
dissertation

D E A L I N G W I T H D E P E N D E N C E I N T H E E N D - T O - E N D
P E R F O R M A N C E A N A LY S I S I N

S T O C H A S T I C N E T W O R K C A L C U L U S

Thesis approved by the Department of Computer Science of the
TU Kaiserslautern for the award of the Doctoral Degree

Doctor of Natural Sciences (Dr. rer. nat.)

to

Paul Nikolaus

date of defense: : March 24, 2022

dean: : Prof. Dr. Jens B. Schmitt

phd committee

chair : Prof. Dr. Christoph Garth

reviewers: : Prof. Dr. Jens B. Schmitt

Prof. Dr. Florin Ciucu

Prof. Dr. Amr Rizk

D 386

[August 8, 2022 at 15:04 –]

D E A L I N G W I T H D E P E N D E N C E I N T H E E N D - T O - E N D
P E R F O R M A N C E A N A LY S I S I N

S T O C H A S T I C N E T W O R K C A L C U L U S

paul nikolaus

Department of Computer Science
TU Kaiserslautern

[August 8, 2022 at 15:04 –]

iii

[August 8, 2022 at 15:04 –]

A B S T R A C T

Communication networks, in particular the Internet, have become a pivotal part
of our life. Since their beginnings, a key aspect of their applicability has been
the performance. Safety-critical applications, for example, can sometimes only
be implemented in a responsible manner if guarantees about their end-to-end
delay can be made. A mathematical modeling and performance evaluation
of communication networks requires a powerful set of tools that is able to
incorporate their increasing complexity.

The stochastic network calculus (SNC) is a versatile, mathematical framework
that allows for a calculation of probabilistic end-to-end performance bounds
of distributed systems. Its flexibility enables to incorporate a large class of
different schedulers as well as different models of traffic processes beyond the
assumption of Poisson arrivals that is predominant in queueing theory-based
analyses. It originates in the so-called deterministic network analysis (DNC) in
the 90’s of the 20th century that was introduced to provide deterministic, “hard”
guarantees that are of relevance, e.g., in the context of real-time systems. While
the DNC of today can be used to calculate fast and accurate delay bounds of
arbitrary feedforward networks, the SNC is still in a significantly earlier stage.
In particular, method-pertinent dependencies, i.e., a phenomenon that occurs when
independent flows become stochastically dependent after sharing resources in
the network, can be considered a major challenge in the SNC with moment-
generating functions (MGFs).

This thesis argues to contribute to the SNC in several ways. First, we show
that the “pay multiplexing only once” (PMOO) analysis known from the DNC
is also possible in the SNC. Not only does it significantly improve end-to-end
delay bounds, it also needs to consider less method-pertinent dependencies.
Therefore, complexity and runtimes of the calculation are greatly reduced. Sec-
ond, we introduce the concept of negative dependence to the SNC with MGFs
and give numerical evidence that this can further lead to better performance
bounds. Third, for the larger problem of end-to-end performance bounds of
tree networks, we introduce so-called “h-mitigators”, a modification in the
calculation of MGF output bounds. It is minimally invasive, all existing results
and procedures are still applicable, and improves performance bounds. As a
fourth contribution, we conduct extensive numerical evaluations to substantiate
our claims. Moreover, we made the respective code, the “SNC MGF toolbox”,
publicly available to ensure that the results are reproducible. At last, we conduct
different stochastic analyses of a popular fair scheduler, generalized processor
sharing (GPS). We give an overview of the state-of-the-art analyses in the SNC
and substantiate the comparison through numerical evaluations.

iv

[August 8, 2022 at 15:04 –]

v

[August 8, 2022 at 15:04 –]

D E C L A R AT I O N

Parts of this thesis have been previously published by the author in the follow-
ing joint publications:

conference proceedings

[NS17] Paul Nikolaus and Jens Schmitt. “On Per-Flow Delay Bounds in Tandem
Queues under (In)Dependent Arrivals.” In: Proc. IFIP Net- working 2017

Conference (NETWORKING’17). Stockholm, Sweden, 2017.

[NS18] Paul Nikolaus and Jens Schmitt. “Improving Output Bounds in the
Stochastic Network Calculus Using Lyapunov’s Inequality.” In: Proc. IFIP
Networking 2018 Conference (NETWORKING’18). Zurich, Switzerland:
IEEE, May 2018.

[NS20b] Paul Nikolaus and Jens Schmitt. “On the Stochastic End-to-End Delay
Analysis in Sink Trees Under Independent and Dependent Arrivals.” In:
Proc. Conference on Measurement, Modelling and Evaluation of Comput-
ing Systems (MMB’20). Springer. 2020.

[NSC19b] Paul Nikolaus, Jens Schmitt, and Florin Ciucu. “Dealing with Dependence
in Stochastic Network Calculus – Using Independence as a Bound.” In:
Proc. International Conference on Analytical and Stochastic Modeling
Techniques and Applications (ASMTA’19). Springer. Moscow, Russia,
2019.

journal article

[BNS22] Anne Bouillard, Paul Nikolaus, and Jens Schmitt. “Unleashing the Power
of Paying Multiplexing Only Once in Stochastic Network Calculus.” In:
Proceedings of the ACM on Measurement and Analysis of Computing
Systems (POMACS) 6.2 (2022), p. 34.

[NSS19] Paul Nikolaus, Jens Schmitt, and Malte Schütze. “h-Mitigators: Improving
your stochastic network calculus output bounds.” In: Computer Commu-
nications 144 (2019), pp. 188–197.

technical reports

[BNS21] Anne Bouillard, Paul Nikolaus, and Jens B. Schmitt. “Unleashing the
Power of Paying Multiplexing Only Once in Stochastic Network Calculus.”
In: CoRR abs/2104.14215 (2021). arXiv: 2104.14215.

[NSC19a] Paul Nikolaus, Jens B. Schmitt, and Florin Ciucu. Dealing with Depen-
dence in Stochastic Network Calculus – Using Independence as a Bound.
Tech. rep. TU Kaiserslautern, Germany, May 2019.

The complete list of publications can be found on page 155.

[August 8, 2022 at 15:04 –]

A C K N O W L E D G M E N T S

I would like to express my profound gratitude to my parents, Irina and Roman,
for supporting me my whole life. Nothing would have been possible without
you. I am thankful to my girlfriend, Yuki, for always being patient with me.
You gave me the strength I needed to achieve this goal.

I would like to express my heartfelt gratitude to my supervisor, Prof. Jens
Schmitt, for inviting me to the world of academia, for his support beyond mea-
sure, and for all the fruitful conversations we had. You really had a formative
influence on me. I couldn’t imagine a better mentor.

I would like to thank the PhD committee for their time and consideration to
review this thesis, namely Prof. Florin Ciucu, Prof. Christoph Garth, Prof. Amr
Rizk, and Prof. Jens Schmitt.

I would like to thank all my coauthors for their collaboration, namely Dr.
Michael Beck, Prof. Steffen Bondorf, Dr. Anne Bouillard, Prof. Florin Ciucu, Dr.
Sebastian Henningsen, Prof. Jens Schmitt, Malte Schütze.

I would like to thank two of my best friends, David and Sebastian. Bären-
bande forever.

I would like to thank all the former and current distributed computer systems
(disco) members, namely Dr. Michael Beck, Dr. Daniel Berger, Prof. Steffen
Bondorf, Vlad-Cristian Constantin, Markus Espen, Anja Gerber, Anja Hamscher,
Eric Jedermann, Dr. Kai Lampka, Carolina Nogueira, Steffen Reithermann, Dr.
Matthias Schäfer, Alexander Scheffler, Prof. Hao Wang, and Raffaele Zippo, for
the great time we had together over the last 5 years.

Thank you,
Paul

vii

[August 8, 2022 at 15:04 –]

viii

[August 8, 2022 at 15:04 –]

C O N T E N T S

i Introduction and Network Calculus Background
1 Introduction 2

1.1 A Need for a Stochastic End-to-End Analysis 2

1.2 The Stochastic Network Calculus Framework 2

1.3 State-of-the-art: the canonical tandem 4

1.4 Thesis Statement and Contributions 5

1.5 Thesis Outline 6

2 Deterministic Network Calculus Background 8

2.1 Network Model 8

2.2 Min-Plus Algebra 10

2.3 Arrival and Service Curves 11

2.4 Single-Node Performance Bounds 13

2.5 End-to-End Analysis and Pay Burst Only Once Principle 14

2.6 Pay Multiplexing Only Once Principle and State of the Art 17

3 Stochastic Network Calculus Background 23

3.1 Stochastic Arrivals and Service 23

3.2 Stochastic Single-Node Performance Bounds 28

3.3 End-to-End Analysis and Open Problems 30

ii Dealing with Dependence
4 Dealing with Dependence Using PMOO for Tandem Queues and Sink

Trees 36

4.1 End-to-End Delay Bound 38

4.2 Numerical Evaluation 43

4.3 Summary 49

5 Dealing with Dependence Using PMOO for Tree Networks 50

5.1 Tree Network Analysis 50

5.2 Performance Bounds 54

5.3 Numerical Evaluation 56

5.4 Summary 62

6 Dealing with Dependence Using Negative Dependence 63

6.1 Negative Dependence and Acceptable Random Variables 64

6.2 Independence as a Bound 65

6.3 Numerical Evaluation 68

6.4 Discussion 69

iii End-to-End Analysis
7 h-Mitigators 71

7.1 New Output Bound Calculation 72

7.2 Numerical Evaluation 76

7.3 Direct Application to Delay Bounds 80

7.4 Summary 81

8 A Toolbox for Stochastic Network Calculus with Moment-Generating
Functions 82

ix

[August 8, 2022 at 15:04 –]

contents x

8.1 Arrivals and Service 82

8.2 Performance Bounds 82

8.3 Network Operations and Modular Analysis 82

8.4 End-to-End Delay Bounds 83

iv Fair Queueing in SNC
9 Stochastic Analysis of Generalized Processor Sharing 90

9.1 GPS Background 91

9.2 Stochastic Analysis of GPS 93

9.3 Numerical Evaluation 97

9.4 Summary 99

10 Conclusion and Outlook 103

10.1 Conclusion 103

10.2 Outlook 104

v Appendix
a Stochastic Network Calculus Traffic Classes 107

a.1 (σA, ρA)-bounds for Discrete-time MMOO Arrivals 107

a.2 Fractional Brownian Motion 108

b Appendix of Chapter 4 109

b.1 Tandem Queue Performance Bounds 109

b.2 Sink Tree Performance Bounds 111

b.3 Tandem Queue Numerical Evaluation 114

b.4 Tandem Queue Mixed Scenario 115

c Appendix of Chapter 5 118

c.1 Proofs 118

d Appendix of Chapter 6 122

d.1 Proofs 122

e Appendix of Chapter 7 125

e.1 Proofs 125

f Appendix of Chapter 9 126

f.1 Proofs of Optimal M in Homogeneous Scenario 126

f.2 Proofs for SNC with MGFs 126

f.3 Background on SNC with Tail Bounds 129

f.4 Proofs for Tail Bound Analysis of GPS 130

Bibliography 137

List of Publications 155

[August 8, 2022 at 15:04 –]

L I S T O F F I G U R E S

Figure 1.1 Canonical tandem 4

Figure 1.2 Two flows at two nodes in a tandem. 5

Figure 2.1 Basic queueing system with cumulative arrival process
A and cumulative departure process D. 9

Figure 2.2 Backlog and virtual delay for an arbitrary arrival and
departure process. 9

Figure 2.3 Two flows at one node with service curve β. 14

Figure 2.4 One flow at two nodes in a tandem with service curves
β1 and β2. 16

Figure 2.5 Two flows with envelopes α1 and α2 at two nodes in a
tandem with service curves β1 and β2, respectively. 18

Figure 2.6 Subtract first 18

Figure 2.7 Application of SFA to the tandem network. 18

Figure 2.8 Convolve first 18

Figure 2.9 Application of PMOO to the tandem network. 19

Figure 2.10 Nested tandem 19

Figure 2.11 Overlapping tandem 21

Figure 3.1 Stochastic envelopes for iid Bernoulli increments. 25

Figure 3.2 Discrete-time MMOO model 26

Figure 3.3 Continuous-time MMOO model 27

Figure 3.4 Two flows at one node with service process S. 31

Figure 3.5 One flow - two servers 32

Figure 3.6 One flow - n servers 33

Figure 4.1 Canonical tandem 36

Figure 4.2 Tandem queue with m flows and n servers. 37

Figure 4.3 Sink tree reduction 37

Figure 4.4 Sink tree with 3 flows and 2 servers. 38

Figure 4.5 Delay violation probability for the two-server sink tree
and different t. 44

Figure 4.6 Comparison between delay violation probabilities using
SFA and PMOO (sink tree). 45

Figure 4.7 Parameter sensitivity of fractional Brownian motion on
the delay bounds using PMOO (sink tree). 46

Figure 4.8 Delay violation probability for different lengths using
PMOO. 47

Figure 4.9 Comparison between delay violation probabilities for
independent and dependent cross-flows using PMOO
(sink tree). 47

Figure 4.10 Delay bound comparison for three servers with increas-
ing degree of dependence. 48

Figure 5.1 Overlapping tandem 51

xi

[August 8, 2022 at 15:04 –]

list of figures xii

Figure 5.2 Stochastic delay bounds: Simulation results and SNC
bounds (for traffic with exponentially distributed incre-
ments and constant rate servers). For more details, see
Section 5.3. 51

Figure 5.3 The L 53

Figure 5.4 Overlapping tandem 56

Figure 5.5 Stochastic delay bounds and simulation results for the
overlapping tandem with constant rate servers and rates
C1 = 2.5, C2 = 3.0, and C3 = 2.0. 58

Figure 5.6 Extended overlapping tandem 58

Figure 5.7 Stochastic delay bounds for the extended overlapping
tandem under constant rate servers with rates Ci = 2.0
for i = 1, . . . , 13. 59

Figure 5.8 Tree network 60

Figure 5.9 Stochastic delay bounds and simulation results for the
tree network with constant rate servers and rates Ci =

2.0, i = 1, . . . , 4. 61

Figure 6.1 Diamond network 65

Figure 6.2 The L 67

Figure 6.3 Stochastic delay bounds for the diamond network (λ1 =

7.4, λ2 = 7.7, λ3 = 6.3, C1 = 0.6, C2 = C3 = 5.5, C4 =

1.5). 68

Figure 6.4 Stochastic delay bounds for the L (λ1 = 2.8, λ2 = 3.4, λ3 =

5.1, C1 = 1.1, C2 = 7.7, C3 = 6.6). 69

Figure 7.1 Full binary sink tree with seven nodes. 72

Figure 7.2 One server topology. 74

Figure 7.3 Two-server topology. 76

Figure 7.4 Stochastic delay bounds and simulation results in the
two-server setting with constant rate servers. 77

Figure 7.5 Fat tree topology. 79

Figure 7.6 Delay bound improvement for different numbers of
servers (delta time = 8). 79

Figure 7.7 Computation time comparison for the state-of-the-art
and power-mitigator approach. 80

Figure 9.1 Simulation results, Martingale bounds, and SNC bounds
on the delay’s violation probability (for continuous-time
MMOO arrivals). 90

Figure 9.2 Stochastic delay bounds for a violation probability of
10−6 under independent arrivals. 98

Figure 9.3 Stochastic delay bounds for a violation probability of
10−6 under independent arrivals (RPPS). 100

Figure 9.4 Stochastic delay bounds for a utilization = 0.65 under
independent arrivals. 100

Figure 9.5 Stochastic delay bounds for a violation probability of
10−6 under general arrivals. 101

Figure B.1 Delay violation probability for the two-server tandem
queue and different t. 114

Figure B.2 Comparison between delay violation probabilities using
SFA and PMOO (tandem queue). 114

[August 8, 2022 at 15:04 –]

list of figures xiii

Figure B.3 Parameter sensitivity of fractional Brownian motion on
the delay bounds (tandem queue). 115

Figure B.4 Comparison between delay violation probabilities for
independent and dependent cross-flows using PMOO
(tandem queue). 115

[August 8, 2022 at 15:04 –]

L I S T O F TA B L E S

Table 4.1 Comparison between runtimes [s] using SFA and PMOO
(sink tree). 45

Table 5.1 Runtimes [s] for the extended overlapping tandem (ex-
ponential distribution). 60

Table 7.1 Improvement of the delay’s violation probability for the
two-server setting and delay = 10 (above: uniform sam-
pling, below: exponential sampling). 78

xiv

[August 8, 2022 at 15:04 –]

A C R O N Y M S

iid independent and identically distributed

CDF cumulative distribution function

DNC deterministic network calculus

DRR deficit round robin

e2e end-to-end

EBB exponentially bounded burstiness

EDF earliest deadline first

fBm fractional Brownian motion

fGn fractional Gaussian noise

FIFO first-in first-out

foi flow of interest

GPS generalized processor sharing

HP high priority

LP low priority

LRD long-range dependence

MGF moment-generating function

MMOO Markov-modulated On-Off

MMP Markov-modulated process

ND negatively (orthant) dependent

NSC network service curve

PBOO pay bursts only once

PMOO pay multiplexing only once

PSOO pay segregation only once

RPPS rate proportional processor sharing

seqPMOO sequential pay multiplexing only once

seqSFA sequential separated flow analysis

SDF shortest-to-destination first

SFA separated flow analysis

SNC stochastic network calculus

SP static priority

TFA total flow analysis

xv

[August 8, 2022 at 15:04 –]

Part I

I N T R O D U C T I O N A N D N E T W O R K C A L C U L U S
B A C K G R O U N D

[August 8, 2022 at 15:04 –]

1
I N T R O D U C T I O N

1.1 a need for a stochastic end-to-end analysis

Communication networks play a vital role in many of our daily activities.
We rely heavily on the fact that we can obtain information or interact with
our environment through Internet services in a short amount of time. In fact,
an increasing number of applications require certain types of performance
guarantee of a queueing system, e.g., to ensure safety criticality. By queueing
system, we mean “any system in which arrivals place demands upon a finite-
capacity resource“ [Kle75, p. vii]. See, e.g., Internet at the speed of light [Sin+14],
Tactile Internet [Fet14], Internet of Things [WADX15], or the envisioned cyber-
physical systems [Raj+10].

Historically, this type of performance analysis was conducted with the help
of queueing theory. It originated in the analysis of circuit-switched telephone
networks at the beginning of the 20th century [Erl09, Erl17] and was later widely
applied to packet-switched networks [HB13]. It basically consists of deriving
the backlog or delay distribution based on assumptions on the arrival process,
service distribution, and on the scheduling. A significant contribution can be
found in the field of product-form networks, where, e.g., the queue distribution in
the entire network can be described by the product of the queue distributions
of each single system [Jac57, Jac63, Bas+75, Kel75, Kel76]. Yet, despite the
advances made in the longer as well as in the recent past, the analysis of
queueing networks is “largely constrained by the technical assumption of
Poisson arrivals” [CS12]. Even though this type of queueing system still finds
many applications, when it comes to Internet traffic however, it is considered
impractical as self-similarity and long-range dependence have been observed
to be ubiquitous [Lel+94, PF95, Wil+97, CB97, Fel+99].

1.2 the stochastic network calculus framework

(The) stochastic network calculus (SNC) is an alternative approach that avoids
the problem of obtaining exact results by computing per-flow performance bounds
of the form P(backlog > B) ≤ ε or P(delay > T) ≤ ε instead, where ε is a small
value, e.g., 10−6. It originated in the seminal work of Rene L. Cruz [Cru91a,
Cru91b] in the early 1990s and was developed to derive nonprobabilistic bounds
assuming worst-case arrival constraints and minimum service guarantees. His
work was later supplemented by the min-plus algebra [Bac+92] and is called
today the deterministic network calculus (DNC) [Cha00, LT01, Lie17, BBC18].
Shortly afterwards, stochastic extensions were introduced that were able to
capture the statistical multiplexing gain [Kur92, YS93, Cha94].

The SNC basically consists of two branches: One that is based on moment-
generating functions (MGFs) and one that employs envelope functions / tail
bounds. The former assumes bounds on the MGF of the involved arrival and

2

[August 8, 2022 at 15:04 –]

1.2 the stochastic network calculus framework 3

service processes [Cha00, Fid06] and can be seen as a successor of the effective
bandwidth theory [Kel91, Kel96]. The latter, on the other hand, can be interpreted
as a direct stochastic relaxation of deterministic guarantees [Cru96, CBL06, JL08].
While more processes can be modeled with tail bounds, under the assumption
of independence of all processes, [RF11, RF12b] comes to the conclusion that
the MGF-based SNC leads to tighter delay bounds.

Two features of SNC (both branches) have been identified as key to overcome
the “technical barriers of queueing networks” [CS12]:

• Scheduling abstraction: Specific properties of schedulers are “abstracted
away” by a function called leftover service. It allows even for the analysis
of arbitrary multiplexing [SZF08], i.e., we can give performance guarantees
without specifying a specific scheduling algorithm;

• Convolution-form networks: The end-to-end (e2e) analysis can be simplified
by convolving the service processes across all servers to a single end-to-
end service.

Apart from these key aspects, a list of features is responsible for enabling a
uniform framework:

• Instead of focusing on the Poisson arrival model as in queueing theory,
often arrival classes such as (σ, ρ)-constrained arrival [Cha00] or exponen-
tially bounded burstiness (EBB) [YS93] are considered. Since many arrival
processes belong to these classes, they can be interchanged effortlessly.

• In combination with the above scheduling abstraction, where we change
the scheduling by simply inserting a different leftover service function,
SNC (actually network calculus in general) yields a high level of modular-
ization. In other words, arrival distributions and scheduling algorithms
are reduced to components of a toolbox that we combine to create whole
network topologies. This is a central implication of separating arrival and
service processes.

• In order to calculate bounds on backlog or delay, we need to make
statements about sample-path events. Both branches of SNC share the
application of the Union bound to evaluate this type of event:

P
(

max
i=1,...,n

Xi > x
)
≤

n

∑
i=1

P(Xi > x) .

In contrast to other inequalities on sample-path events (e.g, Doob’s martin-
gale inequality [Doo53, Theorem 3.2]) it does not come with any restrictive
assumptions.

As a consequence of this uniform framework, SNC comes with a non-
negligible price of a gap between exact results (that we try to quantify with
simulations) and calculated bounds. In fact, there also exists a tight analysis
for the single-node case for some traffic classes based on martingale techniques
[CPS14, PC14, PC15, CPS16, CP18]; yet, an end-to-end martingale analysis
remains an elusive goal.

[August 8, 2022 at 15:04 –]

1.3 state-of-the-art : the canonical tandem 4

Figure 1.1: Canonical tandem

1.3 state-of-the-art : the canonical tandem

At the beginning of Section 1.2, we already noted that SNC provides per-flow
performance bounds. We call the flow for which we calculate bounds the flow
of interest (foi). State-of-the-art results in SNC mostly focused on topologies
where the foi traverses the “canonical tandem” in Figure 1.1, e.g., as in [CBL06,
Fid06]. For the MGF-based analysis, this has the important advantage that, if
all arrivals are initially assumed to be independent, this independence remains
since all cross-flows immediately exit the network. While this makes a network
analysis quite tractable, it is a very limiting assumption. Thus, in order to make
progress in the end-to-end analysis, the SNC has to go beyond the canonical
tandem. On the other hand, for a topology as in Figure 1.2, the outputs of
the two flows depend on each other after sharing the resources at server S1.
For the state-of-the-art analysis in SNC (the so-called separated flow analysis),
we have to consider dependencies. We call this dependence method-pertinent.
Typically, one deals with the dependence of two arrival process A1 and A2 by
the invocation of Hölder’s inequality:

E
[
eθ(A1(s,t)+A2(s,t))

]
≤ E

[
epθA1(s,t)

] 1
p

E
[
eqθA2(s,t)

] 1
q

, for all 0 ≤ s ≤ t,

where 1
p +

1
q = 1 and p, q > 1 (in other words, p and q are Hölder conjugates of

each other). It often leads to conservative bounds and requires the optimiza-
tion of an additional parameter for each application. While the runtimes of
optimizing parameters have not been a focus of SNC literature, it is obvious
that they could possibly explode if all dependencies in a complex network are
bounded by Hölder’s inequality. However, non-nested interference structures
are typical when considering topologies of practical relevance. Therefore, it is
imperative to find a stochastic analysis that benefits from stochastic indepen-
dence but also comes with minimal method-pertinent dependencies. Otherwise,
the gap between (simulated) exact results and calculated bounds mentioned in
Section 1.2 above becomes larger the more dependencies occur. In the worst
case, this means that we cannot provide reasonable performance bounds at all.

In the DNC, different analysis methods have been proposed and evaluated,
such as total flow analysis (TFA), separated flow analysis (SFA), or pay multi-
plexing only one (PMOO) analysis [Fid03, SZ06, SZM06, Bou+08] by considering
different combinations of the two key features, leftover service (scheduling
abstraction) and convolution. While the TFA consists of an additive result
for the end-to-end performance, the latter two, SFA and PMOO, calculate via
convolution the end-to-end service that contains the information of the whole
network topology. These algorithms can be interpreted as an evolution that
makes the transition from a local perspective to a global one. Moreover, it has
been shown that the PMOO analysis, by convolving first and calculating the

[August 8, 2022 at 15:04 –]

1.4 thesis statement and contributions 5

Figure 1.2: Two flows at two nodes in a tandem.

leftover service afterwards, one can further significantly improve the bounds1

compared to SFA. While some works already started to integrate the PMOO,
e.g., [ZBHB16], for the large majority of SNC research, the PMOO has not really
been a focus. In particular, it was not really investigated how method-pertinent
dependencies of processes impacts the MGF-based SNC in terms of bound
accuracy and runtimes.

Since we calculate per-flow performance bounds, as a consequence, any feed-
forward network can be transformed into a tandem from the foi’s perspective.
In DNC, this step has seen some advanced treatment recently [BNS17b] and
has been shown to result in bounds with a high degree of accuracy. Yet in SNC,
it has been largely neglected in the sense that no work beyond the standard
output bound calculation was invested.

The authors of [BS13, Bec16a] released the DISCO Stochastic Network Calculator,
the “first open-source tool to automate the steps of calculating MGF-based
performance bounds”. A strong and accessible tool support is of paramount
importance for a wide deployment of SNC in practice. However, this tool
shares the fate of the SNC with MGFs of struggling with method-pertinent
dependencies. Therefore, any progress on the algorithmic aspect of the network
analysis can only be of resounding success if accompanied by an according
software development.

The authors of [CPS13] show in the single server case, that bounds obtained
via martingale-based techniques provide tight performance bounds in com-
parison to simulations. However, this comes with the notable exception of
GPS; here, even the martingale bounds indicate a notable gap compared to
simulations. Yet, only a homogeneous case where all arrivals have the same
parameters is considered.

1.4 thesis statement and contributions

thesis statement : Reducing the gap between simulations and bounds in
the end-to-end analysis of more complex topologies while maintaining the uni-
form framework is the main challenge of the stochastic network calculus. A key
aspect in this reduction is how we deal with method-pertinent dependencies.

This thesis contributes to the SNC in several ways.

• We show that the PMOO analysis known from DNC cannot just sig-
nificantly improve end-to-end delay bounds, but allows us to consider
less method-pertinent dependencies. This is first presented for simple
tandems with nested interference structures and then extended to ar-
bitrary tree networks. This bound improvement is accompanied by a

1 However, there are some notable exceptions, see [SZF08].

[August 8, 2022 at 15:04 –]

1.5 thesis outline 6

reduced complexity that also leads a reduced number of parameters that
need to be optimized. This, in turn, can reduce runtimes by several orders
of magnitude depending on the used heuristic.

• We give a perspective on how these method-pertinent dependencies can
further be reduced for flows that directly or indirectly share the capacity
of a server. Even though we only give numerical evidence without a
rigorous proof, we show how the concept of negative dependence can be
used to obtain improved performance bounds.

• For the larger problem of end-to-end performance bounds of tree net-
works, we present a modification of the MGF output bound computation
that mitigates the effect of the Union bound, the so-called h-mitigators.
It is minimally invasive, as all existing results and procedures are still
applicable. While numerical evaluations indicate that the gain is, on av-
erage, rather moderate, it is much stronger in some cases and does not
impose any additional assumptions. It comes at the price of additional
parameters to optimize, yet can be scaled.

• We conduct extensive numerical evaluations to substantiate the claims
about the improvements. Moreover, we made a toolbox publicly available
that allows for implementing the calculation of end-to-end performance
bounds including the optimization. Subsequently, it can also be used to
replicate the above mentioned results.

• Apart from arbitrary multiplexing, we perform different stochastic analy-
ses of a popular fair scheduler, generalized processor sharing (GPS). We
provide stochastic delay bounds for the case of independent arrivals as
well as the general case. We give an overview of what can be considered
as state-of-the-art analysis in the SNC and substantiate this claim through
numerical evaluations.

1.5 thesis outline

The first part is about the necessary background. In Chapter 2, we start with
the DNC including the pay multiplexing only one (PMOO) analysis. Then, we
continue with a background on SNC presenting the state-of-the-art analysis in
Chapter 3. Since the thesis is almost exclusively based on SNC with MGFs, we
only cover the MGF part and present the SNC with tail bound only as we need
it. This chapter includes a modular analysis, where all network operations are
presented as separated modules that can be applied sequentially, and direct
end-to-end bounds that are able to avoid some sequencing penalties.

In the second part, we show how one can deal with dependence in a network.
In Chapter 4, we show how the PMOO property can be applied to topologies
with nested interference, tandem queues and sink trees. Here, we focus on
time-dependent bounds that are numerically evaluated under the fractional
Brownian motion (fBm) arrival model that is shown to capture the self-similar
property of Internet traffic. Chapter 5 then extends the PMOO property to
arbitrary tree networks in the SNC. We use the concept of negative dependence
to improve performance bounds in Chapter 6.

[August 8, 2022 at 15:04 –]

1.5 thesis outline 7

The third part is about specific challenges of the end-to-end analysis. Chap-
ter 7 shows how the effect of the Union bound can be mitigated when computing
MGF-output bounds. Last but not least, we discuss our toolbox that is used to
numerically evaluate our results in Chapter 8.

In the fourth part, we depart from the arbitrary multiplexing and conduct an
SNC analysis of generalized processor sharing (GPS) (Chapter 9). Chapter 10

concludes the thesis.
The last part contains all appendices of the single chapters.

[August 8, 2022 at 15:04 –]

2
D E T E R M I N I S T I C N E T W O R K C A L C U L U S B A C K G R O U N D

The SNC originates in the deterministic network calculus (DNC) and can be
interpreted as a stochastic extension. The DNC is a modern framework to
derive hard end-to-end performance guarantees, e.g., for the maximum backlog
or delay. These hard guarantees are necessary for a plethora of time-sensitive
applications, see, for example, the work on heterogeneous communication
systems (HCS) or Avionics Full-Duplex Switched Ethernet (AFDX) [FFG06,
Sup+10, BNF12]. We therefore introduce the typical DNC notation and results
as we use them.

We start off with the basic network model we assume throughout this thesis.

2.1 network model

We consider a basic queueing system as in Figure 2.1. Data arriving at some
service element (mostly called servers) are abstracted as arrivals processes. If
the system contains multiple servers, we call the arrival information together
with its path a flow.

We consider two types of arrival processes of a flow, discrete-time or continuous-
time. A discrete-time (cumulative) arrival process A(t) : N → R+ is defined as a
sum of nonnegative measurable random variables ai ≥ 0 :

A(t) :=
t

∑
i=1

ai. (2.1)

The ai are called increments. On the other hand, a continuous-time (cumulative)
arrival process A(t) : R → R+ is defined as the respective integral over a
nonnegative stochastic process a(x) ≥ 0 :

A(t) :=
∫ t

0
a(x)dx. (2.2)

Regardless of whether we consider discrete or continuous time, we assume that
A(t) = 0 for all t ≤ 0. If time and space are continuous, it is often called fluid
model. If not stated otherwise, we assume arrival processes to be discrete in
time and continuous in space. Furthermore, the data unit is taken to be as one
bit. A queueing model where the arrivals have an index t representing time is
also called time domain model. We define the (cumulative) arrivals over a time
interval as

A(s, t) := A(t)− A(s),

and the according (cumulative) departure process as

D(s, t) := D(t)− D(s).

Let A be an arrival process and D a departure process of the same sample
path. For these processes, causality holds:

D(t) ≤ A(t), ∀t ≥ 0. (2.3)

8

[August 8, 2022 at 15:04 –]

2.1 network model 9

Figure 2.1: Basic queueing system with cumulative arrival process A and cumulative
departure process D.

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

Time [s]

A
rr

iv
al

s
/ D

ep
ar

tu
re

s
[B

its
]

Arrivals

Departures

Backlog

Delay

Figure 2.2: Backlog and virtual delay for an arbitrary arrival and departure process.

We define the difference of arrivals and departures to be the backlog (process)
q(t) at time t ≥ 0 :

q(t) := A(t)− D(t). (2.4)

By causality (Eqn. (2.3)), it holds that q(t) ≥ 0. Buffer sizes are always assumed
to be infinite1. Therefore, throughout this thesis, we assume a lossless system
and that no data is created by the server itself. If not stated otherwise, time
is assumed to be discrete. Anticipating some results of the network calculus
framework, one can already establish basic queueing dynamics for a constant
rate server with rate C ≥ 0 based on Lindley’s equation [Lin52], [Cha00, p. 7]:

q(t) = [q(t − 1) + a(t)− C]+ , (2.5)

under the initial condition q(0) = 0. In simple terms, it intuitively states that
the backlog at time t is the backlog of the previous time slot plus new arrivals
minus the server rate while maintaining nonnegativity. This recursion can be
solved inductively and its explicit solution, also known as Reich’s equation, is

q(t) = max
0≤s≤t

{A(s, t)− C · (t − s)} . (2.6)

For the output, this yields

D(t)
(2.4)
= A(t)− q(t)

(2.6)
= min

0≤s≤t
{A(s) + C(t − s)} . (2.7)

We see later that the network calculus’s concept of a service curve can be
interpreted as a generalization of Eqn. (2.7).

The virtual delay at time t ≥ 0 is defined as

d(t) := inf {s ≥ 0 : A(t) ≤ D(t + s)} . (2.8)

1 Even though most network calculus literature assumes buffers to be infinite, there also exist
some results for queueing systems with loss [CL93, Liu93, GFC12, CPR19].

[August 8, 2022 at 15:04 –]

2.2 min-plus algebra 10

It is the time it takes for the departures to “catch up” with the arrivals. If the
arrivals are served in first-in first-out (FIFO) order, the d(t) can be interpreted
as the delay of a hypothetical bit entering the system at time t. Throughout this
thesis, we assume that no reordering inside of a flow occurs (FIFO per-flow or
locally-FIFO). Even though data packet delays and the virtual delay in Eqn. (2.8)
are not necessarily equal (packet delays, in contrast to the virtual delay, are
always > 0), it has been shown numerically that the difference between the two
quantities is negligible [Ciu07, pp. 109].

2.2 min-plus algebra

Network calculus is a system-theoretic framework that employs the min-plus
algebra [Bac+92]. It facilitates an elegant computation in terms of an end-to-end
analysis. In linear system theory, a key operation is the convolution of two
functions:

f ∗ g(t) :=
∫ ∞

−∞
f (t − s)g(s)ds. (2.9)

In min-plus algebra the conventional operations (+, ·) are replaced by (∧,+):

Definition 2.1 (Min-Plus Convolution). Let x and y be nonnegative, increasing
functions such that x(t) = y(t) = 0 for all t < 0. The (univariate) min-plus
convolution of x and y is defined for t ≥ 0 as

x ⊗ y (t) := inf
0≤s≤t

{x(t − s) + y(s)} . (2.10)

For t < 0, we define x ⊗ y (t) := 0.

The class of functions being 0 for negative t and nondecreasing otherwise is
sometimes called wide-sense increasing [LT01, p. 111].

Basic systems theory characterizes the input-output property of so-called
time-invariant linear systems [LT01, pp. xiv], [Fid10]. Assuming that input signals
A and output signals D are given, time-invariance means that a time-shifted ver-
sion of an input signal A(t − s) results in an accordingly shifted but otherwise
identical output output signal D(t − s).

The system is linear, if any linear combination of input signals c1A1 + c2A2,
where c1, c2 are some constants, results in a corresponding output signal c1D1 +

c2D2.
In systems theory, there exists a fundamental result stating that a system is

time-invariant and linear iff (if and only if) the output signal of the system is
given as

D(t) =
∫ ∞

−∞
A(s) · S(t − s)ds = A ∗ S(t), (2.11)

where ∗ is the conventional convolution operator (see Eqn. (2.9)) and S(t) is the
system response to the Dirac unity impulse [Fid10].

One can show that the min-plus convolution is a linear operator on the
min-plus algebra under a certain condition (see, e.g., [CO96], [LT01, pp. 111]).
In fact, we see in the next section (Section 2.3), that this condition is an exact
service curve (Definition 2.5 below), a property very similar to Eqn. (2.11), but
using the min-plus convolution instead.

[August 8, 2022 at 15:04 –]

2.3 arrival and service curves 11

We see in Section 2.5 that the min-plus algebra also allows for an elegant
framework to derive end-to-end performance guarantees. According to [Cha00,
pp. 102], the idea of applying min-plus algebra in the network calculus has
been developed simultaneously in [Cha97, CO96, AR96, Le 98].

Another key operation in network calculus in the deconvolution.

Definition 2.2 (Min-Plus Deconvolution). Let x and y be nonnegative, increasing
functions R → R+ ∪ {+∞} such that x(t) = y(t) = 0 for all t < 0. The
(univariate) min-plus deconvolution of x and y is defined as

x ⊘ y (t) := sup
u≥0

{x(t + u)− y(u)} . (2.12)

Note that the deconvolution is not defined for x = y = +∞.

2.3 arrival and service curves

DNC provides worst-case performance bounds under arrival constraints and
service guarantees. We start this section with the arrival constraints.

Arrival curves / envelopes

The seminal work by Cruz [Cru91a, Cru91b] marks a paradigm shift in the
performance analysis of communication network as it is “nonprobabilistic”.
Instead, traffic specifications are limited to some regulatory constraints for all
time intervals.

Let α : R → R+ ∪ {∞} be a nonnegative, increasing function such that
α(t) = 0 for all t < 0.

Definition 2.3 (Arrival Curve). We say that α is an arrival curve (or envelope) for
an arrival process A if for all s ≤ t

A(s, t) ≤ α(t − s). (2.13)

Equivalently, we can write for all t

A(t) ≤ inf
0≤s≤t

{A(s) + α(t − s)} = A ⊗ α (t).

If we have α(0) = 0, one can even show that A = A ⊗ α [Agr+99]. Another
equivalent definition of an arrival curve is

supu≥0 {A(t + u)− A(u)} ≤ α(t)

⇔ A ⊘ A ≤ α.

It is crucial that α is a univariate function. In other words, it only depends on
the difference of s and t, but not on the absolute values. An important example
of an arrival curve is the leaky bucket / token bucket arrival curve [Cru91a, Cru91b],
which is defined in discrete time as

α(t) = γr,b := σ + ρ · t, (2.14)

where σ, ρ ∈ R+. We interpret σ as the (instantaneous) burst of the arrivals,
whereas ρ is the long-term average rate.

[August 8, 2022 at 15:04 –]

2.3 arrival and service curves 12

For an aggregate of arrivals, e.g., this is necessary when we multiplex flows,
A(t) = ∑n

i=1 Ai, where each Ai has an according arrival curve αi. It holds that

A(s, t) ≤
n

∑
i=1

αi(t − s), for all 0 ≤ s ≤ t.

This means for the special case of a leaky bucket arrival curve that A(s, t) ≤
σ + ρ(t − s), where σ = ∑n

i=1 σi and ρ = ∑n
i=1 ρi. The aggregate of two arrival

curves α1 and α2 is sometimes denoted by α1 ⊕ α2.

Service curves

As we already hinted at in Section 2.2, service curves play a major role in the net-
work calculus’s interpretation of a min-plus linear system. They enable two key
features we discussed in Chapter 1: Scheduling abstraction and convolution-form
networks. The modeling capability is sometimes emphasized in the literature
by using the term network element, as it is not limited to servers in the sense
of network devices. We start off with an intuitive definition and consider a
generalization afterwards. Yet before, we define the start of a backlogged period
before t as

s0 := sup {s ≤ t | A(s) = D(s)} . (2.15)

Note that, such an s0 always exists (A(0) = D(0) = 0) and if the system is idle
at t, then s0 = t.

Definition 2.4 (Strict Service Curve [CO96]). A server is said to offer a strict
service curve β to a flow if, during any (continuously) backlogged period [s, t),
the departures of this flow in the system is at least equal to β(t − s), that is,

D(s, t) ≥ β(t − s). (2.16)

The notion of a strict service curve plays an important role in the scheduling
abstraction, as many mathematical derivations require a strict service curve in
order to derive per-flow guarantees.

However, the strict service curve property cannot be preserved when consid-
ering the convolution of strict service curves (we discuss this later in this section
in more detail). Therefore, a generalization with a stronger modeling capability
in the form of service curves is necessary. It originates in the work of [PG93,
PG94] and is later formalized in [Cru95, SCP95]. For the sake of conciseness,
we introduce F0 to be the set of real-valued, nonnegative, increasing functions
with f (t) = 0:

F0 :=
{

f : R → R+ ∪ {+∞} | ∀s ≤ t : 0 ≤ f (s) ≤ f (t), f (0) = 0
}

,

where R+ = [0, ∞).

Definition 2.5 (Service Curve). Consider a server and a flow with according
arrival process A and departure process D. The server offers a (minimum) service
curve β to A if β ∈ F0 and for all t ∈ R

D(t) ≥ A ⊗ β (t) = inf
0≤s≤t

{A(t − s) + β(s)} . (2.17)

The service curve is called exact, if Eqn. (2.17) holds with equality.

[August 8, 2022 at 15:04 –]

2.4 single-node performance bounds 13

One can easily show that, if a server offers a strict service curve β to a flow
such that β is a nonnegative, increasing function with β(0) = 0, then β is also
a service curve. Yet, the opposite is not true in general (counterexamples are
reported in, e.g., [Fid10] and [LT01, p. 177]).

A typical example of a service curve is the rate-latency server curve [LT01, p.
106]:

β(t) = βR,T(t) := R · [t − T]+ =

{
R(t − T), if t > T

0, otherwise.
(2.18)

For a detailed discussion on service curves, see [LT01, BJT09, Sch+11, Bou14,
BBC18].

2.4 single-node performance bounds

The network calculus framework is able to derive deterministic bounds for
backlog, delay, and output. While the focus on single-node bounds appears
limiting at first, it is actually the core of the performance analysis. The reason
is that the scheduling abstraction as well as the convolution property [CS12]
enable us to reduce the performance analysis of any feed-forward network to
the single-node case.

Theorem 2.6 (DNC Performance Bounds). Assume an arrival process A traversing
a server S . Further, let the arrivals be constrained by arrival curve α and let the system
offer a service curve β.

1. The backlog q(t) satisfies for all t

q(t) ≤ sup
s≥0

{α(s)− β(s)} = α ⊘ β (0). (2.19)

2. The virtual delay d(t) satisfies for all t

d(t) ≤ inf

{
τ ≥ 0 | sup

t≥0
{α(t)− β(t + d)} ≤ 0

}
= inf {τ ≥ 0 | α ⊘ β (−τ) ≤ 0}
= sup

s≥0
{inf {τ ≥ 0 | α(s) ≤ β(s + τ)}} .

(2.20)

3. The departures of the flow, D, satisfies for all t

D(s, t) ≤ α ⊘ β (t − s) =: α′(t − s). (2.21)

Note that in Eqn. (2.20), the deconvolution from the second line does not
follow directly from the first line but can be derived separately. Similarly,
the third line requires another derivation, too. Proofs of Theorem 2.6 can be
found in [Cha00, pp. 42] (for the discrete-time case) or in [LT01, pp. 22] (for
left-continuous processes). The bounds are tight meaning that one can create
sample paths (“greedy / lazy scenario”) such that they hold with equality [LT01,
pp. 27]. In the case of token bucket envelopes α(t) = σ + ρt and rate-latency
servers β(t) = βR,T(t) = R [t − T]+, Theorem 2.6 yields under the stability
condition

r ≤ R (2.22)

[August 8, 2022 at 15:04 –]

2.5 end-to-end analysis and pay burst only once principle 14

Figure 2.3: Two flows at one node with service curve β.

that

q(t) ≤ σ, (2.23)

d(t) ≤ σ

R
+ T, (2.24)

D(s, t) ≤ σ + ρT + ρ(t − s). (2.25)

2.5 end-to-end analysis and pay burst only once principle

We start by considering the case of multiple flows arriving at one server
(depicted in Figure 2.3). Since network calculus offers per-flow performance
bounds, we have to select one that is subject of our analysis, the flow of
interest (foi). In addition, the scheduling of the flows has to be considered. A
large number of schedulers can be modeled with the help of (strict) service
curves. For example, static priority (SP) [Cha00, pp. 60], [LT01, p. 20], [Sch03],
[LBL07], [BBC18, pp. 170], FIFO [Cru98], [LT01, p. 177], generalized processor
sharing (GPS) [PG93], [PG94], [Cha00, p. 67], [LBL07], [BL18], [BBC18, p. 171],
or earliest deadline first (EDF) [LBL07], [LGFB11], to name a few.

The usage of bounds enables us to provide service guarantees without
assuming a specific order in which flows or traffic is served. This model is
referred to as arbitrary multiplexing or blind multiplexing [LT01, p. 20], [SZF08],
or [BBC18, pp. 156].

Theorem 2.7 (Leftover Service Curve for Arbitrary Multiplexing). Let t ≥ 0.
Consider a server that arbitrarily multiplexes two flows f1 and f2, where the arrivals
of f2, A2, are constrained by α2. Further, assume that the server guarantees a strict
service curve β to the aggregate of the flows. Then, the leftover service

β1
l.o.(t) := β1(t) := [β(t)− α2(t)]

+ (2.26)

is a service curve for flow f1 if β1 ∈ F0. This is also denoted by β1 = β ⊖ α2.

Proof. Let t0 be the start of the backlogged period before t as in Eqn. (2.15). By
assumption, it holds that D1(t0) = A1(t0) and D2(t0) = A2(t0). Since β is a
strict service curve for the aggregate, we have that

D1(t) + D2(t)− D1(t0)− D2(t0) ≥ β(t − t0).

which yields

D1(t) ≥ D1(t0)︸ ︷︷ ︸
=A1(t0)

+β(t − t0) + D2(t0)︸ ︷︷ ︸
A2(t0)

−D2(t)

= A1(t0) + β(t − t0) + A2(t0)− D2(t).

[August 8, 2022 at 15:04 –]

2.5 end-to-end analysis and pay burst only once principle 15

Further, since we assumed that that A2 has arrival curve α2, we conclude that

D2(t)− A2(t0)
(2.3)
≤ A2(t)− A2(t0)

(2.13)
≤ α2(t − t0).

This yields that

D1(t) ≥ A1(t0) + β(t − t0)− α2(t − t0).

On the other hand, we know since D1 is increasing that

D1(t) ≥ D1(t0) = A1(t0).

Combining both inequalities gives

D1(t) ≥ A1(t0) + [β(t − t0)− α2(t − t0)]
+

≥ inf
0≤s≤t

{
A1(s) + [β(t − s)− α2(t − s)]+

}
= A1 ⊗ [β − α2]

+ (t)

which proves the theorem.

If not stated otherwise, we always derive performance bounds under arbitrary
scheduling. Note that β needs to be a strict service curve. For minimum service
curves, counterexamples can be constructed (see, e.g., [LT01, p. 177], or [BBC18,
p. 158]). In case [β(t)− α2(t)]

+ is not a nonnegative, increasing function, leftover
service curves can still be obtained with the help of the nonnegative and
increasing closure [BBC18, p. 45].

If we have arrivals with token bucket arrival curve α2(t) = σ2 + ρ2(t) and
rate-latency service curve β(t) = βR,T(t), we obtain for ρ2 < R that

β1(t) = [β(t)− α2(t)]
+ = βR−ρ2,T+ σ2+ρ2T

R−ρ2

, (2.27)

which is also in F0.
Theorem 2.7 can easily be generalized to m − 1 cross-flows as long as all fi

are constrained by αi, i = 2, . . . , m:

β1(t) =

[
β(t)−

m

∑
j=2

αj(t)

]+
.

Furthermore, if the leftover service curve needs to be strict again, for example,
when considering hierarchical scheduling, one could subtract the output bound
(Eqn. (2.21)) of the cross flow instead (see [BBC18, pp. 159]).

Theorem 2.7 shows how to convert a multiple flows - single server scenario
to the basic single flow - single server by the use of the leftover service curve.

Next, we discuss the case of a single flow with multiple servers in a tandem
(Figure 2.4) and how it can be analyzed with the concatenation theorem. The
combination of leftover service curve, Concatenation Theorem (Theorem 2.8
below), and output bound then facilitate an end-to-end analysis of feedforward
networks.

[August 8, 2022 at 15:04 –]

2.5 end-to-end analysis and pay burst only once principle 16

Figure 2.4: One flow at two nodes in a tandem with service curves β1 and β2.

Theorem 2.8 (Concatenation Theorem). Assume a flow with arrival process Asys =

A1 traverses the servers S1 and S2 in sequence which offer service curves β1 and β2,
respectively (see Figure 2.4). Let D1 = A2 be the output of S1 / the input to S2. Then,
the concatenation of the two servers offers a service curve of βe2e = β1 ⊗ β2 to the
arrival process.

The proof is actually a simple consequence of the service curve property com-
bined with the associativity and closure under F0 of the min-plus convolution
[Cha00, pp. 41], [LT01, pp. 28]:

Dsys(t) = D2(t)

≥ A2 ⊗ β2 (t)

= D1 ⊗ β2 (t)

≥ (A1 ⊗ β1)⊗ β2 (t)

= A1 ⊗ (β1 ⊗ β2) (t)

= Asys ⊗ βe2e (t)

for all t ≥ 0.
Similar to Theorem 2.7, we can easily extend the result to n servers in a

tandem:

βe2e = β1 ⊗ β2 ⊗ · · · ⊗ βn =:
n⊗

j=1

β j. (2.28)

Due to the associativity of the convolution operation [LT01, pp. 111], Eqn. (2.28)
is well defined. In the case of rate-latency servers, one can easily show that

βR1,T1 ⊗ βR2,T2 (t) = βmin{R1,R2},T1+T2
. (2.29)

In other words, the latencies add up while the rate is reduced to the minimum
of all rates.

We remark that only (minimum) service curves are necessary for the Con-
catenation Theorem. Yet, even if we assume both service curves to be strict, the
convolution of both is not necessarily strict anymore. Examples are constructed
in [SGM08, Example 2] or [BJT09, Theorem 3].

Note that we could derive performance bounds for a tandem of servers
without Theorem 2.8 by simply computing the output bound in Eqn. (2.21).
Yet, one can easily show that the resulting delay bound scales significantly
worse in the number of servers. Let us assume that we have a flow with arrival
constrained by a token bucket envelope α(t) = σ + ρt that traverses a tandem
of m servers with equal rate-latency service curve β(t) = βR,T(t).

1. We start with the “hop-by-hop” analysis, also called the total flow analysis
(TFA) [Cru91b, SZ06]. One can easily show that for a token bucket arrival

[August 8, 2022 at 15:04 –]

2.6 pay multiplexing only once principle and state of the art 17

curve and a rate latency server, the output envelope (which is equal to
the input envelope of the next server) is

α2(t) = α′
1(t)

(2.21)
= α1 ⊘ βR,T (t) = σ + ρT + ρt, ∀t.

In other words, we observe a burstiness increase of ρT. Repeating the
computation gives us for the envelope at the last server for all t ≥ 0

αn(t) = α′
n−1(t)

= αn−1 ⊘ βR,T (t)
...

= ((α1 ⊘ βR,T)⊘ · · · ⊘ βR,T)⊘ βR,T(t)

= σ + (n − 1) · ρT + ρ · t.

At each server j, we obtain a delay bound

dj(t)
(2.20)
≤ inf

{
τ ≥ 0 | αj ⊘ βR,T (−τ) ≤ 0

} (2.24)
=

σ + (j − 1)ρT
R

+ T.

This results in the additive delay bound

d(t) ≤ dTFA =
n

∑
j=1

(
σ + (j − 1) · ρT

R
+ T

)
= n · σ

R
+ nT +

ρT
2R

n(n − 1).

In other words, the delay bound increases quadratically in the number of
servers

(
O(n2)

)
.

2. We compare the “hop-by-hop” result with the delay bound based on the
Concatenation Theorem (Theorem 2.8). It is also known as the separated
flow analysis (SFA) [SZF08]. Here, we have

βe2e(t)
(2.28)
=

n⊗
j=1

β j(t)
(2.29)
= βR,nT(t)

and this leads to the delay bound

d(t) ≤ dSFA (2.20)
= inf {τ ≥ 0 | α1 ⊘ βR,nT (−τ) ≤ 0} (2.24)

=
σ

R
+ nT.

First, we note the delay bound bound using Theorem 2.8 scales linearly in
the number of servers (O(n)) . Second, we observe that the burst σ only
has to be “paid” once, in contrast to the additive delay bound where we
must do it n times. This phenomenon is often called the pay bursts only
once (PBOO) property.

2.6 pay multiplexing only once principle and state of the art

In the following, we discuss some caveats of the SFA and possible solutions. Let
us consider the topology in Figure 2.5. We assume two flows f1 and f2 with
respective arrival curves α1 and α2 and two servers offering strict service curves
to the arriving aggregate. For this tandem, it has been shown that SFA leads to

[August 8, 2022 at 15:04 –]

2.6 pay multiplexing only once principle and state of the art 18

Figure 2.5: Two flows with envelopes α1 and α2 at two nodes in a tandem with service
curves β1 and β2, respectively.

a tighter delay bound than TFA which is the reason why we omit the TFA in
the following [SZF08]. Here, the SFA basically follows the “first subtract, then
convolve”-rule. Hence, subtracting first yields the topology in Figure 2.6.

Figure 2.6: Subtract first

Note that we need the output bound (Eqn. (2.21)) of flow f2 to obtain the
leftover service curve β1

2 (the leftover service curve for flow f1 at the second
server). Now, we can use the Concatenation Theorem (Theorem 2.8) to end up
with Figure 2.7.

Figure 2.7: Application of SFA to the tandem network.

Let us assume that f1 and f2 have token bucket arrival curves αi(t) = σi +

ρit, i = 1, 2 and that both servers provide a strict rate-latency service curve βR,T.
Then, the SFA delay bound is [SZF08]

dSFA = 2T +
σ1 + 2σ2 + 3ρ2T

R − ρ
.

We notice that under SFA, even though ensuring the pay burst only principle,
we have the burst term σ2 twice. This additional term is therefore caused by
the multiplexing of flows. Yet, we can avoid this by convolving servers first
and subtracting cross-flows subsequently. This is known in the literature as
the pay multiplexing only once (PMOO) analysis [Fid03, SZ06, SZM08, Bou+08].
Application of the convolution in the first step yields the network in Figure 2.8.

Figure 2.8: Convolve first

Afterwards, we apply Theorem 2.7 to obtain a leftover service curve for flow
f1 (Figure 2.9).

[August 8, 2022 at 15:04 –]

2.6 pay multiplexing only once principle and state of the art 19

Figure 2.9: Application of PMOO to the tandem network.

If we assume again token bucket arrival curves and the same rate-latency
service curve, we receive

dPMOO = 2T +
σ1 + σ2 + 2ρ2T

R − ρ
.

Comparing both delay bounds, we find that the PMOO delay is tighter. More
importantly, we observe that the burst of flow f2, σ2, is paid only once in the
PMOO, a phenomenon that is eponymous for the analysis.

Given that the convolution of strict service curves in not strict in general
anymore, and that strict service curves are necessary to subtract cross-flows,
at first glance, it is surprising that the PMOO analysis is actually rigorous.
Yet, it has been shown that the bounds obtained via PMOO are, indeed, valid
[SZM08], [BJT09], [BBC18, pp. 236]. There are two variants of PMOO, one for a
nested interference and one for a overlapping interference.

PMOO for nested interference (sequential PMOO)

In simple terms, we say that one flow fi is nested into another flow f j, if all
servers fi consecutively crosses are also crossed by f j [Bon16]. We say that two
flows are not related if they do not share any servers along their paths. A tandem
has a nested interference pattern, if all flows are either nested or not related
[LMS07]. Figure 2.10 depicts a simple nested tandem with three servers. Here,
the order of operations of PMOO is uniquely defined: First, we convolve the
strict service curves β1 and β2, since they share the same cross-flows. Then, we
subtract the arrival curve α3 before convolving the result with the strict service
curve β3. Subtracting the arrival curve of f2 remains as a last step, resulting in
the leftover service curve

βPMOO
e2e =

[(
[(β1 ⊗ β2)− α3]

+ ⊗ β3

)
− α2

]+
.

Since all operators are applied sequentially, we also call this sequential pay
multiplexing only once (seqPMOO) and write β

seqPMOO
e2e .

Figure 2.10: Nested tandem

[August 8, 2022 at 15:04 –]

2.6 pay multiplexing only once principle and state of the art 20

For the sake of comparison, we also derive the SFA leftover service curve,
that is, we subtract cross-flows first before convolving the single leftover service
curves at each server:

βSFA
e2e =β1

1 ⊗ β1
2 ⊗ β1

3

= [β1 − α2 − α3]
+ ⊗

[
β2 − α′

2 − α′
3
]+ ⊗

[
β3 − α′′

2
]+

(2.21)
= [β1 − (α2 + α3)]

+ ⊗ [β2 − ((α2 + α3)⊘ β1)]
+

⊗
[
β3 −

(
(α2 ⊘ β2

1)⊘ β2
2
)]+

.

Note that the arbitrary multiplexing leftover service curve is directly connected
to a worst-case analysis in that if we do not assume any scheduling, we have
to identify the scenario that leads to the worst case. We can see this in the
third line: [β1 − (α2 + α3)]

+ and [β2 − ((α2 + α3)⊘ β1)]
+ basically indicate that

the cross-flows f2 and f3 are prioritized at these servers. We denote this by
f1 ≺ { f2, f3} . The leftover service curves for flow f2 remain to be computed.
In order to enforce the worst case at the second server, we assume that f2 ≺ f3

giving us
α2 ⊘ β2

1 = α2 ⊘ [β1 − α3]
+ .

The reason is that giving α2 only the leftover service (which is a result of the
priority assignment) only increases the output burstiness. This can easily be
seen if we assume token bucket arrival curves and rate-latency servers. We see
in Eqn. (2.27) that, once we apply the leftover operation, the leftover server rate
is decreased and the leftover latency is increased. In Eqn. (2.25), on the other
hand, under stability, the rate of the output envelope is equal to the rate of
the original envelope, yet, the burstiness in increased by ρT. In other words,
if we increase the latency, we increase the output burstiness. Continuing our
analysis, we notice that the worst-case priority assignment is the opposite for
β2

2 in
(
(α2 ⊘ β2

1)⊘ β2
2
)

, since, in order to enforce the worst case, we have to give
flow f2 priority (f3 ≺ f2) to see the highest output bound of flow f3 :

β2
2 =

[
β2 −

(
α3 ⊘ [β1 − α2]

+
)]+

.

Concluding, the dynamic priority assignment allows us to construct a valid worst-
case leftover service curve, but at the price of making contradicting priority
assumptions at different points in the analysis. The problem is called segregation
in the literature and an analysis that is able to avoid these contradicting priority
assignment has the pay segregation only once (PSOO) property [BS16]. Yet,
neither the SFA nor the PMOO analysis actually have this property.

PMOO for overlapping interference

Now, we consider a canonical example for the overlapping interference, the
“overlapping tandem”, in Figure 2.11. In contrast to the nested tandem, we do
not have any adjacent servers with equal interference structure. Let the flow fi
with arrival processes Ai have an arrival curve αi, i = 1, 2, 3. We assume that
each server j offers a strict service curve β j, j = 1, 2, 3. In order to obtain a
leftover service curve, one could subtract one cross-flow first. Since we have
two options, this leads to

β
seqPMOO,1
e2e =

[(
β1 ⊗ [β2 − α3]

+
)
− α2

]+
⊗ [β3 − α3 ⊘ β2]

+

[August 8, 2022 at 15:04 –]

2.6 pay multiplexing only once principle and state of the art 21

Figure 2.11: Overlapping tandem

and
β

seqPMOO,2
e2e = [β1 − α2]

+ ⊗
[(

[β2 − α2 ⊘ β1]
+ ⊗ β3

)
− α3

]+
.

However, in this case, we would have to pay multiplexing twice, so the seqP-
MOO analysis does not have the PMOO property in general.

Let us now consider an alternative approach in order to preserve this property.
It has been reported first in [SZM06, SZM08]. We choose t1, t2, t3 such that t − t3

is the start of the backlogged period (Eqn. (2.15)) of server 3, t − t2 − t3 is the
start of the backlogged period of server 2, and t − t1 − t2 − t3 is the start of the
backlogged period of server 1. Further, we denote the output of flow fi at server
j by Dj

i (for the output of the last server of a flow, we omit the superscript).
Following along the lines of the proof of Theorem 2.7, it holds that

D1(t) + D3(t)− D1(t − t3)− D3(t − t3) ≥ β3(t3),

D2
1(t − t3) + D2

2(t − t3) + D2
3(t − t3)

−D2
1(t − t2 − t3)− D2

2(t − t2 − t3)− A3(t − t2 − t3) ≥ β2(t2),

D1
1(t − t2 − t3) + D1

2(t − t2 − t3)− D1
1(t − t1 − t2 − t3)− D1

2(t − t1 − t2 − t3) ≥ β1(t1).

Since t − ∑1
k=j tj is the start of a backlogged period of server j, we have that

Dj
i

(
t − ∑1

k=j tj

)
= Aj

i

(
t − ∑1

k=j tj

)
, for j = 1, 2. This gives

D1(t) + D3(t)− D2
1(t − t3)− D2

3(t − t3) ≥ β3(t3),

D2
1(t − t3) + D2

2(t − t3) + D2
3(t − t3)

−D1
1(t − t2 − t3)− D1

2(t − t2 − t3)− A3(t − t2 − t3) ≥ β2(t2),

D1
1(t − t2 − t3) + D1

2(t − t2 − t3)− A1(t − t1 − t2 − t3)− A2(t − t1 − t2 − t3) ≥ β1(t1).

Summing all three inequalities and simplifying leads to

D1(t) + D2
2(t − t3)︸ ︷︷ ︸
≤A2(t−t3)

+ D3(t)︸ ︷︷ ︸
≤A3(t)

−A1(t − t1 − t2 − t3)− A2(t − t1 − t2 − t3)− A3(t − t2 − t3)

≥
3

∑
j=1

β j(tj).

Making use of causality (see also Eqn. (2.3)) and isolating D1(t) on the left-hand
side yields

D1(t) ≥ A1(t− t1 − t2 − t3)− A2(t− t1 − t2 − t3, t− t3)− A3(t− t2 − t3, t)+
3

∑
j=1

β j(tj).

[August 8, 2022 at 15:04 –]

2.6 pay multiplexing only once principle and state of the art 22

Using that t − t1 − t2 − t3 is, by assumption, the start of the backlogged
period of server 1, we conclude that

D1(t) ≥ D1(t − t1 − t2 − t3) = A1(t − t1 − t2 − t3).

We combine both inequalities and take the infimum to receive

D1(t)

≥A1(t − t1 − t2 − t3) +

[
3

∑
j=1

β j(tj)− A2 (t − t1 − t2 − t3, t − t3)− A3 (t − t2 − t3, t)

]+

≥A1(t − t1 − t2 − t3) +

[
3

∑
j=1

β j(tj)− α2 (t1 + t2)− α3 (t2 + t3)

]+

≥ inf
0≤s≤t

A1(t − s) +

 inf
t1+t2+t3=s

t1,t2,t3≥0

{
3

∑
j=1

β j(tj)− α2 (t1 + t2)− α3 (t2 + t3)

}+
= inf

0≤s≤t

{
A1(t − s) + βPMOO

e2e (s)
}

=A1 ⊗ βPMOO
e2e (t),

where

βPMOO
e2e (t) :=

 inf
t1+t2+t3=t

t1,t2,t3≥0

{
3

∑
j=1

β j(tj)− α2 (t1 + t2)− α3 (t2 + t3)

}+

is the resulting leftover service curve. In the following, we call this type of anal-
ysis pay multiplexing only once (PMOO). This technique has been formalized
with the so-called multidimensional operator for PMOO [Bou+08], [BBC18, pp.
236]. For the class of token bucket arrival curves and rate-latency servers, the
multidimensional operator yields again rate-latency service curves [SZM06,
SZM08].

State-of-the-art analysis in the DNC

One might assume that the PMOO analysis always leads to tighter delay bounds
than the SFA. However, it has been shown that even in the simple two flows -
two servers topology in Figure 2.5, the SFA can outperform the PMOO when
service curves are not assumed to be equal (to be precise, if for the rates of
the rate-latency service curves, it holds that R1 < R2) [SZF08]. Therefore, in
[SZF08], an optimization-based algorithm is suggested and it was shown that
the optimization-based analysis leads to tighter delay bounds. This has been
further advanced to a tight end-to-end delay analysis in [BJT10, BT16]. Yet, both
optimization-based analyses suffer from being computationally infeasible for
larger networks. An algebraic alternative that maintains fast runtimes while
getting close to optimization-based delay bounds has been reported in [Bon16,
BNS17b, GB19] and is publicly available in the DISCO network calculator [SZ06,
Gol+08, SBS18].

[August 8, 2022 at 15:04 –]

3
S T O C H A S T I C N E T W O R K C A L C U L U S B A C K G R O U N D

Many applications, however, do not require hard performance guarantees. Some
would still be considered tolerable as long as delayed arrivals are rare. See,
for example, the work on Tactile Internet [Fet14], Industrial IoT [Boy+18], or
Internet at the speed-of-light [Sin+14]. Therefore, in the stochastic network
calculus (SNC), the focus is to study stochastic bounds of the form

P(delay > T) ≤ ε,

where ε ≥ 0 is typically a very small quantity, e.g., ∈
{

10−3, 10−6, 10−9} . In
this chapter, we review prior work on the SNC assuming the network model in
Section 2.1.

3.1 stochastic arrivals and service

Stochastic arrival constraints

Based on the deterministic definition of an arrival curve (Definition 2.3), a
stochastic version can be derived intuitively.

Definition 3.1 ([Cru96], [CBL06], [JL08, p. 43]). An increasing function α(t − s)
is said to be a stochastic envelope or stochastic arrival curve for an arrival process
A if, for all σ ∈ R

P(A(s, t) > α(t − s) + σ) ≤ εa(σ), 0 ≤ s ≤ t, (3.1)

where εa(σ) ≥ 0 is a decreasing function, the error function or overflow / deficit
profile.

We want to point out that A is a stochastic process, whereas α is a non-random
function that only depends on the interval length t − s. If we choose σ = 0 and
εa(σ) = 0, we recover the deterministic envelope. Probably the most prominent
example of a stochastic envelope is exponentially bounded burstiness (EBB)
[YS93] with α(t − s) = ρ · (t − s) and εa(σ) = Me−θσ, where ρ, M, θ ≥ 0. Other
approaches to define stochastic arrival constraints can be found in [MS97, SS00,
Boo+00, FMN00, Yin+02, BLP06, LBL07, JL08, CS12, Riz13]. At this point, we
would like to highlight that even heavy-tailed distributions, a traffic class that
comes with particular difficulties in a performance analysis, can be modeled
[GMOB00, KH01, LGOBM05, LBC12].

A different branch of the SNC is based on moment-generating functions
(MGFs). The MGF of an arrival process A(t) is given by

ϕA(t)(θ) := E
[
eθA(t)

]
,

where θ ≥ 0. In accordance to the affine arrival curve Eqn. (2.14), we define
the MGF-based class of (σA, ρA)-constrained arrival processes introduced by
Chang ([Cha94], [Cha00, p. 241]).

23

[August 8, 2022 at 15:04 –]

3.1 stochastic arrivals and service 24

Definition 3.2 ((σA, ρA)-constrained Arrivals). An arrival process A(s, t) is
(σA, ρA)-bounded if

E
[
eθA(s,t)

]
≤ eθρA(θ)·(t−s)+θσA(θ), for all 0 ≤ s ≤ t. (3.2)

The MGF-based SNC originates in the effective bandwidth theory [Kel96,
Cha00], where a bound is derived for log

(
E
[
eθA(t)

])
/(θt). The connection of

SNC with MGF to Eqn. (3.1) is given by the Chernoff bound [Ros96, p. 39]:

P(X ≥ a) ≤ e−θa E
[
eθX
]

, (3.3)

where θ ≥ 0. Let us now choose α(t − s) = ρA(θ) · (t − s) in the stochastic
envelope (Eqn. (3.1)). Applying Eqn. (3.3) to (σA, ρA)-constrained arrivals yields

εa(σ) = eθσA(θ)e−θσ. (3.4)

Thus, one can state that (σA, ρA)-constrained arrivals are EBB for M = eθσA(θ)

[RF11, FR15]. One can also show the opposite direction, namely that an EBB
process is (σA, ρA)-constrained. Proofs can be found, e.g., in [ZTK95, Lemma 5]
or [BH17].

Let us now visualize the strength of a stochastic envelope in terms of proba-
bilistic guarantees. We consider an aggregate of m flows with an arrival process
consisting of stationary independent and identically distributed (iid) Bernoulli
distributed increments with parameter p. To be precise, for 0 ≤ s ≤ t, we have
A(s, t) = ∑m

i=1 Ai(s, t) with Ai(s, t) ∼ B(t − s, p), i = 1, . . . , m, where B(n, p)
denotes the Binomial distribution with parameters n and p.

This arrival process is (σA, ρA)-bounded for θ > 0 :

E
[
eθAi(s,t)

]
=
(

1 − p + peθ
)t−s

= eθρA(θ)·(t−s)+θσA(θ), i = 1, . . . , m,

where

σA(θ) = 0,

ρA(θ) =
log
(
1 − p + peθ

)
θ

.

Different stochastic envelopes are depicted in Figure 3.1. We observe that, in
contrast to the peak rate, which gives us a deterministic guarantee, the (σA, ρA)-
envelope is able to exploit statistical multiplexing. Yet, even though we use it to
bound small violation probabilities (εa(b) = 10−6 in the plot), it still deviates
significantly from the peak rate.

A large set of traffic classes can be (σA, ρA)-bounded. In the following, we
list a few examples.

• Discrete-time iid increments [Cha00, p. 243]: Let A(t) = ∑t
i=1 ai be a

discrete-time process such that all ai, i = 1, . . . , t are iid witch existing
MGF ϕA(θ) = E

[
eθa1
]

. Then, A is (σA, ρA)-constrained with

σA(θ) = 0,

ρA(θ) =
1
θ

log (ϕA(θ)) .
(3.5)

[August 8, 2022 at 15:04 –]

3.1 stochastic arrivals and service 25

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

Time [s]

A
rr

iv
al

s
[b

its
]

Peak rate
(σ ρ) −bound

Sample paths

Average rate

Figure 3.1: Stochastic envelopes for iid Bernoulli increments.

For example, for the case of exponential iid increments [Bec16a] with
parameter λ, we have that

ρA(θ) =
1
θ

log
(

λ

λ − θ

)
, θ < λ. (3.6)

More generally, for independent, Gamma-distributed increments with
shape parameter α > 0 and rate parameter β > 0, it holds that

ρA(θ) =
α

θ
log
(

β

β − θ

)
, θ < β. (3.7)

Another example are Weibull distributed increments [CP18] with shape
parameter k and scale parameter λ. It does not have an existing MGF for
all k, yet, e.g., for the special case of k = 2 (also known as the Rayleigh
distribution), the arrival process is (σA, ρA)-constrained with

ρA(θ) =
1
θ

log
(

1 + bθe
(bθ)2

2

√
π

2

(
erf
(

bθ√
2

)
+ 1
))

, (3.8)

where erf(·) denotes the Gauss error function and b := λ√
2
. The last iid

example we present are Poisson distributed increments with parameter λ.
It holds that

ρA(θ) =
1
θ

λ
(

eθ − 1
)

. (3.9)

• Discrete-time Markov-modulated process (MMP): Let x(t) be a discrete-
time homogeneous Markov chain on the states {1, . . . , M} with the tran-
sition matrix P, i.e., pij is the transition probability from state i to state j.
Also let {yi(t), t = 1, 2, . . . } , i = 1, . . . , M, be M sequences of iid random
variables with moment-generating function

ϕi(θ) = E
[
eθyi(1)

]
.

The process a(t) = yx(t)(t) is then an MMP with modulating process x(t).
a(t) is stationary if x(t) is stationary. Let πi be the probability of x(1)
being in state i and also let a row vector be

π = (π1, . . . , πM) .

Then, the MGF of A(t) = ∑t
i=0 ai is [Cha94], [Cha00, pp. 244]

E
[
eθA(t)

]
= π (ϕ(θ)P)t−1 ϕ(θ)1T

[August 8, 2022 at 15:04 –]

3.1 stochastic arrivals and service 26

Figure 3.2: Discrete-time MMOO model

where

ϕ(θ) := diag (ϕ1(θ), . . . , ϕM(θ)) :=

ϕ1(θ) 0 0

0
. . . 0

0 0 ϕM(θ)

and

1 = (1, . . . , 1) .

For this expression, we can derive a closed-form upper bound [Bec16a,
pp. 124]:

π (ϕ(θ)P)t−1 ϕ(θ)1T ≤
(

max
k=1,...,M

ϕk(θ)

) M

∑
j=1

πj
maxk=1,...,M {vk}
mink=1,...,M {vk}

sp(ϕ(θ)P)t−1 ,

where sp(·) denotes the spectral radius of a a matrix (basically the largest
eigenvalue) and v ∈ RM

+ is a corresponding eigenvector with only positive
entries. This yields a (σA, ρA)-bound

σA(θ) =
1
θ

log
((

max
k=1,...,M

ϕk(θ)

)
maxk=1,...,M {vk}
mink=1,...,M {vk}

· 1
sp(ϕ(θ)P)

)
,

ρA(θ) =
1
θ

log (sp(ϕ(θ)P)) .
(3.10)

The special case of a two state Markov chain x(t) ∈ {1, 2} with y1(t) = 0
and peak rate y2(t) = πA, is called Markov-modulated On-Off (MMOO)
arrivals [Soh92] (see Figure 3.2). Then, the spectral radius of ϕ(θ)P is

sp(ϕ(θ)P) =
p11 + p22eθπA +

√
(p11 + p22eθπA)

2 − 4 (p11 + p22 − 1) eθπA

2
.

For details on the σA(θ), we refer the interested reader to Appendix A.1.

• Continuous-time Markov-modulated On-Off Arrivals [AMS82, CW96,
CPS14]: Let x(t) be a random process of the form x(t) = z(t) · b, the so-
called fluid rate at t, where πA > 0 is the peak rate and zt is a continuous-
time Markov process. z(t) has two states, 0 and 1 with transition rates
µ and λ (see Figure 3.3). Then, we define for all 0 ≤ s ≤ t the according
arrival process by

A(s, t)
(2.2)
=
∫ t

s
x(u)du =

∫ t

s
z(u)πA du.

[August 8, 2022 at 15:04 –]

3.1 stochastic arrivals and service 27

Figure 3.3: Continuous-time MMOO model

Then, A(t) is (σA, ρA)-constrained with

σA(θ) = 0,

ρA(θ) =
θπA − µ − λ

2θ
+

1
2θ

√
(θπA − µ − λ)2 + 4µθπA.

(3.11)

There are also arrival processes with existing MGF, that are not (σA, ρA)-
constrained. One particularly important process of that kind is the fractional
Brownian motion (fBm) arrival model [Nor94, Nor95, Kel96, LBL07, RF12a,
Riz13, FR15]. It is defined as

A(s, t) := λ · (t − s) + σ Z(t − s) , (3.12)

where λ is the mean arrival rate, σ2 is the variance of A(1) and Z(t) is a
normalized fBm (see also Definition A.1 in Appendix A.2). Then, its MGF is
equal to [Kel96]

E
[
eθA(s,t)

]
= eθλ(t−s)+ θ2σ2

2 (t−s)2H
. (3.13)

Stochastic service guarantees

In the stochastic analysis, we mostly employ a bivariate version to describe
the provided service. Mathematically, we define it as follows. A service process
S(s, t) ≥ 0, 0 ≤ s ≤ t, is a nonnegative stochastic process such that S(t, t) = 0
for all t ≥ 0. This service process is also known in the literature as time-varying
capacity. Similar to the DNC, we introduce the (bivariate) (de)convolution to
facilitate the expression of operations and performance bounds.

Definition 3.3 (Min-Plus Convolution). Let x and y be nonnegative functions.
The (bivariate) min-plus convolution of x and y is defined for 0 ≤ s ≤ t as

x ⊗ y (s, t) := inf
s≤τ≤t

{x(s, τ) + y(τ, t)} . (3.14)

The (bivariate) min-plus deconvolution of x and y is defined for 0 ≤ s ≤ t as

x ⊘ y (s, t) := sup
0≤τ≤s

{x(τ, t)− y(τ, s)} . (3.15)

Now, we can introduce the bivariate version of service curves. By abuse of
notation, we denote the server as well as the offered service by S.

Definition 3.4 (Dynamic Server). A service process S is called a dynamic server
[CC99], [Cha00, p. 178], [Cha+02] for arrivals A(t), if it satisfies for its respective
departures D(t) that

D(t) ≥ A ⊗ S (0, t) = inf
0≤τ≤t

{A(0, τ) + S(τ, t)} (3.16)

for any fixed sample path.

[August 8, 2022 at 15:04 –]

3.2 stochastic single-node performance bounds 28

As for the deterministic analysis, we need a stronger condition when consid-
ering multiple flows at a server.

Definition 3.5 (Work-conserving Server [Fid06]). For any t ≥ 0, let

s := sup {τ ∈ [0, t] : D(τ) = A(τ)}

be the start of the backlogged period (Eqn. (2.15)) before t. Let τ ∈ [s, t]. A
work-conserving server is a service process S(τ, t) such that, for any fixed sample
path, the server S is non-idling and uses the entire available service S(τ, t), i.e.,

D(t) = D(τ) + S(τ, t) ∀s ≤ τ ≤ t (3.17)

in any continuously backlogged period (τ, t].

Again, one can easily show that any work-conserving server is also a dynamic
server.

Definition 3.6 ((σS, ρS)-constrained Service). We call a dynamic server (σS, ρS)-
constrained if it holds for all 0 ≤ s ≤ t that

E
[
e−θS(s,t)

]
≤ e−θρS(−θ)(t−s)+θσS(−θ). (3.18)

For example, a dynamic server with constant rate C ≥ 0 is (σS, ρS)-constrained
with σS(−θ) = 0 and ρS(−θ) = C.

3.2 stochastic single-node performance bounds

In this section, we present the SNC performance bounds. Therefore, we start
with the bivariate sample-path bounds.

Theorem 3.7 (Sample-Path Bounds: Backlog, Delay, and Output). Consider a
dynamic server S(s, t) with arrival process A(s, t).

1. The backlog at time t ≥ 0 is upper bounded by

q(t) ≤ A ⊘ S (t, t). (3.19)

2. The virtual delay at time t ≥ 0 is upper bounded by

d(t) ≤ inf {s ≥ 0 : A ⊘ S (t + s, t) ≤ 0} . (3.20)

3. The departure process D(s, t) is upper bounded for any 0 ≤ s ≤ t by

D(s, t) ≤ A ⊘ S (s, t). (3.21)

A proof can be found in [Fid06]. Note that the deconvolution for the delay
extends the domain of the deconvolution in Definition 3.3 (first argument larger
than second). We define it as

A ⊘ S (t + s, t) := sup
0≤τ≤t

{A(τ, t)− S(τ, t + s)} .

Making use of Theorem 3.7, we can now derive stochastic performance
bounds. But before, let us formulate the generalized Hölder inequality that we
frequently use to bound the expected value of products of dependent random
variables.

[August 8, 2022 at 15:04 –]

3.2 stochastic single-node performance bounds 29

Theorem 3.8 (Generalized Hölder Inequality). Let p1, . . . , pn > 1 be real numbers
and Hölder conjugates, i.e., ∑n

i=1
1
pi

= 1. Let X1, . . . , Xn ≥ 0 be such that Xi ∈
Lpi , i = 1, . . . n. Then, ∏n

i=1 Xi ∈ L1 and

E

[
n

∏
i=1

Xi

]
≤

n

∏
i=1

E
[
Xpi

i

] 1
pi . (3.22)

Proof. A proof is given in [Che01].

Theorem 3.9 (Violation Probability of Backlog and Delay). Let θ > 0 and p, q > 1
be Hölder conjugates, that is, 1

p +
1
q = 1. Suppose we have (σA, ρA)-bounded arrivals

and a (σS, ρS)-bounded dynamic server. Further, we assume the stability condition

ρA(pθ) < ρS(−qθ). (3.23)

1. Let B ≥ 0. For the backlog, it holds for all t ≥ 0 that

P(q(t) > B) ≤ e−θB
t−1

∑
τ=0

(
E
[
epθA(τ,t)

]) 1
p
(

E
[
e−qθS(τ,t)

]) 1
q

(3.24)

≤ e−θB eθ(σA(pθ)+σS(−qθ))

θ (ρS(−qθ)− ρA(pθ))
. (3.25)

2. Let T ≥ 0. For the virtual delay, it holds for all t ≥ 0 that

P(d(t) > T) ≤
t−1

∑
τ=0

(
E
[
epθA(τ,t)

]) 1
p
(

E
[
e−qθS(τ,t+T)

]) 1
q

(3.26)

≤ e−θρS(−qθ)T eθ(σA(pθ)+σS(−qθ))

θ (ρS(−qθ)− ρA(pθ))
. (3.27)

Note that, the first (time-dependent) inequality for backlog and delay can still
be used if the processes are not (σ, ρ)-bounded or if stability cannot be assumed.
In addition, if A and S are independent, the bounds in Theorem 3.9 can be
improved by setting p = q = 1 (which are obviously not Hölder conjugates).
Proofs for the independent case can be found, e.g., in the seminal work by Chang
([Cha00, pp. 248]). However, since the applied techniques are key throughout
this thesis, we show the proof of the delay bound. One important inequality
that is typically used in the SNC is Boole’s inequality / the Union bound.

Theorem 3.10 (Union Bound / Boole’s Inequality). Let X1, . . . , Xn be random
variables and x ∈ R. Then holds the Union Bound / Boole’s Inequality:

P
(

max
i=1,...,n

Xi > x
)
≤

n

∑
i=1

P(Xi > x) . (3.28)

Proof. See, e.g, [Ros10, p. 57] or [KMT11, pp. 295].

Proof of Theorem 3.9. By Eqn (3.20), we know that if there exists a T ≥ 0 such
that
sup0≤τ≤t {A(τ, t)− S(τ, t + T)} ≤ 0, then d(t) ≤ T. Vice versa,

d(t) > T ⇒ sup
0≤τ≤t

{A(τ, t)− S(τ, t + T)} > 0 for T ≥ 0. (3.29)

[August 8, 2022 at 15:04 –]

3.3 end-to-end analysis and open problems 30

Furthermore, we have P(A(t, t)− S(t, t + T) > 0) = 0. Hence,

P(d(t) > T)
(3.29)
≤ P

(
sup

0≤τ≤t−1
{A(τ, t)− S(τ, t + T)} > 0

)
(3.28)
≤

t−1

∑
τ=0

P(A(τ, t)− S(τ, t + T) > 0)

(3.3)
≤

t−1

∑
τ=0

E
[
eθ(A(τ,t)−S(τ,t+T))

]
(3.22)
≤

t−1

∑
τ=0

(
E
[
epθA(τ,t)

]) 1
p
(

E
[
e−qθS(τ,t+T)

]) 1
q

≤
t−1

∑
τ=0

eθ(ρA(pθ)(t−τ)+σA(pθ))e−θ(ρS(−qθ)(t+T−τ)−σS(−qθ))

= e−θρS(−qθ)Teθ(σA(pθ)+σS(−qθ))︸ ︷︷ ︸
=:b

t−1

∑
τ=0

eθ(ρA(pθ)−ρS(−qθ))(t−τ)

=b ·
t

∑
j=1

eθ(ρA(pθ)−ρS(−qθ))j.

Here, we used the Union bound in the second line and the Chernoff bound in
the third line. We substitute t − τ by j in the last line. It follows that

P(d(t) > T) ≤b ·
∞

∑
j=1

eθ(ρA(pθ)−ρS(−qθ))j

≤b ·
∫ ∞

0
eθ(ρA(pθ)−ρS(−qθ))xdx

(3.23)
= b · 1

θ (ρS(−qθ)− ρA(pθ))

=e−θρS(−qθ)T eθ(σA(pθ)+σS(−qθ))

θ (ρS(−qθ)− ρA(pθ))
.

where we used the stability condition in the third line to ensure convergence.
This concludes the proof.

The bounds in Theorem 3.9 assume discrete-time processes. If A is a continuous-
time process, discretization techniques as in [CBL06] can be applied. For the
respective performance bounds, see, e.g., [Bec16a, pp. 30].

3.3 end-to-end analysis and open problems

Similar to the deterministic analysis, we have results for multiple flows at a
server, an output bound, as well as the multi-node case. We present the state
of the art in the following. Note that, if arrivals and service are assumed to be
(σ, ρ)-bounded, all network operations can be shown to be also in this class,
see also [BS13, ZBHB16, BH17].

We start off with the multi-flow case.

Theorem 3.11 (Leftover Service under Arbitrary Multiplexing). Consider two
flows, f1 and f2, with respective arrival processes A1(s, t) and A2(s, t), that receive

[August 8, 2022 at 15:04 –]

3.3 end-to-end analysis and open problems 31

Figure 3.4: Two flows at one node with service process S.

service process S(s, t) at a work-conserving server as in Figure 3.4. Further, we assume
f1 to be our flow of interest (foi) and the scheduling to be arbitrary multiplexing.
Then, the foi sees the dynamic server

S1
l.o.(s, t) := S1(s, t) := [S(s, t)− A2(s, t)]+ , 0 ≤ s ≤ t, (3.30)

the so-called leftover service. This is also denoted by S1 = S ⊖ A2.
Let θ > 0 and p, q > 1 be Hölder conjugates. If we further assume the arrival process

A2 and the service process to be (σA2 , ρA2) and (σS, ρS)-bounded, respectively, then
the leftover service is (σS1 , ρS1)-bounded with

σS1(−θ) =σS(−qθ) + σA2(pθ),

ρS1(−θ) =ρS(−qθ)− ρA2(pθ).

Proof. See [Cha00, pp. 179] or [Fid06] for the dynamic server, and [BS13] for the
(σS1 , ρS1)-bound.

As for the performance bounds, if A and S are independent, then Theo-
rem 3.11 can be improved by setting p = q = 1. Moreover, the result can easily
be generalized to n − 1 cross flows.

Apart from being a bivariate result, there is a fundamental difference from
Theorem 2.7, namely that it directly takes the arrival process A2 rather than an
arrival curve α2. Hence, for stochastic arrivals, the leftover service is a stochastic
process, even if S was assumed to be a deterministic process.

Next, we present a bound for the departures of a flow. Note that, since
we work with moment-generating functions, instead of bounding the output
burstiness, we need a bound on the MGF of the departures.

Theorem 3.12 (MGF-Output Bound). Let θ > 0 and p, q > 1 be Hölder conjugates.
Suppose we have (σA, ρA)-bounded arrivals and a (σS, ρS)-bounded dynamic server.
Further, we assume the stability condition in Eqn. (3.23). For the MGF of the output,
it holds for all 0 ≤ s ≤ t that

E
[
eθD(s,t)

]
≤

s

∑
τ=0

(
E
[
epθA(τ,t)

]) 1
p
(

E
[
e−qθS(τ,s)

]) 1
q

≤ eθρA(pθ)(t−s) eθ(σA(pθ)+σS(−qθ))

1 − eθ(ρA(pθ)−ρS(−qθ))
.

(3.31)

Further, the output is (σD, ρD)-bounded with

σD(θ) = σA(pθ) + σS(−qθ) +
1
θ

log
(

1
1 − eθ(ρA(pθ)−ρS(−qθ))

)
,

ρD(θ) = ρA(pθ).

Proof. See [Bec16a, pp. 29].

[August 8, 2022 at 15:04 –]

3.3 end-to-end analysis and open problems 32

Figure 3.5: One flow - two servers

Again, if A and S are independent, then Theorem 3.12 can be improved by
setting p = q = 1. For the continuous-time version, see again [Bec16a, pp. 29].

As the last piece of this section, we state the result for the multi-node case,
the Concatenation Theorem.

Theorem 3.13 (Concatenation Theorem). Assume the topology in Figure 3.5, where
the arrivals of f1 are Ae2e = A1. We denote by D1 = A2 the output of S1, which
equals the input at S2, and by De2e = D2 the departures of S2. Further, we assume the
servers to be dynamic servers. Then, the end-to-end service, Se2e, is a dynamic server.
Let θ > 0 and let p, q > 1 be Hölder conjugates. Under the additional assumption of
(σS1 , ρS1) and (σS2 , ρS2)-constrained servers with ρS1(−pθ) ̸= ρS2(−qθ), the end-to-
end service is (σSe2e , ρSe2e)-bounded, where

σSe2e(−θ) = σS1(−pθ) + σS2(−qθ) + K,

ρSe2e(−θ) = min {ρS1(−pθ), ρS2(−qθ)} ,

where

K :=
1
θ

log

(
1

1 − e−θ|ρS2 (−qθ)−ρS1 (−pθ)|

)
.

Proof. See [Bec16a, p. 28].

Theorem 3.13 shows that that the convolution operation ⊗, similar to the
other operations, is closed under all (σ, ρ)-constrained processes. As a con-
sequence, we can conduct a sequential end-to-end performance analysis by,
e.g., implementing the separated flow analysis (SFA) known from the DNC
(Section 2.5). In the following, we call this the sequential separated flow anal-
ysis (seqSFA). However, it does not scale well for larger networks as σSe2e(−θ)

increases by K for each convolution. This problem can be avoided when, in
contrast to a sequential order, the deconvolution for the performance bounds
and the convolution of the service processes is calculated in one step. The idea
of avoiding this sequencing property is first reported in [Fid06, Theorem 3] and
further discussed in [Bec16a, pp. 34]. In the following, we state the result for
the delay for heterogeneous servers without cross-traffic which is less accurate
compared to the homogeneous version in [Fid06].

Theorem 3.14 (End-to-End Delay Bound). Assume the topology in Figure 3.6,
where the (σA, ρA)-bounded arrivals of f1 are Ae2e = A1. Further, we assume all
servers, Sj, j = 1, . . . , n, to be dynamic servers for flow f1 and

(
σSj , ρSj

)
-bounded. Let

θ > 0 and let pj, j = 1, . . . , n be Hölder conjugates, i.e., all pj > 1 and ∑n
j=1

1
pj
= 1.

Let us assume the stability condition

ρA(θ) < ρSj(−pjθ), j = 1, . . . , n.

Then, bounds on the delay’s violation probability are given by

[August 8, 2022 at 15:04 –]

3.3 end-to-end analysis and open problems 33

Figure 3.6: One flow - n servers

1.
P(d(t) > T) ≤ e−θρA(θ)·TeθσA(θ)γ,

where

γ :=
n

∏
j=1

eθσSj (−pjθ)

1 − eθ
(

ρA(θ)−ρSj (−pjθ)
) .

2.
e−θ minj=1,...,n

{
ρSj (−pjθ)

}
·TeθσA(θ)eθ ∑n

j=1 σSj(−pjθ)ζn,

where

ζ :=

(
1 + T

n

)(1+ T
n)(T

n

) T
n

.

As discussed above, Theorem 3.14 gives us an alternative to seqSFA. In order to
have a clear separation, we call it SFA when applying Theorem 3.14 to calculate
performance bounds.

Let us now assume that all arrivals and servers are independent. If we fix the
delay violation probability to ε and solve for T, we obtain the stochastic delay
bounds

1.

T =
θ
(

σA(θ) + ∑n
j=1 σSj(θ)

)
+ log

(1
ε

)
+ log (γ)

θρA(θ)
,

2.

T =
θ
(

σA(θ) + ∑n
j=1 σSj(θ)

)
+ log

(1
ε

)
+ n · log (ζ)

θ minj=1,...,n

{
ρSj(θ)

} .

In other words, under the independence assumption, both stochastic delay
bounds scale linearly in the number of traversed servers (O(n)) [Fid06]. Without
assuming independence, it has been shown for the class of EBB traffic using the
so-called network service curve (NSC), that delay bounds scale in Θ(n log(n))
[CBL06, BLC07, BLC11].

For a numerical comparison of (σ, ρ)-constrained arrivals and EBB, we refer
the interested reader to [RF11, RF12b].

In fact, one can also consider the case ρS1(−pθ) = ρS2(−qθ) in a sequential
analysis. The idea we make use of is inspired by the rate reduction technique
in [CBL05, CBL06].

Theorem 3.15 (Concatenation Theorem, pt. 2). Assume the scenario in Theo-
rem 3.13. Let θ, δ > 0 and let p, q > 1 be Hölder conjugates. Under the additional
assumption of (σS1 , ρS1) and (σS2 , ρS2)-constrained servers with

δ < ρS1(−pθ) = ρS2(−qθ) (3.32)

[August 8, 2022 at 15:04 –]

3.3 end-to-end analysis and open problems 34

the end-to-end service is (σSe2e , ρSe2e)-bounded, where

σSe2e(−θ) = σS1(−pθ) + σS2(−qθ) + V,

ρSe2e(−θ) = ρS2(−qθ)− δ,

where
V :=

1
θ

log
(

1
1 − e−θδ

)
.

Proof. We bound the Laplace transform of S1 ⊗ S2 (s, t) by

E
[
e−θS1⊗S2 (s,t)

]
≤

t

∑
τ=s

E
[
e−θS1(s,τ)−θS2(τ,t)

]
≤

t

∑
τ=s

(
E
[
e−pθS1(s,τ)

] 1
p
)(

E
[
e−qθS2(τ,t)

]) 1
q

≤
t

∑
τ=s

e−θ(ρS1 (−pθ)(τ−s)−θσS2 (−pθ))e−θ((ρS2 (−qθ))(t−τ)−θσS2 (−qθ))

≤
t

∑
τ=s

e−θ(ρS1 (−pθ)(τ−s)−θσS2 (−pθ))e−θ((ρS2 (−qθ)−δ)(t−τ)−θσS2 (−qθ))

(3.32)
= e−θ((ρS2 (−qθ)−δ)(t−s)−σS1 (−pθ)−σS2 (−qθ)) ·

t−s

∑
j=0

e−θδj

≤e−θ((ρS2 (−qθ)−δ)(t−s)−σS1 (−pθ)−σS2 (−qθ)) 1
1 − e−θδ

=e−θ(ρS2 (−qθ)−δ)(t−s)eθ(σS1 (−pθ)+σS2 (−qθ)− 1
θ log(1−e−θδ)).

This finishes the proof.

[August 8, 2022 at 15:04 –]

Part II

D E A L I N G W I T H D E P E N D E N C E

[August 8, 2022 at 15:04 –]

4
D E A L I N G W I T H D E P E N D E N C E U S I N G P M O O F O R
TA N D E M Q U E U E S A N D S I N K T R E E S

Figure 4.1: Canonical tandem

Results presented in this chapter are joint work with Jens Schmitt [NS17,
NS20b].

In Section 3.3, we discussed that delay bounds scale in O(n) under indepen-
dence [Fid06]. The technique to prove this result is based on the separated flow
analysis (SFA) (see also Section 2.5). In other words, instead of summing stochas-
tic per-hop delay bounds (which scales in O(n3)), we convolve service processes
and benefit from the pay bursts only once (PBOO) property [CBL06]. This result
has been derived for the canonical tandem (Figure 4.1) under arbitrary multi-
plexing. However, if we directly applied the SFA to a tandem queue [Bur64,
LH08] as in Figure 4.2, the flows would become dependent in the analysis, even
if they were assumed to be independent when entering the network. In order
to continue the analysis, one typically applies Hölder’s inequality (Eqn. (3.22)).
A similar observation with cross-flows becoming dependent can be made for
sink trees. Sink trees are interesting for various application scenarios and have
been subject to SNC-based analyses:

• In Multiprotocol Label Switching (MPLS) networks, The option to set up
multipoint-to-point label-switched paths between several ingress edge
routers and one egress edge router [RVC01] creates a sink tree.

• Multi-hop wireless sensor networks with a central base station collecting
data from sensor nodes induce a sink tree topology [KAT06, SBP17]. More
generally, any data collection by a central point results in a sink tree
and if time-critical decisions are made based on that data, performance
guarantees are desirable, see, e.g., [ZAV02].

• We see tree topologies frequently in network-on-chip (NoC) architectures
frequently [Jaf+10, Qia+16].

• Switched Ethernets set up spanning trees to avoid cycles in frame for-
warding, hence, again sink trees emerge as a natural choice to support
resource allocation in such installations [Jas+02].

• Sink trees are also related to so-called fat trees in supercomputing [Lei85];
in fact, fat trees have also been proposed in data center interconnects
[ZBHB16, Wan+18], recently.

36

[August 8, 2022 at 15:04 –]

dealing with dependence using pmoo for tandem queues and sink trees 37

Figure 4.2: Tandem queue with m flows and n servers.

(a) Sink tree

(b) Sink tree tandem after reduction with n servers and n + 1 flows.

Figure 4.3: Sink tree reduction

Here, we assume this reduction from network to tandem has already been
performed (see Figure 4.3).

In this chapter, we show by applying the sequential pay multiplexing only
once (seqPMOO) for nested interference known from the DNC (Section 2.6), we
do not need to consider stochastic dependencies in the analysis. In other words,
the dependencies are not method-pertinent for these topologies. Therefore, we
can avoid the application of Hölder’s inequality (Eqn. (3.22)) and show that this
leads to significantly better delay bounds. As we discussed in Section 2.6, the
possibility of improving delay bounds by using the PMOO analysis has been
investigated extensively in DNC literature. Yet, to the best of our knowledge, it
has not been investigated much in the literature on SNC with MGFs. We derive
e2e delay bounds for the class of general arrivals and service with moment
generating functions. For instance, this includes the fractional Brownian mo-
tion (fBm) arrival model (Eqn. (3.12)). FBm has been shown to be useful for
Internet traffic modeling [Nor95, FMN00], since it is able to capture long-range
dependence, which is why we also use it in our numerical experiments. On

[August 8, 2022 at 15:04 –]

4.1 end-to-end delay bound 38

Figure 4.4: Sink tree with 3 flows and 2 servers.

the other hand, it is a non-trivial traffic type for SNC to deal with and we do
not provide stationary (time-independent) delay bounds (for Hurst parameter
H > 0.5), but transient (time-dependent) delay bounds as in Eqn. (3.26) only.
Note that, however, some applications specifically look for bounds on the tran-
sient phase when only short-term performance guarantees are desired, see, e.g.,
[MSZ02, BF15, Bec16b, CAG18, Bec21].

outline The rest of the chapter is structured as follows: In Section 4.1, we
present the derivations for the e2e delay analysis of sink tree tandems and
tandem queues under independent and dependent cross-flows using different
algorithms (SFA and PMOO). Section 4.2 provides a numerical evaluations of
different aspects: influence of the time horizon on the transient delay bounds,
effects of traffic parameters and sink tree depths / tandem lengths, comparisons
between different analysis algorithms and the independent and dependent
scenarios. In Section 4.3, we summarize the chapter.

4.1 end-to-end delay bound

We start by analyzing the illustrative sink tree example in Figure 4.4, since it
already enables us to point at some key differences between SFA and PMOO. We
extend the results to general sink trees and tandem queues in the following
subsection.

4.1.1 Separated flow analysis (SFA)

Here, we compute the leftover service at each server (assuming arbitrary multi-
plexing) until we convolve all service processes in a final step.

For the two-server sink tree in Figure 4.4, SFA yields the end-to-end service

SSFA
e2e = [S1 − A2]

+ ⊗ [S2 − (A3 + (A2 ⊘ S1))]
+ . (4.1)

Regard that the arrival process A2 appears twice. Therefore, in the analysis, we
invoke Hölder’s inequality to upper bound the MGF of dependent processes.
Let θ > 0. Using that A1 and Se2e are independent, it follows for the bound on
the delay’s violation probability that

P(d(t) > T)
(3.26)
≤

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
e−θSSFA

e2e (s0,t+T)
]

(4.1)
=

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
e−θ([S1−A2]

+⊗[S2−(A3+(A2⊘S1))]
+(s0,t+T))

]

[August 8, 2022 at 15:04 –]

4.1 end-to-end delay bound 39

...

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

]
·
(

t+T

∑
s1=s0

E
[
ep1θA2(s0,s1)

] 1
p1 E
[
ee−p1θS1(s0,s1)

] 1
p1 E
[
ep2θA3(s1,t+T)

] 1
p2

·
(

s1

∑
s2=0

E
[
ep2θA2(s2,t+T)

]
E
[
e−p2θS1(s2,s1)

]) 1
p2

E
[
e−p2θS2(s1,t+T)

] 1
p2

 ,

where 1
p1
+ 1

p2
= 1.

4.1.2 Pay multiplexing only once (PMOO)

For the two-server sink tree, PMOO for nested interference, seqPMOO, yields the
end-to-end service

SseqPMOO
e2e =

[(
[S2 − A3]

+ ⊗ S1

)
− A2

]+
. (4.2)

In contrast to SFA, A2 appears only once.

P(d(t) > T)
(3.26)
≤

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
e−θSseqPMOO

e2e (s0,t+T)
]

(4.2)
=

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[

e−θ[(S1⊗[S2−A3]
+)−A2]

+
(s0,t+T)

]

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
eθA2(s0,t+T)

]
E
[
e−θ((S1⊗[S2−A3]

+))(s0,t+T)
]

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
eθA2(s0,t+T)

] (t+T

∑
s1=s0

E
[
e−θS1(s1,t+T)

]
· E
[
e−θ[S2−A3]

+(s0,s1)
])

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
eθA2(s0,t+T)

] (t+T

∑
s1=s0

E
[
e−θS1(s1,t+T)

]
E
[
eθA3(s0,s1)

]
· E
[
e−θS2(s0,s1)

])
.

Even though we consider only a two-server sink tree, we can already observe
the key difference between SFA and PMOO, as only the SFA has to apply
Hölder’s inequality. We see in the following subsection, that this insight is even
more evident in the general case.

4.1.3 The general case

In this section, we generalize the results from the two-server scenario. We start
off with the tandem queue in Figure 4.2 and extend it to the general case of n
servers and m flows.

[August 8, 2022 at 15:04 –]

4.1 end-to-end delay bound 40

Proposition 4.1 (Tandem Queue with SFA). With the SFA, the end-to-end service
for m arrival flows and n servers is

SSFA
e2e =

[
S1 −

m

∑
j=2

Aj

]+
⊗
[

S2 −
(

m

∑
j=2

Aj

)
⊘ S1

]+
⊗

· · · ⊗
[

Sn −
(((

m

∑
j=2

Aj

)
⊘ S1

)
. . .

)
⊘ Sn−1

]+
,

This yields the following bound on the delay’s violation probability:

P(d(t) > T)
(3.26)
≤

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
e−θSe2e(s0,t+T)

]
≤

t−1

∑
s0=0

(
E
[
eθA1(s0,t)

]
∑

s0≤s1≤t+T
· · · ∑

sn−2≤sn−1≤t+T
E
[
ep1θ ∑m

j=2 Aj(s0,s1)e−p1θS1(s0,s1)
] 1

p1

· · ·E

[
epnθ((((∑m

j=2 Aj)⊘S1)...)⊘Sn−1)(sn−1,t+T) · · · e−pnθSn(sn−1,t+T)
] 1

pn

)
,

such that
n

∑
i=1

1
pi

= 1.

Proof. See Appendix B.1.

On the contrary, the PMOO is able to circumvent the necessity to take into
account a large number of dependencies:

Proposition 4.2 (Tandem Queue with PMOO). With the SFA, the end-to-end
service for m arrival flows and n servers is

SseqPMOO
e2e =

[
n⊗

i=1

Si −
m

∑
j=2

Aj

]+
.

This yields the following bound on the delay’s violation probability:

P(d(t) > T)
(3.26)
≤

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
e−θSe2e(s0,t+T)

]
≤

t−1

∑
s0=0

(
E
[
eθA1(s0,t)

]
E
[

eθ ∑m
j=2 Aj

(
s0,t+T

)]

· ∑
s0≤s1≤t+T

· · · ∑
sn−2≤sn−1≤t+T

E
[
e−θS1(s0,s1)

]
· · ·E

[
e−θSn(sn−1,t+T)

])
.

Proof. See Appendix B.1.

For the special case of constant rate servers with rate Ci ≥ 0, i = 1, . . . , n,
Proposition 4.2 can be simplified to

P(d(t) > T)
(2.28)
≤

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
eθ ∑m

j=2 Aj(s0,t+T)
]

e−θCi∗ (t+T−s0), (4.3)

[August 8, 2022 at 15:04 –]

4.1 end-to-end delay bound 41

where we define Ci∗ := arg mini=1,...,n {Ci} (this follows by Eqn. (2.29)).
Next, we state the results for sink trees as in Figure 4.3b.

Proposition 4.3 (Sink Tree with SFA). With the SFA, the end-to-end service for
n + 1 arrival flows and n servers in a sink tree is

SSFA
e2e = [S1 − A2]

+ ⊗ [S2 − (A3 + (A2 ⊘ S1))]
+

· · · ⊗
[
Sn −

(
An + (An−1 ⊘ Sn−1) + · · ·+

(
(A1 ⊘ S1)⊘ [S2 − A2]

+
)
⊘

· · · ⊘ [Sn−1 − (A2 + · · ·+ An−1)]
+
)]+

.

This yields the following bound on the delay’s violation probability:

P(d(t) > T)

≤
t−1

∑
s0=0

E
[
eθA1(s,t)

] (t+T

∑
s1=s0

· · ·
t+T

∑
sn−1=sn−2

E
[
ep1θA2(s0,s1)

] 1
p1 E
[
e−p1θS1(s0,s1)

] 1
p1

· · ·E
[
epnθ(An+1+(An⊘Sn−1)+···+(((A2⊘S1)⊘[S2−A3]

+)⊘···⊘[Sn−1−(A3+···+An)]
+))(sn−1,t+T)

] 1
pn

·E
[
e−pnθSn(sn−1,t+T)

] 1
pn

)

such that
n

∑
i=1

1
pi

= 1.

Again, the PMOO does not have to take into account the dependencies
between cross-flows that share servers.

Proposition 4.4 (Sink Tree with PMOO). With the sequential PMOO, the end-to-end
service for n + 1 arrival flows and n servers in a sink tree is

SseqPMOO
e2e =

[([(
[Sn − An+1]

+ ⊗ Sn−1

)
− An

]+
⊗ · · · ⊗ S1

)
− A2

]+
. (4.4)

This yields the following bound on the delay’s violation probability:

P(d(t) > T)

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
eθA2(s0,t+T)

] (t+T

∑
s1=s0

E
[
e−θS1(s1,t+T)

]
E
[
eθA3(s0,s1)

]
·
(

s1

∑
s2=s0

E
[
e−θS2(s2,s1)

]
E
[
eθA4(s0,s2)

]
· · ·
(

sk−1

∑
sk=s0

E
[
e−θSk(sk ,sk−1)

]
E
[
eθAk+2(s0,sk)

]
· · ·
(

sn−2

∑
sn−1=s0

E
[
e−θSn−1(sn−1,sn−2)

]
E
[
eθAn+1(s0,sn−1)

]
E
[
e−θSn(s0,sn−1)

]))))
.

Proof. See Appendix B.2.

4.1.4 Delay bounds with PMOO under dependent cross-flows

So far, the analysis only considered originally independent arrival flows. Now,
if we assume the cross-flow arrivals to be dependent, even with the PMOO, we

[August 8, 2022 at 15:04 –]

4.1 end-to-end delay bound 42

have to apply Hölder’s inequality. Such dependencies may be due to resource
sharing between cross-flows before they hit the flow of interest (foi), or simply
because the original data sources are already dependent, as, e.g., in an envi-
ronmental sensor network where the range of sensor nodes is overlapping and,
thus, an observed physical phenomenon is reported by several neighboring
nodes at the same time. Again, we start with tandem queues.

Proposition 4.5 (Tandem Queue with PMOO and Dependent Cross-Flows). If
all m flows are dependent, the PMOO yields

P(d(t) > T)

≤
t−1

∑
s0=0

E
[
ep1θA1(s0,t)

] 1
p1

·
(

t+T

∑
s1=s0

E
[
ep2 p3θA2(s0,t+T)

] 1
p3 E
[
e−p2θS1(s0,s1)

]
· · ·

·
t+T

∑
sl−1=sl−2

E
[
ep2 pl+1θAl(s0,t+T)

] 1
pl+1 · E

[
e−p2θSl−1(sl−2,sl−1)

]
·

t+T

∑
sn−1=sn−2

E
[
ep2 pm+1θAm(s0,t+T)

] 1
pm+1

· E
[
e−p2θSn−1(sn−2,sn−1)

]
E
[
e−p2θSn(sn−1,t+T)

]) 1
p2

such that

1
p1

+
1
p2

= 1,

1
p3

+ · · ·+ 1
pm+1

= 1.

Proof. See Appendix B.1.

For the special case of constant rate servers with rate Ci ≥ 0, i = 1, . . . , n,
Proposition 4.2 can be simplified to

P(d(t) > T)

(2.29),(3.22)
≤

t−1

∑
s0=0

E
[
ep1θA1(s0,t)

] 1
p1

(
m

∏
j=2

E
[
ep2 pj+1θAj(s0,t+T)

] 1
pj+1

(s0,t+T)
e−p2θCi∗ (t+T−s0)

) 1
p2

(4.5)
such that

1
p1

+
1
p2

= 1,

1
p3

+ · · ·+ 1
pn+1

= 1,

where we define Ci∗ := arg mini=1,...,n {Ci} .
For sink trees, we obtain the following bound on the delay violation proba-

bility.

[August 8, 2022 at 15:04 –]

4.2 numerical evaluation 43

Proposition 4.6 (Sink Tree with PMOO and Dependent Cross-Flows). If all n
cross-flows are dependent, the PMOO yields

P(d(t) > T)

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

] (
E
[
ep1θA2(s0,t+T)

]) 1
p1

·

 t+T

∑
s1=s0

E
[
e−p2θS1(s1,t+T)

]
E
[
ep2 p3θA3(s0,s1)

] 1
p3

· · ·
(

sn−3

∑
sn−2=s0

E
[
e−p2 p4···p2n−4θSn−2(sn−2,sn−3)

]
· E
[
ep2 p4···p2n−4 p2n−3θAn(s0,sn−1)

] 1
p2n−3

·
(

sn−2

∑
sn−1=s0

E
[
e−p2 p4···p2n−2θSn−1(sn−1,sn−2)

]
E
[
ep2 p4···p2n−2θAn+1(s0,sn−1)

]

· E
[
e−p2 p4···p2n−2θSn(s0,sn−1)

]) 1
p2n−2

. . .

1

p4

1

p2

,

such that
1
p1

+
1
p2

= 1,

...
1

p2n−1
+

1
p2n−2

= 1.

Proof. See Appendix B.2.

4.2 numerical evaluation

In this section, we evaluate and compare the delay bounds of sink trees and
tandem queues for different techniques and parameters. At the beginning, all
flows are assumed to be independent. At first, we investigate the impact of
the transient time horizon t on the bound and how it relates to the assumed
fractional Brownian motion traffic model. Then, we compare the SFA with
the PMOO, before taking a look at the sensitivity of the model with respect
to the fBm parameters. Furthermore, we consider the scaling behavior when
increasing the tree depth / tandem length. In the last experiment, we relax the
independence assumption and consider the case of dependent cross-flows as
well as mixed scenarios (the latter only for tandem queues).

For the arrival, we choose the fractional Brownian motion (fBm) arrival model
(Eqn. (3.12)):

A(s, t)
(3.12)
= λ · (t − s) + σ · Z(t − s) ,

with
E
[
eθA(s,t)

]
(3.13)
= eθλ(t−s)+ θ2σ2

2 (t−s)2H
.

[August 8, 2022 at 15:04 –]

4.2 numerical evaluation 44

1e-06

1e-05

1e-04

1e-03

1e-02

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

stationary
t=15
t=10
t=5
t=1

(a) SFA with H = 0.5.

1e-05

1e-04

1e-03

1e-02

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty t=15

t=10
t=5
t=1

(b) SFA with H = 0.9.

1e-06

1e-05

1e-04

1e-03

1e-02

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

stationary
t=15
t=10
t=5
t=1

(c) PMOO with H = 0.5.

1e-05

1e-04

1e-03

1e-02

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty t=15

t=10
t=5
t=1

(d) PMOO with H = 0.9.

Figure 4.5: Delay violation probability for the two-server sink tree and different t.

For H ∈ (0.5, 1), fBm exhibits a property called long-range dependence (LRD).
If not mentioned otherwise, throughout the experiments, we choose λ = 1,
σ2 = 1, and H = 0.7.

Given the continuous nature of fBm, the arrivals in Eqn. (3.12) are a continuous-
time process (Eqn. (2.2)) that has to be discretized in order to be applicable to
our discrete-time arrival model (cf. Eqn. (2.1)).

We proceed as in [CBL06]. Let τ > 0 be a discretization parameter and t ≥ 0.
Then, assuming a dynamic server and arrivals and service to be independent,
it can be shown for the delay bound that

P(d(t) > T) ≤
⌊ t

τ ⌋
∑
j=0

E
[
eθA(t−(j+1)τ,t)

]
E
[
e−θS(t−jτ,t+T)

]
.

The rest follows along similar lines as in the discrete-time case (see, e.g., [Bec16a,
pp. 30] for MGF performance bounds of continuous-time processes).

If not explicitly specified, by default, the cross-flows are assumed to be
independent and t is equal to 20. For the fBm arrivals, we fix λ = 1.0, σ = 1.0,
and H = 0.7. All servers are assumed to be work-conserving with constant
rate (we assume homogeneous sink trees and tandem queues) is denoted by
C ≥ 0. Further, all results are obtained by numerically optimizing θ > 0 and
the Hölder parameters pi > 1.

4.2.1 Impact of a finite time horizon

We compare the delay bounds for different time horizons t, applying the sink
tree bounds for SFA (Proposition 4.3) and PMOO (Proposition 4.4), respectively.
The results are depicted in Figure 4.5.

[August 8, 2022 at 15:04 –]

4.2 numerical evaluation 45

1e-08

1e-06

1e-04

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

SFA
PMOO

Figure 4.6: Comparison between delay violation probabilities using SFA and PMOO
(sink tree).

Table 4.1: Comparison between runtimes [s] using SFA and PMOO (sink tree).

Delay SFA PMOO

4 1.398 0.036

5 1.492 0.037

6 1.580 0.039

7 1.680 0.040

8 2.072 0.049

9 2.111 0.041

10 2.337 0.043

We observe that the delay bounds do not change significantly for larger t
when the Hurst parameter is H = 0.5 (Figure 4.5a and 4.5c) and rate C = 4.5.
Since for this particular H, the fBm traffic model is (σ, ρ)-bounded (Defini-
tion 3.2), we can also derive stationary bounds that hold for all 0 ≤ s ≤ t:

E
[
eθA(s,t)

]
(3.13)
= eθ

(
λ+θ σ2

2

)
(t−s)

= eθρA(θ)·(t−s)+θσA(θ), θ > 0,

where

σA(θ) = 0,

ρA(θ) = λ + θ
σ2

2
.

However, for H = 0.9 (Figure 4.5b and 4.5d), when the fBm traffic model
exhibits a long-range dependence, the delay bounds vary strongly for different
t and server rate C = 8.0. This indicates that, if one is aiming at transient bounds,
results obtained from a stationary analysis may be too conservative. The tandem
queue exhibit similar trends, for a numerical evaluation, see therefore Figure B.1
in Appendix B.3.

4.2.2 Comparison between SFA and PMOO

For a sink tree with two servers, we compare the delay bounds using SFA and
PMOO. To that end, we consider a two-server sink tree with server rate C = 7.0.

[August 8, 2022 at 15:04 –]

4.2 numerical evaluation 46

1e-09

1e-06

1e-03

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

lambda=1.2
lambda=1.0
lambda=0.8

(a) Mean arrival rate λ

1e-13

1e-10

1e-07

1e-04

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

sigma=1.2
sigma=1.0
sigma=0.8

(b) Standard deviation σ

1e-21

1e-14

1e-07

1e+00

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

hurst=0.9
hurst=0.7
hurst=0.5

(c) Hurst parameter H

Figure 4.7: Parameter sensitivity of fractional Brownian motion on the delay bounds
using PMOO (sink tree).

The results in Figure 4.6 indicate a significant gap in the delay bounds. While
the difference in the violation probability is about two orders of magnitude, in
the delay space, the PMOO bound exhibits an improvement of roughly 40%.
This is caused by the additional application of Hölder’s inequality, that is only
necessary in the SFA. Moreover, this additional parameter also significantly
increases the runtimes, as Table 4.1 shows for this particular scenario. Hence,
in the following experiments, we only use PMOO. For the tandem queue, we
observe similar results; see therefore Figure B.2 in Appendix B.3.

4.2.3 Parameter sensitivity of fractional Brownian motion

In this subsection, we investigate the impact of the fBm traffic model parameters
on the delay bounds. Therefore, for a three-server sink tree, we fixed the server
rates to c = 9.0. The resulting PMOO bounds are shown in Figure 4.7.

We see that, while all parameters clearly influence the outcome, the parameter
sensitivity significantly differs. As expected, it is evident that, at the same load,
the Hurst parameter H can be decisive whether the system suffers from long
queues (H = 0.9), or hardly sees any queueing effects (H = 0.5) (see Figure 4.7c).
For tandem queues we make similar observations, see therefore Figure B.3 in
Appendix B.3.

4.2.4 Scaling effects of PMOO

In this experiment, we focus on how the delay violation probability scales with
the number of servers for a delay of T = 4. For the sink tree, we keep the

[August 8, 2022 at 15:04 –]

4.2 numerical evaluation 47

2 3 4 5 6 7 8 9

Number of servers

V
io

la
tio

n
pr

ob
ab

ili
ty

5 × 10−6
10−5

5 × 10−5
10−4

5 × 10−4
10−3

5 × 10−3

(a) Sink tree and constant utilization at the last
server.

2 3 4 5 6 7 8 9 10 11 12

Number of servers

V
io

la
tio

n
pr

ob
ab

ili
ty

10−8

10−7

10−6

10−5

10−4

10−3

10−2

(b) Tandem queue and constant utilization at
each server.

Figure 4.8: Delay violation probability for different lengths using PMOO.

1e-13

1e-09

1e-05

1e-01

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

PMOODep
PMOO

Figure 4.9: Comparison between delay violation probabilities for independent and
dependent cross-flows using PMOO (sink tree).

utilization at the last server (since it is the server with the heaviest load in
a homogeneous sink tree, (n+1)λ

c) constant, i.e. we scale its capacity with the
number of flows. For the tandem queue, on the other hand, we choose the
parameters such that the utilization nλ

C is constant at each server.
The results in Figure 4.8 show that the delay bounds improve with the

number of servers. This improvement is due to statistical multiplexing gains
as the number of flows grows. It has been shown to scale with Ω(

√
n) [CS12]

which is supported by both Figure 4.8a and 4.8b.

4.2.5 Comparison between independent and dependent cross-flows

So far, all experiments considered the cross-flows to be independent. In this
last experiment, we now omit the independence assumption, i.e., we apply
Hölder’s inequality to the MGF of the cross-flows. The delay bounds for a sink
tree of three servers with server rate c = 9.0 are depicted in Figure 4.9.

As expected, the impact of dependence (and therefore Hölder’s inequality)
is strong. The delay violation probability is more than 9 orders of magnitude
higher compared to the independent case. This indicates the importance of
treating and, if possible, avoiding the invocation of Hölder’s inequality. We
observe similar results for the tandem queue, see Figure B.4 in Appendix B.3.

[August 8, 2022 at 15:04 –]

4.2 numerical evaluation 48

1e-12

1e-09

1e-06

1e-03

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

DEP
XDEP
FDEP
IND

Figure 4.10: Delay bound comparison for three servers with increasing degree of de-
pendence.

4.2.6 Mixed independence / dependence scenarios

In the previous experiments, we have seen that dependencies can be very
detrimental for the delay bounds. In this last experiment, we now investigate
a mixed scenario with some flows being dependent and others being inde-
pendent. More specifically, we use 3 servers in the tandem queue and 3 flows
correspondingly. We evaluate the (optimized) PMOO delay bounds for four
scenarios:

1. (IND) all flows are independent;

2. (DEP) all flows are dependent;

3. (XDEP) the cross-flows are dependent, but the foi is independent of them;

4. (FDEP) the foi is dependent with one of the cross-flows, but not with the
other one, the cross-flows are independent of each other.

The analytical derivation of the new scenarios XDEP and FDEP can be found
in Appendix B.4.

In this setting, we set the server rate to C = 8.0. The results are depicted in
Figure 4.10.

As expected, the cases with partial dependencies appear in the gap between
full dependence and independence, respectively. XDEP’s violation probability
is three orders of magnitude better than the full dependence for a delay bound
equal to 3. This gap increases over time. In the delay space, this leads to an
improvement of about 40%. Switching the dependence from dependent cross
flows to the dependence of the foi and one cross flow, we gain another approx.
25%. The independent case, on the other hand, outperforms the FDEP by far,
especially for larger delays.

The results suggest again that dependence leads to a high penalty in the
analysis. If, however, partial independence can be assumed, making use of this
property yields significantly better bounds. As we observe, not only the number
of dependent flows is important, but also their relation. Apparently, having a
dependence among the cross flows is worse for our analysis than between the
foi and one of the cross flows instead.

[August 8, 2022 at 15:04 –]

4.3 summary 49

4.3 summary

In this chapter, we have derived end-to-end delay bounds for sink trees and
tandem queues. It has been shown that sequential pay multiplexing only once
(seqPMOO) has to consider less stochastic dependencies, and therefore applies
less Hölder inequalities in the analysis. Further, our numerical experiments
with a fractional Brownian motion traffic model indicate that this leads to
significantly improved delay bounds.

[August 8, 2022 at 15:04 –]

5
D E A L I N G W I T H D E P E N D E N C E U S I N G P M O O F O R T R E E
N E T W O R K S

Results presented in this chapter are joint work with Anne Bouillard and Jens
Schmitt [BNS21, BNS22].

In the larger context of probabilistic end-to-end performance analysis, stochas-
tic dependencies play a significant role. In the previous chapter, we have seen
the sequential pay multiplexing only once (seqPMOO) analysis has no method-
pertinent dependencies (see also Chapter 4) for tandem queues and sink trees,
if we assume all arrivals and servers to be independent initially.

However, to the best of our knowledge, research in the field of non-nested or
overlapping interference has not yet been a focus in the SNC (with the notable
exception of [NS20a]). For instance, for a network with overlapping interference
as in Figure 5.1, state-of-the-art analysis still requires at least one application
of Hölder’s inequality (Eqn. (3.22)), even if we assume all external arrival
processes to be independent. This is also illustrated in Figure 5.2b (anticipating
some of the results from Section 5.3): method-pertinent dependencies force
the state-of-the-art SNC bounds to deteriorate significantly; in particular, it is
observable that, in comparison to the single-node case, even the scaling of the
delay bounds is not captured correctly anymore.

The overall goal of this chapter is therefore to unleash the power of the
PMOO principle in the SNC framework in order to reduce the gap between
simulations and bounds even in more complex and larger networks of queues.
To that end, we make the following contributions:

• We present a PMOO-based SNC end-to-end analysis for an extension
of tandems, so-called tree networks. It achieves zero method-pertinent
stochastic dependencies when external arrivals and service processes are
independent. In other words, if all input flows are assumed to be inde-
pendent, we can derive bounds without a single application of Hölder’s
inequality.

• We conduct an extensive numerical evaluation with respect to the accu-
racy of the new bounds for several traffic classes and different network
topologies.

5.1 tree network analysis

In this section, we derive a result enabling us to unleash the power of the PMOO
principle for the SNC when all arrival and service processes are originally
independent. In particular, this result is directly applicable to tree networks.

Let us start with an illustrative example and consider the overlapping tandem
in Figure 5.1. Let S1, S2, S3 be work-conserving servers with eponymous service
processes. Assume that for all t ≥ 0, tj is the start of the backlogged period (as
in Eqn. (2.15)) of server Sj before tj+1 (t for the last server). Further, we denote

50

[August 8, 2022 at 15:04 –]

5.1 tree network analysis 51

Figure 5.1: Overlapping tandem

the output of flow i at server Sj by Dj
i (for the output of the last server of a flow,

we omit the superscript). Mimicking the analysis in Section 2.6, yet, this time
for bivariate processes, we obtain

D1(t) + D3(t)− D1(t3)− D3(t3) ≥ S3(t3, t)

D2
1(t3) + D2

2(t3) + D2
3(t3)− D2

1(t2)− D2
2(t2)− D2

3(t2) ≥ S2(t2, t3)

D1
1(t2) + D1

2(t2)− D1
1(t1)− D1

2(t1) ≥ S1 (t1, t2) .

Since tj is the start of the backlogged period of server Sj, we have that Dj
i (tj) =

Aj
i(tj) for j = 1, 2. Using this yields

D1(t) + D3(t)− D2
1(t3)− D2

3(t3) ≥ S3(t3, t)

D2
1(t3) + D2

2(t3) + D2
3(t3)− D1

1(t2)− D1
2(t2)− A3(t2) ≥ S2(t2, t3)

D1
1(t2) + D1

2(t2)− A1(t1)− A2(t1) ≥ S1 (t1, t2) .

Summing all three inequalities and simplifying leads to

D1(t)+D2
2(t3)︸ ︷︷ ︸

≤A2(t3)

+ D3(t)︸ ︷︷ ︸
≤A3(t)

−A1(t1)− A2(t1)− A3(t2) ≥ S1 (t1, t2)+S2(t2, t3)+S3(t3, t).

Making use of causality (see also Eqn. (2.3)) and isolating D1(t) on the left-hand
side yields

D1(t) ≥ A1(t1) + S1 (t1, t2) + S2(t2, t3) + S3(t3, t)− A2(t1, t3)− A3(t2, t).

Moreover, we have by definition of t1 that

D1(t) ≥ D1(t1) = A1(t1).

Standard Bound

Simulations

0

10

20

30

1e-061e-041e-02

Violation probability

D
e

la
y

(a) Single-node case

Standard Bound

Simulations

0

10

20

30

40

50

1e-061e-041e-02

Violation probability

D
e

la
y

(b) Overlapping tandem

Figure 5.2: Stochastic delay bounds: Simulation results and SNC bounds (for traffic
with exponentially distributed increments and constant rate servers). For
more details, see Section 5.3.

[August 8, 2022 at 15:04 –]

5.1 tree network analysis 52

Combining both inequalities proves a dynamic server (Definition 3.4):

D1(t)

≥A1(t1) + [S1(t1, t2) + S2(t2, t3) + S3(t3, t)− A2(t1, t3)− A3(t2, t)]+

≥ inf
0≤s≤t

{
A1(s) +

[
inf

s≤t2≤t3≤t
{S1(s, t2) + S2(t2, t3) + S3(t3, t)− A2(s, t3)− A3(t2, t)}

]+}
=A1 ⊗ SPMOO

e2e (0, t),

where we define the end-to-end service process

SPMOO
e2e (s, t) :=

[
inf

s≤t2≤t3≤t
{S1(s, t2) + S2(t2, t3) + S3(t3, t)− A2(s, t3)− A3(t2, t)}

]+
.

(5.1)
Let us now formalize this observation for tandems. We denote the path of

flow fi, i = 1, . . . , m by
πi = (πi(1), . . . , πi(li)) ,

where li is defined as the length of the path of flow fi. If server Sj is on the path

of fi, we write j ∈ πi. Let Aj
i be the arrival process of flow fi at server Sj and, if

the successor of this flow is Sj+1, Dj
i = Aj+1

i its respective departure process.

For A1
i and Dπi(li)

i , we omit the superscripts and we define Dπi(1)−1
i := Ai for

all i = 1, . . . , m.

Theorem 5.1. Assume a tandem network with flows f1, . . . , fm and work-conserving
servers S1, . . . , Sn. Assume a flow of interest (foi) traversing it. By abuse of notation,
each server offers the service Sj(s, t), j = 1, . . . , n for 0 ≤ s ≤ t. Then, the foi sees the
dynamic server for all 0 ≤ t1 ≤ tn+1

SPMOO
e2e (t1, tn+1) =

[
inf

t1≤t2≤···≤tn≤tn+1

{
n

∑
j=1

Sj
(
tj, tj+1

)
−

m

∑
i=2

Ai

(
tπi(1), tπi(li)+1

)}]+
.

(5.2)

Proof. The proof formalizes the illustrative example above and is therefore
postponed to Appendix C.1.

Less formally, if we used the times 0 ≤ s ≤ t instead, we can rewrite it more
intuitively. Let us assume that π2(1) = 1, πi(1) > 1, πi(li) < n, i = 2, . . . , m − 1,
and πm(lm) = n. Then, this is equivalent to

SPMOO
e2e (s, t)

=

[
inf

s≤t2≤···≤tn≤t

{
S1 (s, t2) +

n−1

∑
j=2

Sj
(
tj, tj+1

)
+ Sn (tn, t)

−A2

(
s, tπ2(l2)+1

)
−

m−1

∑
i=3

Ai

(
tπi(1), tπi(li)+1

)
− Am

(
tπm(1), t

)}]+
.

The form of the leftover service in Theorem 5.1 is quite appealing, as the
indices for the service processes are just increased by 1, whereas for the arrivals,
we just have to consider the server index when entering the tandem and the
server index plus 1 when leaving the network. In other words, it contains all

[August 8, 2022 at 15:04 –]

5.1 tree network analysis 53

Figure 5.3: The L

the topological information. The only exceptions to this rule are the first (time
variable s) and last server (time variable t) of the tandem.

The above theorem can even be generalized to tree networks, a special case
of a feedforward network where we do not have any rejoining flows and where
we can define a unique successor to each server. In the following, we consider
another illustrative example, the L (Figure 5.3).

Assume that for all t ≥ 0, t3 is the start of the backlogged period of server
S3 before t, t1, (t2) the start of the backlogged period of Server S1(S2) before
t2(t3). We obtain

D1(t) + D3(t)− D1(t3)− D3(t3) ≥ S3(t3, t)

D2
1(t3) + D2(t3) + D2

3(t3)− D2
1(t2)− D2(t2)− D2

3(t2) ≥ S2(t2, t3)

D1
2(t2) + D1

3(t2)− D1
2(t1)− D1

3(t1) ≥ S1(t1, t2).

Since tj is the start of the backlogged period of server Sj, this is equivalent to

D1(t) + D3(t)− D2
1(t3)− D2

3(t3) ≥ S3(t3, t)

D2
1(t3) + D2(t3) + D2

3(t3)− A1(t2)− D1
2(t2)− D1

3(t2) ≥ S2(t2, t3)

D1
2(t2) + D1

3(t2)− A2(t1)− A3(t1) ≥ S1(t1, t2).

Summing all three inequalities and simplifying leads to

D1(t)+D2(t3)︸ ︷︷ ︸
≤A2(t3)

+ D3(t)︸ ︷︷ ︸
≤A3(t)

−A1(t2)− A2(t1)− A3(t1) ≥ S1(t1, t2)+S2(t2, t3)+S3(t3, t).

Making use of causality and isolating D1(t) on the left-hand side yields

D1(t) ≥ A1(t2) + S1(t1, t2) + S2(t2, t3) + S3(t3, t)− A2(t1, t3)− A3(t1, t).

Following along the lines for the overlapping tandem, this results in the end-to-
end service

SPMOO
e2e (s, t) =

 inf
s≤t3≤t,
0≤t1≤s

{S1(t1, s) + S2(s, t3) + S3(t3, t)− A2(t1, t3)− A3(t1, t)}

+

.

The important difference here is that t1 is not lower bounded by s in the
infimum. In general terms, if Sk is succeeded by Sj (in tree network, a server

[August 8, 2022 at 15:04 –]

5.2 performance bounds 54

can only have at most one successor), then we have tk ≤ tj as a constraint in the
infimum. We observe that this unleashed PMOO analysis takes “byways” into
consideration, whereas a previous stochastic network calculus analysis such as
the seqPMOO would calculate an output bound for the flows f2 and f3 at server
S2 and continue with a tandem analysis. However, this would result in

SseqPMOO
e2e =

[([
S1 − A2 ⊘ [S2 − A3]

+
]+

⊗ S3

)
− A3 ⊘ [S2 − A2]

+
]+

and hence has method-pertinent dependencies, since A2 and A3 appear twice
(see also dynamic priority assignment in Section 2.6). Theorem 5.2 can therefore
be used to generalize the results of [SZ06, SZM08, Bou+08] in deterministic
network calculus (DNC).

Theorem 5.2. Assume a tree network with flows f1, . . . , fm and work-conserving
servers S1, . . . , Sn. Assume a flow of interest (foi) f1 traversing the servers (π1(1), . . . , π1(l1))
inside the tree network. We denote by Sj• is the successor of Sj (successors are unique
for tree networks), j = 1, . . . , n and denote the indices of the time variables accordingly.
By abuse of notation, each server offers the service Sj(s, t), j = 1, . . . , n for 0 ≤ s ≤ t.
Then, the foi sees the dynamic server for all 0 ≤ tπ1(1) ≤ tπ1(l1)+1

SPMOO
e2e (t1, tπ1(l1)+1) =

[
inf

tj≤tj• , j=1,...,n

{
n

∑
j=1

Sj
(
tj, tj•

)
−

m

∑
i=2

Ai

(
tπi(1), tπi(li)•

)}]+
.

(5.3)

Proof. The proof is very similar to the one of Theorem 5.1. See also [BNS21].

5.2 performance bounds

With the end-to-end service in Theorem 5.1, we can now derive performance
bounds by unleashing PMOO. For the following theorem, we focus on the most
important performance metric, end-to-end bounds on the delay’s violation
probability. We generalize the results in Theorem 3.14 from the canonical
tandem to tree networks.

Theorem 5.3 (End-to-End Delay Bound under PMOO). Assume a tree network
with flows f1, . . . , fm and work-conserving servers S1, . . . , Sn. Assume a flow of interest
(foi) traversing the servers (π1(1), . . . , π1(l1)) inside the tree network. By abuse of
notation, each server offers the service Sj(s, t), j = 1, . . . , n for 0 ≤ s ≤ t. Let all
respective arrivals Ai, i = 1, . . . , m be independent and (σAi , ρAi)-bounded and all
servers, Si, i = 1, . . . , n, be independent and

(
σSj , ρSj

)
-bounded, j = 1, . . . , n. Let

θ > 0 and assume the stability condition

∑
i:j∈πi

ρAi(θ) < ρSj(−θ), for all j = 1, . . . , n.

Moreover, define

σtotal(θ) :=
m

∑
i=1

σAi(θ) +
n

∑
j=1

σSj(−θ),

the residual rate

Cres,j(−θ) := ρSj(−θ)− ∑
i ̸=1:j∈πi

ρAi(θ), (5.4)

[August 8, 2022 at 15:04 –]

5.2 performance bounds 55

and the minimum residual rate (on the foi’s path)

Cmin(−θ) := min
j∈π1

{
ρSj(−θ)− ∑

i ̸=1:j∈π1

ρAi(θ)

}
= min

j∈π1

{
Cres,j(−θ)

}
. (5.5)

In order to take servers into account that are not on the foi’s path, we also define:

W := ∏
j/∈π1

1

1 − e−Cres,j(−θ)
.

(If the tree network is a tandem, it holds that W = 1.) Then, bounds on the delay’s
violation probability are given by

1.
P(d(t) > T) ≤ e−θρA1 (θ)·Teθσtotal(θ)γ · W,

where
γ := ∏

j∈π1

1

1 − eθ(ρA1 (θ)−Cres,j(−θ))
.

2. If

T ≥ l1e−θ(Cmin(−θ)−ρA1 (θ))

1 − e−θ(Cmin(−θ)−ρA1 (θ))
,

then
P(d(t) > T) ≤ e−θCmin(−θ)·Teθσtotal(θ)ζ l1 · W,

where

ζ :=

(
1 + T

l1

)(1+ T
l1

)
(

T
l1

) T
l1

.

3. Let us assume that Cmin(−θ) = minj∈π1

{
ρSj(−θ)− ∑i ̸=1:j∈πi

ρAi(θ)
}

is a
unique minimum and attained for index j∗. Then,

P(d(t) > T) ≤ e−θCmin(−θ)·Teθσtotal(θ)
ψ

1 − eθ(ρA1 (θ)−Cmin(−θ))
· W,

where
ψ := ∏

j∗ ̸=j∈π1

1

1 − eθ(Cmin(−θ)−Cres,j(−θ))
.

Proof. The proof is given in Appendix C.1.

If we fix the delay violation probability to ε and solve for T, we obtain the
stochastic delay bounds

1.

T =
θσtotal(θ) + log

(1
ε

)
+ log(γW)

θρA1(θ)
.

[August 8, 2022 at 15:04 –]

5.3 numerical evaluation 56

Figure 5.4: Overlapping tandem

2.

T =
θσtotal(θ) + log

(1
ε

)
+ n · log(ζ) + log(W)

θCmin(−θ)
,

if

T ≥ l1e−θ(Cmin(−θ)−ρA1 (θ))

1 − e−θ(Cmin(−θ)−ρA1 (θ))
.

3.

T =

θσtotal(θ) + log
(1

ε

)
+ log

(
ψW

1−e
θ(ρA1

(θ)−Cmin(−θ))

)
θCmin(−θ)

,

if Cmin(−θ) = minj∈π1

{
ρSj(−θ)− ∑i ̸=1:j∈πi

ρAi(θ)
}

is a unique mini-
mum.

5.3 numerical evaluation

In this section, we compute stochastic delay bounds applying state-of-the-art
techniques as well as our unleashed PMOO. We perform several experiments for
different network topologies. For the arrivals, we assume three discrete-time
processes all adhering to the class of (σA, ρA)-constrained arrivals (see also
Section 3.1):

• Independent exponentially distributed arrival increments with parameter
λ,

• Independent Weibull distributed arrival increments with fixed shape
parameter k = 2 and scale parameter λ,

• discrete-time Markov-modulated On-Off (MMOO) arrivals.

The latter can be described by three parameters: the probability to stay in the
“On”-state in the next time step, pon, the probability to stay in the “Off”-state,
poff, and a constant peak rate πA, at which data is sent during the “On”-state.
For the service, we always assume work-conserving servers with a constant
rate.

5.3.1 Overlapping tandem

In our first numerical evaluation, we calculate stochastic delay bounds for a
standard example in network calculus when PMOO effects shall be illustrated:
the “overlapping tandem network” in Figures 5.4. These are compared to

[August 8, 2022 at 15:04 –]

5.3 numerical evaluation 57

simulation results. Of course, simulation results cannot be conducted with “ar-
bitrary scheduling”. Therefore, we implemented the simulations with shortest-
to-destination first (SDF) scheduling, since it can be used to characterize the
worst case [BN15]. To provide a strong “standard bound”, we combined several
techniques known from the literature, such as

• a sequential separated flow analysis (seqSFA), where we apply each net-
work calculus operation one after the other (see the discussion after
Theorem 3.13 in Section 3.3) in contrast to a simultaneous technique as in
Theorem 5.3 [BS13]:

SseqSFA
e2e = [S1 − A2]

+⊗ [S2 − ((A2 ⊘ S1) + A3)]
+⊗

[
S3 − A3 ⊘ [S2 − (A2 ⊘ S1)]

+
]+

;

• an SFA where the deconvolution of the performance bound and the con-
volution of the service processes is done in one step (see Theorem 3.14); it
is known that this avoids a sequencing penalty to some degree [Bec16a,
pp. 33];

• an analysis that convolves servers as much as possible before subtracting
cross-flows (sequential pay multiplexing only once (seqPMOO), see also
Section 2.6 and Chapter 4):

SseqPMOO,1
e2e =

[(
S1 ⊗ [S2 − A3]

+
)
− A2

]+
⊗
[
S3 − A3 ⊘ [S2 − (A2 ⊘ S1)]

+
]+

and

SseqPMOO,2
e2e = [S1 − A2]

+ ⊗
[(

[S2 − (A2 ⊘ S1)]
+ ⊗ S3

)
− A3

]+
;

In [NS20a], this is called “PMOO”, however, it is not fully able to pay
multiplexing only once, as it involves a sequential order of network
calculus operations. Clearly, a sequencing penalty is incurred again.

We then always pick the analysis that results in the best stochastic delay bound.
This set of state-of-the art bounding techniques is then compared to our new

PMOO based on Theorem 5.3. For this topology, our new PMOO leads to (see
Eqn. (5.1)):

SPMOO
e2e (s, t) =

[
inf

s≤t2≤t3≤t
{S1(s, t2) + S2(t2, t3) + S3(t3, t)− A2(s, t3)− A3(t2, t)}

]+
.

We calculate all three bounds and then pick the one with the tightest result. In
addition, we also provide simulation results with respective pointwise 95%-
confidence bands that are based on order statistics of a binomially distributed
sample [HM11] to see how the bounds relate to the empirical delay. The results
are provided in Figure 5.5.

We observe that the PMOO bound outperforms the standard bound signifi-
cantly. For example, for a delay violation probability of 10−3, the delay bound
is improved from 28 to 18, and for a violation probability of 10−7, from 45 to
31. These examples indicate an improvement of more than 35%.

These positive results are mainly caused by the fact that our unleashed
PMOO analysis is able to provide bounds without introducing any method-
pertinent dependencies. The standard bound, in contrast, suffers from such

[August 8, 2022 at 15:04 –]

5.3 numerical evaluation 58

Standard Bound

PMOO Bound

Simulations

0

20

40

1e-061e-041e-02

Violation probability

D
e

la
y

(a) Exponential distribution with λi = 1.5,
i = 1, 2, 3

Standard Bound

PMOO Bound

Simulations

0

10

20

30

40

50

1e-061e-041e-02

Violation probability

D
e

la
y

(b) Weibull distribution with λi = 1.0,
i = 1, 2, 3

Standard Bound

PMOO Bound

Simulations

0

10

20

30

40

1e-061e-041e-02

Violation probability

D
e

la
y

(c) MMOO with pon,i = 0.5, poff,i = 0.5,
πAi = 1.4, i = 1, 2, 3

Figure 5.5: Stochastic delay bounds and simulation results for the overlapping tandem
with constant rate servers and rates C1 = 2.5, C2 = 3.0, and C3 = 2.0.

Figure 5.6: Extended overlapping tandem

a dependency in the calculation and, consequently, needs to apply Hölder’s
inequality. Furthermore, it also potentially loses accuracy due to the sequencing
penalty.

In comparison, we see that the gap between simulation results and bounds is
considerably reduced and the scaling of the delay in the simulations is captured
well (getting closer to single-node results again). Recalling that Figure 5.5a
without the new bound has been used at the beginning of this chapter to
illustrate that the known SNC gap will widen too much, we now provide a new
prospect for this again.

5.3.2 Extended overlapping tandem

In the next experiment, we generalize the case of an overlapping tandem
by varying its lengths while keeping the interference structure (Figure 5.6).

[August 8, 2022 at 15:04 –]

5.3 numerical evaluation 59

Standard Bound

PMOO Bound

Simulations
0

50

100

150

200

4 6 8 10 12

Number of servers

D
e

la
y

(a) Exponential distribution with λi = 2.0

Standard Bound

PMOO Bound

Simulations

0

50

100

150

4 6 8 10 12

Number of servers

D
e

la
y

(b) Weibull distribution with λi = 0.7

Standard Bound

PMOO-AC

Simulations

0

25

50

75

100

4 6 8 10 12

Number of servers

D
e

la
y

(c) MMOO with pon,i = 0.5, poff,i = 0.5,
πAi = 1.0

Figure 5.7: Stochastic delay bounds for the extended overlapping tandem under con-
stant rate servers with rates Ci = 2.0 for i = 1, . . . , 13.

Here, the standard bound only includes the sequential and simultaneous SFA
approaches:

SseqSFA
e2e

=S1,l.o. ⊗ S2,l.o. ⊗ S3,l.o. ⊗ S4,l.o. ⊗ · · · ⊗ Sn−1,l.o. ⊗ Sn,l.o.

= [S1 − A2]
+ ⊗ [S2 − (A2 ⊘ S1) + A3]

+ ⊗
[
S3 −

(
A3 ⊘ [S2 − A2 ⊘ S1]

+
)
+ A4

]+
⊗
[

S4 −
(

A4 ⊘
[
S3 − A3 ⊘ [S2 − A2 ⊘ S1]

+
]+)

+ A5

]+
⊗ · · ·

⊗
[
Sn−1 −

(
An−1 ⊘

[
Sn−2 − An−2 ⊘ [Sn−3 − · · · A2 ⊘ S1]

+
]
+ An

)]+
⊗
[
Sn −

(
An ⊘

[
Sn − An ⊘ [Sn − · · · A2 ⊘ S1]

+
]
+ An+1

)]+
.

The number of possible (combinations of) network calculus operations in the
seqPMOO grows exponentially with the number of servers and, therefore, is
computationally prohibitive.

We compute stochastic delay bounds for a fixed violation probability of 10−6.
The results are shown in Figure 5.7.

While the standard bound explodes in the number of servers (we have only
included the results from 3 to 5 servers), the new technique scales significantly
better. This is mainly due to the fact that the SFA leads to the application of
n − 1 Hölder inequalities for an overlapping tandem of size n, whereas the new
PMOO does not incur any method-pertinent dependencies in the analysis of
this topology.

[August 8, 2022 at 15:04 –]

5.3 numerical evaluation 60

Table 5.1: Runtimes [s] for the extended overlapping tandem (exponential distribution).

Tandem length Standard bound PMOO bound

3 4.846 0.012

4 182.397 0.012

5 8540.171 0.027

6 · 0.021

7 · 0.022

8 · 0.016

9 · 0.0215

10 · 0.023

11 · 0.023

12 · 0.025

Figure 5.8: Tree network

Not only does this lead to tighter performance bounds, it also impacts run-
times significantly as it reduces an n-dimensional non-linear optimization
problem (one θ and n − 1 Hölder parameters) to a 1-dimensional optimization
problem.1 We present and discuss only the results for the exponential distri-
bution (Table 5.1), results for the other distributions are in the same orders
of magnitude. Specifically, for the standard bound, runtimes increase quickly
from 4.8 seconds (3 servers) over 3 minutes (4 servers) to almost 2.5 hours (5
servers). On the other hand, PMOO did not take longer than 0.027 seconds in
all examples even though we have to compute 3 bounds.

5.3.3 Case study: tree network

A typical network calculus analysis consists of three separate sequential steps:

1. Reducing the network to a tandem that is traversed by the flow of interest
(foi), by invoking output bounds.

2. Reducing the tandem to an end-to-end server that represents the complete
system.

3. Computation of performance bounds.

1 In our numerical experiments, we apply a grid search followed by a downhill simplex algorithm
to optimize the parameters. For more details see Chapter 8.

[August 8, 2022 at 15:04 –]

5.3 numerical evaluation 61

Standard Bound

PMOO Bound

Simulations

0

20

40

60

80

1e-061e-041e-02

Violation probability

D
e

la
y

(a) Exponential distribution with λi = 2.0

Standard Bound

PMOO Bound

Simulations

0

10

20

30

40

50

1e-061e-041e-02

Violation probability

D
e

la
y

(b) Weibull distribution with λi = 0.67

Standard Bound

PMOO Bound

Simulations

0

10

20

30

1e-061e-041e-02

Violation probability

D
e

la
y

(c) MMOO with pon,i = 0.5, poff,i = 0.5,
πAi = 1.0

Figure 5.9: Stochastic delay bounds and simulation results for the tree network with
constant rate servers and rates Ci = 2.0, i = 1, . . . , 4.

It is already known that combining the last two steps can lead to tighter
performance bounds [Bec16a, pp. 33]. However, to the best of our knowledge,
simultaneously performing all three steps, as in the unleashed PMOO, has not
been done before in SNC. The following case study shall mainly investigate the
benefit of this.

To that end, we consider the tree network in Figure 5.8. Standard SNC
techniques first compute the output bounds of flows 3 and 4 at server 2 in order
to compute the residual service at servers 3 and 4:

SseqSFA
e2e

= [S1 − A2]
+ ⊗ [S3 − (A3 + A4)⊘ S2]

+

⊗
[

S4 −
((

A4 ⊘ [S2 − A3]
+
)
⊘
[
S3 −

((
A1 ⊘ [S1 − A2]

+
)
+
(

A3 ⊘ [S2 − A4]
+
))]+)]+

.

This incurs again method-pertinent dependencies and therefore applications of
Hölder’s inequality. The application of Theorem 5.3 allows us to circumvent
these dependencies. In contrast, state-of-the-art analysis using SFA needs three
applications of Hölder’s inequality and seqPMOO requires one, respectively:

SseqPMOO
e2e

= [S1 − A2]
+ ⊗

[([
S3 − A3 ⊘ [S2 − A4]

+
]+

⊗ S4

)
−
(

A4 ⊘ [S2 − A3]
+
)]+

.

The results are shown in Figure 5.9. Similar to the results for the overlap-
ping tandem, we observe that the unleashed PMOO considerably improves

[August 8, 2022 at 15:04 –]

5.4 summary 62

delay bounds. Again, we are able to achieve a similar scaling compared to
the simulation results, in contrast to the standard bound. Further, while the
state-of-the-art analysis requires an optimization of up to 4 parameters (three
Hölder and θ), the unleashed PMOO only has θ to optimize, substantially
improving the runtime.

5.4 summary

We have presented a new network analysis method that unleashes the pay
multiplexing only once (PMOO) principle in the stochastic network calculus.
Equipped with this, it is now possible to calculate rigorous probabilistic per-
formance bounds for tree networks without incurring any method-pertinent
stochastic dependencies. In numerical evaluations, we observed that we are
largely successful in reducing the known gap between simulations and bounds,
and, at least, closely capture the scaling of the performance bounds.

While our method can benefit from improvements based on a preliminary
network transformation (e.g., flow prolongation [NS20a]) at no cost, it might
also be possible to integrate h-mitigators (Chapter 7 below).

[August 8, 2022 at 15:04 –]

6
D E A L I N G W I T H D E P E N D E N C E U S I N G N E G AT I V E
D E P E N D E N C E

Results presented in this chapter are joint work with Jens Schmitt and Florin
Ciucu [NSC19a, NSC19b].

In Chapter 5, we have presented a pay multiplexing only once (PMOO)-based
analysis to obtain performance bounds for tree networks. Analyzing more
general networks, e.g., feedforward networks however, requires to consider also
dependent flows at some points in the network, as the sharing of a resource
clearly has a mutual impact on the flows’ output behavior. Therefore, if we want
to obtain the moment-generating function (MGF) of aggregated, yet dependent
arrival processes A1(s, t) and A2(s, t), we typically invoke Hölder’s inequality
(Eqn. (3.22)): Let θ > 0 and let p, q > 1 be Hölder conjugates. Then,

E
[
eθ(A1(s,t)+A2(s,t))

]
≤ E

[
epθA1(s,t)

] 1
p · E

[
eqθA2(s,t)

] 1
q

, for all 0 ≤ s ≤ t.

Hölder’s inequality is completely oblivious of the actual dependence structure,
thus it often leads to very conservative bounds. Furthermore, it places the
burden of an additional, nonlinear parameter for each application to optimize.

Dependence of arrivals does not have to be a negative property per se. Taking
advantage of the information about the dependence structure to improve upon
the bounds has been attempted before. In [DWS15, Don17], the functional
dependence is estimated using a copula-based approach. In our work, we
investigate a simpler alternative, using the independent scenario as an upper
bound. To that end, we rely on a characteristic called negative dependence. We
explain the main idea with the help of the following, simplistic example.

Consider a single time slot assuming two arrival processes, A1 and A2, that
are multiplexed at one server. Both arrivals send one packet, each indepen-
dently with probability p ∈ (0, 1), and the server serves one packet but strictly
prioritizes A2. Clearly, their two outputs, D1 and D2, are strongly dependent, as
an arrival of the prioritized flow forces the other one to wait in the queue. Sim-
ply put, if one flow gets a larger share of the server’s capacity, the other is more
likely to have less output. For the joint distribution of the output, we have by as-
sumption for the departures both being equal to 1, that P(D1 = 1, D2 = 1) = 0.
On the other hand, we compute for the product distribution by a simple con-
ditioning, that P(D1 = 1) · P(D2 = 1) = (p · (1 − p)) · (1 − p) > 0. Hence, if
we deliberately forego the knowledge about the dependence structure, we
only obtain an upper bound, yet, it allows us to consider just the marginal
distributions.

outline The rest of the chapter is structured as follows. Section 6.1 intro-
duces the necessary background on negative dependence. Section 6.2 contains
the main results obtained in two case studies assuming a conjecture on de-
pendence. The numerical evaluation is presented in Section 6.3. Section 6.4
discusses the chapter.

63

[August 8, 2022 at 15:04 –]

6.1 negative dependence and acceptable random variables 64

6.1 negative dependence and acceptable random variables

As we discussed in the introduction, we would like to bound the joint distri-
bution of two random variables by their respective product distribution. This
concept was captured in the 1960s by Lehmann and his notion of negative
dependence.

Definition 6.1 (Negative Dependence [Leh66]). A finite family of random
variables {X1, . . . , Xn} is said to be negatively (orthant) dependent (ND) if the two
following inequalities hold:

P(X1 ≤ x1, . . . , Xn ≤ xn) ≤
n

∏
i=1

P(Xi ≤ xi) ,

P(X1 > x1, . . . , Xn > xn) ≤
n

∏
i=1

P(Xi > xi) ,

for all (x1, . . . , xn) ∈ Rn.

The following lemma shows how this characteristic can be used directly in
the context of MGFs.

Lemma 6.2 ([JDP83, Sun11]). Let θ > 0. If {X1, . . . , Xn} is a set of ND random
variables, then

E
[
eθ ∑n

i=1 Xi
]
≤

n

∏
i=1

E
[
eθXi

]
. (6.1)

In other words, treating the aggregate of ND random variables as if they
were independent yields an upper bound for the respective MGFs. Random
variables that suffice Eqn. (6.1) are called “acceptable” [AKV08], but are studied
in an unrelated context.

Proving that random variables are negatively dependent is a challenging
task. Some results exist, e.g., the multinomial and multivariate hypergeometric
distribution are ND, or the “Zero-One Lemma” [DR98], which proves the
property for X1, . . . , Xn ∈ {0, 1} such that ∑i Xi = 1. This means that the
output processes in the example at the beginning of this chapter are indeed ND.
Furthermore, it has been shown a related result in [JDP83] that a permutation
distribution, and therefore random sampling without replacement, is ND. This
result has been used to prove near-perfect load balancing for switches called
“Sprinklers” [Din+14]. In our context, this provides a result for a single time slot.
In the following, we confine ourselves to conjecture this property for intervals.

Conjecture 6.3. Let two independent flows with according arrival processes A1 and A2

traverse a work-conserving server with finite capacity. Further, both arrival processes
have iid increments.

Then, we assume their respective output processes D1(s, t) and D2(s, t) to be ND
for all 0 ≤ s ≤ t.

We do not have a proof but Conjecture 6.3 held in all our experiments using
106 samples to estimate the joint and product (complementary) cumulative
distribution functions (CDFs), respectively: For two flows at one server, we tried
over 5500 different combinations of intervals, x1, x2, (as in the CDF), utilizations

[August 8, 2022 at 15:04 –]

6.2 independence as a bound 65

Figure 6.1: Diamond network

(between 0.4 and 0.9), and random packet sizes that were drawn from either
exponential, Weibull, Gumbel, or log-normal distribution.

The focus on the same interval for both process is important, as the following,
admittedly simplifying, argument suggests: Assume the high priority (HP) flow
to send a lot of packets consecutively, i.e., the low priority (LP) flow has no
output in this period and queues all its packets. Then, it is more likely for the
LP flow to have outputs when the HP flow stops sending, as it is more likely
for it to have queued packets.

6.2 independence as a bound

In this section, we investigate two case studies to show in which part of the
analysis we exploit the negative dependence.

In the following, we consider the flow f1 to be the flow of interest (foi) whose
delay we stochastically upper bound. All arrival processes Ai are assumed to be
discrete time and to have iid increments and all servers Sj are work-conserving
and provide a constant rate Cj ≥ 0. To simplify notation, we denote again by

Dj
i the output of flow i at server Sj.

6.2.1 Diamond network

In this case study, we consider the topology in Fig. 6.1. Assume the foi to have
the lowest priority and f3 to have the highest priority. Moreover, we assume the
rates of S2 and S3, C2 and C3, to be equal. By SNC literature [CBL06, Fid06], the
end-to-end service provided for the flow of interest, also known as the network
service curve, can be described by Se2e = SseqPMOO

e2e = SseqSFA
e2e with

Se2e =
[
S1 −

(((
A2 ⊘ [S4 − A3]

+
)
⊘ S2

)
+ ((A3 ⊘ S4)⊘ S3)

)]+
.

Since Conjecture 6.3 is made on output processes, we postpone the application
of the output bound in Eqn. (2.21) by keeping the exact output at first. That is,
we start with

SND
e2e =

[
S1 −

(
D2

2 + D3
3
)]+

, (6.2)

[August 8, 2022 at 15:04 –]

6.2 independence as a bound 66

use then the conjecture to bound the MGF of the aggregate by their product
(Eqn. (6.1)), and apply the output bound in a final step.

The probability that the delay process d(t) exceeds a value T ≥ 0 is upper
bounded by

P(d(t) > T)
(3.26)
≤

t−1

∑
t0=0

E
[
eθA1(t0,t)

]
E
[
e−θSe2e(t0,t+T)

]
(6.2)
=

t−1

∑
t0=0

E
[
eθA1(t0,t)

]
E
[

e−θ[S1−(D2
2+D3

3)]
+
(t0,t+T)

]

≤
t−1

∑
t0=0

E
[
eθA1(t0,t)

]
e−θC1(t+T−t0) E

[
eθ(D2

2+D3
3)(t0,t+T)

]
, (6.3)

where we used Theorem 3.9 in the first inequality. Since the flows f2 and f3

share the server S4, their according output processes D4
2 and D4

3 are dependent
and, as a consequence, D2

2 and D3
3, as well (note that we assumed C2 = C3).

However, by the conjecture above, we assume that the resource sharing at S4

indicates that the dependence on [t0, t + T] is negative which, in turn, is the
reason why we upper bound their joint MGF by the product of the marginal
MGFs.

This can be interpreted as if we analyzed a new system, where the server
S4 would be split into two servers. That is, one provides the same service as
the original (for the high priority flow f3), and the other provides the leftover
service [S′

4 − A′
3]
+ , where S′

4 has the same service rate as S4 and A′
3 is a new

arrival process, but with the same distribution as A3.
Hence, the second factor is upper bounded by

E
[
eθ(D4

2+D4
3)(t0,t+T)

]
≤ E

[
eθD4

2(t0,t+T)
]

E
[
eθD4

3(t0,t+T)
]

≤ E
[
eθ(A2⊘[S4−A3]

+)(t0,t+T)
]

E
[
eθ(A3⊘S4)(t0,t+T)

]
.

Further assuming all Ai to be (σA, ρA)-bounded yields a closed-form for the
delay bound under stability:

P(d(t) > T) ≤ eθ((ρA2 (θ)+ρA3 (θ)−C1)T+σ1(θ)+σA2 (θ)+2σA3 (θ))

1 − eθ(ρA1 (θ)+ρA2 (θ)+ρA3 (θ)−C1)

· 1

1 − eθ(ρA2 (θ)−C2)
· 1

1 − eθ(ρA3 (θ)−C3)

· 1

1 − eθ(ρA2 (θ)+ρA3 (θ)−C4)
· 1

1 − eθ(ρA3 (θ)−C4)
.

For detailed calculations we refer to Appendix D.1. For the sake of a uniform
presentation, we bound all sums by the geometric series instead of the integral
bound as in Theorem 3.9.

In contrast, standard techniques proceed at Eqn. (6.3) by applying the output
Bound Eqn. (2.21) immediately and continue with Hölder’s inequality to deal
with the dependence.

[August 8, 2022 at 15:04 –]

6.2 independence as a bound 67

Figure 6.2: The L

6.2.2 The L

In this case study, we analyze the topology in Fig. 6.2. The foi has the lowest
priority and f2 the highest. Similarly to Subsection 6.2.1, we assume the outputs
processes of f2 and f3 to be ND, based on Conjecture 6.3. Here, the end-to-end
service is

SseqPMOO
e2e =

[(
[S1 − (A2 ⊘ S3)]

+ ⊗ S2

)
−
(

A3 ⊘ [S3 − A2]
+
)]+

.

Again, we postpone the output bounding and start with

SND
e2e =

[([
S1 − D3

2
]+ ⊗ S2

)
− D3

3

]+
. (6.4)

The crucial difference is that, in order to obtain a bound on foi’s delay, the
min-plus convolution (Eqn. (3.14)) has to be applied to the service processes of
S1 and S2 forcing us to analyze the output processes at different intervals:

P(d(t) > T)
(3.26)
≤

t−1

∑
t0=0

E
[
eθA1(t0,t)

]
E
[
e−θSe2e(t0,t+T)

]
(6.4)
=

t−1

∑
t0=0

E
[
eθA1(t0,t)

]
E
[

e−θ
[(
[S1−D3

2]
+⊗S2

)
−D3

3

]+
(t0,t+T)

]

≤
t−1

∑
t0=0

E
[
eθA1(t0,t)

] t+T

∑
t1=t0

E
[

eθD3
3(t0,t+T)e−θ[S1−D3

2]
+
(t0,t1)e−θS2(t1,t+T)

]

≤
t−1

∑
t0=0

E
[
eθA1(t0,t)

] t+T

∑
t1=t0

e−θC1·(t1−t0)e−θC2·(t+T−t1) E
[
eθD3

3(t0,t+T)eθD3
2(t0,t1)

]
,

where we used the Union bound for each application of the convolution /
deconvolution. This scenario is not covered by Conjecture 6.3 (see also the
discussion at the end of Section 6.1). Our workaround is to leverage the mono-
tonicity of D3

2:

E
[
eθD3

3(t0,t+T)eθD3
2(t0,t1)

]
≤ E

[
eθD3

3(t0,t+T)eθD3
2(t0,t+T)

]
.

The rest of the analysis employs similar techniques as for the diamond network.
See also Appendix D.1. Under the assumption of (σA, ρA)-bounded arrivals,

[August 8, 2022 at 15:04 –]

6.3 numerical evaluation 68

Standard Bound

Independence Bound

Simulations

0

20

40

60

1e-061e-041e-02

Violation probability
D

e
la

y

Figure 6.3: Stochastic delay bounds for the diamond network
(λ1 = 7.4, λ2 = 7.7, λ3 = 6.3, C1 = 0.6, C2 = C3 = 5.5, C4 = 1.5).

we obtain again a closed form for a bound on the delay’s violation probability
under stability:

P(d(t) > T) ≤ eθ((ρA2 (θ)+ρA3 (θ)−min{C1,C2})·T+σA1 (θ)+2σA2 (θ)+σA3 (θ))

1 − eθ(ρA1 (θ)+ρA2 (θ)+ρA3 (θ)−min{C1,C2})

· 1

1 − eθ(ρA2 (θ)−C3)
· 1

1 − eθ(ρA2 (θ)+ρA3 (θ)−C3)
· 1

1 − e−θ|C1−C2|
.

6.3 numerical evaluation

We present the results of a numerical evaluation for both case studies. We
ran 104 Monte-Carlo simulations to sample the parameters for different server
rates and packet sizes, the latter sampled from an exponential distribution. The
scenarios are then filtered to ensure a utilization ∈ [0.5, 1).

6.3.1 Quality of the bounds

Diamond Network: This topology, after above the mentioned filtering, yields
485 remaining scenarios, of which 371 are improved. The fact that not all are
improved despite the avoidance of Hölder’s inequality can be explained as
follows: In the analysis, the Union bound is applied after Hölder’s inequality.
The exponentiation before the summing followed by a square root can have a
“mitigating” effect. We exploit a similar observation in Chapter 7.

We also measured the extent of the improvement by computing the ratio of
the delay violation probability of the standard approach over the “independence
bound”:

Standard bound
Independence bound

. (6.5)

Clearly, values above 1 are desirable. Here, we obtain a median improvement
of 6.04. In Fig. 6.3, we depict the delay bounds for specific parameters.

The L: For this topology, we expect a weaker performance, as our approach
using independence as a bound requires the additional step of extending the
interval of one output process. The numerical results confirm this expectation:
Out of the 729 scenarios, only half of them (384) yield a performance gain

[August 8, 2022 at 15:04 –]

6.4 discussion 69

Standard Bound

Independence Bound

PMOO Bound

Simulations

0

20

40

1e-061e-041e-02

Violation probability
D

e
la

y

Figure 6.4: Stochastic delay bounds for the L

(λ1 = 2.8, λ2 = 3.4, λ3 = 5.1, C1 = 1.1, C2 = 7.7, C3 = 6.6).

over the standard bound. Moreover, in contrast to the diamond network, we
can directly apply the unleashed pay multiplexing only once (PMOO) from
Chapter 5 for trees. The two bounds (independence bound and PMOO) exhibit
only very small gaps. Given that the PMOO has a rigorous proof (Theorem 5.2),
this gives numerical evidence that the independence bound could also be valid.
The median of the improvement ratio confirms this, being relatively close to 1
(1.27). Again, we show the delay bounds for fixed parameters (Fig. 6.4).

6.3.2 Computation runtime

Our proposed approach does not only often substantially improve the bounds
but it also has a much lower computation complexity than the standard ap-
proach. The reason is that the latter relies on an additional Hölder parameter.
The optimizations are conducted using a grid search followed by a downhill
simplex algorithm. The improvement ratios are in the median 337.5 (1.62 sec
compared to 0.0048 sec) for the diamond scenario and 458.1 for the L (1.42
sec compared to 0.0031 sec). These improvements due to the reduction of the
optimization parameters indicates a significant potential for an analysis of
larger networks, as the optimization step in the MGF-based SNC can severely
limit its scalability.

6.4 discussion

In this chapter, we found interesting results indicating that by using indepen-
dence as a bound, one can often times improve the delay bound while also
speeding up the runtime significantly. Obviously, the crucial next step is to
find scenarios in which the conjecture can be proved rigorously. One potential
technique might be to use the coupling method [Tho00, Lin02], as it is can be
applied to derive relations between tail probabilities.

[August 8, 2022 at 15:04 –]

Part III

E N D - T O - E N D A N A LY S I S

[August 8, 2022 at 15:04 –]

7
h - M I T I G AT O R S

Results presented in this chapter are joint work with Jens Schmitt and Malte
Schütze [NS18, NSS19].

Typically, a DNC/SNC network analysis proceeds along the following steps:

1) Reducing the network to a tandem of servers traversed by the flow of
interest (foi) by invoking the output bound calculation to characterize
cross-traffic flows at the servers where they join the foi.

2) Reducing the tandem of servers traversed by the foi to a single server
representing the whole system.

3) Calculating the delay bound of the foi at the single server representing
the whole system.

Most of the existing NC literature has mainly focused on steps 2) and 3). In
DNC, step 1) has seen some advanced treatment recently [BNS17a], but in SNC
it has been largely neglected in the sense that no work beyond the standard
output bound calculation was invested. In contrast to this, we focus on step
1) and, in particular, try to improve the SNC output bound calculation in this
chapter. As the output bound calculation has to be invoked numerous times
in step 1), we believe its accuracy to be key in larger network analyses. For
example: assume a full binary tree of height h where each node represents a
server and each of these servers has an arrival flow that is transmitted to the
sink; let the foi be starting from one of the leaf nodes (see also Figure 7.1), then
the number of output bound calculations is 2h − h − 1, whereas we only need to
invoke the delay bound calculation once (in step 3)). Thus, any improvement in
the output bound calculation pays off tremendously in larger network analyses.

In this chapter, we present a modification of the MGF-based SNC that miti-
gates the Union bound’s effect in the output bound calculation. It consists of
the application of Jensen’s inequality via a convex function h just before the
invocation of the Union bound and does not impose any additional assump-
tions. It is thus minimally invasive and, using the power function for h, all
existing results and procedures of the SNC are literally still applicable while, as
we see below, it improves the performance bounds. In fact, we prove this new
bound with the power function, the so-called “power-mitigator”, to be always
at least as good as the state-of-the-art method. Evaluations in a very simple
heterogeneous two-server setting show that it can improve the delay’s violation
probability already by a factor of up to 478.9.

It comes, however, at the price of an additional parameter per invocation of
Jensen’s inequality. Thus, we trade higher computational effort in the optimiza-
tion of these parameters for improved bounds. However, as we also show this
effort is moderate if the optimization is done carefully.

In [NSS19], we also investigate an alternative h-mitigator using the exponen-
tial function. Yet, it does not lead to an improvement of the SNC analysis.

71

[August 8, 2022 at 15:04 –]

7.1 new output bound calculation 72

Figure 7.1: Full binary sink tree with seven nodes.

outline The rest of the chapter is structured as follows: In Section 7.1, we
present our new output bound calculation and prove its validity. A numerical
evaluation is given in Section 7.2: we compare output bounds for a single server
and delay bounds for a two-server setting as well as a fat tree topology with the
current state-of-the-art method. In Section 7.3, we prove that Jensen’s inequality
with the power function cannot be applied directly to delay bounds. Section 7.4
summarizes the chapter.

7.1 new output bound calculation

In this section, we derive our new approach to compute the MGF-output bound.
Furthermore, we apply this idea to (σ, ρ)-bounded arrivals and service.

7.1.1 Insertion of Jensen’s inequality

The standard approach to bound the output-MGF (Theorem 3.12) is as follows:

E
[
eθD(s,t)

] (3.21)
≤ E

[
eθA⊘S (s,t)

]
=E

[
eθ sup0≤τ≤s{A(τ,t)−S(τ,s)}

]
≤

s

∑
τ=0

E
[
eθ(A(τ,t)−S(τ,s))

]
, (7.1)

[August 8, 2022 at 15:04 –]

7.1 new output bound calculation 73

where the sup{·} is always less than or equal to the sum since we have only
non-negative terms. Eqn. (7.1) is similar to the application of the Union bound1,

P

(
sup

i=1,...,n
{Xi} > a

)
(3.28)
≤

n

∑
i=1

P(Xi > a) .

The idea in the following is to insert Jensen’s inequality to mitigate the
inaccuracy imposed by Eqn. (7.1). Therefore, we call this approach in the fol-
lowing “h-mitigator”. Nonetheless, this approach is able to preserve end-to-end
analyses for certain functions h, as we show in the subsequent Subsection 7.1.2.

Theorem 7.1 (Jensen’s Inequality). Suppose that h is a differentiable convex function
on R and let X ∈ L1. Then

h(E[X]) ≤ E[h(X)] . (7.2)

Proof. See, e.g., [Nel95, pp. 176].

This enables us to prove a new output bound.

Proposition 7.2 (h-Mitigator). Let hp : R+ → R+ be a differentiable, strictly
increasing, and convex function with parameter p over a set P ⊂ R.

1. It holds that

E
[
eθD(s,t)

]
≤ inf

p∈P

{
h−1

p

(
s

∑
τ=0

E
[

hp

(
eθ(A(τ,t)−S(τ,s))

)])}
. (7.3)

2. If we additionally assume that hp is the identity function for p̄ ∈ P, i.e.,

h p̄(x) = x, ∀x ≥ 0, (7.4)

then this bound is always at least as good as the standard approach in Eqn. (7.1).

Proof. We know by Jensen’s inequality that

E
[
eθD(s,t)

] (3.21)
≤ E

[
eθ sup0≤τ≤s{A(τ,t)−S(τ,s)}

]
(7.2)
≤ inf

p∈P

{
h−1

p

(
E
[

hp

(
eθ sup0≤τ≤s{A(τ,t)−S(τ,s)}

)])}
= inf

p∈P

{
h−1

p

(
E

[
sup

0≤τ≤s
hp

(
eθ(A(τ,t)−S(τ,s))

)])}

≤ inf
p∈P

{
h−1

p

(
s

∑
τ=0

E
[

hp

(
eθ(A(τ,t)−S(τ,s))

)])}
,

(7.5)

1 For probability bounds such as the backlog or the delay, it is even equivalent to the Union bound,
as

P

(
sup

i=1,...,n
Xi > a

)
(3.28)
≤

n

∑
i=1

P(Xi > a)
(3.3)
≤ e−θa

n

∑
i=1

E
[
eθXi

]
⇔ P

(
sup

i=1,...,n
Xi > a

)
(3.3)
≤ e−θa E

[
sup

i=1,...,n
eθXi

]
(7.1)
≤ e−θa

n

∑
i=1

E
[
eθXi

]
Therefore, we call the inequality in Eqn. (7.1) in the following “quasi-Union bound.”

[August 8, 2022 at 15:04 –]

7.1 new output bound calculation 74

Figure 7.2: One server topology.

where we used that strictly increasing functions on R always have an inverse in
the second line and the quasi-Union bound in the last inequality. This proves
the first part of the proposition.

For the second part, we simply observe

inf
p∈P

{
h−1

p

(
s

∑
τ=0

E
[

hp

(
eθ(A(τ,t)−S(τ,s))

)])}
≤

s

∑
τ=0

E
[
eθ(A(τ,t)−S(τ,s))

]
,

where we used that there is one p̄ ∈ P such that Eqn. (7.4) holds. This finishes
the proof.

The goal of the parameterization of hp is to enable a whole set of functions
that, ideally, lead to tighter bound as well as the possibility to provide a
guarantee to not worsen the bound as in Proposition 7.2.2.

7.1.2 Power-mitigator and (σ, ρ)-bounds

In this subsection, we show that Proposition 7.2 generalizes the results in [NS18].
Moreover, we restate the compatibility with the (σ, ρ)-bounds in Definition 3.2.

Proposition 7.2 yields an output bound given a parameterized function hp. A
suitable candidate for hp is the power function

hp : R+ → R+,

x 7→ xp, (7.6)

where p ≥ 1, because it suffices the necessary conditions of both parts of
Proposition 7.2 being differentiable, strictly increasing, convex, and is the
identity for p = 1. Hence, we call the h-mitigator with this choice the “power-
mitigator”.

Corollary 7.3 (Power-Mitigator). Let hp be defined as in Eqn. (7.6). Then it holds
that

E
[
eθD(s,t)

]
≤ inf

p≥1

(

s

∑
τ=0

E
[
epθ(A(τ,t)−S(τ,s))

]) 1
p
 (7.7)

≤
s

∑
τ=0

E
[
eθ{A(τ,t)−S(τ,s)}

]
,

i.e., we receive a new output bound Eqn. (7.7) that guarantees to be as good as the
standard approach in Eqn. (7.1).

Here, we see that the subadditivity of the root function implies that the
insertion can mitigate the effect of the quasi-Union bound (7.1).

[August 8, 2022 at 15:04 –]

7.1 new output bound calculation 75

single server setting Assume now a single flow - single server setting
as in Figure 7.2. We have already deduced that

E
[
eθD(s,t)

]
≤E

[
eθA⊘S (s,t)

]
(7.1)
≤

s

∑
τ=0

E
[
eθ(A(τ,t)−S(τ,s))

]
.

We now require the arrivals and service to have (σ, ρ)-constraints (Defini-
tion 3.2). Under stability, ρA(θ) < ρS(−θ), the standard approach leads to

E
[
eθD(s,t)

]
≤

s

∑
τ=0

E
[
eθA(τ,t)

]
E
[
e−θS(τ,s)

]
≤

s

∑
τ=0

eθρA(θ)(t−τ)+θσA(θ)e−θρS(−θ)(s−τ)+θσS(−θ)

≤ eθρA(θ)(t−s) eθ(σA(θ)+σS(−θ))

1 − eθ(ρA(θ)−ρS(−θ))
, (7.8)

where we have used the independence of arrivals and service in the first line,
(σ, ρ)-bounds in the second line and the convergence of the geometric series
in the last line. This shows that the output is (σ, ρ)-bounded as well (see
Proposition 7.4 below).

If we use Jensen’s inequality with the power function Eqn. (7.7) instead, we
obtain in comparison

E
[
eθD(s,t)

]
≤ inf

p≥1

(

epθ(ρA(pθ)(t−s)+σA(pθ)+σS(−pθ))

1 − epθ(ρA(pθ)−ρS(−pθ))

) 1
p

= inf
p≥1

 eθ(ρA(pθ)(t−s)+σA(pθ)+σS(−pθ))(
1 − epθ(ρA(pθ)−ρS(−pθ))

) 1
p

 . (7.9)

Thus, the power-mitigator can also be used under (σ, ρ)-constraints (see Propo-
sition 7.5). That is, it can easily be integrated in existing end-to-end analyses.
Let us restate Theorem 3.12 for independent processes first.

Proposition 7.4. Consider a (σA, ρA)-bounded arrival process A(s, t) with (σS, ρS)-
bounded dynamic server S(s, t), as in Figure 7.2. If the stability condition ρA(θ) <

ρS(−θ) holds, then the output D is (σD, ρD)-bounded with

σD(θ) = σA(θ) + σS(−θ)− 1
θ

log
(

1 − eθ(ρA(θ)−ρS(−θ))
)

ρD(θ) = ρA(θ).

This property also holds for the new output bound, as the following proposi-
tion shows.

Proposition 7.5 (The Output Bound with the Power-Mitigator is (σ, ρ)-Bounded).
Under the assumptions in Proposition 7.4 plus a modified stability condition ρA(pθ) <

ρS(−pθ), we obtain that the output A′ is (σD, ρD)-bounded with

σD(θ) = σA(pθ) + σS(−pθ)− 1
pθ

log
(

1 − epθ(ρA(pθ)−ρS(−pθ))
)

ρD(θ) = ρA(pθ),

where p ≥ 1.

[August 8, 2022 at 15:04 –]

7.2 numerical evaluation 76

Figure 7.3: Two-server topology.

Proof. See Appendix E.1.

7.2 numerical evaluation

In this section, we investigate the increased accuracy of our new output bound
introduced in Section 7.1. That is, we evaluate the gain of the delay’s violation
probability by the improved output bound calculation for a two-server topology
and a fat tree. The improvement factor is measured by calculating

Bound standard approach
Bound power-mitigator

, (7.10)

where clearly larger values are desirable.
For the arrivals, we assume three processes all adhering to the class of

(σA, ρA)-constrained arrivals (see also Section 3.1):

• Independent exponentially distributed increments with parameter λ,

• Independent Weibull distributed arrival increments with fixed shape
parameter k = 2 and scale parameter λ,

• Continuous-time Markov-modulated On-Off (MMOO) arrivals.

The latter can be described by three parameters: the transition rates, λ and µ,
to switch between the “Off”-state and the “On”-state, and a constant peak rate
πA, at which data is sent during the “On”-state. The service is always chosen
to be work-conserving and of constant rate.

If not stated otherwise, θ and the Jensen parameters pi are optimized by a
brute force optimization along a grid followed by a downhill simplex algorithm
(see Chapter 8).

With each application of this new inequality, an additional parameter has to
be optimized. On the other hand, since the costs of incorporating the power-
mitigator in a given implementation are rather moderate, it gives us convenient
new options: Either we prioritize accuracy and optimize all pi (at the cost of
higher computational effort), or focus more on speed setting many pi = 1
(setting all pi equal to 1 would yield the conventional approach). Hence, we
gain more flexibility while being minimally invasive at the same time.

7.2.1 Two-server topology

In this section, we investigate the effect of Jensen’s inequality on the delay
bound. Therefore, we consider the two-server setting in Figure 7.3. Here, a
cross flow f2 enters server S2 and its output (≤ (A2⊘S2)) is prioritized over the
flow of interest f1 at server S1. The improved output bound impacts the delay

[August 8, 2022 at 15:04 –]

7.2 numerical evaluation 77

Standard Bound

Power Mitigator

Simulations

0

10

20

1e-061e-041e-02

Violation probability

D
e

la
y

(a) Exponential distribution with (λ1, λ2) =
(0.2, 8.0), server rates (r1, r2) = (8.0, 0.2)

Standard Bound

Power Mitigator

Simulations

0

10

20

30

1e-061e-041e-02

Violation probability

D
e

la
y

(b) Weibull distribution with (λ1, λ2) =
(8.9, 0.1), server rates (r1, r2) = (9.0, 0.1)

Standard Bound

Power Mitigator

Simulations

0

10

20

30

1e-061e-041e-02

Violation probability

D
e

la
y

(c) MMOO with (µ1, µ2) = (1.2, 3.7), (λ1, λ2)
= (2.1, 1.5), (πA1, πA2) = (3.5, 0.4), server

rates (r1, r2) = (2.0, 0.3)

Figure 7.4: Stochastic delay bounds and simulation results in the two-server setting
with constant rate servers.

by being more accurate in terms of the foi’s leftover service. Mathematically
speaking, this leftover service at S1 is described by Se2e = SPMOO

e2e = SseqPMOO
e2e =

SseqSFA
e2e , where

Se2e = [S1 − (A2 ⊘ S2)]
+ .

In this topology, we calculate the stochastic delay bound (solving for T in
Theorem 3.9) but take the new output bound invocation into account. For the
exponential distribution, Weibull distribution, and Markov-modulated On-Off
(MMOO) traffic, one example for each distribution is depicted in Figure 7.4. These
are compared to simulation results. Similar to Chapter 5, for the simulations, we
use shortest-to-destination first (SDF) scheduling which translates to a simple
static priority (SP) for the cross-flow in this scenario. As we can observe from
these examples, the actual gain from our new power function output bound
calculation can vary strongly depending on the scenarios’ parameters. For that
reason, we decided to systematically sample the parameter spaces in a Monte
Carlo-type fashion. That is, we took samples with a size of 105 from a uniform
distribution as well as an exponential distribution (since the parameter space is
only lower bounded) and computed the average and largest improvement as
well as the share of improved bounds. The parameters of the arrival and service
distribution are drawn from the same distribution, i.e., the stability condition
ρA(θ) < ρS(−θ) is approximately half of the time violated. These cases are
removed from the results given in Table 7.1. Furthermore, since we aim to focus

[August 8, 2022 at 15:04 –]

7.2 numerical evaluation 78

Table 7.1: Improvement of the delay’s violation probability for the two-server setting
and delay = 10 (above: uniform sampling, below: exponential sampling).

Distribution Exponential Weibull MMOO

Average gain 1.40 1.35 1.04

Maximum gain 135.0 85.8 36.6

Share of improved bounds 99.8% 99.8% 99.8%

Distribution Exponential Weibull MMOO

Average gain 1.47 1.64 1.30

Maximum gain 93.2 478.9 68.5

Share of improved bounds 100% 99.9% 99.3%

our analysis on queueing-relevant load situations, we also removed all cases
with a utilization < 0.5.

We often observe an improved delay bound, as one can see in the examples
of Figure 7.4. It shows that for the delay, the difference is up to 50%. Depending
on the parameters, the gap between the simulation results and the analytically
derived bounds can be reduced considerably. Considering again bounds on
the delay’s violation probability, average behavior on the other hand is less
significant. Table 7.1 indicates a highly non-linear behavior where some vio-
lation probabilities are improved by a factor of 478.9, whereas average gain is
moderate with a total mean of 1.34.

7.2.2 Fat tree

Starting off with the two-server topology in Figure 7.3, we investigate the delay
bound’s scaling behavior for multiple invocations of Jensen’s inequality. We
now take a look at n flows, where n − 1 are cross flows with corresponding
server and their outputs jointly enter server S1 (see Figure 7.5). The flow of
interest is again, due to arbitrary multiplexing, assumed to be served after the
cross traffic. In terms of leftover service provided for the foi, this means

Se2e =

[
S1 −

n

∑
i=2

(Ai ⊘ Si)

]+
.

We calculated the delay’s violation probability for the following setting: The
foi has exponentially distributed increments with parameter λ1 = 0.5 and
enters server S1 with rate r1 = 4. The n − 1 cross flows are also exponential,
but with parameters λi = 8, i = 2, . . . , n and corresponding servers Si with
rates ri = 2, i = 2, . . . , n. The accuracy gains for different numbers of servers is
depicted in Figure 7.6.

We observe that the ratio increases quickly to 32.8 in the case of 8 servers,
even though only an improvement of 1.5 was achieved for the two-server setting.
This shows that the power-mitigator can fully develop its strengths in larger
networks, when more output bound calculations have to be invoked.

[August 8, 2022 at 15:04 –]

7.2 numerical evaluation 79

Figure 7.5: Fat tree topology.

2 3 4 5 6 7 8
Number of servers

Im
pr

ov
em

en
t f

ac
to

r

0

5

10

15

20

25

30

Figure 7.6: Delay bound improvement for different numbers of servers (delta time = 8).

7.2.3 Runtime

So far, we focused on the power-mitigator’s accuracy gain and observed favor-
able outcomes. Yet, the other side of the coin is the computational effort the new
output bound calculation must invest to optimize over the higher-dimensional
parameter space. To investigate this in more detail, we ran 105 experiments for
exponential as well as MMOO-traffic in the two-server topology (Figure 7.3) and
the fat tree (Figure 7.5) with 2, 4, . . . , 12 flows. In this scenario, the aforemen-
tioned naive grid optimization runs quickly into computational problems, as a
computation for 4 flows already took approximately a day. Therefore, we im-
plemented the “Pattern Search” [HJ61] heuristic. Here, a function is minimized
by changing arguments only in a single direction. If multiple modifications
lead to a descent, a step in the direction of all successful intermediate steps is
attempted. The results of the ratio

Computation time power-mitigator
Computation time standard approach

for these experiments are depicted in Figure 7.7.
For Pattern Search, we observe that the computational overhead scales only

linearly with the number of invocations of Jensen’s inequality. This indicates

[August 8, 2022 at 15:04 –]

7.3 direct application to delay bounds 80

2 4 6 8 10 12
Number of servers

R
at

io
 o

f c
om

pu
ta

tio
n

tim
e

0

2

4

6

8

10

12

1.8 1.7

3.6
3.2

5.3

4.7

7.1

6.2

8.9

7.3

10.8

8.2

Linear Scaling

Exponential
MMOO

Figure 7.7: Computation time comparison for the state-of-the-art and power-mitigator
approach.

that a good trade-off between cost and accuracy gain can be achieved, if
optimization is done carefully.

7.3 direct application to delay bounds

At first glance, it is tempting to apply the power-mitigator to the delay bound
calculation as well, given its results in Section 7.2. That is, we would modify
the computation of the delay’s violation probability as follows:

P(d(t) > T)
(3.29)
≤ E

[
eθ sup0≤τ≤t−1{A(τ,t)−S(τ,t+T)}

]
= inf

p≥1

{(
E
[
epθ sup0≤τ≤t−1{A(τ,t)−S(τ,t+T)}

]) 1
p
}

(7.11)

(7.1)
≤ inf

p≥1

(

t−1

∑
τ=0

E
[
epθ(A(τ,t)−S(τ,t+T))

]) 1
p
 , (7.12)

where we used the identity-property for p = 1 in Eqn. (7.11), and the quasi-
Union bound in the last line. Owing to the fact that this estimates a probability,
only values below 1 are of interest for Eqn. (7.12). Disappointingly for this case,
no improvement can be obtained, as the next theorem states.

Theorem 7.6. Let a delay bound T according to (7.12) exist such that

t−1

∑
τ=0

E
[
epθ(A(τ,t)−S(τ,t+T))

]
< 1. (7.13)

If p and θ are optimized (denoted by p∗ and θ∗), then p∗ = 1, i.e., no improvement can
be achieved.

Proof. Assume that p∗ and θ∗ are the optimal parameters for Eqn. (7.12) and
that p∗ > 1. This means that there exist 1 ≤ p′ < p∗ and θ′ > θ∗ such that
p′θ′ = p∗θ∗. But this means(

t−1

∑
τ=0

E
[
ep∗θ∗(A(τ,t)−S(τ,t+T))

]) 1
p∗

=

(
t−1

∑
τ=0

E
[
ep′θ′(A(τ,t)−S(τ,t+T))

]) 1
p∗

[August 8, 2022 at 15:04 –]

7.4 summary 81

>

(
t−1

∑
τ=0

E
[
ep′θ′(A(τ,t)−S(τ,t+T))

]) 1
p′

,

where we inserted p∗θ∗ = p′θ′ in the first line. In the second line, we used that

x
1

p∗ > x
1
p′ holds for all x ∈ (0, 1) and p∗ > p′ ≥ 1. Clearly, this is a contradiction

to our assumption that we had an optimal solution. Thus, the optimal p∗ must
be equal to 1.

As a consequence, the power-mitigator approach can only indirectly decrease
delay bounds via the output bound calculation. The same holds for the backlog
bound (the proof follows along the same lines).

7.4 summary

In this chapter, we proposed a novel approach to improve the MGF output
bound calculation in the stochastic network calculus using Jensen’s inequality
with h-mitigators. We also gave a proof showing why this is a valid bound
and, when using the power function (Eqn. (7.6)), that it is always at least as
accurate as the state-of-the-art method. It is also shown in comprehensive nu-
merical evaluations that the delay’s violation probability can be improved for
two-server topologies as well as fat trees. Our evaluation indicated a significant
gain in some cases while leading to more moderate improvements on average.
For a fat tree, we observed a very high gain as the number of cross flows is
increased. These gains come conceptually for free, as no additional constraints
have to be imposed, thus making our approach minimally invasive. Yet, from a
computational perspective, the gain comes at the price of a higher-dimensional
optimization in the last stage of computing the bounds. Fortunately, our ex-
periments indicate that the computational overhead only scales linearly with
the invocations of Jensen’s inequality under a carefully chosen optimization
method.

[August 8, 2022 at 15:04 –]

8
A T O O L B O X F O R S T O C H A S T I C N E T W O R K C A L C U L U S
W I T H M O M E N T- G E N E R AT I N G F U N C T I O N S

In this short chapter, we present the SNC-MGF toolbox1. It is a Python imple-
mentation that can be used to derive stochastic end-to-end performance bounds
for (σ, ρ)-constrained arrivals (Definition 3.2) and servers (Definition 3.6). We
discuss its components below. Those include:

• Arrivals and service (Section 8.1)

• Performance bounds (Section 8.2)

• Network operations and a modular analysis (Section 8.3)

• End-to-end delay bounds (Section 8.4)

8.1 arrivals and service

All arrival classes inherit from the Arrival() class (Listing 1). It contains the
necessary information to characterize the distribution: The σ(θ) and ρ(θ) part,
as well as whether the process is discrete- or continuous-time. In a similar
fashion, service processes inherit from the Server() class in Listing 2.

8.2 performance bounds

Performance bounds, on the other hand, are implemented in performance_bounds.py.
For example, the code for the delay’s violation probability, delay_prob(), is given
in Listing 3. Note that we directly implement the case for dependent arrivals
and service with p = q = 1 being the special case under independence. The
function stability_check() guarantees the stability condition in Eqn. (3.23). De-
pending on whether we have discrete- or continuous-time arrivals, we invoke
different bounds.

8.3 network operations and modular analysis

For an end-to-end analysis, we also implemented all network operations from
Section 3.3. They enable to conduct a modular analysis. Here, we exemplify
the deconvolution operation for the output bound (Theorem 3.12) in Listing 4.
Note that each network operation class is implemented for the independent as
well es the dependent case.

Let us explain the procedure for the sink tree tandem in Figure 4.3b under
seqPMOO. In Eqn. (4.4), it is stated that

SseqPMOO
e2e =

[([(
[Sn − An+1]

+ ⊗ Sn−1

)
− An

]+
⊗ · · · ⊗ S1

)
− A2

]+
.

1 https://github.com/paulnikolaus/snc-mgf-toolbox

82

[August 8, 2022 at 15:04 –]

https://github.com/paulnikolaus/snc-mgf-toolbox

8.4 end-to-end delay bounds 83

"""Abstract Arrival class."""

from abc import abstractmethod, ABC

class Arrival(ABC):

"""Abstract Arrival class."""

@abstractmethod

def sigma(self, theta: float) -> float:

"""

sigma(theta)

:param theta: mgf parameter

"""

pass

@abstractmethod

def rho(self, theta: float) -> float:

"""

rho(theta)

:param theta: mgf parameter

"""

pass

@abstractmethod

def is_discrete(self) -> bool:

"""

:return True if the arrival distribution is discrete, False if not

"""

pass

Listing 1: Arrival() class

The Python class to implement this end-to-end service is presented in Listing 5.
It inherits from the class Setting() to ensure that the method standard_bound() is
implemented for the subsequent parameter optimization. the class LeftoverARB()
yields the leftover service using Theorem 3.11, whereas Convolve() implements
Theorem 3.13 for the two server case.

8.4 end-to-end delay bounds

For the One flow - n servers topology in Figure 3.6, we have seen that The-
orem 3.14 can be used to derive end-to-end delay bounds. Note that we can
easily incorporate more complex topologies with the help of the leftover ser-
vice. Yet, we present the code of Theorem 5.3, as it often leads to significantly
improved performance bounds. It consists of the Flow() class (Listing 6) that
contains the topological information of each flow plus the e2e delay bounds
given in Listing 7. Since the end-to-end performance bounds in Theorem 5.3
distinguishes between servers in π1 and servers /∈ π1, we take this into account
in the function arguments. E2EEnum() is an enum(eration) class that enables us
to choose which of the three bounds to compute. It is important to note that
this implementation only allows for independent processes and only for trees,
yet it can be extended.

[August 8, 2022 at 15:04 –]

8.4 end-to-end delay bounds 84

"""Implemented service class"""

from abc import abstractmethod, ABC

class Server(ABC):

"""Abstract Server class"""

@abstractmethod

def sigma(self, theta: float) -> float:

"""Sigma method"""

pass

@abstractmethod

def rho(self, theta: float) -> float:

"""Rho method"""

pass

Listing 2: Server() class

In a final step, we optimize all parameters. As a default choice, we use
a brute force optimization along a grid using the “brute()” method in the
“scipy.optimize” library [Oli07, Vir+20]. When applying a second optimization
step (a downhill simplex), this method also evaluates points outside the grid.
However, we also implemented other heuristics to conduct the parameter
optimization such as “pattern search” [HJ61], the “Nelder–Mead (downhill
simplex) method” [NM65], “simulated annealing” [KGV83], and interfaces
to SciPy functions such as “Basin-Hopping” [WD97], “differential evolution”
[SP97], or “dual annealing” [TS96].

[August 8, 2022 at 15:04 –]

8.4 end-to-end delay bounds 85

def delay_prob(arr: Arrival, ser: Server, theta: float, delay_value:

int, indep=True, p=1.0, geom_series=False) -> float:

"""Implements stationary standard_bound method"""

if indep:

p = 1.0

q = 1.0

else:

q = get_q(p=p)

stability_check(arr=arr, ser=ser, theta=theta, indep=indep, p=p, q=q)

if indep:

sigma_sum, rho_diff arr.sigma(theta=theta) + ser.sigma(theta=theta

), arr.rho(theta=theta) - ser.rho(theta=theta)

else:

sigma_sum, rho_diff = arr.sigma(theta=p * theta) + ser.sigma(theta

=q * theta), arr.rho(theta=p * theta) - ser.rho(theta=q *
theta)

if arr.is_discrete():

return exp(

-theta * ser.rho(theta=q * theta) * delay_value) * exp(theta *
sigma_sum) / (-rho_diff * theta)

else:

tau_opt = 1 / (theta * ser.rho(theta=q * theta))

return exp(-theta * ser.rho(theta=q * theta) * delay_value) * exp(

theta * (ser.rho(theta=q * theta) * tau_opt + sigma_sum)) / (-

rho_diff * theta * tau_opt)

Listing 3: delay_prob()-function

[August 8, 2022 at 15:04 –]

8.4 end-to-end delay bounds 86

class Deconvolve(Arrival):

"""Deconvolution class."""

def __init__(self, arr: Arrival, ser: Server, indep=True, p=1.0) -> None:

self.arr = arr

self.ser = ser

self.indep = indep

if indep:

self.p = 1.0

self.q = 1.0

else:

self.p = p

self.q = get_q(p=p)

def sigma(self, theta: float) -> float:

"""

:param theta: mgf parameter

:return: sigma(theta)

"""

arr_sigma_p = self.arr.sigma(self.p * theta)

ser_sigma_q = self.ser.sigma(self.q * theta)

arr_rho_p = self.arr.rho(self.p * theta)

k_sig = -log(1 - exp(theta * (arr_rho_p - self.ser.rho(self.q *
theta)))) / theta

if self.arr.is_discrete():

return arr_sigma_p + ser_sigma_q + k_sig

else:

return arr_sigma_p + ser_sigma_q + arr_rho_p + k_sig

def rho(self, theta: float) -> float:

"""

:param theta: mgf parameter

:return: rho(theta)

"""

arr_rho_p = self.arr.rho(self.p * theta)

if arr_rho_p < 0 or self.ser.rho(self.q * theta) < 0:

raise ParameterOutOfBounds("The rhos must be >= 0")

stability_check(arr=self.arr, ser=self.ser, theta=theta, indep=

self.indep, p=self.p, q=self.q)

return arr_rho_p

def is_discrete(self):

return self.arr.is_discrete()

Listing 4: Deconvolve() class

[August 8, 2022 at 15:04 –]

8.4 end-to-end delay bounds 87

class SinkTreePMOO(Setting):

"""Canonical sink tree with PMOO analysis"""

def __init__(self, arr_list: List[ArrivalDistribution], ser_list: List[

ConstantRateServer], perform_param: PerformParameter) -> None:

The first element in the arrival list in dedicated to the foi

if len(arr_list) != (len(ser_list) + 1):

raise IllegalArgumentError(f"number of arrivals {len(

arr_list)} and servers {len(ser_list)} + 1 have to

match")

self.arr_list = arr_list

self.ser_list = ser_list

self.perform_param = perform_param

self.number_servers = len(ser_list)

def standard_bound(self, param_list: List[float]) -> float:

theta = param_list[0]

s_net: Server = LeftoverARB(ser=self.ser_list[self.number_servers

- 1], cross_arr=self.arr_list[self.number_servers])

for _i in range(self.number_servers - 2, -1, -1):

s_net = Convolve(ser1=s_net, ser2=self.ser_list[_i])

s_net = LeftoverARB(ser=s_net, cross_arr=self.arr_list[_i

+ 1])

return single_hop_bound(foi=self.arr_list[0], s_e2e=s_net, theta=

theta, perform_param=self.perform_param)

Listing 5: SinkTreePMOO() class

class Flow(object):

def __init__(self, arr: ArrivalDistribution, server_indices: List[int]):

self.arr = arr

self.server_indices = server_indices

Listing 6: Flow() class

[August 8, 2022 at 15:04 –]

8.4 end-to-end delay bounds 88

def pmoo_tandem_bound(foi: Flow, cross_flows_on_foi_path: List[Flow],

ser_on_foi_path: List[Server], theta:

float, perform_param: PerformParameter, e2e_enum: E2EEnum,

cross_flows_not_on_foi_path=None, ser_not_on_foi_path=None, indep=True,

geom_series=True) ->

float:

if indep is False:

raise NotImplementedError("Only implemented for independent

processes")

residual_rate_with_foi_list = [0.0] * len(ser_on_foi_path)

residual_rate_list = [0.0] * len(ser_on_foi_path)

sigma_sum = 0.0

foi_rate = foi.arr.rho(theta=theta)

for k, server in enumerate(ser_on_foi_path):

residual_rate_list[k] = server.rho(theta=theta)

residual_rate_with_foi_list[k] = residual_rate_list[k] - foi_rate

sigma_sum += server.sigma(theta=theta)

sigma_sum += foi.arr.sigma(theta=theta)

for cross_flow in cross_flows_on_foi_path:

sigma_sum += cross_flow.arr.sigma(theta=theta)

for server_index in cross_flow.server_indices:

cross_arr_rate = cross_flow.arr.rho(theta=theta)

residual_rate_list[server_index] -= cross_arr_rate

residual_rate_with_foi_list[server_index] -= cross_arr_rate

for res_rate_with_foi in residual_rate_with_foi_list:

if res_rate_with_foi <= 0:

raise ParameterOutOfBounds("Stability condition is

violated")

if ser_not_on_foi_path is not None:

residual_rate_not_on_foi_list = [0.0] * len(ser_not_on_foi_path)

for j, server in enumerate(ser_not_on_foi_path):

residual_rate_not_on_foi_list[j] = server.rho(theta=theta)

sigma_sum += server.sigma(theta=theta)

for cross_flow in cross_flows_not_on_foi_path:

sigma_sum += cross_flow.arr.sigma(theta=theta)

for server_index in cross_flow.server_indices:

cross_arr_rate = cross_flow.arr.rho(theta=theta)

residual_rate_not_on_foi_list[server_index] -=

cross_arr_rate

for res_rate_not_foi in residual_rate_not_on_foi_list:

if res_rate_not_foi <= 0:

raise ParameterOutOfBounds("Stability condition is

violated")

...

Listing 7: pmoo_tandem_bound() function

[August 8, 2022 at 15:04 –]

Part IV

FA I R Q U E U E I N G I N S N C

[August 8, 2022 at 15:04 –]

9
S T O C H A S T I C A N A LY S I S O F G E N E R A L I Z E D P R O C E S S O R
S H A R I N G

Generalized process sharing (GPS) [PG93, PG94] is an idealized (theoretical)
scheduler that aims at fair resource allocation. In other words, it provides the
“theoretical underpinnings for fair packet scheduling algorithms” [BL18]. It is a
“natural generalization” [PG93] of uniform processor sharing [Kle75] and the
packet-based version weighted fair queuing (WFQ) [DKS89]. There is a long list
of fair packet schedulers, including deficit round robin (DRR) [SV95], weighted
round robin (WRR) [KSC91], worst-case fair weighted fair queueing [BZ96],
start-time fair queueing (SFQ) [GVC97], and many others. In recent years, GPS
has seen some treatment in the DNC analysis [BL18], [BBC18, pp. 171], [Bou21].

Yet, to be the best of our knowledge, there has only been limited investigation
in the stochastic counterpart, with the notable exceptions of [ZTK95, Fid05,
LBL07, CPS13]. In [CPS13], it was shown in the single server case, that bounds
obtained via martingale-based techniques not only significantly outperform
SNC results, they also provide tight performance bounds by comparing them
to simulations. However, this comes with the notable exception of GPS; here,
even the martingale bounds indicate a more conservative decay rate compared
to simulations (see Figure 9.1). Yet, only a homogeneous case where all arrivals
have the same parameters are considered.

In this chapter, we compare different GPS analyses in the stochastic network
calculus and give an overview of what can be considered as state-of-the-art
analysis. We consider the SNC with MGFs as well as with tail bounds / envelope
functions, since recent GPS results in the DNC [BL18], [BBC18, pp. 171] can be
incorporated into the latter. We show in a numerical evaluation that either of the
two branches can outperform the so-called “GPS Basic”. Additionally, we show
in this evaluation that, in case we cannot make independence assumptions on
the arrivals, GPS Basic (Theorem 9.2 below) still provides the best trade-off
solution between accuracy and runtimes.

GPS Basic

Bound

Martingale

Bound

Simulations1e-04

1e-03

1e-02

1e-01

1e+00

0 10 20 30 40 50

Delay

V
io

la
tio

n
 p

ro
b

a
b

ilt
y

Figure 9.1: Simulation results, Martingale bounds, and SNC bounds on the delay’s
violation probability (for continuous-time MMOO arrivals).

90

[August 8, 2022 at 15:04 –]

9.1 gps background 91

outline The rest of the chapter is structured as follows. In Section 9.1, we
introduce the necessary background on GPS. Section 9.2 then includes the
different SNC techniques to provide stochastic performance bounds for GPS. A
numerical evaluation is given in Section 9.3. Section 9.4 summarizes the chapter.

9.1 gps background

In this section, we give a formal definition of a server implementing general-
ized processor sharing (GPS) according to [PG93]. Moreover, we introduce the
necessary notation and give an overview of the state-of-the-art results known
from the literature.

Definition 9.1 (GPS Server [PG93]). Let S be a work-conserving server (Defini-
tion 3.5). Assume a set of flows f j,∈ N = {1, . . . , m} traversing this server and
let the weights ϕj > 0, j = 1, . . . , m. Then, a GPS server is defined if it holds that

Di(s, t)
ϕi

≥
Dj(s, t)

ϕj
, ∀j ∈ N (9.1)

for any flow i that is continuously backlogged in the interval (s, t).

In the following, we always assume the foi to have index i.

Theorem 9.2 (GPS Basic). Let S be a work-conserving GPS server for all flows
f j, j ∈ N . Then, for all t ≥ 0, fi sees a dynamic server with service

Si
l.o.(s, t) := Si(s, t) :=

ϕi

∑k∈N ϕk
· S(s, t). (9.2)

Proof. For an initial proof for dynamic servers with constant rate, see [PG93].
For a generalization to work-conserving servers (actually, strict service curves
since the univariate case is considered), see [BBC18, pp. 171].

In the following, we refer to this result as “GPS Basic”. Note that in the case
of a constant rate server with rate C ≥ 0, Si(s, t) = ϕi

∑k∈N ϕk
C is also called backlog

clearing rate [PG94].
By abuse of notation, we denote by i ∈ M ⊂ N an arbitrary subset M of N

that contains the foi’s index i.

Theorem 9.3 (GPS M). Let S be a work-conserving GPS server for the aggregate of
flows f j, j ∈ N . We denote the respective departure processes by Dj, j ∈ N . Then, for
all t ≥ 0, fi sees a dynamic server with service

Si
l.o.(s, t) := Si(s, t) := max

i∈M⊂N

{
ϕi

∑j∈M ϕj

(
S(s, t)− ∑

j/∈M
Dj(s, t)

)}
. (9.3)

Proof. A proof for the special case of token bucket arrival and constant rate
service is given in [PG93], [Cha00, pp. 68]. Yet, since the proof provides us with
useful inequalities, we show it here.

[August 8, 2022 at 15:04 –]

9.1 gps background 92

Let 0 ≤ s ≤ t and i ∈ M ⊂ N . Let si be the beginning of the backlogged
period of flow fi up to time t. Since we have a work-conserving server S for the
aggregate and since (si, t] is a backlogged period, it holds that

∑
j∈N

Dj(si, t) = S (si, t)

⇔ ∑
j∈M

Dj(si, t) = S (si, t)− ∑
j/∈M

Dj(si, t).
(9.4)

Thus, it follows that:(
∑

j∈M
ϕj

)
Di(si, t)

(9.1)
≥ ϕi ∑

j∈M
Dj(si, t)

(9.4)
= ϕi

(
S (si, t)− ∑

j/∈M
Dj(si, t)

)

which is equivalent to

Di(t) ≥ Di(si) +
ϕi

∑j∈M ϕj

(
S (si, t)− ∑

j/∈M
Dj (si, t)

)
(9.5)

for all i ∈ M ⊂ N . Since si is the start of the backlogged period of flow fi, we
have

Di(si) = Ai(si).

Hence, it follows that

Di(t) ≥ Ai(si) + max
i∈M⊂N

{
ϕi

∑j∈M ϕj

(
S (si, t)− ∑

j/∈M
Dj (si, t)

)}

≥ inf
0≤s≤t

{
Ai(s) + max

i∈M⊂N

{
ϕi

∑j∈M ϕj

(
S (s, t)− ∑

j/∈M
Dj (s, t)

)}}
.

This proves the theorem.

In the following, we refer to this result as “GPS M”. The formula in Equa-
tion (9.3) is not a “closed-form” solution, as it contains the sample path of
the output. In the above proof, it is tempting to bound Dj(si, t) in Eqn. (9.5)
by Aj(si, t) with the help of causality [OMP06]. However, one can construct a
counterexample such that flow f j is already backlogged at si (in other words, si
is not the start of the backlogged period of flow f j).

One approach is to compute an output bound with the help of GPS Basic
in Eqn. (9.2) and the output bound in Eqn. (3.21) [Cha00, pp. 68], [Fid10]. Let
i ∈ M ⊂ N . Then,

Dj(s, t) ≤ Aj ⊘
(

ϕj

∑k∈N ϕk
S
)

(s, t), ∀j ∈ M

⇒ ∑
j/∈M

Dj(s, t) ≤ ∑
j/∈M

{
Aj ⊘

(
ϕj

∑k∈N ϕk
S
)

(s, t)
}

. (9.6)

[August 8, 2022 at 15:04 –]

9.2 stochastic analysis of gps 93

This leads to

Si(s, t) = max
i∈M⊂N

{
ϕi

∑j∈M ϕj

(
S(s, t)− ∑

j/∈M

{
Aj ⊘

(
ϕj

∑k∈N ϕk
S
)

(s, t)
})}

.

(9.7)
In the deterministic network calculus (DNC), an improved state-of-the-art left-

over service curve has been derived recently. In contrast to the other results, we
employ strict service curves (Definition 2.4) and arrival curves (Definition 2.3).

Theorem 9.4. Let S be a work-conserving GPS server that offers a convex strict service
curve β to the aggregate of flows f j, j ∈ N . Moreover, let the arrivals Aj be constrained
by a concave arrival curve αj, j ∈ N \ {i}. Then, for all t ≥ 0, fi sees a strict service
curve

βi(t) := max
i∈M⊂N

{
ϕi

∑j∈M ϕj

(
β(t)− ∑

j/∈M
αj(t)

)}
. (9.8)

This leftover service curve is tight in the sense that the bound holds with equality in
the “greedy/lazy scenario”.

Proof. A proof is given in [BL18], [BBC18, pp. 172].

Remark 9.5. For the special case of a leaky bucket arrival curves γrj,bj , j ∈ N ,
(Eqn. (2.14)) and a rate-latency service curve βR,T (Eqn. (2.18)), one receives

βi(t) = max
i∈M⊂N

{
β

ϕi
∑j∈M ϕj

(R−∑j/∈M rj),
(

∑j/∈M bj+R·T
R−∑j/∈M rj

)(t)
}

.

We show in Appendix F.1 that in a homogeneous scenario (γrj,bj = γr,b and ϕj =

ϕ ∀j ∈ N), under stability, M = N yields the best delay bound for the foi.

However, in the SNC with MGFs, we work directly on the sample path A and
hence, we cannot make any concavity assumptions.

9.2 stochastic analysis of gps

In this section, we show how to obtain stochastic performance bounds under
GPS in the SNC. At first, we consider SNC with MGFs and give (σS, ρS)-bounds
for the GPS leftover service in case S was (σS, ρS)-constrained. This enables us
to calculate stochastic performance bounds by directly applying Theorem 3.9.
Then, we show how to obtain performance bounds for the SNC with tail
bounds / envelope functions, where we can make use of Theorem 9.4. In order
to facilitate a concise notation, we omit the maxi∈M⊂N in the following and
only write that i ∈ M ⊂ N is arbitrary.

9.2.1 (σS, ρS)-Bounds of the GPS Leftover Service

We start off with the leftover service under GPS Basic.

[August 8, 2022 at 15:04 –]

9.2 stochastic analysis of gps 94

Proposition 9.6. Let θ > 0. Assume a work-conserving GPS server S and let S be
(σS, ρS)-constrained. The leftover service Si for flow fi under GPS Basic is (σSi , ρSi)-
constrained with

σSi(−θ) = ψiσS (−ψiθ) =
ϕi

∑k∈N ϕk
σS

(
− ϕi

∑k∈N ϕk
θ

)
,

ρSi(−θ) = ψiρS (−ψiθ) =
ϕi

∑k∈N ϕk
ρS

(
− ϕi

∑k∈N ϕk
θ

)
,

where we define

ψi :=
ϕi

∑k∈N ϕk
.

Proof. See Appendix F.2.

In the next proposition, we derive a (σS, ρS)-bound for GPS M.

Proposition 9.7. Let θ > 0 and i ∈ M ⊂ N . Assume a work-conserving GPS server
S and let S be deterministic and (σS, ρS)-constrained. We define for any i ∈ M ⊂ N

ψi,M :=
ϕi

∑j∈M ϕj

and
ψj :=

ϕj

∑k∈N ϕk
.

Further, we assume for all j ∈ N \ {i} that Aj is
(

σAj , ρAj

)
-constrained such that the

stability condition
ρAj

(
pjψi,Mθ

)
< ψjρS

(
−ψi,Mψjθ

)
holds for all j ∈ N . Then, the leftover service Si for flow fi under GPS M is (σSi , ρSi)-
constrained with

σSi(−θ) =ψi,MσS (−ψi,Mθ) + ψi,M ∑
j/∈M

{
σAj

(
pjψi,Mθ

)
+ ψjσS

(
−ψi,Mψjθ

)
− 1

θψi,M
log
(

1 − eψi,Mθ
(

ρAj(pjψi,Mθ)−ψjρS(−ψi,Mψjθ)
))}

,

ρSi(−θ) =ψi,M

(
ρS (−ψi,Mθ)− ∑

j/∈M
ρAj

(
pjψi,Mθ

))
,

where

∑
j/∈M

1
pj

= 1.

If the flows can be assumed to be independent, then pj = 1, j /∈ M.

Proof. See Appendix F.2.

Note that, in case the optimization of Hölder parameters is computationally
infeasible (e.g., due to runtime constraints) we can always revert to using GPS
Basic, where we do not even need the Aj, j ∈ N \ {i} to have any arrival
constraints.

[August 8, 2022 at 15:04 –]

9.2 stochastic analysis of gps 95

9.2.2 Tail Bound Analysis of GPS

For the SNC branch with tail bounds / envelope functions, the analysis looks a
bit different. Here, we need to prove a stochastic service curve (Definition F.2
in the appendix) in order to calculate performance bounds (Theorem F.3 in
the appendix). At first, we introduce a proposition to calculate bounds on the
delay’s violation probability in the general case oblivious to any dependence of
the arrivals. Then, we also provide delay bounds for independent arrivals.

The definitions and notations are mainly inspired by [CBL06]. For some slack
rate δ > 0, we introduce the notation fδ(t) = f (t) + δ · t. Moreover, we also
abuse notation and write

A ⊗ [β − σ]+ (t)

for
inf

0≤s≤t

{
A(s) + [β(t − s)− σ]+

}
.

For the sake of closed-form results, we limit ourselves to (σA(θ), ρA(θ))-
constrained arrivals. One can easily show that this traffic class has a stochastic
arrival curve α(t) := ρA(θ) · t with error function εa(σ) := eθσA(θ)e−θσ. To be
precise, it belongs to the class of exponentially bounded burstiness (EBB) (see
Eqn. (3.4)).

general case : We start off with the general case. As the only exception, we
give a general stochastic leftover service curve without assuming (σA(θ), ρA(θ))-
constrained arrivals.

Proposition 9.8. Let δ > 0 and i ∈ M ⊂ N . Assume a work-conserving GPS server
offering a convex strict service curve β to an aggregate of flows f j, j ∈ N with concave
stochastic arrival curves αj, j /∈ M and error function εaj (σ) . Assume the stability
condition

lim sup
t→∞

∑
j∈N\{i}

αj (t)− β(t) < 0

for all t ≥ 0. Then,

βi
l.o.(t) := βi(t) :=

ϕi

∑j∈M ϕj

(
β(t)− ∑

j/∈M
αj,δ (t)

)

is a stochastic service curve for flow fi for flow fi with error function

εs(σ) = inf
∑j/∈M σj=σ

{
∑

j/∈M

∞

∑
k=0

εaj

(
σj + kδ

)}
.

Proof. See Appendix F.4.

Now, we can use this to derive a bound on the delay’s violation probability.

Proposition 9.9. Let θ, δ > 0 and i ∈ M ⊂ N . Assume a work-conserving GPS
server with strict service curve β(t) = C · t to an aggregate of flows f j that are(

σAj , ρAj

)
-constrained, j ∈ N . Let αj(t) := ρAj(θ), j ∈ N and assume the stability

condition
ρAi ,δ(θ) +

ϕi

∑j∈M ϕj
∑

j/∈M
ρAj,δ(θ) ≤

ϕi

∑j∈M ϕj
C. (9.9)

[August 8, 2022 at 15:04 –]

9.2 stochastic analysis of gps 96

Then, it holds for flow f1 that

P(d(t) > T) ≤ (1 + |N \ M|) 1
1 − e−θδ

· e
− θ

1+|N \M| T·
ϕi

∑j∈M ϕj
·
(

C−∑j/∈M ρAj (θ)−|N\M|·δ
)

· e
θ

1+|N \M|

(
σAi (θ)+∑j/∈M σAj (θ)

)
.

Proof. See Appendix F.4.

independent case : Next, we continue by assuming arrivals to be inde-
pendent.

Proposition 9.10. Let θ, δ > 0 and i ∈ M ⊂ N . Assume a work-conserving GPS
server with service curve β(t) = C · t to an aggregate of independent flows f j that are(

σAj , ρAj

)
-constrained, j ∈ N . Let αj(t) := ρAj(θ), j ∈ N and assume the stability

condition
∑

j∈N
ρAj,δ(θ) ≤ C.

for all t ≥ 0. Then,

βi
l.o.(t) := βi(t) :=

ϕi

∑j∈M ϕj

(
C − ∑

j/∈M
ρAj,δ(θ)

)
· t

is a stochastic service curve for flow fi with error function

εs(σ) =

 eθ ∑j/∈M σj(θ)

1−e−θ|N \M|δ e−θσ, if M ̸= N

0, else.

Proof. See Appendix F.4.

Similar to the general case, we now derive a bound on the delay’s violation
probability.

Proposition 9.11. Let θ, δ > 0 and i ∈ M ⊂ N . Assume a work-conserving GPS
server with service curve β(t) = C · t to an aggregate of independent flows f j that are(

σAj , ρAj

)
-constrained, j ∈ N . Let αj(t) := ρAj(θ), j ∈ N and assume the stability

condition
ρAi ,δ(θ) +

ϕi

∑j∈M ϕj
∑

j/∈M
ρAj,δ(θ) ≤

ϕi

∑j∈M ϕj
C. (9.10)

Then, it holds for flow fi that

P(d(t) > T) ≤2
(

1
1 − e−θ|N \M|·δ

) 1
2

·
(

1
1 − e−θδ

) 1
2

· e
− θ

2 T· ϕi
∑j∈M ϕj

·
(

C−∑j/∈M ρAj (θ)−|N\M|·δ
)

· e
θ

(
σAi (θ)+

ϕi
∑j∈M ϕj

·∑j/∈M σAj (θ)

)
,

[August 8, 2022 at 15:04 –]

9.3 numerical evaluation 97

if M ̸= N , and that

P(d(t) > T) ≤ 1
1 − e−θδ

e−θT· ϕi
∑k∈N ϕk

·CeθσAi (θ),

if M = N . In the latter case, the optimal δ is

δ∗ =
ϕi

∑k∈N ϕk
· C − ρAi(θ).

Proof. See Appendix F.4.

Proposition 9.11 is the formula with the closest relation to [ZTK95, Theo-
rem 8], yet, to the best of our knowledge, we obtained smaller delay bounds
because of the factor ϕi

∑j∈M ϕj
·
(

C − ∑j/∈M ρAj(θ)− |N \ M| · δ
)

that gives more
flexibility compared to the backlog clearing rate.

9.3 numerical evaluation

In this section, we compare stochastic delay bounds for a flow of interest (foi)
with cross-flows at a single server under GPS scheduling. In all our experiments,
we implement GPS Basic (Theorem 9.2) with (σS, ρS)-bound in Proposition 9.6
as a benchmark. For the arrivals, we assume three processes all adhering to the
class of (σA, ρA)-constrained arrivals (see also Section 3.1):

• Independent exponentially distributed arrival increments with parameter
λ,

• Independent Weibull distributed arrival increments with fixed shape
parameter k = 2 and scale parameter λ,

• discrete-time Markov-modulated On-Off (MMOO) arrivals.

The latter can be described by three parameters: the probability to stay in the
“On”-state in the next time step, pon, the probability to stay in the “Off”-state,
poff, and a constant peak rate πA, at which data is sent during the “On”-state.
For the service, we always assume work-conserving servers with a constant
rate.

We consider two scenarios: in the first, we assume the arrivals of the incoming
flows to be independent; and in the second, we forego the independence
assumption.

9.3.1 Independent Arrival Processes

Apart from GPS Basic, we calculated stochastic bounds with the leftover service
assuming the arrivals to be independent:

• GPS M (Theorem 9.3) with (σS, ρS)-bound in Proposition 9.7,

• GPS with tail bounds assuming all arrivals to be independent (stochastic
service curve in Proposition 9.10) with bounds on the delay’s violation
probability obtained via Proposition 9.11.

[August 8, 2022 at 15:04 –]

9.3 numerical evaluation 98

10

30

100

300

0.5 0.6 0.7 0.8 0.9
Utilization

D
e

la
y

GPS Basic
GPS Tail Ind
GPS M (MGF)

(a) Exponential distribution

1

10

100

0.5 0.6 0.7 0.8 0.9
Utilization

D
e

la
y

GPS Basic
GPS Tail Ind
GPS M (MGF)

(b) Weibull distribution

3

10

30

100

0.5 0.6 0.7 0.8 0.9
Utilization

D
e

la
y

GPS Basic
GPS Tail Ind
GPS M (MGF)

(c) MMOO

Figure 9.2: Stochastic delay bounds for a violation probability of 10−6 under
independent arrivals.

Similar to θ and δ, the choice of M is part of an optimization problem that
we solve with a heuristic (otherwise, we would need to try 2|N |−1 subsets of
N \ {i}).

In our first numerical experiment, we investigate how the different techniques
compare under different utilizations. We consider a scenario with 16 flows (one
foi and 15 cross-flows). The 15 cross-flows are heterogeneous meaning that
they consist of three groups where each group has different traffic parameters.
We opt for a heterogeneous scenario since we know for the DNC, that if all
parameters are equal, then GPS Basic already gives the optimal M ⊂ N (see
Remark 9.5). The results are given in Figure 9.2.

We observe that both, GPS M and GPS with tail bounds, are able to out-
perform GPS Basic depending on the utilization. To be precise, GPS M often
gives the best bounds for smaller utilizations (0.5 to 0.8 depending on the traffic
class), whereas GPS with tail bounds can give the best bound for higher loads
(from 0.7 or 0.8 on).

It is important to note that the improvement highly depends on the parame-
ters; in particular, on the level of heterogeneity of the parameters as well as the
weights ϕj. An important special case of the weight assignment is to choose all
ϕj according to the arrival rates. This is known as rate proportional processor
sharing (RPPS) [PG94] and the results for this scenario are depicted in Figure 9.3.
Here, we observe that GPS Basic can only be improved by GPS M and only for
utilization below 80%.

In our next scenario, we keep the heterogeneous traffic classes and parameters
and vary the violation probability instead. Inspired by the results in Figure 9.2,
we consider a scenario with a smaller load of 65% as we always obtain finite
results (see Figure 9.4). We observe that the violation probability largely impacts

[August 8, 2022 at 15:04 –]

9.4 summary 99

the gap between the different delay bounds. To be precise, the smaller the
probability, the larger the improvement over GPS Basic. Again, the parameters
as well as the chosen traffic class have a strong influence on the improvement.

9.3.2 General Arrival Processes

In our last experiment, we consider the general case where we do not assume
the arrivals to be independent. Apart from our benchmark GPS Basic, we also
implement GPS with tail bounds (stochastic service curve in Proposition 9.8)
with bounds on the delay’s violation probability obtained via Proposition 9.9.
We could also implement GPS M (Theorem 9.3), since the (σS, ρS)-bound in
Proposition 9.7 is given for the case that the arrival are dependent; yet, the
number of parameters to optimize for 16 flows (θ, 15 Hölder parameters, and
the set M with possibly 215 subsets) is computationally infeasible.

The results are given in Figure 9.5. We observe that GPS with tail bounds is
not able to improve upon GPS Basic in any of the examples. In other words,
they overlap in all scenarios completely. Given that in Proposition 9.9, we
additionally need to optimize over all i ∈ M ⊂ N , GPS Basic provides a better
trade off by leading to the same performance bounds but in a significantly less
complex calculation (wee only need to optimize θ).

9.4 summary

In this chapter, we provided a stochastic analysis of a generalized processor
sharing (GPS) server applying different SNC techniques. Therefore, we consid-
ered leftover service processes in the SNC with MGFs as well as the SNC with
tail bounds. If flows are assumed to be independent, we have seen that either of
the two branches can outperform GPS Basic. The obtained improvement highly
depends on the chosen parameters and on the utilization. However, this could
be seen as a step towards reducing the gap between simulations and calculated
bounds. In case arrivals are not assumed to be independent, we have seen that
new SNC techniques could not improve upon GPS Basic, and further come
with the downside of introducing more complexity to the calculation.

Yet, the stochastic analysis of GPS still remains a challenging task in the
network calculus. We hope that this chapter can be a useful tool in order to
enhance understanding of the GPS performance analysis. It would also be
interesting whether a leftover service as in Theorem 9.3 could be integrated
into the martingale-based approaches in the future.

[August 8, 2022 at 15:04 –]

9.4 summary 100

10

30

100

0.5 0.6 0.7 0.8 0.9
Utilization

D
e

la
y

GPS Basic
GPS Tail Ind
GPS M (MGF)

(a) Exponential distribution

1

3

10

30

0.5 0.6 0.7 0.8 0.9
Utilization

D
e

la
y

GPS Basic
GPS Tail Ind
GPS M (MGF)

(b) Weibull distribution

1

10

100

0.5 0.6 0.7 0.8 0.9
Utilization

D
e

la
y

GPS Basic
GPS Tail Ind
GPS M (MGF)

(c) MMOO

Figure 9.3: Stochastic delay bounds for a violation probability of 10−6 under
independent arrivals (RPPS).

10

20

30

1e-061e-041e-02
Violation probability

D
e

la
y

GPS Basic
GPS Tail Ind
GPS M (MGF)

(a) Exponential distribution

0

10

20

30

1e-061e-041e-02
Violation probability

D
e

la
y

GPS Basic
GPS Tail Ind
GPS M (MGF)

(b) Weibull distribution

20

40

60

1e-061e-041e-02
Violation probability

D
e

la
y

GPS Basic
GPS Tail Ind
GPS M (MGF)

(c) MMOO

Figure 9.4: Stochastic delay bounds for a utilization = 0.65 under independent arrivals.

[August 8, 2022 at 15:04 –]

9.4 summary 101

10

30

100

0.5 0.6 0.7 0.8 0.9
Utilization

D
e

la
y

GPS Basic
GPS Tail

(a) Exponential distribution

10

30

100

0.5 0.6 0.7 0.8 0.9
Utilization

D
e

la
y

GPS Basic
GPS Tail

(b) Weibull distribution

1

10

100

0.5 0.6 0.7 0.8 0.9
Utilization

D
e

la
y

GPS Basic
GPS Tail

(c) MMOO

Figure 9.5: Stochastic delay bounds for a violation probability of 10−6 under general
arrivals.

[August 8, 2022 at 15:04 –]

9.4 summary 102

[August 8, 2022 at 15:04 –]

10
C O N C L U S I O N A N D O U T L O O K

In this chapter, we conclude this thesis by summarizing its contribution. In
addition, we provide some outlook to future research directions.

10.1 conclusion

This thesis makes several contributions to the stochastic network calculus (SNC).

1. We show that the pay multiplexing only once (PMOO) property, origi-
nally known from the deterministic network calculus (DNC) [Fid03, SZ06,
SZM06, Bou+08], can be achieved in the SNC with a significant gain in
accuracy of performance bounds and a reduction of complexity. Moreover,
while the technique originates from the DNC, PMOO has a measurably
larger impact in the SNC since it also reduces the method-pertinent depen-
dencies. That is, dependencies that are caused when flows interfere in the
network, even though they are assumed to be independent when entering
the network. As a result, this new analysis reduces runtimes by several
orders of magnitude depending on the used optimization heuristic. Given
that the usage of the Union bound is already responsible for a notable
gap between simulations and bounds, PMOO helps us to not widen the
gap even further by other artifacts from the analysis.

2. We give a perspective on how these method-pertinent dependencies can
further be reduced for flows that directly or indirectly shared the capacity
of a server by incorporating the concept of negative dependence. While
it lacks a rigorous proof, numerical evidence indicates a larger potential
of improved bound accuracy and reduced runtimes. Maybe even more
importantly, it gives an outlook that dependence does not have to be a
negative property per se. While this perspective is not completely new,
see e.g., [DWS15, Don17], to the best our knowledge, it is the first time to
be introduced to the basic SNC with MGFs.

3. We introduce h-mitigators that can be used to improve the calculation of
MGF-output bounds. Similar to the negative dependence, it can particu-
larly benefit when considering larger, more complex topologies. Moreover,
it yields an opportunity to reduce the effect of the Union bound without
compromising on generality as it requires no additional assumptions.
While it comes at the price of additional parameters to optimize, the
number of parameters can be tailored to the according problem.

4. We made a Python toolbox publicly available that includes all network
operations, state-of-the-art end-to-end analyses and contains all the above
contributions. In particular, it allows for a replication of all presented
results.

103

[August 8, 2022 at 15:04 –]

10.2 outlook 104

5. Apart from the above results for arbitrary multiplexing, we conduct differ-
ent SNC analyses (with MGFs as well as with tail bounds) of generalized
processor sharing (GPS), a popular fair scheduler. We give an overview
of the state-of-the-art analyses in the SNC and provide numerical evalua-
tions.

10.2 outlook

Providing probabilistic end-to-end performance bounds in packet-switched
networks remains a timeless challenge. [Ciu07, pp. 173] reported that a problem
of interest is the existence of “convolution-form networks”, i.e., the “class of
networks in which the service given to flows can be expressed in terms of min-
plus convolution formulas”. In particular, this leads to the question whether
networks of arbitrary topologies, in particular, with cycles or probabilistic
routing, are contained in this class. Even though we claim in this thesis to
extend the class of analyzable topologies within a reasonable amount of time,
the original problem basically still remains. In fact, it is not clear whether this
problem can be solved in a single, large step, or whether it requires many
smaller steps that further “push the boundaries” towards a general tractability
and applicability of the stochastic network calculus.

In the introduction (Chapter 1), we mentioned that the uniform framework of
the SNC comes with a price of a noticeable gap between exact distribution and
bounds. However, it is an open problem whether such a uniform framework
can still yield bounds as tight as, e.g., the single-node bounds obtained with
martingale techniques as in [CPS14, PC15]. While such an accomplishment
appears to be elusive from today’s point of view, hypothetically, it would be
considered a major breakthrough in the performance analysis of distributed
systems.

One of the “smaller”, yet still challenging steps to advance the SNC, would
be to establish the PMOO to arbitrary feedforward networks. [BNS21] already
made a first attempt by the transformation into a so-called “tree-reducible
network”. The transformation has been conducted by “cutting” a network;
however, other techniques are also possible and a comparison is beyond the
scope of this thesis. Solving this problem would make a significant step to-
wards catching up with the DNC in terms of a general end-to-end analysis of
feedforward networks.

The concept of using negative dependence to simplify the analysis of de-
pendent structure in Chapter 6 is basically a first attempt. Fully unleashing its
potential is an open, yet very relevant problem.

It would also be interesting whether the simulation-calculation gap of the
martingale analysis for generalized processor sharing (GPS) could be reduced
by integrating a state-of-the-art leftover service (see Chapter 9).

[August 8, 2022 at 15:04 –]

10.2 outlook 105

[August 8, 2022 at 15:04 –]

Part V

A P P E N D I X

[August 8, 2022 at 15:04 –]

A
S T O C H A S T I C N E T W O R K C A L C U L U S T R A F F I C C L A S S E S

a.1 (σA , ρ A)-bounds for discrete-time mmoo arrivals

In [Cha94], [Cha00, pp. 244], a Markov-modulated process (MMP) is analyzed.
Yet, only a θ-envelope rate is derived which basically is the ρA(θ) of (σA, ρA)-
constrained arrivals [Cha00, pp. 243]:

ρA(θ) =
1
θ

log (sp(ϕ(θ)P)) .

For the special case of MMOO arrivals with peak rate b, we can derive a closed
form solution for the spectral radius (and hence for ρA(θ)) [Soh92], [Cha00, pp.
243]:

sp(ϕ(θ)P) =
p11 + p22eθπA +

√
(p11 + p22eθπA)

2 − 4 (p11 + p22 − 1) eθπA

2
.

Coming back to the MMP, a bound on the remaining σA(θ) part is derived in
[Bec16a, pp. 124]:

σA(θ) =
1
θ

log
((

max
k=1,...,M

ϕk(θ)

)
maxk=1,...,M {vk}
mink=1,...,M {vk}

· 1
sp(ϕ(θ)P)

)
,

where v ∈ RM
+ is an eigenvector with only positive entries corresponding to the

eigenvalue sp(ϕ(θ)P). The eigenvector v can be computed numerically, yet, for
the sake of completeness, we now provide an analytical solution under MMOO

arrivals.
First, it is trivial that

max
k=1,2

ϕk(θ) = eθπA .

Based on the definition of v, it holds that

(ϕ(θ)P − sp(ϕ(θ)P) I) v = 0

⇔
(

p11ϕ1(θ)− sp(ϕ(θ)P) p12ϕ1(θ)

p21ϕ2(θ) p22ϕ2(θ)− sp(ϕ(θ)P)

)(
v1

v2

)
=

(
0

0

)

which leads to the eigenvector

v =

(
p12ϕ1(θ)

sp(ϕ(θ)P)− p11ϕ1(θ)

)
.

Now, we can compute max{v1,v2}
min{v1,v2} directly by checking the sign of v.

107

[August 8, 2022 at 15:04 –]

A.2 fractional brownian motion 108

a.2 fractional brownian motion

Definition A.1 (Fractional Brownian Motion [Nor94, Nor95]). A stochastic
process Z(t) is called (normalized) fractional Brownian motion (fBm) with
(self-similarity) Hurst parameter H ∈ (0.5, 1), if it can be characterized by the
following properties:

• Z(t) has stationary increments,

• Z(0) = 0 and E[Z(t)] = 0 for all t,

• E
[
Z(t)2

]
= |t|2H for all t,

• Z(t) has continuous paths,

• Z(t) is Gaussian, i.e., all its finite-dimensional marginal distributions are
Gaussian.

The increments of Z(t), Z(t + 1)− Z(t) , are called fractional Gaussian noise
(fGn).

[August 8, 2022 at 15:04 –]

B
A P P E N D I X O F C H A P T E R 4

b.1 tandem queue performance bounds

proof of proposition 4 .1 :

Proof. We compute

P(d(t) > T)
(3.26)
≤

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
e−θSe2e(s0,t+T)

]
=

t−1

∑
s0=0

(
E
[
eθA1(s0,t)

]
· E
[

e−θ
(
[S1−∑m

j=2 Aj]
+⊗···⊗[Sn−(((∑m

j=2 Aj)⊘S1)...)⊘Sn−1]
+
(s0,t+T)

)]
≤

t−1

∑
s0=0

(
E
[
eθA1(s0,t)

] t+T

∑
s1=s0

. . .

t+T

∑
sn−1=sn−2

E
[

e−θ
(
[S1−∑m

j=2 Aj]
+
(s0,s1)+

. . . ···+[Sn−(((∑m
j=2 Aj)⊘S1)...)⊘Sn−1]

+
(sn−1,t+T)

)])
All of the factors are dependent and hence we apply the generalized Hölder
inequality (Eqn. (3.22)):

P(d(t) > T)

(3.22)
≤

t−1

∑
s0=0

(
E
[
eθA1(s0,t)

] t+T

∑
s1=s0

· · ·
t+T

∑
sn−1=sn−2

E
[

e−p1θ[S1−∑m
j=2 Aj]

+
(s0,s1)

] 1
p1

· · ·E
[

epnθ[Sn−(((∑m
j=2 Aj)⊘S1)...)⊘Sn−1]

+
(sn−1,t+T)

] 1
pn

)

≤
t−1

∑
s0=0

(
E
[
eθA1(s0,t)

] t+T

∑
s1=s0

· · ·
t+T

∑
sn−1=sn−2

E
[
ep1θ ∑m

j=2 Aj(s0,s1)e−p1θS1(s0,s1)
] 1

p1

· · ·E
[
epnθ((((∑m

j=2 Aj)⊘S1)...)⊘Sn−1)(sn−1,t+T)e−pnθSn(sn−1,t+T)
] 1

pn
)

,

such that
n

∑
i=1

1
pi

= 1.

proof of proposition 4 .2 :

109

[August 8, 2022 at 15:04 –]

B.1 tandem queue performance bounds 110

Proof. We compute

P(d(t) > T)
(3.26)
≤

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
e−θSe2e(s0,t+T)

]
=

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[

e−θ[⊗n
i=1Si(s0,t+T)−∑n

j=2 Aj(s0,t+T)]
+
]

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
eθ ∑m

j=2 Aj(s0,t+T)
]

E
[
e−θ⊗n

i=1Si(s0,t+T)
]

≤
t−1

∑
s0=0

(
E
[
eθA1(s0,t)

]
E
[
eθ ∑m

j=2 Aj(s0,t+T)
]

·
t+T

∑
s1=s0

· · ·
t+T

∑
sn−1=sn−2

E
[
e−θ(S1(s0,s1)+···+Sn(sn−1,t+T))

])
(indep.)
=

t−1

∑
s0=0

(
E
[
eθA1(s0,t)

] m

∏
j=2

E
[
eθAj(s0,t+T)

]
·

t+T

∑
s1=s0

· · ·
t+T

∑
sn−1=sn−2

(
E
[
e−θS1(s0,s1)

]
· · ·E

[
e−θSn(sn−1,t+T)

]))
,

where we used that

E
[
e−θ(S1(s0,s1)+···+Sn(sn−1,t+T))

]
≤

t+T

∑
s1=s0

· · ·
t+T

∑
sn−1=sn−2

(
E
[
e−θS1(s0,s1)

]
· · ·E

[
e−θSn(sn−1,t+T)

])
.

(B.1)

proof of proposition 4 .5 :

Proof. At first, we compute a bound on the leftover service:

E
[
e−θSe2e(s0,t+T)

]
=E

[
e−θ[⊗n

i=1Si(s0,t+T)−∑m
j=2 Aj(s0,t+T)]

+
]

≤E
[
eθ ∑m

j=2 Aj(s0,t+T)
]

E
[
e−θ⊗n

i=1Si(s0,t+T)
]

(3.22)
≤

m

∏
j=2

E
[
epj+1θAj(s0,t+T)

] 1
pj+1

t+T

∑
s1=s0

· · ·
t+T

∑
sn−1=sn−2

E
[
e−θ(S1(s0,s1)+Sn(sn−1,t+T))

]
,

where the last inequality follows by the generalized Hölder inequality (Eqn. (3.22))
and Eqn. (B.1). Thus, we obtain for the delay bound

P(d(t) > T)
(3.26)
≤

t−1

∑
s0=0

E
[
ep1θA1(s0,t)

] 1
p1 E
[
e−p2θSe2e(s0,t+T)

] 1
p2

≤
t−1

∑
s0=0

E
[
ep1θA1(s0,t)

] 1
p1

(
m

∏
j=2

E
[
ep2 pj+1θAj(s0,t+T)

] 1
pj+1

[August 8, 2022 at 15:04 –]

B.2 sink tree performance bounds 111

·
t+T

∑
s1=s0

· · ·
t+T

∑
sn−1=sn−2

E
[
e−p2θ(S1(s0,s1)+···+Sn(sn−1,t+T))

]) 1
p2

(indep.)
=

t−1

∑
s0=0

E
[
ep1θA1(s0,t)

] 1
p1

(
m

∏
j=2

E
[
ep2 pj+1θAj(s0,t+T)

] 1
pj+1

·
t+T

∑
s1=s0

· · ·
t+T

∑
sn−1=sn−2

(
E
[
e−p2θS1(s0,s1)

]
· · · E

[
e−p2θSn(sn−1,t+T)

])) 1
p2

 ,

such that

1
p1

+
1
p2

= 1,

1
p3

+ · · ·+ 1
pm+1

= 1.

b.2 sink tree performance bounds

proof of proposition 4 .4

Proof. We prove the theorem via induction. The base case n = 2 is already
treated in Subsection 4.1.2.

Assume now that the induction hypothesis (IH) is true for some n ∈ N. We
denote the end-to-end service of tandems of length n by Sn

e2e. Observe that
extending the sink tree basically means that we prolong all flows and add
one flow that only traverses the last hop. Therefore, we apply the induction
hypothesis on the last server n servers S2, . . . , Sn+1 and receive Sn

e2e. Afterwards,
we basically apply the base case, as the network is reduced to the network
consisting of S1 and Sn

e2e. This gives

Sn+1
e2e

= [(Sn
e2e ⊗ S1)− A2]

+

(IH)
=

[([([(
[Sn+1 − An+2]

+ ⊗ Sn

)
− An+1

]+
⊗ · · · ⊗ S2

)
− A3

]+
⊗ S1

)
− A2

]+
.

For the delay bound, it follows that

P(d(t) > T)
(3.26)
≤

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
e−θSe2e(s0,t+T)

]
≤

t−1

∑
s0=0

E
[
eθA1(s0,t)

]

· E

e
−θ

[([(
[([Sn+1−An+2]

+⊗Sn)−An+1]
+⊗···⊗S2

)
−A3

]+
⊗S1

)
−A2

]+
(s0,t+T)

(IH)

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
eθA2(s0,t+T)

] (t+T

∑
s1=s0

E
[
e−θS1(s1,t+T)

]
E
[
eθA3(s0,s1)

]

[August 8, 2022 at 15:04 –]

B.2 sink tree performance bounds 112

·
(

s1

∑
s2=s0

E
[
e−θS2(s2,s1)

]
E
[
eθA4(s0,s2)

]
· · ·
(

sn−2

∑
sn−1=s0

E
[
e−θSn−1(sn−1,sn−2)

]
E
[
eθAn+1(s0,sn−1)

]
·E
[
e−θ([Sn+1−An+2]

+⊗Sn)(s0,sn−1)
])))

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
eθA2(s0,t+T)

] (t+T

∑
s1=s0

E
[
e−θS1(s1,t+T)

]
E
[
eθA3(s0,s1)

]
·
(

s1

∑
s2=s0

E
[
e−θS2(s2,s1)

]
E
[
eθA4(s0,s2)

]
· · ·
(

sn−2

∑
sn−1=s0

E
[
e−θSn−1(sn−1,sn−2)

]
E
[
eθAn+1(s0,sn−1)

]
·
(

sn−1

∑
sn=s0

E
[
e−θSn(sn,sn−1)

]
E
[
eθAn+2(s0,sn)

]
E
[
e−θSn+1(s0,sn)

])))
.

This finishes the proof.

proof of proposition 4 .6 :

Proof.

P(d(t) > T)
(3.26)
≤

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
e−θSe2e(s0,t+T)

]
=

t−1

∑
s0=0

E

[
e

θ

(
A1(s0,t)−

[(
[([Sn−An+1]

+⊗Sn−1)−An]
+⊗···⊗S1

)
−A2

]+
(s0,t+T)

)]

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[

eθ
(

A2(s0,t+T)−
(
[([Sn−An+1]

+⊗Sn−1)−An]
+⊗···⊗S1

)
(s0,t+T)

)]
.

Here, we have A1 being dependent on the other Ai’s and hence, Hölder’s
inequality comes into play.

P(d(t) > T)
(3.22)
≤

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
ep1θA2(s0,t+T)

] 1
p1

·
(

E

[
e
−p2θ

([
[([Sn−An+1]

+⊗Sn−1)−An]
+⊗···−A3

]+
⊗S1

)
(s0,t+T)

]) 1
p2

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
ep1θA2(s0,t+T)

] 1
p1

·
(

t+T

∑
s1=s0

E
[

e−p2θ
[
[([Sn−An+1]

+⊗Sn−1)−An]
+⊗···−A3

]+
(s0,s1)

]
E
[
e−p2θS1(s1,t+T)

]) 1
p2

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
ep1θA2(s0,t+T)

] 1
p1

·
(

t+T

∑
s1=s0

E
[
e−p2θS1(s1,t+T)

]
E
[

ep2θ
(

A2−[([Sn−An+1]
+⊗Sn−1)−An]

+⊗···⊗S2

)
(s0,s1)

]) 1
p2

[August 8, 2022 at 15:04 –]

B.2 sink tree performance bounds 113

and we see that Hölder has to be applied n-times:

P(d(t) > T)
(3.22)
≤

t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
ep1θA1(s0,t+T)

] 1
p1

·
(

t+T

∑
s1=s0

E
[
e−p2θS1(s1,t+T)

]
E
[
ep2 p3θA2(s0,s1)

] 1
p3

·
(

E
[

e−p2 p4θ[([Sn−An+1]
+⊗Sn−1)−An−1]

+⊗···⊗S2(s0,s1)

]) 1
p4

) 1
p2

...

≤
t−1

∑
s0=0

E
[
eθA1(s0,t)

]
E
[
ep1θA2(s0,t+T)

] 1
p1

·

 t+T

∑
s1=s0

E
[
e−p2θS1(s1,t+T)

]
E
[
ep2 p3θA3(s0,s1)

] 1
p3

· · ·
(

sn−2

∑
sn−1=s

E
[
e−p2 p4···p2n−2θSn−1(sn−1,sn−2)

]
E
[
ep2 p4···p2n−2θAn+1(s0,sn−1)

]

· E
[
e−p2 p4···p2n−2θSn(s0,sn−1)

]) 1
p2n−2

. . .

1

p2

such that

1
p1

+
1
p2

= 1

...
1

p2n−1
+

1
p2n−2

= 1.

[August 8, 2022 at 15:04 –]

B.3 tandem queue numerical evaluation 114

b.3 tandem queue numerical evaluation

1e-05

1e-04

1e-03

1e-02

1e-01

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

stationary
t=15
t=10
t=5
t=1

(a) SFA with H = 0.5.

1e-03

1e-02

1e-01

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty t=15

t=10
t=5
t=1

(b) SFA with H = 0.9.

1e-07

1e-05

1e-03

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

stationary
t=15
t=10
t=5
t=1

(c) PMOO with H = 0.5.

1e-06

1e-04

1e-02

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty t=15

t=10
t=5
t=1

(d) PMOO with H = 0.9.

Figure B.1: Delay violation probability for the two-server tandem queue and different
t.

1e-04

1e-03

1e-02

1e-01

1e+00

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

SFA
PMOO

Figure B.2: Comparison between delay violation probabilities using SFA and PMOO
(tandem queue).

[August 8, 2022 at 15:04 –]

B.4 tandem queue mixed scenario 115

1e-06

1e-04

1e-02

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

lambda=1.2
lambda=1.0
lambda=0.8

(a) Mean arrival rate λ

1e-08

1e-06

1e-04

1e-02

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

sigma=1.2
sigma=1.0
sigma=0.8

(b) Standard deviation σ

1e-14

1e-10

1e-06

1e-02

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

hurst=0.9
hurst=0.7
hurst=0.5

(c) Hurst parameter H

Figure B.3: Parameter sensitivity of fractional Brownian motion on the delay bounds
(tandem queue).

1e-12

1e-09

1e-06

1e-03

4 5 6 7 8 9 10
Delay

V
io

la
tio

n
 p

ro
b

a
b

ili
ty

PMOODep
PMOO

Figure B.4: Comparison between delay violation probabilities for independent and
dependent cross-flows using PMOO (tandem queue).

b.4 tandem queue mixed scenario

Proposition B.1 (XDEP Scenario). The PMOO-SFA yields for the delay bound with
dep. cross flow

P(d(t) > T)

≤
t−1

∑
k0=0

E
[
eθA1(k0,t)

]
E
[
ep1θA2(k0,t+T)

] 1
p1

· E
[
ep2θA3(k0,t+T)

] 1
p2

t+T

∑
k1=k0

t+T

∑
k2=k1

E
[
e−θS1(k0,k1)

]
· E
[
e−θS2(k1,k2)

]
E
[
e−θS3(k2,t+T)

]
,

[August 8, 2022 at 15:04 –]

B.4 tandem queue mixed scenario 116

with
1
p1

+
1
p2

= 1.

Proof. At first, we compute a bound on the leftover service curve:

E
[
e−θ(Sl.o.(k0,t+T))

]
=E

[
e−θ([S1⊗S2⊗S3(k0,t+T)−(A2+A3)(k0,t+T)]+)

]
≤E

[
eθ(A2+A3)(k0,t+T)

]
· E
[
e−θ(S1⊗S2⊗S3(k0,t+T))

]
(3.22)
≤ E

[
ep1θA2(k0,t+T)

] 1
p1 E
[
ep2θA3(k0,t+T)

] 1
p2

·
t+T

∑
k1=k0

t+T

∑
k2=k1

E
[
e−θ(S1(k0,k1)+S2(k1,k2)+S3(k2,t+T))

]
=E

[
ep1θA2(k0,t+T)

] 1
p1 E

[
ep2θA3(k0,t+T)

] 1
p2

·
t+T

∑
k1=k0

t+T

∑
k2=k1

E
[
e−θS1(k0,k1)

]
· E
[
e−θS2(k1,k2)

]
E
[
e−θS3(k2,t+T)

]
.

Thus, we obtain for the delay bound by applying the foi’s independence of the
two remaining flows:

P(d(t) > T)

≤
t−1

∑
k0=0

E
[
eθA1(k0,t)

]
E
[
e−θSe2e(s0,t+T)

]
≤

t−1

∑
k0=0

E
[
eθA1(k0,t)

]
E
[
ep1θA2(k0,t+T)

] 1
p1

· E
[
ep2θA3(k0,t+T)

] 1
p2

t+T

∑
k1=k0

t+T

∑
k2=k1

E
[
e−θS1(k0,k1)

]
· E
[
e−θS2(k1,k2)

]
E
[
e−θS3(k2,t+T)

]
,

with
1
p1

+
1
p2

= 1.

Proposition B.2 (FDEP Scenario). The PMOO-SFA yields for the delay bound with
semi dependence, i.e. that the foi f1 and a cross flow f2 are dependent, f3 is independent:

P(d(t) > T)

≤
t−1

∑
k0=0

E
[
ep1θA1(k0,t)

] 1
p1 E
[
ep2θA2(k0,t+T)

] 1
p2

· E
[
eθA3(k0,t+T)

]
·

t+T

∑
k1=k0

t+T

∑
k2=k1

E
[
e−θS1(k0,k1)

]
E
[
e−θS2(k1,k2)

]

[August 8, 2022 at 15:04 –]

B.4 tandem queue mixed scenario 117

E
[
e−θS3(k2,t+T)

]
,

with
1
p1

+
1
p2

= 1.

Proof. We obtain for the delay bound:

P(d(t) > T)

≤
t−1

∑
k0=0

E
[
eθA1(k0,t)e−θSe2e(k0,t+T)

]
=

t−1

∑
k0=0

E
[
eθA1(k0,t)e−θ[S1⊗S2⊗S3(k0,t+T)−(A2+A3)(k0,t+T)]+

]
≤

t−1

∑
k0=0

E
[
eθA1(k0,t)eθ((A2+A3)(k0,t+T)−S1⊗S2⊗S3(k0,t+T))

]
(indep.)
=

t−1

∑
k0=0

E
[
eθ(A1(k0,t)+A2(k0,t+T)+A3(k0,t+T))

]
· E
[
eθ(−S1⊗S2⊗S3(k0,t+T))

]
(3.22)
≤

t−1

∑
k0=0

E
[
ep1θA1(k0,t)

] 1
p1 E

[
ep2θA2(k0,t+T)

] 1
p2

· E
[
eθA3(k0,t+T)

]
·

t+T

∑
k1=k0

t+T

∑
k2=k1

E
[
e−θ(S1(k0,k1)+S2(k1,k2)+S3(k2,t+T))

]
=

t−1

∑
k0=0

E
[
ep1θA1(k0,t)

] 1
p1 E

[
ep2θA2(k0,t+T)

] 1
p2

· E
[
eθA3(k0,t+T)

]
·

t+T

∑
k1=k0

t+T

∑
k2=k1

E
[
e−θS1(k0,k1)

]
E
[
e−θS2(k1,k2)

]
E
[
e−θS3(k2,t+T)

]
,

with
1
p1

+
1
p2

= 1.

[August 8, 2022 at 15:04 –]

C
A P P E N D I X O F C H A P T E R 5

c.1 proofs

proof of theorem 5 .1

Proof. Note that all servers Sj, j = 1, . . . , n, are work-conserving servers. As-
sume that for all t ≥ 0, tj is the start of the backlogged period (as in Eqn. (2.15))
of server Sj before tj+1 (t for the last server). Then, by the definition of a
work-conserving server,

∑
i:j∈πi

Dj
i

(
tj, tj+1

)
≥ Sj

(
tj, tj+1

)
.

Summing over all j = 1, . . . , n, this leads to

n

∑
j=1

∑
i:j∈πi

Dj
i

(
tj, tj+1

)
≥

n

∑
j=1

Sj
(
tj, tj+1

)
.

Since tj is the start of the backlogged period of server Sj, we have that Dj
i (tj) =

Aj
i(tj) = Dj−1

i (tj) for all j = 1, . . . , n (we defined D0
i = Ai) and for i such that

j ∈ πi. Moreover, we can exchange the sums of the left-hand side and receive a
telescoping sum. This simplifies to

∑m
i=1 ∑j∈πi

Dj
i

(
tj+1

)
− Dj

i

(
tj
)

≥
n

∑
j=1

Sj
(
tj, tj+1

)
⇔ ∑m

i=1 ∑j∈πi
Dj

i

(
tj+1

)
− Dj−1

i

(
tj
)

≥
n

∑
j=1

Sj
(
tj, tj+1

)
⇔ ∑m

i=1 Dπi(li)
i

(
tπi(li)+1

)
− Dπi(1)−1

i

(
tπi(1)

)
≥

n

∑
j=1

Sj
(
tj, tj+1

)
.

Using that Dπi(1)−1
i = Ai as well as Dπi(li)

i = Di for all i, we receive

m

∑
i=1

Di

(
tπi(li)+1

)
− Ai

(
tπi(1)

)
≥

n

∑
j=1

Sj
(
tj, tj+1

)
.

Now, in order to prove the theorem, we need to isolate D1 on the left-hand side
of the inequality. Hence, we subtract both sides, use that Di(t) ≤ Ai(t) for all i
and t ≥ 0 by causality (see also Eqn. (2.3)) and π1(1) = 1, π1(li) = n, leading to

D1 (tn+1) ≥ A1(t1) +
n

∑
j=1

Sj
(
tj, tj+1

)
−

m

∑
i=2

(
Di

(
tπi(li)

)
− Ai

(
tπi(1)

))
≥ A1(t1) +

n

∑
j=1

Sj
(
tj, tj+1

)
−

m

∑
i=2

Ai

(
tπi(1), tπi(li)

)
.

118

[August 8, 2022 at 15:04 –]

C.1 proofs 119

In addition, by the definition of t1 being the start of a backlogged period before
tπi(li), it holds that

D1 (tn+1) ≥ D1(t1) = A1(t1).

Combining both inequalities yields

D1(tn+1)

≥A1(t1) +

[
n

∑
j=1

Sj
(
tj, tj+1

)
−

m

∑
i=2

Ai

(
tπi(1), tπi(li)

)]+

≥ inf
0≤t1≤tn+1

{
A1(t1) +

[
inf

t1≤t2≤···≤tn≤tn+1

{
n

∑
j=1

Sj
(
tj, tj+1

)
−

m

∑
i=2

Ai

(
tπi(1), tπi(li)

)}]+}
= inf

0≤t1≤tn+1
{A1(t1) + Se2e (t1, tn+1)}

=A1 ⊗ Se2e (0, tn+1).

This finishes the proof.

proof of theorem 5 .3

Proof. For the ease of notation, we only provide a proof for the tandem case.
This means that π1(l1) = l1 = n. Therefore, we start all proofs with n and
switch to l1 whenever the result would be different when considering trees.

For the first bound, we calculate

P(d(tn+1) > T)
(3.26)
≤

tn+1

∑
t1=0

E
[
eθ(A1(t1,t)−Se2e(t1,tn+1+T))

]
(5.3)
=

tn+1

∑
t1=0

E
[

eθ
(

A1(t1,t)−[inft1≤t2≤···≤tn≤tn+1+T{∑n
j=1 Sj(tj,tj+1)−∑m

i=2 Ai(tπi(1)
,tπi(li)+1)}]+

)]

≤
tn+1

∑
t1=0

E
[
eθA1(t1,t)

]
∑

t1≤t2≤···≤tn≤tn+1+T
E
[
e−θ ∑n

j=1 Sj(tj,tj+1)
]

E
[
eθ ∑m

i=2 Ai(tπi(1)
,tπi(li)+1)

]
≤

tn+1

∑
t1=0

eθ(σA1 (θ)+ρA1 (θ)(t−t1))

· ∑
t1≤t2≤···≤tn≤tn+1+T

e−θ ∑n
j=1

(
σSj (−θ)+ρSj (−θ)(tj+1−tj)

)
eθ ∑m

i=2(σAi (θ)+ρAi (θ)(tπi(li)+1−tπi(1)))

=eθσtotal(θ)
tn+1

∑
t1=0

eθρA1 (θ)(t−t1) ∑
t1≤t2≤···≤tn≤tn+1+T

e−θ ∑n
j=1 ρSj (−θ)(tj+1−tj)eθ ∑m

i=2 ρAi (θ)(tπi(li)+1−tπi(1)),

(C.1)

where we used the PMOO leftover service for trees from Theorem 5.2 in the
third line. We continue and receive

P(d(tn+1) > T)

≤eθσtotal(θ)e−θρA1 (θ)T
tn+1

∑
t1=0

eθρA1 (θ)(t+T−t1)

[August 8, 2022 at 15:04 –]

C.1 proofs 120

· ∑
t1≤t2≤···≤tn≤tn+1+T

e−θ ∑n
j=1 ρSj (−θ)(tj+1−tj)eθ ∑m

i=2 ρAi (θ)(tπi(li)+1−tπi(1))

=eθσtotal(θ)e−θρA1 (θ)T
tn+1

∑
t1=0

∑
t1≤t2≤···≤tn≤tn+1+T

e−θ ∑n
j=1

(
ρSj (−θ)−∑i:j∈πi

ρAi (θ)
)
(tj+1−tj)

≤eθσtotal(θ)e−θρA1 (θ)T
∞

∑
t′1=0

· · ·
∞

∑
t′n=0

e−θ ∑n
j=1

(
ρSj (−θ)−∑i:j∈πi

ρAi (θ)
)

t′1 · · · e−θ ∑n
j=1

(
ρSj (−θ)−∑i:j∈πi

ρAi (θ)
)

t′n

=eθσtotal(θ)e−θρA1 (θ)T
n

∏
j=1

1

1 − e−θ(Cres,j(−θ)−ρA1 (θ))

=eθσtotal(θ)e−θρA1 (θ)T ∏
j∈π1

1

1 − eθ(ρA1 (θ)−Cres,j(−θ))︸ ︷︷ ︸
=γ

=eθσtotal(θ)e−θρA1 (θ)Tγ.

This proves the first bound.
For the second result, we start with Eqn. (C.1) and follow along the lines of

[Fid06, Theorem 3]. Wlog, assume that all n servers are traversed by the foi
(otherwise we have the additional factor W as for the first bound).

P(d(tn+1) > T)
(C.1)
≤ eθσtotal(θ)

tn+1

∑
t1=0

eθρA1 (θ)(t−t1) ∑
t1≤t2≤···≤tn≤tn+1+T

e−θ ∑n
j=1 ρSj (−θ)(tj+1−tj)eθ ∑m

i=2 ρAi (θ)(tπi(li)+1−tπi(1))

=eθσtotal(θ)e−θρA1 (θ)T
tn+1

∑
t1=0

eθρA1 (θ)(t+T−t1)

· ∑
t1≤t2≤···≤tn≤tn+1+T

e−θ ∑n
j=1 ρSj (−θ)(tj+1−tj)eθ ∑m

i=2 ρAi (θ)(tπi(li)+1−tπi(1))

≤eθσtotal(θ)e−θρA1 (θ)T
tn+1

∑
t1=0

∑
t1≤t2≤···≤tn≤tn+1+T

e−θ ∑n
j=1

(
ρSj (−θ)−∑i:j∈πi

ρAi (θ)
)
(tj+1−tj)

≤eθσtotal(θ)e−θρA1 (θ)T
∞

∑
t1=T

∑
ui≥0:∑j∈π1

uj=t1

e−θ minj∈π1{Cres,j(−θ)−ρA1 (θ)}︸ ︷︷ ︸
=:q

t1

=eθσtotal(θ)e−θρA1 (θ)T
∞

∑
t1=T

(
t1 + l1 − 1

l1 − 1

)
qt1

=eθσtotal(θ)e−θρA1 (θ)T
1

(1 − q)l1

∞

∑
t1=T

(
t1 + l1 − 1

l1 − 1

)1 − q︸ ︷︷ ︸
=:p

l1

qt1 .

We observe that the series is the CCDF of a negatively, binomially distributed
random variable X with success probability p (to be precise, the probability
that T + n or more trials are needed for n successes). Hence,

P(d(tn+1) > T)

=eθσtotal(θ)e−θρA1 (θ)T
1

(1 − q)l1
P(X ≥ T + l1)

[August 8, 2022 at 15:04 –]

C.1 proofs 121

(
if T≥ l1q

1−q

)
≤ eθσtotal(θ)e−θρA1 (θ)T

1

(1 − q)l1

(

1 + T
l1

)(1+ T
l1

)
(

T
l1

) T
l1︸ ︷︷ ︸

=:ζ

l1

qT

=e−θρA1 (θ)Teθ
(

minj∈π1

{
ρSj (−θ)−∑i:j∈π1

ρAi (θ)
})

Teθσtotal(θ)ζ l1

=eθ
(

minj∈π1

{
ρSj (−θ)−∑i ̸=1:j∈π1

ρAi (θ)
})

Teθσtotal(θ)ζ l1

=e−θCmin(−θ)Teθσtotal(θ)ζ l1 .

where the inequality is obtained by applying Chernoff’s bound and optimizing
θ (for more details, see again [Fid06, Theorem 3]).

Let us now prove the third bound.

P(d(tn+1) > T)
(C.1)
≤ eθσtotal(θ)

tn+1

∑
t1=0

eθρA1 (θ)(t−t1) ∑
t1≤t2≤···≤tn≤tn+1+T

e−θ ∑n
j=1 ρSj (−θ)(tj+1−tj)eθ ∑m

i=2 ρAi (θ)(tπi(li)+1−tπi(1))

=eθσtotal(θ)
tn+1

∑
t1=0

eθρA1 (θ)(t−t1) ∑
t1≤t2≤···≤tl1

≤tn+1+T
e−θ ∑j∈π1

Cres,j(−θ)(tj+1−tj)

=eθσtotal(θ)e−θCmin(−θ)·T
tn+1

∑
t1=0

eθ(ρA1 (θ)−Cmin(−θ))(t−t1)

· ∑
t1≤t2≤···≤tl1

≤tn+1+T
eθ ∑j∈π1(Cmin(−θ)−Cres,j(−θ))(tj+1−tj)

≤eθσtotal(θ)e−θCmin(−θ)·T

·
∞

∑
t′1=0

∞

∑
t′2=0

· · ·
∞

∑
t′l1

=0
eθ(ρA1 (θ)−Cmin(−θ))t′1 eθ(Cmin(−θ)−Cres,1(−θ))t′2

· · · eθ(Cmin(−θ)−Cres,π(l1)
(−θ))t′l1

=eθσtotal(θ)e−θCmin(−θ)·T

· 1

1 − eθ(ρA1 (θ)−Cmin(−θ))
· ∏

j∗ ̸=j∈π1

1

1 − eθ(Cmin(−θ)−Cres,j(−θ))︸ ︷︷ ︸
=ψ

=eθσtotal(θ)e−θCmin(−θ)·T ψ

1 − eθ(ρA1 (θ)−Cmin(−θ))
,

where we note that the product is equal to 1 for j = j∗. This finishes the
proof.

[August 8, 2022 at 15:04 –]

D
A P P E N D I X O F C H A P T E R 6

d.1 proofs

diamond network By using the conjecture, we have obtained so far that

P(d(t) > T)

≤
t−1

∑
t0=0

E
[
eθA1(t0,t)

]
e−θC1(t+T−t0) E

[
eθ(D2

2+D3
3)(t0,t+T)

]
≤

t−1

∑
t0=0

E
[
eθA1(t0,t)

]
e−θC1(t+T−t0) E

[
eθ((A2⊘[S4−A3]

+)⊘S2)(t0,t+T)
]

E
[
eθ((A3⊘S4)⊘S3)(t0,t+T)

]
.

This leads to

P(d(t) > T)

≤
t−1

∑
t0=0

E
[
eθA1(t0,t)

]
e−θC1(t+T−t0)

{
t0

∑
t1=0

E
[
eθ(A2⊘[S4−A3]

+)(t1,t+T)
]

E
[
e−θS2(t1,t0)

]}

·
{

t0

∑
t1=0

E
[
eθ(A3⊘S4)(t1,t+T)

]
E
[
e−θS3(t1,t0)

]}

≤
t−1

∑
t0=0

E
[
eθA1(t0,t)

]
e−θC1(t+T−t0)

·
{

t0

∑
t1=0

{
t1

∑
t2=0

E
[
eθA2(t2,t+T)

]
E
[
eθA3(t2,t1)

]
E
[
e−θS4(t2,t1)

]}
E
[
e−θS2(t1,t0)

]}

·
{

t0

∑
t1=0

{
t1

∑
t2=0

E
[
eθA3(τ3,t+T)

]
E
[
e−θS4(τ3,,t1)

]}
E
[
e−θS3(t1,t0)

]}
,

after applying the Union bound for each usage of the deconvolution. Further
assuming all Ai to be (σA, ρA)-bounded yields a closed-form for the delay
bound under the stability condition

ρA1(θ) + ρA2(θ) + ρA3(θ) < C1,

ρA2(θ) < C2,

ρA3(θ) < C3,

ρA2(θ) + ρA3(θ) < C4 :

P(d(t) > T)
(3.2)
≤

t−1

∑
t0=0

eθ(ρA1 (θ)(t−t0)+σ1(θ))e−θC1(t+T−t0)

·
{

t0

∑
t1=0

{
t1

∑
t2=0

eθ(ρA2 (θ)(t+T−t2)+σA2 (θ))eθ(ρA3 (θ)(t1−t2)+σA3 (θ))e−θC4(t1−t2)

}
e−θC2(t0−t1)

}

122

[August 8, 2022 at 15:04 –]

D.1 proofs 123

·
{

t0

∑
t1=0

{
t1

∑
t2=0

eθ(ρA3 (θ)(t+T−t2)+σA3 (θ))e−θC4(t1−t2)

}
e−θC3(t0−t1)

}
≤eθ((ρA2 (θ)+ρA3 (θ)−C1)T+σ1(θ)+σA2 (θ)+2σA3 (θ))

·
t−1

∑
t0=0

eθ(ρA1 (θ)−C1)(t−t0)

{
t0

∑
t1=0

eθρA2 (θ)(t−t1)

1 − eθ(ρA2 (θ)+ρA3 (θ)−C4)
e−θC2(t0−t1)

}

·
{

t0

∑
t1=0

eθρA3 (θ)(t−t1)

1 − eθ(ρA3 (θ)−C4)
e−θC3(t0−t1)

}
≤eθ((ρA2 (θ)+ρA3 (θ)−C1)T+σ1(θ)+σA2 (θ)+2σA3 (θ))

·
t−1

∑
t0=0

eθ(ρA1 (θ)+ρA2 (θ)+ρA3 (θ)−C1)(t−t0)

1 − eθ(ρA2 (θ)−C2)
· 1

1 − eθ(ρA3 (θ)−C3)

· 1

1 − eθ(ρA2 (θ)+ρA3 (θ)−C4)
· 1

1 − eθ(ρA3 (θ)−C4)

≤ eθ((ρA2 (θ)+ρA3 (θ)−C1)T+σ1(θ)+σA2 (θ)+2σA3 (θ))

1 − eθ(ρA1 (θ)+ρA2 (θ)+ρA3 (θ)−C1)
· 1

1 − eθ(ρA2 (θ)−C2)
· 1

1 − eθ(ρA3 (θ)−C3)

· 1

1 − eθ(ρA2 (θ)+ρA3 (θ)−C4)
· 1

1 − eθ(ρA3 (θ)−C4)
,

where we used the convergence of the geometric series.

the L We have that

P(d(t) > T)

≤
t−1

∑
t0=0

E
[
eθA1(t0,t)

] t+T

∑
t1=t0

e−θC1·(t1−t0)e−θC2·(t+T−t1) E
[
eθD3

3(t0,t+T)eθD3
2(t0,t1)

]
≤

t−1

∑
t0=0

E
[
eθA1(t0,t)

] t+T

∑
t1=t0

e−θC1·(t1−t0)e−θC2·(t+T−t1) E
[
eθD3

3(t0,t+T)eθD3
2(t0,t+T)

]
.

With the conjecture, we compute

P(d(t) > T)

≤
t−1

∑
t0=0

E
[
eθA1(t0,t)

] t+T

∑
t1=t0

e−θC1·(t1−t0)e−θC2·(t+T−t1) E
[
eθD3

3(t0,t+T)
]

E
[
eθD3

2(t0,t+T)
]

≤
t−1

∑
t0=0

E
[
eθA1(t0,t)

] t+T

∑
t1=t0

e−θC1·(t1−t0)e−θC2·(t+T−t1) E
[
eθ(A2⊘S3)(t0,t+T)

]
E
[
eθ(A3⊘[S3−A2]

+)(t0,t+T)
]

≤
t−1

∑
t0=0

E
[
eθA1(t0,t)

] t+T

∑
t1=t0

e−θC1·(t1−t0)e−θC2·(t+T−t1)

{
t0

∑
t2=0

E
[
eθA2(t2,t+T)

]
e−θC3(t0−t2)

}

·
{

t0

∑
t2=0

E
[
eθA3(t2,t+T)

]
E
[
e−θ[S3−A2]

+(t2,t0)
]}

≤
t−1

∑
t0=0

E
[
eθA1(t0,t)

] t+T

∑
t1=t0

e−θC1·(t1−t0)e−θC2·(t+T−t1)

{
t0

∑
t2=0

E
[
eθA2(t2,t+T)

]
e−θC3(t0−t2)

}

·
{

t0

∑
t2=0

E
[
eθA3(t2,t+T)

]
E
[
eθA2(t2,t0)

]
e−θC3(t0−t2)

}
.

[August 8, 2022 at 15:04 –]

D.1 proofs 124

If we again assume all Ai to be (σA, ρA)-bounded, we obtain for

ρA1(θ) + ρA2(θ) + ρA3(θ) < min{C1, C2},

ρA2(θ) + ρA3(θ) < C3,

and C1 ̸= C2:

P(d(t) > T)
(3.2)
≤

t−1

∑
t0=0

eθ(ρA1 (θ)(t−t0)+σA1 (θ))
t+T

∑
t1=t0

e−θC1·(t1−t0)e−θC2·(t+T−t1)

·
{

t0

∑
t2=0

eθ(ρA2 (θ)(t+T−t2)+σA2 (θ))e−θC3(t0−t2)

}

·
{

t0

∑
t2=0

eθ(ρA2 (θ)(t0−t2)+σA2 (θ))eθ(ρA3 (θ)(t+T−t2)+σA3 (θ))e−θC3(t0−t2)

}
≤eθ((ρA2 (θ)+ρA3 (θ))·T+σA1 (θ)+2σA2 (θ)+σA3 (θ))

·
t−1

∑
t0=0

eθ(ρA1 (θ)+ρA2 (θ)+ρA3 (θ))(t−t0)
t+T

∑
t1=t0

e−θC1·(t1−t0)e−θC2·(t+T−t1)

·
{

t0

∑
t2=0

eθ(ρA2 (θ)−C3)(t0−t2)

}{
t0

∑
t2=0

eθ(ρA2 (θ)+ρA3 (θ)−C3)(t0−t2)

}
≤eθ((ρA2 (θ)+ρA3 (θ))·T+σA1 (θ)+2σA2 (θ)+σA3 (θ))

·
t−1

∑
t0=0

eθ(ρA1 (θ)+ρA2 (θ)+ρA3 (θ))(t−t0)

1 − eθ(ρA2 (θ)−C3)
· 1

1 − eθ(ρA2 (θ)+ρA3 (θ)−C3)

·
t+T

∑
t1=t0

e−θC1·(t1−t0)e−θC2·(t+T−t1)

≤eθ((ρA2 (θ)+ρA3 (θ))·T+σA1 (θ)+2σA2 (θ)+σA3 (θ))

·
t−1

∑
t0=0

eθ(ρA1 (θ)+ρA2 (θ)+ρA3 (θ))(t−t0)

1 − eθ(ρA2 (θ)−C3)
· 1

1 − eθ(ρA2 (θ)+ρA3 (θ)−C3)

·
t+T

∑
t1=t0

e−θC1·(t1−t0)e−θC2·(t+T−t1)

≤ eθ((ρA2 (θ)+ρA3 (θ)−min{C1,C2})·T+σA1 (θ)+2σA2 (θ)+σA3 (θ))

1 − eθ(ρA1 (θ)+ρA2 (θ)+ρA3 (θ)−min{C1,C2})

· 1

1 − eθ(ρA2 (θ)−C3)
· 1

1 − eθ(ρA2 (θ)+ρA3 (θ)−C3)
· 1

1 − e−θ|C1−C2|
,

where we used again the convergence of the geometric series.

[August 8, 2022 at 15:04 –]

E
A P P E N D I X O F C H A P T E R 7

e.1 proofs

Proof of Proposition 7.5. We have already seen in Eqn. (7.5) that

E
[
eθD(s,t)

]
≤ inf

p≥1

(

s

∑
τ=0

E
[
epθ(A(τ,t)−S(τ,s))

]) 1
p
 ,

which can be continued with

E
[
eθD(s,t)

]
≤ inf

p≥1

(

s

∑
τ=0

E
[
epθA(τ,t)

]
E
[
e−pθS(τ,s)

]) 1
p

≤ inf
p≥1

eθ(σA(pθ)+σS(−pθ))

(
s

∑
τ=0

epθ(ρA(pθ)(t−τ)−ρS(−pθ)(s−τ))

) 1
p
 ,

where we, again, used the independence of arrivals and service in the second
line and the (σ, ρ)-constraints for arrivals and service in the third line.

Since we assume stability, ρA(pθ) < ρS(−pθ), we obtain by convergence of
the geometric series

E
[
eθD(s,t)

]
≤ inf

p≥1

{
eθ(ρA(pθ)(t−s)+σA(pθ)+σS(−pθ))

(
1

1 − epθ(ρA(pθ)−ρS(−pθ))

) 1
p
}

.

This yields

σD(θ) =σA(pθ) + σS(−pθ)− 1
pθ

log
(

1 − epθ(ρA(pθ)−ρS(−pθ))
)

,

ρD(θ) =ρA(pθ)

as the theorem states.

125

[August 8, 2022 at 15:04 –]

F
A P P E N D I X O F C H A P T E R 9

f.1 proofs of optimal M in homogeneous scenario

Proof. We assume that γrj,bj = γr,b and ϕj = ϕ ∀j ∈ N . Theorem 9.4 then yields
the strict service curve

βi(t) = max
i∈M⊂N

{
β

ϕi
∑j∈M ϕj

(R−∑j/∈M rj),
(

∑j/∈M bj+R·T
R−∑j/∈M rj

)(t)
}

= max
i∈M⊂N

{
β

1
|M| (R−∑j/∈M rj),

(
(|N |−|M|)·b+R·T

R−∑j/∈M rj

)(t)
}

.

In other words, only the cardinality of M is relevant for the delay bound. By
stability,

r ≤ 1
|M|

(
R − ∑

j/∈M
rj

)
=: Rl.o.,M, ∀i ∈ M ⊂ N ,

we obtain for the delay bound

d
(2.24)
≤ b

Rl.o.,M
+ Tl.o.

= min
i∈M⊂N

 b
1

|M|

(
R − ∑j/∈M rj

) +
(|N | − |M|) · b + R · T

R − ∑j/∈M rj

= min

i∈M⊂N

{
|M| · b + (|N | − |M|) · b + R · T

R − ∑j/∈M rj

}

= min
i∈M⊂N

{
|N | · b + R · T

R − ∑j/∈M rj

}
.

Since the denominator is increasing in the cardinality of M (and therefore the
fraction is decreasing), the optimal choice of M is equal to N with delay bound

d ≤ |N | · b + R · T
R

=
|N | · b

R
+ T.

f.2 proofs for snc with mgfs

proof of proposition 9 .6 :

126

[August 8, 2022 at 15:04 –]

F.2 proofs for snc with mgfs 127

Proof. We obtain

E
[
e−θSi(s,t)

]
=E

[
e−θ

(
ϕi

∑k∈N ϕk

)
S(s,t)

]
≤e−

(
ϕi

∑k∈N ϕk
θ
)(

ρS

(
− ϕi

∑k∈N ϕk
θ
)
(t−s)−σS

(
− ϕi

∑k∈N ϕk
θ
))

=e−(ψiθ)ρS(−ψiθ)(t−s)+(ψiθ)σS(−ψiθ)

=e−θψiρS(−ψiθ)(t−s)+θψiσS(−ψiθ),

where we define
ψi :=

ϕi

∑k∈N ϕk
.

proof of proposition 9 .7 :

Proof. Let pj such that

∑
j/∈M

1
pj

= 1.

We calculate

E
[
e−θSi(s,t)

]
=E

[
e
−θ

(
ϕi

∑j∈M ϕj

(
S(s,t)−

(
∑j/∈M

{
Aj⊘

(
ϕj

∑k∈N ϕk
S
)
(s,t)

})))]
(S determ.)

= E
[

e
−θ

ϕi
∑j∈M ϕj

S(s,t)
]
· E

[
e

θ
ϕi

∑j∈M ϕj
∑j/∈M

{
Aj⊘

(
ϕj

∑k∈N ϕk
S
)
(s,t)

}]

≤E
[

e
−θ

ϕi
∑j∈M ϕj

S(s,t)
]
· ∏

j/∈M
E

[
e

pjθ
ϕi

∑j∈M ϕj

(
Aj⊘

(
ϕj

∑k∈N ϕk
S
)
(s,t)

)] 1
pj

,

where we used Hölder’s inequality in the last line. If we have independent
arrivals, we also independence of the output bounds (but not of the actual
outputs). Similar to above, we define for i ∈ M ⊂ N

ψi,M :=
ϕi

∑j∈M ϕj

and
ψj :=

ϕj

∑k∈N ϕk
.

Further, we assume the stability condition

ρAj

(
pjψi,Mθ

)
< ψjρS

(
−ψi,Mψjθ

)

[August 8, 2022 at 15:04 –]

F.2 proofs for snc with mgfs 128

for all j /∈ M. We continue by

E
[
e−θSi(s,t)

]
≤E

[
e
−θ

ϕi
∑j∈M ϕj

S(s,t)
]
· ∏

j/∈M
E

[
e

pjθ
ϕi

∑j∈M ϕj

(
Aj⊘

(
ϕj

∑k∈N ϕk
S
)
(s,t)

)] 1
pj

≤E
[

e
−θ

ϕi
∑j∈M ϕj

S(s,t)
]
· ∏

j/∈M

s

∑
τ=0

E

[
e

pjθ
ϕi

∑j∈M ϕj

(
Aj(τ,t)−

ϕj
∑k∈N ϕk

S(τ,s)
)] 1

pj

(S determ.)

= E
[
e−θψi,MS(s,t)

]
· ∏

j/∈M

{
s

∑
τ=0

E
[
epjθψi,M Aj(τ,t)

] 1
pj E
[

e−θψi,M ·
ϕj

∑k∈N ϕk
S(τ,s)

]}

≤e−ψi,MθρS(−ψi,Mθ)(t−s)+ψi,MθσS(−ψi,Mθ)

· ∏
j/∈M

{
s

∑
τ=0

eψi,MθρAj(pjψi,Mθ)(t−τ)+ψi,MθσAj(pjψi,Mθ)

·e−ψi,MψjθρS(−ψi,Mψjθ)(s−τ)+ψi,MψjθσS(−ψi,Mψjθ)

}
≤e−ψi,Mθ(ρS(−ψi,Mθ)(t−s)−σS(−ψi,Mθ))

· ∏
j/∈M

 eψi,MθρAj(pjψi,Mθ)(t−s)+ψi,MθσAj(pjψi,Mθ)+ψi,MψjθσS(−ψi,Mψjθ)

1 − eψi,Mθ
(

ρAj(pjψi,Mθ)−ψjρS(−ψi,Mψjθ)
)

=e−ψi,Mθ

(
ρS(−ψi,Mθ)−∑j/∈M ρAj (ψi,Mθ)

)
(t−s)+ψi,MθσS(−ψi,Mθ)

· e∑j/∈M ψi,MψjθσS(−ψi,Mψjθ)+ψi,MθσAj(pjψi,Mθ)

· ∏
j/∈M

{
1

1 − eψi,Mθ
(

ρAj(pjψi,Mθ)−ψjρS(−ψi,Mψjθ)
)
}

.

We continue with

E
[
e−θSi(s,t)

]
≤e−ψi,Mθ

(
ρS(−ψi,Mθ)−∑j/∈M ρAj (ψi,Mθ)

)
(t−s)+ψi,MθσS(−ψi,Mθ)

· ∏
j/∈M

 eψi,MθσAj(pjψi,Mθ)+ψi,MψjθσS(−ψi,Mψjθ)

1 − eψi,Mθ
(

ρAj(pjψi,Mθ)−ψjρS(−ψi,Mψjθ)
)

=e−ψi,Mθ
(

ρS(−ψi,Mθ)−∑j/∈M ρAj (ψi,Mθ)
)
(t−s)

· e
ψi,Mθ

σS(−ψi,Mθ)+∑j/∈M

σAj(pjψi,Mθ)+ψjσS(−ψi,Mψjθ)− 1
ψi,Mθ log

1−e
ψi,Mθ

(
ρAj(pjψi,Mθ)−ψjρS(−ψi,Mψjθ)

)

.

This proves the claim.

[August 8, 2022 at 15:04 –]

F.3 background on snc with tail bounds 129

f.3 background on snc with tail bounds

In this section, we give a background on SNC with tail bounds. The definitions
and notations are mainly inspired by [CBL06]. First, as a reminder, we state
Definition 3.1 again.

Definition F.1. An increasing function α(t − s) is said to be a stochastic envelope
or stochastic arrival curve for an arrival process A if, for all σ ∈ R

P(A(s, t) > α(t − s) + σ) ≤ εa(σ), 0 ≤ s ≤ t, (F.1)

where εa(σ) ≥ 0 is a decreasing function, the error function or overflow / deficit
profile.

Definition F.2 (Stochastic Service Curve [Cru96], [CBL06], [JL08, p. 65]). Assume
A and D are the arrival respectively departure process. A function β(t) is a
stochastic service curve for an arrival process A, if for any fixed sample path and
every choice of σ ≥ 0

P
(

D(t) < A ⊗ [β − σ]+ (t)
)
≤ εs(σ), ∀t ≥ 0, (F.2)

where εs(σ) is a decreasing error function.

Moreover, for some slack rate δ > 0, we introduce the notation fδ(t) =

f (t) + δ · t. Based on above definitions, on can derive performance bounds.

Theorem F.3 (Violation Probability of Backlog, Delay, and Output). Let A and
D denote the arrivals and departure processes at a node which provides a stochastic
service curve β(t) satisfying Eqn. (F.2) for a given sample path with error function
εs(σ). Let the arrivals be bounded by a stochastic envelope α with error function εa(σ)

satisfying Eqn. (F.1) and the integrability condition∫ ∞

0
ε(σ)dσ < ∞. (F.3)

Fix δ > 0 and define

ε(σ) := inf
σa+σs=σ

{
εs(σs) +

∞

∑
k=0

εa (σa + kδ)

}
. (F.4)

Then we have the following bounds:

1. Backlog: A bound on the backlog’s violation probability is given by

P(q(t) > αδ ⊘ β (0) + σ) ≤ ε(σ), t ≥ 0.

2. Delay: A bound on the delay’s violation probability is given by

P(d(t) > h(σ)) ≤ ε(σ), t ≥ 0, (F.5)

where

h(σ) = inf {s ≥ 0 : β(τ + s) ≥ αδ(τ) + σ for all τ ≥ 0} . (F.6)

[August 8, 2022 at 15:04 –]

F.4 proofs for tail bound analysis of gps 130

3. Output burstiness: α ⊘ β−δ provides a stochastic envelope for D, i.e.,

P(D(s, t) > α ⊘ β−δ (t − s) + σ) ≤ ε(σ), 0 ≤ s ≤ t.

Proof. For a proof, see [CBL06, Theorem 2].

Moreover, a useful lemma is given in [CBL06, Lemma 3].

Lemma F.4. For any positive numbers Mk, θk, k = 1, . . . , K and any σ ≥ 0,

inf
σ1+···+σK=σ

{
K

∑
k=1

Mke−θkσk

}
=

K

∏
k=1

(Mkθkw)
1

θkw e−
σ
w , (F.7)

where w = ∑K
k=1

1
θk

.

f.4 proofs for tail bound analysis of gps

proof of proposition 9 .8

Proof. Suppose now, for a particular sample path, we have

Aj(s, t) ≤ αj,δ(t − s) + σj, ∀0 ≤ s ≤ t, ∀j /∈ M. (F.8)

and define
σ := ∑

j/∈M
σj.

Note that the sum of concave functions is concave. Further, adding a constant
does not change concavity. By Theorem 9.4 and the “arrival curve assumption”
in Eqn. (F.8), we conclude that

D1(t) ≥ inf
0≤s≤t

{
Ai(s) +

[
ϕi

∑j∈M ϕj

(
β(t − s)− ∑

j/∈M
αj,δ(t − s)− ∑

j/∈M
σj

)]+}

≥ inf
0≤s≤t

{
Ai(s) +

[
βi(t − s)− σ

]+}
= A1 ⊗

[
βi(t)− σ

]+
(t).

and abused the notation in the last line. Hence, we reverse the implication and
receive the bound

P
(

D1(t) < A1 ⊗ [βl.o.,M(t − s)− σ]+ (t)
)

≤ inf
∑j/∈M σj=σ

{
∑

j/∈M
P
(

Aj(t) > inf
0≤s≤t

{
Aj(s) + αj,δ(t − s) + σj

})}

= inf
∑j/∈M σj=σ

{
∑

j/∈M
P

(
sup

0≤s≤t

{
Aj(s, t)− αj,δ(t − s)

}
> σj

)}
(3.28)
≤ inf

∑j/∈M σj=σ

{
∑

j/∈M

t

∑
s=0

P
(

Aj(s, t) > αj,δ(t − s) + σj
)}

≤ inf
∑j/∈M σj=σ

{
∑

j/∈M

∞

∑
k=0

εaj

(
σj + kδ

)}
.

This finishes the proof.

[August 8, 2022 at 15:04 –]

F.4 proofs for tail bound analysis of gps 131

proof of proposition 9 .9

Proof. Observe that, since the arrivals are (σA(θ), ρA(θ))-bounded, they have a
concave stochastic envelope

α(t − s) = ρA(θ) · (t − s).

Further, the constant rate function is obviously is convex.
In the following, we apply Theorem F.3.2. For h(σ), we calculate using

Proposition 9.8

h(σ)

= inf
{

s ≥ 0 : βi(τ + s) ≥ αi,δ(τ) + σ for all τ ≥ 0
}

= inf

{
s ≥ 0 :

ϕi

∑j∈M ϕj
·
(

β(τ + s)− ∑
j/∈M

αj,δ(τ + s)

)
≥ αi(τ) + δ · τ + σ for all τ ≥ 0

}

=

∑j∈M ϕj
ϕi

· σ

C − ∑j/∈M ρAj(θ)− |N \ M| · δ
.

Let us replace σ by

T · ϕi

∑j∈M ϕj
·
(

C − ∑
j/∈M

ρAj(θ)− |N \ M| · δ

)
≥ 0.

Then, by Theorem F.3, it holds that

P(d(t) > T) = P(d(t) > h(σ))

≤ inf
σa+σs=σ

εs (σs) +
∞

∑
k=0

εa(σa + kδ)︸ ︷︷ ︸
error fun. of foi

= inf

σa+σs=σ

{
εs (σs) +

∞

∑
k=0

eθσAj (θ)e−θ(σa+kδ)

}
.

Further, we have that

εs (σs) = inf
∑j/∈M σj=σs

∑
j/∈M

∞

∑
k=0

εaj

(
σj + kδ

)
︸ ︷︷ ︸
error fun. of cross-flows

= inf

∑j/∈M σj=σs

{
∑

j/∈M

∞

∑
k=0

eθσAj (θ)e−θ(σj+kδ)

}

=
1

1 − e−θδ
· inf

∑j/∈M σj=σs

{
∑

j/∈M
eθσAj (θ)e−θσj

}
.

Applying Lemma F.4 yields

inf
∑j/∈M σj=σs

{
∑

j/∈M
eθσAj (θ)e−θσj

}
= e

θ
|N \M| ∑j/∈M σAj (θ)e−

σs
w ∏

j/∈M
|N \ M|

1
|N \M|

︸ ︷︷ ︸
=|N \M|

= |N \ M| e
θ

|N \M| ∑j/∈M σAj (θ)e−
θ

|N \M| σs .

[August 8, 2022 at 15:04 –]

F.4 proofs for tail bound analysis of gps 132

Thus,

εs(σs) =
|N \ M|
1 − e−θδ

e
θ

|N \M| ∑j/∈M σAj (θ) · e−
θ

|N \M| σs .

It follows that

P(d(t) > T)

≤ inf
σa+σs=σ

{
εs (σs) +

∞

∑
k=0

eθσAi (θ)e−θ(σa+kδ)

}

= inf
σa+σs=σ

{
|N \ M|
1 − e−θδ

e
θ

|N \M| ∑j/∈M σAj (θ)e−
θ

|N \M| σs +
1

1 − e−θδ
eθσAi (θ)e−θσa

}
.

We compute

w =
1 + |N \ M|

θ

in Lemma F.4 and hence

P(d(t) > T)

≤ inf
σa+σs=σ

{
|N \ M|
1 − e−θδ

e
θ

|N \M| ∑j/∈M σAj (θ)e−
θ

|N \M| σs + eθσAi (θ)
1

1 − e−θδ
e−θσa

}
=

(
e

θ
|N \M| ∑j/∈M σAj (θ)

) 1
θ

|N \M| w
(

eθσAi (θ)
) 1

θw e−
σ
w

(
|N \ M|
1 − e−θδ

· θ

|N \ M|w
) 1

θ
|N \M| w ·

(
1

1 − e−θδ
· θw

) 1
θw

=e
θ

1+|N \M|

(
σAi (θ)+∑j/∈M σAj (θ)

)
(1 + |N \ M|)

(
1

1 − e−θδ

)
e−

θσ
1+|N \M|

= (1 + |N \ M|)
(

1
1 − e−θδ

)
· e

− θ
1+|N \M|

(
T· ϕi

∑j∈M ϕj
·
(

C−∑j/∈M ρAj (θ)−|N\M|·δ
))

e
θ

1+|N \M|

(
σAi (θ)+∑j/∈M σAj (θ)

)
.

proof of proposition 9 .10

Proof. We only show the case M ̸= N . Suppose now, for a particular sample
path, we have

∑
j/∈M

Aj(s, t) ≤ ∑
j/∈M

αj,δ(t − s) + σ ∀0 ≤ s ≤ t. (F.9)

By Theorem 9.4 and the “arrival curve assumption” in Eqn. (F.9), we conclude
that

Di(t) ≥ inf
0≤s≤t

{
Ai(s) +

[
ϕi

∑j∈M ϕj

(
C · (t − s)− ∑

j/∈M
αj,δ(t − s)− σ

)]+}

≥ inf
0≤s≤t

{
Ai(s) +

[
βi(t − s)− σ

]+}
= Ai ⊗

[
βi − σ

]+
(t).

[August 8, 2022 at 15:04 –]

F.4 proofs for tail bound analysis of gps 133

Hence, we reverse the implication and receive the bound

P
(

Di(t) < Ai ⊗
[

βi(t − s)− σ
]+

(t)
)

≤P

(
∑

j/∈M
Aj(t) > inf

0≤s≤t

{
∑

j/∈M
Aj(s) + ∑

j/∈M
αj,δ(t − s) + σ

})

=P

(
sup

0≤s≤t

{
∑

j/∈M
Aj(s, t)− ∑

j/∈M
αj,δ(t − s)

}
> σ

)
(3.28)
≤

t

∑
s=0

P

(
∑

j/∈M
Aj(s, t) > ∑

j/∈M
αj,δ(t − s) + σ

)
(3.3)
≤

t

∑
k=0

e−θ
(

∑j/∈M ρAj (θ)k+|N \M|δ·k+σ
)

E
[
eθ ∑j/∈M Aj(t−k,t)

]
≤

t

∑
k=0

e−θ
(

∑j/∈M ρAj (θ)k+|N \M|δ·k+σ
)

eθ ∑j/∈M ρAj (θ)k+∑j/∈M σAj (θ)

=eθ ∑j/∈M σAj (θ)
t

∑
k=0

e−θ(|N \M|δ·k+σ)

≤ eθ ∑j/∈M σAj (θ)

1 − e−θ|N \M|δ e−θσ,

where we used the Union bound in the fourth line and the Chernoff bound in
the subsequent line. This finishes the proof.

proof of proposition 9 .11

Proof. We start with the case M ̸= N :
Again, we want to apply Theorem F.3.2. For h(σ), we calculate using Proposi-

tion 9.10

h(σ)

= inf

{
s ≥ 0 :

ϕi

∑j∈M ϕj
·
(

β(τ + s)− ∑
j/∈M

αj,δ (τ + s)

)
≥ α1,δ(τ) + σ for all τ ≥ 0

}
=

σ
ϕi

∑j∈M ϕj

(
C − ∑j/∈M ρAj(θ)− |N \ M| · δ

) .

Let us replace σ by

T · ϕi

∑j∈M ϕj
·
(

C − ∑
j/∈M

ρAj(θ)− |N \ M| · δ

)
≥ 0.

Then, by Theorem F.3.2, it holds that

P(d(t) > T) =P(d(t) > h(σ))

≤ inf
σa+σs=σ

εs(σs) +
∞

∑
k=0

εa(σa + kδ)︸ ︷︷ ︸
error fun. of foi

= inf

σa+σs=σ

{
eθ ∑j/∈M σAj (θ)e−θσs

1 − e−θ|N \M|δ +
eθσAi (θ)e−θσa

1 − e−θδ

}
.

[August 8, 2022 at 15:04 –]

F.4 proofs for tail bound analysis of gps 134

We compute

w =
2
θ

in Lemma F.4 and hence

P(d(t) > T)

≤ inf
σa+σs=σ

{
eθ ∑j/∈M σAj (θ)e−θσs

1 − e−θ|N \M|δ +
eθσAi (θ)e−θσa

1 − e−θδ

}

=e
θ
2

(
σAi (θ)+∑j/∈M σAj (θ)

)
e−

σ
w

(
1

1 − e−θ|N \M|δ · θw
) 1

θw

·
(

1
1 − e−θδ

· θw
) 1

θw

=e
θ
2

(
σAi (θ)+∑j/∈M σAj (θ)

)
2
(

1
1 − e−θ|N \M|δ

) 1
2

·
(

1
1 − e−θδ

) 1
2

e−
θ
2 σ

=2
(

1
1 − e−θ|N \M|δ

) 1
2

·
(

1
1 − e−θδ

) 1
2

· e
− θ

2 T· ϕi
∑j∈M ϕj

·
(

C−∑j/∈M ρAj (θ)−|N\M|·δ
)

e
θ
2

(
σAi (θ)+∑j/∈M σAj (θ)

)
.

Next, we proof the case M = N . By Proposition 9.10, we know that

βi(t) =
ϕi

∑k∈N ϕk
β(t)

is a stochastic service curve with error function εs = 0. Using Theorem F.3, we
obtain for h(σ)

h(σ)

= inf
{

s ≥ 0 :
ϕi

∑k∈N ϕk
· β(τ + s) ≥ αi(τ) + δ · τ + σ for all τ ≥ 0

}
=

σ
ϕi

∑k∈N ϕk
· C

.

Let us replace σ by

T · ϕi

∑k∈N ϕk
C.

Then, by Theorem F.3.2, it holds that

P(d(t) > T) = P(d(t) > h(σ))

≤ inf
σa+σs=σ

εs(σs) +
∞

∑
k=0

εa(σa + kδ)︸ ︷︷ ︸
error fun. of foi

=

∞

∑
k=0

εa(σ + kδ)

=
∞

∑
k=0

eθσAi (θ)e−θ(σ+kδ)

=
eθσAi (θ)

1 − e−θδ
e−θσ

=
1

1 − e−θδ
e−θT· ϕi

∑k∈N ϕk
·CeθσAi (θ).

[August 8, 2022 at 15:04 –]

F.4 proofs for tail bound analysis of gps 135

Since this function is decreasing in δ, the optimal value of δ its upper bound
(that is given by the stability condition Eqn. (9.10) by inserting M = N):

ρAi(θ) + δ
!
=

ϕi

∑k∈N ϕk
· C

⇔ δ =
ϕi

∑k∈N ϕk
· C − ρAi(θ).

[August 8, 2022 at 15:04 –]

F.4 proofs for tail bound analysis of gps 136

[August 8, 2022 at 15:04 –]

B I B L I O G R A P H Y

[Agr+99] Rajeev Agrawal, Rene L Cruz, Clayton Okino, and Rajendran
Rajan. “Performance bounds for flow control protocols.” In:
IEEE/ACM Transactions on Networking (ToN) 7.3 (1999), pp. 310–
323.

[AR96] Rajeev Agrawal and Rajendran Rajan. Performance bounds for
guaranteed and adaptive services. IBM TJ Watson Research Center
Yorktown Heights, NY, 1996.

[AMS82] David Anick, Debasis Mitra, and Man M Sondhi. “Stochastic
theory of a data-handling system with multiple sources.” In: Bell
System technical journal 61.8 (1982), pp. 1871–1894.

[AKV08] Rita Giuliano Antonini, Yuriy Kozachenko, and Andrei Volodin.
“Convergence of series of dependent φ-subGaussian random
variables.” In: J. Math. Anal. Appl. (2008).

[Bac+92] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre
Quadrat. Synchronization and linearity: an algebra for discrete event
systems. John Wiley & Sons Ltd, 1992.

[Bas+75] Forest Baskett, K Mani Chandy, Richard R Muntz, and Fernando
G Palacios. “Open, closed, and mixed networks of queues with
different classes of customers.” In: Journal of the ACM (JACM)
22.2 (1975), pp. 248–260.

[Bec16a] Michael A Beck. “Advances in Theory and Applicability of
Stochastic Network Calculus.” PhD thesis. TU Kaiserslautern,
2016.

[BS13] Michael A. Beck and Jens Schmitt. “The DISCO Stochastic Net-
work Calculator Version 1.0 - When Waiting Comes to an End.”
In: Proc. 7th International Conference on Performance Evaluation
Methodologies and Tools (VALUETOOLS 2013). 2013.

[Bec16b] Michael Beck. “Towards the Analysis of Transient Phases with
Stochastic Network Calculus.” In: IEEE 17th International Network
Strategy and Planning Symposium (Networks’16). 2016.

[BH17] Michael Beck and Sebastian Henningsen. “Technical Report The
Stochastic Network Calculator.” In: arXiv preprint arXiv:1707.07739
(2017).

[Bec21] Nico Becker. “Non-stationary service curves: model and esti-
mation method with application to cellular sleep scheduling.”
PhD thesis. Hannover: Institutionelles Repositorium der Leibniz
Universität Hannover, 2021.

[BF15] Nico Becker and Markus Fidler. “A non-stationary service curve
model for performance analysis of transient phases.” In: 2015
27th International Teletraffic Congress. IEEE. 2015, pp. 116–124.

137

[August 8, 2022 at 15:04 –]

bibliography 138

[BZ96] Jon CR Bennett and Hui Zhang. “WF2Q: worst-case fair weighted
fair queueing.” In: Proceedings of IEEE INFOCOM’96. Conference
on Computer Communications. Vol. 1. 1996, pp. 120–128.

[Bon16] Steffen Bondorf. “Worst-Case Performance Analysis of Feed-
Forward Networks – An Efficient and Accurate Network Calcu-
lus.” PhD thesis. 2016, pp. IX, 157.

[BNS17a] Steffen Bondorf, Paul Nikolaus, and Jens B. Schmitt. “Quality
and Cost of Deterministic Network Calculus – Design and Eval-
uation of an Accurate and Fast Analysis.” In: Proceedings of the
ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 2017). 2017.

[BNS17b] Steffen Bondorf, Paul Nikolaus, and Jens B. Schmitt. “Quality and
Cost of Deterministic Network Calculus – Design and Evaluation
of an Accurate and Fast Analysis.” In: Proceedings of the ACM on
Measurement and Analysis of Computing Systems (POMACS) 1.1
(2017), p. 34.

[BS16] Steffen Bondorf and Jens B. Schmitt. “Should Network Calculus
Relocate? An Assessment of Current Algebraic and Optimization-
based Analyses.” In: Proceedings of the International Conference on
Quantitative Evaluation of Systems (QEST 2016). 2016.

[Boo+00] Robert Boorstyn, Almut Burchard, Joerg Liebeherr, and Chaiwat
Oottamakorn. “Effective envelopes: Statistical bounds on mul-
tiplexed traffic in packet networks.” In: Proc. IEEE International
Conference on Computer Communications (INFOCOM’00). Vol. 3.
2000, pp. 1223–1232.

[Bou14] Anne Bouillard. “Algorithms and efficiency of Network calcu-
lus.” habilitation. Ecole Normale Supérieure (Paris), 2014.

[Bou21] Anne Bouillard. “Individual Service Curves for Bandwidth-Sharing
Policies using Network Calculus.” In: IEEE Networking Letters
(2021).

[BBC18] Anne Bouillard, Marc Boyer, and Euriell Le Corronc. Deterministic
Network Calculus: From Theory to Practical Implementation. John
Wiley & Sons, 2018.

[Bou+08] Anne Bouillard, Bruno Gaujal, Sébastien Lagrange, and Eric
Thierry. “Optimal routing for end-to-end guarantees using net-
work calculus.” In: Performance Evaluation 65.11-12 (2008), pp. 883–
906.

[BJT09] Anne Bouillard, Laurent Jouhet, and Eric Thierry. Service curves
in Network Calculus: dos and don’ts. Tech. rep. INRIA, France, 2009.

[BJT10] Anne Bouillard, Laurent Jouhet, and Eric Thierry. “Tight per-
formance bounds in the worst-case analysis of feed-forward
networks.” In: Proc. IEEE International Conference on Computer
Communications (INFOCOM’10). 2010, pp. 1–9.

[August 8, 2022 at 15:04 –]

bibliography 139

[BNS21] Anne Bouillard, Paul Nikolaus, and Jens B. Schmitt. “Fully Un-
leashing the Power of Paying Multiplexing Only Once in Stochas-
tic Network Calculus.” In: CoRR abs/2104.14215 (2021). arXiv:
2104.14215.

[BNS22] Anne Bouillard, Paul Nikolaus, and Jens Schmitt. “Unleashing
the Power of Paying Multiplexing Only Once in Stochastic Net-
work Calculus.” In: Proceedings of the ACM on Measurement and
Analysis of Computing Systems (POMACS) 6.2 (2022), p. 34.

[BN15] Anne Bouillard and Thomas Nowak. “Fast symbolic computation
of the worst-case delay in tandem networks and applications.”
In: Performance Evaluation 91 (2015), pp. 270–285.

[BT16] Anne Bouillard and Éric Thierry. “Tight performance bounds in
the worst-case analysis of feed-forward networks.” In: Discrete
Event Dynamic Systems 26.3 (2016), pp. 383–411.

[BNF12] Marc Boyer, Nicolas Navet, and Marc Fumey. “Experimental
assessment of timing verification techniques for AFDX.” In:
ERTS2012-Embedded Real Time Software and Systems. 2012.

[Boy+18] Hugh Boyes, Bil Hallaq, Joe Cunningham, and Tim Watson. “The
industrial internet of things (IIoT): An analysis framework.” In:
Computers in Industry 101 (2018), pp. 1–12.

[BL18] Almut Burchard and Jörg Liebeherr. “A General Per-Flow Service
Curve for GPS.” In: 2018 30th International Teletraffic Congress (ITC
30). Vol. 2. 2018, pp. 31–36.

[BLC07] Almut Burchard, Jörg Liebeherr, and Florin Ciucu. “On Θ (H
log H) scaling of network delays.” In: Proc. IEEE International
Conference on Computer Communications (INFOCOM’07). 2007.

[BLC11] Almut Burchard, Jörg Liebeherr, and Florin Ciucu. “On super-
linear scaling of network delays.” In: IEEE/ACM Transactions on
Networking 19.4 (2011), pp. 1043–1056.

[BLP06] Almut Burchard, Jörg Liebeherr, and Stephen D Patek. “A min-
plus calculus for end-to-end statistical service guarantees.” In:
IEEE Transactions on Information Theory 52.9 (2006), pp. 4105–4114.

[Bur64] PJ Burke. “The dependence of delays in tandem queues.” In: The
Annals of Mathematical Statistics 35.2 (1964), pp. 874–875.

[CAG18] Jaya Prakash Champati, Hussein Al-Zubaidy, and James Gross.
“Transient Delay Bounds for Multi-Hop Wireless Networks.” In:
CoRR (2018).

[Cha94] Cheng-Shang Chang. “Stability, queue length, and delay of deter-
ministic and stochastic queueing networks.” In: IEEE Transactions
on Automatic Control 39.5 (1994), pp. 913–931.

[Cha97] Cheng-Shang Chang. “A filtering theory for deterministic traffic
regulation.” In: Proc. IEEE International Conference on Computer
Communications (INFOCOM’97). Vol. 2. IEEE. 1997, pp. 436–443.

[Cha00] Cheng-Shang Chang. Performance guarantees in communication
networks. London: Springer-Verlag, 2000.

[August 8, 2022 at 15:04 –]

https://arxiv.org/abs/2104.14215

bibliography 140

[CC99] Cheng-Shang Chang and Rene L Cruz. “A time varying filtering
theory for constrained traffic regulation and dynamic service
guarantees.” In: Proc. IEEE International Conference on Computer
Communications (INFOCOM’99). Vol. 1. 1999, pp. 63–70.

[Cha+02] Cheng-Shang Chang, Rene L Cruz, J-Y Le Boudec, and Patrick
Thiran. “A min,+ system theory for constrained traffic regulation
and dynamic service guarantees.” In: IEEE/ACM Transactions on
Networking 10.6 (2002), pp. 805–817.

[Che01] Wing-Sum Cheung. “Generalizations of Hölder’s inequality.” In:
International Journal of Mathematics and Mathematical Sciences 26.1
(2001), pp. 7–10.

[Ciu07] Florin Ciucu. “Network calculus delay bounds in queueing net-
works with exact solutions.” In: Managing Traffic Performance in
Converged Networks. Springer, 2007, pp. 495–506.

[CBL05] Florin Ciucu, Almut Burchard, and Jörg Liebeherr. “A network
service curve approach for the stochastic analysis of networks.”
In: Proc. ACM International Conference on Measurement and Mod-
eling of Computer Systems (SIGMETRICS’05). Vol. 33. 1. 2005,
pp. 279–290.

[CBL06] Florin Ciucu, Almut Burchard, and Jörg Liebeherr. “Scaling
properties of statistical end-to-end bounds in the network calcu-
lus.” In: IEEE/ACM Transactions on Networking (ToN) 14.SI (2006),
pp. 2300–2312.

[CP18] Florin Ciucu and Felix Poloczek. “Two extensions of Kingman’s
GI/G/1 bound.” In: Proceedings of the ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS 2018). Vol. 2. 3. 2018, pp. 1–33.

[CPR19] Florin Ciucu, Felix Poloczek, and Amr Rizk. “Queue and loss
distributions in finite-buffer queues.” In: Proceedings of the ACM
on Measurement and Analysis of Computing Systems 3.2 (2019),
pp. 1–29.

[CPS13] Florin Ciucu, Felix Poloczek, and Jens B. Schmitt. “Sharp Bounds
in Stochastic Network Calculus.” In: CoRR abs/1303.4114 (2013).

[CPS14] Florin Ciucu, Felix Poloczek, and Jens Schmitt. “Sharp Per-Flow
Delay Bounds for Bursty Arrivals: The Case of FIFO, SP, and EDF
Scheduling.” In: Proc. IEEE International Conference on Computer
Communications (INFOCOM’14). Toronto, Canada, 2014.

[CPS16] Florin Ciucu, Felix Poloczek, and Jens Schmitt. “Stochastic Upper
and Lower Bounds for General Markov Fluids.” In: Proc. IEEE
International Teletraffic Congress (ITC 28’16). Vol. 1. 2016, pp. 184–
192.

[CS12] Florin Ciucu and Jens Schmitt. “Perspectives on Network Cal-
culus – No Free Lunch, But Still Good Value.” In: Proc. ACM
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM’12). Helsinki, Finland,
Aug. 2012, pp. 311–322.

[August 8, 2022 at 15:04 –]

bibliography 141

[CW96] Costas Courcoubetis and Richard Weber. “Buffer overflow asymp-
totics for a buffer handling many traffic sources.” In: Journal of
Applied Probability 33 (1996), pp. 886–903.

[CB97] Mark E Crovella and Azer Bestavros. “Self-similarity in World
Wide Web traffic: evidence and possible causes.” In: IEEE/ACM
Transactions on Networking (ToN) 5.6 (1997), pp. 835–846.

[Cru91a] Rene L Cruz. “A calculus for network delay, part I: Network
elements in isolation.” In: IEEE Transactions on information theory
37.1 (1991), pp. 114–131.

[Cru91b] Rene L Cruz. “A calculus for network delay, part II: Network
analysis.” In: IEEE Transactions on information theory 37.1 (1991),
pp. 132–141.

[Cru95] Rene L Cruz. “Quality of service guarantees in virtual circuit
switched networks.” In: IEEE Journal on Selected areas in Commu-
nications 13.6 (1995), pp. 1048–1056.

[Cru96] Rene L Cruz. “Quality of service management in integrated
services networks.” In: Proc. 1st Semi-Annual Research Review,
CWC. Vol. 1. 7. 1996, pp. 4–5.

[Cru98] Rene L Cruz. “SCED+: Efficient Management of Quality of Ser-
vice Guarantees.” In: Proc. IEEE International Conference on Com-
puter Communications (INFOCOM’98). 1998, pp. 625–634.

[CL93] Rene L Cruz and Hai-Ning Liu. “Single server queues with loss:
A formulation.” In: Proc. CISS. 1993, pp. 1–5.

[CO96] Rene L Cruz and Clayton Okino. “Service guarantees for window
flow control.” In: Proc. 34th Allerton Conference on Communications,
Control and Computing. Vol. 34. 1996, pp. 10–21.

[DKS89] Alan Demers, Srinivasan Keshav, and Scott Shenker. “Analysis
and simulation of a fair queueing algorithm.” In: ACM SIG-
COMM Computer Communication Review 19.4 (1989), pp. 1–12.

[Din+14] Weijun Ding, Jun Xu, Jim Dai, Yang Song, and Bill Lin. “Sprin-
klers: A randomized variable-size striping approach to reordering-
free load-balanced switching.” In: Proc. 10th ACM International
on Conference on emerging Networking Experiments and Technologies.
2014, pp. 89–100.

[Don17] Fang Dong. “Copula theory and its applications in computer
networks.” PhD thesis. 2017.

[DWS15] Fang Dong, Kui Wu, and Venkatesh Srinivasan. “Copula analysis
for statistical network calculus.” In: Proc. IEEE INFOCOM’15.
2015, pp. 1535–1543.

[Doo53] Joseph Leo Doob. Stochastic processes. Vol. 10. New York Wiley,
1953.

[DR98] Devdatt Dubhashi and Desh Ranjan. “Balls and bins: A study in
negative dependence.” In: Random Structures & Algorithms 13.2
(1998), pp. 99–124.

[August 8, 2022 at 15:04 –]

bibliography 142

[Erl09] Agner Krarup Erlang. “The theory of probabilities and telephone
conversations.” In: Nyt Tidsskrift for Matematik B 20.33-39 (1909),
p. 16.

[Erl17] Agner Krarup Erlang. “Solution of some problems in the the-
ory of probabilities of significance in automatic telephone ex-
changes.” In: Elektrotkeknikeren 13 (1917), pp. 5–13.

[Fel+99] Anja Feldmann, Anna C Gilbert, Polly Huang, and Walter Will-
inger. “Dynamics of IP traffic: A study of the role of variability
and the impact of control.” In: Proc. ACM SIGCOMM’99. Vol. 29.
4. 1999, pp. 301–313.

[Fet14] Gerhard Paul Fettweis. “The tactile internet: Applications and
challenges.” In: IEEE Vehicular Technology Magazine 9.1 (2014),
pp. 64–70.

[Fid03] Markus Fidler. “Extending the network calculus pay bursts only
once principle to aggregate scheduling.” In: International Work-
shop on Quality of Service in Multiservice IP Networks. Springer.
2003, pp. 19–34.

[Fid05] Markus Fidler. “Server models for probabilistic network calcu-
lus.” In: Informatik 2005. Informatik Live! Band 1 (2005).

[Fid06] Markus Fidler. “An end-to-end probabilistic network calculus
with moment generating functions.” In: Proc. IEEE IWQoS’06.
2006, pp. 261–270.

[Fid10] Markus Fidler. “Survey of deterministic and stochastic service
curve models in the network calculus.” In: IEEE Communications
surveys & tutorials 12.1 (2010), pp. 59–86.

[FR15] Markus Fidler and Amr Rizk. “A guide to the stochastic network
calculus.” In: IEEE Communications Surveys & Tutorials 17.1 (2015),
pp. 92–105.

[FMN00] Nelson LS Fonseca, Gilberto S Mayor, and Cesar AV Neto. “On
the equivalent bandwidth of self-similar sources.” In: ACM Trans-
actions on Modeling and Computer Simulation (TOMACS) 10.2
(2000), pp. 104–124.

[FFG06] Fabrice Frances, Christian Fraboul, and Jérôme Grieu. “Using
network calculus to optimize the AFDX network.” In: (2006).

[GMOB00] José R Gallardo, Dimitrios Makrakis, and Luis Orozco-Barbosa.
“Use of α-stable self-similar stochastic processes for modeling
traffic in broadband networks.” In: Performance Evaluation 40.1-3
(2000), pp. 71–98.

[GB19] Fabien Geyer and Steffen Bondorf. “DeepTMA: Predicting effec-
tive contention models for network calculus using graph neural
networks.” In: Proc. IEEE International Conference on Computer
Communications (INFOCOM’19). IEEE. 2019, pp. 1009–1017.

[GFC12] Yashar Ghiassi-Farrokhfal and Florin Ciucu. “On the impact of
finite buffers on per-flow delays in FIFO queues.” In: 2012 24th
International Teletraffic Congress (ITC 24). IEEE. 2012, pp. 1–8.

[August 8, 2022 at 15:04 –]

bibliography 143

[Gol+08] Nicos Gollan, Frank A. Zdarsky, Ivan Martinovic, and Jens
Schmitt. “The DISCO Network Calculator.” In: 14th GI/ITG Con-
ference on Measurement, Modeling, and Evaluation of Computer and
Communication Systems (MMB 2008). GI/ITG. 2008.

[GVC97] Pawan Goyal, Harrick M Vin, and Haichen Cheng. “Start-time
fair queueing: A scheduling algorithm for integrated services
packet switching networks.” In: IEEE/ACM Transactions on net-
working 5.5 (1997), pp. 690–704.

[HM11] Gerald J Hahn and William Q Meeker. Statistical intervals: a guide
for practitioners. Vol. 92. John Wiley & Sons, 2011.

[HB13] Mor Harchol-Balter. Performance modeling and design of computer
systems: queueing theory in action. Cambridge University Press,
2013.

[HJ61] Robert Hooke and Terry A Jeeves. ““Direct Search”Solution
of Numerical and Statistical Problems.” In: Journal of the ACM
(JACM) 8.2 (1961), pp. 212–229.

[Jac57] James R Jackson. “Networks of waiting lines.” In: Operations
research 5.4 (1957), pp. 518–521.

[Jac63] James R Jackson. “Jobshop-like queueing systems.” In: Manage-
ment science 10.1 (1963), pp. 131–142.

[Jaf+10] Fahimeh Jafari, Zhonghai Lu, Axel Jantsch, and Mohammad
Hossein Yaghmaee. “Buffer optimization in network-on-chip
through flow regulation.” In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 29.12 (2010), pp. 1973–
1986.

[Jas+02] Jürgen Jasperneite, Peter Neumann, Michael Theis, and Kym
Watson. “Deterministic real-time communication with switched
Ethernet.” In: 4th IEEE International Workshop on Factory Commu-
nication Systems. IEEE. 2002, pp. 11–18.

[JL08] Yuming Jiang and Yong Liu. Stochastic network calculus. Vol. 1.
Springer, 2008.

[JDP83] Kumar Joag-Dev and Frank Proschan. “Negative association of
random variables with applications.” In: The Annals of Statistics
11.1 (1983), pp. 286–295.

[KH01] Anestis Karasaridis and Dimitrios Hatzinakos. “Network heavy
traffic modeling using/spl alpha/-stable self-similar processes.”
In: IEEE Transactions on Communications 49.7 (2001), pp. 1203–
1214.

[KSC91] Manolis Katevenis, Stefanos Sidiropoulos, and Costas Courcou-
betis. “Weighted round-robin cell multiplexing in a general-
purpose ATM switch chip.” In: IEEE Journal on selected Areas
in Communications 9.8 (1991), pp. 1265–1279.

[Kel75] Frank P Kelly. “Networks of queues with customers of different
types.” In: Journal of applied probability 12.3 (1975), pp. 542–554.

[August 8, 2022 at 15:04 –]

bibliography 144

[Kel76] Frank P Kelly. “Networks of queues.” In: Advances in Applied
Probability 8.2 (1976), pp. 416–432.

[Kel91] Frank Patrick Kelly. “Effective bandwidths at multi-class queues.”
In: Queueing systems 9.1-2 (1991), pp. 5–15.

[Kel96] Frank Patrick Kelly. “Notes on Effective Bandwidths.” In: Stochas-
tic Networks: Theory and Applications. Ed. by Frank Patrick Kelly,
Stan Zachary, and Ilze Ziedins. Vol. 4. Royal Statistical Society
Lecture Notes Series. Oxford University Press: Oxford, 1996,
pp. 141–168.

[KGV83] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. “Opti-
mization by simulated annealing.” In: science 220.4598 (1983),
pp. 671–680.

[Kle75] Leonard Kleinrock. Queueing systems. Vol. 66. wiley New York,
1975.

[KMT11] Hisashi Kobayashi, Brian L Mark, and William Turin. Probability,
random processes, and statistical analysis: applications to communi-
cations, signal processing, queueing theory and mathematical finance.
Cambridge University Press, 2011.

[KAT06] Anis Koubaa, Mario Alves, and Eduardo Tovar. “Modeling and
worst-case dimensioning of cluster-tree wireless sensor networks.”
In: 2006 27th IEEE International Real-Time Systems Symposium
(RTSS’06). IEEE. 2006, pp. 412–421.

[Kur92] Jim Kurose. “On computing per-session performance bounds
in high-speed multi-hop computer networks.” In: Proc. ACM
SIGMETRICS ’92. ACM, 1992, pp. 128–139.

[Le 98] Jean-Yves Le Boudec. “Application of network calculus to guar-
anteed service networks.” In: IEEE Transactions on Information
theory 44.3 (1998), pp. 1087–1096.

[LT01] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory
of deterministic queuing systems for the internet. New York: Springer-
Verlag, 2001.

[LH08] Long Le and Ekram Hossain. “Tandem queue models with appli-
cations to QoS routing in multihop wireless networks.” In: IEEE
Transactions on Mobile Computing 7.8 (2008), pp. 1025–1040.

[Leh66] Erich Leo Lehmann. “Some concepts of dependence.” In: The
Annals of Mathematical Statistics (1966), pp. 1137–1153.

[Lei85] Charles E Leiserson. “Fat-trees: universal networks for hardware-
efficient supercomputing.” In: IEEE transactions on Computers
100.10 (1985), pp. 892–901.

[Lel+94] Will E Leland, Murad S Taqqu, Walter Willinger, and Daniel
V Wilson. “On the self-similar nature of Ethernet traffic.” In:
IEEE/ACM Transactions on Networking (ToN) 2.1 (1994), pp. 1–15.

[August 8, 2022 at 15:04 –]

bibliography 145

[LMS07] Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea. “End-to-end
delay bounds in FIFO-multiplexing tandems.” In: Proc. Second
International Conference on Performance Evaluation Methodologies
and Tools (VALUETOOLS’07), Pisa, Italy. 2007, pp. 1–10.

[LBL07] Chengzhi Li, Almut Burchard, and Jörg Liebeherr. “A network
calculus with effective bandwidth.” In: IEEE/ACM Transactions
on Networking 15.6 (2007), pp. 1442–1453.

[Lie17] Jörg Liebeherr. “Duality of the max-plus and min-plus network
calculus.” In: Foundations and Trends in Networking 11.3-4 (2017),
pp. 139–282.

[LBC12] Jörg Liebeherr, Almut Burchard, and Florin Ciucu. “Delay bounds
in communication networks with heavy-tailed and self-similar
traffic.” In: IEEE Transactions on Information Theory 58.2 (2012),
pp. 1010–1024.

[LGFB11] Jörg Liebeherr, Yashar Ghiassi-Farrokhfal, and Almut Burchard.
“On the impact of link scheduling on end-to-end delays in large
networks.” In: IEEE Journal on Selected Areas in Communications
29.5 (2011), pp. 1009–1020.

[Lin52] David V Lindley. “The theory of queues with a single server.”
In: Mathematical Proceedings of the Cambridge Philosophical Society.
Cambridge University Press. 1952, pp. 277–289.

[Lin02] Torgny Lindvall. Lectures on the coupling method. Courier Corpo-
ration, 2002.

[Liu93] Haining Liu. Buffer size and packet loss in a tandem queueing network.
University of California at San Diego, 1993.

[LGOBM05] Miguel Lopez-Guerrero, Luis Orozco-Barbosa, and Dimitrios
Makrakis. “Probabilistic envelope processes for α-stable self-
similar traffic models and their application to resource provision-
ing.” In: Performance Evaluation 61.2-3 (2005), pp. 257–279.

[MS97] Gilberto Mayor and John Silvester. “Time scale analysis of an
ATM queueing system with long-range dependent traffic.” In:
Proc. IEEE International Conference on Computer Communications
(INFOCOM’97). Vol. 1. IEEE. 1997, pp. 205–212.

[MSZ02] Marco Mellia, Ion Stoica, and Hui Zhang. “TCP model for short
lived flows.” In: IEEE communications letters 6.2 (2002), pp. 85–87.

[NM65] John A Nelder and Roger Mead. “A simplex method for function
minimization.” In: The computer journal 7.4 (1965), pp. 308–313.

[Nel95] Randolph Nelson. Probability, stochastic processes, and queueing
theory: the mathematics of computer performance modeling. Springer,
1995.

[NS17] Paul Nikolaus and Jens Schmitt. “On Per-Flow Delay Bounds in
Tandem Queues under (In)Dependent Arrivals.” In: Proc. IFIP
Networking 2017 Conference (NETWORKING’17). Stockholm, Swe-
den, 2017.

[August 8, 2022 at 15:04 –]

bibliography 146

[NS18] Paul Nikolaus and Jens Schmitt. “Improving Output Bounds in
the Stochastic Network Calculus Using Lyapunov’s Inequality.”
In: Proc. IFIP Networking 2018 Conference (NETWORKING’18).
Zurich, Switzerland, 2018.

[NS20a] Paul Nikolaus and Jens Schmitt. “Improving Delay Bounds in
the Stochastic Network Calculus by Using less Stochastic Inequal-
ities.” In: Proc. 13th EAI International Conference on Performance
Evaluation Methodologies and Tools (VALUETOOLS 2020). Tsukuba,
Japan, 2020.

[NS20b] Paul Nikolaus and Jens Schmitt. “On the Stochastic End-to-End
Delay Analysis in Sink Trees Under Independent and Depen-
dent Arrivals.” In: Proc. Conference on Measurement, Modelling and
Evaluation of Computing Systems (MMB’20). Springer. 2020.

[NSC19a] Paul Nikolaus, Jens Schmitt, and Florin Ciucu. Dealing with De-
pendence in Stochastic Network Calculus – Using Independence as a
Bound. Tech. rep. TU Kaiserslautern, Germany, May 2019.

[NSC19b] Paul Nikolaus, Jens Schmitt, and Florin Ciucu. “Dealing with
Dependence in Stochastic Network Calculus – Using Indepen-
dence as a Bound.” In: Proc. International Conference on Analytical
and Stochastic Modeling Techniques and Applications (ASMTA’19).
Springer. Moscow, Russia, 2019.

[NSS19] Paul Nikolaus, Jens Schmitt, and Malte Schütze. “h-Mitigators:
Improving your stochastic network calculus output bounds.” In:
Computer Communications 144 (2019), pp. 188–197.

[Nor94] Ilkka Norros. “A storage model with self-similar input.” In:
Springer Queueing Systems 16.3 (1994), pp. 387–396.

[Nor95] Ilkka Norros. “On the use of fractional Brownian motion in the
theory of connectionless networks.” In: IEEE Journal on selected
Areas in Communications 13.6 (1995), pp. 953–962.

[Oli07] Travis E Oliphant. “Python for scientific computing.” In: Comput-
ing in science & engineering 9.3 (2007), pp. 10–20.

[OMP06] Chaiwat Oottamakorn, Shiwen Mao, and Shivendra S Panwar.
“On generalized processor sharing with regulated multimedia
traffic flows.” In: IEEE Transactions on Multimedia 8.6 (2006),
pp. 1209–1218.

[PG93] A. K. Parekh and R. G. Gallager. “A generalized processor shar-
ing approach to flow control in integrated services networks: the
single-node case.” In: IEEE /ACM Transactions on Networking 1.3
(1993), pp. 344–357.

[PG94] Abhay K Parekh and Robert G Gallager. “A generalized pro-
cessor sharing approach to flow control in integrated services
networks: the multiple node case.” In: IEEE /ACM transactions on
Networking 2.2 (1994), pp. 137–150.

[PF95] Vern Paxson and Sally Floyd. “Wide area traffic: the failure of
Poisson modeling.” In: IEEE/ACM Transactions on Networking
(ToN) 3.3 (1995), pp. 226–244.

[August 8, 2022 at 15:04 –]

bibliography 147

[PC14] Felix Poloczek and Florin Ciucu. “Scheduling analysis with mar-
tingales.” In: Elsevier Performance Evaluation 79 (2014), pp. 56–
72.

[PC15] Felix Poloczek and Florin Ciucu. “Service-martingales: Theory
and applications to the delay analysis of random access pro-
tocols.” In: Proc. IEEE Conference on Computer Communications
(INFOCOM’15). 2015, pp. 945–953.

[Qia+16] Zhiliang Qian, Paul Bogdan, Chi-Ying Tsui, and Radu Mar-
culescu. “Performance evaluation of NoC-based multicore sys-
tems: From traffic analysis to noc latency modeling.” In: ACM
Transactions on Design Automation of Electronic Systems (TODAES)
21.3 (2016), p. 52.

[Raj+10] Ragunathan Raj Rajkumar, Insup Lee, Lui Sha, and John Stankovic.
“Cyber-physical systems: the next computing revolution.” In:
Proc. ACM Design Automation Conference’10. 2010, pp. 731–736.

[Riz13] Amr Rizk. “Non-asymptotic Performance Evaluation and sampling-
based Parameter Estimation for Communication Networks with
long Memory traffic.” PhD thesis. Hannover: Gottfried Wilhelm
Leibniz Universität Hannover, 2013.

[RF11] Amr Rizk and Markus Fidler. “Leveraging statistical multiplexing
gains in single-and multi-hop networks.” In: Proc. IEEE IWQoS
’11. 2011, pp. 1–9.

[RF12a] Amr Rizk and Markus Fidler. “Non-asymptotic end-to-end per-
formance bounds for networks with long range dependent fBm
cross traffic.” In: Computer Networks 56.1 (2012), pp. 127–141.

[RF12b] Amr Rizk and Markus Fidler. “On multiplexing models for
independent traffic flows in single-and multi-node networks.” In:
IEEE Transactions on Network and Service Management 10.1 (2012),
pp. 15–28.

[RVC01] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label
Switching Architecture. RFC 3031. RFC Editor, 2001.

[Ros96] Sheldon M Ross. Stochastic processes. Vol. 2. Wiley New York,
1996.

[Ros10] Sheldon M Ross. Introduction to probability models. Academic press,
2010.

[SCP95] Hanrijanto Sariowan, Rene L Cruz, and George C Polyzos. “Schedul-
ing for quality of service guarantees via service curves.” In:
Proceedings of Fourth International Conference on Computer Commu-
nications and Networks-IC3N’95. 1995, pp. 512–520.

[SBS18] Alexander Scheffler, Steffen Bondorf, and Jens B. Schmitt. “Worst-
Case Performance Analysis with the Disco Deterministic Net-
work Calculator.” In: Proceedings of the 22nd IEEE International
Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD 2018). 2018.

[August 8, 2022 at 15:04 –]

bibliography 148

[SZF08] Jens B Schmitt, Frank A Zdarsky, and Markus Fidler. “Delay
Bounds under Arbitrary Multiplexing: When Network Calculus
Leaves You in the Lurch ...” In: Proc. IEEE International Conference
on Computer Communications (INFOCOM’08). Phoenix, AZ, USA,
Apr. 2008.

[Sch03] Jens Schmitt. “On average and worst case behaviour in non-
preemptive priority queueing.” In: Simulation Series 35.4 (2003),
pp. 197–204.

[SBP17] Jens Schmitt, Steffen Bondorf, and Wint Yi Poe. “The Sensor Net-
work Calculus as Key to the Design of Wireless Sensor Networks
with Predictable Performance.” In: Journal of Sensor and Actuator
Networks 6.3 (2017).

[Sch+11] Jens Schmitt, Nicos Gollan, Steffen Bondorf, and Ivan Martinovic.
“Pay Bursts Only Once Holds for (Some) Non-FIFO Systems.” In:
The 30th IEEE International Conference on Computer Communications
(INFOCOM 2011). Shanghai, China, 2011.

[SGM08] Jens Schmitt, Nicos Gollan, and Ivan Martinovic. End-to-End
Worst-Case Analysis of Non-FIFO Systems. Technical Report 370/08.
TU Kaiserslautern, Germany, 2008.

[SZ06] Jens Schmitt and Frank A. Zdarsky. “The DISCO Network Cal-
culator - A Toolbox for Worst Case Analysis.” In: Proc. First
International Conference on Performance Evaluation Methodologies
and Tools (VALUETOOLS’06), Pisa, Italy. 2006.

[SZM06] Jens Schmitt, Frank A. Zdarsky, and Ivan Martinovic. Perfor-
mance Bounds in Feed-Forward Networks under Blind Multiplexing.
Technical Report 349/06. University of Kaiserslautern, Germany,
2006.

[SZM08] Jens Schmitt, Frank A Zdarsky, and Ivan Martinovic. “Improving
Performance Bounds in Feed-Forward Networks by Paying Mul-
tiplexing Only Once.” In: Proc. GI/ITG Conference on Measurement,
Modeling, and Evaluation of Computer and Communication Systems
(MMB’08). 2008, pp. 1–15.

[SV95] Madhavapeddi Shreedhar and George Varghese. “Efficient fair
queueing using deficit round robin.” In: Proc. conference on Appli-
cations, technologies, architectures, and protocols for computer commu-
nication. 1995, pp. 231–242.

[Sin+14] Ankit Singla, Balakrishnan Chandrasekaran, Philip Brighten God-
frey, and Bruce Maggs. “The internet at the speed of light.” In:
Proc. ACM Workshop on Hot Topics in Networks’14. HotNets-XIII.
2014, pp. 1–7.

[Soh92] Khosrow Sohraby. “On the asymptotic behavior of heteroge-
neous statistical multiplexer with applications.” In: Proc. IEEE In-
ternational Conference on Computer Communications (INFOCOM’92).
1992, pp. 839–847.

[August 8, 2022 at 15:04 –]

bibliography 149

[SS00] David Starobinski and Moshe Sidi. “Stochastically bounded
burstiness for communication networks.” In: Proc. IEEE Inter-
national Conference on Computer Communications (INFOCOM’99).
Vol. 1. 2000, pp. 36–42.

[SP97] Rainer Storn and Kenneth Price. “Differential evolution–a simple
and efficient heuristic for global optimization over continuous
spaces.” In: Journal of global optimization 11.4 (1997), pp. 341–359.

[Sun11] Soo Hak Sung. “On the exponential inequalities for negatively
dependent random variables.” In: J. Math. Anal. Appl. 381.2 (2011),
pp. 538–545.

[Sup+10] Urban Suppiger, Simon Perathoner, Kai Lampka, and Lothar
Thiele. Modular performance analysis of large-scale distributed em-
bedded systems: An industrial case study. Tech. rep. ETH Zurich,
2010.

[Tho00] Hermann Thorisson. Coupling, Stationarity and Regeneration. Springer,
2000.

[TS96] Constantino Tsallis and Daniel A Stariolo. “Generalized simu-
lated annealing.” In: Physica A: Statistical Mechanics and its Appli-
cations 233.1-2 (1996), pp. 395–406.

[Vir+20] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haber-
land, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan Bright, et al. “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python.”
In: Nature Methods 17 (2020), pp. 261–272.

[WD97] David J Wales and Jonathan PK Doye. “Global optimization by
basin-hopping and the lowest energy structures of Lennard-Jones
clusters containing up to 110 atoms.” In: The Journal of Physical
Chemistry A 101.28 (1997), pp. 5111–5116.

[Wan+18] Hao Wang, Haoyun Shen, Philipp Wieder, and Ramin Yahyapour.
“A Data Center Interconnects Calculus.” In: 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS). IEEE. 2018,
pp. 1–10.

[WADX15] Andrew Whitmore, Anurag Agarwal, and Li Da Xu. “The In-
ternet of Things–A survey of topics and trends.” In: Springer
Information Systems Frontiers 17.2 (2015), pp. 261–274.

[Wil+97] Walter Willinger, Murad S Taqqu, Robert Sherman, and Daniel V
Wilson. “Self-similarity through high-variability: statistical anal-
ysis of Ethernet LAN traffic at the source level.” In: IEEE/ACM
Transactions on Networking (ToN) 5.1 (1997), pp. 71–86.

[YS93] Opher Yaron and Moshe Sidi. “Performance and stability of
communication networks via robust exponential bounds.” In:
IEEE/ACM Transactions on Networking 1.3 (1993), pp. 372–385.

[Yin+02] Qinghe Yin, Yuming Jiang, Shengming Jiang, and Peng Yong
Kong. “Analysis on generalized stochastically bounded bursty
traffic for communication networks.” In: Proc. 27th Annual IEEE
Conference on Local Computer Networks. 2002, pp. 141–149.

[August 8, 2022 at 15:04 –]

bibliography 150

[ZTK95] Zhi-Li Zhang, Don Towsley, and Jim Kurose. “Statistical analy-
sis of the generalized processor sharing scheduling discipline.”
In: IEEE Journal on Selected Areas in Communications 13.6 (1995),
pp. 1071–1080.

[ZBHB16] Timothy Zhu, Danel S Berger, and Mor Harchol-Balter. “SNC-
Meister: Admitting More Tenants with Tail Latency SLOs.” In:
Proc. ACM Symposium on Cloud Computing (SoCC’16). 2016.

[ZAV02] Konstantinos G Zografos, Konstantinos N Androutsopoulos, and
George M Vasilakis. “A real-time decision support system for
roadway network incident response logistics.” In: Transportation
Research Part C: Emerging Technologies 10.1 (2002), pp. 1–18.

[August 8, 2022 at 15:04 –]

I N D E X

aggregate of arrivals, 12

arbitrary multiplexing, 14, 31

arrival classes, 3

arrival process, 8

backlog, 9

backlog clearing rate, 91

bivariate process, 27

blind multiplexing, 14

burst, 11

burstiness increase, 17

canonical tandem, 36

causality, 8, 51, 53

Chernoff bound, 24

continuous-time
Markov-Modulated On-Off
arrivals (MMOO), 26, 76

convolution-form networks, 3, 12

delay, 10

departure process, 8

diamond network, 65

DISCO Stochastic Network
Calculator, 5

discrete time, 9

discrete-time Markov-Modulated
On-Off arrivals (MMOO),
26, 56, 97

dynamic priority assignment, 20

dynamic server, 27

effective bandwidth, 3

exact service, 12

exponentially bounded burstiness
(EBB), 23

exponentially distributed arrivals,
25, 56, 68, 76, 97

extended overlapping tandem, 59

fat tree, 78

FIFO per-flow, 10

first-in first-out (FIFO), 10, 14

flow, 8

flow of interest, 14, 31, 42, 52, 54, 65,
71

fractional Brownian motion (fBm),
27, 37, 43, 108

Gamma distributed arrivals, 25

generalized process sharing, 90

generalized processor sharing
(GPS), 14

GPS server, 91

greedy / lazy scenario, 13, 93

h-mitigator, 73

Hölder conjugates, 4

Hölder’s inequality, 4, 28, 37, 50, 63

infinite buffers, 9

leaky bucket arrival curve, 11

Lindley’s equation, 9

Markov chain, 25

Markov modulated process (MMP),
25

method-pertinent, 4, 37

min-plus algebra, 2

min-plus convolution, 10, 27

min-plus deconvolution, 11, 27

modularization, 3

Multiprotocol Label Switching, 36

negatively dependent, 64

nested interference, 19

network element, 12

network service curve, 33

overlapping interference, 19

overlapping tandem, 20, 50, 56

pay bursts only once (PBOO), 17

pay multiplexing only once
(PMOO), 4, 18, 37, 50

pay segregation only once (PSOO),
20

per-flow performance bounds, 2

performance bounds, 29

151

[August 8, 2022 at 15:04 –]

INDEX 152

Poisson distributed arrivals, 25

power-mitigator, 71

product-form networks, 2

quasi-Union bound, 73

queueing theory, 2

Reich’s equation, 9

scheduling abstraction, 12

SciPy, 84

separated flow analysis (SFA), 4, 17,
32, 36

sequential pay multiplexing only
once, 19

service curve, 12

service process, 27

shortest-to-destination first, 57

sink tree, 36, 71

slack rate, 95, 129

stability condition, 13, 29

start of a backlogged period, 12

start of the backlogged period, 28

static priority (SP), 14

statistical multiplexing, 2, 47

stochastic arrival curve, 23, 129

stochastic envelope, 23, 129

stochastic network calculus, 2

stochastic service curve, 129

strict service cruve, 12

switched Ethernet, 36

tandem queue, 36

the L, 53, 67

time domain model, 8

time-varying capacity, 27

token bucket arrival curve, 11

total flow analysis (TFA), 4, 16

transient bounds, 38

tree network, 61

virtual delay, 9

Weibull distributed arrivals, 25, 56,
76, 97

wireless sensor networks, 36

work-conserving server, 28, 91

[August 8, 2022 at 15:04 –]

INDEX 153

[August 8, 2022 at 15:04 –]

Paul Nikolaus

Curriculum Vitae

Education

Academic Qualifications

○
2017–2022 PhD in Computer Science, Technische Universität Kaiserslautern, Distributed

Computer Systems (DISCO) Lab

○
2013–2016 M.Sc. Business Mathematics, Technische Universität Kaiserslautern, major:

Financial Mathematics

○
2009–2013 B.Sc. Mathematics, Technische Universität Kaiserslautern, major: Probability and

Optimization, elective: Economics

Research Experience

○ 2018–2020 Cooperation Project, Huawei Technologies Co.,Ltd., IP Research Department

○ Oct 2018 Research Visit, University of Warwick, Department of Computer Science

Professional Experience

○ 2015 Intern, KfW-IPEX, Frankfurt am Main, X4a4 - Risk Instruments and Risk Control

○
2015 Student Research Assistant, Technische Universität Kaiserslautern, Distributed

Computer Systems (DISCO) Lab

○
2014 – 2015 Intern, Deutsche Bank AG, Frankfurt am Main, Credit Risk Management Private

& Business Clients (CRM PBC)

○
2014 Student Research Assistant, Technische Universität Kaiserslautern, Distributed

Computer Systems (DISCO) Lab

Honors & Awards

○ 2018 Best Presentation Award, WoNeCa ’18

○ 2017 Student Travel Grant, ACM SIGMETRICS ’17

[August 8, 2022 at 15:04 –]

L I S T O F P U B L I C AT I O N S

conference proceedings

1. Steffen Bondorf, Paul Nikolaus, and Jens B. Schmitt. “Quality and Cost of
Deterministic Network Calculus – Design and Evaluation of an Accurate
and Fast Analysis.” In: Proceedings of the ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS 2017). 2017.

2. Steffen Bondorf, Paul Nikolaus, and Jens B. Schmitt. “Catching Corner
Cases in Network Calculus – Flow Segregation Can Improve Accuracy.”
In: Proceedings of 19th International GI/ITG Conference on Measurement,
Modelling and Evaluation of Computing Systems (MMB). 2018.

3. Paul Nikolaus, Sebastian Henningsen, Michael A. Beck, and Jens Schmitt.
“Integrating Fractional Brownian Motion Arrivals into the Statistical Net-
work Calculus.” In: 2018 30th International Teletraffic Congress (ITC 30).
Vol. 2. Vienna, Austria, 2018, pp. 37–42.

4. Paul Nikolaus and Jens Schmitt. “On Per-Flow Delay Bounds in Tandem
Queues under (In)Dependent Arrivals.” In: Proc. IFIP Networking 2017

Conference (NETWORKING’17). Stockholm, Sweden, 2017.

5. Paul Nikolaus and Jens Schmitt. “Improving Output Bounds in the
Stochastic Network Calculus Using Lyapunov’s Inequality.” In: Proc. IFIP
Networking 2018 Conference (NETWORKING’18). Zurich, Switzerland:
IEEE, May 2018.

6. Paul Nikolaus and Jens Schmitt. “Improving Delay Bounds in the Stochas-
tic Network Calculus by Using less Stochastic Inequalities.” In: Proc. 13th
EAI International Conference on Performance Evaluation Methodologies
and Tools (VALUETOOLS 2020). Tsukuba, Japan, 2020.

7. Paul Nikolaus and Jens Schmitt. “On the Stochastic End-to-End Delay
Analysis in Sink Trees Under Independent and Dependent Arrivals.” In:
Proc. Conference on Measurement, Modelling and Evaluation of Comput-
ing Systems (MMB’20). Springer. 2020.

8. Paul Nikolaus, Jens Schmitt, and Florin Ciucu. “Dealing with Dependence
in Stochastic Network Calculus – Using Independence as a Bound.” In:
Proc. International Conference on Analytical and Stochastic Modeling
Techniques and Applications (ASMTA’19). Springer. Moscow, Russia,
2019.

155

[August 8, 2022 at 15:04 –]

INDEX 156

journal articles

1. Steffen Bondorf, Paul Nikolaus, and Jens B. Schmitt. “Quality and Cost of
Deterministic Network Calculus – Design and Evaluation of an Accurate
and Fast Analysis.” In: Proceedings of the ACM on Measurement and
Analysis of Computing Systems (POMACS) 1.1 (2017), p. 34.

2. Anne Bouillard, Paul Nikolaus, and Jens Schmitt. “Unleashing the Power
of Paying Multiplexing Only Once in Stochastic Network Calculus.” In:
Proceedings of the ACM on Measurement and Analysis of Computing
Systems (POMACS) 6.2 (2022), p. 34.

3. Paul Nikolaus, Jens Schmitt, and Malte Schütze. “h-Mitigators: Improving
your stochastic network calculus output bounds.” In: Computer Commu-
nications 144 (2019), pp. 188–197.

technical reports

1. Steffen Bondorf, Paul Nikolaus, and Jens B. Schmitt. “Delay Bounds
in Feed-Forward Networks - A Fast and Accurate Network Calculus
Solution.” In: CoRR abs/1603.02094 (2016). arXiv: 1603.02094.

2. Anne Bouillard, Paul Nikolaus, and Jens B. Schmitt. “Unleashing the
Power of Paying Multiplexing Only Once in Stochastic Network Calculus.”
In: CoRR abs/2104.14215 (2021). arXiv: 2104.14215.

3. Paul Nikolaus, Jens B. Schmitt, and Florin Ciucu. Dealing with Depen-
dence in Stochastic Network Calculus – Using Independence as a Bound.
Tech. rep. TU Kaiserslautern, Germany, May 2019.

[August 8, 2022 at 15:04 –]

colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede and Ivo Pletikosić. The style was inspired by Robert
Bringhurst’s seminal book on typography “The Elements of Typographic Style”.
classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

[August 8, 2022 at 15:04 –]

https://bitbucket.org/amiede/classicthesis/

	Abstract
	Declaration
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms

	 Introduction and Network Calculus Background
	1 Introduction
	1.1 A Need for a Stochastic End-to-End Analysis
	1.2 The Stochastic Network Calculus Framework
	1.3 State-of-the-art: the canonical tandem
	1.4 Thesis Statement and Contributions
	1.5 Thesis Outline

	2 Deterministic Network Calculus Background
	2.1 Network Model
	2.2 Min-Plus Algebra
	2.3 Arrival and Service Curves
	2.4 Single-Node Performance Bounds
	2.5 End-to-End Analysis and Pay Burst Only Once Principle
	2.6 Pay Multiplexing Only Once Principle and State of the Art

	3 Stochastic Network Calculus Background
	3.1 Stochastic Arrivals and Service
	3.2 Stochastic Single-Node Performance Bounds
	3.3 End-to-End Analysis and Open Problems

	 Dealing with Dependence
	4 Dealing with Dependence Using PMOO for Tandem Queues and Sink Trees
	4.1 End-to-End Delay Bound
	4.2 Numerical Evaluation
	4.3 Summary

	5 Dealing with Dependence Using PMOO for Tree Networks
	5.1 Tree Network Analysis
	5.2 Performance Bounds
	5.3 Numerical Evaluation
	5.4 Summary

	6 Dealing with Dependence Using Negative Dependence
	6.1 Negative Dependence and Acceptable Random Variables
	6.2 Independence as a Bound
	6.3 Numerical Evaluation
	6.4 Discussion

	 End-to-End Analysis
	7 h -Mitigators
	7.1 New Output Bound Calculation
	7.2 Numerical Evaluation
	7.3 Direct Application to Delay Bounds
	7.4 Summary

	8 A Toolbox for Stochastic Network Calculus with Moment-Generating Functions
	8.1 Arrivals and Service
	8.2 Performance Bounds
	8.3 Network Operations and Modular Analysis
	8.4 End-to-End Delay Bounds

	 Fair Queueing in SNC
	9 Stochastic Analysis of Generalized Processor Sharing
	9.1 GPS Background
	9.2 Stochastic Analysis of GPS
	9.3 Numerical Evaluation
	9.4 Summary

	10 Conclusion and Outlook
	10.1 Conclusion
	10.2 Outlook

	 Appendix
	A Stochastic Network Calculus Traffic Classes
	A.1 (A, A) -bounds for Discrete-time MMOO Arrivals
	A.2 Fractional Brownian Motion

	B Appendix of Chapter 4
	B.1 Tandem Queue Performance Bounds
	B.2 Sink Tree Performance Bounds
	B.3 Tandem Queue Numerical Evaluation
	B.4 Tandem Queue Mixed Scenario

	C Appendix of Chapter 5
	C.1 Proofs

	D Appendix of Chapter 6
	D.1 Proofs

	E Appendix of Chapter 7
	E.1 Proofs

	F Appendix of Chapter 9
	F.1 Proofs of Optimal M in Homogeneous Scenario
	F.2 Proofs for SNC with MGFs
	F.3 Background on SNC with Tail Bounds
	F.4 Proofs for Tail Bound Analysis of GPS

	 Bibliography
	Publications

	List of Publications
	Colophon

