Differenzierbare Maße und Stochastische Analysis

6 Vorträge am Graduiertenkolleg 'Stochastische Prozesse und probabilistische Analysis'. Berlin Januar/Februar 98

Heinrich v. Weizsäcker, Kaiserslautern

1. Differenzierbare Kurven von Maßen, logarithmische Ableitungen und eine Integraltransformationsformel. Verschiedene Differenzierbarkeitskonzepte von einparametrischen Familien \((\mu_t)_{t \in \mathbb{R}}\) von Wahrscheinlichkeitsverteilungen werden miteinander verglichen und es wird unter relativ schwachen Voraussetzungen eine Formel für die Radon-Nikodym-Ableitungen zwischen den Maßen dieser Familie angegeben ([SW93]).

2. Differenzierbare Maße auf linearen Räumen. Sei \(E\) ein linearer Raum und \(h \in E\). Die vorangegangen Ergebnisse werden an der Familie (Lokationsfamilie in statistischer Terminologie) \((\mu(\cdot + th))_{t \in \mathbb{R}}\) erläutert. Im endlich-dimensionalen Fall hat ein in allen Richtungen differenzierbares Maß eine Lebesgue-Dichte. Dies liefert einen kurzen Beweis des sogenannten Malliavin-Lemmas. ([ASF71])

4. Differentiation des Wiener Maßes, Differentiation längs Vektorfeldern: Stochastische Integrale und Partielle Integration. Für die Differentiation von
Maßen längs Vektorfeldern werden verschiedene Varianten miteinander verglichen. Die flexibelste benutzt eine Art partieller Integration. Stochastische Integrale bezüglich der Brownschen Bewegung können aufgefaßt werden als negative logarithmische Ableitung des Wiener-Maßes längs geeigneter Vektorfelder. Dieser Abschnitt erläutert den Zusammenhang der beiden Titelbegriiffe durch die L^2-Dualität zwischen Malliavin-Ableitung und logarithmischer Ableitung. ([GT82],[Nua95])

6. Transformationsformeln vom Girsanov-Typ. Es wird gezeigt wie die Formel aus dem ersten Vortrag zu einem Verfahren benutzt werden kann, um allgemeine endlich-dimensionale Integraltransformationsformeln zu beweisen. Die Rolle der Jacobi-Determinante wird diskutiert, insbesondere warum sie nicht in der üblichen Girsanov-Formel auftaucht. (Anhang in [DF92], [SW95])

1 Differenzierbare Kurven von Maßen, logarithmischen Ableitungen und eine Integraltransformationsformel.

Satz 1.1: (A. Weil) In einem unendlich-dimensionalen separablen normierten Raum E gibt es kein translationsinvariantes lokalendliches Maß $\neq 0$.

Beweis: Weil μ lokalendlich ist, existiert ein $r > 0$ mit $\mu(K(0,2r)) < \infty$. Wir verwenden nun die folgende Tatsache:
Es gibt ein $\delta > 0$ und eine unendliche Folge x_1, x_2, \ldots mit $\| x_i \|= 1$ und $\| x_i - x_j \| \geq \delta$ für alle $i \neq j$. (Im Hilbert Raum nimmt man zum Beispiel ein
ON System.)
Dann sind die Kugeln $K(rx_i, \frac{\delta}{2})$, $i = 1, 2, \ldots$ disjunkt und in $K(0, 2r)$ enthalten. Da μ translationsinvariant ist, haben gleichgroße Kugeln gleiches Maß. Also muß wegen

$$\sum \mu(K(rx_i, \frac{\delta}{2})) \leq \mu(K(0, 2r)) < \infty$$

das Maß der kleinen Kugeln 0 sein. Weil E separabel ist, hat E eine Darstellung $E = \bigcup_{k=1}^{\infty} K(y_k, \frac{\delta}{2}r)$, also ist $\mu(E) = 0$.

Sei (E, B) ein Meßraum und $M = M(E)$ der lineare Raum aller signierten Maße auf B, d.h. jedes $\mu \in M(E)$ läßt sich schreiben als $\mu = \mu^+ - \mu^-$ wobei μ^\pm endliche Maße ≥ 0 sind. Diese Zerlegung ist eindeutig, wenn μ^+ und μ^- so gewählt werden, daß sie auf zwei disjunkten Teilmengen von E konzentriert sind.

Definition 1.2: Eine Kurve $(\mu_t)_{t \in I}$ von Elementen von $M(E)$ mit $I \subseteq \mathbb{R}$ heißt τ-differenzierbar an der Stelle $t_0 \in I$, wenn

$$\mu'_t = \tau - \lim_{t \to t_0} \frac{\mu_t - \mu_{t_0}}{t - t_0} \in M(E)$$

existiert. Dabei ist τ eine lineare Topologie auf $M(E)$.

Beispiel 1.3 für τ: a) $\tau = \tau_\|$, wobei $\| \|$ im folgenden stets die durch $\| \mu \| = \mu^+(E) + \mu^-(E)$ definierte Totalvariationsnorm ist.

b) $\tau = \tau_C$: die größte Topologie für die $\mu \mapsto \int \varphi d\mu$ stetig ist für alle $\varphi \in C$. Dabei sei $C \subseteq B_b (= \text{Raum der beschränkten } B\text{-meßbaren Funktionen})$ so daß die folgende Generalvoraussetzung gilt

$$\| \mu \| = \sup \left\{ \int \varphi \, d\mu : \varphi \in C, \| \varphi \|_{\infty} \leq 1 \right\}. \quad (A)$$

Dies gilt etwa in den Fällen: $C = C_b(E)$, $C = C_c^\infty(\mathbb{R}^d)$, $C = B_b$.
Übung: Verifiziere (A) in diesen 3 Fällen.

Beispiel 1.4 für differenzierbare Kurven in \mathcal{M}.

a) Es sei $E = \mathbb{R}$ und $\mu_t(dx) = f(\cdot + t) \, dx$, $f \in C'_c(\mathbb{R})$, Beh.: (μ_t) ist $\tau_\| \|$-differenzierbar mit $\mu'_t(dx) = f'(x + t_0) \, dx$. In der Tat ist

$$\left| \int \varphi \, d\left(\frac{\mu_t - \mu_{t_0}}{t - t_0} - \mu'_t \right) \right| = \left| \int \varphi \left(\frac{f(x + t) - f(x + t_0)}{t - t_0} - f'(x) \right) \, dx \right|$$

wobei der zweite Faktor gegen Null konvergiert, weil f kompakten Träger hat.

b) Sei $\mu_1(dx) = 1_{[0,1]}(x) \, dx$. Dann gilt

$$\int \varphi \, d\left(\frac{\mu_1 - \mu_{t_0}}{t - t_0} \right) = \frac{1}{t - t_0} \int_0^t \varphi(x) \, dx \rightarrow \varphi(t_0)$$

falls φ stetig ist. Also $\mu'_t = \varepsilon_{t_0}$ bzgl. der Topologie $\tau = \tau_{C_b}(\mathbb{R})$ aber $\| \frac{\mu_t - \mu_{t_0}}{t - t_0} - \mu'_t \|$ kovergiert nicht gegen Null, d.h. die Familie ist nicht differenzierbar für die Normtopologie.

Bemerkung: Im ersten Beispiel ist $\mu'_t \ll \mu_t$ denn $|\mu_t|(N) = 0 \implies f(\cdot + t) = 0 \lambda$-fü auf $N \implies f'(\cdot + t) = 0 \lambda$-fü auf $N \implies \mu'_t(N) = 0$. Im zweiten Beispiel dagegen ist μ'_t nicht absolutstetig bezüglich μ_t denn es ist zwar $\mu_t \ll \lambda$, aber μ'_t hat keine Lebesgue-Dichte. Diesem Zusammenhang zwischen der Wahl der Topologie und der absolutstetigkeit des Ableitungsmaßes wollen wir jetzt genauer nachgehen. In einer Richtung gibt der nächste Satz Auskunft. Für ihn benötigen wir noch folgendes

Lemma 1.5: Sei (μ_t) überall τ_C-differenzierbar und $\sup \| \mu'_t \| \leq C < \infty$. Dann ist $t \mapsto \mu_t$ Lipschitz für $\| \| \|$ mit Lipschitz-Konstante C. Ist die Abbildung $t \mapsto \mu'_t$ lokal integrierbar, so ist $t \mapsto \mu_t$ stetig bezüglich $\| \|$.

Beweis: Betrachte $f_\varphi(t) = \int \varphi \, d\mu_t$. Nach Vor. ist f_φ überall differenzierbar mit $|f'_\varphi| \leq C \| \varphi \|_\infty$. Dann gilt (Übung)

$$f_\varphi(t) - f_\varphi(s) \leq C \| \varphi \|_\infty |t - s|.$$

Also

$$\| \mu_t - \mu_s \| = \sup_{\| \varphi \|_\infty \leq 1} \left| \int \varphi \, d(\mu_t - \mu_s) \right| \leq C |t - s|.$$
Wegen der Voraussetzung (A) folgt die Behauptung.
Die zweite Aussage ergibt sich analog mit Hilfe der Tatsache, daß eine überall differenzierbare Funktion mit lokal integrierbaren Ableitung absolutstetig, d.h.
Stammfunktion ihrer Ableitung ist.

Bemerkung:
1. Das Beispiel 1.4 b) liefert also eine Lipschitz-Funktion $\mathbb{R} \to (\mathcal{M}, || ||)$ die nirgends differenzierbar ist. Für Hilbert Raum wertige Funktionen gilt dagegen der Satz von Rademacher: Eine Lipschitzfunktion $\mathbb{R}^d \to \text{Hist Lebesgue-f.}$ differenzierbar.
2. Der erste Teil des Lemmas wird noch einmal im Beweis von Satz 2.8 wichtig.

Satz 1.6: Sei (μ_t) überall τ_C-differenzierbar und $t \mapsto || \mu_t' ||$ sei lokal Lebesgue-integrierbar. Sei zusätzlich $\mu_t' \ll \mu_t$ für (Lebesgue-fast) alle t. Dann gilt
a) Für Lebesgue-fast alle t ist $(\mu_t) || \tau ||$-differenzierbar.
b) Es gibt ein W-Maß ν und produktnessbare Funktionen f, f' auf $\mathbb{R} \times E$ mit $f(t, \cdot) = \frac{d\nu_t}{d\nu}, f'(t, \cdot) = \frac{d\nu_t'}{d\nu}$ und

$$f(b, x) = f(a, x) + \int_a^b f'(s, x) ds \quad \forall \, x, a, b. \quad (1.2)$$

Erinnerung für den Beweis: Seien $(\mathcal{M}, || ||)$ ein Banach-Raum und (Ω, \mathcal{A}, P) ein Maßraum. Eine Abb. $f : \Omega \to F$ heißt Bochner-integrierbar, wenn
a) ein separabler Unterraum $F_0 \subset F$ existiert mit $f(x) \in F_0$ P-f. b) f ist $\mathcal{A} - \mathcal{B}(F)$-messbar
b) $\int_{\Omega} || f(x) || dP < \infty$.

Eigenschaften:
1. Für jeden anderen Maßraum $(\Omega', \mathcal{B}', \nu)$ und $g \in \mathcal{L}^1(P \otimes \nu)$ ist durch $f(x) = [g(x, \cdot)]$ wobei $[\cdot]$ die ν-äquivalenzkl. andeutet, ein $f \in \mathcal{L}^1_{\lambda}(\nu)(P)$ definiert. Dies ist relativ leicht mit dem Satz von Fubini zu sehen.
2. (Lebesque Differentiationssatz fürs Bochner-Integral) Für jedes $f \in \mathcal{L}^1_M(\lambda)$ gilt: $F : t \mapsto \int_a^t f(s) ds \in M$ ist Lebesgue-fü. differenzierbar mit $F'(t) = f(t)$.

(Literatur: Neveu, [Nev69], Martingales à temps discret, Diestel-Uhl [DU77] Vector measures)

Beweis: (des Satzes:) Wegen des Lemmas ist $t \mapsto \mu_t$ stetig für $|| ||$. Setze

$$\nu = \sum_{n \in \mathbb{N}} 2^{-n} \frac{|| \mu_{r_n} ||}{|| \mu_{r_n} ||}$$

wobei $(r_n)_{n \in \mathbb{N}}$ eine Abzählung von \mathbb{Q} ist. Dann folgt aus $\nu(N) = 0$ daß $\nu_{r_n}(N) = 0 \forall n$ und damit $\mu_t(N) = 0$ für alle t.
Definiere ein Maß m' auf der Produkt-σ-Algebra durch $m'(dt \, dx) = \mu'_t(dx) \, dt$. Dann ist auch $m' \ll \lambda \otimes \nu$. Denn sei $\lambda \otimes \nu(N) = 0$. Dann ist nach Fubini $\nu(N_t) = 0$, also auch $\mu_t(N_t) = 0$ für λ-fast alle t. Nach Voraussetzung folgt $\mu'_t(N_t) = 0$ für λ-fast alle t und damit $m'(N) = \int \mu'_t(N_t) \, dt = 0$.

Sei nun $f' = \frac{dm'}{d\lambda \otimes \nu}$. Dann ist

$$
\int \varphi(x) \int_a^b f'_t(x) \, dt \, d\nu = \int_{[a,b] \times E} \varphi(x) f'(t, x) \, d\lambda \otimes \nu \quad (1.3)
$$

für jede Wahl der Dichten f_a, f_b. Also gilt (1.2) ν-f. Ferner ist $\int_a^b \int_E |f'_t| \, d\nu \, dt = \int_a^b \| \mu'_t \| \, dt < \infty$, für alle endlichen a, b. Also können wir ohne Einschränkung annehmen, daß $f'_t = 0$ auf $\bigcup_{n \in \mathbb{N}} \{ x : \int_n^n |f'_t(x)| \, dt = \infty \}$. Damit läßt sich f neu definieren durch $f_0(x) = \frac{d\mu_0}{d\nu}$ und $f_t(x) = f_0(x) + \int_0^t f'_t(x) \, ds$. Für diese Modifikation gilt (1.2) überall. Also ist b) bewiesen.

Wegen (1.2) und der oben erwähnten Eigenschaften des Bochner-Integrals ist $f_b - f_a = \int_a^b f'_t \, dt$ als Bochner-Integral und daher

$$
\| \frac{f_t - f_{t_0}}{t - t_0} - f'_t \|_{L^1(\nu)} \to 0
$$

für Lebesgue-fast alle t_0. Wegen (1.3) ist $f_t = \frac{d\mu}{d\nu}$ für alle t und daher auch

$$
\| \frac{\mu_t - \mu_{t_0}}{t - t_0} - \mu'_t \| \to 0
$$

λ-f. denn die Totalvariationsnorm stimmt auf dem Teilraum derjenigen Maße, die eine ν Dichte haben, mit der $L^1(\nu)$-Norm überein. Dies beweist a). \blacksquare

Der Satz zeigt, daß die Bedingung $\mu'_t \ll \mu_t$ erlaubt, aus der schwachen Differenzierbarkeit für fast alle Parameter auf die stärkere zu schließen. Es gibt hiervon eine erstaunlich einfache Umkehrung für nichtnegative Maße.

Lemma 1.7: Sei $\mu_t \geq 0$ für alle t und τ_B-differenzierbar an der Stelle t_0. Dann ist $\mu'_{t_0} \ll \mu_{t_0}$.

Beweis: Sei $N \in \mathcal{B}$ mit $\mu_{t_0}(N) = 0$. Die Funktion $t \mapsto \mu_t(N) = \int 1_N \, d\mu_t$ ist differenzierbar an der Stelle t_0 und nichtnegativ. Also nimmt sie dort ein lokales Maximum an, dh. es ist $\mu'_{t_0}(N) = 0$. \blacksquare
Folgerung 1.8 Sei $(\Phi_t)_{t \in \mathbb{R}}$ ein messbarer Fluß: d.h. $\Phi_{t+s} = \Phi_t \circ \Phi_s$ und $T_0 = id$. Sei $\mu_t = \mu \circ \Phi_t^{-1}$ für ein festes Maß $\mu \geq 0$. Sei $\varphi \circ \Phi_t \in C \forall \varphi \in C$. Wenn (μ_t) τ_C-differenzierbar ist, dann gilt

$$(\mu_t) \text{ ist } \tau\|\|\text{-differenzierbar} \iff \mu'_t \ll \mu_t \forall t.$$

Beweis: \implies folgt direkt aus dem Lemma.

"\iff" folgt aus dem Lemma.

Wegen

$$\int \varphi \, d\mu'_t = \lim \int \varphi \, d\frac{\mu_t - \mu_0}{t - t_0} = \lim \int \varphi \circ \Phi_t \, d\frac{\mu_t - \mu_0 - \mu}{t - t_0} = \int \varphi \circ \Phi_t \, d\mu'_0$$

ist $|| \mu_t || = || \mu'_0 \circ \Phi_t^{-1} || = || \mu'_0 || =: C < \infty$. Also ist Satz 1.6 anwendbar und (μ_t) ist λ-f. $\tau\|\|$-differenzierbar.

Mit (1.4) folgt für jedes t_0

$$|| \frac{\mu_t - \mu_0}{t - t_0} - \mu'_0 || = || (\frac{\mu_t - \mu_0 - \mu}{t - t_0} - \mu'_0) \longrightarrow 0.$$

Also ist die Kurve (μ_t) genau dann an der Stelle t_0 normdifferenzierbar, wenn sie es an der Stelle $t = 0$ ist. Daher ist sie überall normdifferenzierbar.

Bemerkung Die Beispiele vom Typ $\mu_t = t\mu_0$ zeigen, daß das Lemma nicht richtig bleibt für beliebige Kurven signierter Maße, aber man kann mit etwas größeren Aufwand zeigen, daß die folgerung auch für signiertes μ gilt (vgl. [ASF71] or [SW97], Proposition 1).

Wir kommen nun zu dem zentralen Begriff der logarithmischen Ableitung.

Definition 1.9: Sei (μ_t) τ_C-differenzierbar und $\mu'_t \ll \mu_t$. Dann heißt eine RN-Ableitung

$$\rho_t^* = \frac{d\mu'_t}{d\mu_t}$$

logarithmische Ableitung der Familie (μ_t) an der Stelle t^*.

Motivation für den Namen ist die Beziehung

$$\rho_t^* = \frac{f''}{f'} = (\ln f_t)'_{t=t^*}.$$

Hauptziel dieses Abschnitts ist der folgende Satz.
Satz 1.10 [SW93] Sei \((\mu_t)\) \(\tau_C\)-differenzierbar und \(t \mapsto \| \mu'_t \|\) sei lokal integrierbar. Es gebe eine \(\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}\)-messbare Funktion \(\rho : (t,x) \rightarrow \rho_t(x)\) mit
\[
\rho_t = \frac{d\mu_t}{d\mu_0}\]
für \(\lambda\)-fast alle \(t\). Wenn
\[
\int_a^b |\rho_t(x)|dt < \infty
\]
\(|\mu_a| + |\mu_b|\) \(\mu\)-füg, dann sind alle \(\mu_t\), \(t \in [a,b]\) äquivalent und
\[
\frac{d\mu_b}{d\mu_a}(x) = \exp \int_a^b \rho_s(x)ds.
\] (1.5)

Die Beweisidee ist daß die maßwertige Differentialgleichung \(\mu' = \rho \mu\) die Lösung
\(\mu_b = \mu_a e^\int_a^b \rho ds\) haben sollte. Zur Durchführung braucht man die folgende einfache Tatsache, die man z.B. mit dem Gronwall Lemma einsieht.

Lemma 1.11: Seien \(g \in L^1[a,b]\), \(h \in C[a,b]\) gegeben mit
\[
h(t) = h(a) + \int_a^t h(s)g(s) \, ds
\]
für alle \(t\). Dann ist
\[
h(b) = h(a) \exp \int_a^b g(s)ds.
\]

Beweis: des Satzes. Nach Satz 1.6 existieren \(\nu, f, f'\) mit \(\rho_t f_t = f'_t \lambda \otimes \nu\)-füg.
\[
f(t,x) = f(a,x) + \int_a^t f(s,x)\rho_s(x)ds.
\]
Ferner \(\int |\rho_s(x)|ds < \infty \nu\)-füg. auf \(\{f_a \neq 0\} \cup \{f_b \neq 0\}\). Das Lemma liefert
\[
f(t,x) = f(a,x) \exp \int_a^t \rho_s(x)ds
\]
für \(\nu\)-fast alle \(x\) mit \(f_a(x) \neq 0\) oder \(f_b(x) \neq 0\). Daraus folgt \(\{f_a \neq 0\} \overset{\nu}{=} \{f_b \neq 0\}\), also ist \(\mu_a \sim \mu_b\) und die Formel (1.5) gilt.

2 Maße auf linearen Räumen

In diesem Abschnitt sei E ein linearer Raum über den reellen Zahlen. Wir fixieren einen Vektor $y \in E$ und betrachten die Translationsfamilie $\mu^y(A) = \mu(A + ty)$. Der Raum $C \subset B_0$ von Testfunktionen sei wie bisher. (Übrigens gilt die Bedingung (A) an C aus 1.3,b) immer dann, wenn C den Raum der beschränkten messbaren Funktionen als beschränkt monotone Klasse erzeugt.)

Das meiste der folgenden Aussagen läßt sich übertragen auf den Fall, daß $\mu_t = \mu \circ \Phi_t^{-1}$ wobei (Φ_t) ein messbarer Fluß auf einem allgemeinen Zustandsraum E ist. Man hat nur Φ_t an Stelle der Abbildung $x \mapsto x - ty$ zu setzen. Bei dieser Wahl von Φ_t wird $\mu^y_t = \mu \circ \Phi_t^{-1}$.

Definition 2.1 Das Maß μ ist differenzierbar nach Fomin in Richtung y, wenn $(\mu^y_t)_{t \in \mathbb{R}}$-differenzierbar ist. Differenzierbarkeit von μ nach Skorokhod bedeutet: (β^y_t) ist τ_{C_0}-differenzierbar. Dabei wird angenommen daß E ein topologischer Vektorraum ist. Falls sie existiert, schreiben wir β^y_t für die logarithmische Ableitung der Familie (μ^y_t) bei $t = 0$ und nennen β^y_t die logarithmische Ableitung des Maßes μ in Richtung y.

Die Beziehung dieser Begriffe untereinander ist beschrieben durch den folgenden Satz.

Satz 2.2 μ Fomin differenzierbar \iff μ Skorokhod differenzierbar und β^y_t existiert \iff μ ist $\tau_{|| \cdot ||}$ differenzierbar.

Beweis: Im Fall $\mu \geq 0$ folgt die zweite Äquivalenz aus der Folgerung 1.8. Die erste Äquivalenz ergibt sich wie dort. Für signierte Maß berufen wir uns auf die Bemerkung im Anschluß an 1.8.

Definition 2.3 Wir nehmen an, daß $d\mu_t = f_t d\nu$ für ein Maß ν. Sei $p \geq 1$. Die Familie (μ_t) heißt L^p-differenzierbar, falls die Abbildung

$$F_p : t \mapsto f^p_t \in L^p(\nu)$$

differenzierbar ist.

Bei Hajek und LeCam betrachtet man den Fall $p = 2$. Dort wird auch ein kleiner singulärer Teil zugelassen, der für unsere Zwecke nicht wesentlich ist. Der folgende Satz stellt eine Beziehung her zwischen diesem Differenzierbarkeitskonzept und der Existenz des p-ten Moments der logarithmischen Ableitung.
Satz 2.4 [SW93] a) Ist \((\mu_t)\) \(L^p\) differenzierbar an der Stelle \(t_0\) dann ist die Familie dort auch \(\tau_{\|\cdot\|}\)-differenzierbar und \(\rho_{t_0} \in L^p(\mu_{t_0})\). Ferner hat die Tangente der Kurve \(F_p(t)\) folgende Form:
\[
F_p'(t_0) = \frac{1}{p} f_p' \rho_{t_0} = \frac{1}{p} f_p^{\frac{1}{p^{-1}}} f'_{t_0}.
\]
b) Sei speziell \(\mu_t = \mu(\cdot + ty)\), wobei \(\mu\) Fomin differenzierbar ist mit \(\beta_p^\mu \in L^p(\mu)\). Dann ist \((\mu_t)\) \(L^p\)-differenzierbar.

Beweis: (Idee) Der wesentliche Schritt im Beweis von a) ist das folgende Lemma: Sei \(\nu\) ein Maß und \(S_p : L^p(\nu) \to L^1(\nu)\) die Abbildung \(g \mapsto |g|^p\). Dann ist \(S_p\) Fréchet-differenzierbar mit der Ableitung \(DS_p(g)(h) = p|g|^{p-1}h\ \forall g, h \in L^p\). Der Teil b) beruht wie Satz 1.6a) auf dem Lebesguesschen Differentiationssatz für Bochner-Integrale.

Bemerkung: Die Größe \(4 \| F_2(t_0) \|_2^2 = \int \frac{d^2}{t_0} d\nu\) ist die sogenannte Fisher Information der Familie \((\mu_t)\) an der Stelle \(t_0\).

Betrachten wir zwei einfache Beispiele zur Illustration der bisherigen Begriffe:

Beispiel 2.5: Sei \(\mu\) eine zweiseitige Exponentialverteilung. Dann ist

\[
\mu(dx) = \frac{1}{2} e^{-|x|} dx
\]
\[
\mu'(dx) = -\text{sgn}(x) e^{-|x|} dx
\]
\[
\mu'' = \mu - \epsilon_0.
\]

An diesem Beispiel sieht man gut den Unterschied zwischen den beiden Differenzierbarkeitsbegriffen in 2.1: Die Ableitung \(\mu''\) existiert in diesem Beispiel nur im Sinn von Skorokhod. Dann sonst, wenn \(\mu'\) Fomin-differenzierbar wäre, müßte \(\mu'' \ll \mu' \ll \lambda^d\) sein. In diesem Beispiel ist \(\beta_1^\mu(x) = -\text{sgn}(x)\).

Die Berechnung der Ableitungen ergibt sich aus der folgenden Regel: Ein Maß \(\mu \in \mathcal{M}(\mathbb{R})\) ist genau dann \(\tau_{\mathcal{C}^0}\)-differenzierbar, wenn seine Distributionsableitung wieder ein signiertes Maß ist.

Das Ableitungsmaß hat immer Gesamtmasse Null, das ergibt sich durch Testen an einer Zerlegung der 1.

Beispiel 2.6: Sei \(\mu\) eine Cauchy-Verteilung: \(\mu(dx) = \frac{1}{\pi(1 + x^2)} dx\). Dann ist

\[
\mu'(dx) = -\frac{2x}{\pi (1 + x^2)^2} dx
\]

und

\[
\beta_1^\mu(x) = \frac{d\mu'}{d\mu} = -\frac{2x}{(1 + x^2)} \to 0.
\]
In beiden Beispielen haben die Verteilungen im Vergleich mit der Normalverteilung selber relativ schwere Schwänze, aber trotzdem hat die logarithmische Ableitung beliebig hohe Momente, also sind die von diesen Maßen induzierten Translationsfamilien auch L^p-differenzierbar im Sinn von 2.3.

Nun einige allgemeine Aussagen zum endlich-dimensionalen Fall:

Satz 2.7 Sei μ ein signiertes Borel-Maß auf \mathbb{R}^d. Dann sind äquivalent:

a) μ ist τ_{cC^∞}-differenzierbar

b) Es existiert eine Konstante K so daß für alle $i = 1, \ldots, d$ und alle $\varphi \in C_c^\infty$ gilt

$$| \int \frac{\partial \varphi}{\partial x_i} d\mu | \leq K \| \varphi \|_\infty .$$

Bemerkung: Ist a) erfüllt, so kann man als K in b) die Zahl $\max_{1 \leq i \leq d} \| \mu'_{e_i} \|_\infty$ wählen.

Beweis: a) \implies b). Weil alle Ableitungen beschränkt sind, gilt

$$- \int \frac{\partial \varphi}{\partial x_i} d\mu = \lim_{t \to 0} \int \frac{\varphi(x - t e_i) - \varphi(x)}{t} d\mu = \lim_{t \to 0} \int \varphi(x) \frac{\mu(\cdot + t e_i) - \mu}{t} (dx) = \int \varphi(x) \mu'_{e_i} (dx) \leq \| \mu'_{e_i} \|_\infty \| \varphi \|_\infty .$$

b) \implies a). Das Funktionale $I \mu : \varphi \mapsto - \int \frac{\partial \varphi}{\partial x_i} d\mu$ ist stetig bzgl. $\| \|_\infty$ auf C_c^∞. Dieser Raum ist dicht in $(C_0(\mathbb{R}^d), \| \|_\infty)$. Es gibt eine Fortsetzung zu einem Maß, μ'_{e_i} genannt. Dies Maß erfüllt dann die gewünschten Eigenschaften.

Satz 2.8 Unter den Voraussetzungen des vorigen Satzes ist $\mu \ll \lambda^d$.

Beweis: Die Implikation 2.7b) \implies $\mu \ll \lambda^d$ ist als ‘Malliavin Lemma’ bekannt. Der folgende Beweis ([SW97]) scheint neu zu sein. Wir betrachten die Abbildung $y \mapsto \mu_y = \mu(\cdot + y)$ von \mathbb{R}^d nach $(\mathcal{M}(\mathbb{R}^d), \| \|)$. Wir zeigen: Sie ist Lipschitz stetig. Aus Lemma 1.5 folgt nämlich

$$| (\mu_{y+se_i} - \mu_{y+te_i}) (A) | = | (\mu_{(t-s)e_i} (A + y + se_i) | \leq K |t - s|$$

gleichmäßig in $A \in \mathcal{B}(\mathbb{R}^d) \setminus y \in \mathbb{R}^d$. Daraus folgt

$$\| \mu_y - \mu_z \| \leq 2K \sum_{i=1}^d |y_i - z_i| ,$$
also die Lipschitz-Stetigkeit.

Nun sind die Abbildung $\mu \mapsto \mu^+$ und $\mu \mapsto \mu^-$ von \mathcal{M} nach \mathcal{M} ebenfalls Lipschitz. Zusammen folgt insbesondere daß für jedes $A \in \mathcal{B}(\mathbb{R}^d)$ die Abbildungen $y \mapsto \mu^\pm(A + y)$ stetig sind. Also ergibt sich die Beh. aus dem folgenden Lemma.

Lemma (Saks) Sei $\mu \geq 0$ ein Borelmaß auf \mathbb{R}^d, so daß für jedes $A \in \mathcal{B}(\mathbb{R}^d)$ die Abb. $y \mapsto \mu(A + y)$ stetig ist. Dann ist $\mu \ll \lambda^d$.

Beweis: Sei $\lambda^d(N) = 0$. Dann ist

$$0 = \int 1_N(x + y) \lambda^d(dy) \mu(dx) = \int \mu(N - y) \lambda^d(dx)$$

Damit ist $\mu(N - y) = 0$ für Lebesgue fast alle y. Wegen der Stetigkeit an der stelle $y = 0$ folgt $\mu(N) = 0$.

Als Abschluß dieses Abschnitts noch einige Aussagen über Produktmaße.

Sei $E = \mathbb{R}^N$ und für jedes n sei μ_n ein Maß über \mathbb{R}, das L^2-differenzierbar ist, d.h. $\beta_1^{\mu_n} \in L^2(\mu_n)$. Für jedes $N \in \mathbb{N}$ und jeden Vektor $y^{(N)} = (y_1, \ldots, y_N)$ ist dann $\mu^{(N)} = \otimes_{n=1}^N \mu_n$ differenzierbar in Richtung $y^{(N)}$ mit log. Ableitung $\beta_{y^{(N)}}^{\mu^{(N)}}(x_1, \ldots, x_N) = \sum_{n=1}^N y_n \beta_1^{\mu_n}(x_n)$.

Satz 2.9 (vgl. [SW93]) Für das unendliche Produktmaß $\mu^\infty = \otimes_{n\in\mathbb{N}} \mu_n$ und den Testfunktionen-Raum $C = \{g(x_1, \ldots, x_n) : n \in \mathbb{N}, \ g \in \mathcal{B}_b(\mathbb{R}^n)\}$ gilt: Die drei folgenden Aussagen sind äquivalent:

1. $\mu^{(\infty)}$ ist τ_C-differenzierbar in Richtung y
2. $\mu^{(\infty)}$ ist L^2-differenzierbar in Richtung y
3. Die Reihe $\sum y_n^2 \| \beta_1^{\mu_n} \|_{L^2(\mu_n)}$ konvergiert.

Im Spezialfall $\mu_n = \bar{\mu}$ gilt speziell

p^N ist differenzierbar in Richtung $y \in \mathbb{R}^N$ genau dann, wenn $y \in \ell^2$.

Die wesentliche Idee des Beweises ist, daß $E_{\mu_n}(\beta_1^{\mu_n}) = 0$ ist, also die Terme der Reihe

$$\Sigma(\beta_1^{\mu_n})(x_n)$$

bzgl. μ^∞ unabhängig und zentriert sind. Dann kann man Kolmogorovs Dreier-Reihen-Satz anwenden.
3 Quasiinvarianz und logarithmische Ableitungen

Im eindimensionalen Fall bedeutet die Differenziebarkeit im Sinn von Fomin gerade die Existenz einer absolutstetigen Dichte. Dagegen bedeutet die Quasiinvarianz die Existenz einer Dichte, die Lebesgue-fü. nicht verschwindet.

Der folgende Satz stammt für Hilberäume von Skorokhod [Sko74]. Er gibt ein hinreichendes Kriterium für die Quasiinvarianz eines Maßes in Form einer exponentiellen Integrabilitätsbedingung an die logarithmische Ableitung.

Satz 3.1 Das Borel-Maß μ auf dem lokalkonvexen lin. Raum E sei Fomin-differenziebar in Richtung $y \in H$. Für die logarithmische Ableitung β^μ_y gelte

$$\int e^{a[\beta^\mu_y(x)]} \mu(dx) < \infty \text{ für ein } a > 0.$$

Dann ist μ quasiinvariant in Richtung y, dh. $\mu(\cdot + ty) \sim \mu \forall t \in \mathbb{R}$.

Dieser Satz ist insofern erstaunlich, weil er nur eine Bedingung über die Art der infinitesimalen Änderung des Maßes stellt und die Quasiinvarianz ja eine globale Aussage ist.

Beispiel: Die Normal-, Cauchy-, und zweiseitige Exponential-Verteilungen erfüllen die Voraussetzung in einer Dimension, da die logarithmische Ableitung im ersten Fall linear in x und in den beiden anderen Fällen sogar beschränkt ist. In Anbetracht des Endes des letzten Abschnitts schließt sich natürlich die Frage an: Sind die zugehörigen Produktmaße $\mu^\mathfrak{N}$ auf $\mathbb{R}^\mathfrak{N}$ quasiinvariant in Richtung $y \in \ell_2$? Ob die Skorokhod-Bedingung erfüllt ist, ist nicht ganz leicht durchschaubar. Aber in den drei Fällen läßt sich folgendes einfachere Kriterium anwenden:

Satz 3.2: Sei $\tilde{\mu} \in \mathcal{M}(\mathbb{R})$ differenziebar, so daß $\beta^\mathfrak{N} \in L^2(\tilde{\mu})$ und die Abbildung $y \mapsto \beta^\mathfrak{N}(\cdot + y) \in L^1(\tilde{\mu})$ Lipschitz ist.

Dann ist \mathfrak{N} quasiinvariant in jeder Richtung $y \in \ell_2$ mit strikt positiver Dichte.

Beweis: Wir wissen von Satz 2.9: $\mu = \mathfrak{N}$ ist differenziebar in Richtung y mit log. Ableitung $\beta^\mathfrak{N}_y(x) = \sum_{i=1}^\infty y_i \beta^\mathfrak{N}(x_i)$ wobei die Reihe in $L^2(\mu)$ und μ-f. konvergiert. Für $\mu_i = \mu(\cdot + ty)$ ist dann die log. Ableitung im Sinn von
Definition 1.9 gegeben durch \(\rho_t(x) = \frac{d\mu}{du} = \beta^\mu_y(x + ty) \) (konvergiert für \(\mu_t \)-fast alle \(x \)). Wir zeigen

\[
\int_0^t |\rho_s(x)|\,ds < \infty \quad \mu + \mu_t - \text{fü.} \tag{3.6}
\]

Daraus ergibt sich die Behauptung mit dem Satz 1.10.
Zunächst zeigen wir die Konvergenz des Integrals in (3.6) \(\mu \)-fü: Sei \(s \) fest.
Dann ist \(E_\mu(|\rho_0|) = \|\mu'\| < \infty \) und wegen der Lipschitz-Bedingung

\[
E_\mu(|\rho_s - \rho_0|) = E_\mu(\Sigma y_i |\beta^\mu(x_i) - \beta^\mu(x_i + sy_i)|) \leq \Sigma y_i E_\mu |\beta^\mu(x_i) - \beta^\mu(x_i + sy_i)| \leq \Sigma y_i \text{const } sy_i = s \text{ const } \Sigma y_i^2 < \infty.
\]

Also ist \(\int_0^t E_\mu(|\rho_s|)\,ds < \infty \) und damit nach Fubini \(\int_0^t |\rho_s|\,ds < \infty \mu \)-fü.
Für die Konvergenz des obigen Integrals \(\mu_t \)-fü. ersetze in diesem Argument \(\rho_0 \) durch \(\rho_t \) und man erhält \(E_\mu(\rho_t - \rho_s) \leq |s - t| \text{ const } \Sigma y_i^2 \) und damit die Behauptung.

Nun zurück zum Satz von Skorokhod. Das folgende Beispiel zeigt, daß die Existenz noch so hoher polynomalier Momente der logarithmischen Ableitung nicht genügt für die Quasiinvarianz.

Beispiel 3.3: Sei \(E = \mathbb{R} \), \(\mu(dx) = f(x)\,dx \) und \(n \in \mathbb{N}, \alpha > n - 1 \), wobei

\[
f(x) = \begin{cases}
0 & x \leq 0 \\
x^\alpha & \text{für } 0 < x \leq 1 \\
\text{glatt, mit kompaktem Träger auf } [1, \infty]
\end{cases}
\]

Damit ist \(\mu \) differenzierbar, \(\mu'(dx) = \alpha x^{\alpha - 1}, \beta^\mu_t(x) = \frac{f'(x)}{f(x)} = \frac{\alpha}{x} \) auf \((0,1)\).
Also wird \(\int |\beta^\mu_t(x)|^n\,d\mu(x) = \int_0^1 (\frac{\alpha}{x})^n \cdot x^{\alpha} \,dx + \text{const.} < \infty \), aber \(\mu \) ist nicht quasiinvariant.

Man fragt sich, wie weit die Bedingung im Satz 3.1 abgeschwächt werden kann. Dies wird vollständig beantwortet durch folgenden Hauptsatz dieses Abschnitts, der insbesondere Satz 3.1 impliziert.

Satz 3.4: Für eine konvexe nichtfallende Funktion \(g : \mathbb{R} \to \mathbb{R}_+ \) sind folgende Bedingungen äquivalent:

(a) Für jede \(\tau_\alpha \)-differenzierbare Familie \((\mu_t) \) von signierten Maßen auf einem Meßraum mit \(\int_0^t \|g(\rho_s)\|_{1, \mu_s} \,ds < \infty \) für alle \(t \) gilt \(\mu_t \sim \mu_0 \) für alle \(t \).

(b) Jede absolutstetige Funktion \(f : \mathbb{R} \to \mathbb{R}_+, f \neq 0 \) mit

\[
\int_a^b f(x) \,g(|\frac{f'(x)}{f(x)}|)\,dx < \infty
\]
für alle \(a < b \in \mathbb{R}\) ist strikt positiv.

(b') Jede absolutstetige Funktion \(f : \mathbb{R} \to \mathbb{R}_+, \ f \neq 0\) mit

\[
\int_{-\infty}^{\infty} f(x) g\left(\frac{f'(x)}{f(x)}\right) dx < \infty
\]

ist strikt positiv.

(c) Aus \(\sum_{i=1}^{\infty} z_i < \infty, \ z_i > 0\) folgt \(\sum z_i e^{-i g\left(\frac{1}{z_i}\right)} = \infty\).

Ferner gilt unter diesen Bedingungen in der Situation von (a) die Integraldarstellung der Radon-Nikodym-Ableitungen aus Satz 1.10.

Beweis: Wir bemerken zunächst, daß wir ohne Einschränkung die Funktion \(g\) auf der ganzen reellen Geraden als nichtfallend und konvex definiert annehmen können: Wir brauchen nur \(g\) für \(x < 0\) durch \(g(x) = g(0)\) fortzusetzen. (c) \(\implies\) (b). Sei \(f\) so daß

\[
C = \int_a^b f g\left(\frac{f'}{f}\right) dx < \infty.
\]

für alle \(a < b\). Sei speziell \(a\) so daß \(f(a) > 0\) und nehmen wir an, es gebe einen Punkt \(b\) mit \(f(b) = 0\). Ohne Einschränkung \(f(a) = 1\) und \(a < b\). Dann können wir nach dem Zwischenwertsatz eine Folge \(x_1 < x_2 < x_3 \ldots < b\) finden, so daß \(f(x_i) = e^{-i}\) und \(f(x) \geq e^{-i}\) für \(a \leq x \leq x_i\) (Setze einfach \(x_i = \min\{x \in [a, b] : f(x) = e^{-i}\}\). Sei \(z_i = x_i - x_{i-1}\). Dann \(\sum_{i=1}^{\infty} z_i < \infty\) und

\[
\int_a^b f g\left(\frac{f'}{f}\right) dx \geq \sum_{i=1}^{\infty} \int_{x_{i-1}}^{x_i} f(x) g\left(\frac{f'(x)}{f(x)}\right) dx
\]

\[
\geq \sum_{i=1}^{\infty} z_i e^{-i} \int_{x_{i-1}}^{x_i} g\left(\frac{f'(x)}{f(x)}\right) dx
\]

\[
\geq \sum_{i=1}^{\infty} z_i e^{-i} \int_{x_{i-1}}^{x_i} g\left(-\frac{f'}{f}\right) dx
\]

\(g\) monotone

\[
\geq \sum_{i=1}^{\infty} z_i e^{-i} g\left(-\int_{x_{i-1}}^{x_i} \frac{1}{z_i} \frac{f'}{f} dx\right)
\]

\(g\) konvex

\[
= \sum_{i=1}^{\infty} z_i e^{-i} g\left(\frac{1}{z_i} \ln f(x_{i-1}) - \ln f(x_i)\right)
\]

\[
= \sum_{i=1}^{\infty} z_i e^{-i} g\left(\frac{1}{z_i} (-i - 1) - (-i)\right)
\]

\[
= \sum_{i=1}^{\infty} z_i e^{-i} g\left(\frac{1}{z_i}\right) = \infty
\]
im Widerspruch zur Voraussetzung.
(b') \implies (c). Sei g eine Funktion, für die eine Folge z_i positiver Zahlen existiert mit
\[D = e \sum_{i=1}^{\infty} z_i < \infty \text{ und } C = \sum z_i e^{-i} g \left(\frac{1}{z_i} \right) < \infty \]
Definiere f wie folgt: Sei $x_0 = 0$ und $x_i = x_{i-1} + e z_i$. Sei $f(\pm x_i) = e^{-i} g(1)$ und linear auf dem Intervall $(-x_i, -x_{i-1})$, (x_{i-1}, x_i) und es sei $f(x) = 0$ außerhalb $(-D, D)$. Auf den Intervallen $(-x_i, -x_{i-1})$ und (x_{i-1}, x_i) ist die Ableitung von f gleich
\[\pm e^{-i} - e^{(i+1)} e z_i = \pm e^{-i} \frac{1 - e}{e z_i} \]
und daher ist $|f'(x)| \leq \frac{1}{e z_i}$ auf diesen Intervallen wegen $f(x) > e^{-i}$. Also ist wegen der Monotone von g
\[\int_{0}^{\infty} f(x) g(\frac{f''(x)}{f'}) dx = \sum_{i=1}^{\infty} \int_{x_{i-1}}^{x_i} f(x) g(\frac{f''(x)}{f'}) dx \]
\[\leq \sum_{i=1}^{\infty} \int_{x_{i-1}}^{x_i} e^{-i} g \left(\frac{1}{z_i} \right) dx = \sum_{i=1}^{\infty} e z_i e^{-i} g \left(\frac{1}{z_i} \right) < \infty \]
und analoq $\int_{-\infty}^{0} f(x) g(\frac{f''(x)}{f'}) dx < \infty$. Daher erfüllt die Funktion f die Voraussetzung in (b') aber sie ist nicht strikt positiv. Also kann (b) nicht gelten für eine Funktion g die (c) nicht erfüllt. Daher gilt (b)\implies (c).
(a) \implies (b'). Sie f eine Funktion wie in (b'). Sei μ das Maß mit der Dichte f und $\mu_t = \mu(\cdot + t)$. Dann ist leicht zu sehen, daß die Integrabilitätsbedingung in (b') impliziert, daß $g(|\rho_0|) \in L^1(\mu)$ ist. Ferner ist $\rho_t = \rho_0 \circ \Phi_t$ und $\mu_t = \mu \circ \Phi_t^{-1}$ wobei $\Phi_t(x) = x - t$. Also ist $\| g(|\rho_t|) \|_{1, \mu} = \| g(|\rho_0|) \|_{1, \mu}$ und damit ist die Integrabilitätsbedingung in (a) erfüllt. Damit ist μ quasiinvariant, d.h. die Dichte f ist Lebesgue-f. positiv.
Der folgende Trick von Denis Bell beweist, daß f sogar strikt positiv ist: Wir nehmen an, es sei $f(x_0) = 0$ für ein x_0. Dann betrachten wir die Funktion $\tilde{f} = f_{1[x_0, \infty)}$. Sie ist ebenfalls absolutstetig und erfüllt offensichtlich ebenfalls die Integrabilitätsbedingung in (b'). Also muß sie wegen dem schon gezeigten Lebesgue-f. positiv sein, was offensichtlich falsch ist. Dieser Widerspruch zeigt, daß f nirgends verschwindet.
(b') \implies (b). Sei $f \geq 0$ eine absolutstetige Funktion, die die lokale Integrerbarkeitsbedingung aus (b) erfüllt. Wäre sie nicht strikt positiv, gäbe es ein ohne Einschränkung als positiv annehmendes b mit $f(b) = 0$. Dann verwenden wir ein ähnlichen Trick wie eben, indem wir die Funktion rechts von b verschwinden lassen und danach die Funktion für negative x durch Spiegelung an 0 symmetrisieren. Die entstandene Funktion ist immer noch absolutstetig, erfüllt aber sogar die globale Integrerbarkeitsbedingung in (b') weil sie kompakten Träger hat. Dies ergibt einen Widerspruch zur Annahme (b').
(b)⇒(a). Sei μ_t, t ∈ ℝ gegeben und sei g eine monotone konvexe Funktion, die (b) erfüllt. Dann ist g(y) ≥ y für alle hinreichend großen y und daher impliziert die Integrierbarkeitsbedingung (a) insbesondere
\[\int_a^b \| μ'(t) \| \, dt = \int_a^b \| ρ_t \|_{1,μ_t} \, dt \leq \infty. \]

Daher genügt die Familie (μ_t)_{t∈ℝ} den Voraussetzungen von Satz 1.10. Daher gibt es nach Satz 1.6 ein W-Maß ν und zwei produktmessbare Funktionen f, f': E × ℝ → ℝ so daß \(\frac{dμ_t}{dv}(x) = f(x,t) \) und \(\frac{dν}{dv}(x) = f'(x,t) \) für Lebesgue - fast alle t. Nach unseren Voraussetzungen haben wir
\[\int_a^b \int_E f(x,t) g(|f'(x,t)|) \, dν \, dt = \int_a^b \int_E g(|ρ_t|) \, dμ_t \, dt = \int_a^b E_{μ_t}(g(|ρ_t|)) \, dt < \infty \]

Nach Fubini gibt es eine ν-Nullmenge N, so daß für alle \(x \notin N \)
\[\int_a^b f(x,t) \, g(|f'(x,t)|) \, dt < \infty \]

ist, wobei N sogar unabhängig von a und b gewählt werden können. Nun können wir Teil (b) anwenden wobei die dortige Variable x hier durch die Variable t repräsentiert wird, und erhalten entweder \(f(x,t) > 0 \) für alle t oder \(f(x,t) = 0 \) für alle t, sofern x außerhalb der oben betrachteten Nullmenge liegt. Daraus folgt, daß die Maße μ_t äquivalent sind.

Ferner zeigt diese Anwendung von (b), daß die Funktion \(f(x,\cdot) \) für \(x \notin N \) auf einem kompakten Intervall [0, t] von Null weg beschränkt ist durch ein \(δ(x, t) > 0 \). Damit wird
\[\int_0^t |ρ_s(x)| \, ds = \int_0^t \frac{f(x,s)}{f(x,t)} |f'(x,s)| \, ds \]
\[\leq δ(x,t)^{-1} \int_0^t |f'(x,s)| \, ds = δ(x,t)^{-1} |f(x,t) - f(x,0)| < \infty. \]

Also ist der Satz 1.10 anwendbar und liefert die Formel (1.5).

Beispiele: 1. Sei \(g(x) = e^{ix} \) für hinreichend große x. Durch Ableiten erhält man daß \(z \mapsto z \cdot g(z) \) monoton fällt auf dem Intervall \((0, \frac{1}{i}) \). Wenn \(\sum z_i < \infty \), dann ist \(z_i < \frac{1}{\ln i \ln i} \) unendlich oft. Also
\[z_i e^{-i g(z_i)} \geq \frac{1}{i \ln i \ln i} \exp[i \ln i \ln i - i] \]
\[\geq \frac{1}{i^2} e^{i \frac{1}{2} \ln i - i} \]
unendlich oft. Damit ist \(\sum z_i e^{-i g(\frac{1}{z_i})} = \infty \). Die Funktion \(g \) erfüllt also die Bedingung (c) des Satzes.

2. Sei umgekehrt \(g(x) = e^{\alpha x} \) für ein \(\alpha < 1 \). Wähle \(z_i = i^{-\frac{1}{\alpha}} \). Dann gilt \(\sum z_i \infty \) und \(\sum z_i e^{-i g(\frac{1}{z_i})} = \sum z_i e^{-i e(i \frac{1}{z_i})} =< \infty \).

Die Funktion \(g \) erfüllt also die Bedingung nicht.

Wir sehen also, daß die Skorokhodsche Wahl der Funktion \(g(x) = e^{\alpha x} \) nicht weit von der optimalen Größenordnung ist.

Um zu sehen, daß Satz 3.1 tatsächlich aus unserem Satz folgt, verwenden wir die Implikation (c) \(\implies \) (a) für die Funktion \(g(x) = e^{\alpha x} \). Sie erfüllt (c), da dies sogar für das Beispiel 1. gilt. Für die Translationsfamilie \(\mu_t = \mu \circ \Phi_t^{-1} \) gilt \(\rho_t \circ \Phi_t = \beta_y^t \) und damit \(\mathbb{E}_{\mu_t}(g(|\rho_t|)) = \mathbb{E}_{\mu}(g(|\beta_y^t|)) \) für alle \(t \). Nach Voraussetzung im Satz 3.1 ist dies Integral endlich, und daher ist die Voraussetzung in (a) erfüllt. Daraus folgt die Quasiinvarianz und man erhält in der Situation von Satz 3.1 zusätzlich die Formel

\[
\frac{d\mu(\cdot + ty)}{d\mu}(x) = \exp \int_0^t \beta_y^\mu(x + sy) \, ds. \tag{3.7}
\]

Wir illustrieren dies im Fall des Gaußmaßes \(\mu = \mathcal{N}(0, 1)^\mathbb{N} \). Dann erhalten wir

\[
\frac{d\mu(\cdot + y)}{d\mu} = \exp \int_0^1 \sum y_i \rho(x_i + s y_i) \, ds = \exp - \int_0^1 \sum y_i (x_i + s y_i) \, ds
\]

\[
= \exp - \left(\int_0^1 s \, ds \right) \sum_{i=1}^\infty y_i^2 - \sum y_i x_i = \exp \left[-\frac{1}{2} \| y \|_2^2 - \langle y, x \rangle \right]
\]

also die bekannte Cameron-Martin Formel.

4 Differentiation des Wiener Maßes und Differentiation längs Vektorfeldern

Es gibt verschiedene Wege, das Wiener Maß und allgemeiner Gausche Maße in die vorliegende Theorie einzubetten. Da wir das Maß \(\mu = \mathcal{N}(0, 1)^\mathbb{N} \) auf dem Produktraum \(\mathbb{R}^\mathbb{N} \) schon kennengelernt haben, führen wir die entsprechenden Eigenschaften des Wiener Maßes auf die von \(\mathcal{N}(0, 1)^\mathbb{N} \) zurück.

Sei \(E \) der Banachraum \(C_0[0, 1] = \{ \omega : [0, 1] \rightarrow \mathbb{R} | \omega \text{ stetig}, \omega(0) = 0 \} \) mit der sup-Norm \(\| \cdot \|_\infty \). Wichtig ist der "Cameron-Martin-Raum" \(H = \{ y = \int_0^1 \eta(s) \, ds : \eta \in L^2[0, 1] \} \), versehen mit dem Skalarprodukt

\[
\langle \int_0^1 \eta(s) \, ds, \int_0^1 \xi(s) \, ds \rangle = \int_0^1 \eta(s) \xi(s) \, ds.
\]
In $L^2[0,1]$ betrachten wir die Haarfunktionen η_1, η_2, \ldots, wobei $\eta_1 \equiv 1$ und jedes $\eta_k, \ k \geq 2$ auf einem dyadischen Intervall der Länge 2^{-n} die beiden Werte $+2^k, -2^k$ jeweils auf der ersten bzw. zweiten Intervall-Hilfe annimmt. Bekanntlich (dies ergibt sich zum Beispiel aus L^2-Martingaltheorie) ist $\eta_1, \eta_2 \ldots$ eine ON-Basis von $L^2[0,1]$. Aus den Haarfunktionen erhält man die Schauderfunktionen s_k, die durch $s_k(t) = \int_0^t y_k(s) \, ds$, definiert sind. Sie sind dann natürlich eine Basis des Hilbertraums H. Aber es ist eine wichtige Tatsache, daß sogar jedes $\omega \in C_0[0,1]$ eine eindeutige Darstellung

$$\omega = \sum_{n=1}^{\infty} x_n(\omega) s_k$$

als gleichmäßig konvergente Reihe besitzt. Die Koeffizientenfolge ergibt sich rekursiv durch die Werte der Funktion ω an den dyadischen Punkten. Betrachten wir nun die Menge

$$R = \{ (x_n) \in \mathbb{R}^N: \text{Die Reihe } \sum_{n=1}^{\infty} x_n s_n(t) \text{ konvergiert gleichmäßig für } t \in [0,1] \}$$

Dann gilt (vgl. etwa das Lehrbuch von Karlin-Taylor [KT91], vol. I für Details):

Lemma 4.1 E ist $\mathcal{N}(0,1)^N(R) = 1$.

Da die Abbildung $R : C_0[0,1] \rightarrow \mathbb{R}$, die jedem ω die Koeffizientenfolge (x_n) der Reihendarstellung (4.8) zuordnet, linear und injektiv ist, kann man \mathbb{W} als das BildMaß von $\mu = \mathcal{N}(0,1)^N|_{\mathbb{R}(R)}$ unter R^{-1} definieren. Man überprüft leicht, daß R in beiden Richtungen messbar ist. Da μ differenzierbar ist in Richtung y für jedes $y \in \ell_2 \subset R$ gilt dann automatisch: \mathbb{W} ist differenzierbar in allen Richtungen $h \in R^{-1}\{\ell^2\} = \{ \sum_{n=1}^{\infty} y_n s_n : (y_n) \in \ell_2 \} = H$. Hierbei gilt die zweite Gleichheit, weil (s_n) eine ON-Basis von H ist.

Um den Zusammenhang mit der üblichen Definition von \mathbb{W} und mit dem Wiener-Integral herzustellen, betrachten wir zunächst einen der Basisvektoren η_i. Dann ist das Integral $\int_0^1 \eta_i \, dW$ definierbar mit Hilfe des obigen Reihenansatzes (4.1)

$$\int_0^1 \eta_i \, dW(\omega) = \sum_{j=1}^{\infty} x_j \int_0^1 \eta_i \, ds_j = \sum_{j=1}^{\infty} x_j \int_0^1 \eta_is_j(s) \, ds = x_i(\omega).$$

Insbesondere ergibt sich, daß die Zufallsvariablen $\int \eta_i \, dW, \ i = 1, \ldots$ bzgl. \mathbb{W} die gleiche Verteilung haben wie die Koordinatenfunktionen $x \mapsto x_i, \ i = 1, \ldots$ bzgl. μ, dh. sie sind unabhängig $\mathcal{N}(0,1)$ verteilt. Durch Linearität
und L^2-Isometrie erhalten wir also eine isometrische Zuordnung (deren zweite Hälfte das sogenannte "Wiener-Integral" ist)

$$I : H \longrightarrow L^2[0, 1] \longrightarrow L^2(\mathbb{W})$$

$$h \longmapsto h' = \eta \longmapsto \int_0^1 \eta \, dW = L^2(\mathbb{W}) - \lim_{n} n \sum_{i=1}^{n} y_i x_i(\omega).$$

Die logarithmische Ableitung β^W_h von \mathbb{W} in Richtung

$$h = \sum_{i=1}^{\infty} y_i s_i = \int_0^1 \sum_{i=1}^{\infty} y_i \eta_i ds \text{ mit } y = (y_i) \in \ell_2$$

ergibt sich wegen $Rh = y$ als $\beta^W_h = \beta^\mu_y \circ R$, (dies rechnet sich leicht aus der Definition nach). Also erhält man nach dem letzten Ergebnis aus Abschnitt 2 wegen der μ-fü Konvergenz der Reihe $\sum_{i=1}^{\infty} y_i x_i$

$$\beta^W_h(\omega) = \lim_{n} n \sum_{i=1}^{n} y_i (R\omega)_i = -I(h)(\omega) \mathbb{W} - \text{fü}$$

(4.9)

Damit ist die logarithmische Ableitung des Wiener-Maßes in Richtung $h \in H$ gleich dem negativen Wiener-Integral der "Zeit"-Ableitung $\eta = h'$ von h.

Diese Aussage über Differenzierbarkeit des Wiener-Maßes läßt sich ohne besondere Mühe auch im Rahmen der 'abstrakten Wiener-Räume' formulieren : Sei E ein lokalkonvexer reeller Vektorraum, H ein stetig in E eingebetteter Hilbert-Raum mit dem Skalarprodukt $(\ , \)_H$. Die Einbettung $i : H \longrightarrow E$ hat eine Adjungierte $i^* : E' \longrightarrow H'$ wobei der Strich den stetigen Dualraum bezeichnet. Wir identifizieren H und H'. Ein straffes Borelsches W-Maß μ auf E heißt das zu H gehörige Gauß-Maß auf E, wenn je zwei Vektoren $z, \tilde{z} \in E'$ als Zufallsvariablen auf (E, μ) eine gemeinsame zentrierte Normalverteilung haben mit $\text{cov}_\mu(z, z) = (i^* z, i^* \tilde{z})_H$. Dann gilt:(vgl. z.B. [Kuo75]) μ ist differenzierbar in Richtung $y \in E$ genau dann wenn $y \in H$ und in diesem Fall ist

$$\beta^\mu_y = -"(\ , y)^H_H \text{ auf } E$$

(4.10)

wobei die Zufallsvariable "$\langle \ , y \rangle^H_H$ ganz analog zum Wiener-Integral wie folgt erklärt ist: Im Fall $y = i^* z$, $z \in E'$ ist "$\langle x, i^* z \rangle$" einfach gleich $z(x)$. Für den allgemeinen Fall zeigt man, daß die Vektoren $i^* z$ dicht in H sind. Da die Zuordnung $i^* z \longmapsto z \in L^2(\mu)$ nach Voraussetzung an μ die Isometriebedingung $\|z\|_{L^2(\mu)} = \| i^* z \|_H$ erfüllt, gibt es eine kanonische stetige Fortsetzung $I : H \longrightarrow L^2(\mu)$. Man schreibt auch "$\langle \ , y \rangle" statt $I(y)$.
Aus der Formel (1.10) des ersten Abschnitts erhält man die Cameron-Martin Formel: Das Maß \(\mu \) ist äquivalent zu \(\mu^y = \mu(\cdot + y) \) für alle \(y \in H \) und

\[
\frac{d\mu^y}{d\mu}(x) = \exp\{-\frac{1}{2} \| y \|_2^2 - u(x, y)''\} \tag{4.11}
\]

In der Tat ist die Familie \((\mu^y) \) die logarithmische Ableitung \(\rho_t \) gegeben durch \(\rho_t(x) = \beta^y_t(x + ty) \) und damit wegen (4.10)

\[
\int_0^1 \rho_s(x)dx = \int_0^1 \beta^y_t(x+ty)dt = \int_0^1 -''(x+ty,y)' dt = - \int_0^1 t dt (y,y)''(x, y)''
\]

und daher gilt (4.11).

Wir bemerken, daß umgekehrt aus der Formel (4.11) mindestens formal auch die Form der logarithmischen Ableitung abgelesen werden kann: Betrachten wir die Familie \((\mu_t) \) mit \(\mu_t = \mu^y_t \) dann ergibt sich mit (4.11)

\[
\frac{d\mu_t^y}{d\mu}(x) = \left. \frac{d}{dt} \right|_{t=0} \frac{d\mu^y}{d\mu}(x) = \left. \frac{d}{dt} \right|_{t=0} \exp\{-\frac{1}{2} t^2 \| y \|_2^2 - t''(x, y)''\} = -''(x, y)''.
\]

Damit schließen wir die Diskussion des Wiener-Maßes und abstrakter Wiener-Räume für den Augenblick ab.

Bisher haben wir die Maße immer nur in festen Richtungen differenziert. Nun kommen wir zur Differentiation längs Vektorfeldern. Es gibt verschiedene Möglichkeiten dabei vorzugehen. Der Vergleich dieser Möglichkeiten wird transparenter durch folgenden Satz ([SW97]):

Satz 4.2: Sei \(E \) ein lokalkonvexer Raum, \(h : E \rightarrow E \) ein Vektorfeld. Sei \(\Phi : \mathbb{R} \times E \rightarrow E, (t, x) \mapsto \Phi_t x \) differenzierbar in \(t \) mit \(\Phi_t(0,x) = -h(x) \) für alle \(x \) und \(\{\Phi_t(x) : t \in \mathbb{R}, x \in E\} \) sei beschränkt. Sei \(C \) ein Raum skalarer glatter Funktion, die zusammen mit den Ableitungen beschränkt sind und der normdefinierend im Sinn von Abschnitt 1 ist. Sei \(\mu \in \mathcal{M}(E) \) und \(\mu_t = \mu \circ \Phi_t^{-1} \) für \(t \in \mathbb{R} \). Dann sind äquivalent

a) \((\mu_t) \) ist \(\tau_C \)-differenzierbar,

b) Es existiert ein Maß \(\mu'_h \in \mathcal{M}(E) \), so daß für jedes \(\varphi \in C \) die folgende Formel der partiellen Integration gilt:

\[
\int \nabla \varphi(x) \ h(x) \ d\mu(x) = - \int_E \varphi(x) \ \mu'_h(dx) \tag{PI}
\]
Ist in der Situation des Satzes $\mu'_h \ll \mu$ so schreiben wir β^μ_h für die Radon-Nikodym-Ableitung $\frac{d\mu'_h}{d\mu}$ und nennen β^μ_h die logarithmische Ableitung des Maßes μ in Richtung des Vektorfeldes h.

Beweis: Beide Aussagen sind dazu äquivalent, daß es ein Maß μ'_h gibt derart, daß

\[
\int \varphi(x) \, \mu_h'(dx) = \lim_{t \to 0} \int \frac{\varphi(\Phi(t, x)) - \varphi(x)}{t} \mu(dx)
\]

\[
= \lim_{t \to 0} \int \frac{\varphi(\Phi(t, x)) - \varphi(x)}{t} \mu(dx) = \int \nabla \varphi(x) \Phi'(0, x) \mu(dx)
\]

\[
= -\int \nabla \varphi(x) \, h(x) \, \mu(dx)
\]

für jedes φ. Die Vertauschung von Differentiation und Integration ist erlaubt wegen der Beschränktheitseigenschaften.

Wir arbeiten in folgendem Rahmen:

Es sei H ein Hilbertraum, $H \subset E$ mit stetiger Einbettung. Das Maß μ sei ≥ 0, μ sei differenzierbar in allen Richtungen $y \in H$ mit logarithmischen Ableitungen $\beta^\mu_y \in L^2(\mu)$. Definiere $L^2_H(\mu)$ als den Raum aller Borelschen Vektorfelder $h : E \to H$ für die

\[
\sqrt{\int \| h(x) \|_H^2 \, \mu(dx)} = \| h \|_{L^2(\mu)} < \infty
\]

ist. Als Raum von Testfunktionen wählen wir z.B.

\[
C = \{ u = g(\langle z_1, x \rangle, \ldots, \langle z_n, x \rangle) : g \in C_c(\mathbb{R}^n), \ n \in \mathbb{N} \ \text{und} \ z_i \in E' \}
\]

Für $u \in C$, $x \in E$ existiert die Ableitung $u'(x) \in E'$. Sie ist an der Stelle y explizit berechenbar als

\[
\nabla u(x)y = \sum_{j=1}^n \partial_j g(\langle z_1, x \rangle, \ldots, \langle z_n, x \rangle)\langle z_j, y \rangle.
\]

Offenbar ist für $y \in H$

\[
|u'(x)y| \leq n \| \nabla g \|_\infty \max_{1 \leq j \leq n} \| i^* z_j \|_H \| y \|_H
\]
Also können wir u' auch als beschränkte Funktion von E nach H auffassen, dh. u' induziert insbesondere ein Element von $L^2_H(\mu)$, welches wir mit $D_0 u$ bezeichnen. Wichtig ist die Aussage

Lemma 4.3 Faßt man C als Teilraum von $L^2(\mu)$ auf, so ist der Operator $D_0 : C \rightarrow L^2_H(\mu)$ abschließbar.

Das bedeutet definitionsgemäß, daß der Abschluß des Graphen $\{(u, D_0 u) : u \in C\}$ im Produktraum $L^2(\mu) \times L^2_H(\mu)$ wieder der Graph einer Funktion ist. Zum Beweis des Lemmas reicht es wegen der Linearität zu zeigen, daß aus $v_n \rightarrow 0$ in $L^2(\mu)$ und $D_0 v_n \rightarrow w$ in $L^2_H(\mu)$ folgt $w = 0$. Hierfür sei $y \in H$. Dann gilt für jedes $u \in C$ nach der Formel (PI) angewandt auf das konstante Vektorfeld y

$$
\int u(x)(w(x), y) \mu(dx) = \lim_{n \to \infty} \int u(x) v'_n(x)y \mu(dx)
$$

$$
= \lim_{n \to \infty} \int (u \cdot v'_n(x) - v_n u'(x)) y \mu(dx)
$$

$$
= \lim_{n \to \infty} \int u v_n(x) \beta^y_n(x) + v_n(x) u'(x) y \mu(dx)
$$

$$
= 0.
$$

Hier haben wir die Tatsache benutzt, daß $\beta^y_n \in L^2(\mu)$. Also ist $w = 0$.

Wir definieren nun D als den Abschluß des Operators D_0, dh. der Graph von D ist der Abschluß des Graphen von D_0 Dies ist in vollkommener Analogie zum Vorgehen bei der Definition der Malliavin-Ableitung. Zu jedem dicht definierten linearen Operator gehört der adjungierte Operator, den wir hier mit δ_μ bezeichnen wollen.

Definition 4.4 Ein Vektorfeld $h \in L^2_H(\mu)$ liegt im Definitionsbeiruch dom(δ_μ) genau dann wenn es eine Konstante K gibt so daß für jedes $u \in C$ die Ungleichung

$$
| \int \nabla u(x) h(x) \mu(dx) | \leq K \| u \|_2
$$

gilt. In diesem Fall existiert ein eindeutig bestimmtes Element $\delta_\mu h$ von $L^2(\mu)$ so daß

$$
\int \nabla u(x) h(x) \mu(dx) = \int u(x) \delta_\mu h(x) \mu(dx)
$$

(4.13)

gilt für alle $u \in C$.
Bemerkungen: 1. Wir haben in der Definition von D den Index μ weggelassen, weil für hinreichend reguläre Funktionen u das Vektorfeld D_0u als Gradient eine vom Maß μ unabhängige Definition besitzt. Dagegen ist in der Definition von $\delta_\mu h$ die von dem Maß μ induzierte Hilbert-Raum-Struktur entscheidend. Somit ist der Wert $\delta_\mu h$ in viel stärkerem Maß von μ beeinflusst. Wir werden später uns noch mit dem Thema beschäftigen, wie sich $\delta_\mu h$ ändert, wenn das Maß μ geändert wird.

2. Im Fall des Wiener-Maßes ist die Formel (4.13) gerade eine charakteristische Eigenschaft des Skorokhod-Integrals. Diese Definition von $\delta_\mu h$ ist also eine Verallgemeinerung des Skorokhod-Integrals für allgemeine differenzierbare Maße.

3. Wenn wir die Formel (4.13) mit der Formel (PI) vergleichen, erhalten wir die folgende Aussage: Das Maß μ ist genau dann in Richtung des Vektorfelds h differenzierbar mit einer logarithmischen Ableitung $\beta_\mu h \in L^2(\mu)$ wenn $h \in \text{dom}(\delta_\mu)$ ist. In diesem Fall ist

$$\delta_\mu h = -\beta_\mu h.$$
(4.14)

Dies ist eine natürliche Ausdehnung von (4.11).

5 **Glattheit von Bild-Maßen**

In diesem Abschnitt skizzieren wir in unserem Rahmen die klassische Thematik des Malliavin-Kalküls, nämlich den Glattheitsbeweis für die Verteilung von Zufallsgrößen via unendlich dimensional er partieller Integration. Wir vermeiden die Meyerschen Ungleichungen und gehen auf die Formulierung von Stroock [Str81] zurück.

Zunächst führen wir höhere Ableitungen ein. Seien h_1, h_2, \ldots, h_n Vektorfelder und μ ein Maß auf dem lokalkonvexen Raum E. Wir definieren rekursiv: μ ist n-fach differenzierbar längs h_1, \ldots, h_n mit Ableitung $\mu^{(n)}_{h_1,\ldots,h_n} \in M(E)$, wenn μ schon $(n-1)$ mal differenzierbar ist längs h_1, \ldots, h_{n-1} und das Maß $(\mu^{(n-1)}_{h_1,\ldots,h_{n-1}})$ längs h_n differenzierbar ist. Mit $\mu^{(n)}_{h_1,\ldots,h_n}$ wird das Maß $(\mu^{(n-1)}_{h_1,\ldots,h_{n-1}})_{h_n}$ bezeichnet. Ist $\mu^{(n)}_{h_1,\ldots,h_n} \ll \mu$ so heißt

$$\beta_{\mu}^{(n)}_{h_1,\ldots,h_n} = \frac{d\mu^{(n)}_{h_1,\ldots,h_n}}{d\mu}$$

die logarithmische Abbildung der Ordnung n von μ längs h_1, \ldots, h_n.
Beachte: Die Reihenfolge der Vektorfelder ist wie beim Ableiten gewöhnlicher Funktionen wesentlich. Dagegen kann man bei konstanten Vektorfeldern die Reihenfolge der Differentiation vertauschen. Als Illustration formulieren wir folgende Ergänzung unserer endlich-dimensionalen Überlegungen aus Abschnitt 2:

Lemma 5.1 Sei e_1,\ldots,e_d eine ON-Basis in \mathbb{R}^d. Sei $\mu \in \mathcal{M}(\mathbb{R}^d)$ d-fach $\tau_{C^\infty(\mathbb{R}^d)}$-differenzierbar längs der konstanten Vektorfelder e_1,\ldots,e_d. Dann ist für λ^d-fast alle $a = (a_1,\ldots,a_d) \in \mathbb{R}^d$

$$\mu_{e_1,\ldots,e_d}^d([-\infty,a_1] \times \ldots \times [-\infty,a_n]) = f(a) \quad (5.15)$$

wobei f die Lebesgue-Dichte von μ ist. Speziell im eindimensionalen gilt die Formel

$$\mu'(-\infty,a] = f(a). \quad (5.16)$$

Beweis: Aus dem Lebesguesschen Differentiationssatz folgt $\frac{d}{da} \int 1_{(-\infty,a]}d\mu = f(a)$ Lebesgue-fü. An einer solchen Differentialbarkeitstelle approximiert man $1_{(-\infty,a]}$ durch glatte Funktionen und benutzt (PI) um zu zeigen, daß diese Ableitung mit $\mu'(-\infty,a]$ übereinstimmt. Dies beweist (5.16) und (5.15) ergibt sich dann durch Induktion.

Die linke Seite in (5.15) ist nach dem Satz von der majorisierten Konvergenz stetig in a, falls $\mu_{e_1,\ldots,e_d}^d \ll \lambda^d$ ist, dies gilt z.B. auf Grund von Satz 2.8, wenn μ ($d+1$)-mal differenzierbar ist für alle konstante Richtungen. Induktiv ergibt sich

Folgerung 5.2 Das Maß $\mu \in \mathcal{M}(\mathbb{R}^d)$ sei $n+d+1$-mal $\tau_{C^\infty(\mathbb{R}^d)}$-differenzierbar in alle konstante Richtungen. Dann hat μ eine $C^n(\mathbb{R}^d)$-Dichte.

Beweis: Alle Ableitungen der Ordnung n von μ sind nach Voraussetzung noch ($d+1$)-mal differenzierbar, also wegen (5.15) durch stetige Dichten gegeben. Erst rechts sind μ und die Ableitungen dazwischen durch stetige Funktionen gegeben. Man verwendet dann, daß eine Funktion deren n-fachen partiellen Ableitungen im Distributionssinn durch stetige Funktionen dargestellt sind, selbst eine C^n-Funktion ist. Dies beweist man z.B. durch Falten mit einer glatten Kernfunktion.

Seien nun wie im vorigen Abschnitt $\mu \in \mathcal{M}(E)$ und ein Hilbertraum $H \subset E$ gegeben, so daß $\beta_y^d \in L^2(\mu)$ für alle $y \in H$. Dann sind die Operatoren $D : dom(D) \rightarrow L_H^2(\mu)$ und $\delta_\mu : dom(\delta_\mu) \rightarrow L^2(\mu)$ definiert. Unser Ziel sind Kriterien für eine Abbildung

$$u : E \rightarrow \mathbb{R}^d$$
dafür daß das BildMaß \(\nu = \mu \circ u^{-1} \) eine glatte Dichte besitzt. Die wesentliche Idee ist, zu \(\mu \)-fast jedem \(x \in E \) und \(i \in \{1, \ldots, d\} \) eine Richtung \(h_i(x) \in H \) zu finden, die unter der verallgemeinerten Ableitung \(Du(x) : H \to \mathbb{R}^d \) auf dem \(i \)-ten Einheitsvektor abgebildet wird, derart daß außerdem \(\mu \) unendlich oft längs der Vektorfelder \(h_i \) differenzierbar ist. Dabei ist \(Du(x) \) durch \(Du(x)y = ((Du_1(x), y), \ldots, (Du_d(x), y)) \) definiert. Unter diesen Voraussetzungen ist nämlich die folgende Aussage anwendbar.

Proposition 1 Seien \(g : \mathbb{R}^d \to \mathbb{R}^d \) und \(h \in L^2_H(\mu) \) Vektorfelder derart daß \(E_\mu(Du h|u)(x) = g(u(x)) \), wobei der Zufallsvektor \(Du h \) durch \((Du h)(x) = Du(x) h(x) \) definiert ist.

Dann ist \(\nu = \mu \circ u^{-1} \) differenzierbar in Richtung \(g \) und \(\beta_{g}^\nu \circ u = E_\mu(\beta_{h}^\mu|u) \)

Beweis: Sei \(\varphi \) eine Testfunktion auf \(\mathbb{R}^d \). Dann ist es leicht, die verallgemeinerte Kettenregel

\[
(D \varphi \circ u(x), h(x))_H = \nabla \varphi(u(x)) \ Du(x) \ h(x)
\]

(5.17)
zu verifizieren. Damit ergibt sich

\[
\int_{\mathbb{R}^d} \langle \nabla \varphi(z), g(z) \rangle \, \nu(dz) = \int_E \langle (\nabla \varphi)(u(x)), g(u(x)) \rangle \, \mu(dx)
\]

\[
= \int_E \nabla \varphi(u(x)) \ Du(x) \ h(x) \, \mu(dx) = \int_E (D(\varphi \circ u)(x), h(x))_H \mu(dx)
\]

\[
= \int \varphi \circ u \, \delta_\mu \ h \, \mu(dx) = - \int \varphi \circ u \, \beta_\mu \ d\mu
\]

\[
= - \int \varphi \circ u \, E(\beta_\mu|u) \ d\mu = - \int_{\mathbb{R}^d} \varphi \beta_{g}^\nu \ dv.
\]

Dabei ist \(\beta_{g}^\nu \) die \(\nu \)-fast eindeutige Funktion auf \(\mathbb{R}^d \) mit \(\beta_{g}^\nu \circ u = E(\beta_{h}^\mu|u) \).

Ausdehnung auf höhere Ableitungen: Sei \(h_1, \ldots, h_n \in L^4_H(\mu) \) so daß \(\beta_{h_1,\ldots,h_i}^\mu \)
existiert in \(L^4(\mu) \) für \(1 \leq i \leq n \). Sei \(g_i \circ u = E(Du h|u) \) für jedes \(i \). Dann existiert \(\beta_{g_1|\ldots|g_n}^{\mu} \) und ist \(= E(\beta_{h_1,\ldots,h_n}^\mu|u) \).

Bemerkung: Der Beweis verläuft ganz analog zum Beweis von Proposition 1. Man benötigt allerdings stärkere Integrabilitätsbedingungen (z.B. \(L^4 \)), weil im Induktionsschritt die erweiterte partielle Integration

\[
\int (Dw, h_i) \beta_{h_1,\ldots,h_{i-1}}^\mu \ d\mu = - \int w \beta_{h_1,\ldots,h_i}^\mu \ d\mu
\]

für \(w \in \text{dom}(D) \) gebraucht wird, bei deren Beweis die zusätzliche Gewichtsfunktion auf der rechten Seite berücksichtigt werden muß.
Folgerung 5.3 Wenn es Vektorfelder \(h_1, \ldots, h_d \in L^d(\mu) \) gibt so daß alle höheren logarithmischen Ableitungen von \(\mu \) längs der \(h_i \) in \(L^d(\mu) \) existieren und \(Du \ h_i = e_i \) fs., dann hat \(\mu \circ u^{-1} \) eine \(C^\infty \)-Dichte.

In der Tat: Unter diesen Voraussetzungen ist das Maß \(\mu \) unendlich oft in Richtung auf die Vektorfelder \(h_i \) differenzierbar und damit ist das Bild-Maß \(\nu = \mu \circ u^{-1} \) unendlich oft in Richtung auf die konstanten Vektoren \(e_i, 1 \leq i \leq d \) differenzierbar, woraus sich die Behauptung ergibt mit Folgerung 5.2.

Damit diese Vektorfelder \(h_i \) existieren können ist offenbar eine notwendige Forderung, daß \(Du(x) H = \mathbb{R}^d \)-fäuligt, d.h. daß die zufällige lineare Abbildung \(Du(x) \) fast sicher surjektiv ist. In diesem Fall ist \(Du(x) Du(x)^* : \mathbb{R}^d \rightarrow \mathbb{R}^d \) invertierbar und \(h = Du(x)^* (Du(x) Du(x)^*)^{-1}g \) löst die Gleichung \(Du(x)h = g \).

In Standardkoordinaten hat \(Du(x) Du(x)^* \) die Matrix

\[
\sigma(x) = (Du_i(x), Du_j(x))_{i,j=1,\ldots,d}.
\]

Diese notwendige Bedingung garantiert (jedenfalls unter einer leichten Zusatzvoraussetzung) die Existenz einer Dichte des Bild-Maßes: Es gilt der folgende ([BH91], Theorem 5.2.2)

Satz 5.4 (Bouleau-Hirsch): Wenn \(\mu \) sogar quasiinvariant ist in den Richtungen einer ON-Basis von \(\mathcal{H} \) und \(\sigma(x) \) invertierbar ist, dann ist \(\mu \circ n^{-1} \ll \lambda^d \).

Dieser Satz benutzt keine partielle Integration, es wird nicht vorausgesetzt, daß \(\mu \) längs der angegebenen Vektorfelder \(h_i \) differenzierbar ist, er benutzt im wesentlichen einfache Eigenschaften der Dirichlet-Form \((u,v) \mapsto \int (Du, Dv) d\mu \) und die Koordinatenformel der endlich-dimensionalen geometrischen Måtttheorie. Über die Dichte läßt sich dafür so gut wie nichts aussagen. Wir brauchen diesen Satz nicht, weil die Existenz der Dichte durch unsere Methoden aus den stärkeren Voraussetzungen direkt folgt.

Um unsere hinreichende Bedingungen zu formulieren, führen wir den von \(\mu \) induzierten "Laplace-Operator" \(\Delta_\mu \) ein:

\[
\Delta_\mu = -\delta_\mu D.
\]

Wir erinnern daran, daß im klassischen Raum \(L^2(\lambda^d) \) man den Laplace-Operator schreiben kann als \(\Delta = \text{div} \ \text{grad} \) wobei \(\text{div} = -(\text{grad})^* \). Also ist dort \(\Delta = -D^* D \).

Unser Hauptergebnis in diesem Abschnitt ist die folgende Adaption eines Satzes von Stroock ([Str81]):
Satz 5.5 ([SW97]) Sei $\mathcal{R} \subset \text{dom}(\Delta_\mu)$ abgeschlossen gegenüber Multiplikation und unter Δ_μ, d.h. es sei $\mathcal{RR} \subset \mathcal{R}$ und $\Delta_\mu \mathcal{R} \subset \mathcal{R}$. Sei $u : E \rightarrow \mathbb{R}^d$ eine Abbildung, so daß $u_i \in \mathcal{R}$ für $i = 1, \ldots, d$. Die inverse Matrix $\sigma(x)^{-1}$ existiere μ-fü und es sei $\frac{1}{\sigma(x)} \in \cap_{p=1}^{\infty} L^p(\mu)$. Dann hat $\mu \circ u^{-1}$ eine C^∞-Dichte f und für alle $v, w \in \mathcal{R}$ mit $\frac{1}{w} \in \cap_{p=1}^{\infty} L^p(\mu)$ gilt

$$E \left(\frac{v}{w} \mid u\right) = \psi \circ u \text{ mit } \psi \in C^\infty \left(\{f > 0\}\right).$$

Bemerkung: 1. Aus der Voraussetzung an \mathcal{R} folgt $\mathcal{R} \subset \cap_{p=1}^{\infty} L^p(\mu)$, da jede Potenz eines Elements von \mathcal{R} in $\text{dom}(D) \subset L^2(\mu)$ ist.
2. In dem Beweis ist ObdA \mathcal{R} ein linearer Raum der die Konstanten enthält, dann der von \mathcal{R} und den Konstanten aufgespannte lineare Raum ist auch abgeschlossen unter Multiplikation und unter Δ_μ.
3. Wenn man nicht C^∞-Dichten braucht, sondern nur C^k-Dichten, dann kann man mit den gleichen Methoden wie in dem folgenden Beweis auch mit schwächeren Integrierbarkeitsvoraussetzungen auskommen.

Der wichtigste Schritt des Beweises ist das folgende

Lemma 5.6: Sei

$$\tilde{\mathcal{R}} = \{ r = \frac{v}{w} : v, w \in \mathcal{R}, w^{-1} \in \cap L^p \}$$
$$\mathcal{H} = \{ \frac{v}{w}D^s : s, v, w \in \mathcal{R}, w^{-1} \in \cap L^p \}$$

Dann ist $\{ r_\mu : r \in \tilde{\mathcal{R}} \}$ abgeschlossen unter Ableitung längs Vektorfeldern aus \mathcal{H}.

Wir betrachten die Vektorfelder

$$h_i(x) = Du(x)^*\sigma(x)^{-1}e_i = \sum_{j=1}^{d} (\sigma(x)^{-1})_{ji}Du_j(x)$$

$$= \sum_{j=1}^{d} \frac{\partial_j(x)}{\det \sigma(x)}Du_j(x).$$

Hierbei sind die $\partial_j(x)$ die Kofaktoren der Matrix $\sigma(x)$. Das nächste Lemma impliziert zusammen mit den Voraussetzungen an \mathcal{R}, daß die Einträge von σ in \mathcal{R} sind, also gilt das gleiche für die Kofaktoren und für die Determinante im Nenner. Zusammen mit der Integrierbarkeitsvoraussetzung über die inverse Determinante ergibt sich, daß jedes h_i ein Element des Raums \mathcal{H} aus dem Lemma 5.6 ist. Daher ist μ längs den h_i unendlich oft differenzierbar. Nach der Folgerung 5.3 ergibt sich die Existenz einer glatten Dichte für $\mu \circ u^{-1}$. Die zweite Behauptung des Satzes betrachten wir weiter unten.
Lemma 5.7: Für $u, v \in \mathcal{R}$ ist
\[
2(Du, Dv) = (\Delta \mu (uv) - u\Delta \mu (v) - v\Delta \mu (u))
\]
Insbesondere $\sigma_{ij} \in \mathcal{R}$.

Beweis: Zunächst gilt die Produktregel $Duv = uDv + vDu$. (Den Beweis durch Approximation mit glatten Funktionen lassen wir weg. Er ist nicht ganz Routine, weil man apriori keine Integrierbarkeit von Du und Dv hat. Es reicht aber zu wissen, daß u^2, v^2 und uv in $\text{dom}(D)$ liegen, was hier daraus folgt, daß diese Funktionen sogar in \mathcal{R} sind.) Damit gilt für jede glatte Testfunktion w
\[
\int w(\text{Rechte Seite})d\mu = -\int w\delta \mu D(uv) - wv\delta \mu Du - wu\delta \mu Dv d\mu = -\int (Dw, Duv) - ((D(uv), Du) + (D(wu), Dv)) d\mu = 2\int w(Du, Dv)d\mu.
\]

Für den Beweis von Lemma 5.6 benötigen wir noch eine weitere Regel. Sie ist eine Art Produktregel fürs Differenziieren von Maßen längs Vektorfeldern.

Lemma 5.8: Für $v \in \text{dom}(D)$ und $u \in \text{dom}(\Delta \mu)$ sind die Maße $\mu \text{ resp. } \mu \text{ differenzierbar längs der Vektorfelder } vDu \text{ resp. } Du \text{ mit den zugehörigen logarithmischen Ableitungen}$
\[
\beta^\mu_{vDu} = v\Delta \mu u + (Du, Dv)_H \text{ und } \beta^\mu_u = \Delta \mu u + \frac{(Du, Dv)}{v}
\]

Beweis: Für jede glatte Testfunktion ist
\[
-\int (w', Du)v \, d\mu = -\int (vw', Du) d\mu = \int (wDv - D(vw), Du)d\mu = \int w (Du, Dv) - wv \delta \mu Du \, d\mu = \int w(v\Delta \mu u + (Du, Dv)) \, d\mu = \int w(\Delta \mu u + \frac{(Du, Dv)}{v}) \, vd\mu.
\]
Daraus folgen beide Behauptungen.

Nun führen wir den Beweis von Lemma 5.6. Für jedes $w \in \mathcal{R}$ mit $w \neq 0 \mu$-f. und $\frac{1}{w} \in L^\infty(\mu)$ ist $\frac{1}{w} \in \text{dom}(D)$ mit $D\frac{1}{w} = -\frac{Dw}{w^2}$. Dies ergibt sich wegen
\[Dw \in L^4_H(\mu) \text{ mit Approximation durch glatte Funktionen. Damit erhält man die Quotientenregel} \]

\[
D(v/w) = \frac{wDv - vDw}{w^2} \in \bigcap_{\nu \geq 1} P^\nu_H(\mu)
\]

für \(\frac{v}{w} \in \tilde{\mathcal{R}} \). Für jedes \(h = \frac{v}{w} Ds \in \mathcal{H} \) ist das Maß \(\mu \) nach Lemma 5.8 differenzierbar längs \(h \) und es gilt

\[
\beta_h^\mu = \frac{v}{w} \Delta \mu^s + \frac{(Ds, Dv)w - v(Dw, Ds)}{w^2} \in \tilde{\mathcal{R}}.
\]

Sei nun \(\lambda = \frac{w}{v} \mu \) ein Maß mit Dichte in \(\tilde{\mathcal{R}} \). Um \(\lambda \) nach \(h \) zu differenzieren betrachte das Hilfsvektorfeld

\[
h^* = \frac{v_\lambda}{w_\lambda} \cdot h \in \mathcal{H}.
\]

Dann gilt für jede Testfunktion \(t \)

\[
\int (t', h)d\lambda = \int (t', \frac{v}{w} Ds) \frac{v_\lambda}{w_\lambda} d\mu = \int (t', h^*) d\mu
\]

\[
= - \int t \beta_h^\mu, d\mu.
\]

Also ist \(\lambda_h^* = \beta_h^\mu \mu \) wieder ein Maß mit Dichte aus \(\tilde{\mathcal{R}} \). Dies beweist das Lemma 5.6 und damit die Existenz der glatten Dichte von \(\mu \circ u^{-1} \).

Zum Beweis der glatten Faktorisierung der bedingten Erwartungen sei \(r = \frac{v}{w} \in \mathcal{R} \). Wie oben gezeigt, ist \(rh_i \in \mathcal{H} \) und damit ist \(\mu \infty \) oft differenzierbar längs dieser Vektorfelder mit logarithmischen Ableitungen, die ebenfalls in \(\tilde{\mathcal{R}} \) sind. Dies führt wegen \(Du(x)h_i(x) = e_i \) mit der Kettenregel (5.17) zu der Beziehung

\[
\int_{\mathbb{R}^d} \partial_i \varphi(z) \ d(r\mu) \circ u^{-1} = \int (D(\varphi \circ u)(x), h_i(x) \ r(x)) \mu(dx)
\]

\[
= - \int \varphi \circ u \ \beta_r^{\mu}_{h_i} d\mu = - \int \varphi d(\beta_r^{\mu}_{h_i} \mu) \circ u^{-1}.
\]

Also ist \((r\mu) \circ u^{-1} \) unendlich oft differenzierbar in den Koordinaten-Richtungen und hat eine Dichte \(g \in C^\infty(\mathbb{R}^d) \). Für jedes \(\psi \) mit

\[
\psi \circ u = E(r|u)
\]

gilt mit einer beliebigen glatten Testfunktion \(\varphi \)

\[
\int \varphi(z)g(z) \ dz = \int \varphi(z) \ (r\mu) \circ u^{-1} = \int \varphi(u(x)) \ E_\mu(r|u) \mu(dx)
\]

\[
= \int_{\mathbb{R}^d} \varphi(z) \ psi(z) f(z) dz.
\]
Damit ist speziell $\psi(z) = \frac{g(z)}{f(z)}$ wählbar für $f(z) > 0$. Offenbar ist $\psi \in C^\infty(\{f > 0\})$. Dies schließt den Beweis von Satz 5.5 ab.

6 Transformationsformeln

Ziel dieses Abschnitts ist eine Analogie zur klassischen Integraltransformationsformel im Euklidischen Raum. Das Maß μ sei wie im letzten Abschnitt differenzierbar in allgemeinen Richtungen $y \in H \subset E$ mit logarithmischen Ableitungen $\beta_y^\mu \in L^2(\mu)$. Zunächst benötigen wir etwas genauere Information über den Divergenz-Operator δ_μ. Bei unbeschränkten Operatoren ist die Frage nach einer genauen Charakterisierung ihres Definitionsbereiches manchmal schwierig. Dies gilt auch für das Skorokhod-Integral. Unter einer leichten zusätzlichen Glattheitsbedingung gibt der folgende Satz eine Antwort.

Satz 6.1 Sei $h \in L^2_H(\mu)$ ein Vektorfeld derart daß $(h, y(\cdot)) \in \text{dom}(D)$ ist für alle $y \in H$. Sei $(e_i)_{i \in \mathbb{N}}$ eine ON-Basis von H. Genau dann ist $h \in \text{dom}(\delta_\mu)$, wenn die Reihe

$$
\sum_{i=1}^{\infty} \left[\beta_y^\mu(h, e_i) + (D(h, e_i), e_i)_H \right]
$$

gegen ein Element von $L^2(\mu)$ in der Topologie τ_C konvergiert. Der Grenzwert ist dann $-\delta_\mu h = \beta_y^\mu$.

Dabei fassen wir $L^2(\mu)$ als Teilmenge von $\mathcal{M}(E)$ auf, indem jedes $X \in L^2(\mu)$ mit dem Maß identifiziert wird, welches die μ-Dichte X hat.

Bemerkung: Der zweite Teil der Summe ist eine Verallgemeinerung der "klassischen" Divergenz $\sum_{i=1}^{d} \frac{\partial h_i}{\partial x_i}$. Die zentrale Rolle der Divergenz bei infinitesimalen Volumenänderungen ist bekannt aus dem Satz von Gauß oder aus dem Satz von Liouville über die Volumentreue Hamiltonscher Flüsse. Hier ist eine anschauliche Deutung der Divergenz als logarithmischer Ableitung des Lebesgue-Maßes: Seien Q ein Quader und A eine lineare Transformation in \mathbb{R}^d. Dann gilt für $t \to 0$

$$
\frac{\text{vol}(I + tA)Q}{\text{vol}Q} = 1 + t \cdot \text{tr}A + o(t).
$$

(Es ist lehrreich, sich einmal diese Beziehung ohne Verwendung der Determinante geometrisch klar zu machen.) Sei nun $\Phi_t x = x - th(x)$. Sei $x + Q$ ein kleiner Quader um x. Dann unterscheidet sich die Urbildmenge $\Phi_t^{-1}(x + Q)$ in erster Ordnung nicht von $(I + th'(x))(x + Q)$. Also ist der infinitesimale
prozentuale Unterschied zwischen $\lambda^d(Q + x)$ und $\lambda^d \circ \Phi_i^{-1}(Q + x)$ wegen (6.19) gegeben durch $t \cdot \text{tr} h'(x) + o(t) = t \text{div} h(x) + o(t)$. Diese infinitesimale prozentuale Änderung des Maßes in der "Nähe" eines Punktes x ist aber gerade die anschauliche Bedeutung der logarithmischen Ableitung.

Von den beiden Teilsätzen in (6.18) ist also die zweite der Ausdrücke, der unabhängig von dem Maß sowieso entstehen würde, selbst wenn das Maß translationsinvariant wäre. Dieser Teil ruht davon her, daß verschiedene Punkte in verschiedene Richtungen verschoben werden, weil das Vektorfeld nicht konstant ist.

Die erste Summe hängt dagegen damit zusammen, daß das Maß μ nicht verschiebungsinvariant ist. Da die logarithmische Ableitung in einer konstanten Richtung eine lineare Funktion dieser Richtung ist, entspricht dieser Teil der Summe auch einfach der orthogonalen Zerlegung des Vektors $h(x)$. Diesen ersten Teil der Summe kann man lesen als logarithmische Ableitung von μ in die Richtung $h(x)$, wenn h konstant gleich $h(x)$ wäre. Die Nichteinheit von h äußert sich nur im zweiten, von μ unabhängigen Teil von (6.18).

Der Beweis des Satzes ist erstaunlich einfach. Die Formel (6.18) ist im Prinzip bekannt (z.B. [DM85]), die Verwendung der Topologie τ_C in diesem Zusammenhang, die eine notwendige und hinreichende Bedingung erlaubt, ist anscheinend neu auch für das Wiener-Maß.

Beweis: Sei zunächst $h = \sum_{i=1}^n h_i(x) e_i$ mit festen Koeffizienten-funktionen $h_i \in L^2(\mu)$. Dann gilt für jedes $\varphi \in C$ nach Lemma 5.8

$$
\int \varphi' h \, d\mu = \int \sum_{i=1}^n \varphi' e_i \ h_i(x) \, d\mu
$$

$$
= - \sum_{i=1}^n \int \varphi(\beta^\mu_{e_i,h}) \, d\mu
$$

$$
= - \sum_{i=1}^n \int \varphi(\beta^\mu_{e_i,h} + (D(e_i,h),e_i)) \, d\mu
$$

$$
= - \int \varphi \left(\sum_{i=1}^n \beta^\mu_{e_i,x}(e_i,h(x)) + (D(e_i,h)(x),e_i) \right) \, d\mu.
$$

Also ist $h \in \text{dom}(\delta^\mu)$ und $\delta^\mu h$ ist durch die ausgegebene Summe $S_n h$ gegeben.

Sei nun h beliebig. Sei $P_n : H \rightarrow \text{span}\{e_1, \ldots, e_n\}$ die orthogonale Projek-
tion. Es gibt wegen der Beschränktheit von φ'

$$
\int_E \varphi' h \, dy = \int_E \sum_{i=1}^{\infty} \varphi e_i(h, e_i) d\mu
$$

$$
= \lim_{d \to \infty} \int_{E} \sum_{i=1}^{n} \varphi e_i(h, e_i) d\mu = \lim_{n \to \infty} \int \varphi' P_n h \, d\mu
$$

$$
= - \lim_{d \to \infty} \int \varphi S_n h \, d\mu
$$

Offenbar existiert $\lim S_n h$ in $(L^2(\mu), \tau_C)$ genau dann, wenn dies Integral als $\int \varphi \beta \, d\mu$ mit einem $\beta \in L^2(\mu)$ geschrieben werden kann, dies β ist dann nach Definition gerade gleich - δh.

Im folgenden klassischen Beispiel sehen wir, daß i.a. die Regularitätsannahme $(y, h) \in dom(D)$ eine echte Einschränkung bedeutet.

Beispiel (Das Itô Integral) Sei μ das Wiener-Maß und $h : C_0[0, 1] \to H = \{ \int_0^1 \eta ds : \eta \in L^2[0, 1] \}$. Wir nehmen an, daß $h(\omega) = \int_0^\omega \eta(s, \omega) \, ds$, wobei

$$
\eta(s, \omega) = \sum_{i=1}^{n} \eta_i(\omega) 1_{[a_i, a_{i+1})}(s)\sqrt{a_{i+1} - a_i}
$$

und für jedes i die Koeffizientenfunktion η_i differenzierbar und F_{a_i}-messbar ist. Setze $e_i = \int_0^\omega \sqrt{a_{i+1} - a_i} 1_{[a_i, a_{i+1})}(s) \, ds$. Dann ist e_1, \ldots, e_n ein ON-System und

$$
h(\omega) = \int_0^\omega \eta(\omega) \, ds = \sum \eta_i(\omega) e_i.
$$

Ferner ist

$$
(D(h, e_i)(\omega), e_i) = (D \eta_i, e_i)(\omega) = \lim_{t \to 0} \frac{\eta_i(\omega + t e_i) - \eta_i(\omega)}{t}.
$$

Da die beiden Pfade $\omega + t e_i$ und ω auf $[0, a_i]$ übereinstimmen und η_i F_{a_i}-messbar ist, ergibt sich also

$$
(D(h, e_i), e_i) = 0
$$

für alle i. Damit ist

$$
\delta h = - \sum_{i=1}^{n} \beta_{e_i}^\mu \cdot (h, e_i)
$$

$$
= - \sum_{i=1}^{n} \int_0^1 \sqrt{a_{i+1} - a_i} 1_{[a_i, a_{i+1})} \, dW \cdot \eta_i
$$

$$
= - \int_0^1 \eta \, dW,
$$
$-\delta_{\mu} h$ stimmt nach dem elementaren Itô Integral (von 0 bis 1) von η überein, wenn der Integrand η vom angegebenen Typ ist. Insbesondere gilt

$$\| \delta_{\mu}(\int_0^1 \eta ds) \|_{L^2(\mu)} = \| \eta \|_{L^2(\lambda \otimes \mu)}$$

für elementare adaptierte Prozesse η mit differenzierbaren Koeffizienten. Da δ_{μ} ein abgeschlossener Operator ist, überträgt sich diese Relation auf alle Integranden im Abschluß dieser Prozesse d.h. es ist

$$\delta_{\mu}(\int_0^1 \eta ds) = - \int_0^1 \eta dW$$

für alle adaptierte Itô-Integranden $\eta \in L^2(\lambda \otimes \mathbb{W})$. Beachte, daß in dieser Situation an die Koeffizienten η_t nach dem Übergang zum L^2-Abschluß keinerlei Glättungsvoraussetzungen mehr gestellt werden. Insbesondere ist typischerweise $(y, h) \notin \text{dom}(D)$ wenn $h = \int_0^1 \eta ds$ mit adaptierten $\eta \in L^2(\lambda \otimes \mathbb{W})$.

Wenn in dem obigen Satz $h \in \text{dom}(\delta_{\mu})$ ist und eine der beiden Bestandteile der Reihe konvergiert, dann auch der andere. Die erste Teilsumme

$$\sum_{i=1}^{\infty} \beta_i(x)(h(x), e_i)$$

ist im Fall des Wiener-Maßes gleich der Summe $\sum - (h(\omega), e_i) \int e_i dW$. Dies ist das sogenannte Ogawa Integral. Es ist i.a. unklar für welche ON-Basen diese Reihe konvergiert und wenn sie für zwei Basen konvergiert, ob die Summen übereinstimmen. Das einzige mir bekannte allgemeine Kriterium ist folgendes:

Satz 6.2 Sei $H_0 \subseteq H$ ein Hilbertraum bzgl. $(\ , \)_0$ so daß die Einbettung $H_0 \hookrightarrow H$ ein Hilbert-Schmidt-Operator ist (dh. $\sum_{j=1}^{\infty} \| g_j \|^2_{H} < \infty$ für jede ONB von $(H_0, (\ , \)_0)$. Sei $h : E \rightarrow H_0$ ein Vektorfeld in $L^p_{H_0}(\mu)$ und sei $\| \beta_y \|_{L^p(\mu)} \leq C \cdot \| y \|_H$ für alle $y \in H$. Dann konvergiert die Reihe (6.20) für jede ONB (e_i) von H in $L^{p/2}(\mu)$ gegen eine von der Basis unabhängige Zufallsvariable.

Lemma 6.3 Sei $p \geq 2$. Sei $B : H \rightarrow L^p(\mu)$ linear und stetig. Sei R die Operatornorm von B und M die Hörmander-Schmidt-Norm der Einbettung $H_0 \hookrightarrow H$. Dann existiert ein $b \in L^p_{H_0}(\mu)$ mit $\| b \|_p \leq R \cdot M$, so daß

$$B(h)(x) = (h, b(x))_{H_0} \mu \text{-f. } \forall h \in H_0.$$

Beweis: (des Lemmas) Sei (g_j) eine ONB von H_0. Dann ist

$$\int \sum B(g_j)^2(x) \ d\mu \leq R \sum \| g_j \|^2 \leq RM.$$
Sei $E_0 = \{ x : \sum B(g_j)^2(x) < \infty \}$ wobei $B(g_j)$ feste Repräsentanten sind. Es ist $\mu(E_0) = 1$ und für $x \in E_0$ definiere

$$b(x) = \sum B(g_j)(x) \ g_j \in H_0.$$

Dann gilt

$$(h, b(x)) = \sum (h, g_j)(b(x), g_j) = \sum (h, g_j)B(g_j)$$

und

$$\| b \|_p = \| \left(\sum B(g_j)^2 \right)^{\frac{1}{2}} \|_p$$

$$= \| \sum B(g_j)^2 \|_\frac{1}{2} \leq \left(\sum \| B(g_j)^2 \|_\frac{1}{2} \right)^{\frac{1}{2}}$$

$$= \left(\sum \| B(g_j) \|_p \right)^{\frac{1}{2}} \leq R \left(\sum \| g_j \|^2 \right)^{\frac{1}{2}} \leq RM.$$

Damit ist das Lemma bewiesen.

Für den Beweis des Satzes macht man den Ansatz

$$\sum_{i=1}^{\infty} \beta_{\epsilon_i}(h(x), e_i) = (b(x), h(x))_{H_0}$$

wobei b das Vektorfeld ist, das man durch Anwenden des Lemmas auf den durch $By = \beta_{\eta}^y$ definierten Operator B erhält. Der tatsächliche Nachweis, dass dieser Ansatz zum Ziel führt, benötigt allerdings noch etwas Arbeit, auf die wir hier verzichten.

Beispiel: Der Raum $W^{1,2}$ ist HS-eingeblendet in $L^2[0, 1]$, also auch $\{ \int_0^1 \eta ds : \eta \in W^{1,2} \}$ in $W^{1,2}$. Speziell konvergiert das Ogawa-Integral für Prozesse mit stetig differenzierbaren Pfaden. Dies ist bekannt.

Im allgemeinen kann man über die Konvergenz der Reihe $\sum (D(e_i), h_i, e_i)$ wenig sagen. Die übliche Förderung ist, dass für alle x ein Spuroperator $Dh(x)$ existiert mit $(Dh(x)y, z) = (D(z, W D, y))$ (z.B. h ist Fréchet-differenzierbar und $h'(x)$ ist ein Spuroperator, in diesem Fall ist die μ-fö. Reihe eben

$$= Sp(Dh(x)) = \text{div} h(x)$$

unabhängig vom Koordinatensystem.
\textbf{Satz 6.4 ([SW95])} Die Abb. $\Phi_t : E \rightarrow E$, $t \in \mathbb{R}$ habe folgende Regularitätseigenschaften:

1) $\Phi_0 = id$, $\Phi'_t(x) = \frac{d}{dt} \Phi_t(x) \in H_0 \subset H$.

2) $D\Phi_t(x)$, $D\Phi'_t$ existieren als Fréchet-Ableitung und die Abbildungen $t \mapsto \ln D\Phi_t$ und $t \mapsto D\Phi'_t$ seien stetig von \mathbb{R} in dem Raum der Spur-Operatoren in H.

Dann gilt für die Bildmaß $\mu_t = \mu \circ \Phi_t$ von μ unter den inversen Abbildungen Φ^{-1}_t die Formel

$$\frac{d\mu_t}{d\mu}(x) = \det D\Phi_t(x) \exp \int_0^1 (b(\Phi_t(x), \Phi'_t(x))_{H_0} dt$$

wobei $b : E \rightarrow H_0$ wie im obigen Lemma durch die Relation $(b(x), y)_0 = \beta^\mu_y(x)$ für alle $y \in H_0$ definiert ist.

Der Beweis beruht u.a. auf den beiden folgenden Lemmas.

\textbf{Lemma 6.5} Sei $k_t(x)$ definiert durch $k_t(\Phi_t(x)) = \Phi'_t(x)$. Dann ist $\frac{d}{dt}|_{t=0} \Phi_t(\Phi^{-1}_t y) = -k_t(y)$.

\textbf{Lemma 6.6} (μ_t) ist differenzierbar an der Stelle t mit

$$\frac{d\mu'_t}{d\mu_t} = \beta^\mu_{\Phi_t}(\Phi_t(x)) = (b(\Phi_t(x), \Phi'_t(x))_{H_0} + \text{tr}(D\Phi'_t \circ (D\Phi_t)^{-1})$$

Der Rest ergibt sich aus der folgenden symbolischen Rechnung

$$\exp \int_0^1 \text{tr} \left(\frac{d}{dt} D\Phi_t \circ (D\Phi_t)^{-1} \right) d\tau = \exp \int_0^1 \text{tr} \frac{d}{dt} \ln D\Phi_t dt$$

$$= \exp \text{tr} \ln D\Phi_1 = \det D\Phi_1(x)$$

und dem Satz 1.10 aus Abschnitt 1.

Zum Abschluß betrachten wir noch den Fall eines adaptierten Prozesses und des Wiener-Maßes, um zu zeigen, wie die Formel des vorigen Satzes in der Tat in die Gestalt der Girsanov-Formel übergeht. Die Spur in zweitem Lemma verschwindet wegen der Adaptiertheit wie weiter oben unter dem Stichwort Itô-Integral erläutert, und im verbleibenden Integral ist im Fall $\Phi_t(x) = x - th(x)$
das Vektorfeld k_i gegeben durch $k_i(x) = -h(x)$. Also ist

$$
\frac{d\mu_i^x}{d\mu}(\omega) = \exp \int_0^1 \beta_{\Phi_i^x}(\omega) \exp (\Phi_i(\omega)) dt = \exp \int_0^1 (- \int_0^1 \eta \, dW(\omega - th(\omega))) dt = \exp \left(- \int_0^1 \eta \, dW - \int_0^1 \eta \, d(t \, h(\omega)) \, dt \right) = \exp \left(- \int \eta \, dW - \frac{1}{2} \int_0^1 \eta^2 ds \right).
$$

Bemerkung Man kann den obigen Satz auch so umformulieren, daß statt der Girsanov-Formel formal die Ramer-Formel entsteht, bei der die Determinante durch die sogenannte Fredholm-Determinante ersetzt und dafür der Integrand modifiziert wird. Auf diese Weise läßt sich die Bedingung abschwächen, daß die Operatoren $lnD\Phi_1$ Spurklassen-Operator sind.

References

