Characterization of operators of positive scalar type

by Peter VIETEN, Kaiserslautern

July 17, 1997

Abstract

Let X be a Banach lattice. Necessary and sufficient conditions for a linear operator $A : D(A) \to X$, $D(A) \subseteq X$, to be of positive C^0-scalar type are given. In addition, the question is discussed which conditions on the Banach lattice imply that every operator of positive C^0-scalar type is necessarily of positive scalar type.

AMS Mathematics Subject Classification: Primary 47B40; Secondary 47A60.

0 Introduction

A linear operator A on a Banach space X is a scalar-type-operator (or equivalently of scalar-type) on $[0, \infty)$ if $\sigma(A) \subseteq [0, \infty)$ and if there exists a spectral measure E on the Borel subsets of $[0, \infty)$ such that

\[D(A) = \{ x \in X : \lim_{n \to \infty} \int_0^n \lambda E(d\lambda)x \text{ exists} \} \]

and

\[Ax = \lim_{n \to \infty} \int_0^n \lambda E(d\lambda)\quad x \in D(A). \]
0 INTRODUCTION

If X is Banach lattice then we say that A is of positive scalar type on $[0, \infty)$ if A is of scalar type on $[0, \infty)$ with positive spectral measure E, i.e. $E(M)$ is a positive projection for all Borel measurable subsets $M \subseteq [0, \infty)$.

We refer the reader to [4] for a brief introduction into the history and the importance of scalar-type operators. Operators of positive scalar type where studied e.g. in [1]. In addition, it was shown in [2], if A is an operator of scalar type on a cyclic Banach space X then there exists an ordering and an equivalent norm on X, such that X becomes a Banach lattice, and such that X is of positive scalar type on X.

By $C_0[0, \infty)$ we denote the space of complex-valued functions on $[0, \infty)$ vanishing at infinity, and $\mathbf{L}(X)$ denotes the space of linear bounded operators on X. If A is of scalar type on $[0, \infty)$ with spectral measure E then there exists a bounded algebra homomorphism $T \Phi : C_0[0, \infty) \to \mathbf{L}(X)$ given by

$$\Phi(f)x = \int_0^\infty \lambda E(d\lambda)x.$$

If we denote by ρ_s the function $\rho_s(t) = 1/(s + t)$ then $\Phi(\rho_s) = (s + A)^{-1}$ for every $s > 0$. Operators for which such an algebra homomorphism exists are called C^0-scalar-type operators on $[0, \infty)$. If X is a Banach lattice and if Φ is a positive algebra homomorphism then A is said to be of positive C^0-scalar type.

We note that every operator of (positive) scalar type is of (positive) C^0-scalar type where the algebra homomorphism Φ is given by

$$\Phi(f) = \int_0^\infty f(t) E(dt), \quad f \in C_0[0, \infty).$$

Conversely, if a scalar-type-operator A is of positive C^0-scalar type then A automatically is of positive scalar type.

The notion of scalar type and C^0-scalar type operators lead to the following problems:

(1) Find conditions on A (or on the resolvent of A or the semigroup generated by A) which are necessary and sufficient for A being of C^0-scalar type.
1 OPERATORS OF POSITIVE SCALAR TYPE

(II) In which Banach spaces are all \(C^0 \)-scalar type operators of scalar type?

These two problems were discussed in detail in [6]. In this note we focus on the characterization of operators of positive scalar type.

1 Operators of positive scalar type

We study now operators acting on a Banach lattice \(X \). For elementary properties of positive operators in Banach lattices we refer the reader to [5].

Recall that the linear operator \(A \) on \(X \) is of positive scalar type on \([0, \infty)\) if \(A \) is of scalar type on \([0, \infty)\) with positive spectral measure \(E \), and that \(A \) is of positive \(C^0 \)-scalar type if \(A \) is of \(C^0 \)-scalar type with positive algebra homomorphism.

We pose the following two problems:

(I+) Find conditions on \(A \) (or on the resolvent of \(A \) or the semigroup generated by \(A \)) which are necessary and sufficient for \(A \) being of positive \(C^0 \)-scalar type.

(II+) In which Banach lattices are all operators of positive \(C^0 \)-scalar type operator of positive scalar type?

The answer to problem (I+) is the following

Theorem 1. Let \(A \) be a densely defined operator on \(X \) with \(\sigma(A) \subseteq [0, \infty) \).

Then the following assertions are equivalent:

(a) \(A \) is of positive \(C^0 \)-scalar type on \([0, \infty)\).

(b) \(t(t + A)^{-1} \) is uniformly bounded, \((t + A)^{-1} \geq 0 \) and \(A^k(t + A)^{-2k} \geq 0 \) for \(k = 1, 2, \ldots \) and \(t > 0 \).

(c) \(A^k(1 + A)^{-(k+n)} \geq 0 \) for \(k, n = 0, 1, 2, \ldots \).
\((d) \) \(-A \) generates a \(C_0 \)-semigroup \((U(t))_{t \geq 0} \) such that \(U(t)X \subseteq D(A) \) for every \(t > 0 \), and \(A^k U(t) \geq 0 \) for \(k = 0, 1, 2, \ldots \) and \(t > 0 \).

The proof of Theorem 1 is an easy combination of the following ingredients:

(a) The proof of the characterization of \(C^0 \)-scalar type-operators given in [6], Theorem 6.

(b) A characterization of Stieltjes transforms of positive measures [7], Theorem VIII.17c., and its application to the resolvent \((\lambda + A)^{-1}, \lambda > 0 \).

(c) A description of completely monotonic sequences [7], Theorem III.4a., and its application to the sequence \(((1 + A)^{-n})_{n=0,1,2,\ldots} \).

(d) Bernstein’s theorem on the characterization of Laplace transforms of positive measures, and its application to the semigroup generated by \(-A\).

A partly answer to the second problem (II+) will follow from the solution of problem (II) given in [6], which we recall now. Assume \(A \) to be of scalar type on \([0, \infty)\) with spectral measure \(E \). Then \(A \) is of \(C^0 \)-scalar type on \([0, \infty)\) with corresponding algebra homomorphism \(\Phi \) given by

\[
\Phi f(x) = \int_0^\infty f(t) E(dt)x.
\]

If we denote by \(\Phi[x] : C_0[0, \infty) \to X \) the operator \(\Phi[x]f = \Phi f(x) \), and if we define \(E[x] \) to be the vector measure defined by \(E[x](E) = \mu(E)x \), then the" components" \(\Phi[x] \) of \(\Phi \) can be represented by the countably additive vector measure \(E[x] \), i.e.

\[
\Phi[x]f = \int_0^\infty f(t) E[x](dt).
\]

In [6] it is shown that the converse is also true, i.e. if \(A \) is a linear operator on \(X \) with \((-\infty, 0) \subseteq \rho(A)\), then \(A \) is of scalar type on \([0, \infty)\) if and only if \(A \) is of \(C^0 \)-scalar type on \([0, \infty)\) and the components \(\Phi[x] \) of the corresponding
1 OPERATORS OF POSITIVE SCALAR TYPE

algebra homomorphism Φ can be represented by a countably additive vector measure for all $x \in X$. The following theorem is an immediate consequence of the foregoing considerations.

Theorem 2 The operator A on X is of positive scalar type on $[0, \infty)$ if and only if A is of positive C^0-scalar type on $[0, \infty)$ with corresponding algebra homomorphism Φ and, for all $x \in X_+$, the, necessarily positive, components $\Phi[x]$ of Φ can be represented by a, necessarily positive, countably additive vector measure.

It is well known that every operator $T : C_0[0, \infty) \to X$ has a representation by a countably additive vector measure if and only if X does not contain an isomorphic copy of the space of complex valued null sequences c_0 [6]. Hence, by the statement preceding Theorem 2, if X does not contain an isomorphic copy of c_0 then every C^0-scalar type-operator on X is of scalar type on X. Moreover, Doust [3] showed that if c_0 is contained in X then there exists an operator of C^0-scalar type on X which is not of scalar type.

Since we are interested in a characterization of those Banach lattices X in which every operator of positive C^0-scalar type is of positive scalar type the following two open problems should be solved:

(III+) Give a characterization of those Banach lattices X such that every positive operator $T : C_0[0, \infty) \to X$ can be represented by a, necessarily positive, countably additive vector measure.

(IV+) If X is a Banach lattice with the property that not every positive operator $T : C_0[0, \infty) \to X$ can be represented by a countably additive vector measure is it then possible to construct an operator A on X which is of positive C^0-scalar type on $[0, \infty)$, but which is not of positive scalar type on $[0, \infty)$?
References

Peter Vieten, Fachbereich Mathematik,
Universität Kaiserslautern, Erwin Schrödinger Strasse,
67663 Kaiserslautern, Germany
E-mail: vieten@mathematik.uni-kl.de
Fax: 0631/205 3052