = \bigoplus_{k=1}^{\infty} \varepsilon J_n \left(\frac{\lambda_k}{\varepsilon} \right). \]
Then for all s with $0 < s \leq \varepsilon$
\[\left\| (s I + J_\varepsilon)^{-1} \right\| \geq \frac{\varepsilon^{n-1}}{s^n}. \]

Proof. We have
\[sI + J_\varepsilon = \bigoplus_{k=1}^{\infty} \varepsilon J_n \left(\frac{\lambda_k + s}{\varepsilon} \right). \]
By Lemma 2 for $x = e_{nm}$
\[\left\| (sI + J_\varepsilon)^{-1} x \right\|^p_p = \sum_{k=1}^{n} \varepsilon^{-p} \frac{\varepsilon^{pk}}{(\lambda_{m+k})^p} \geq \left(\frac{\varepsilon^{n-1}}{(\lambda_{m+n})^p} \right)^p, \]
thus
\[\left\| (sI + J_\varepsilon)^{-1} \right\| \geq \sup_m \frac{\varepsilon^{n-1}}{(\lambda_{m+n})^p} = \frac{\varepsilon^{n-1}}{s^n}. \]

Let $D = \bigoplus_{k=1}^{\infty} D_n(\lambda_k)$, then
\[\| D - J_\varepsilon \| = \varepsilon \]
because $D - J_\varepsilon = \bigoplus_{k=1}^{\infty} \varepsilon J_n(0)$, and $J_n(0)$ acts as a shift operator.

Corollary 4. The operator D fulfills (res), but for every $\varepsilon > 0$ the operator J_ε, which is an ε-perturbation of D, violates this condition.
In [4] it is shown, that the Lavrentiev regularization diverges, if (res) is violated. On the other hand, in the treatment of ill-posed problems the discussion of perturbations is indispensable, hence the Lavrentiev method is useless for ill-posed equations in Banach spaces.

The smallest positive integer \(r \), such that for all positive integers \(k \)

\[\text{Ker} \left(\lambda I - T \right)^r = \text{Ker} \left(\lambda I - T \right)^{r+k} \]

and

\[\text{Range} \left(\lambda I - T \right)^r = \text{Range} \left(\lambda I - T \right)^{r+k} \]

is called the Riesz number of the compact operator \(T \). (see e.g. R. KRESS [2, p. 27]).

For compact selfadjoint operators in Hilbert spaces the Riesz number of each eigenvalue \(\lambda \neq 0 \) is equal to unity. An operator \(T \) in a Hilbert space \(X \) is said to be highly non-selfadjoint, if for any positive integer \(n \) there is a finite dimensional \(T \)-invariant subspace \(E \subset X \), such that the restriction of \(T \) onto \(E \) has an eigenvalue \(\lambda \) with Riesz number \(> n \).

The following construction of a highly non-selfadjoint operator is a refinement of the construction above.
Let \((\lambda_k) \) be a sequence of non-negative reals, tending to zero. Then

\[T = \bigoplus_{k=1}^{\infty} J_k(\lambda_k) \]

is highly non-selfadjoint, since \(\lambda_k \) is an eigenvalue of \(T \) with Riesz-number \(k \). The spectrum of \(T \) is the unit disk \(\Delta \) and the sequence \((\lambda_k) \).

\[sI - T = \bigoplus_{k=1}^{\infty} J_k(s - \lambda_k) . \]

The entry with number \((1,k)\) of the matrix \((sI - T)^{-1}\) has the modulus \(|s - \lambda_k|^{-k} \) hence

\[\sup_{k} |s - \lambda_k|^{-k} < \infty, \text{ if } s \notin \{\lambda_k, k \in \mathbb{N}\} \text{ or } |s| > 1 \text{ (since } \lim_{k} \lambda_k = 0) \].

Of course, \(T \) is not compact.

Although each matrix \(J_k(0) \) is nilpotent, \(N = \bigoplus_{k=1}^{\infty} J_k(0) \) is not quasinilpotent, since the spectrum of \(N \) is the unit disk \(\Delta \).

REFERENCES

Department of Mathematics
University of Kaiserslautern
Erwin-Schrödinger-Str.
67663 Kaiserslautern
Germany

AMS Subject Classification 47 A 10, 45 BO 5