
TO W A R D S “ U LT R A - R E L I A B L E ” C P S : R E L I A B I L I T Y A N A LY S I S O F
D I S T R I B U T E D R E A L-T I M E S Y S T E M S

thesis approved by
the department of computer science

technische universität kaiserslautern
for the award of the doctoral degree

D O C TO R O F E N G I N E E R I N G (D R .- I N G)
to

A R PA N G U J A R AT I

date of defense: 22.10.2020
dean: prof. dr. jens schmitt
reviewer: björn b. brandenburg
reviewer: prof. dr. rupak majumdar
reviewer: prof. dr. linh thi xuan phan

D 3 8 6

Arpan Gujarati: Towards “Ultra-Reliable” CPS: Reliability Analysis of
Distributed Real-Time Systems © October 2020

To my parents, Tanuja and Bharat.

A B S T R A C T

In the avionics domain, “ultra-reliability” refers to the practice of
ensuring quantifiably negligible residual failure rates in the presence
of transient and permanent hardware faults. If autonomous Cyber-
Physical Systems (CPS) in other domains, e.g., autonomous vehicles,
drones, and industrial automation systems, are to permeate our ev-
eryday life in the not so distant future, then they also need to become
ultra-reliable. However, the rigorous reliability engineering and anal-
ysis practices used in the avionics domain are expensive and time
consuming, and cannot be transferred to most other CPS domains. The
increasing adoption of faster and cheaper, but less reliable, Commercial
Off-The-Shelf (COTS) hardware is also an impediment in this regard.

Motivated by the goal of ultra-reliable CPS, this dissertation shows
how to soundly analyze the reliability of COTS-based implementations
of actively replicated Networked Control Systems (NCSs)—which are
key building blocks of modern CPS—in the presence of transient hard-
ware faults. When an NCS is deployed over field buses such as the
Controller Area Network (CAN), transient faults are known to cause
host crashes, network retransmissions, and incorrect computations. In
addition, when an NCS is deployed over point-to-point networks such
as Ethernet, even Byzantine errors (i.e., inconsistent broadcast transmis-
sions) are possible. The analyses proposed in this dissertation account
for NCS failures due to each of these error categories, and consider
NCS failures in both time and value domains. The analyses are also
provably free of reliability anomalies. Such anomalies are problematic
because they can result in unsound failure rate estimates, which might
lead us to believe that a system is safer than it actually is.

Specifically, this dissertation makes four main contributions. (1) To
reduce the failure rate of NCSs in the presence of Byzantine errors, we
present a hard real-time design of a Byzantine Fault Tolerance (BFT)
protocol for Ethernet-based systems. (2) We then propose a quantita-
tive reliability analysis of the presented design in the presence of tran-
sient faults. (3) Next, we propose a similar analysis to upper-bound the
failure probability of an actively replicated CAN-based NCS. (4) Fi-
nally, to upper-bound the long-term failure rate of the NCS more
accurately, we propose analyses that take into account the temporal
robustness properties of an NCS expressed as weakly-hard constraints.

By design, our analyses can be applied in the context of full-system
analyses. For instance, to certify a system consisting of multiple ac-
tively replicated NCSs deployed over a BFT atomic broadcast layer,
the upper bounds on the failure rates of each NCS and the atomic
broadcast layer can be composed using the sum-of-failure-rates model.

v

A C K N O W L E D G M E N T S

Like any Ph.D., I have had my share of ups and downs, and many
people have helped me through this seven-year long journey.

First of all, I would like to thank my advisor, Björn B. Brandenburg,
for accepting me into the prestigious Ph.D. program at MPI-SWS.
When I started my Ph.D., I had zero research experience. Björn taught
me the nuts and bolts of research. His continuous guidance and
support has made me into the researcher that I am today. I would like
to thank Björn for his patience while advising me, for accommodating
my research interests, for always encouraging me to give my best, and
for supporting my efforts towards an academic career.

I would also like to thank Rupak Majumdar and Linh Phan for
reviewing my thesis and for providing me valuable feedback. I am
grateful to Rupak for guiding me through one of my research projects
during the later part of my Ph.D. I would like to express my thanks and
appreciation to Sameh Elnikety, Yuxiong He, and Kathryn S. McKinley
for mentoring me during my internship at Microsoft Research and for
continuing to collaborate with me thereafter until the conclusion of my
internship project. In addition, I would like to thank all my other co-
authors, Mitra Nasri, Felipe Cerqueira, Manohar Vanga, Malte Appel,
and Sergey Bozhko. I learnt a lot while working with everyone. Mitra,
in particular, guided me through some tough times before deadlines.
Also, her enthusiasm for research was incomparable, which made her
stay at MPI-SWS very encouraging for me.

Many thanks also to members of the SysNets group at MPI-SWS,
including our faculty members Peter Druschel, Krishna Gummadi,
Deepak Garg, Allen Clement, Jonathan Mace, and Antoine Kaufmann,
and senior students and colleagues Pramod Bhatotia, Bimal Viswanath,
Paarijaat Aditya, Anjo Vahldiek-Oberwagner, Pedro Fonseca, Reinhard
Munz, and Natacha Crooks, from whom I have learnt a lot over the
years through both formal and informal discussions.

I would like to thank Felipe and Manohar again, for they were
not just my co-authors and colleagues, but also my office-mates and
friends, my train buddies each day I went from SB to KL, and my travel
buddies at conferences. We joined the real-time systems research group
around the same time, and have had loads of fun since then, including
experiences that will stay with me forever. I would also like to thank
my BITSian and school friends back home – conversations with you
guys, even for the slightest of time, have always uplifted my mood.

Without the wonderful and extremely helpful staff at MPI-SWS, I
would have had no time for research! Mary-Lou, Claudia, Brigitta,
Vera, Ros, Susanne, Mouna, Annika, Gretchen, and Corinna have

vii

been very helpful in troubleshooting all kinds of problems I have had
during my stay at MPI-SWS, be it regarding university admissions,
residence in Germany, or even apartment renting. Rose’s presentation
and writing courses, and her feedback on my drafts, has helped me
tremendously improve my soft skills. Tobias, Christian, and Carina
have always been prompt at helping me with any IT-related issues. I
would like to thank everyone for their help during my Ph.D.

Most importantly, I would like to thank my amazing family. I thank
my parents, mummy and pappa, for their unwavering support, under-
standing, and encouragement, both during graduate school and the
years before. They provided me means to get good education, and
opportunities to learn beyond the school system, through books and
travel, which has led me to where I am today. I also feel very blessed
for receiving immense love, support, and goodwill from my extended
family – ba, nana, dadi, dada, foi, fua, kaki, kaka, mami, mama, cousins,
nephews, and nieces. I would also like to thank my parents-in-law,
mummy and daddy, for their blessings and encouragement. Finally, I
am deeply thankful to my wife, Aastha, for her love, support, and
encouragement throughout my Ph.D. She has stood with me like a
pillar through tough times, and has cheered me up every time I was
disappointed. I simply cannot imagine finishing this journey without
her – time to move on to further adventures in life!

P U B L I C AT I O N S

Parts of this dissertation have appeared in the following publications.

[1] M. Appel, A. Gujarati, and B. B. Brandenburg. “A Byzantine
Fault-Tolerant Key-Value Store for Safety-Critical Distributed
Real-Time Systems.” In: 2nd Workshop on the Security and Depend-
ability of Critical Embedded Real-Time Systems (CERTS 2017). url:
https://certs2017.uni.lu/wp-content/uploads/sites/39/

2017/11/certs_2017-proceedings.pdf.

[2] A. Gujarati and B. B. Brandenburg. “When Is CAN the Weakest
Link? A Bound on Failures-in-Time in CAN-Based Real-Time
Systems.” In: 36th IEEE Real-Time Systems Symposium (RTSS
2015). San Antonio, Texas, pp. 249–260. isbn: 978-1-4673-9507-6.
doi: 10.1109/RTSS.2015.31. url: http://ieeexplore.ieee.
org/document/7383582/.

[3] A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg.
“From Iteration to System Failure: Characterizing the FITness of
Periodic Weakly-Hard Systems.” In: 31st Euromicro Conference
on Real-Time Systems (ECRTS 2019). Vol. 133. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs). Stuttgart, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 9:1–9:23.
isbn: 978-3-95977-110-8. doi: 10.4230/lipics.ecrts.2019.9.
url: http://drops.dagstuhl.de/opus/volltexte/2019/
10746/.

[4] A. Gujarati, M. Nasri, and B. B. Brandenburg. “Lower-Bounding
the MTTF for Systems with (m,k) Constraints and IID Itera-
tion Failure Probabilities.” In: 2nd Workshop on the Security
and Dependability of Critical Embedded Real-Time Systems (CERTS
2017). url: https://certs2017.uni.lu/wp-content/uploads/
sites/39/2017/11/certs_2017-proceedings.pdf.

[5] A. Gujarati, M. Nasri, and B. B. Brandenburg. “Quantifying the
Resiliency of Fail-Operational Real-Time Networked Control
Systems.” In: 30th Euromicro Conference on Real-Time Systems
(ECRTS 2018). Vol. 106. Leibniz International Proceedings in In-
formatics (LIPIcs). Barcelona, Spain: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 16:1–16:24. isbn: 978-3-95977-075-0.
doi: 10.4230/lipics.ecrts.2018.16. url: http://drops.
dagstuhl.de/opus/volltexte/2018/8988/.

ix

https://certs2017.uni.lu/wp-content/uploads/sites/39/2017/11/certs_2017-proceedings.pdf
https://certs2017.uni.lu/wp-content/uploads/sites/39/2017/11/certs_2017-proceedings.pdf
https://doi.org/10.1109/RTSS.2015.31
http://ieeexplore.ieee.org/document/7383582/
http://ieeexplore.ieee.org/document/7383582/
https://doi.org/10.4230/lipics.ecrts.2019.9
http://drops.dagstuhl.de/opus/volltexte/2019/10746/
http://drops.dagstuhl.de/opus/volltexte/2019/10746/
https://certs2017.uni.lu/wp-content/uploads/sites/39/2017/11/certs_2017-proceedings.pdf
https://certs2017.uni.lu/wp-content/uploads/sites/39/2017/11/certs_2017-proceedings.pdf
https://doi.org/10.4230/lipics.ecrts.2018.16
http://drops.dagstuhl.de/opus/volltexte/2018/8988/
http://drops.dagstuhl.de/opus/volltexte/2018/8988/

[6] A. Gujarati, S. Bozhko, and B. B. Brandenburg. “Real-Time
Replica Consistency over Ethernet with Reliability Bounds.” In:
26th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2020). Sydney, Australia, pp. 376–389. isbn:
978-1-72815-499-2. doi: 10.1109/RTAS48715.2020.00012. url:
https://ieeexplore.ieee.org/document/9113102/.

[7] A. Gujarati, M. Appel, and B. B. Brandenburg. “Achal: Building
Highly Reliable Networked Control Systems.” In: 15th ACM
SIGBED International Conference on Embedded Software Companion
(EMSOFT 2019). New York, New York: ACM Press, 2019, pp. 1–
2. isbn: 978-1-4503-6924-4. doi: 10.1145/3349568.3351545. url:
http://dl.acm.org/citation.cfm?doid=3349568.3351545.

https://doi.org/10.1109/RTAS48715.2020.00012
https://ieeexplore.ieee.org/document/9113102/
https://doi.org/10.1145/3349568.3351545
http://dl.acm.org/citation.cfm?doid=3349568.3351545

C U R R I C U L U M V I TA E

education

2014-2019 Ph.D. in Computer Science (dissertation phase)
MPI-SWS & TU Kaiserslautern, Germany

2012-2014 Ph.D. in Computer Science (preparatory phase)
MPI-SWS & Saarland University, Germany

2007–2011 B.E. (with Honors) in Computer Science
BITS Pilani, India

work experience

2020 Postdoctoral Researcher, MPI-SWS

2012-2019 Ph.D. Student, MPI-SWS

2015 Research Intern, Microsoft Research USA

2011–2012 Software Development Engineer, Citrix R&D India

2011 Software Development Intel, Intel India

xi

honors and awards

2020 Distinguished Paper Award
26th IEEE Real-Time and Embedded Technology and Applications
Symposium

2018 Best Presentation Award
30th Euromicro Conference on Real-Time Systems

2017 Best Student Paper Award
18th ACM/IFIP/USENIX International Middleware Conference

2014 Young Researcher
2nd Heidelberg Laureate Forum

2013 Outstanding Paper Award
25th Euromicro Conference on Real-Time Systems

professional activities

Technical Program Committee RTEST WiP (2018)
RTAS BP (2019, 2020),
ECRTS AE (2019),
Middleware DW (2020)

Journal Reviewer TECS (2019), TDSC (2019)

External Reviewer EuroSys (2013, 2016, 2019),
RTSS (2013, 2016, 2018, 2020),
RTAS (2013, 2014, 2016),
ECRTS (2013-2015, 2019),
RTNS (2014-2016),
Systor (2015, 2016),
Middleware (2018), EMSOFT (2020)

teaching experience

2017 Teaching Assistant, Operating Systems
MPI-SWS & Saarland University

2016 Teaching Assistant, Distributed Systems
MPI-SWS & Saarland University

2014 Teaching Assistant, Foundations of CPS
MPI-SWS & TU Kaiserslautern

2010 Teaching Assistant, Data Structures and Algorithms
BITS Pilani

advising

2017-2018 Malte Appel, Undergraduate Thesis
MPI-SWS & Saarland University

2016 Rohith R, Summer Internship, MPI-SWS

2015 Akshay Aggarwal, Summer Internship, MPI-SWS

xiii

C O N T E N T S

abstract v
acknowledgments vii
publications ix
curriculum vitae xi
contents xv
list of figures xviii
list of tables xix
listings xix
acronyms xx

i motivation and background
1 introduction 3

1.1 Problem Statement 4

1.2 Analysis Approach 4

1.3 Thesis Contributions 6

1.3.1 Tolerating Byzantine Errors in CPS 7

1.3.2 Reliability Analysis of a BFT Protocol 7

1.3.3 Reliability Analysis of an NCS Iteration 8

1.3.4 Reliability Analysis of Weakly-Hard Systems 8

1.4 Organization 9

2 background 11

2.1 Distributed Real-Time Systems 11

2.1.1 Distributed Systems 12

2.1.2 Real-Time Systems 19

2.1.3 Time-Sensitive Networks 22

2.1.4 Realization on COTS Platforms 25

2.2 Reliability Engineering 26

2.2.1 Fault Tolerance 26

2.2.2 Reliability Metrics 28

2.2.3 Reliability Analysis 30

3 fault model 33

3.1 Faults, Errors, and Failures 33

3.2 Transient Faults 34

3.3 Fault-Induced Basic Errors 36

3.3.1 Classification of Node and Network Errors 37

3.3.2 Basic Errors in Safety-Critical CPS 38

3.3.3 Probabilistic Modeling of Basic Errors 40

3.4 Service Failures 41

3.5 Reliability Assumptions 42

xv

xvi contents

ii byzantine fault tolerance
4 tolerating byzantine errors in cps 45

4.1 Prior Work 45

4.1.1 BFT in the Avionics Domain 46

4.1.2 General-Purpose BFT Systems 50

4.2 Hard Real-Time Design 52

4.2.1 Interactive Consistency Protocol 52

4.2.2 Realization using the Periodic Task Model 55

4.2.3 Case Study: Key-Value Store 57

5 reliability analysis of a bft protocol 69

5.1 Prior Work and Reliability Anomalies 69

5.2 Analysis Overview 71

5.3 Probabilistic Analysis 72

5.3.1 Correctness Criteria 72

5.3.2 Basic Errors to Message Errors 73

5.3.3 Message Errors to Protocol Failure 75

5.3.4 Reliability Anomalies 80

5.4 Analysis Instantiation 84

5.4.1 Upper-Bound Node Error Probabilities 86

5.4.2 Upper-Bound Network Error Probabilities 88

5.5 Evaluation 89

5.5.1 Analysis vs. Simulation 91

5.5.2 Reliability Trade-offs 93

iii networked control systems
6 reliability analysis of an ncs iteration 99

6.1 System Model and Assumptions 100

6.2 Analysis Overview 104

6.3 Probabilistic Analysis 107

6.3.1 Controller Output 107

6.3.2 Actuator Voter Output 112

6.3.3 Final Output 113

6.4 Analysis Instantiation 114

6.5 Evaluation 117

7 from iteration to system failure 125

7.1 Prior Work and Objectives 126

7.2 System Model 128

7.3 Probabilistic Analyses 130

7.3.1 PMC: Markov Chain Analysis 130

7.3.2 MART: The Martingale Approach 133

7.3.3 SAP: Sound Approximation 136

7.4 Evaluation 137

7.5 Case Study: Active Suspension 148

iv the road ahead
8 conclusion 155

contents xvii

8.1 Summary of Results 155

8.1.1 Byzantine Fault Tolerance 155

8.1.2 Networked Control Systems 156

8.2 Open Questions and Future Work 156

8.2.1 Improving the Analysis Accuracy 157

8.2.2 Reliability Analysis of Other Critical Services 157

8.2.3 Reliability Analysis of Intelligent NCS 158

8.3 Closing Remarks 158

v appendices
a monotonicity proofs 163

a.1 Non-Monotonicity of P(Uyn incorrect) 163

a.2 Monotonicity of Q(Uyn incorrect) 167

a.3 Monotonicity of P(Uyn omitted) 172

a.4 Analysis of Final Output Fn 174

b sap proofs 179

b.1 The a/Con/b/c:F System Model 179

b.1.1 Reliability of an a/Con/b/c:F System 180

b.1.2 Monotonicity of Reliability Lower Bound 183

b.2 Derivation of the MTTF Lower Bound 187

c implementing pmc in prism 189

c.1 Example 189

c.1.1 Type-1 Monitor 189

c.1.2 Type-2 Monitor 191

c.1.3 Type-3 Monitor 194

c.2 PRISM versus Storm 194

bibliography 195

L I S T O F F I G U R E S

Figure 1.1 Our approach to FIT analysis 5

Figure 2.1 Schematic diagram of an ACC subsystem 11

Figure 2.2 Example actively replicated system 12

Figure 2.3 Clock synchronization for CAN-like networks 16

Figure 2.4 Key mechanism underlying PTP 18

Figure 2.5 CAN data frame format 23

Figure 2.6 FTA by Dugan and Van Buren [66] 31

Figure 3.1 Transient fault rate variation with time 34

Figure 3.2 PMF of the Poisson distribution 35

Figure 3.3 1− CDF of the Poisson distribution 36

Figure 3.4 Classification of PE errors 38

Figure 4.1 Simplified physical diagram of the FTMP 46

Figure 4.2 The MAFT system architecture 48

Figure 4.3 MeshKin configuration with QMR 49

Figure 4.4 IC protocol for Np = 3 and Nr = 2 55

Figure 4.5 IC protocol using periodic tasks 56

Figure 4.6 Overview of Achal’s architecture 58

Figure 4.7 Achal: single-key experiments 62

Figure 4.8 Achal: multi-key experiments 64

Figure 4.9 Achal: multiprocessor experiments 66

Figure 4.10 Achal: experiments with crashes 67

Figure 5.1 Reliability anomalies example 70

Figure 5.2 Crash-induced omission errors 86

Figure 5.3 Network topologies considered 90

Figure 5.4 IC reliability: simulation vs. analysis 92

Figure 5.5 FIT bounds in the presence of PE crashes 94

Figure 5.6 FIT bounds in the presence of switch crashes 94

Figure 5.7 FIT bounds for different shielding factors 96

Figure 6.1 An FT-SISO networked control loop 101

Figure 6.2 Propagation of error probabilities 105

Figure 6.3 Results for replica configurations A and B 120

Figure 6.4 Results for replica configurations C and D 121

Figure 6.5 Impact of utilization and reboot times 122

Figure 7.1 PMC approach 131

Figure 7.2 Monitor (Type 2) for (2, 3) 133

Figure 7.3 MTTF estimation using SAP 140

Figure 7.4 Asymptotic model size and PRISM states 141

Figure 7.5 Model building and solving times 142

Figure 7.6 Analysis times for PMC, MART, and SAP –
1 144

Figure 7.7 Analysis times for PMC, MART, and SAP –
2 145

Figure 7.8 PMC, MART, and SAP scalability results 146

Figure 7.9 SAP accuracy results 147

Figure 7.10 Varying parameters m and k 150

Figure 7.11 Varying replication factors 152

Figure C.1 PRISM versus Storm 194

L I S T O F TA B L E S

Table 2.1 Characteristics affecting agreement 14

Table 2.2 Ethernet traffic classes 25

Table 2.3 Dugan and Van Buren’s [66] basic faults 31

Table 4.1 BFT-SMaRt and Cassandra’s read latencies 63

Table 5.1 Message error events 74

Table 5.2 Shorthand notation for IC protocol analysis 80

Table 5.3 Definition of each Ti,pos in Eq. (5.5) 82

Table 5.4 Definition of each Ti,neg in Eq. (5.5) 83

Table 5.5 PMF for different basic errors 85

Table 6.1 Summary of notations for NCS analysis 102

Table 6.2 Error rates used for evaluation 119

Table 7.1 Approaches to MTTF/FIT derivation 128

Table 7.2 MTTF values derived using PRISM 139

Table 7.3 Errors for R = (8, 10),y = 1.234,567,89 139

Table 7.4 (m,k) and PF configurations 143

Table 7.5 Active suspension workload 149

Table 7.6 Different replication schemes 151

Table A.1 Shorthand notation for NCS analysis 164

Table A.2 Extensions to shorthand notation – 1 168

Table A.3 Extensions to shorthand notation – 2 172

Table B.1 Reliability of an a/Con/b/c:F system 181

L I S T I N G S

Listing C.1 Type-1 PRISM model for (5, 10) 190

Listing C.2 Type-2 PRISM model for (5, 10) 192

Listing C.3 Type-3 PRISM model for (5, 10) 193

xix

xx acronyms

A C R O N Y M S

ABS Anti-lock Braking System

ACC Advanced Cruise Control

AER Almost-Everywhere to Everywhere

AI Artificial Intelligence

AIPS Advanced Information Processing System

AP Application Processor

API Application Programming Interface

AR Active Replication

AURIX Automotive Realtime Integrated NeXt Generation
Architecture

AVB Audio Video Bridging

BFT Byzantine Fault Tolerance

BG Byzantine Generals

BIU Bus Interface Unit

BLAS Basic Linear Algebra Subprograms

CAN Controller Area Network

CBS Credit-Based Shaper

CDF Cumulative Density Function

CDT Control Data Traffic

CMOS Complementary Metal–Oxide–Semiconductor

CNI Communication Networking Interface

COTS Commercial Off-The-Shelf

CPA Compositional Performance Analysis

CPS Cyber-Physical Systems

CPU Central Processing Unit

CQL Cassandra Query Language

acronyms xxi

CRC Cyclic Redundancy Check

DECTED Double-Error-Correcting Triple-Error-Detecting

DMAC Deadline-Miss-Aware Control

DMR Dual Modular Redundancy

DNN Deep Neural Network

ECC Error-Correcting Code

ECU Electronic Control Unit

EIG Exponential Information Gathering

EMI Electromagnetic Interference

FCC Flight Control Computer

FIFO First In, First Out

FIT Failures-In-Time

FLP Fisher, Lynch, and Paterson

FMEA Failure Mode and Effect Analysis

FP Fixed Priority

FRT Firm Real-Time

FTA Fault-Tree Analysis

FTMP Fault-Tolerant Multiprocessor

FT-SISO Fault-Tolerant Single-Input Single-Output

GEDF Global Earliest Deadline First

GNU GNU’s Not Unix!

HRT Hard Real-Time

IC Interactive Consistency

IID Independent and Identically Distributed

I/O Input/Output

LAPACK Linear Algebra PACKage

LET Logical Execution Time

LSF Link Shielding Factor

MAC Message Authentication Codes

xxii acronyms

MAFT Multiprocessor Architecture for Fault-Tolerance

MARS Maintainable Real-Time System

MART MARTingale approach

MIMO Multi-Input Multi-Output

MISO Multi-Input Single-Output

MPFR Multiple Precision Floating-Point Reliably

MTBF Mean Time Between Failures

MTTF Mean Time To Failure

NCS Networked Control System

NSF Node Shielding Factor

OC Operations Controller

ORDC On-Demand Replica Consistency

OS Operating System

OSF Overall Shielding Factor

PBFT Practical Byzantine Fault Tolerance

PE Processing Element

PID Proportional Integral Derivative

PMC Probabilistic Model Checking

PMC-E Probabilistic Model Checking (Exact)

PMC-P Probabilistic Model Checking (Parametric)

PMF Probability Mass Function

POSIX Portable Operating System Interface

PTP Precision Time Protocol

PTPd Precision Time Protocol daemon

QMR Quadruple Modular Redundancy

QoS Quality of Service

RBD Reliability Block Diagram

RBFT Redundant Byzantine Fault Tolerance

ROBUS Reliable Optical Bus

acronyms xxiii

RPC Remote Procedure Calls

RTS Real-Time Systems

RTOS Real-Time Operating Systems

RR Round-Robin

SAP Sound APproximation

SchedCAT Schedulability test Collection And Toolkit

SECDED Single-Error-Correcting Double-Error-Detecting

SIFT Software Implemented Fault Tolerance

SISO Single-Input Single-Output

SMR State Machine Replication

SOFR Sum-Of-Failure-Rates

SPIDER Scalable Processor-Independent Design for Electromagnetic
Resilience

SPoF Single Point of Failure

SRP Stream Reservation Protocol

SRT Soft Real-Time

TKVS Temporally-aware Key-Value Service

TMR Triple Modular Redundancy

TSN Time-Sensitive Networking

TTP Time-Triggered Protocol

TTP/C Time-Triggered Communication Protocol

UDP User Datagram Protocol

UTC Coordinated Universal Time

VAN Vehicle Area Network

WCET Worst-Case Execution Time

WCRT Worst-Case Response Time

Part I

M OT I VAT I O N A N D B A C KG R O U N D

1 I N T R O D U C T I O N

What is “ultra-reliability”? When a commercial aircraft is developed,
multiple fault tolerance mechanisms are designed to mitigate the ef-
fects of faults that may arise once the aircraft is deployed. In particular,
these mechanisms tolerate many unpreventable faults that result from
exposure to radiation and electromagnetism. In addition, reliability
analyses are applied to validate that the overall failure probability of
the aircraft remains under a certified threshold even if faults occur at
the maximum expected rates. To succinctly describe these practices,
researchers in the early seventies defined “ultra-reliability” as the
practice of ensuring quantifiably negligible residual failure rates using a
combination of reliability engineering and analysis techniques [149],
which is essential for building trustworthy safety-critical systems.

Unfortunately, safety-critical systems in other domains—such as
autonomous vehicles, industrial automation systems, delivery and
fire-safety drones, and telesurgery robots—are not engineered as rig-
orously as commercial aircraft, and therefore are not as reliable. For
example, a recent study by Banerjee et al. [18] reports that autonomous
cars tested in California between 2014 and 2017 are at least 4.22× less
reliable than airplanes per trip. The same study also estimates that
autonomous cars are likely to make 10,000× more trips than airlines
in the future. In general, over the next few decades, the use of fully-
autonomous CPS and their impact on human lives is expected to grow
substantially. It will then become imperative to ensure that all safety-
critical CPS are designed to be ultra-reliable. That is, if autonomous
CPS are to permeate our everyday life in the not so distant future,
then they need to become at least as trustworthy as airplanes.

However, with current practices, it is simply not yet possible to
reach ultra-reliability in most CPS domains. A major impediment
is the sheer cost of replicating reliability engineering practices from
the avionics domain in other CPS domains. For example, the use of
custom fault-tolerant hardware with triple-modular-redundant com-
ponents and an additional set of spares is common in the avionics
domain, but not affordable for the automotive industry, which runs
on small cost margins. Two recent trends further impede achieving
aircraft-like reliability targets: the push towards the use of faster and
cheaper, but less reliable, Commodity Off-The-Shelf (COTS) hardware,
such as Ethernet; and the tremendous increase in the complexity of
workloads used for next-generation CPS, e.g., the use of Deep Neural
Networks (DNNs) for self-driving cars. When such CPS are deployed
by the millions, for catastrophic consequences to occur, it suffices if

3

4 introduction

just one of them experiences a faulty execution. Therefore, new and
rigorous reliability analyses are necessary. To this end, the subject of
this dissertation is reliability analysis of networked control systems,
which are key building blocks of modern CPS.

1.1 problem statement

A Networked Control System (NCS) constitutes one or more control
systems wherein the control and feedback signals are exchanged
among distributed components through a communication network. To
ensure a minimum quality of control, an NCS typically requires that
the underlying infrastructure provides strong temporal guarantees
(also referred to as hard real-time guarantees).

However, implementing ultra-reliable NCS in a cost-effective man-
ner using COTS processors and networks is far from trivial. One
aspect that makes the problem particularly difficult is the effect of the
harsh environments in which CPS are often deployed. Environmental
disturbances cause transient faults (bit flips) in hardware. When an
NCS is deployed over field buses such as Controller Area Network
(CAN),1 transient faults are known to cause host crashes, network
retransmissions, and incorrect computations. In addition, when an
NCS is deployed over point-to-point networks such as Ethernet, even
Byzantine errors (i.e., inconsistent broadcast transmissions) are pos-
sible. Although these errors occur with extremely low probabilities,
they must nonetheless be tolerated to build trustworthy CPS.

In this dissertation, we show how to analyze the reliability of NCS
applications—more generally, distributed real-time systems—in the pres-
ence of such environmentally induced transient faults. We use the
Failures-In-Time (FIT) metric for reporting the NCS reliability. It is
an industry standard metric for measuring device reliability, and is
defined as the expected number of failures in one billion operating
hours of the device [214]. In particular, our objective is to:

Quantify the reliability of CAN- and Ethernet-based implemen-
tations of NCSs in terms of upper bounds on their FIT rates.

1.2 analysis approach

Computing the FIT rate of an NCS using empirical techniques is
straightforward. For instance, the NCS implementation can be simu-

1 Field bus refers to computer network protocols that are used for real-time distributed
control in industry, e.g., for connecting instruments in manufacturing plants. These are
broadly specified using the IEC 61158 standard [108]. Controller Area Network (CAN)
is a field bus standard that is widely used in automotive and industrial automation
domains (see Section 2.1.3.1 for details).

1.2 analysis approach 5

N1

Plant P1 Plant P2

N2 N3

N4 N5

CAN
bus

NCS1

NCS2

(a)

NCS1 deployment over nodes N1,
N2, N4, and N5, and the CAN bus

NCS2 deployment over nodes
N2—N5, and the CAN bus

CAN protocol

CAN bus wire

Controlled Plant P1 Controlled Plant P2

∑ = FITsys

FITP2

FITNCS1FIT
NCS2

FITP1

FITCAN

FITwire

N4 and N5 experience
permanent failures

N1 and N2 experience
permanent failuresFI

Tpe
rm

-sc
en

ar
io-

1

FITperm-scenario-2

Other
failure

sources
FITother

Clock synchronization protocol N1 OS scheduler

FITclock-sync FITOS-sched1

…

(b)

Figure 1.1: (a) Two NCSs are deployed in Dual Modular Redundancy (DMR)
configurations over a set of nodes that communicate over a
CAN bus. (b) Decomposing FIT analysis of the CAN-based dis-
tributed real-time system shown in (a) into FIT analysis of its
sub-components using the Sum-Of-Failure-Rates (SOFR) model.

lated for a finite period of time, and the average number of failures
experienced over multiple simulation trials can be used to estimate the
FIT rate. However, empirical simulation-based approaches scale poorly
when evaluating low-probability events, and can under-approximate
the true failure rate, especially in the presence of reliability anoma-
lies, when worst-case component-specific fault rates do not yield the
worst-case system-wide failure rate (see Section 5.1 for a detailed
explanation). On the other hand, computing such a metric analytically
and in a sound manner for a complex implementation consisting of
multiple critical software modules is not trivial.

In this dissertation, we address the FIT analysis problem for NCSs in
a divide and conquer approach using the Sum-Of-Failure-Rates (SOFR)
model [222]. The SOFR model is widely used in industry to compute
the failure rate of a system as the sum of the failure rates of its differ-
ent sub-components. It assumes that the sub-components constitute a
series failure system. That is, the first instance of any sub-component fail-
ing, because of any failure mechanism, causes the entire system to fail.
Srinivasan et al. [211], for instance, used the SOFR model to compute
the failure rate of the processor as an aggregate of the failure rates
of its arithmetic logic units, floating-point units, register files, branch
predictor, caches, load-store queue, and reorder buffer. Similarly, in
this work, we decompose the problem of computing the FIT rate of
a distributed real-time system (that hosts one or more NCS applica-
tions) into multiple sub-problems. Each sub-problem corresponds to
computing a safe upper bound on the FIT of one of the many software
modules that are critical to the system’s functional safety.

We illustrate the approach using a simple example. Consider a
distributed system consisting of five nodes, N1, N2, N3, N4, and N5,
networked over a single CAN bus (see Fig. 1.1a). Two NCS applications
NCS1 and NCS2 are deployed over these nodes to control plants

6 introduction

P1 and P2. Both applications rely on some form of Dual Modular
Redundancy (DMR). In the case of NCS1, both N1 and N2 sense and
actuate plant P1, and both N4 and N5 are used to compute the control
commands; and analogously, in the case of NCS2, both N2 and N3
sense and actuate plant P2, and both N4 and N5 are used to compute
the control commands.

The reliability of this system depends on the correct functioning of
the two control plants P1 and P2, which in turn depends on several
factors. For instance, the hardware components within the control
plants must function correctly, the CAN bus wire must not fail, and
nodes N1–N5 should not experience permanent failures beyond what
the DMR configuration can tolerate (e.g., N4 and N5 should not both
fail). In addition, the software components, including the controller
replicas, the operating system service on each node, and the clock
synchronization protocol (if the replicas rely on it) must function both
correctly and timely despite environmentally-induced transient faults.

To account for all such failure scenarios, we decompose the system-
wide FIT analysis into separate independent FIT analyses (e.g., as
shown in Fig. 1.1b). Intuitively, the idea is to separately analyze or-
thogonal concerns like the failure rate of the CAN bus wire and the
failure rate of the control plant hardware, but jointly analyze tightly
coupled components like the DMR protocol that spans across multiple
nodes. Although separately analyzing the failure rate of the DMR
protocol instance on each node is conceptually also a sound alterna-
tive, it may yield a very pessimistic upper bound on the overall FIT.
For example, applying the SOFR approach to the failure rates of the
DMR protocol instances on nodes N4 and N5 will double the expected
failure rate. Instead, jointly analyzing the DMR protocol failure rate
across these two nodes (i.e., considering only those scenarios when the
DMR protocol execution fails on both nodes during the same control
loop iteration) actually yields a more accurate upper bound.

1.3 thesis contributions

In the context of the SOFR model for FIT analysis, the overall contribu-
tion of this dissertation is a set of analyses to derive upper bounds on
the FIT rates of actively replicated NCS subsystems. FIT analysis of the
remaining critical components, like the controlled plant, the CAN bus
protocol, the wire, etc., is thus orthogonal. In particular, (i) we consider
simple DMR configurations as well as more sophisticated Byzantine
fault tolerant configurations for active replication; (ii) we model errors
affecting the active replication protocols at the granularity of message
exchanges; and as mentioned before, (iii) our objective is to evaluate
NCS implementations for field buses like CAN and point-to-point

1.3 thesis contributions 7

networks like Ethernet. Specifically, the dissertation is divided into
four main research problems, which we summarize below.

1.3.1 Tolerating Byzantine Errors in CPS

Point-to-point technologies like Ethernet are fundamentally differ-
ent from field buses like CAN. Lack of an atomic broadcast primi-
tive (unlike in CAN) exposes Ethernet-based systems to the risk of
environmentally-induced Byzantine errors. Byzantine fault tolerance
(BFT) protocols can mitigate such errors to a large extent; but is the
cost of using a BFT protocol (e.g., network bandwidth and compute
capacity used) offset by the gain in reliability? Is one network topology
necessarily or significantly more reliable than another? The first step to-
wards answering such questions is understanding how BFT protocols
can be implemented over COTS networks like Ethernet while satisfy-
ing hard real-time constraints, which are required by many NCS.

To this end, we first focus on the problem of designing a BFT
distributed real-time system for the CPS domain, which is suitable
for hosting safety-critical NCS applications (Chapter 4). Prior work
on Byzantine fault tolerance in safety-critical domains relied either on
custom processors or custom networks, or both; whereas BFT solutions
developed for general-purpose computing systems were not designed
from the perspective of hard real-time applications.

We propose a hard real-time design of a BFT protocol based on the
periodic task model for Ethernet-based systems. To evaluate the pro-
posed design, we built a prototype implementation of a BFT key-value
store, called Achal, for coordinating distributed NCS replicas. Our
results indicate that while Achal’s latency is predictable and satisfies
hard real-time constraints, the latencies of BFT key-value stores based
on BFT-SMaRt and Cassandra (both well-known general-purpose
systems) are unpredictable and frequently violate these constraints.
Achal’s design thus provides a basis for building BFT hard real-time
applications, and a model for analytically quantifying the reliability
of NCS applications that are exposed to Byzantine errors.

1.3.2 Reliability Analysis of a BFT Protocol

Classical Byzantine safety guarantees (e.g., 3f+ 1 processes can toler-
ate up to f Byzantine faults) do not take into account non-uniform fault
rates across different system components that arise due to environ-
mental disturbances. They also abstract from the underlying network
topology despite its strong influence on actual failure rates. To ad-
dress this gap, we present in Chapter 5 the first quantitative reliability
analysis of a hard real-time implementation of a BFT atomic broadcast
protocol over Ethernet in the presence of stochastic transient faults.
Most importantly, the presented analysis is free of reliability anomalies,

8 introduction

which can result in non-monotonic increases in a system’s overall fail-
ure rate despite local decreases in an individual component’s failure
rate. This is the first work to formalize and propose techniques to
eliminate reliability anomalies in a hard real-time setting.

1.3.3 Reliability Analysis of an NCS Iteration

The contributions summarized in Sections 1.3.1 and 1.3.2 can to-
gether be used to implement an ultra-reliable atomic broadcast service
over point-to-point networks for building trustworthy NCS. Such an
analysis-driven implementation can be configured to provide compa-
rable levels of reliability to that of conventional field buses like CAN.

However, for a full-system reliability analysis (recall the example
presented in Fig. 1.1), we must also upper-bound the FIT rate of the
actively replicated NCS implementation that is implemented on top of
the atomic broadcast layer (either over CAN or Ethernet). In particular,
despite the atomic broadcast properties of the underlying network, er-
rors due to transient faults, such as a crash and reboot error, may keep
a host unavailable for a small amount of time; and corruption errors
may affect the integrity of certain messages. In an actively replicated
NCS, such errors may not always affect the final actuation. Hence, es-
pecially for actively replicated NCS, a fine-grained reliability analysis
is needed to more accurately capture the benefits of replication.

Thus, we present in Chapter 6 the reliability analysis of an actively
replicated NCS in the presence of transient faults at the granularity
of network messages. We focus on in this chapter on NCS imple-
mentations over CAN; but we also briefly discuss how the presented
analysis can be modified for NCS implementations over Ethernet with
a software atomic broadcast layer.

1.3.4 Reliability Analysis of Weakly-Hard Systems

The above analysis provides an implementation-specific upper bound
on the failure probability of a single NCS iteration. A simplistic and
the conventional approach to obtain metrics like FIT from such single
iteration estimates is to calculate the time to first fault. However,
this approach is excessively pessimistic for NCS applications, which
are routinely designed to be temporally robust, i.e., remain functional
despite a few skipped or misbehaving control loop iterations.

Instead, we propose analyses that account for the temporal ro-
bustness of NCS using multi-state models such as the widely used
weakly-hard constraints, resulting in more accurate FIT estimates. In
particular, we present in Chapter 7 three different techniques based on
probabilistic model checking, martingale theory, and sound approximation
to address the expressiveness, accuracy, and scalability requirements
of larger and more complicated NCS applications. We also provide a

1.4 organization 9

systematic exploration and empirical evaluation of these techniques
for different points in the weakly-hard constraint space.

1.4 organization

The remainder of this dissertation is organized as follows. We review
relevant background on distributed real-time systems and reliability
engineering principles in Chapter 2. We discuss the fault model and
related assumptions in Chapter 3. The four main contributions sum-
marized above are presented in detail in Chapters 4 to 7, respectively.
Finally, we conclude and discuss future work in Chapter 8. Appen-
dices A to C provide detailed proofs and implementation details.

2 B A C KG R O U N D

In this chapter, we provide the necessary background on distributed
real-time systems and reliability engineering practices.

2.1 distributed real-time systems

Real-Time Systems (RTS) must guarantee response times under speci-
fied thresholds, also known as deadlines. RTS are integral to the CPS
domain, since interaction with the physical world is often subject to
strict timing constraints. For example, airbags in a passenger vehicle
must be deployed within 70ms from the time of impact [79], which
requires timely execution of multiple events, including crash sensing,
deciding the airbag deployment rate, and inflating the airbag [47].

In many cases, an RTS may consist of sensors, controllers, and actu-
ators that are physically apart. The components in such a distributed
system need to communicate and coordinate with each other over a
shared network to ensure timely and correct responses [121]. For ex-
ample, in an Advanced Cruise Control (ACC) subsystem (see Fig. 2.1
below), distributed sensors for sensing the wheel speeds and for sens-
ing any adjacent vehicles need to periodically communicate with the
central ACC unit, so that the ACC unit in turn can coordinate the
actions of the braking and throttle actuators, if required.

Distributed RTS are also crucial for tolerating common cause fail-
ures due to host crashes, as opposed to standalone RTS. For example,
in a RTS designed to tolerate crash faults, independent hosts can serve
as a primary-backup pair, where the backup replica is redundant but,
nonetheless, remains active, i.e., continues to service requests like the

CAN Bus
vt

vc

vc
vt vt

H1 H2 H3

vc

Braking
Actuator(s)

Throttle
Actuator

Wheel 1
Speed
Sensor

Wheel 2
Speed
Sensor

Wheel 3
Speed
Sensor

Wheel 4
Speed
Sensor

Radar Infrared
Sensor

RGB
Camera

 ABS Controller Engine Controller ACC controller

Figure 2.1: Schematic diagram of an ACC subsystem, as presented in [3].
Current and target velocities are denoted vc and vt, respectively.
ABS denotes an Anti-lock Braking System.

11

12 background

Figure 2.2: © Copyright 2002 IEEE [140]. Example of an actively replicated
system with central guardians (left) and with local bus guardians
(right). CNI denotes a Communication Networking Interface and
TTP/C denotes the Time-Triggered Communication Protocol.

primary, in case the primary crashes [87, 195]. The two hosts, although
independent, are connected in order to maintain a consistent state
through regular state transfer, or else the system functionality is hin-
dered in case of a host crash. Fig. 2.2 illustrates one such architecture.

In the following, we describe in detail the concepts from distributed
systems, real-time systems, and networking that are most relevant for
understanding this dissertation.

2.1.1 Distributed Systems

A central problem in a distributed system is timely and correct coordi-
nation among the distributed processes (possibly replicas) despite their
“distributedness” and despite the resulting faults. To this end, two key
primitives—fault-tolerant agreement and clock synchronization—are
fundamental. We describe below each of these primitives in detail.

2.1.1.1 The Agreement Problem

In a distributed system, the distributed processes are typically de-
signed to realize a single global objective. This often requires coor-
dination among the distributed processes and agreement on one or
more values. For example, in a spaceship, all processes controlling
the spaceship engines should decide to either “proceed” or “abort”
in an unanimous manner; or when funds are transferred from one
bank account to another, the involved processes must consistently
agree to perform the respective debit and credit. Hence, the agree-
ment problem is a fundamental problem for distributed systems, and
has been formalized in the literature in different ways. These include
the consensus problem, the Byzantine Generals (BG) problem, and the
Interactive Consistency (IC) problem.

We provide below formal definitions of these problems. Our defi-
nitions are based on the definitions by Coulouris et al. [50]. Suppose

2.1 distributed real-time systems 13

there are Np processes. The distributed processes are denoted p1,
p2, and so on. Further, each process is classified as either faulty or
correct, based on whether it executes erroneously or not. The objective
is therefore to ensure that correct processes achieve agreement despite
a subset of processes being faulty.

definition 2.1. The consensus problem. Each process pi proposes a
single value vi. The processes communicate with each other, after
which each process pi decides the value of a local decision variable di.
The following conditions must hold to solve the consensus problem:

• Termination: Each process sets its decision variable eventually.

• Agreement: If processes pi and pk are correct and have decided
di and dk (respectively), then di = dk.

• Integrity: If all correct processes proposed the same value v, and
if process pi is correct and has decided di, then di = v.

definition 2.2. The BG problem. Only the leader process, say p0, pro-
poses a value, say v. The processes communicate with each other, after
which each process pi decides the value of a local decision variable di.
The following conditions must hold to solve the BG problem:

• Termination: Each process sets its decision variable eventually.

• Agreement: If processes pi and pk are correct and have decided
di and dk (respectively), then di = dk.

• Integrity: If the leader process p0 is correct, and if any process pi
is correct and has decided di, then di = v.

definition 2.3. The IC problem. Each process pi proposes a single
value vi. The processes communicate with each other, after which each
process decides the value of a local decision vector Di of length Np.
The following conditions must hold to solve the IC problem:

• Termination: Each process sets its decision vector eventually.

• Agreement: If processes pi and pk are correct and have decided
Di and Dk (respectively), then Di = Dk.

• Integrity: If process pi is correct, and if any process pk is also
correct and has decided Dk, then Dk[i] = vi.1

These three problems are equivalent in the sense that it is possible
to derive a solution for one of the problems using a solution for one of
the other problems (see [50] for details). However, finding a solution
to any of these problems that works despite faults is challenging. We
describe a range of faults that are likely to occur in a distributed

1 Dk[i] denotes the ith element of vector Dk.

14 background

property characteristic favorable?

Processors Asynchronous No
Synchronous Yes

Communication Asynchronous No
Synchronous Yes

Message Order Asynchronous No
Synchronous Yes

Transmission Mechanism Point-to-point No
Broadcast Yes

Receive/Send Separate No
Atomic Yes

Table 2.1: System characteristics affecting the agreement problem based on
prior work by Dolev et al. [63]. The last column specifies whether
it is favorable to solve the agreement problem for the given system
characteristic.

real-time CPS in Chapter 3. We also discuss classic solutions for these
problems, and particularly for the IC problem that is the focus of this
dissertation, in Chapter 4.

Next, we give an overview of certain system characteristics that de-
termine whether it is easy or difficult to solve the agreement problem,
and in the end, describe the characteristics that we assume in the rest
of this dissertation for our analyses. Our characterization is based on
a prior work by Dolev et al. [63]. See Table 2.1 for a quick summary.

In the case of processors and communication, asynchronous (or
synchronous) behavior is characterized by unbounded (or bounded)
delays between consecutive processor steps and between consecutive
message delivery events, respectively.

In contrast, in the case of message order, asynchronous and syn-
chronous behaviors imply whether the messages can be delivered out
of order or if in-order delivery is guaranteed, respectively. In partic-
ular, a synchronous message order implies that if process pi sends a
message m1 to process pj at time t1, and if process pk also sends a
messagem2 to process pj at time t2, such that t2 > t1, then pj receives
m1 before m2. Here, pi, pj, and pk are not necessarily distinct, and
time-stamps t1 and t2 refer to the wall-clock time, which is external
to the system. In general, any kind of asynchronous behavior makes it
difficult to solve the agreement problem.

The last two properties in Table 2.1 correspond to the atomicity
of send and receive operations. With a point-to-point transmission
mechanism, a processor can send a message to at most one processor
atomically, whereas a broadcast mechanism enables a processor to
send messages to all processors in a single atomic step. Similarly, a pro-
cessor can receive and send messages either as part of the same atomic

2.1 distributed real-time systems 15

step, or separately. Like asynchronous behaviors, lack of atomicity
also hinders solving the agreement problem.

In this dissertation, we analyze distributed real-time systems with
synchronous processors and communication. Processors are synchro-
nized using a clock synchronization protocol (which is discussed
in Section 2.1.1.2), and communication is synchronized using time-
sensitive networking standards (which are discussed in Section 2.1.3).
We also assume that send and receive are separate operations. Finally,
we consider both point-to-point and broadcast-based systems, and
provide separate analyses for each (see Parts ii and iii of the disserta-
tion, respectively). For point-to-point systems, we analyse Pease et al.’s
solution [173] for the IC problem (reviewed in Section 4.2.1); and for
broadcast-based systems (where it is easier to solve the agreement
problem), we analyze a simple active replication protocol.

2.1.1.2 Clock Synchronization

As discussed above, asynchronous processors make it difficult to
solve the agreement problem. In fact, in a fully asynchronous system,
because it is impossible to distinguish between a faulty processor
and a slow processor, it is generally impossible to reach consensus,
as shown by Fischer et al. [74].2 Thus, distributed systems are often
designed to behave synchronously. However, this is quite challenging
because computer clocks, even if initialized to the same value, tend
to diverge over time. The oscillators underlying the crystal clocks
are subject to physical variations; and as a result, their frequencies
differ. When these differences accumulate over many oscillations, the
differences between the clock values can be significant.

The solution is to synchronize each clock in a distributed system
regularly. If the objective is to synchronize each clock with an external
authoritative source of time, such as the Coordinated Universal Time
(UTC), external synchronization is needed. Suppose that Ci and Ci(t)
denote the ith clock and its readings at absolute time t, respectively;
S and S(t) denote the UTC time source and its readings at absolute
time t, respectively; and D > 0 denotes the synchronization bound.

definition 2.4. External synchronization requires that |S(t)−Ci(t)| <
D for each clock Ci and at all times t.

If the objective is simply to mutually synchronize the different compo-
nents of a distributed system, internal synchronization suffices.

definition 2.5. Internal synchronization requires that |Ci(t)−Ck(t)| <
D for each pair of clocks Ci and Ck, and at all times t.

In general, even if any one clock in a distributed system is externally
synchronized with a bound of D, internal synchronization guarantees

2 This result is also called the FLP impossibility proof after its authors Michael J. Fischer,
Nancy Lynch, and Mike Paterson.

16 background

pi

t1 t2 t3 t4

payload: “tm”
p0

Δ0 ΔiΔNW

time

Simple protocol

p0’s local clock at
this time says “tm”

pi

t0 t1 t2 t3b

p0

px

t3a t4 t5 t6

payload: “t”

indication messages

time

Refined protocol

p0’s local clock at
this time says “t”

time-critical path
protocol execution

Figure 2.3: A simple and a refined clock synchronization protocol for CAN-
like networks. Process p0 is the leader process, whereas processes
pi and px are follower processes.

that all other clocks in the distributed system are externally synchro-
nized as well, although with a bound of 2×D. Coulouris et al. [50]
explains these synchronization modes in detail.

In the following, we explain the intuition behind two types of
internal clock synchronization algorithms on which our evaluation
workloads in Chapters 5 and 6 are based. We start by explaining the
protocols by Gergeleit and Streich [84], each of which is designed in
the form of a leader/follower algorithm, and specified for broadcast
networks (such as CAN) that satisfy the following three conditions:

1. Network messages are delivered to all nodes with a fixed and
known delay. The delay can be a function of the receiving node.

2. The delay from the transmission (and similarly, from the recep-
tion) of a network message to an interrupt service routine that
timestamps this transmission (reception, respectively) is known
and has a very small variance. This delay can also be a function
of the receiving node.

3. An upper bound on the time between two valid clock synchro-
nization messages can be guaranteed in advance.

The protocols are illustrated in Fig. 2.3 and explained below.
In the simple protocol, the leader process, say p0, first reads the

value of its local clock at absolute time t1 (let this clock value be de-
noted tm) and broadcasts it at absolute time t2. All follower processes
then receive the broadcast message at absolute time t3 and adjust
their local clocks accordingly at absolute time t4. The adjustment done
by each follower process pi (i 6= 0) depends on the latency of the
complete path, i.e., each pi sets its local clock to:

ti,new = tm + t4 − t1 = tm +∆0 +∆NW +∆i. (2.1)

2.1 distributed real-time systems 17

∆0, ∆NW, and ∆i denote upper bounds on t2 − t1, t3 − t2, and t4 − t3,
and can be computed in advance. The adjustment results in the syn-
chronization of p0 and pi’s clocks since ti,new also denotes leader pro-
cess p0’s clock value at absolute time t4. The synchronization bound
D depends on the accuracy of the upper bounds ∆0, ∆NW, and ∆i.

There are two main drawbacks of this simple protocol. The entire
path from t1 to t4 (as highlighted in Fig. 2.3) is time-critical and must
be deterministic; whereas in practice, the path length is affected by
runtime characteristics, like the payload-based bit stuffing introduced
by the CAN protocol (Section 2.1.3.1 describes the CAN protocol in
detail). As a result, the clock synchronization accuracy is significantly
affected. In addition, it is expected that the time between t1 and t4 is
at least an order of magnitude smaller than the desired granularity.
However, for CAN-like broadcast networks, this time duration can
be very high. For example, on a CAN bus with a bit transmission
rate of 125 kbit/s, the transmission time of an 8 byte time-stamp is
about 1ms, which implies that even a millisecond-granularity clock
synchronization is not possible using this protocol.

To overcome these limitations, Gergeleit and Streich [84] defined
another protocol that does not rely on such a long time-critical path
(see the refined protocol in Fig. 2.3). The key idea is to exploit the
synchrony of the broadcast network. First, an arbitrary process, say
px (x 6∈ {0, i}), decides to broadcast an empty indication message at
absolute time t0. The indication message is broadcast at absolute time
t1, and received by all processes synchronously at absolute time t2.
Let us focus only on the leader process p0 and a follower process pi.
Upon receiving the indication message, processes p0 and pi take local
time-stamps. Suppose that these local time-stamps are denoted t and
t ′, respectively, and that their time-stamping procedure completes at
absolute times t3a and t3b, respectively. The leader process p0 then
broadcasts its time-stamp t at absolute time t4. Upon receiving this
message, process pi simply needs to compare its own time-stamp for
the indication message (i.e., t ′) with the leader process p0’s time-stamp
for the indication message (i.e., t). In other words, t ′ − t denotes the
difference between p0 and pk’s local clocks. Therefore, pk can synchro-
nize its clock with p0’s clock by making the corresponding adjustment.
Notice that both processes p0 and pi, when determining t and t ′ (re-
spectively), need to account for their processor-local execution delays,
i.e., for time durations t3a − t2 and t3b − t2, respectively.

In summary, the refined protocol by Gergeleit and Streich [84]
depends only on short time-critical paths, i.e., process p0’s execution
from t2 to t3a, and process pi’s execution from t2 to t3b, which
are also independent of the network. Hence, this protocol allows
processes to synchronize clocks at a higher granularity and with
better accuracy. In fact, Gergeleit and Streich further optimized this
protocol by treating the second message by the leader process p0

18 background

pi

t1
Local clock readings

sync

t2 t3 t4

p0

de
lay

_r
eq

delay_resp

“t4 ”
t5 t6

network transit + local processing timed

“t1 ”

Figure 2.4: The key mechanism underlying PTP [106].

as an indication message for the next round, thereby reducing the
protocol bandwidth by a factor of two. They also explain how system-
dependent inaccuracies (due to the interrupt routine software and
the hardware) in determining the message reception or transmission
times can be accounted for by the protocols. Unfortunately, none of
the protocols proposed by Gergeleit and Streich [84] apply to Ethernet
(or point-to-point networks, in general). Thus, we give an overview of
another internal synchronization protocol in the following.

We explain the key steps involved in the Precision Time Protocol
(PTP) [106], which is widely used by Ethernet-based distributed real-
time systems in the CPS domain for achieving clock synchronization in
the sub-microsecond range. The objective is for any process pi (i 6= 0)
to find the offset O(t) = Ci(t) − C0(t) between the time measured
by its local clock Ci and the time measure by the leader process
p0’s local clock C0 at absolute time t. If O(t) is accurately known,
pi can correct its clock so that it agrees with the leader process p0’s
clock. However, in an Ethernet-like network (and unlike in CAN-like
networks), where networking delays cannot be determined in advance,
computing O(t) requires two steps (which are illustrated in Fig. 2.4).
In the first step, the leader process p0 broadcasts a sync message at
its local time t1, which contains the clock value t1 as its payload and
which is received by pi at its local time t2. In the second step, process
pi tries to determine the network transit time d between itself and
the leader process p0 (d also includes any local processing delays
incurred on the respective processors). It sends a delay_req message
at its local time t3 to the leader process p0, which time-stamps the
receipt of this message at its local time t4 and further responds with a
delay_resp message containing the time-stamp t4. By the end of this
exchange, process pi learns about the leader process p0’s time-stamps
t1 and t4, and it also keeps a record of its own time-stamps t2 and
t3. Hence, assuming that the offset between processes p0 and pi’s

2.1 distributed real-time systems 19

clocks is constant over the period during which this message exchange
happens, process pi can determine this offset, denoted o, as follows:

t2 − t1 = o+ d and t4 − t3 = −o+ d (2.2)

=⇒ o =
1

2
(t2 − t1 − t4 + t3). (2.3)

Once o is known, pi can synchronize it’s clock with leader process
p0’s clock. The synchronization accuracy depends on the accuracy
with which the processes can measure the time at which they send or
receive messages, and also on whether the transit times from p0 to pi
and from pi to p0 are identical.

Throughout this dissertation, we trust clock synchronization algo-
rithms to synchronize the distributed clocks in a trustworthy manner.
We then analyze the reliability of a synchronous Byzantine Fault
Tolerance (BFT) protocol and an actively replicated Networked Con-
trol System (NCS), both of which rely on the clock synchronization
primitive. However, a similar reliability analysis of such clock synchro-
nization algorithms (or their fault-tolerant versions) is also needed.
We plan to investigate this problem in future work (see Chapter 8).

2.1.2 Real-Time Systems

We describe Real-Time Systems (RTS) fundamentals including the com-
monly used task models, different Quality of Service (QoS) guarantees,
and different scheduling policies [31, 53, 201].

2.1.2.1 Task Models

Real-time applications typically consist of a set of recurring tasks that
are designed to execute their function either periodically based on
timer interrupts or sporadically based on external inputs. To formal-
ize these two execution types, Liu and Layland [137] proposed the
periodic task model and Mok [153] later proposed the sporadic task model,
respectively. We describe these models in the following.

Suppose that the real-time application consists of a set of tasks
T = {T1, T2, . . . , Tn}. Each task executes a sequential piece of code; in
other words, intra-task parallelism is not permitted. The Worst-Case
Execution Time (WCET) of each task Ti is assumed to be known in
advance and denoted Ci. As mentioned above, the tasks are invoked
based on timer interrupts or external events, possibly for an infinite
number of times. Hence, each task Ti is modeled as a set of infinitely
many jobs (or invocations), and the kth job is denoted Ji,k.

The arrival time of each job Ji,k, i.e., the time at which job Ji,k is
ready to be scheduled, is denoted ai,k. Under the periodic task model,
if Pi denotes the period or the time period of task Ti, then its jobs’
arrival times are related as ai,k+1 = ai,k + Pi (k > 0). If all periodic

20 background

tasks in T arrive simultaneously in the beginning, also referred to
as a synchronous arrival, then for each pair of tasks Ti and Tk in T ,
ai,1 = ak,1. Alternatively, the task arrival times may be separated by
fixed offsets (which is referred to as an asynchronous arrival). In this
case, each task Ti first arrives at time ai,1 = φi, where φi denotes an
offset from a synchronous time point.

Unlike in the periodic task model, Pi under the sporadic task model
denotes the minimum inter-arrival time between any two jobs of task
Ti; hence, ai,k+1 > ai,k + Pi (k > 0). Also, for analysis purposes, it
is assumed that the dependence, if any, between the arrival times of
sporadic jobs of different tasks is not known in advance.

Each task Ti is also characterized by a relative deadline parameter
Di, which determines the range of its acceptable response times.
In particular, each job Ji,k must finish its execution no later than
time ai,k +Di. In many cases, deadlines are implicit, i.e., Di = Pi, to
ensure that when a new job arrives, the old job has finished. However,
depending on the application requirements, the deadlines may also
be more constrained, i.e., Di 6 Pi, or relaxed, i.e., Di > Pi. The term
arbitrary deadlines is typically used to denote the union of these cases.

In summary, the periodic and sporadic task models characterize each
task Ti using the tuple (Ci,Pi,Di), where Ci 6 Pi and Ci 6 Di. The
task utilization Ui of each task Ti determines its processor demand and
is defined as Ci/Pi. Similarly, the task set utilization U determines the
cumulative processor demand of all tasks in T , and is defined as U =∑
Ti∈T Ui. In this dissertation, we assume the periodic task model with

implicit deadlines when modeling real-time applications. Our contri-
butions, though, are not limited by this assumption; alternative task
models with corresponding timing analyses could be used as well.

2.1.2.2 Different QoS Guarantees

Given the periodic and sporadic task models for real-time applications,
we next define different Quality of Service (QoS) guarantees that an
RTS may expose to the application. We also discuss common real-time
scheduling policies that can be used to enforce these guarantees.

In a real-time system, QoS guarantees refer to guarantees on the
temporal correctness of task executions, and more precisely, on the
response times of task invocations. Let Ri,k denote the Worst-Case
Response Time (WCRT) of job Ji,k in the presence of delays due to
the task scheduling policy and the execution of other tasks on the
system. We define below three types of QoS guarantees that have been
commonly used in the literature.

In the following definitions, N = {1, 2, 3, . . .} and W = N ∪ {0}

denote the set of natural numbers and whole numbers, respectively.

2.1 distributed real-time systems 21

definition 2.6. A Hard Real-Time (HRT) guarantee implies that task
deadlines are never violated, i.e.,

∀Ti ∈ T ,k ∈N : Ri,k 6 Di. (2.4)

definition 2.7. A Soft Real-Time (SRT) guarantee implies that task
deadlines may be violated, but the violations are bounded, i.e.,

∃B ∈W s.t. ∀Ti ∈ T ,k ∈N : Ri,k 6 Di +B. (2.5)

Like the SRT guarantee, a Firm Real-Time (FRT) guarantee also allows
task deadlines to be violated. However, unlike the SRT guarantee, a
FRT guarantee allows only a bounded number of violations in every
finite execution history of the task. For example, we define below an
(m,k) guarantee, which is a widely used FRT guarantee.

definition 2.8. An (m,k) FRT guarantee (1 6 m 6 k) implies that
the number of violations among every k consecutive jobs of a task is
bounded by k−m, i.e.,

∀Ti ∈ T , j ∈N :

x=k−1∑
x=0

Vi,j+x 6 k−m, (2.6)

where Vi,j = 0 if Ri,j 6 Di and Vi,j = 1 otherwise.

HRT guarantees are needed for applications if even a single dead-
line violation can cause a total system failure, which in turn can result
in catastrophic consequences. For example, consider the airbag deploy-
ment process in a passenger vehicle, which has an end-to-end deadline
of less than 70ms [79]. Any task constituting this end-to-end process
cannot miss its deadline. On the other hand, FRT guarantees [210] are
sufficient if infrequent deadline misses are tolerable by the application
and if the usefulness of a deadline is zero after its deadline. Control
systems work well with FRT guarantees, since occasional deadline
misses may only slightly degrade the quality of control. The (m,k)
guarantee [95, 183] defined in Definition 2.8 is just one way to define
FRT guarantees. Bernat et al. [21] provide other variants of the (m,k)
guarantee. Finally, SRT guarantees [206] are useful for applications
that benefit from a task’s execution even if it was delayed beyond
its deadline, but at the cost of some loss in the application’s service,
e.g., audio-video systems are often soft real-time.

Enforcing any of the aforementioned QoS guarantees requires a
combination of a runtime scheduling algorithm and an offline schedu-
lability analysis. The latter is useful for validating whether a specified
workload when scheduled using a specified scheduling algorithm
experiences any QoS violations. In general, a scheduling algorithm de-
signed to schedule periodic and sporadic tasks with HRT guarantees
can be used in the case of SRT and FRT guarantees as well. However,
the schedulability analyses may vary in each case.

22 background

The most simple scheduling algorithm is the Fixed Priority (FP)
scheduling algorithm. As per this algorithm, each task Ti is assigned
a unique fixed priority. At runtime, among all the jobs that are ready to
execute, the job belonging to the highest priority task is scheduled first.
The job is scheduled either preemptively or non-preemptively [83]. Under
preemptive scheduling, if a higher-priority job arrives, the scheduler
preempts the currently running job and schedules the highest priority
job. In contrast, under non-preemptive scheduling, the currently run-
ning job executes to its completion. In addition, on a multiprocessor
system, FP scheduling can either be implemented globally [24], i.e., jobs
are dispatched to each core from one global priority-ordered queue, or
in a partitioned manner [32], i.e., each task is assigned to an individual
core in advance and jobs are then dispatched to each core from the
respective core-local priority-ordered queue. Task priorities can be
assigned using different heuristics such as rate monotonic [138, 200] or
deadline monotonic [14] (where the task with the shortest period or the
shortest relative deadline gets the highest priority, respectively).

In this work, we assume partitioned FP scheduling with preemption
and rate monotonic priorities, unless specified otherwise.

2.1.3 Time-Sensitive Networks

Next, we provide a background on the Controller Area Network
(CAN) field bus [58] and provisions in Ethernet for time-sensitive
networking [161]. CAN has been widely used for CPS (especially in
the automotive domain) in the past three decades. On the other hand,
time-sensitive variants of Ethernet, such as many automotive Ethernet
standards [148], are likely to find widespread use in future distributed
real-time systems due to their high speed and bandwidth.

2.1.3.1 Controller Area Network

Traditional point-to-point networking solutions became increasingly
expensive and cumbersome as the number of Electronic Control
Units (ECUs) in an automobile grew beyond 40s. Hence, Robert Bosch
GmbH in the late eighties developed CAN—an inexpensive message-
based protocol that is both robust and predictable—for networking
ECUs inside an automobile [40]. Over time, CAN became the de facto
standard field bus for the automotive industry, and was also widely
used in other CPS domains [131]. We discuss below its main properties
that make it useful for distributed real-time systems in general. For a
comprehensive overview, see the book by Di Natale et al. [58].

The data frame format of a CAN message frame is illustrated in
Fig. 2.5 for reference. The message transmission protocol relies on
a bit-level synchronization protocol so that every host agrees on the
value of the currently transmitted bit [77]. This enables CAN to use a
bit-wise arbitration method for contention resolution. That is, during

2.1 distributed real-time systems 23

Figure 2.5: The data frame format of a CAN message, with (bottom) and
without (top) bit-stuffing. The payload (data field) can range
from 0 to 8 bytes. Image source: Wikipedia Commons [230].

the arbitration phase, multiple message identifiers may be simultane-
ously broadcast, and the message with the lowest identifier wins the
arbitration. Message identifiers must be unique. Otherwise, two hosts
may continue transmission beyond the end of the arbitration phase,
causing an error. Unique identifiers are guaranteed by partitioning the
identifier space across all messages during design time [52].

To ensure message integrity, i.e., that messages are not corrupted
due to bit-flips on the bus, the CAN protocol incorporates message
checksum and acknowledgement slots in the data frame. If any host
detects an error, it transmits an error frame to signal the sender. In
addition, since bit patterns ‘000000’and ‘111111’ are used to signal
errors, the CAN protocol also incorporates a bit-stuffing mechanism to
avoid the use of these bit patterns during an error-free transmission of
the data frame [159]. That is, whenever five bits of the same polarity
are transmitted, a bit of the opposite polarity is immediately inserted
by the transmitter. Upon error detection, the sender host (in particular,
its CAN controller) then schedules that message for retransmission.

While the arbitration and error detection mechanisms in CAN make
it both predictable and robust, it was the response-time analysis of
CAN messages that enhanced its credentials as a real-time network.
Tindell et al.’s seminal work [220, 221] on mapping the problem of
upper-bounding CAN message response times to the problem of
upper-bounding task response times in a uniprocessor FP setting
played a significant role in this regard. More recently, Davis et al. [54]
proposed a revised and corrected version of this analysis.

In summary, from the point of view of building reliable Networked
Control Systems (NCSs), which is the focus of this dissertation, CAN’s
atomic broadcast property (which is a consequence of its bit synchro-
nization and error detection mechanisms) [175] is most important. In
particular, our reliability analysis of actively replicated NCS applica-
tions (in Chapter 6) assumes that the underlying networking layer

24 background

guarantees atomic broadcast of messages. Therefore, our claim is that
the reliability analysis applies to all CAN-based NCSs as well.

Although it has been shown that CAN’s atomic broadcast properties
can be violated under rare circumstances [111, 188], i.e., faults in the
last two bits of the End of Frame delimiter may lead to inconsistent
message delivery or message duplicates, we consider the problem of
analyzing these rare events as orthogonal to the larger problem that
constitutes the reliability analysis of the active replication protocol.
That is, we treat the probability of extremely rare events like these
(which is already evaluated by Rufino et al. [188]) as a separate,
additive failure source in the system-wide SOFR analysis.

Our analyses also assume that PEs connected to the CAN bus are
synchronized (notice that CAN’s bit-level synchronization does not
imply clock synchronization). This can be efficiently achieved using
CAN-specific clock synchronization protocols, such as the protocol by
Gergeleit and Streich [84], as discussed in Section 2.1.1.2.

Finally, the CAN standard is a representative of similar other field
buses that are also designed for predictability and robustness, like the
Vehicle Area Network (VAN) [107].

2.1.3.2 Ethernet TSN

We focus on Ethernet TSN (Time-Sensitive Networking), which refers
to a set of standards defined for timely and robust transmission of
data over Ethernet with the objective of supporting real-time control
systems and automation applications. The Ethernet TSN task group is
a continuation of its earlier Audio Video Bridging (AVB) task group [80,
215], which was also constituted for designing low-latency and reliable
solutions for switched Ethernet networks.

The TSN standards include a range of mechanisms for improv-
ing the management, control, integrity, and synchronization of TSN
flows (i.e., end-to-end unicast or multicast connections through a TSN-
capable network). However, the core idea behind achieving timely and
predictable response times for traffic flows is the use of prioritized
traffic classes [161]. In particular, up to eight traffic classes, each with
a dedicated FIFO queue, are allowed, as summarized in Table 2.2. In
addition, under the Stream Reservation Protocol (SRP) [104], high
priority traffic can be throttled so that lower-priority traffic does not
starve. This is achieved using a Credit-Based Shaper (CBS) [105], as
per which, the throttled queue is eligible for transmission only if it has
non-negative credits. The credits increase at a rate of idleSlope when
there is at least one waiting frame in the queue, and decrease at a rate
of sendSlope when a frame is transmitted.

Unlike CAN, which consists of just one networking element (i.e., the
bus), an Ethernet network consists of multiple links and switches.
Hence, upper-bounding the response time of TSN flows requires
schedulability analysis of each arbitration point in the flow, as well as

2.1 distributed real-time systems 25

priority guidelines for priority assignment

0 Background
1 Best effort
2 Excellent effort
3 Critical application
4 “Video”, less than 100ms latency and jitter
5 “Voice”, less than 10ms latency and jitter
6 Inter-network control, e.g., IP routing protocols
7 Control Data Traffic (CDT) from real-time applications

Table 2.2: Description of Ethernet traffic classes based on [161]. 0 denotes
the lowest priority level, and 7 denotes the highest priority level.

an end-to-end analysis that takes into account all path dependencies.
Diemer et al. [59, 60] have shown that Compositional Performance
Analysis (CPA) [98] can be used in this regard. In a nutshell, each
output port in an Ethernet switch is modeled as a processing resource
with an associated arbitration policy, which accounts for the FIFO
priority classes and the CBS traffic shaping policy; TSN frame pro-
cessing on each output port is modeled as a sporadic task, which
is activated either due to timer events, external inputs, or based on
inter-task dependencies; and CPA then computes an upper bound
on the end-to-end latency of all task chains, which also implies an
upper bound on the response time of the TSN flows. Chapter 5 on the
reliability analysis of an Ethernet-based Interactive Consistency (IC)
protocol employs this scheduling model.

2.1.4 Realization on COTS Platforms

Recall from Chapter 1 that our goal is to propose reliability analyses
for COTS distributed real-time systems. The phrase “COTS distributed
real-time systems” may seem self-contradictory, since COTS software
and hardware systems are not designed in the first place to satisfy
any hard-real time assumptions. However, despite this, a plethora
of companies today sell autonomous COTS-based CPS, including
rovers, drones, and robots, for commercial purposes. In general, even
though most COTS platforms are not designed for timeliness, they
can be enhanced to behave in a real-time friendly manner by using an
RTOS. For example, Linux-based platforms can be enhanced with the
PREEMPT_RT patch [150] in order to provision real-time workloads (see
[34] for a tutorial). Based on this assumption, we rely on hard real-
time schedulability analyses as the basis for our reliability analyses.
In other words, the proposed reliability analyses themselves do not
introduce any uncertainty in the timing. Therefore, if they are used

26 background

in the context of COTS-based distributed real-time systems, such as
systems based on Linux, the overall result is no more or less “hard”
than the real-time workloads realized on these COTS platforms.

2.2 reliability engineering

Reliability engineering of safety-critical systems deals with identify-
ing the causes of failures through systematic testing, validation, and
verification procedures, preventing or reducing the likelihood of fail-
ures through fault-tolerance mechanisms (e.g., by redundancy), and
then analyzing the expected reliability of new designs for certification
purposes [26, 152]. Naturally, reliability engineering techniques cut
across a number of different disciplines (computer science, statistics,
engineering, etc.). In this section, we discuss fault-tolerance techniques
commonly used for safety-critical distributed real-time systems, stan-
dard reliability metrics such as MTTF and FIT, and reliability analysis
approaches commonly used in the industry to estimate such metrics.

2.2.1 Fault Tolerance

We first discuss three computer architecture designs (lockstep execu-
tion, ECC memory, and watchdog timers) for detecting transient faults
and taking corrective actions upon detection.

Lockstep execution refers to perfectly synchronous execution of,
typically, dual- or triple-modular redundant systems [176]. Synchro-
nization among processors executing in lockstep happens at the hard-
ware level and at instruction granularity, driven by a common clock
source. In an error-free scenario, the processors receive identical in-
puts, execute identical operations, and output identical values. Hence,
any discrepancy between the outputs of the redundant processors
helps detect an erroneous execution. In case of Triple Modular Redun-
dancy (TMR), the erroneous execution by a faulty processor can also
be automatically corrected through majority voting (assuming that
other processors were not affected by faults). Some early examples
of lockstep processors include Stratus [226], Sequoia [23], and the
V60 microprocessor [158]. More recently, Infineon’s AURIX family of
micro-controllers [1], which are targeted at the automotive industry,
have been designed for lockstep execution.

Lockstep processors are highly reliable. However, the lockstep ex-
ecution approach is considered a centralized approach rather than a
distributed approach to fault tolerance [119, 176]. This is because faults
can affect the synchronized processors in a correlated fashion, and they
can result in a common-cause failure. The high cost of present-day
lockstep processors (such as Infineon’s AURIX family of processors)
is also a concern.

2.2 reliability engineering 27

In comparison to lockstep execution, use of Error-Correcting Code
memory (ECC memory) is more common when it comes to detecting
and correcting faults. An ECC memory stores a k-bit word as an n-bit
code (n > k), where the extra n− k bits are for checking parity. Using
these parity bits, the original message can be extracted as long as up
to t bits in the code are corrupted (t varies with the type of coding
mechanism used); if t+ 1 bits are corrupted, corruption is detected
but the errors cannot be corrected; and if more than t+ 1 bits are
corrupted, some errors may neither be detected nor corrected [135].

Most ECC memories use the Single-Error-Correcting Double-Error-
Detecting (SECDED) codes [103], for which t = 1. More resilient codes
such as Double-Error-Correcting Triple-Error-Detecting (DECTED)
and ChipKill [30, 56] incur much higher storage and performance
overheads than SECDED codes. Hence, most ECC memory can only
detect a double bit-flip, but cannot correct it. In this case, the CPU
raises a machine check exception to the OS whenever a double bit-
flip is detected, resulting in an application crash. In addition, there
is also a residual possibility of silent data corruption when more
than two bit-flips affect ECC memory. Alternatively, in the absence
of ECC memory or hardware support for ECC, or if the likelihood of
double and triple bit-flips are high, software-defined error detection
and correction mechanisms could also be used [86, 203].

Finally, all safety-critical systems, and most processors these days,
are also equipped with a watchdog timer [155, 156, 194]. The watchdog
timer is a piece of hardware whose output is directly connected to
the processor’s reset signal. The counter in the watchdog timer is
initialized to a positive value, and simply counts down to zero. The
software is expected to restart the counter before it reaches zero.
Otherwise, the system is assumed to be either hung or functioning
incorrectly, and the processor is restarted. The watchdog timer thus
helps tolerate hangs due to transient faults or software anomalies,
especially in safety-critical systems that are not accessible to human
operators and that must be reset in a timely manner.

The aforementioned mechanisms are not foolproof. They mitigate
the effects of transient faults, but cannot completely prevent fault-
induced failures. Hence, designers often also introduce redundancy
at the highest level, in the form of software fault-tolerance techniques
like active replication and passive replication (using hot and cold
standbys). We describe these techniques in the following.

Active replication is similar to lockstep execution in the sense that all
replicas (redundant processors) execute the same set of procedures
in parallel, and in reaction to the same set of inputs [96, 176, 231].
However, unlike lockstep execution, the active replicas are synchro-
nized loosely at periodic time points using message-based information
exchange protocols; hence, there is no Single Point of Failure (SPoF).

28 background

Active replication also requires some sort of redundancy suppression
mechanism before the replica outputs are forwarded to an actuator.

In contrast, under passive replication, only one replica (the primary)
generates outputs, which removes the needed for redundancy sup-
pression; the other replicas (the secondaries or backups) remain in a
standby mode [112, 195]. Passive replication can be implemented with
either hot or cold standbys. A hot standby remains active but does not
produce outputs until the primary fails and it is promoted to become
a primary; whereas a cold standby simply tries to remain consistent
with the primary’s state. In fact, the cold standby can remain com-
pletely inactive: the primary’s state can be periodically logged into a
shared storage device; when the primary fails, the cold standby first
reads these logs and updates its state, and only then begins executing
requests and producing outputs.

While passive replication is resource efficient, the recovery time from
a single crash is non-zero, and in the case of a cold standby, also quite
significant. In contrast, active replication works seamlessly despite a
crash. It can also tolerate corruption errors that passive replication
cannot. Since we target NCS applications that might operate at high
frequencies, we consider only active replication in this dissertation.

2.2.2 Reliability Metrics

Reliability is defined as the probability that a system will perform
its intended functions for a specified period of time under specified
operating conditions [124]. It may be defined for a single component
or for a system consisting of many components, e.g., the latter in case
of distributed real-time systems. To compute reliability, the lifetime
of the system is treated as a random variable. Further, the operating
conditions under which the system is expected to operate must be
specified. For example, reliability analysis of distributed real-time
systems requires that the application workload and peak transient
fault rates due to environmental factors be specified in advance.

More formally, let T be a continuous and non-negative random
variable representing the lifetime of a system. Its distribution can
be described by its probability density function f(t) or its cumulative
distribution function F(t). Given either of these metrics, the reliability
function of the system, denoted by R(t), is given by

R(t) = Pr(T > t) = 1− F(t) =

∫∞
t

f(x)dx. (2.7)

In words, R(t) is the probability that the system’s lifetime is larger
than t, the probability that the system will survive beyond time t, or
the probability that the system will fail after time t. Hence, R(0) = 1
and R(∞) = 0. Also, the function R(t) is a non-increasing function of
t, and is referred to as the survivor function by some authors.

2.2 reliability engineering 29

While the reliability function R(t) is adequate to specify a system’s
lifetime distribution entirely, it does not directly convey whether the
system is expected to fail within one year, or whether at least one of
a thousand similar systems is expected to fail in the next one year
given their combined operation time is roughly, say, a million hours.
Thus, product reliability in industry is typically reported using more
intuitive metrics, such as the Mean Time To Failure (MTTF) or the
Failures-In-Time (FIT) rate of the system, which are defined below.

MTTF = E(T) =

∫∞
0

t · f(t)dt (2.8)

FIT =
109

MTTF in hours
(2.9)

In general, MTTF denotes the expected life of a system, i.e., the
expected value or the mean of its lifetime T , whereas the FIT rate is
the expected number of failures in one billion operating hours. FIT
has an added advantage over MTTF that the component FIT rates can
be simply added to derive an upper bound on the overall FIT rate
of the entire system. Notice that systems that are repairable may go
through several failures before they are scrapped. For such systems,
the MTTF represents the mean time to the first failure. After it is
repaired and put into operation again, the average time to the next
failure is indicated by the Mean Time Between Failures (MTBF). For
safety-critical distributed real-time systems, which is the subject of
this dissertation, since we care only about their first failure, we use
the MTTF and FIT metrics.

More specifically, since we focus on periodic systems (recall the
periodic task model from Section 2.1.2.1), we use in this dissertation
a discrete definition of the MTTF instead of the definition provided
in Eq. (2.8). In particular, when analyzing the reliability of a periodic
system S, instead of relying on its probability density function f(t),
which is a continuous variable, we rely on its stopping time N(S). The
stopping time N(S) of the periodic system S is a discrete variable that
defines the first iteration of S during which it fails. Using N(S), we
define the MTTF of S as follows:

MTTF = T

∞∑
n=0

n · Pr[N(S) = n]. (2.10)

The stopping time of a system depends on its failure semantics and
robustness specification. For example, the stopping time of an NCS
may depend on a finite part of its execution history. In our MTTF
analysis for NCS applications, we thus define stopping times based on
the widely used weakly hard robustness specification (see Chapter 7).

30 background

2.2.3 Reliability Analysis

Industry engineers estimate full-system reliability through a set of
deductive or inductive reasoning tools. For example, Fault-Tree Analy-
sis (FTA) [189, 212, 224] and related tools are widely used for deductive
reasoning using Boolean logic [28], where low-level events are con-
nected to a higher-level event through logic gates. Reliability Block
Diagrams (RBDs) [61] are an alternative (or rather an aid) to FTA, since
they constitute diagrammatic methods for illustrating the relationship
between a complex system and its components. FTA and RBDs are
thus very good at estimating a complex system’s failure rate given
a set of known faults. In contrast, Failure Mode and Effect Analy-
sis (FMEA) [213] helps identify all possible potential failure models in
a complex system, their causes, and their effects by analyzing as many
components as possible.

We explain the FTA in detail since it is widely used in practice and
since its deductive approach is, in principle, analogous to the analy-
ses proposed in this dissertation. A typical fault tree consists of the
failure event being analyzed, intermediate events that lead to the failure
event either directly or indirectly (i.e., via other intermediate events),
and basic events that are like intermediate events, but that cannot be
resolved further. These events are connected using logic gates (AND,
OR, XOR) that determine the causal relationships between events.

For example, consider the use of FTA by Dugan and Van Buren
[66] for reliability evaluation of fly-by-wire computer systems. They
evaluated an Airbus A310 subsystem consisting of four diverse (but
functionally identical) software versions v1–v4 deployed on four inde-
pendent processors h1–h4. The four processors constitute two diverse
pairs of identical processors. One pair, say, (h1,h2) constitutes the pri-
mary Flight Control Computer (FCC), whereas the other pair (h3,h4)
constitutes the backup (hot standby) FCC. The outputs of the identical
processors in the primary FCC are compared by an independent de-
cider node d before they are transmitted to the actuators. If the decider
finds any discrepancies, the backup FCC is made the new primary.
Given this system model, Dugan and Van Buren consider five types of
basic fault tree events, which are listed in Table 2.3. Using FTA, they
evaluate different combinations of these events that can result in a
complete failure of this highly redundant architecture (see Fig. 2.6).

If the individual basic event probabilities in Fig. 2.6 are known in
advance, the probability of a full-system failure can be estimated. How-
ever, these probabilities are typically estimated empirically through
testing and simulation. In general, FTA and similar other tools and
techniques consider the individual software implementation as a black
box. In contrast, the reliability analyses proposed in this dissertation
are more fine-grained since they explore fault propagation at the level
of message exchanges between different components of the system.

2.2 reliability engineering 31

event meaning

Hi Hardware transient fault in processor hi
Vi Independent software fault activation in software version vi
D Independent fault activation in decider node d
RV2 Related fault between two software versions
RVA Related fault between all software versions

Table 2.3: Basic fault events considered by Dugan and Van Buren [66] in
their analysis of an Airbus A310 subsystem for fly-by-wire control.

Figure 2.6: Reprinted from [66] with permission from Elsevier. The FTA by
Dugan and Van Buren [66] combines the basic events listed in
Table 2.3 to evaluate the probability of a full-system failure.

3 FA U LT M O D E L

As mentioned in Chapter 1, this dissertation deals with the problem
of quantitative reliability analysis of CAN- and Ethernet-based dis-
tributed real-time systems in the presence of stochastic transient faults.

Any such analysis hinges on two key ingredients: a conservative
modeling of transient faults, and an understanding of how the internal
state and externally visible outputs of the analyzed system diverge in
the presence of transient faults (with respect to a fault-free scenario).
Thus, to lay a foundation for the proposed reliability analyses, we
discuss in this chapter a widely used probabilistic model of transient
faults that we reuse in this work (Section 3.2), and how transient faults
affect the functioning of distributed real-time systems, which have
strict timing requirements (Sections 3.3 and 3.4).

We start by providing a background on the common terminology
used in the dependable computing literature (Section 3.1).

3.1 faults, errors, and failures

Based on prior work [15], we provide precise definitions of the terms
“faults”, “errors”, and “failures” to remove any ambiguity with respect
to their interpretation in the rest of this dissertation.

As per Avizienis et al. [15], a system denotes a set of components
(hardware, software, mechanical components, etc.) that interacts with
other components, including humans and the physical world. The
behavior of a system is a sequence of system states, each of which
includes the following: computation, communication, stored informa-
tion, interconnection, and physical condition. We consider that the
system renders correct service when it implements the system function
or when its behavior adheres to the functional specification of the
system. Similarly, we consider that the system renders timely service
when its behavior adheres to its temporal specification, irrespective
of adherence to its functional specification. A service failure (or just a
failure) is thus a deviation of the system’s service from its intended
service: incorrect service, untimely service, or no service at all.

Failures affect the system’s behavior outside the system boundary,
i.e., as perceived by its environment or its users. In contrast, we define
errors as deviations of the system’s behavior from its intended behavior
inside the system boundary. Thus, failures occur due to one or more
errors. The root causes of errors, such as bit flips in memory buffers
or defects in the system, are denoted faults.

33

34 fault model

Figure 3.1: Example transient fault rate variation of the CAN bus and host
Hi over time. Since our model relies on peak rates, it implicitly
accounts for any correlated surges in the transient fault rate
across both the CAN bus and host Hi, as shown in the figure.

3.2 transient faults

Transient faults (also known as soft errors) are temporary faults that
arise in digital circuits or networks due to a variety of internal and
external noise sources, such as power supply noise, electromagnetic
interference, energetic radiation particles, thermal effects, etc. [113,
191, 225]. In contrast to permanent faults, the effect of transient faults
lasts for a relatively short duration of time (often, less than a nanosec-
ond) [232]. In this work, we model transient faults as single bit flips
independent of the specific causes, as described next.

We assume that the peak rate at which each component in the sys-
tem may experience bit flips is known in advance (see Fig. 3.1 for a
schematic diagram). This assumption is reasonable because system en-
gineers typically determine transient fault rates under worst-possible
operating conditions (through a combination of empirical measure-
ments and environmental modeling). The reported rates, in addition,
also include safety margins as deemed appropriate by reliability engi-
neers or domain experts.

For example, a rescue robot for nuclear disaster response is designed
to tolerate very high degrees of radiation and therefore a high rate of
radiation-induced bit flips. In contrast, ECUs used inside a passenger
vehicle are not designed to sustain such high bit-flip rates; rather,
engineers design such ECUs taking into consideration the worst-case
operating conditions expected for a passenger vehicle, e.g., when the
vehicle is driven near a radio tower. Formally, we use λ(comp) to
denote the peak rate at which any component comp in the system is
expected to experience bit flips based on its operating environment.

3.2 transient faults 35

0 5 10 15 20
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P(
k
,1
,λ

)

λ=1 λ=4 λ=10

Figure 3.2: Probability Mass Function (PMF) of the Poisson distribution. A
variable that is Poisson distributed takes only integer values.
Thus, the PMF is defined only at integer values of k; the lines
connecting the markers are only to guide the reader.

In other words, λ(comp) denotes the peak bit-flip rate that component
comp is designed to withstand during system operation. For example,
λ(CAN) and λ(Hi) respectively denote the peak bit-flip rates that the
CAN bus and host Hi are expected to experience during operation.

As a next step, given the peak transient fault rate for each com-
ponent, we model the respective fault arrival pattern, i.e., how the
transient faults affecting that component vary with time. For this,
researchers in the past have relied either on deterministic models such
as sporadic fault models with bursts [179, 220], or on probabilistic
models such as time-invariant Poisson processes [39, 94, 163] and
time-dependent Markov models [198]. In this dissertation, we model
the arrival pattern of raw transient faults as random events following a
Poisson distribution. As remarked by Broster et al. [39], a Poisson pro-
cess is a good approximation of the worst-case scenario if the mean fault
rates used in the Poisson model are obtained from high interference
periods, which is the case here since we rely on peak fault rates. Thus,
given λ(comp) and the probability mass function (PMF) of the Poisson
distribution defined as follows [11] (see Fig. 3.2 for an illustration),

P(x, δ, λ(comp)) =
e−δ·λ(comp) · (δ · λ(comp))x

x!
, (3.1)

we define the probability that x bit flips affect the system component
comp in any interval of length δ as P(x, δ, λ(comp)).

Mathematically, the Poisson modeling of transient bit flips implies
the following. Since the peak transient fault rate λ(comp) for any
component comp is likely to exceed any transient fault rate τcomp

experienced by the component in practice, the probability that the

36 fault model

0 5 10 15 20
k

0.0

0.2

0.4

0.6

0.8

1.0

∑ x
>
k
P(
x
,1
,λ

)

λ=1

λ=4

λ=10

Figure 3.3:
∑
x>k P(x, δ, λ(comp)) = 1− CDF, where CDF denotes the Cu-

mulative Density Function of the Poisson distribution. Since a
variable that is Poisson distributed takes only integer values, the
CDF is discontinuous at integer values and flat everywhere else.

component experiences more than k transient faults (for any k) in any
interval of length δ as per the assumed Poisson model is also likely to
be higher than that in practice. In other words, as illustrated in Fig. 3.3,
if λ(comp) > τcomp, then1

∑
x>k

P(x, δ, λ(comp)) >
∑
x>k

P(x, δ, τcomp). (3.2)

Our model assumes environmentally-induced transient faults to be
independent based on the stochastic nature of physical sources of tran-
sient faults. However, it does implicitly account for correlated surges in
the transient fault rates across all components of the system (e.g., when
a UAV flies through a strong radar beam), since the Poisson distribu-
tions are based on peak transient fault rates (as shown in Fig. 3.1).

3.3 fault-induced basic errors

Transient faults may manifest as different types of errors based on a
system’s design and configuration. We focus exclusively on designs
and configurations that are used in the safety-critical CPS domain. We
introduce first a classification of errors from prior work (Section 3.3.1).
Based on this classification, we then specify and model all CPS-specific
basic errors, i.e., errors which are not application-specific and which
can be modeled as independent events based on the stochastic nature
of transient faults (Sections 3.3.2 and 3.3.3, respectively).

1 Eq. (3.2) can be esaily proven by representing the CDF of the Poisson distribution in
the form of an upper incomplete gamma function [5, 82, 164].

3.3 fault-induced basic errors 37

3.3.1 Classification of Node and Network Errors

We rely on prior work by Barborak et al. [19] and Dwork et al. [67] for
understanding the different categories of processing element (PE) errors
(i.e., host or node errors) and network errors, respectively.2

The PE errors are categorized into multiple classes with the property
that a stronger class is a subset of a weaker class, i.e., compared to a
weaker class, a stronger class imposes more constraints on how a faulty
PE can deviate from the correct behavior. The classes, from strongest
to weakest, are defined in the following and illustrated in Fig. 3.4.

A fail-stop error causes a PE to cease operation, but other PEs are
alerted of its failure. In contrast, in a crash error, a PE loses its internal
state or halts, and hence other PEs are not immediately alerted of
its failure. A PE experiences an omission error if it fails to meet a
deadline or begin a task. More generally, if a PE never completes a
task, or completes it either before or after its specified time frame,
it experiences a timing error. When a PE fails to produce the correct
results in response to correct inputs, the error is classified as an
incorrect computation error. An arbitrary or a malicious error, e.g., when
one PE sends differing messages during a broadcast to its neighbors,
but that cannot imperceptibly alter an authenticated message3, is
termed as an authenticated Byzantine error. Byzantine errors represent
the universal set comprising every error possible in the system model.

Among these, the crash, omission, and timing error classes refer to
problems that occur in the time domain and that are detectable in the
time domain. The incorrect computation error class is a superset of the
crash, omission, and timing failure classes because a miscalculation
may take place in time or space. It is a subset of the Byzantine failure
classes since an error due to an incorrect computation is consistent to
all PEs in the system. The need for defining a class for authenticated
messages arises only for Byzantine failures; no other failure class
allows a PE to make false claims about values sent to it by other PEs.

The effect of network errors is commonly abstracted into different
types of communication models. For example, Dwork et al. [67] specify

2 Barborak et al. [19] and Dwork et al. [67] classify ways in which a faulty PE or a
faulty network may deviate from its correct behavior, respectively. For a distributed
system consisting of multiple PEs and multiple network elements, these deviations
correspond to an internal system state. Hence, based on the terminology presented in
Section 3.1, we refer to the presented material as a classification of errors, as opposed
to a classification of faults, which is the terminology used in [19, 67].

3 Message authentication can be achieved if each PE cryptographically signs the messages
that it sends. For example, suppose that PEs A and B share a secret key K. PE A can
digitally sign any message M by computing a secure hash or a message authentication
code using key K and attaching it with the original message. Upon receiving the
message, B can verify using the shared key K that the message originated at A
and that its contents, M, have not subsequently been altered. For more details on
cryptographic authenticators and their use in distributed systems, refer to the book by
Coulouris et al. [50, Chapter 11]. Note that in case of environmentally-induced non-
malicious Byzantine errors, which are the focus of this dissertation, a strong checksum
may suffice as a message authenticator, instead of a cryptographic authenticator.

38 fault model

Byzantine

Authenticated
Byzantine

Incorrect
Computation TimingOmission CrashFail

Stop

Figure 3.4: Classification of PE errors [19].

three different abstractions for network communication under faults:
synchronous, asynchronous, and partially synchronous. Synchronous com-
munication implies that there is a fixed upper bound ∆delivery on
the delivery time of messages across the network, and that this up-
per bound is known a priori. Asynchronous communication implies
absence of such an upper bound. A partially synchronous communi-
cation lies between synchronous and asynchronous communication.
Depending on the specific use case, it may imply that upper bound
∆delivery exists but is not known a priori, or that ∆delivery is known a
priori but that it may be violated occasionally due to faults.

3.3.2 Basic Errors in Safety-Critical CPS

In a safety-critical CPS, multiple safeguarding mechanisms are de-
ployed, which typically restart the system upon fault detection to bring
it back to its pristine state. For example, if the OS or the hardware de-
tects a fault-induced transient corruption in the PE’s memory, it causes
an exception that results in a reboot. Since most safety-critical system
architectures are equipped with watchdog timers, e.g., see [160], even
unbounded hangs due to transient corruption (e.g., loops that never
terminate due to a bit flip in the termination condition) eventually
trigger a system reboot. Thus, depending on whether other PEs are
notified during system reboots and whether the distributed system
uses a heartbeat or other monitoring mechanisms, each error resulting
in a system reboot falls into the category of either a fail-stop error or a
crash error. In fact, a recent study by Schuster et al. [196] of control
flow checking schemes in embedded systems reported that more than
91% of faulty computations (induced by bit flips) are caught by OS
or hardware mechanisms. Hence, in safety-critical CPS, fail-stop and
crash errors are the most likely outcome of transient faults.

However, in some cases, bit flips in memory, or in certain instruction
or data registers, may not trigger a kernel exception and instead
silently alter the control flow, such that the application task produces
no output at all (omission errors) or produces a delayed but correct
output (timing errors). A single timing error may further cascade

3.3 fault-induced basic errors 39

into multiple timing errors if it violates some safety invariant of the
scheduler, such as the assumption that tasks do not exceed their
statically determined worst-case execution times.

In this work, we assume that appropriate monitoring mechanisms
are in place (e.g., [85, 208]) that detect such timing violations, initiate
a system reboot, and reset the system state. Based on this assump-
tion, we model any sort of timing violations, i.e., any instance of a
fail-stop, crash, omission, or a timing error as a generic crash and
reboot error resulting in message omissions for a bounded interval
of time. This interval includes the maximum time required to detect
the appropriate error before a reboot, as well as the maximum time
required to resynchronize state, if any, after a reboot. In other words,
our error model conservatively maps every timing violation error to
the worst-case scenario where the system remains unavailable for the
duration of its reboot, even though this might not always be the case.

Although relatively infrequently, instead of resulting in timing er-
rors, bit flips affecting program memory can also result in generation
of wrong output (i.e., incorrect computation errors). For example, with
respect to message exchanges between different PEs, a message can be
corrupted during preparation before the network controller computes
the payload checksum (to be included in the network frame header)
due to bit flips in registers or memory of the network controller.

Incorrect computation errors depend on the mechanisms in place to
tolerate (or avoid) latent faults (i.e., state corruptions that have not yet
been detected). In particular, for stateful tasks such as a PID controller,
the message computation relies on both the current input and the
application state, and the latter can be affected by latent faults. Thus,
with each message, we associate an interval during which it is at risk
of corruption, known as its exposure interval.

If the hardware platform uses error-correcting code (ECC) memory
and processors with lockstep execution (common in safety-critical sys-
tems), then the built-in protections suppress latent faults, and it suffices
to consider the scheduling window of a message (i.e., the duration
from the message’s creation to its deadline) as its exposure interval.
If no such architectural support is available, then any relevant state
can be protected with a data integrity checker task that periodically
verifies the checksums of all relevant data structures (and that reboots
the system in case of a mismatch), e.g., [203]. The exposure inter-
val of a message then includes its scheduling window and (in the
worst case) an entire period of the data integrity checker. We assume
in our error model that exposure intervals of application tasks and
messages are bounded and that the respective upper bounds can be
determined in advance.

Timing errors and incorrect computation errors are sufficient to
model all program-visible effects of transient faults in a standalone
(i.e., a single-host) system. However, in a distributed system, transmis-

40 fault model

sion or network errors also come into play, especially since transient
fault rates on networks are typically higher than transient fault rates
in PEs. While prior work (see Section 3.3.1) abstracts the effect of net-
work transient faults as communication models with different levels
of synchrony, we explicitly consider different types of transmission
errors based on the networking standard being used. For example, the
CAN protocol has a robust error detection and correction mechanism
in place [58]. Erroneous messages are detected using checksums and
automatically queued for retransmission. Hence, in case of CAN-based
systems, we model the effect of bit flips on the wire as retransmission
errors. Similarly, in case of Ethernet-based systems, we model frame
corruption and frame omission errors for each Ethernet link, and
timing and incorrect computation errors for each Ethernet switch.

Finally, for safety-critical systems, we must also account for the
manifestation of transient faults as Byzantine errors, despite the small
likelihood of such errors. However, Byzantine errors are not basic
errors, but result due to a combination of one or more incorrect com-
putation errors. For example, suppose that a PE broadcasts a message
m to all other PEs. In this case, incorrect computation errors in the
network layer can result in an inconsistent broadcast of the mes-
sage, i.e., it is possible that while some PEs receive a pristine copy
of message m, the remaining PEs receive a faulty copy mincorrect; or
alternatively, different PEs receive distinct copies each [64, 188]. In
general, Byzantine errors depend on the implementation of the com-
munication protocol between the distributed PEs, and fundamentally
arise due to the lack of an atomic broadcast primitive. Hence, we
account for them by analyzing the reliability of an atomic broadcast
service implemented in software.

3.3.3 Probabilistic Modeling of Basic Errors

Having defined the basic errors, we next model the occurrence of
these errors, similar to the probabilistic modeling of transient faults.
Prior studies have shown that a large fraction of transient faults has no
negative effects [225]. We thus assume a derating factor (also known as
the architectural vulnerability factor) that accounts for masked transient
faults, which can be determined empirically [154]. We let ferr(comp)
denote the derating factor for basic error type err and component comp.
Accounting for it, the peak rate at which component comp experiences
a basic error of type err is given by

γerr(comp) = ferr(comp) · λ(comp), (3.3)

e.g., if fcrash(Hi) denotes the derating factor for crash errors on host Hi,
the peak rate of crash errors on hostHi is γcrash(Hi) = fcrash(Hi) · λ(Hi).

3.4 service failures 41

Like the peak transient fault rate, the derating factors are also com-
puted considering the worst-case scenarios and include appropriate
safety margins. For example, in case of retransmissions over CAN, it
is common to assume that every bit flip causes a retransmission, i.e., a
derating factor of fretrans(CAN) = 1, which is a simplifying but safe
overestimation (since a transient fault may occur when the bus is idle
and multiple transient faults may result in a single retransmission).

Since real-time tasks are repeated, short workloads, any generated
message is equally likely to be affected by an error, and a PE is equally
likely to be crashed during any iteration (see [134] for a mathematical
basis for this argument). Thus, we model error occurrences as ran-
dom events following a Poisson distribution. As per this model, we
define the probability that x instances of basic errors of type err affect
component comp in any interval of length δ as P(x, δ,γerr(comp)). For
example, the probability that x crash errors occur in any interval of
length δ on host Hi is given by P(x, δ,γcrash(Hi)).

Similar to transient fault modeling, the probabilistic model for basic
errors also guarantees that

∑
x>k P(x, δ,γerr(comp)) upper-bounds

the probability that any component comp experiences more than k
error events of type err in any interval of length δ. In addition, since we
only consider basic errors due to environmentally induced transient
faults, we consider them to be independent, like transient faults. We
do account explicitly for correlated errors that arise from the system
model, e.g., such as situations in which deterministic replicas produce
the same wrong output if given the same wrong input.

3.4 service failures

As mentioned in Section 3.1, a distributed real-time system experiences
a failure if it fails to deliver both correct and timely service. However,
precise definitions of correct and timely service depend on the ap-
plication or the workload being analyzed. In this dissertation, since
our objective is to analyze two different software layers with different
characteristics—an atomic broadcast service over Ethernet and an NCS
application over a reliable network—we defer a detailed discussion of
their failure models to the respective chapters. In a nutshell, failure
of an atomic broadcast service depends on the violation of any of
the atomic broadcast invariants (agreement, validity, and timeliness),
and is discussed in Section 5.3.1. Failure of an NCS application over a
reliable network depends on the frequency and recent history of its
failed iterations, i.e., iterations where the final actuation was incorrect,
delayed, or skipped, and is formally modeled in Section 7.2.

42 fault model

3.5 reliability assumptions

Our fault model does not account for failures in the operating system
and its scheduling mechanism, or the clock synchronization mecha-
nism. In general, while analyzing the failure rate of an atomic broad-
cast service or an NCS application, we assume that other system
components are reliable, even though the analyzed service may di-
rectly depend on them. This does not imply that the proposed analysis
is not useful if a dependent component fails; rather it provides a FIT
rate for the analyzed service, which can then be composed with the FIT
rates of other dependent, dependee, or unrelated subsystems using a
fault tree analysis (recall the example FTA from Section 2.2.3). This is
a common way of decomposing the reliability analysis of a complex
system into manageable subproblems. In fact, extremely rare events
like bit flips affecting the scheduler’s priority bits occur with such low
likelihood that they are best modeled as a separate, additive failure
source and accounted for using a separate FIT analysis. For instance,
in a fault-tree analysis of a complete system, orthogonal concerns
(e.g., a failing power supply vs. loss of network connectivity) are repre-
sented by separate branches of the fault tree, whereas tightly coupled
components form a single branch and must be analyzed jointly.

Examples of tightly coupled components include tasks constitut-
ing an end-to-end NCS iteration and replica coordination protocols,
which are analyzed in this dissertation. If an FTA is used to analyze
the failure rate of such distributed protocols, it would yield grossly
pessimistic estimates, since it can only account for boolean combina-
tions of independent failure probabilities. In contrast, we explicitly
consider the dependencies arising from the message passing sequence
of the distributed protocols, and also take into account their temporal
robustness properties (explained in Chapter 7), which in turn results in
a more accurate estimate of the protocol failure rate, which can then
be used as an input to the full-system FTA.

Part II

B Y Z A N T I N E FA U LT TO L E R A N C E

4 TO L E R AT I N G B Y Z A N T I N E
E R R O R S I N C P S *

* This chapter is
based on our CERTS
2017 [10] and
EMSOFT 2019 [93]
papers.

Byzantine errors (recall Section 3.3.2) represent complex error scenar-
ios that result from environmentally induced timing and incorrect
computation errors affecting specific locations at specific instants of
time [64, 188]. For example, in a distributed real-time system net-
worked over Ethernet, a Byzantine error may result from multiple
transient bit flips in the controller of a network switch (such that the
quantum of corruption due to the bit flips is just enough for Ethernet’s
checksum-based error detection to fail), at a time when an application
message is being queued in the switch.

Detecting and tolerating such errors with hard real-time constraints
and with low latency is challenging. Quantifying a system’s reliability
in the presence of such errors is even more challenging, since the
reliability analysis must account for the various possible sources of
Byzantine errors as well as timing requirements of the application.

In this chapter, we focus on the first problem, i.e., the design of a
BFT distributed real-time system for the CPS domain. To this end, we
first survey prior work related to this problem (Section 4.1). We then
identify a specific BFT protocol that we believe is ideal for the CPS
domain (Section 4.2.1) and present a hard real-time design for imple-
menting the chosen BFT protocol (Section 4.2.2). Finally, using a case
study, we compare the performance of the hard real-time design with
that of other general-purpose BFT systems (Section 4.2.3). Reliability
analysis of the proposed protocol design and of an NCS application
deployed on top of such a protocol is the subject of Chapters 5 and 6.

4.1 prior work

Driscoll et al. [64] recently revisited the problem of Byzantine errors
from a practitioner’s perspective. They emphasized that—although
the problem of Byzantine errors was first presented by Lamport et al.
[129] in the form of a “traitorous anthropomorphic” model (i.e., in-
volving a disloyal human entity) and despite the intuitive notion that
processors “have no volition” and that they do not lie—Byzantine
errors are real, they can be caused by common hardware faults such
as a CMOS bridging fault [130], and they occur far more frequently
than commonly expected (in some systems, more than 10−5 times per
operational hour). Safety-critical aerospace systems, on the other hand,
are expected to be designed with a maximum failure probability of
10−9 failures per hour [190]. Thus, with the goal of safety certification,

45

46 tolerating byzantine errors in cps

Figure 4.1: © Copyright 1978 IEEE [100]. Simplified diagram of the FTMP
consisting of M redundant memory modules, P redundant PEs,
as well as redundant I/O access units. Each of these is further
associated with two independent bus guardian nodes.

the avionics domain has been the first to acknowledge and tackle the
problem of Byzantine fault tolerance in a practical and systematic man-
ner. Hence, in the first part of our survey, we summarize some of the
early and prominent work on the development of BFT architectures in
the avionics domain. In the second part, we explore some more recent
BFT solutions developed for general-purpose computing systems.

4.1.1 BFT in the Avionics Domain

In 1970, Hopkins [101] proposed an information processing system
concept for manned space vehicles with the goal of realizing long
autonomous flights. The proposed design consisted of a hierarchical
distributed system with redundant processors and buses, in which
information was processed at various levels based on the peak load,
bandwidth, and reaction time requirements at each level. Hopkins’s de-
sign paved the way for future highly reliable architectures, with more
systematic redundancy management backed by analytical reasoning,
and with Byzantine fault tolerance.

For instance, Hopkins et al. [100] later proposed the Fault-Tolerant
Multiprocessor (FTMP) architecture, which was specifically designed
to achieve a failure rate of under 10−10 failures per hour on a ten-hour
flight without any maintenance. Analyses revealed that Triple Modular
Redundancy (TMR) is insufficient to achieve such high reliability

4.1 prior work 47

without replacement of failed modules. Thus, in addition to employing
TMR, FTMP employs an arbitrary number of spares (see Fig. 4.1 for an
illustration), and the hardware and software necessary to manage the
redundancy, including fault detection, reconfiguration, and recovery
mechanisms. Byzantine fault tolerance in FTMP is achieved through
hardware-implemented bit-by-bit voting of all transactions, which is
made possible by the use of a fault-tolerant clock system. In addition,
independent bus guardian nodes are associated with each module to
detect and silence any active transmission by the faulty nodes.

Another influential architecture, Software Implemented Fault Tol-
erance (SIFT), was proposed by Wensley et al. [228] around the same
time as FTMP and with similar objectives. Unlike FTMP, though, SIFT
does not rely on bit-by-bit voting, but employs voting on the state data
of the computer system only at the beginning of each task iteration.
Hence, it suffices to ensure that different processors allocated to a
task are executing the same iteration (and not necessarily the same
instruction), using loosely synchronized clocks. Wensley et al. pre-
ferred loose synchronization also because it reduces the likelihood of
correlated failures in presence of transient faults, as task replicas may
not necessarily execute the same instruction at the same time. Overall
(as its name suggests), SIFT uses software intensive implementations
for many of its executive functions, such as voting and synchronization,
whereas FTMP provides hardware assistance for these.

Despite being highly reliable, both FTMP and SIFT were inefficient,
since executive functions consumed up to 80 and 60 percent of their
system throughput, respectively. To get rid of these performance bottle-
necks, Keichafer et al. [115] proposed the Multiprocessor Architecture
for Fault-Tolerance (MAFT). As illustrated in Fig. 4.2, each logical
module in MAFT is segregated into two separate processors, an Op-
erations Controller (OC) for managing the executive functions and a
simple Application Processor (AP). The OCs are networked via a fully
connected broadcast network, and also run a Byzantine agreement
algorithm [173] to tolerate Byzantine errors affecting critical system
parameters. In contrast, each AP is connected to sensors, actuators,
and to its respective OC through a dedicated channel to prevent any
interference from the executive functions.

The fault-tolerant multiprocessor designs presented above relied
on entirely custom architectures (i.e., on specialized processing and
networking elements). In contrast, Somani and Bagha [207] and Miner
et al. [151] proposed designs where executive functions related to fault
tolerance (distributed voting, fault detection, diagnosis, reconfigura-
tion, and recovery) were instead placed “inside” the communication
bus, and, therefore, use of simplex (i.e., without any redundancy)
general-purpose PEs was sufficient. For example, the MeshKin architec-
ture by Somani and Bagha [207] (illustrated in Fig. 4.3) relies on a set of
fault-tolerant Bus Interface Units (BIUs), which form the intersection

48 tolerating byzantine errors in cps

Figure 4.2: © Copyright 1988 IEEE [115]. Simplified diagram of the MAFT
system architecture consisting of redundant Operations Con-
troller (OC) and Application Processor (AP) modules. The ex-
ecutive functions run on OC modules and communicate over a
separate broadcast network (see top half of the figure). Hence, un-
like in FTMP and SIFT, they do not interfere with the application
programs (see bottom half of the figure).

points of a grid connecting commodity compute and I/O processing
units. Similarly, the core of the Scalable Processor-Independent Design
for Electromagnetic Resilience (SPIDER) by Miner et al. [151] is the
Reliable Optical Bus (ROBUS), which implements an interactive con-
sistency protocol, a fault-tolerant clock synchronization mechanism,
and a consistent diagnosis manager to facilitate the development of a
BFT configuration using general-purpose PEs.

Many other architectures have been proposed for safety-critical
distributed real-time systems, which mainly differ in the placement
and management of redundant elements. For example, the Advanced
Information Processing System (AIPS) [128] improved upon FTMP’s
design; Thompson’s work [218] provided similar guarantees using
the Inmos transputer family of devices [229], which were specifically
designed for parallel processing; the Maintainable Real-Time Sys-
tem (MARS) [120] uses temporal redundancy in addition to spatial
redundancy, i.e., each message is transmitted n times, either in parallel
over n buses or sequentially over a single bus or a combination thereof;
the SAFEbus architecture [102] divides all connected PEs into subsets,
and uses private exchanges inside the subsets whereas simplified ex-
changes between the subsets; and the Time-Triggered Protocol (TTP)
in star topology [122] employs a centralized filtering mechanism to

4.1 prior work 49

Figure 4.3: Reprinted by permission from Springer Nature Customer Service
Centre GmbH. © Springer-Verlag Berlin Heidelberg 1989 [207].
MeshKin configuration with Quadruple Modular Redundancy
(QMR). Each Processor (P), Local Memory (LM), System Mem-
ory (SM), and I/O Interface (IOP) module is replicated four
times, and connected via redundant horizontal and vertical buses
along with a BIU at every juncture. BIUs colored in dark gray
are responsible for controlling the respective bus traffic.

remove the asymmetric manifestation of a Byzantine fault. Smith and
Yelverton [205] provide a comparison of some of these alternatives.

In summary, all designs listed above were motivated by the need
for fast reaction times (for timely actuation of control systems) and
safety certification (which suggested the use of synchronous designs,
since adequately validating asynchronous systems was expected to
be much more difficult). Thus, each design uses custom hardware—
either a specially designed fault-tolerant PE or a specially designed
networking layer with redundant buses and custom reconfiguration
logic, or both—and relies on a synchronous time base for tolerating
Byzantine errors in the presence of transient faults. On the other
hand, COTS-based CPS—which are the focus of this dissertation—
are not typically made up of such fault-toleant components. Hence,
we also survey general-purpose BFT systems, which can be trivially
implemented on top of COTS components, next.

50 tolerating byzantine errors in cps

4.1.2 General-Purpose BFT Systems

There exists a plethora of work on Byzantine fault tolerance in the
cloud computing domain that focuses on general-purpose systems,
e.g., Rampart [186], SecureRing [116], Practical Byzantine Fault Tol-
erance (PBFT) [43], Zyzzyva [123], Spinning [223], Aardvark [46],
Raft [166], Redundant Byzantine Fault Tolerance (RBFT) [13], On-
Demand Replica Consistency (ORDC) [62], etc. Unlike in the CPS
domain, though, the objective of these systems is to protect highly
available replicated services from malicious attackers and in pres-
ence of software errors, in addition to errors due to environmentally
induced bit flips. In the case of attacks and errors that are not envi-
ronmentally induced, the Byzantine failure model can be applied if
the security violations and software errors across replicated nodes are
ensured to be independent, e.g., by running different implementations
of the service code and OS on each replica [57, 136, 165].

In addition, the synchronous network assumption commonly used
in the CPS domain is not always applicable in the cloud computing
domain. Realizing fault-tolerant clock synchronization is much harder,
and denial-of-service attacks are relatively easier, in such loosely-
coupled distributed systems. BFT systems in the cloud are thus de-
signed assuming an asynchronous network model. In particular, since,
as per Fischer et al.’s impossibility result [74], solving the Byzantine
fault tolerance problem deterministically in an asynchronous setting is
impossible, BFT systems in the cloud actually rely on slightly weaker
notions of asynchrony, e.g., PBFT by Castro and Liskov [43] relies
on eventual synchrony for liveness. However, such techniques to cir-
cumvent the impossibility result (see [49] for a survey) are typically
designed with the objective of achieving high throughput (for instance,
by optimizing the fault-free scenario). Properties like low latency and
predictability are not always achieved in such designs, which impedes
their use for safety-critical distributed real-time systems.

Furthermore, cloud BFT systems commonly employ leader-based
designs, where a single primary replica is assigned the role of commu-
nicating with the clients, and which must be replaced immediately
upon failure. If such systems are used for safety-critical time-sensitive
applications, the primary can easily become a reliability bottleneck [6,
7]. That is, if the mechanism to switch the primary (upon its fail-
ure) takes up to ∆switch time units, but a critical data item in a high-
frequency control loop needs to be synchronized among its replicas in
less than ∆switch time units, a primary failure can render the control
loop unavailable for one or more iterations. Since ∆switch (on com-
modity platforms) is on the order of at least a few milliseconds or
more, whereas control loops may need to execute at a frequency of
one iteration per millisecond (or even faster), the probability of failure
of a single control loop iteration would actually be proportional to

4.1 prior work 51

the failure probability of a single replica (the primary), despite other
active replicas still being functional.

Most interesting among cloud BFT systems, from a CPS perspective,
are thus quorum-based systems, e.g., [2, 51, 146], which are fundamen-
tally leaderless, and therefore have predictable performance even in
the presence of faulty replicas. Quorums of appropriate sizes (BFT
quorums) can also be easily configured on top of read and write op-
erations to implement Byzantine fault tolerance in a key-value store
(and similar other topic-based abstractions). For example, suppose
that N denotes the number of datastore replicas, and R and W de-
note the number of replicas that must acknowledge each read and
each write (respectively). If up to f replicas can be faulty, by ensuring
that each read and each write operation intersect in at least f + 1
nodes i.e., if R+W > N+ f+ 1, every read is guaranteed to intersect
with every write in at least one correct replica, which in turn ensures
soundness despite Byzantine errors. As for liveness, since the f faulty
replicas may not respond, it must be ensured that both R 6 N− f and
W 6 N− f. Thus, in order to tolerate up to f = 1 Byzantine replica,
and with N = 4, read and write BFT quorums sizes are defined as
R = 3 and W = 3. Both Cassandra [9] and ScyllaDB [197]—which are
leading open-source key-value stores—offer QUORUM consistency as a
configurable option, which corresponds to the use of BFT quorums.

Another class of BFT protocols that are also interesting from a
CPS perspective are non-deterministic BFT protocols (notice that the
protocols discussed above are all deterministic). In particular, since
Fischer et al.’s impossibility result [74] applies only to deterministic
protocols, non-deterministic or randomized BFT protocols [20, 182]
were proposed to circumvent the impossibility result, or to improve
upon asymptotic performance bounds, e.g., the number of rounds
required for agreement being lower-bounded by f+ 1 when tolerating
up to f failures [73]. The key idea is to weaken one of the correctness
properties expected of a deterministic BFT protocol by replacing it
with a similar property, but which must hold only with a certain prob-
ability. For example, in the (1− ε)-terminating protocol by Patra et al.
[170], a correct task terminates with probability (1− ε), and in the
almost-everywhere to everywhere (AER) algorithm proposed by Braud-
Santoni et al. [36], agreement is guaranteed for all but O(log−1n)

correct tasks. Protocols such as these can be designed to minimally
affect the overall system reliability (i.e., the probability with which the
correctness properties are violated is validated a priori to be within ac-
ceptable thresholds). However, their inherent non-determinism makes
them unfavorable for safety-critical CPS with real-time requirements,
since temporal correctness certification becomes challenging. In this
dissertation, we therefore focus on the analysis of deterministic BFT
protocols (see Section 4.2.1); that is, environmentally-induced transient
faults are the only source of non-determinism in our system models.

52 tolerating byzantine errors in cps

4.2 hard real-time design

Like the avionics domain BFT systems discussed in Section 4.1.1,
fast reaction times and safety certification are also desired from the
systems analyzed in this dissertation. However, our primary objective
is to validate the reliability of BFT distributed real-time systems built
entirely using COTS platforms. Unfortunately, as concluded from
Section 4.1.2, prior work on general-purpose BFT systems does not
directly apply to distributed real-time systems. Therefore, in this
dissertation, we focus on analyzing the key building blocks used in
avionics domain BFT architectures—i.e., use of synchronous time base
and synchronous information exchange protocols for Byzantine fault
tolerance—but in the context of COTS processors and networks, which
can then be used to build future BFT systems over COTS platforms.

In particular, with the goal of building BFT systems for real-time ap-
plications, we propose in this section a straightforward hard real-time
implementation of a BFT information exchange protocol for COTS
platforms (which is specified next), and in the subsequent chapters
analyze the reliability of the proposed implementation. Reliability
analysis of a fault-tolerant clock synchronization protocol for main-
taining a synchronous time base is the subject of future work (as
discussed in Chapter 8).

4.2.1 Interactive Consistency Protocol

BFT protocols are designed to solve fundamental distributed agree-
ment problems. More complex services such as key-value stores or
replicated state machines are then built on top of these foundational
primitives. In this dissertation, we analyze a BFT protocol for the
classical Interactive Consistency (IC) problem, since interactive con-
sistency is the most generic version of the distributed agreement
problem [50]. Formally, the IC problem is defined as follows. Consider
a distributed system consisting of Np processes Π = {Π1,Π2, . . . ,ΠNp},
each deployed on an independent PE denoted Ei. Each process Πi
has a private value vi and seeks to compute a vector Vi such that for
1 6 k 6 Np, item Vi[k] corresponds to the private value of process Πk.
The objective of an IC protocol, i.e., which solves the IC problem, is
to ensure that Vi[k] = Vj[k] for any two correct processes Πi,Πj ∈ Π,
and if process Πk is also correct, then Vi[k] = Vj[k] = vk.1

1 The IC problem was originally defined for synchronous systems. For asynchronous
systems, a similar problem is often denoted as the vector consensus problem [48].
In particular, a solution to the IC problem requires a consensus on a vector with
values from all correct processes. However, in an asynchronous system, values from
all correct process cannot be guaranteed to arrive on time. Therefore, a solution to
the vector consensus problem requires consensus on a vector with only f+ 1 values
(assuming up to f faulty replicas).

4.2 hard real-time design 53

The IC problem definition is ideally suited for embedded applica-
tions that must deal with noisy sensor values. For example, voting
procedures or Kalman filters [76] that fuse the private data of all pro-
cesses into a single consistent value can be trivially implemented as
a post-processing step of an IC protocol. In fact, the MAFT [115] and
SPIDER [151] architectures discussed earlier (Section 4.1.1) also rely on
an IC protocol for this purpose. In contrast, if a more specific version of
the distributed agreement problem is used (e.g., such as the Byzantine
Agreement problem, solving which requires that all processes agree on
a single process’s private value), multiple instances of an agreement
protocol need to be run before their respective outputs can be fused.

We consider the synchronous IC protocol proposed by Pease et al.
[173], and actually analyze a generalized version of the protocol. That
is, we do not upper-bound the number of faulty processes beforehand
and, conversely, also do not lower-bound the number of message
exchange rounds. Instead, we parameterize the protocol in terms
of an arbitrary number of participating processes Np and protocol
rounds Nr. The reason for this generalization is that, in the presence
of environmentally induced transient faults, each process may behave
erroneously at different times with non-zero probability. Therefore,
depending on the program-visible effects of transient faults, additional
protocol rounds or processes do not always increase the chances of
solving the IC problem successfully.

Intuitively, the protocol works as follows. Each process Πi first
informs every other process about its private value; in the second
round, each process informs every other process about the information
received in the first round; in the third round, each process informs
every other process about the information received in the second
round, and so on. After Nr rounds, each process reduces the collected
information to estimate all other processes’ private values.

The precise IC protocol executed by each process Πi is given in
Algorithm 4.1. Process Πi gathers all received information in the form
of a tree, called the Exponential Information Gathering (EIG) tree [29],
and denoted EIGi. Each node in EIGi is a 〈label, value〉 pair, where the
label is an ordered sequence of one or more process identities. In the
beginning (Line 2), EIGi is initialized with the root node 〈ε, vi〉, where
ε denotes an empty label and vi denotes the private value of Πi.

For each of the Nr rounds thereafter, Πi executes up to three steps.
During the sending step in round r (Lines 5–7), Πi sends to other
processes all nodes in the (r− 1)st level of its tree (i.e., all nodes with
|α| = r− 1), except any nodes with value ⊥ (as explained later, these
correspond to omitted messages) and nodes whose labels contain Πi
(to avoid cycles in the EIG tree labels).

The next step is the state transition step during which Πi updates its
EIG tree based on the received messages (Lines 9–16). In particular,
during round r, for every level-(r− 1) node 〈α, v〉 in EIGi (i.e., for

54 tolerating byzantine errors in cps

Algorithm 4.1 Achieving IC in a synchronous system (Πi’s version).

1: procedure Initialization

2: EIGi.addRoot(〈ε, vi〉)
3: procedure Round(r)
4: . sending step
5: for all 〈α, v〉 ∈ EIGi.nodes s.t. |α| = r− 1 do
6: if Πi 6∈ α∧ v 6= ⊥ then
7: send 〈α, v〉 to all processes in Π \ {Πi}

8: . state transition step
9: for all 〈α, v〉 ∈ EIGi.nodes s.t. |α| = r− 1 do

10: for all Πj ∈ Π s.t. Πj 6∈ α do
11: if Πi = Πj then
12: EIGi.addChild(〈α, v〉, 〈αΠj, v〉)
13: else if 〈α, v ′〉 is received from Πj then
14: EIGi.addChild(〈α, v〉, 〈αΠj, v ′〉)
15: else
16: EIGi.addChild(〈α, v〉, 〈αΠj,⊥〉)
17: . reduction step
18: if r = Nr then
19: for all 〈α, v〉 ∈ EIGi.nodes from |α| = Nr − 1 to |α| = 1 do
20: candidates = ∅, vmajority = ⊥
21: for all 〈αΠj, v ′〉 ∈ EIGi.getChildren(〈α, v〉) do
22: if v ′ 6= ⊥ then
23: candidates = candidates∪ {v ′}
24: if candidates 6= ∅ then
25: vmajority = simpleMajority(candidates)

26: EIGi.updateValue(〈α, v〉, vmajority)
27: if α = Πk then . if level-1 node
28: Vi[k]← vmajority . update the decision vector

every node with |α| = r− 1), Πi expects other processes to send their
corresponding level-(r− 1) nodes. If Πi indeed receives a message of
the form 〈α, v ′〉 from another process Πj, it adds the pair 〈αΠj, v ′〉 as
a child of node 〈α, v〉; if Πi does not receive such a message, it adds a
dummy pair 〈αΠj,⊥〉 to register an error-induced omission. Note that
Πi does not expect a message from Πj if Πj ∈ α (Line 10), since cycles
in the EIG tree labels are avoided during the sending step.

Information gathering as described above goes on for Nr rounds,
where Nr is a freely configurable parameter.2 In the last round, the
state transition step is followed by a reduction step, during which a
reduction function is recursively applied to each sub-tree of EIGi’s

2 In principle, the quantum of information exchanged among processes reduces in
each round, since each process Πi never sends any node in its EIG tree whose label
already contains the process identity Πi (see the Πi 6∈ α condition in Line 6). Hence,
for all practical purposes, Nr 6 Np, i.e., beyond Nr = Np rounds, unless these is a
corruption in the process state, no messages are exchanged.

4.2 hard real-time design 55

…

Process Initial
Step

h✏, v1i
<latexit sha1_base64="WQVvFUXMT8NKjQ+mFvQWW0UBy84=">AAACBnicbVA9SwNBEN2LXzF+RS1FWAyChYS7KJgyYGMZwXxALhx7m7lkyd7usbsXCCGVjX/FxkIRW3+Dnf/GzSWFJj4YeLw3w8y8MOFMG9f9dnJr6xubW/ntws7u3v5B8fCoqWWqKDSo5FK1Q6KBMwENwwyHdqKAxCGHVji8nfmtESjNpHgw4wS6MekLFjFKjJWC4qnPiehzwD4kmnEpLvEo8LCvMjUoltyymwGvEm9BSmiBelD88nuSpjEIQznRuuO5ielOiDKMcpgW/FRDQuiQ9KFjqSAx6O4ke2OKz63Sw5FUtoTBmfp7YkJircdxaDtjYgZ62ZuJ/3md1ETV7oSJJDUg6HxRlHJsJJ5lgntMATV8bAmhitlbMR0QRaixyRVsCN7yy6ukWSl7V+XK/XWpVl3EkUcn6AxdIA/doBq6Q3XUQBQ9omf0it6cJ+fFeXc+5q05ZzFzjP7A+fwBRwSYUw==</latexit>

h✏, v2i
<latexit sha1_base64="0KJb3Qk8etpwuxPkJUFKhf6r58s=">AAACBnicbVA9SwNBEN2LXzF+RS1FWAyChYS7KJgyYGMZwXxALhx7m7lkyd7usbsXCCGVjX/FxkIRW3+Dnf/GzSWFJj4YeLw3w8y8MOFMG9f9dnJr6xubW/ntws7u3v5B8fCoqWWqKDSo5FK1Q6KBMwENwwyHdqKAxCGHVji8nfmtESjNpHgw4wS6MekLFjFKjJWC4qnPiehzwD4kmnEpLvEoqGBfZWpQLLllNwNeJd6ClNAC9aD45fckTWMQhnKidcdzE9OdEGUY5TAt+KmGhNAh6UPHUkFi0N1J9sYUn1ulhyOpbAmDM/X3xITEWo/j0HbGxAz0sjcT//M6qYmq3QkTSWpA0PmiKOXYSDzLBPeYAmr42BJCFbO3YjogilBjkyvYELzll1dJs1L2rsqV++tSrbqII49O0Bm6QB66QTV0h+qogSh6RM/oFb05T86L8+58zFtzzmLmGP2B8/kDSJCYVA==</latexit>

h✏, v3i
<latexit sha1_base64="kPPG5f/UJRiCYAbGBmb48MsRRBQ=">AAACBnicbVA9SwNBEN2LXzF+nVqKsBgECwl3iWDKgI1lBBMDuRD2NpNkyd7usbsXCEcqG/+KjYUitv4GO/+Nm0sKTXww8Hhvhpl5YcyZNp737eTW1jc2t/LbhZ3dvf0D9/CoqWWiKDSo5FK1QqKBMwENwwyHVqyARCGHh3B0M/MfxqA0k+LeTGLoRGQgWJ9RYqzUdU8DTsSAAw4g1oxLcYnH3QoOVKZ23aJX8jLgVeIvSBEtUO+6X0FP0iQCYSgnWrd9LzadlCjDKIdpIUg0xISOyADalgoSge6k2RtTfG6VHu5LZUsYnKm/J1ISaT2JQtsZETPUy95M/M9rJ6Zf7aRMxIkBQeeL+gnHRuJZJrjHFFDDJ5YQqpi9FdMhUYQam1zBhuAvv7xKmuWSXymV766Kteoijjw6QWfoAvnoGtXQLaqjBqLoET2jV/TmPDkvzrvzMW/NOYuZY/QHzucPShyYVQ==</latexit>

⇧2
<latexit sha1_base64="2nfOq+8wmSFNFVMtoM93ZXGj+5A=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWMF0xbaUDbbTbt0swm7E6GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfzsbm1vbObmmvvH9weHRcOTltmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ3dzvPHFtRKIecZryIKYjJSLBKFrJ77fEoD6oVN2auwBZJ15BqlCgNah89YcJy2KukElqTM9zUwxyqlEwyWflfmZ4StmEjnjPUkVjboJ8ceyMXFplSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKNGkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT9mG4K2+vE7a9Zp3Xas/3FSbjSKOEpzDBVyBB7fQhHtogQ8MBDzDK7w5ynlx3p2PZeuGU8ycwR84nz9Fl45M</latexit>

⇧3
<latexit sha1_base64="yLXws7HrMs3FpjkcRMIesR5gb1Y=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lawR4LXjxWMG2hDWWznbZLN5uwuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwkRwbVz32ylsbe/s7hX3SweHR8cn5dOzto5TxdBnsYhVN6QaBZfoG24EdhOFNAoFdsLp3cLvPKHSPJaPZpZgENGx5CPOqLGS32/xQX1QrrhVdwmySbycVCBHa1D+6g9jlkYoDRNU657nJibIqDKcCZyX+qnGhLIpHWPPUkkj1EG2PHZOrqwyJKNY2ZKGLNXfExmNtJ5Foe2MqJnodW8h/uf1UjNqBBmXSWpQstWiUSqIicniczLkCpkRM0soU9zeStiEKsqMzadkQ/DWX94k7VrVq1drDzeVZiOPowgXcAnX4MEtNOEeWuADAw7P8ApvjnRenHfnY9VacPKZc/gD5/MHRxuOTQ==</latexit>

Sending
(round 1)

State Transition
(round 1)

h✏, v2i
<latexit sha1_base64="0KJb3Qk8etpwuxPkJUFKhf6r58s=">AAACBnicbVA9SwNBEN2LXzF+RS1FWAyChYS7KJgyYGMZwXxALhx7m7lkyd7usbsXCCGVjX/FxkIRW3+Dnf/GzSWFJj4YeLw3w8y8MOFMG9f9dnJr6xubW/ntws7u3v5B8fCoqWWqKDSo5FK1Q6KBMwENwwyHdqKAxCGHVji8nfmtESjNpHgw4wS6MekLFjFKjJWC4qnPiehzwD4kmnEpLvEoqGBfZWpQLLllNwNeJd6ClNAC9aD45fckTWMQhnKidcdzE9OdEGUY5TAt+KmGhNAh6UPHUkFi0N1J9sYUn1ulhyOpbAmDM/X3xITEWo/j0HbGxAz0sjcT//M6qYmq3QkTSWpA0PmiKOXYSDzLBPeYAmr42BJCFbO3YjogilBjkyvYELzll1dJs1L2rsqV++tSrbqII49O0Bm6QB66QTV0h+qogSh6RM/oFb05T86L8+58zFtzzmLmGP2B8/kDSJCYVA==</latexit>

h✏, v3i
<latexit sha1_base64="kPPG5f/UJRiCYAbGBmb48MsRRBQ=">AAACBnicbVA9SwNBEN2LXzF+nVqKsBgECwl3iWDKgI1lBBMDuRD2NpNkyd7usbsXCEcqG/+KjYUitv4GO/+Nm0sKTXww8Hhvhpl5YcyZNp737eTW1jc2t/LbhZ3dvf0D9/CoqWWiKDSo5FK1QqKBMwENwwyHVqyARCGHh3B0M/MfxqA0k+LeTGLoRGQgWJ9RYqzUdU8DTsSAAw4g1oxLcYnH3QoOVKZ23aJX8jLgVeIvSBEtUO+6X0FP0iQCYSgnWrd9LzadlCjDKIdpIUg0xISOyADalgoSge6k2RtTfG6VHu5LZUsYnKm/J1ISaT2JQtsZETPUy95M/M9rJ6Zf7aRMxIkBQeeL+gnHRuJZJrjHFFDDJ5YQqpi9FdMhUYQam1zBhuAvv7xKmuWSXymV766Kteoijjw6QWfoAvnoGtXQLaqjBqLoET2jV/TmPDkvzrvzMW/NOYuZY/QHzucPShyYVQ==</latexit>

h✏, v1i
<latexit sha1_base64="WQVvFUXMT8NKjQ+mFvQWW0UBy84=">AAACBnicbVA9SwNBEN2LXzF+RS1FWAyChYS7KJgyYGMZwXxALhx7m7lkyd7usbsXCCGVjX/FxkIRW3+Dnf/GzSWFJj4YeLw3w8y8MOFMG9f9dnJr6xubW/ntws7u3v5B8fCoqWWqKDSo5FK1Q6KBMwENwwyHdqKAxCGHVji8nfmtESjNpHgw4wS6MekLFjFKjJWC4qnPiehzwD4kmnEpLvEo8LCvMjUoltyymwGvEm9BSmiBelD88nuSpjEIQznRuuO5ielOiDKMcpgW/FRDQuiQ9KFjqSAx6O4ke2OKz63Sw5FUtoTBmfp7YkJircdxaDtjYgZ62ZuJ/3md1ETV7oSJJDUg6HxRlHJsJJ5lgntMATV8bAmhitlbMR0QRaixyRVsCN7yy6ukWSl7V+XK/XWpVl3EkUcn6AxdIA/doBq6Q3XUQBQ9omf0it6cJ+fFeXc+5q05ZzFzjP7A+fwBRwSYUw==</latexit>

h⇧1, v1i
<latexit sha1_base64="DGsWovtwhProB5nHRnO2S8dzAGo=">AAACA3icbVBNS8NAEJ3Ur1q/ot70slgED1KSKthjwYvHCvYDmhA22227dLMJu5tCCQUv/hUvHhTx6p/w5r9xm/agrQ8GHu/NMDMvTDhT2nG+rcLa+sbmVnG7tLO7t39gHx61VJxKQpsk5rHshFhRzgRtaqY57SSS4ijktB2Obmd+e0ylYrF40JOE+hEeCNZnBGsjBfaJx7EYcIq8BgvcSzQOXOTJXArsslNxcqBV4i5IGRZoBPaX14tJGlGhCcdKdV0n0X6GpWaE02nJSxVNMBnhAe0aKnBElZ/lP0zRuVF6qB9LU0KjXP09keFIqUkUms4I66Fa9mbif1431f2anzGRpJoKMl/UTznSMZoFgnpMUqL5xBBMJDO3IjLEEhNtYiuZENzll1dJq1pxryrV++tyvbaIowincAYX4MIN1OEOGtAEAo/wDK/wZj1ZL9a79TFvLViLmWP4A+vzByBVloQ=</latexit>

h⇧2, v2i
<latexit sha1_base64="oB5ArDD8wjPXMdW8qGkvZPr+Se4=">AAACA3icbVBNS8NAEN3Ur1q/qt70slgED1KSKthjwYvHCvYDmhA220m7dLMJu5tCCQUv/hUvHhTx6p/w5r9xm/agrQ8GHu/NMDMvSDhT2ra/rcLa+sbmVnG7tLO7t39QPjxqqziVFFo05rHsBkQBZwJammkO3UQCiQIOnWB0O/M7Y5CKxeJBTxLwIjIQLGSUaCP55ROXEzHggN0m82uXeOzXsCtzyS9X7KqdA68SZ0EqaIGmX/5y+zFNIxCacqJUz7ET7WVEakY5TEtuqiAhdEQG0DNUkAiUl+U/TPG5Ufo4jKUpoXGu/p7ISKTUJApMZ0T0UC17M/E/r5fqsO5lTCSpBkHni8KUYx3jWSC4zyRQzSeGECqZuRXTIZGEahNbyYTgLL+8Stq1qnNVrd1fVxr1RRxFdIrO0AVy0A1qoDvURC1E0SN6Rq/ozXqyXqx362PeWrAWM8foD6zPHyNyloY=</latexit>

h⇧3, v3i
<latexit sha1_base64="qHokhcbSMfs8tUP3Iv8PHzWU0yQ=">AAACA3icbVBNS8NAEN3Ur1q/ot70slgED1KSVrDHghePFWwtNCFsttN26WYTdjeFEgpe/CtePCji1T/hzX/jNu1BWx8MPN6bYWZemHCmtON8W4W19Y3NreJ2aWd3b//APjxqqziVFFo05rHshEQBZwJammkOnUQCiUIOD+HoZuY/jEEqFot7PUnAj8hAsD6jRBspsE88TsSAA/aaLKhd4nFQw57MpcAuOxUnB14l7oKU0QLNwP7yejFNIxCacqJU13US7WdEakY5TEteqiAhdEQG0DVUkAiUn+U/TPG5UXq4H0tTQuNc/T2RkUipSRSazojooVr2ZuJ/XjfV/bqfMZGkGgSdL+qnHOsYzwLBPSaBaj4xhFDJzK2YDokkVJvYSiYEd/nlVdKuVtxapXp3VW7UF3EU0Sk6QxfIRdeogW5RE7UQRY/oGb2iN+vJerHerY95a8FazByjP7A+fwAmj5aI</latexit>

Sending
(round 2)

State Transition
(round 2)

h✏, v1i
<latexit sha1_base64="WQVvFUXMT8NKjQ+mFvQWW0UBy84=">AAACBnicbVA9SwNBEN2LXzF+RS1FWAyChYS7KJgyYGMZwXxALhx7m7lkyd7usbsXCCGVjX/FxkIRW3+Dnf/GzSWFJj4YeLw3w8y8MOFMG9f9dnJr6xubW/ntws7u3v5B8fCoqWWqKDSo5FK1Q6KBMwENwwyHdqKAxCGHVji8nfmtESjNpHgw4wS6MekLFjFKjJWC4qnPiehzwD4kmnEpLvEo8LCvMjUoltyymwGvEm9BSmiBelD88nuSpjEIQznRuuO5ielOiDKMcpgW/FRDQuiQ9KFjqSAx6O4ke2OKz63Sw5FUtoTBmfp7YkJircdxaDtjYgZ62ZuJ/3md1ETV7oSJJDUg6HxRlHJsJJ5lgntMATV8bAmhitlbMR0QRaixyRVsCN7yy6ukWSl7V+XK/XWpVl3EkUcn6AxdIA/doBq6Q3XUQBQ9omf0it6cJ+fFeXc+5q05ZzFzjP7A+fwBRwSYUw==</latexit>

h⇧1, v1i
<latexit sha1_base64="DGsWovtwhProB5nHRnO2S8dzAGo=">AAACA3icbVBNS8NAEJ3Ur1q/ot70slgED1KSKthjwYvHCvYDmhA22227dLMJu5tCCQUv/hUvHhTx6p/w5r9xm/agrQ8GHu/NMDMvTDhT2nG+rcLa+sbmVnG7tLO7t39gHx61VJxKQpsk5rHshFhRzgRtaqY57SSS4ijktB2Obmd+e0ylYrF40JOE+hEeCNZnBGsjBfaJx7EYcIq8BgvcSzQOXOTJXArsslNxcqBV4i5IGRZoBPaX14tJGlGhCcdKdV0n0X6GpWaE02nJSxVNMBnhAe0aKnBElZ/lP0zRuVF6qB9LU0KjXP09keFIqUkUms4I66Fa9mbif1431f2anzGRpJoKMl/UTznSMZoFgnpMUqL5xBBMJDO3IjLEEhNtYiuZENzll1dJq1pxryrV++tyvbaIowincAYX4MIN1OEOGtAEAo/wDK/wZj1ZL9a79TFvLViLmWP4A+vzByBVloQ=</latexit>

h⇧2, v2i
<latexit sha1_base64="oB5ArDD8wjPXMdW8qGkvZPr+Se4=">AAACA3icbVBNS8NAEN3Ur1q/qt70slgED1KSKthjwYvHCvYDmhA220m7dLMJu5tCCQUv/hUvHhTx6p/w5r9xm/agrQ8GHu/NMDMvSDhT2ra/rcLa+sbmVnG7tLO7t39QPjxqqziVFFo05rHsBkQBZwJammkO3UQCiQIOnWB0O/M7Y5CKxeJBTxLwIjIQLGSUaCP55ROXEzHggN0m82uXeOzXsCtzyS9X7KqdA68SZ0EqaIGmX/5y+zFNIxCacqJUz7ET7WVEakY5TEtuqiAhdEQG0DNUkAiUl+U/TPG5Ufo4jKUpoXGu/p7ISKTUJApMZ0T0UC17M/E/r5fqsO5lTCSpBkHni8KUYx3jWSC4zyRQzSeGECqZuRXTIZGEahNbyYTgLL+8Stq1qnNVrd1fVxr1RRxFdIrO0AVy0A1qoDvURC1E0SN6Rq/ozXqyXqx362PeWrAWM8foD6zPHyNyloY=</latexit>

h⇧3, v3i
<latexit sha1_base64="qHokhcbSMfs8tUP3Iv8PHzWU0yQ=">AAACA3icbVBNS8NAEN3Ur1q/ot70slgED1KSVrDHghePFWwtNCFsttN26WYTdjeFEgpe/CtePCji1T/hzX/jNu1BWx8MPN6bYWZemHCmtON8W4W19Y3NreJ2aWd3b//APjxqqziVFFo05rHshEQBZwJammkOnUQCiUIOD+HoZuY/jEEqFot7PUnAj8hAsD6jRBspsE88TsSAA/aaLKhd4nFQw57MpcAuOxUnB14l7oKU0QLNwP7yejFNIxCacqJU13US7WdEakY5TEteqiAhdEQG0DVUkAiUn+U/TPG5UXq4H0tTQuNc/T2RkUipSRSazojooVr2ZuJ/XjfV/bqfMZGkGgSdL+qnHOsYzwLBPSaBaj4xhFDJzK2YDokkVJvYSiYEd/nlVdKuVtxapXp3VW7UF3EU0Sk6QxfIRdeogW5RE7UQRY/oGb2iN+vJerHerY95a8FazByjP7A+fwAmj5aI</latexit>

h⇧1⇧2, v1i
<latexit sha1_base64="BY8J6HeNsu/+6kapId6z0+tXg0I=">AAACCXicbZDLSsNAFIYnXmu9VV26GSyCCylJFeyy4MZlBXuBJoTJ9KQdOpmEmUmhhG7d+CpuXCji1jdw59s4TbPQ1gMzfPz/OcycP0g4U9q2v6219Y3Nre3STnl3b//gsHJ03FFxKim0acxj2QuIAs4EtDXTHHqJBBIFHLrB+HbudycgFYvFg54m4EVkKFjIKNFG8ivY5UQMOWC3xXwnv+uXeDJHmRt+pWrX7LzwKjgFVFFRLb/y5Q5imkYgNOVEqb5jJ9rLiNSMcpiV3VRBQuiYDKFvUJAIlJflm8zwuVEGOIylOULjXP09kZFIqWkUmM6I6JFa9ubif14/1WHDy5hIUg2CLh4KU451jOex4AGTQDWfGiBUMvNXTEdEEqpNeGUTgrO88ip06jXnqla/v642G0UcJXSKztAFctANaqI71EJtRNEjekav6M16sl6sd+tj0bpmFTMn6E9Znz/mrZiG</latexit>

h⇧1⇧3, v1i
<latexit sha1_base64="0wJWQLImlWHc4pk5emtdNTLkElQ=">AAACCXicbZDLSgMxFIbP1Futt1GXboJFcCFlphXssuDGZQV7gXYomTRtQzOZIckUytCtG1/FjQtF3PoG7nwbM9NZaOuBhI//P4fk/H7EmdKO820VNja3tneKu6W9/YPDI/v4pK3CWBLaIiEPZdfHinImaEszzWk3khQHPqcdf3qb+p0ZlYqF4kHPI+oFeCzYiBGsjTSwUZ9jMeYU9Zts4GZ37QrNUpSZMbDLTsXJCq2Dm0MZ8moO7K/+MCRxQIUmHCvVc51IewmWmhFOF6V+rGiEyRSPac+gwAFVXpJtskAXRhmiUSjNERpl6u+JBAdKzQPfdAZYT9Sql4r/eb1Yj+pewkQUayrI8qFRzJEOURoLGjJJieZzA5hIZv6KyARLTLQJr2RCcFdXXod2teLWKtX763KjnsdRhDM4h0tw4QYacAdNaAGBR3iGV3iznqwX6936WLYWrHzmFP6U9fkD6D6Yhw==</latexit>

h⇧2⇧1, v2i
<latexit sha1_base64="8WyITEEA9Xl4E7dOESTDgz39uTU=">AAACCXicbZDLSsNAFIYnXmu9VV26GSyCCylJFeyy4MZlBXuBJoTJ9KQdOpmEmUmhhG7d+CpuXCji1jdw59s4TbPQ1gMzfPz/OcycP0g4U9q2v6219Y3Nre3STnl3b//gsHJ03FFxKim0acxj2QuIAs4EtDXTHHqJBBIFHLrB+HbudycgFYvFg54m4EVkKFjIKNFG8ivY5UQMOWC3xfx6fjuXeDJHmRt+pWrX7LzwKjgFVFFRLb/y5Q5imkYgNOVEqb5jJ9rLiNSMcpiV3VRBQuiYDKFvUJAIlJflm8zwuVEGOIylOULjXP09kZFIqWkUmM6I6JFa9ubif14/1WHDy5hIUg2CLh4KU451jOex4AGTQDWfGiBUMvNXTEdEEqpNeGUTgrO88ip06jXnqla/v642G0UcJXSKztAFctANaqI71EJtRNEjekav6M16sl6sd+tj0bpmFTMn6E9Znz/oP5iH</latexit>

h⇧2⇧3, v2i
<latexit sha1_base64="DYHALwigVIAwB/zF0lc2Jiej4EI=">AAACCXicbZDLSgMxFIYz9VbrbdSlm2ARXEiZaQW7LLhxWcFeoB1KJj1tQzOZIckUytCtG1/FjQtF3PoG7nwbM9NZaOuBhI//P4fk/H7EmdKO820VNja3tneKu6W9/YPDI/v4pK3CWFJo0ZCHsusTBZwJaGmmOXQjCSTwOXT86W3qd2YgFQvFg55H4AVkLNiIUaKNNLBxnxMx5oD7TTaoZnftCs9SlJkxsMtOxckKr4ObQxnl1RzYX/1hSOMAhKacKNVznUh7CZGaUQ6LUj9WEBE6JWPoGRQkAOUl2SYLfGGUIR6F0hyhcab+nkhIoNQ88E1nQPRErXqp+J/Xi/Wo7iVMRLEGQZcPjWKOdYjTWPCQSaCazw0QKpn5K6YTIgnVJrySCcFdXXkd2tWKW6tU76/LjXoeRxGdoXN0iVx0gxroDjVRC1H0iJ7RK3qznqwX6936WLYWrHzmFP0p6/MH62GYiQ==</latexit>

h⇧3⇧2, v3i
<latexit sha1_base64="iafMQ7PHKBYQrzGvKcrvMziZtBM=">AAACCXicbZDLSgMxFIYz9VbrbdSlm2ARXEiZaQW7LLhxWcFeoB1KJj1tQzOZIckUytCtG1/FjQtF3PoG7nwbM9NZaOuBhI//P4fk/H7EmdKO820VNja3tneKu6W9/YPDI/v4pK3CWFJo0ZCHsusTBZwJaGmmOXQjCSTwOXT86W3qd2YgFQvFg55H4AVkLNiIUaKNNLBxnxMx5oD7TTaoZXf1Cs9SlJkxsMtOxckKr4ObQxnl1RzYX/1hSOMAhKacKNVznUh7CZGaUQ6LUj9WEBE6JWPoGRQkAOUl2SYLfGGUIR6F0hyhcab+nkhIoNQ88E1nQPRErXqp+J/Xi/Wo7iVMRLEGQZcPjWKOdYjTWPCQSaCazw0QKpn5K6YTIgnVJrySCcFdXXkd2tWKW6tU76/LjXoeRxGdoXN0iVx0gxroDjVRC1H0iJ7RK3qznqwX6936WLYWrHzmFP0p6/MH7POYig==</latexit>

h⇧3⇧1, v3i
<latexit sha1_base64="j7EC70SJbdACBl9RiYNw0JCXFTQ=">AAACCXicbZDLSgMxFIbP1Futt1GXboJFcCFlphXssuDGZQV7gXYomTRtQzOZIckUytCtG1/FjQtF3PoG7nwbM9NZaOuBhI//P4fk/H7EmdKO820VNja3tneKu6W9/YPDI/v4pK3CWBLaIiEPZdfHinImaEszzWk3khQHPqcdf3qb+p0ZlYqF4kHPI+oFeCzYiBGsjTSwUZ9jMeYU9ZtsUMtu9wrNUpSZMbDLTsXJCq2Dm0MZ8moO7K/+MCRxQIUmHCvVc51IewmWmhFOF6V+rGiEyRSPac+gwAFVXpJtskAXRhmiUSjNERpl6u+JBAdKzQPfdAZYT9Sql4r/eb1Yj+pewkQUayrI8qFRzJEOURoLGjJJieZzA5hIZv6KyARLTLQJr2RCcFdXXod2teLWKtX763KjnsdRhDM4h0tw4QYacAdNaAGBR3iGV3iznqwX6936WLYWrHzmFP6U9fkD62KYiQ==</latexit>

State
Reduction

… h✏, v2i
<latexit sha1_base64="0KJb3Qk8etpwuxPkJUFKhf6r58s=">AAACBnicbVA9SwNBEN2LXzF+RS1FWAyChYS7KJgyYGMZwXxALhx7m7lkyd7usbsXCCGVjX/FxkIRW3+Dnf/GzSWFJj4YeLw3w8y8MOFMG9f9dnJr6xubW/ntws7u3v5B8fCoqWWqKDSo5FK1Q6KBMwENwwyHdqKAxCGHVji8nfmtESjNpHgw4wS6MekLFjFKjJWC4qnPiehzwD4kmnEpLvEoqGBfZWpQLLllNwNeJd6ClNAC9aD45fckTWMQhnKidcdzE9OdEGUY5TAt+KmGhNAh6UPHUkFi0N1J9sYUn1ulhyOpbAmDM/X3xITEWo/j0HbGxAz0sjcT//M6qYmq3QkTSWpA0PmiKOXYSDzLBPeYAmr42BJCFbO3YjogilBjkyvYELzll1dJs1L2rsqV++tSrbqII49O0Bm6QB66QTV0h+qogSh6RM/oFb05T86L8+58zFtzzmLmGP2B8/kDSJCYVA==</latexit>

h✏, v3i
<latexit sha1_base64="kPPG5f/UJRiCYAbGBmb48MsRRBQ=">AAACBnicbVA9SwNBEN2LXzF+nVqKsBgECwl3iWDKgI1lBBMDuRD2NpNkyd7usbsXCEcqG/+KjYUitv4GO/+Nm0sKTXww8Hhvhpl5YcyZNp737eTW1jc2t/LbhZ3dvf0D9/CoqWWiKDSo5FK1QqKBMwENwwyHVqyARCGHh3B0M/MfxqA0k+LeTGLoRGQgWJ9RYqzUdU8DTsSAAw4g1oxLcYnH3QoOVKZ23aJX8jLgVeIvSBEtUO+6X0FP0iQCYSgnWrd9LzadlCjDKIdpIUg0xISOyADalgoSge6k2RtTfG6VHu5LZUsYnKm/J1ISaT2JQtsZETPUy95M/M9rJ6Zf7aRMxIkBQeeL+gnHRuJZJrjHFFDDJ5YQqpi9FdMhUYQam1zBhuAvv7xKmuWSXymV766Kteoijjw6QWfoAvnoGtXQLaqjBqLoET2jV/TmPDkvzrvzMW/NOYuZY/QHzucPShyYVQ==</latexit>

…

…

to ⇧
2 and

⇧
3

<latexit sha1_base64="DMbABz1OTrWsqU/uxiiHoT9HJUc=">AAACDHicbVC7SgNBFL3rM8ZX1NJmMAhWYTcRTBmwsYxgHpCEMDs7SYbMzi4zd8Ww5ANs/BUbC0Vs/QA7/8ZJsoUmHhg4nHMud+7xYykMuu63s7a+sbm1ndvJ7+7tHxwWjo6bJko04w0WyUi3fWq4FIo3UKDk7VhzGvqSt/zx9cxv3XNtRKTucBLzXkiHSgwEo2ilfqHYRf6AKUZkSrp10S+ThUCoCjKpYlNuyZ2DrBIvI0XIUO8XvrpBxJKQK2SSGtPx3Bh7KdUomOTTfDcxPKZsTIe8Y6miITe9dH7MlJxbJSCDSNunkMzV3xMpDY2ZhL5NhhRHZtmbif95nQQH1V4qVJwgV2yxaJBIYm+fNUMCoTlDObGEMi3sXwkbUU0Z2v7ytgRv+eRV0iyXvEqpfHtZrFWzOnJwCmdwAR5cQQ1uoA4NYPAIz/AKb86T8+K8Ox+L6JqTzZzAHzifPyE5mlg=</latexit>

to
⇧
2 and

⇧
3

<latexit sha1_base64="DMbABz1OTrWsqU/uxiiHoT9HJUc=">AAACDHicbVC7SgNBFL3rM8ZX1NJmMAhWYTcRTBmwsYxgHpCEMDs7SYbMzi4zd8Ww5ANs/BUbC0Vs/QA7/8ZJsoUmHhg4nHMud+7xYykMuu63s7a+sbm1ndvJ7+7tHxwWjo6bJko04w0WyUi3fWq4FIo3UKDk7VhzGvqSt/zx9cxv3XNtRKTucBLzXkiHSgwEo2ilfqHYRf6AKUZkSrp10S+ThUCoCjKpYlNuyZ2DrBIvI0XIUO8XvrpBxJKQK2SSGtPx3Bh7KdUomOTTfDcxPKZsTIe8Y6miITe9dH7MlJxbJSCDSNunkMzV3xMpDY2ZhL5NhhRHZtmbif95nQQH1V4qVJwgV2yxaJBIYm+fNUMCoTlDObGEMi3sXwkbUU0Z2v7ytgRv+eRV0iyXvEqpfHtZrFWzOnJwCmdwAR5cQQ1uoA4NYPAIz/AKb86T8+K8Ox+L6JqTzZzAHzifPyE5mlg=</latexit>

…

…

⇧1
<latexit sha1_base64="bYScygJ1dSfKIBCKrTN8BAbmJT0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWMF0xbaUDbbTbt0swm7E6GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfzsbm1vbObmmvvH9weHRcOTltmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ3dzvPHFtRKIecZryIKYjJSLBKFrJ77fEwBtUqm7NXYCsE68gVSjQGlS++sOEZTFXyCQ1pue5KQY51SiY5LNyPzM8pWxCR7xnqaIxN0G+OHZGLq0yJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehlEjyIVKM+SKLRdFmSSYkPnnZCg0ZyinllCmhb2VsDHVlKHNp2xD8FZfXiftes27rtUfbqrNRhFHCc7hAq7Ag1towj20wAcGAp7hFd4c5bw4787HsnXDKWbO4A+czx9EE45L</latexit>

V1 =

2
4

v1

v2

v3

3
5

<latexit sha1_base64="ftkP3KXUsuzRUUtLCq/5L3i3CwI=">AAACLHicbVBNSwMxEM3W7/pV9eglWARPZbcV9CIIXjwq2FboLiWbzrbBbHZJZgvL0h/kxb8iiAdFvPo7TNs9aPVBmMd7M0nmhakUBl333aksLa+srq1vVDe3tnd2a3v7HZNkmkObJzLR9yEzIIWCNgqUcJ9qYHEooRs+XE397hi0EYm6wzyFIGZDJSLBGVqpX7vq9D16QX0JEfaoH8JQqIJpzfJJISd0bF3ft6U5Ly3qgxqUDdTXYjjCoF+ruw13BvqXeCWpkxI3/dqLP0h4FoNCLpkxPc9NMbC3ouASJlU/M5Ay/sCG0LNUsRhMUMyWndBjqwxolGh7FNKZ+nOiYLExeRzazpjhyCx6U/E/r5dhdB4UQqUZguLzh6JMUkzoNDk6EBo4ytwSxrWwf6V8xDTjaPOt2hC8xZX/kk6z4bUazdvT+uV5Gcc6OSRH5IR45IxckmtyQ9qEk0fyTN7Iu/PkvDofzue8teKUMwfkF5yvbxQSpuo=</latexit>

V2 =
<latexit sha1_base64="p0pCxg7RCmcWeauDz2uBtnSqDH0=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mtBXsRCl48VrDbQruUbJptY7PJkmSFsvQ/ePGgiFf/jzf/jWm7B219MPB4b4aZeWHCmTau++0UNja3tneKu6W9/YPDo/Lxia9lqghtE8ml6oZYU84EbRtmOO0miuI45LQTTm7nfueJKs2keDDThAYxHgkWMYKNlXx/UEM3aFCuuFV3AbROvJxUIEdrUP7qDyVJYyoM4VjrnucmJsiwMoxwOiv1U00TTCZ4RHuWChxTHWSLa2fowipDFEllSxi0UH9PZDjWehqHtjPGZqxXvbn4n9dLTdQIMiaS1FBBlouilCMj0fx1NGSKEsOnlmCimL0VkTFWmBgbUMmG4K2+vE78WtW7qtbu65VmI4+jCGdwDpfgwTU04Q5a0AYCj/AMr/DmSOfFeXc+lq0FJ585hT9wPn8AByeOFA==</latexit>

V3 =
<latexit sha1_base64="6J+7fD+aBDIrca+ybBjWuPATJ64=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ltBXsRCl48VrDbQruUbJptY7PJkmSFsvQ/ePGgiFf/jzf/jWm7B219MPB4b4aZeWHCmTau++0UNja3tneKu6W9/YPDo/Lxia9lqghtE8ml6oZYU84EbRtmOO0miuI45LQTTm7nfueJKs2keDDThAYxHgkWMYKNlXx/UEc3aFCuuFV3AbROvJxUIEdrUP7qDyVJYyoM4VjrnucmJsiwMoxwOiv1U00TTCZ4RHuWChxTHWSLa2fowipDFEllSxi0UH9PZDjWehqHtjPGZqxXvbn4n9dLTdQIMiaS1FBBlouilCMj0fx1NGSKEsOnlmCimL0VkTFWmBgbUMmG4K2+vE78WtWrV2v3V5VmI4+jCGdwDpfgwTU04Q5a0AYCj/AMr/DmSOfFeXc+lq0FJ585hT9wPn8ACK6OFQ==</latexit>

Error-free scenario

Figure 4.4: IC protocol execution for Np = 3 and Nr = 2 in an error-free
scenario. EIG trees for processes Π2 and Π3 are not shown for
brevity. Regions highlighted in blue denote the EIG tree segments
that are sent over the network or used during the reduction step.

root node (Lines 19–28). If any node 〈α, v〉 is a leaf node (i.e., |α| = Nr),
its value does not change; otherwise, if vmajority denotes the major-
ity among the values of node 〈α, v〉’s children, 〈α, v〉 is updated to
〈α, vmajority〉 (Line 26). The decision vector Vi is finally determined by
the level-1 nodes (Line 28). Message exchanges in the IC protocol for
Np = 3 and Nr = 2 in an error-free scenario are illustrated in Fig. 4.4.

4.2.2 Realization using the Periodic Task Model

The IC protocol described in the previous section can be realized in
many ways. However, a hard real-time implementation is most ben-
eficial for safety-certification and typically expected when building
safety-critical CPS. For instance, many CPS applications, including con-
trol applications, rely on strong temporal properties of the underlying
infrastructure to ensure a minimum quality of service [81]. Moreover,
hard real-time predictability is where prior literature on Byzantine
fault tolerance falls short, which is why it is important to sketch a
design that we know for sure to be analyzable. Hence, we map the IC
protocol to Liu and Layland’s periodic task model [137], which has
been widely studied in the real-time systems community and which,
therefore, provides a solid foundation for temporal certification.

In particular, we propose a design where the execution of the IC
protocol by each process Πi is modeled using multiple periodic tasks
deployed on the respective PE. The proposed design depends on
two assumptions. First, we assume that PE clocks are synchronized,
which can be ensured on commodity PEs using clock synchronization
protocols such as the Precision Time Protocol (PTP) [75]. Second, we as-
sume that network latency is predictable, which can be ensured using
time-sensitive networking standards, e.g., Ethernet’s Time-Sensitive
Networking (TSN) standard [161].

56 tolerating byzantine errors in cps

Ini
tia

l
St

ep

Se
nd

ing
 S

te
p

(ro
un

d
1)

Tra
ns

itio
n

St
ep

(ro

un
d

1)
Se

nd
ing

 S
te

p
(ro

un
d

2)

Tra
ns

itio
n

St
ep

(ro

un
d

2)
Re

du
ct

ion
St

ep

⇧1
<latexit sha1_base64="bYScygJ1dSfKIBCKrTN8BAbmJT0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWMF0xbaUDbbTbt0swm7E6GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfzsbm1vbObmmvvH9weHRcOTltmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ3dzvPHFtRKIecZryIKYjJSLBKFrJ77fEwBtUqm7NXYCsE68gVSjQGlS++sOEZTFXyCQ1pue5KQY51SiY5LNyPzM8pWxCR7xnqaIxN0G+OHZGLq0yJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehlEjyIVKM+SKLRdFmSSYkPnnZCg0ZyinllCmhb2VsDHVlKHNp2xD8FZfXiftes27rtUfbqrNRhFHCc7hAq7Ag1towj20wAcGAp7hFd4c5bw4787HsnXDKWbO4A+czx9EE45L</latexit>

Tpre
<latexit sha1_base64="4/KXyy38Vg0MhEpek2e8wisUDiM=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0VwVZIq2GXBjcsKfUEbwmR60w6dTMLMpFhC/sSNC0Xc+ifu/BunbRbaemDgcM493DsnSDhT2nG+rdLW9s7uXnm/cnB4dHxin551VZxKCh0a81j2A6KAMwEdzTSHfiKBRAGHXjC9X/i9GUjFYtHW8wS8iIwFCxkl2ki+bbf9bKjhyUQzE8xz3646NWcJvEncglRRgZZvfw1HMU0jEJpyotTAdRLtZURqRjnklWGqICF0SsYwMFSQCJSXLS/P8ZVRRjiMpXlC46X6O5GRSKl5FJjJiOiJWvcW4n/eINVhw8uYSFINgq4WhSnHOsaLGvCISaCazw0hVDJzK6YTIgnVpqyKKcFd//Im6dZr7k2t/nhbbTaKOsroAl2ia+SiO9RED6iFOoiiGXpGr+jNyqwX6936WI2WrCJzjv7A+vwBetiULQ==</latexit>

Tpost
<latexit sha1_base64="cvVja61k9ZQICQg3fIbxaOWF/Ws=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiRVsMuCG5cV+oK2hMl00g6dTMLMjVpiPsWNC0Xc+iXu/BunbRbaemDgcM493DvHjwXX4DjfVmFjc2t7p7hb2ts/ODyyy8cdHSWKsjaNRKR6PtFMcMnawEGwXqwYCX3Buv70Zu5375nSPJItmMVsGJKx5AGnBIzk2eWWlw6APZpoGkcassyzK07VWQCvEzcnFZSj6dlfg1FEk5BJoIJo3XedGIYpUcCpYFlpkGgWEzolY9Y3VJKQ6WG6OD3D50YZ4SBS5knAC/V3IiWh1rPQN5MhgYle9ebif14/gaA+TLmME2CSLhcFicAQ4XkPeMQVoyBmhhCquLkV0wlRhIJpq2RKcFe/vE46tap7Wa3dXVUa9byOIjpFZ+gCuegaNdAtaqI2ougBPaNX9GY9WS/Wu/WxHC1YeeYE/YH1+QNneJS2</latexit>

T 1
s

<latexit sha1_base64="3tH4J2yq9dWW94Ac07FGPJ1d+P0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy223bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEhh0HW/nY3Nre2d3cJecf/g8Oi4dHLaMnGqGfdZLGPdCanhUijuo0DJO4nmNAolb4eTu7nffuLaiFg1cZrwIKIjJYaCUbSS3+ybR69fKrsVdwGyTryclCFHo1/66g1ilkZcIZPUmK7nJhhkVKNgks+KvdTwhLIJHfGupYpG3ATZ4tgZubTKgAxjbUshWai/JzIaGTONQtsZURybVW8u/ud1UxzWgkyoJEWu2HLRMJUEYzL/nAyE5gzl1BLKtLC3EjammjK0+RRtCN7qy+ukVa1415Xqw025XsvjKMA5XMAVeHALdbiHBvjAQMAzvMKbo5wX5935WLZuOPnMGfyB8/kDXHOOWw==</latexit>

T 1
t

<latexit sha1_base64="D6CDlUinuzAuznpfWKGEFoLs+i8=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy223bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEhh0HW/nY3Nre2d3cJecf/g8Oi4dHLaMnGqGfdZLGPdCanhUijuo0DJO4nmNAolb4eTu7nffuLaiFg1cZrwIKIjJYaCUbSS3+zjo9cvld2KuwBZJ15OypCj0S999QYxSyOukElqTNdzEwwyqlEwyWfFXmp4QtmEjnjXUkUjboJsceyMXFplQIaxtqWQLNTfExmNjJlGoe2MKI7NqjcX//O6KQ5rQSZUkiJXbLlomEqCMZl/TgZCc4ZyagllWthbCRtTTRnafIo2BG/15XXSqla860r14aZcr+VxFOAcLuAKPLiFOtxDA3xgIOAZXuHNUc6L8+58LFs3nHzmDP7A+fwBXfmOXA==</latexit>

T 2
t

<latexit sha1_base64="tKzXaM1wl37iY+4+yKpY7JXu5LE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy2m3bpZhN2J0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/nY3Nre2d3cJecf/g8Oi4dHLaMkmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fju7nffuLaiEQ1cZLyIKZDJSLBKFrJb/bxsdovld2KuwBZJ15OypCj0S999QYJy2KukElqTNdzUwymVKNgks+KvczwlLIxHfKupYrG3ATTxbEzcmmVAYkSbUshWai/J6Y0NmYSh7Yzpjgyq95c/M/rZhjVgqlQaYZcseWiKJMEEzL/nAyE5gzlxBLKtLC3EjaimjK0+RRtCN7qy+ukVa1415Xqw025XsvjKMA5XMAVeHALdbiHBvjAQMAzvMKbo5wX5935WLZuOPnMGfyB8/kDX32OXQ==</latexit>

T 2
s

<latexit sha1_base64="ByszkpZ4I0oiUSTNqzwhuVwIJfI=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy2m3bpZhN2J0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/nY3Nre2d3cJecf/g8Oi4dHLaMkmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fju7nffuLaiEQ1cZLyIKZDJSLBKFrJb/bNY7VfKrsVdwGyTryclCFHo1/66g0SlsVcIZPUmK7nphhMqUbBJJ8Ve5nhKWVjOuRdSxWNuQmmi2Nn5NIqAxIl2pZCslB/T0xpbMwkDm1nTHFkVr25+J/XzTCqBVOh0gy5YstFUSYJJmT+ORkIzRnKiSWUaWFvJWxENWVo8ynaELzVl9dJq1rxrivVh5tyvZbHUYBzuIAr8OAW6nAPDfCBgYBneIU3RzkvzrvzsWzdcPKZM/gD5/MHXfeOXA==</latexit>

t + �1
s

<latexit sha1_base64="2IpIIRmXN9COQUoG/TtW7fEjWfY=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBXssePFYwdZCE8tmu2mXbjZhdyKU0r/hxYMiXv0z3vw3btsctPXBwOO9GWbmhakUBl332ymsrW9sbhW3Szu7e/sH5cOjtkkyzXiLJTLRnZAaLoXiLRQoeSfVnMah5A/h6GbmPzxxbUSi7nGc8iCmAyUiwShayUdyQfx0KHrm0euVK27VnYOsEi8nFcjR7JW//H7CspgrZJIa0/XcFIMJ1SiY5NOSnxmeUjaiA961VNGYm2Ayv3lKzqzSJ1GibSkkc/X3xITGxozj0HbGFIdm2ZuJ/3ndDKN6MBEqzZArtlgUZZJgQmYBkL7QnKEcW0KZFvZWwoZUU4Y2ppINwVt+eZW0a1Xvslq7u6o06nkcRTiBUzgHD66hAbfQhBYwSOEZXuHNyZwX5935WLQWnHzmGP7A+fwBtCyQyQ==</latexit>

t + �2
s

<latexit sha1_base64="x0cARc/+eUjQCBN7xHPC0E6lGww=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBXssePFYwdZCE8tmu2mXbjZhdyKU0r/hxYMiXv0z3vw3btsctPXBwOO9GWbmhakUBl332ymsrW9sbhW3Szu7e/sH5cOjtkkyzXiLJTLRnZAaLoXiLRQoeSfVnMah5A/h6GbmPzxxbUSi7nGc8iCmAyUiwShayUdyQfx0KHrmsdYrV9yqOwdZJV5OKpCj2St/+f2EZTFXyCQ1puu5KQYTqlEwyaclPzM8pWxEB7xrqaIxN8FkfvOUnFmlT6JE21JI5urviQmNjRnHoe2MKQ7NsjcT//O6GUb1YCJUmiFXbLEoyiTBhMwCIH2hOUM5toQyLeythA2ppgxtTCUbgrf88ipp16reZbV2d1Vp1PM4inACp3AOHlxDA26hCS1gkMIzvMKbkzkvzrvzsWgtOPnMMfyB8/kDtbCQyg==</latexit>

t + �2
t

<latexit sha1_base64="nzCQ3VfCoLz3oQ6ZVk/kOgE03M0=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBXssePFYwdZCE8tmu2mXbjZhdyKU0r/hxYMiXv0z3vw3btsctPXBwOO9GWbmhakUBl332ymsrW9sbhW3Szu7e/sH5cOjtkkyzXiLJTLRnZAaLoXiLRQoeSfVnMah5A/h6GbmPzxxbUSi7nGc8iCmAyUiwShayUdyQfx0KHr4WOuVK27VnYOsEi8nFcjR7JW//H7CspgrZJIa0/XcFIMJ1SiY5NOSnxmeUjaiA961VNGYm2Ayv3lKzqzSJ1GibSkkc/X3xITGxozj0HbGFIdm2ZuJ/3ndDKN6MBEqzZArtlgUZZJgQmYBkL7QnKEcW0KZFvZWwoZUU4Y2ppINwVt+eZW0a1Xvslq7u6o06nkcRTiBUzgHD66hAbfQhBYwSOEZXuHNyZwX5935WLQWnHzmGP7A+fwBtzaQyw==</latexit>

t + �1
t

<latexit sha1_base64="dehY6FLowjIpzkBHWMKuSp74Q8c=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBXssePFYwdZCE8tmu2mXbjZhdyKU0r/hxYMiXv0z3vw3btsctPXBwOO9GWbmhakUBl332ymsrW9sbhW3Szu7e/sH5cOjtkkyzXiLJTLRnZAaLoXiLRQoeSfVnMah5A/h6GbmPzxxbUSi7nGc8iCmAyUiwShayUdyQfx0KHr46PXKFbfqzkFWiZeTCuRo9spffj9hWcwVMkmN6XpuisGEahRM8mnJzwxPKRvRAe9aqmjMTTCZ3zwlZ1bpkyjRthSSufp7YkJjY8ZxaDtjikOz7M3E/7xuhlE9mAiVZsgVWyyKMkkwIbMASF9ozlCOLaFMC3srYUOqKUMbU8mG4C2/vEratap3Wa3dXVUa9TyOIpzAKZyDB9fQgFtoQgsYpPAMr/DmZM6L8+58LFoLTj5zDH/gfP4AtbKQyg==</latexit>

Rpre
<latexit sha1_base64="eTqWVT03TdGvJAjqoSf3GoEMaWg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRVsMuCG5dV7APaECbTSTt0Mgkzk2IJ+RM3LhRx65+482+ctllo64GBwzn3cO+cIOFMacf5tkobm1vbO+Xdyt7+weGRfXzSUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wuZ373SmVisXiUc8S6kV4JFjICNZG8m37wc8Gmj6ZaGaCee7bVafmLIDWiVuQKhRo+fbXYBiTNKJCE46V6rtOor0MS80Ip3llkCqaYDLBI9o3VOCIKi9bXJ6jC6MMURhL84RGC/V3IsORUrMoMJMR1mO16s3F/7x+qsOGlzGRpJoKslwUphzpGM1rQEMmKdF8ZggmkplbERljiYk2ZVVMCe7ql9dJp15zr2r1++tqs1HUUYYzOIdLcOEGmnAHLWgDgSk8wyu8WZn1Yr1bH8vRklVkTuEPrM8fd7KUKw==</latexit>

R1
s

<latexit sha1_base64="25kaRF3I34ly5isOU+mWj5HoeX0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoeuY/PKHSPJH3ZpxiENOB5BFn1FjJv+vpR69XrrhVdw6ySrycVCBHs1f+6vYTlsUoDRNU647npiaYUGU4EzgtdTONKWUjOsCOpZLGqIPJ/NgpObNKn0SJsiUNmau/JyY01noch7Yzpmaol72Z+J/XyUxUDyZcpplByRaLokwQk5DZ56TPFTIjxpZQpri9lbAhVZQZm0/JhuAtv7xKWrWqd1Gt3V5WGvU8jiKcwCmcgwdX0IAbaIIPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fWWOOWQ==</latexit>

R2
s

<latexit sha1_base64="tWVTuEQjkC+VokGKJgN/uHZpjGA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoeuY/PKHSPJH3ZpxiENOB5BFn1FjJv+vpx1qvXHGr7hxklXg5qUCOZq/81e0nLItRGiao1h3PTU0wocpwJnBa6mYaU8pGdIAdSyWNUQeT+bFTcmaVPokSZUsaMld/T0xorPU4Dm1nTM1QL3sz8T+vk5moHky4TDODki0WRZkgJiGzz0mfK2RGjC2hTHF7K2FDqigzNp+SDcFbfnmVtGpV76Jau72sNOp5HEU4gVM4Bw+uoAE30AQfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/WueOWg==</latexit>

R2
t

<latexit sha1_base64="SNxU7OsFwdEV8RciXLCKaz9/V7c=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwhH1zP/4YlrIxJ1j+OUBzEdKBEJRtFK/l0PH2u9csWtunOQVeLlpAI5mr3yV7efsCzmCpmkxnQ8N8VgQjUKJvm01M0MTykb0QHvWKpozE0wmR87JWdW6ZMo0bYUkrn6e2JCY2PGcWg7Y4pDs+zNxP+8ToZRPZgIlWbIFVssijJJMCGzz0lfaM5Qji2hTAt7K2FDqilDm0/JhuAtv7xKWrWqd1Gt3V5WGvU8jiKcwCmcgwdX0IAbaIIPDAQ8wyu8Ocp5cd6dj0VrwclnjuEPnM8fXG2OWw==</latexit>

R1
t

<latexit sha1_base64="nDoE3/AmR8RjuguBvNZ1L6Vta0Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwhH1zP/4YlrIxJ1j+OUBzEdKBEJRtFK/l0PH71eueJW3TnIKvFyUoEczV75q9tPWBZzhUxSYzqem2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzI+dkjOr9EmUaFsKyVz9PTGhsTHjOLSdMcWhWfZm4n9eJ8OoHkyESjPkii0WRZkkmJDZ56QvNGcox5ZQpoW9lbAh1ZShzadkQ/CWX14lrVrVu6jWbi8rjXoeRxFO4BTOwYMraMANNMEHBgKe4RXeHOW8OO/Ox6K14OQzx/AHzucPWumOWg==</latexit>

�NW
<latexit sha1_base64="I1tY7JAGUdE0eePAUq37JOhgEEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4KkkV7LKgC1dSwT6gDWEyvW2HTiZh5kasofgrblwo4tb/cOffOH0stPXAwOGce7h3TpgIrtF1v62l5ZXVtfXcRn5za3tn197br+s4VQxqLBaxaoZUg+ASashRQDNRQKNQQCMcXI79xj0ozWN5h8ME/Ij2JO9yRtFIgX3YvgKBNMjaCA8mn900RqPALrhFdwJnkXgzUiAzVAP7q92JWRqBRCao1i3PTdDPqELOBIzy7VRDQtmA9qBlqKQRaD+bXD9yTozScbqxMk+iM1F/JzIaaT2MQjMZUezreW8s/ue1UuyW/YzLJEWQbLqomwoHY2dchdPhChiKoSGUKW5udVifKsrQFJY3JXjzX14k9VLROyuWbs8LlfKsjhw5IsfklHjkglTINamSGmHkkTyTV/JmPVkv1rv1MR1dsmaZA/IH1ucPJnmVpQ==</latexit>

�NW
<latexit sha1_base64="I1tY7JAGUdE0eePAUq37JOhgEEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4KkkV7LKgC1dSwT6gDWEyvW2HTiZh5kasofgrblwo4tb/cOffOH0stPXAwOGce7h3TpgIrtF1v62l5ZXVtfXcRn5za3tn197br+s4VQxqLBaxaoZUg+ASashRQDNRQKNQQCMcXI79xj0ozWN5h8ME/Ij2JO9yRtFIgX3YvgKBNMjaCA8mn900RqPALrhFdwJnkXgzUiAzVAP7q92JWRqBRCao1i3PTdDPqELOBIzy7VRDQtmA9qBlqKQRaD+bXD9yTozScbqxMk+iM1F/JzIaaT2MQjMZUezreW8s/ue1UuyW/YzLJEWQbLqomwoHY2dchdPhChiKoSGUKW5udVifKsrQFJY3JXjzX14k9VLROyuWbs8LlfKsjhw5IsfklHjkglTINamSGmHkkTyTV/JmPVkv1rv1MR1dsmaZA/IH1ucPJnmVpQ==</latexit>

Tr
<latexit sha1_base64="/axwEn37kGD0PJ9RaAhz1mjjoUY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWPFfkEbymY7aZduNmF3I5TQn+DFgyJe/UXe/Ddu2xy09cHA470ZZuYFieDauO63s7G5tb2zW9gr7h8cHh2XTk7bOk4VwxaLRay6AdUouMSW4UZgN1FIo0BgJ5jczf3OEyrNY9k00wT9iI4kDzmjxkqPzYEalMpuxV2ArBMvJ2XI0RiUvvrDmKURSsME1brnuYnxM6oMZwJnxX6qMaFsQkfYs1TSCLWfLU6dkUurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCmp9xmaQGJVsuClNBTEzmf5MhV8iMmFpCmeL2VsLGVFFmbDpFG4K3+vI6aVcr3nWl+nBTrtfyOApwDhdwBR7cQh3uoQEtYDCCZ3iFN0c4L86787Fs3XDymTP4A+fzBzWojbc=</latexit>

Rr
<latexit sha1_base64="BGtAL42bzfwlVMtSWKWcs8e1F8c=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0omGPAi8f4yAOSJcxOZpMhs7PLTK8QlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++4lrI2L1iJOE+xEdKhEKRtFKD/d93S+V3Yo7B1klXk7KkKPRL331BjFLI66QSWpM13MT9DOqUTDJp8VeanhC2ZgOeddSRSNu/Gx+6pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw5qfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tO0YbgLb+8SlrVindZqd5dleu1PI4CnMIZXIAH11CHW2hAExgM4Rle4c2Rzovz7nwsWtecfOYE/sD5/AEynI21</latexit>

Rpost
<latexit sha1_base64="hbwL6Dtq2sydHqpnpH1GxygRzz4=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiRVsMuCG5dV7APaECbTaTt0MgkzN2qJ+RQ3LhRx65e482+ctllo64GBwzn3cO+cIBZcg+N8W4W19Y3NreJ2aWd3b//ALh+2dZQoylo0EpHqBkQzwSVrAQfBurFiJAwE6wSTq5nfuWdK80jewTRmXkhGkg85JWAk3y7f+mkf2KOJpnGkIct8u+JUnTnwKnFzUkE5mr791R9ENAmZBCqI1j3XicFLiQJOBctK/USzmNAJGbGeoZKETHvp/PQMnxplgIeRMk8Cnqu/EykJtZ6GgZkMCYz1sjcT//N6CQzrXsplnACTdLFomAgMEZ71gAdcMQpiagihiptbMR0TRSiYtkqmBHf5y6ukXau659XazUWlUc/rKKJjdILOkIsuUQNdoyZqIYoe0DN6RW/Wk/VivVsfi9GClWeO0B9Ynz9kUJS0</latexit>

t + �r
<latexit sha1_base64="/8oULXoVhlxgBxm+ikRxJbcnlmg=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSIIQkmqYI8FLx4r2A9sQ9lsN+3SzSbsToQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4ZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKVHpFckl4yEn3dL5XdijsHWSVeTsqQo9EvffUGMUsjrpBJakzXcxP0M6pRMMmnxV5qeELZmA5511JFI278bH7xlJxbZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDmp8JlaTIFVssClNJMCaz98lAaM5QTiyhTAt7K2EjqilDG1LRhuAtv7xKWtWKd1Wp3l+X67U8jgKcwhlcgAc3UIc7aEATGCh4hld4c4zz4rw7H4vWNSefOYE/cD5/AIj1kCU=</latexit>

t + �post
<latexit sha1_base64="efV5H6hnHfw3DjNiwYzJs52N9bg=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARBKEkVbDLghuXFewDmhAm00k7dPJg5kYsIW78FTcuFHHrX7jzb5y2WWjrgQuHc+6duff4ieAKLOvbKK2srq1vlDcrW9s7u3vm/kFHxamkrE1jEcueTxQTPGJt4CBYL5GMhL5gXX98PfW790wqHkd3MEmYG5JhxANOCWjJM48An2MnGXEvc4A96BeyJFaQ555ZtWrWDHiZ2AWpogItz/xyBjFNQxYBFUSpvm0l4GZEAqeC5RUnVSwhdEyGrK9pREKm3Gx2QY5PtTLAQSx1RYBn6u+JjIRKTUJfd4YERmrRm4r/ef0Ugoab8ShJgUV0/lGQCgwxnsaBB1wyCmKiCaGS610xHRFJKOjQKjoEe/HkZdKp1+yLWv32stpsFHGU0TE6QWfIRleoiW5QC7URRY/oGb2iN+PJeDHejY95a8koZg7RHxifP9qSlyQ=</latexit>

t
<latexit sha1_base64="0iumNtECVzyw+TLVKInewBD4uW4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbTbt2swm7E6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmd3O/88S1EbF6wGnC/YiOlAgFo2ilJg5KZbfiLkDWiZeTMuRoDEpf/WHM0ogrZJIa0/PcBP2MahRM8lmxnxqeUDahI96zVNGIGz9bHDojl1YZkjDWthSShfp7IqORMdMosJ0RxbFZ9ebif14vxbDmZ0IlKXLFlovCVBKMyfxrMhSaM5RTSyjTwt5K2JhqytBmU7QheKsvr5N2teJdV6rNm3K9lsdRgHO4gCvw4BbqcA8NaAEDDs/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3nWM8g==</latexit>

Time

Figure 4.5: Periodic tasks as part of process Π1 corresponding to the IC
protocol execution starting at time t.

In the following, we present the detailed task model, which is
also illustrated in Fig. 4.5. Since the IC protocol is symmetric for all
processes, identical task sets are deployed on each PE; therefore, we
omit the process index i from the notations to reduce clutter.

Recall that the protocol consists of Nr rounds, each consisting of
a sending step and a state transition (or receiving) step, and the last
round also consisting of a reduction step. Hence, we realize each
process by a set of tasks Ts = {T1s , T2s , . . . , TNrs } that execute the Nr
sending steps (respectively), a set of tasks Tt = {T1t , T2t , . . . , TNrt } that
execute the Nr state transition steps (respectively), and a task Tr that
executes the reduction step in the end. Additionally, we model tasks
Tpre and Tpost that execute at the beginning and end of the protocol,
respectively, and which interface the IC protocol with the application.
Tpre is also responsible for initializing the EIG tree.

We assume that the IC protocol is invoked periodically with time
period P, i.e., a new protocol instance with the objective of achieving
interactive consistency over a new set of values is initiated every P time
units. Hence, all tasks are assigned a time period of P, and each new
activation of the task set corresponds to a new IC protocol instance.

To ensure that the tasks are activated in the order required by the
IC protocol, each task is also assigned an appropriate release offset.
Task Tpre, which is expected to execute before any other IC protocol
tasks, is released periodically with release offset 0 on each PE, i.e., Tpre

becomes ready for execution at time instants 0, P, 2P, and so on.
Suppose that Rpre denotes the global worst-case response time of Tpre

across all PEs, i.e., the periodic invocations of Tpre on all PEs finish their
executions at the latest by time instants Rpre, P+ Rpre, 2P+ Rpre, and
so on, respectively. As per Algorithm 4.1, task T1s , which is responsible
for executing the sending step of round one, must follow task Tpre.
Thus, T1s is assigned a release offset of φ1s = Rpre, i.e., T1s becomes
ready for execution at time instants Rpre, P + Rpre, 2P + Rpre, and so
on. We omit differences due to clock skew in these absolute time
instants to avoid clutter; this can be fixed by adding the maximum
clock skew between any two clocks, which is known from the clock
synchronization protocol, to these time instants.

4.2 hard real-time design 57

The next step as per Algorithm 4.1 is the state transition step of
round one, which is executed by task T1t . Task T1t must also wait for
the messages sent during the preceding sending step to be transmitted.
Thus, task T1t is assigned a release offset of φ1t = φ

1
s+R

1
s+∆NW, where

R1s denotes task T1s ’s global worst-case response time and ∆NW denotes
the worst-case latency for the exchange of IC protocol messages over
the network. This assignment ensures that, in an error-free scenario,
the sending step of round one has finished sending all messages and
that these messages have been transmitted before the state transition
step of round one begins. Other tasks are assigned their release offsets
in a similar manner (see Fig. 4.5).

The task organization discussed above works only if all the tasks
with their respective parameters can be integrated successfully on the
host platforms, i.e., without any deadline misses. This requires the use
of a predictable scheduler at runtime and an a priori schedulability
analysis of the task set. In this work, we consider the partitioned
fixed-priority scheduling policy as our predictable scheduling policy,
which is supported on all major real-time platforms such as VxWorks
and QNX, and also on Linux (via SCHED_FIFO and suitably chosen
processor affinity masks). For schedulability analysis, the existing
literature on real-time scheduling theory for periodic task models [53]
provides a rich foundation for checking if each task meets its implicit
deadline, i.e., finishes before the next task instance arrives.

The proposed task modeling breaks down the IC algorithm into
smaller tasks to ensure that the pessimism incurred in the schedula-
bility analysis is minimal. An alternative design where the entire IC
algorithm is implemented as one periodic task with suspensions (while
awaiting network I/O) requires use of suspension-aware schedulabil-
ity analyses [44], which are prone to substantial pessimism. Another
alternative design where the periodic tasks are implemented without
suspensions (i.e., when tasks spin while waiting for I/O) is extremely
inefficient in terms of CPU usage. Further, note that these alternatives
pertain only to the modeling of the protocol implementation. An ac-
tual implementation can still realize all tasks (model entities) within
a single sequential process (OS facility).

4.2.3 Case Study: Key-Value Store

To evaluate the feasibility of the hard real-time IC protocol design
presented in Section 4.2.2, we implemented a BFT key-value service
on top, which we refer to as Achal, and compared its performance
against state-of-the-art general-purpose BFT systems. In particular, we
compared Achal’s performance against Cassandra [9] configured with
BFT quorums, and against a key-value service implemented on top of
BFT-SMaRt [25] (which is a state-of-the-art library for implementing

58 tolerating byzantine errors in cps

Application
Replica

Local Achal Instance
Frontend

(API parsing)
Backend

(BFT coordination)

Local Datastore
(write queue + key-value map)

read(k, t)

Application Replica

Predictable Network + Clock Synchronization

write(k, v1, t)

Application Replica

Application Replica

Figure 4.6: Overview of Achal’s architecture

State Machine Replication (SMR) [195] with Byzantine fault tolerance).
We start with a brief description of Achal’s overall design.

4.2.3.1 Achal: A Hard Real-Time Key-Value Service

Fig. 4.6 shows an overview of Achal’s architecture. Each PE hosts a
local instance of Achal consisting of a frontend that interfaces with the
application replicas hosted on that PE, a backend that interfaces with the
local Achal instances on other PEs, and an in-memory local datastore.

Achal’s frontend offers application replicas the usual read and write
interface of a key-value service, but enhanced with an absolute time
parameter t. In particular, the write(k, v, t) operation writes the value
v to key k with absolute publishing time t; and the read(k, t) operation
returns the latest value v with publishing time no earlier than t for
which consensus has been achieved. Thus, a written value becomes
visible to applications only at time t, that is, no read of k prior to time
t will return v. Conversely, a read operation returns the latest value
for key k that was published at or later than time t.

The absolute time parameter allows both operations to be non-
blocking. That is, the write operation stores the given value and pub-
lishing time to the local write queue (part of the local datastore) and
then immediately returns; coordination with other replicas occurs
asynchronously. In fact, depending on its publishing time t, coordina-
tion for a write operation can be delayed to accommodate other more
urgent operations (e.g., another write with an earlier publishing time
t ′ < t). Similarly, the read operation translates into a synchronous
lookup from the key-value map in the local datastore, and thus imme-
diately yields a value for which coordination has already completed
or an error signaling the absence of any matching value.

As an example, we illustrate in Algorithm 4.2 a PID control loop
programmed over Achal. Active replicas of the PID controller synchro-
nize the error and integral variables (which are used across iterations,
i.e., which denote the control loop’s global state) using Achal. For clar-

4.2 hard real-time design 59

Algorithm 4.2 Periodic task of a PID controller for balancing an in-
verted pendulum, programmed over Achal.

1: procedure PeriodicTaskActivation

2: time← timeOfLastActivation() . compute freshness constraint
3: current← getSensorData() . get latest angle encoder value
4: error← target − current . compute absolute error
5: . update cumulative error and rate of change of error
6: integral← Achal.read(“integralKey”, time) + error
7: derivative← error − Achal.read(“errorKey”, time)
8: . compute actuation force as a wighted sum of . . .
9: . absolute error, cumulative error, and rate of change of error

10: force← kp ∗ error + ki ∗ integral + kd ∗ derivative
11: time← timeOfNextActivation() . compute publishing time
12: . synchronize state with other replicas (if any)
13: Achal.write(“errorKey”, error, time)
14: Achal.write(“integralKey”, integral, time)
15: actuate(force) . apply force on the pendulum cart

ity, error handling has been omitted. Notice that Achal’s API enables a
programmer to make definitive statements about when written data is
available in the system and ready to be read by tasks on different PEs.
The resulting data determinism eliminates execution-time dependent
race conditions, and is thus ideal for CPS domain applications.3

While Achal’s frontend presents itself as one logical datastore to
the application, the backend ensures write propagation and takes
care of BFT replica coordination using the predictable hard real-time
design of the IC protocol, which was presented in Section 4.2.2. As a
result, the system is able to reject operations with infeasible publishing
times in advance. Specifically, if ∆coord = P +φpost + Rpost denotes a
deployment-specific upper bound on the maximum time required
to coordinate among all replicas (based on the periodic task model
presented in Section 4.2.2), and if an application executes the operation
write(k, v, t) at time tnow: Achal rejects the write if tnow +∆coord > t.
Similarly, the system rejects read operations that specify a time in the
future. In other words, the predictable hard real-time design helps
ensure that in an error-free scenario, application reads never fail.

4.2.3.2 Setup, Configuration, and Methodology

All the experiments were performed on a cluster of four Raspberry
Pi 3 Model B+ units [185], each equipped with a 1.4GHz Cortex-A53

quad-core processor and 1 GB of memory. The four Pis were connected
over IEEE 802.3ab Gigabit Ethernet using a 1 Gbps Ethernet connection.

3 The publishing time parameter is inspired by the Logical Execution Time (LET)
paradigm proposed by Henzinger et al. [99], which decouples the read and write
time of global data used by a task from the actual execution time of the task. See the
book chapter by Kirsch and Sokolova [117] for a detailed explanation.

60 tolerating byzantine errors in cps

Since the Ethernet controller is internally connected via USB 2.0, the
effective maximum throughput was limited to 300 Mbps.

The Pis were running Linux kernel 4.14.27 applied with both Rasp-
berry Pi and PREEMPT_RT patches.4 To synchronize their clocks, the
Pis were running the Precision Time Protocol daemon (PTPd) version
2.3.2 [68] (an open source implementation of PTP for Unix-like com-
puters), resulting in an observed clock skew of around 10µs. PTPd
was configured to execute in a hybrid mode that utilizes both multicast
and unicast so as to reduce the amount of PTP messages per client.

Achal was implemented using a set of POSIX processes. To realize
partitioned fixed-priority scheduling on Linux, processor affinities and
the SCHED_FIFO scheduling policy were used.5 The memory required
by the tasks and the shared data structures was locked into physical
memory at startup (i.e., pre-faulted and excluded from paging using
memlockall). The tasks communicated via unicast UDP to realize
point-to-point message channels.

We deployed Cassandra with the recommended settings, with the
four Pis configured as one rack in one datacenter. For a fair comparison
with Achal, we also modified some system parameters to improve
Cassandra’s predictability. In particular, Cassandra was configured to
use the jemalloc library, its cache save intervals were set high enough
so that they did not interfere with the experiments, RLIMIT_MEMLOCK
was set to unlimited to allow Cassandra to lock a sufficient amount of
memory, and all employed Cassandra Query Language (CQL) insert
and select statements were prepared (i.e., pre-compiled) on system
startup to minimize query parsing overheads. The above memory-
related settings were also applied to BFT-SMaRt.

We also ensured that Achal, Cassandra and BFT-SMaRt have equiv-
alent semantics and provide the same level of fault tolerance. In
particular, Achal was configured to tolerate up to f = 1 faulty replicas,
by using 3f+ 1 = 4 replicas, but without any cryptographic message
authenticators. Thus, for parity, i.e., to ensure that the baselines do
not incur additional overheads, we did not use a hardened version

4 The PREEMPT_RT patch [150] minimizes the amount of non-preemptible kernel code
by reducing the number and the length of critical sections in the kernel that mask
interrupts or disable preemptions. Thus, the PREEMPT_RT patch improves the schedul-
ing latency of real-time user threads. In fact, Linux with the PREEMPT_RT patch is also
considered the de facto standard real-time variant of Linux.

5 Each thread in Linux has an associated scheduling policy [235]. Normal threads are
associated with either the SCHED_OTHER, SCHED_IDLE, or the SCHED_BATCH scheduling
policy, whereas real-time threads are associated with either the SCHED_FIFO, SCHED_RR,
or the SCHED_DEADLINE scheduling policy. The real-time threads are also associated
with a static priority. When a real-time thread becomes runnable, it immediately
preempts any currently running normal threads or lower-priority real-time threads.
While SCHED_FIFO schedules threads with same priority in a First In, First Out (FIFO)
manner, SCHED_RR uses Round-Robin (RR) (with a fixed maximum time quantum) in-
stead. SCHED_DEADLINE schedules threads using Global Earliest Deadline First (GEDF)
in conjunction with a constant bandwidth server [71]. It requires that each thread is
modeled as a sporadic task (recall different real-time task models from Section 2.1.2.1).

4.2 hard real-time design 61

of Cassandra [78] and disabled the use of MAC-based signatures
in BFT-SMaRt. In addition, to let Cassandra tolerate Byzantine fail-
ures, all Cassandra queries were executed with the QUORUM consistency
level. We also implemented a thin proxy layer on top of Cassandra’s
CQL and on top of BFT-SMaRt’s RPC library to expose an Achal-like
temporally-aware API over Cassandra and BFT-SMaRt.

After configuring the three systems, we evaluated them in terms of
their read and write latencies using a periodic PID control loop as the
application workload. In each iteration, the application program first
reads a value that was written in the previous iteration, and then writes
a new value that will be read in the subsequent iteration. However,
while a write request in Achal returns immediately after writing to
the local write queue (non-blocking), a write request in Cassandra and
BFT-SMaRt returns only after the write request has been propagated
to other replicas (blocking). We thus required different measurement
approaches for each system.

The read and write latencies for Cassandra and BFT-SMaRt were
simply measured by computing the time to execute their read and
write operations, respectively (since these are blocking operations). The
obtained values are thus independent of the application time period
and the publishing time. For Achal, as explained in Section 4.2.3.1, the
effective write latency depends on both the application time period
and the period of the Achal tasks. Thus, to obtain the minimum
possible write latency in Achal, we minimized the period subject to
maintaining temporal correctness (i.e., we used the shortest period
possible without missing any deadlines), and then measured the time
to finish replica coordination. In other words, we first estimated using
profiling the worst-case time to execute each Achal task and worst-case
network delay with a relaxed period, and then use these estimations to
run Achal with a tighter period. In practice, for safety certification, the
profiling would need to be replaced by the use of tools such as aiT [233]
and SymTA/S [219] for sound worst-case execution time and network
analysis, respectively. The read latency in Achal is measured in the
same way as in Cassandra and BFT-SMaRt since a read operation in
Achal simply involves reading a value locally.

4.2.3.3 Evaluation Results

We start with single-key experiment results. To evaluate the latency
profiles of Achal and the baselines in order to estimate their pre-
dictability, we measured the read and write latency for each system
using a single application control loop accessing one key per iteration.
In case of Achal, only one instance mapped to a single core was run-
ning per Pi, since we want to evaluate its single core performance first.
BFT-SMaRt and Cassandra instances, in contrast, were allowed to use
up to all four cores on the Pi, since they are multi-threaded by design.
The latency scatter plots and CDFs are illustrated in Fig. 4.7.

62 tolerating byzantine errors in cps

(a) Write latency (scatter plot)

0 20 40 60
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P[
La

te
nc

y
 x

]

BFT-SMaRt
Cassandra
Achal

(b) Write latency (CDF)

(c) Read latency (scatter plot)

0 20 40 60
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P[
La

te
nc

y
 x

]

BFT-SMaRt
Cassandra
Achal

(d) Read latency (CDF)

(e) Total latency (scatter plot)

0 20 40 60
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
P[

La
te

nc
y

 x
]

BFT-SMaRt
Cassandra
Achal

(f) Total latency (CDF)

Figure 4.7: Single-key experiment results. Achal’s read latency was consis-
tently under 100 microseconds, hence not visible in (c) and (d).

Achal, BFT-SMaRt, and Cassandra’s write latency distributions (see
Figs. 4.7a and 4.7b) each follow a unique pattern. The write latency of
Achal always remains between 3 ms and 5 ms. This was expected since
Achal’s latency depends on and is upper-bounded by the time period
of Achal tasks by design (which was 5 ms in this case). In contrast, the
write latency of Cassandra and BFT hovers between 10 ms and 30 ms
for a majority of iterations, but exceeds 100 ms occasionally.

The read latency distributions of Achal, BFT-SMaRt, and Cassandra
(see Figs. 4.7c and 4.7d) vary differently from their write latency
distributions. Achal’s read latency was consistently under 100µs (and
hence not visible when using the log scale in Fig. 4.7c). This was again
expected since Achal’s read operation reads the key from the local
datastore and does not require any coordination. The read latency
of BFT-SMaRt is also low (a couple of milliseconds). In contrast,
Cassandra’s read latency is significant, averaging in excess of 10 ms.

4.2 hard real-time design 63

baseline tkvs without tkvs without tkvs and ar

BFT-SMaRt 3.47 ms 3.41 ms 3.12 ms
Cassandra 12.58 ms 11.82 ms 12.53 ms

Table 4.1: Average read latency in BFT-SMaRt and Cassandra for a single
key and for three different configurations.

We attribute this to the use of a BFT quorum during read operations,
which requires that a value be read from 2f+ 1 replicas (to tolerate f
faulty replicas).

We also report the sum of the individual read and write latencies
(see Figs. 4.7e and 4.7f), since it lower-bounds the minimum achievable
time period (i.e., maximum possible frequency) of an actively repli-
cated periodic control loop deployed on top of Achal, BFT-SMaRt,
and Cassandra. The results clearly show Achal to be more capable
in this regard. In addition, the frequent spikes in the latency results
for Cassandra and BFT-SMaRt expose the inherent unpredictability
in their throughput-oriented designs. In contrast, Achal exhibits little
latency variability, which reflects its predictable design.

To verify that BFT-SMaRt and Cassandra’s read latencies were
not severely affected by the proxy layer that was used to implement
Achal-like temporally-aware semantics, we also evaluated their read
latencies without the proxy layer, and also without the active replica-
tion of application control loop (i.e., with only the datastore instances
replicated). The results are summarized in Table 4.1; TKVS denotes
the use of a Temporally-aware Key-Value Service API like Achal, and
AR denotes active replication. For both baselines, the overhead due
to implementation of the time-aware semantic layer was negligible
(see column “without TKVS”). In fact, the overhead due to multiple
values being written by active replicas of the application control loop,
as opposed to a single write per key, was also negligible (see column
“without TKVS and AR”). We thus attribute the read latencies to the
respective coordination protocols.

Next, we discuss the multi-key experiment results. Our objective
is to evaluate whether Achal scales well with the number of keys,
and whether the observations made for the single-key experiments
also hold when the application writes (and reads) multiple keys to
(and from) the datastore. In this case, we also evaluated an extended
version of Achal with explicit batching, where the application can de-
liver all writes together using a batch API. We measured read and
write latencies, and report the average, the 99

th, and the maximum
aggregate latencies (i.e., the sum of read and write latency). The re-
sults are illustrated in Figs. 4.8a to 4.8c. Once again, the order of
magnitude difference between the latency of Achal and the baselines
is apparent irrespective of the number of keys, and even in the av-
erage case. For all systems, the latency scales proportionally to the

64 tolerating byzantine errors in cps

1 2 4 8 16 32
Number of Keys

101

102

103

104

La
te

nc
y

(m
s)

BFT-SMaRt
Cassandra

Achal w/ batch
Achal

(a) Average latency vs. #keys

1 2 4 8 16 32
Number of Keys

101

102

103

104

La
te

nc
y

(m
s)

BFT-SMaRt
Cassandra

Achal w/ batch
Achal

(b) 99
th percentile latency vs. #keys

1 2 4 8 16 32
Number of Keys

101

102

103

104

La
te

nc
y

(m
s)

BFT-SMaRt
Cassandra

Achal w/ batch
Achal

(c) Maximum latency vs. #keys

Figure 4.8: Average, 99
th percentile, and maximum latency results when

multiple keys are written.

4.2 hard real-time design 65

number of keys (note the log scale in the figures). Achal with explicit
batching performs slightly better than Achal without batching; simi-
lar application-side batching could also be done for BFT-SMaRt and
Cassandra. In terms of the maximum latency (see Fig. 4.8c), which is
the most relevant metric for real-time systems, BFT-SMaRt performs
the worst among all systems. For 32 keys, in fact, it frequently timed
out during the experiments.

In the experiments discussed so far, only one instance of Achal was
running on each host. To evaluate the overheads due to contention
on the network or kernel resources by parallel instances of Achal,
we also compared Achal’s read and write latency in a multiproces-
sor scenario. Three separate instances of Achal and the application
control loop were running on three cores of each host, whereas one
core was left unoccupied to run the PTP clock synchronization pro-
tocol at high priority. The Achal tasks were released synchronously
to emulate the worst-case scenario. The results (in terms of aggre-
gate latency) from this experiment for a single key and eight keys
are illustrated in Figs. 4.9a to 4.9c. Latency grows linearly with the
number of cores, mainly due to the fact that the networking layer
needs to deal with a proportionally increasing number of messages.
In case of Achal without application-side batching, the maximum la-
tency with eight keys almost doubles from around 20 ms to 40 ms,
but is still below Cassandra and BFT-SMaRt’s average latency with
eight keys (as reported in Fig. 4.8a).

We also evaluated how the three systems react to faults. In particular,
we are interested in crash faults since they reveal the limitations of
leader-based protocols with regards to servicing time-sensitive queries.
For this, we ran the three systems for about 500 iterations, with a time
period of 100 ms each, and introduced a crash fault into one of the
replicas around the 250

th iteration. The resulting latency observations
are illustrated in Fig. 4.10. As expected, Achal incurs no latency spikes
at all upon a crash, due to relying on a leaderless BFT protocol. In
fact, its latency decreases owing to the reduced number of messages
transmitted per iteration. In contrast, both BFT-SMaRt and Cassandra
experience extreme latency spikes when the crash is introduced, and
an interval of high latency fluctuation persists for a few consecutive
iterations, amounting to an unavailability interval of around one
second. (the skipped iterations are indicated with zero latency). Since
BFT-SMaRt uses a classical SMR design with primary and backups,
this was expected. Surprisingly, Cassandra also evoked a similar result,
which we attribute to its reliance on a centralized coordinator node.

In summary, on embedded platforms with limited CPU, memory,
and network resources, Achal is more efficient than the state-of-the-art
systems BFT-SMaRt and Cassandra, which are primarily designed
for server-scale machines. Achal’s predictable latency helps in validat-
ing temporal constraints prior to deployment, and is helpful when

66 tolerating byzantine errors in cps

1 2 3
Number of Cores

0

10

20

30

40

La
te

nc
y

(m
s)

1 key
8 keys w/ batch

8 keys

(a) Average latency vs. #cores

1 2 3
Number of Cores

0

10

20

30

40

La
te

nc
y

(m
s)

1 key
8 keys w/ batch

8 keys

(b) 99
th percentile latency vs. #cores

1 2 3
Number of Cores

0

10

20

30

40

La
te

nc
y

(m
s)

1 key
8 keys w/ batch

8 keys

(c) Maxium latency vs. #cores

Figure 4.9: Average, 99
th percentile, and maximum latency results for the

multiprocessor scenario.

4.2 hard real-time design 67

200 210 220 230 240 250 260 270 280
Control Loop Iterations

0
100

101

102

103

La
te

nc
y

(m
s)

Achal
Cassandra

BFT-SMaRt

Figure 4.10: Latency distributions for Achal, BFT-SMaRt, and Cassandra,
when a crash fault is introduced into one of the replicas around
the 250

th iteration (see the region colored gray). Iterations in
BFT-SMaRt and Cassandra that were skipped completely due
to the crash fault are indicated with zero latency.

targeting high-frequency applications with strict timing constraints.
In the next chapter, we analyze the reliability of the hard real-time IC
protocol implementation, which lies at the core of Achal.

5 R E L I A B I L I T Y A N A LY S I S O F A
B F T P R OTO C O L *

* This chapter is
based on our RTAS
2020 [92] paper.

In the previous chapter, we presented a hard real-time design for
an Interactive Consistency (IC) protocol, which can be easily imple-
mented over COTS platforms, and which can tolerate environmentally-
induced Byzantine errors as well. However, recall from Chapter 1 that
our goal is to build ultra-reliable CPS, i.e., systems that are highly
reliable with negligible failure rates and quantifiable reliability guaran-
tees. Hence, we must also supplement the hard real-time IC protocol
design from Section 4.2.2 with a corresponding reliability analysis. To
this end, we present in this chapter a quantitative reliability analysis
of an Ethernet-based implementation of the protocol.

5.1 prior work and reliability anomalies

Although there is plenty of work on reliability analysis of distributed
hard real-time systems, e.g., [39, 54, 198, 204], much of it primarily
focuses on the analysis of low-level properties. For instance, Broster
et al.’s analysis [39] upper-bounds the probability that any individual
message is transmitted on time over CAN despite delays due to fault-
induced retransmissions. Our objective is to leverage such fine-grained
message-level analyses to evaluate the failure rate of a more complex,
higher-level, and multi-round protocol.

In this regard, prior work has proposed logics to formally verify the
correctness of round-based BFT protocols, e.g., [65]. However, these
results, too, are orthogonal to our requirements since our objective
is to provide quantifiable bounds on reliability (rather than a binary
result), and also account for time-domain failures (rather than just
value-domain failures).

Also, prior work on Byzantine fault tolerance is oblivious to non-
uniform fault rates across different components of the system that
arise in presence of transient faults due to environmental disturbances
(e.g., classical Byzantine guarantees such as 3f+ 1 processes can tol-
erate up to f Byzantine faults is abstract from the underlying net-
work topology). The presented analysis overcomes these limitations
by considering timing delays in the correctness definitions, and by
explicitly modeling PE nodes, network switches, and network links
(including the network topology) while considering the possibility of
non-uniform fault rates across these components.

Simulations and model checking are alternative techniques to solve
the reliability analysis problem. However, these techniques suffer from

69

70 reliability analysis of a bft protocol

10-10 10-9 10-8 10-7 10-6 10-5

Π1 's crash rate (events/microsecond)

0.00

0.01

0.02

0.03

0.04

0.05

P
 (

p
ro

to
co

l
fa

ils
)

Analysis

Simulation

Figure 5.1: The failure probability decreases when Π1’s crash rate is in-
creased from 10−10 events/µs to 10−5 events/µs, given a message
corruption rate of 10−5 events/µs. The proposed analysis is de-
signed to analytically account for such anomalies and, therefore,
always bounds the worst-case failure probability.

scalability issues when the error probabilities are very small. In par-
ticular, simulations must be run for excessively long durations to
estimate the failure rate with high confidence, and probabilistic model
checkers such as PRISM [125] need to fall back on exact model check-
ing to avoid incorrect results due to floating-point noise. For example,
evaluating the reliability of even a very basic distributed system [126]
using PRISM takes up to a few hours when exact representations are
used (whereas otherwise, it takes only a few seconds).

Most importantly, though, prior work does not account for reliability
anomalies, which can result in non-monotonic increases in a system’s
overall failure rate despite local decreases in a component’s failure
rate. For example, consider processes Π1, Π2, and Π3 executing a two-
round IC protocol (as explained in Section 4.2.1). Suppose that Π1 is
susceptible to crashes and message corruptions, which may occur at a
maximum rate of 10−05 events/µs each, whereas the other processes
execute error-free. Simulation results (illustrated in Fig. 5.1) show
that if Π1 experiences crashes at a reduced (i.e., better) rate of only
10−10 events/µs, the protocol failure probability is actually higher
than it is for the scenario in which the crashes occur at the peak rate.
This counter-intuitive behavior occurs because crash-induced message
omissions at Π1 prevent the transmission of possibly faulty messages,
thereby preventing other processes from making a wrong decision.

The presence of reliability anomalies poses a significant problem in
practice because simulating errors at peak rates does not necessarily
yield a safe upper bound on the overall failure rate and since it is
infeasible to simulate or exhaustively evaluate all possible error rates.
In contrast, as shown in Fig. 5.1, the analysis introduced in this chapter

5.2 analysis overview 71

is sound despite such reliability anomalies, i.e., it reports the maximum
possible failure probability without exhaustively evaluating all possi-
ble crash rates. In fact, to the best of our knowledge, this is the first
work to formalize the concept of reliability anomalies, and to propose
techniques to eliminate such anomalies in a hard real-time setting.

In the rest of this chapter, we start by giving an overview of the
proposed analysis (Section 5.2); present a probabilistic analysis to
upper-bound the failure probability of the IC protocol as a function
of basic system error probabilities (Section 5.3); and then provide
implementation-specific analyses to upper-bound the probability with
which these basic system errors occur, which in turn helps upper-
bound the implementation-specific failure rate of the IC protocol (Sec-
tion 5.4). Finally, we report on a case study to evaluate the pessimism
incurred by our analysis and to demonstrate its utility in identifying
non-trivial and non-obvious reliability trade-offs (Section 5.5).

5.2 analysis overview

Recall from Chapter 2 that we adopt the Failures-In-Time (FIT) rate—
which is an industry-standard reliability metric denoting the number
of failures expected in one billion device operating hours [214]—for
measuring reliability in presence of transient faults. From its defini-
tion, 1 FIT implies that at most one IC protocol instance is expected to
violate the correctness criterion in one billion operating hours. Hence,
in a real-time context, since the maximum frequency at which the IC
protocol is invoked is known in advance, the IC protocol’s FIT rate
can be derived simply by analyzing a single invocation of the protocol.
In particular, to bound the IC protocol’s FIT rate, it is sufficient to
(i) derive an upper bound on the failure probability of a single invoca-
tion of the IC protocol, (ii) use this upper bound to compute a lower
bound on the mean time to the first failed execution of the protocol,
which is also known as its MTTF (see [124, Section 2.2] for a detailed
discussion), and then (iii) derive an upper bound on the FIT rate as an
inverse of the MTTF lower bound. Among these, steps (i) and (ii) can
be trivially addressed. Our objective is thus to address the first step,
i.e., the single-invocation failure probability problem, in a sound man-
ner such that the analysis is free from reliability anomalies, and for a
hard real-time implementation of the IC protocol (from Section 4.2.2).

In this regard, our analysis is split into two parts. In the first part
(Section 5.3), we abstract the effect of basic errors, which were dis-
cussed in Section 3.3, into different types of protocol-specific message
errors, such as crash-induced message omissions; exhaustively evaluate
all scenarios in which one or more protocol-specific message errors
result in a failed execution of the IC protocol; and present a reliabil-
ity anomaly-free upper bound on the failure probability of a single

72 reliability analysis of a bft protocol

invocation of the IC protocol. Since the first part of the analysis is
implementation-oblivious, when deriving the upper bound, we make
an unrealistic assumption that the exact probabilities with which dif-
ferent protocol-specific message errors occur are known in advance. In
the second part (Section 5.4), we determine upper bounds on these ex-
act probabilities for an Ethernet-based hard real-time implementation
of the IC protocol, and use these bounds to obtain an implementation-
specific upper bound on the IC protocol failure probability (and also
its FIT). The second part is safe because we ensure that the proposed
failure probability analysis is free from reliability anomalies.

5.3 probabilistic analysis

Recall the objective of the IC protocol from Section 4.2.1. In a dis-
tributed system consisting of Np processes Π = {Π1,Π2, . . . ,ΠNp}, if
each process Πi seeks to compute a vector Vi such that item Vi[k]

(for 1 6 k 6 Np) corresponds to the private value of process Πk: the
objective is to ensure that Vi[k] = Vj[k] for any two correct processes
Πi,Πj ∈ Π, and if process Πk is also correct, then Vi[k] = Vj[k] = vk.
However, the stated objective does not take into account any ap-
plication semantics, and is therefore insufficient to determine if an
erroneous execution of the protocol causes the application to fail.

For example, an embedded application may use the IC protocol to
achieve input consistency over redundant sensor values, where the pro-
cesses may fuse their respective decision vectors using a noise filtering
function and forward the results to an actuator, which in turn may
use a simple majority hardware for redundancy suppression. In this
case, the application reliability depends on the IC protocol execution
as well as on the fuse function used by the processes. In general, every
application may rely on a different set of correctness criteria requiring
a slightly different set of reliability analyses. We define below two
correctness criteria that form the basis of our analysis.

5.3.1 Correctness Criteria

We consider a strong and a weak correctness criterion to define a
failed execution of the IC protocol. In the first case, we assume that
every process Πi determines the quorum majority as its fuse function,
which we denote as fquorum. That is, fquorum(Vi) returns either the
quorum majority over all values in Vi (in which case the returned
value equals at least bNp/2c + 1 elements in Vi) or ⊥ (if no such
majority exists). With a focus on real-time applications, we also assume
that fquorum(Vi) = ⊥ if Πi fails to produce Vi on time. This is possible
if environmentally-induced faults delay the execution of IC protocol
steps (i.e., deadline misses in the hard real-time realization of the IC

5.3 probabilistic analysis 73

protocol, which was provided in Section 4.2.2). Suppose that at the end
of an error-free execution of the IC protocol, fquorum(Vi) = fcorrect 6= ⊥.
Let Π be partitioned into the following three sets:

Scorrect = {Πi ∈ Π | fquorum(Vi) = fcorrect},

Sskipped = {Πi ∈ Π | fquorum(Vi) = ⊥}, and

Sfaulty = {Πi ∈ Π | fquorum(Vi) 6= fcorrect ∧ fquorum(Vi) 6= ⊥}.

The strong correctness criterion requires that |Scorrect| > bNp/2c+ 1.
This criterion resembles the guarantees offered by traditional BFT
protocols for general-purpose systems.

In the second case, we assume that each Πi uses simple majority
as its fuse function, denoted as gsimple. The simple majority function
gsimple(Vi) breaks ties deterministically using process IDs, and returns
⊥ only if all values in Vi are ⊥ or if Πi failed to produce vector Vi on
time. Once again, suppose that gsimple(Vi) = gcorrect 6= ⊥ denotes the
output at the end of an error-free execution of the IC protocol. Let Π
be partitioned into the following three sets:

Wcorrect = {Πi ∈ Π | gsimple(Vi) = gcorrect},

Wskipped = {Πi ∈ Π | gsimple(Vi) = ⊥},
and Wfaulty = {Πi ∈ Π | gsimple(Vi) 6= gcorrect ∧ gsimple(Vi) 6= ⊥}.

The weak correctness criterion requires that |Wcorrect| > |Wfaulty|. It is
particularly useful for embedded applications which are not concerned
if redundant outputs are skipped, as long as at least one correct output
is delivered on time. For example, the weak correctness criterion is
ideal for the embedded application mentioned above that relies on a
simple majority hardware for redundancy suppression.

5.3.2 Basic Errors to Message Errors

As part of our fault model, we introduced in Section 3.3 crash and
incorrect computation (corruption) errors due to transient faults. In
case of Ethernet-based distributed real-time systems, both hosts (on
which the application processes are deployed) and network switches
constitute the set of all PEs. Hence, we further classify the crash errors
into host crashes and switch crashes. Similarly, we also further classify
corruption errors into host corruption and frame corruption errors. In
the following, we model the effect of these basic errors on successful
transmission of IC protocol messages.

Recall the IC protocol from Section 4.2.1. Notice that in each round
of the protocol, the processes exchange one or more nodes belonging
to their respective EIG trees; and in the final round, they process the
exchanged information locally to determine their respective decision
vectors. Suppose that Mi,k(α) denotes the message sent by process Πi

74 reliability analysis of a bft protocol

error event remark

1 “round r msgs. omitted at source Ei” Omission
2 “round r msgs. omitted at switch Sl”
3 “round r msgs. omitted at dest. Ek”
4 “round r frame from Πi to Πk omitted by NW”

5 “round r msgs. corrupted at source Ei” Corruption
6 “round r frame from Πi to Πk corrupted by NW”

Table 5.1: Message error events due to transient faults.

to another process Πk carrying information about the node labeled
α. Since |α| = r− 1 (Line 5), Mi,k(α) is one of the messages sent by
process Πi to another process Πk during the (r− 1)st round.

Each message Mi,k(α) can be affected by crash or corruption errors.
In particular, Mi,k(α) can be omitted if its sender (i.e., the host on
which process Πi is deployed) crashes, if one of the switches through
which the message is routed crashes, or if its receiver (i.e., the host
on which process Πk is deployed) crashes. Mi,k(α) can also be omit-
ted (or rather explicitly dropped) if the Ethernet frame carrying the
message is corrupted during transmission and if Ethernet’s checksum
mechanism successfully detects this corruption. Finally, Mi,k(α) can
also be corrupted if it was incorrectly prepared in the first place due
to corruptions on the sender side, if the Ethernet frame carrying that
message is corrupted during transmission but the corruptions are not
detected by Ethernet’s checksum mechanism, or if it is affected by
corruptions on the receiver side just before being delivered. We denote
these events as protocol-specific message errors.

However, unlike transient faults and basic errors, which are mutu-
ally independent (recall our transient fault and basic error modeling
from Sections 3.2 and 3.3, respectively), the protocol-specific message
errors are not mutually independent. For example, all messages from
Πi to Πk during round r (i.e., each Mi,k(α) with |α| = r − 1) are
typically batched together into a single Ethernet frame; hence, they
are simultaneously dropped if the frame gets corrupted and if the
corruption is successfully detected. Similarly, if the common payload
that is carried by all message frames originating from Πi during round
r is corrupted during preparation, even before its checksum has been
computed, the corruptions go undetected and are passed on to every
message containing the payload.

Hence, for the purpose of this analysis, we model error events that
are defined at a coarser granularity in terms of sets of dependent
messages (at the cost of slight pessimism). These are summarized in
Table 5.1. Events 1, 2, and 3 denote message omissions due to host and
switch crashes during the rth round’s sending step of the IC protocol.

5.3 probabilistic analysis 75

Events 4 and 6 denote frame omissions and frame corruptions due to
perceptible and imperceptible corruption during transmission, respec-
tively. Event 5 denotes the message corruption due to corruption on
the host. Unlike omission errors, we do not consider corruption errors
at destinations since these are implicitly accounted for as corruption
errors at the source of subsequently sent messages.

5.3.3 Message Errors to Protocol Failure

By exhaustively enumerating all possible cases based on whether each
protocol-specific message error event (belonging to one of the six types
listed in Table 5.1) occurs or does not occur, the overall IC protocol
failure probability can be derived. Suppose that the respective event
probabilities, which are required for such an exhaustive case analysis,
are known in advance. That is, for each error event x, suppose that the
exact probability P(x) with which the event occurs is known in advance
(we relax this assumption in Section 5.3.4). In this section, we propose
a recursive analysis that computes the IC protocol failure probability
P(IC failure) as a function of each P(x), while taking into account
all relevant scenarios, and while ensuring soundness in presence of
reliability anomalies.

In particular, although we modeled in a coarse-grained fashion
only six different types of protocol-specific message errors (Table 5.1),
considering all rounds, PEs, switches, and message frames, altogether
tens of errors events need to be evaluated. Furthermore, the total
number of cases is exponential in the number of error events. Hence,
for efficiency, we identify and prune certain scenarios that are not
possible in practice, without compromising the analysis accuracy and
safety. For example, if a message is omitted at its source, it cannot be
omitted by the network. Therefore, the scenario corresponding to the
omission of a message at source and also by the network can be safely
excluded from the exhaustive enumeration. Similarly, corruption of a
message that is eventually omitted is irrelevant in practice. Therefore,
scenarios where an omitted message is corrupted and not corrupted
can be merged. The analysis is explained in detail below.

recursive analysis overview The analysis pseudocode is pro-
vided in (and split across) Algorithms 5.1 and 5.2. Let M denote the
set of all messages exchanged between the processes in an error-free
scenario, i.e., M =

⋃
Πi∈Π,16r6NrM

r
i,∗. To evaluate the probability of

a failed protocol instance, we perform a recursive case analysis over
all possible error combinations for each message in M.

We choose one message at a time from M, consider all scenarios in
which this message may be affected by the errors listed in Table 5.1,
assign case probabilities for each of these scenarios, and recursively
evaluate the error possibilities for the next message in M. The recursion

76 reliability analysis of a bft protocol

terminates when all messages in M (and hence all possible cases)
have been accounted for. We consider messages from round one first,
followed by messages from round two, and so on, because message
errors during an earlier round may impact message transmissions
during subsequent rounds. For example, if it can be determined from
the protocol structure that omission of a first round message Mi,k(α)

guarantees the omission of a second round message Mk,l(β), the
recursive steps that deal with the analysis of whether Mk,l(β) is
omitted or corrupted can be ignored for all cases where message
Mi,k(α) is omitted in the first place. The ordering of messages from
the same round is arbitrary since there is no causal relationship among
message errors in the same round.

The analysis maintains the following message sets for bookkeeping.
Message set U is initialized to M. Messages are removed from U and
analyzed one at a time. Every message that is omitted is inserted into
message set O. Similarly, every message that is not omitted (and hence
delivered on time) but incorrectly computed is inserted into message
set C. If a message is neither omitted nor corrupted, it is still removed
from U but inserted into message set P, denoting that it is in pristine
condition. Sets O, C, and P are eventually used during the terminating
step of the recursion. We also maintain an event log E to keep track
of the message error events that have already been accounted for in
the earlier stages of the recursion, and that must not be accounted for
again. Sets O, C, P, and event log E are initially empty (Line 2).

recursive cases The probability that an IC protocol instance fails
is denoted P(IC failure) and computed recursively by the function
ProbAnalysisRec (Line 4). First, we obtain a message from U using
GetEarliestMessage (Line 7), which returns messages from round
one, followed by messages from round two, and so on. Let Mi,k(α)

denote this message. Suppose that it belongs to round r, i.e., |α| = r− 1.
Probabilities Pfail and Pprefix, which keep track of the cumulative failure
probability and the case probability prefix (explained below), are then
initialized to zero and one, respectively (Line 9).

Based on the error events in Table 5.1, we consider six cases in which
Mi,k(α) is affected by errors and one case in which Mi,k(α) is trans-
mitted error-free. Case 1 implies that Mi,k(α) experienced an error
of type 1. Case 2 implies that Mi,k(α) did not experience an error of
type 1, but experienced an error of type 2, Case 3 implies that Mi,k(α)

did not experience errors of type 1 and 2, but experienced an error of
type 3, and so on. In other words, our analysis explicitly ignores all
scenarios that do not adhere to this rule. As a result, all omission er-
rors (event types 1–4) are analyzed first, which is sound since message
corruption probabilities contribute to the failure probability only if
the message is not omitted. Similarly, an omission at the source (event

5.3 probabilistic analysis 77

Algorithm 5.1 Recursive analysis to estimate the failure probability of
an IC protocol execution. Procedures OmissionCases, Corruption-
Cases, and ErrorFreeCase are defined in Algorithm 5.2.

1: procedure ProbAnalysisInit

2: P(IC failure)← ProbAnalysisRec(M, ∅, ∅, ∅, ∅)
3:
4: procedure ProbAnalysisRec(U,O,C,P,E)
5: if U = ∅ then return P(IC failure | O,C,P) . termination case

6: . get the message to be analyzed
7: Mi,k(α)← GetEarliestMessage(U)
8: r← |α|+ 1 . compute the IC protocol round
9: Pfail ← 0 , Pprefix ← 1 . initialize probabilities

10:
11: X← 〈〉 . an empty FIFO-ordered sequence
12: . Case 1 event string
13: X.enqueue(“round r msgs. omitted at source Ei”)
14: . Case 2 event strings
15: for all Sl ∈ routei,k do
16: X.enqueue(“round r msgs. omitted at switch Sl”)
17: . Case 3 and Case 4 event strings
18: X.enqueue(“round r frame from Πi to Πk omitted by NW”)
19: X.enqueue(“round r msgs. omitted at dest. Ei”)
20: Pfail,Pprefix,E← OmissionCases(U,O,C,P,E,X,Pfail,Pprefix)
21:
22: X← 〈〉 . an empty FIFO-ordered sequence
23: . Case 5 event string
24: X.enqueue(“round r msgs. corrupted at source Ei”)
25: . Case 6 event string
26: X.enqueue(“round r frame from Πi to Πk corrupted by NW”)

27: Pfail,Pprefix,E← CorruptionCases(U,O,C,P,E,X,Pfail,Pprefix)
28:
29: Pfail ← ErrorFreeCase(U,O,C,P,E,Pfail,Pprefix) . Case 7

30: return Pfail

type 1) is considered first since that determines whether the message
is even exposed to omissions by the network (event type 3).

Finally, the case that corresponds to an error-free transmission of
message Mi,k(α) is evaluated last.

cases 1–4 These cases are evaluated by calling the OmissionCases

procedure (Line 20). Since an error event may affect multiple messages,
it is possible that an error event that might affect Mi,k(α) has already
been accounted for while analyzing another message in an earlier
recursion stage. Thus, each case is evaluated only if the corresponding
error event has not already been evaluated before, in which case, it is

78 reliability analysis of a bft protocol

Algorithm 5.2 Probabilistic analysis of an IC protocol instance.

31: procedure OmissionCases(U,O,C,P,E,X,Pfail,Pprefix)
32: while X is not empty do
33: x← X.dequeue()
34: if x 6∈ E then . analyze event x if not analyzed before
35: E← E∪ {x} . update E to prevent repeated analysis
36: Pcase ← Pprefix × P(x) . compute case probability

37: Pprefix ← Pprefix × P(x) . update prefix for subsequent cases
38: . compute dependent messages
39: So ← OmittedMessagesGiven(x)
40: . compute conditional probability using the recursive call
41: Pcond ← ProbAnalysisRec(U \ So,O∪ So,C,P,E)
42: Pfail ← Pfail + Pcase × Pcond . update failure probability

43: return Pfail,Pprefix,E . return params needed in the subsequent cases

44:
45: procedure CorruptionCases(U,O,C,P,E,X,Pfail,Pprefix)
46: . similar to the while loop in OmissionCases, except Line 53

47: while X is not empty do
48: x← X.dequeue()
49: if x 6∈ E then
50: E← E∪ {x}
51: Pcase ← Pprefix × P(x)
52: Pprefix ← Pprefix × P(x)
53: Sc ← {Mi,k(α)}
54: Pcond ← ProbAnalysisRec(U \ Sc,O,C∪ Sc,P,E)
55: Pfail ← Pfail + Pcase × Pcond

56: return Pfail,Pprefix,E

57:
58: procedure ErrorFreeCase(U,O,C,P,E,Pfail,Pprefix)
59: S← {Mi,k(α)}
60: Pcond ← ProbAnalysisRec(U \ S,O,C,P∪ S,E)
61: Pcase ← Pprefix
62: Pfail ← Pfail + Pcase × Pcond
63: return Pfail

not in the event log E (Line 34). If the event is indeed being evaluated
for the first time, it is first inserted into E (Line 35). The case analysis is
then executed as follows. First, the case probability is computed as the
product of the probability that prior cases do not occur (given by the
latest value of Pprefix) and probability P(x) with which the analyzed
case occurs (Line 36). Probability Pprefix is then updated to account
for the negation of the analyzed case, so that it can be reused during
the analysis of subsequent cases (Line 37). All messages in M that
are omitted either directly or indirectly due to X are computed as
So = OmittedMessagesGiven(X) (Line 39). The conditional failure
probability is then computed using a recursive call to ProbAnalysis-

5.3 probabilistic analysis 79

Rec with the updated values of U and O, where the set of omitted
messages So is excluded from U and added to O (Line 41). In the end,
the conditional probability is multiplied with the case probability, and
added to the cumulative failure probability (Line 42).

cases 5–7 These cases are evaluated by calling the Corruption-
Cases procedure (Line 27), and their analysis is similar to the analysis
of Cases 1–4 except for the computation of the conditional failure
probability. That is, unlike Cases 1–4, the corrupted message Mi,k(α)

is removed from U and added to C while invoking the recursive call to
ProbAnalysisRec (Line 54). The last case corresponds to the scenario
where Mi,k(α) is transmitted error-free (Line 29). In this case, Mi,k(α)

is removed from U and inserted into set P that consists of all pristine
messages (Line 60). Unlike Cases 1–6, the case probability for the last
case is simply the probability that Cases 1–6 do not occur, given by
the latest value of Pprefix (Line 61).

terminating case The recursion terminates when U is empty,
since each message has been assigned to either O, C, or P based on
whether it is affected by any fault-induced error in this case. What
remains is a computation of the conditional probability given O, C,
and P that the IC protocol instance fails. We denote this conditional
probability as P(IC failure | O,C,P) (Line 5).

Since it is impossible to estimate P(IC failure | O,C,P) without
knowing the exact contents of the corrupted messages, we derive an
upper bound on it through worst-case analysis. In a nutshell, since
all messages in M are already partitioned into sets O, C, and P, we
can deterministically apply the reduction procedure in the IC protocol
to these messages and map the conditional failure probability for the
termination case to either zero or one. We assume as a worst-case
scenario that all faulty messages are identically corrupted.

last mile errors A protocol instance may also fail if, at the last
moment, say, just after the reduction step, the decision vectors are
corrupted or the host crashes. Since the proposed analysis is based on
the analysis of message errors, to account for such last-mile errors, we
use dummy messages that are sent back to the same host. To avoid
clutter, Algorithm 5.1 does not discuss dummy messages; it can be
updated as follows. (i) The dummy messages are denoted using our
regular notation Mi,k(α), but with i = k (the value of α is irrelevant
for these dummy messages); (ii) they are incorporated into the recur-
sive analysis by adding them to message set M during initialization;
(iii) function GetEarliestMessage (Line 7) is modified to return one
of these dummy messages only if all other regular messages have been
analysed; and finally, (iv) cases 4 and 6 corresponding to network

80 reliability analysis of a bft protocol

label error event x in line 33 P(x) Pcond

X1 “round r msgs. omitted at source Ei” P1 C1

X2 “round r msgs. omitted at switch Sl” P2 C2

X3 “round r msgs. omitted at dest. Ek” P3 C3

X4 “round r frame from Πi to Πk omitted by
NW”

P4 C4

X5 “round r msgs. corrupted at source Ei” P5 C5

X6 “round r frame from Πi to Πk corrupted by
NW”

P6 C6

- “msg. Mi,k(α) is transmitted error-free” - C7

Table 5.2: Shorthand notation for the exact message error probabilities
and intermediate conditional failure probabilities used in Algo-
rithms 5.1 and 5.2. Mi,k(α) is assumed to be routed through a
single switch Sl. C1–C4 refer to Pcond at Line 41, C5 and C6 refer
to Pcond at Line 54, and C7 refers to Pcond at Line 60.

errors are not applied to the dummy messages (since these messages
are local to each host).

5.3.4 Reliability Anomalies

Algorithms 5.1 and 5.2 define a recursive procedure to compute
P(IC failure) as a function of the exact message error probabilities
defined in Section 5.3.2. However, Pfail returned at the end of function
ProbAnalysisRecSM(U,O,C,P,E) may not be monotonically increas-
ing in all exact probabilities (as evident from the use of P(x) in Lines 37

and 52). As a result, probability P(IC failure), which is computed by
invoking this recursive function, is not monotonic in all exact proba-
bilities. In presence of such anomalies, P(IC failure) cannot be safely
upper-bounded by simply replacing the exact message error probabili-
ties with their respective upper bounds. We thus derive non-negative
correction terms that are added to the analysis to mask such anomalies.

For brevity, we first introduce a shorthand notation (see Table 5.2)
to denote the exact error probabilities and the conditional failure
probabilities used in Algorithms 5.1 and 5.2. For each Pi in Table 5.2,
we let Pi = 1− Pi. Note that the shorthand notation is defined with
respect to the specific iteration of the recursive analysis, i.e., pertaining
to the analysis of message Mi,k(α) specifically.

Also, we assume in this section that message Mi,k(α) is routed
through a single switch Sl. The results can be trivially extended to
more general cases, as discussed in the end.

5.3 probabilistic analysis 81

Using the shorthand notation, Pfail returned at the end of func-
tion ProbAnalysisRecSM(U,O,C,P,E) is defined as follows. If the
condition x ∈ E (in Line 34) evaluates to false for each x ∈ X, then

Pfail =

P1 ×C1
+ P1 × P2 ×C2
+ P1 × P2 × P3 ×C3
+ P1 × P2 × P3 × P4 ×C4
+ P1 × P2 × P3 × P4 × P5 ×C5
+ P1 × P2 × P3 × P4 × P5 × P6 ×C6
+ P1 × P2 × P3 × P4 × P5 × P6 ×C7

. (5.1)

In case an event in X has already been analyzed during an earlier
stage of the recursion, the corresponding case analysis is skipped,
since x ∈ E would evaluate to true (see Line 34). In this case, if, say,
event X1 = “round r msgs. omitted at source Ei” has already been
analyzed, Pfail for this recursion step is defined by setting probabilities
P1 and C1 to zero in Eq. (5.1).

Clearly, it is not apparent from Eq. (5.1) if Pfail is monotonic in all
Pi’s, since Pfail relies on complementary probability terms Pi’s. Thus,
as a first step, we express Pfail in a canonical form consisting of only
Pi’s, i.e., where all Pi’s in Eq. (5.1) are replaced with 1− Pi, as follows:

Pfail = T1 + T2 + T3 + T4 + T5 + T6 + T7, where (5.2)

T1 = C7,

T2 =

6∑
i=1

Pi(Ci −C7),

T3 = −

5∑
i=1

6∑
j=i+1

PiPj(Cj −C7),

T4 =

4∑
i=1

5∑
j=i+1

6∑
k=j+1

PiPjPk(Ck −C7),

T5 = −

3∑
i=1

4∑
j=i+1

5∑
k=j+1

6∑
l=k+1

PiPjPkPl(Cl −C7),

T6 =

2∑
i=1

3∑
j=i+1

4∑
k=j+1

5∑
l=k+1

6∑
m=l+1

PiPjPkPlPm(Cm −C7),

T7 = −P1P2P3P4P5P6(C6 −C7).

In Eq. (5.2), Pfail’s monotonicity in all Pi’s depends on the relation be-
tween each Ci (for i ∈ {1, 2, . . . , 6}) and C7. However, this relationship
cannot be determined in advance. Even though C7 corresponds to the
conditional failure probability in an error-free scenario whereas each

82 reliability analysis of a bft protocol

i Ti,pos

1 C7

2
6∑
i=1

PiBi|Ci −C7|

3
5∑
i=1

6∑
j=i+1

PiPj(1−Bj)(|Cj −C7|)

4
4∑
i=1

5∑
j=i+1

6∑
k=j+1

PiPjPkBk(|Ck −C7|)

5
3∑
i=1

4∑
j=i+1

5∑
k=j+1

6∑
l=k+1

PiPjPkPl(1−Bl)(|Cl −C7|)

6
2∑
i=1

3∑
j=i+1

4∑
k=j+1

5∑
l=k+1

6∑
m=l+1

PiPjPkPlPmBm(|Cm −C7|)

7 P1P2P3P4P5P6(1−B6)(|C6 −C7|)

Table 5.3: Definition of each Ti,pos used in Eq. (5.5).

Ci corresponds to a conditional failure probability in an error scenario,
Ci can be smaller than C7 because of the anomaly that omission errors
can sometimes reduce the failure chances. Instead, for each Ci, we
rely on a boolean value Bi that can be evaluated at analysis runtime
to denote whether Ci > C7, based on the following definition.

Bi =

{
1 if Ci > C7
0 otherwise

(5.3)

Using Eq. (5.3), we can rewrite each term Ci −C7 as

Ci −C7 = Bi · |Ci −C7|− (1−Bi) · |Ci −C7|. (5.4)

Next, using Eq. (5.4), and relying on the fact that all probabilities
(i.e., each Pi and Ci) are positive, we split Pfail defined in Eq. (5.2) into
two terms Pfail,pos and Pfail,neg, such that Pfail,pos is guaranteed to be
non-negative and Pfail,neg is guaranteed to be non-positive. That is,

Pfail = Pfail,pos + Pfail,neg, where (5.5)

Pfail,pos =

7∑
i=1

Ti,pos, Pfail,neg =

7∑
i=1

Ti,neg,

and Ti,neg, Ti,neg are defined as in Tables 5.3 and 5.4.

Given Eq. (5.5), it is trivial to come up with an over-estimation of Pfail

5.3 probabilistic analysis 83

i Ti,neg

1 0

2 −
6∑
i=1

Pi(1−Bi)(|Ci −C7|)

3 −
5∑
i=1

6∑
j=i+1

PiPjBj(|Cj −C7|)

4 −
4∑
i=1

5∑
j=i+1

6∑
k=j+1

PiPjPk(1−Bk)(|Ck −C7|)

5 −
3∑
i=1

4∑
j=i+1

5∑
k=j+1

6∑
l=k+1

PiPjPkPlBl(|Cl −C7|)

6 −
2∑
i=1

3∑
j=i+1

4∑
k=j+1

5∑
l=k+1

6∑
m=l+1

PiPjPkPlPm(1−Bm)(|Cm −C7|)

7 −P1P2P3P4P5P6B6(|C6 −C7|)

Table 5.4: Definition of each Ti,neg used in Eq. (5.5).

(since under-approximation is unsafe) that is also monotonic in each
Pi by negating all the negative terms, as defined below:

Pfail-mono = Pfail −

7∑
i=1

Ti,neg =

7∑
i=1

Ti,pos. (5.6)

The aforementioned procedure can be generalized to any number
of switches. In particular, with every extra switch in the route from Πi
to Πk (recall that Mi,k(α) is the message being analyzed), we need to
deal with one extra error probability term, and thus the definition of

84 reliability analysis of a bft protocol

Pfail in Eq. (5.2) would be updated accordingly. For example, with one
additional switch, Pfail would be defined as follows:

Pfail = T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8, (5.7)

where T1 = C8,

T2 =

7∑
i=1

Pi(Ci −C8),

T3 = −

6∑
i=1

7∑
j=i+1

PiPj(Cj −C8),

T4 =

5∑
i=1

6∑
j=i+1

7∑
k=j+1

PiPjPk(Ck −C8),

T5 = −

4∑
i=1

5∑
j=i+1

6∑
k=j+1

7∑
l=k+1

PiPjPkPl(Cl −C8),

T6 =

3∑
i=1

4∑
j=i+1

5∑
k=j+1

6∑
l=k+1

7∑
m=l+1

PiPjPkPlPm(Cm −C8),

T7 = −

2∑
i=1

3∑
j=i+1

4∑
k=j+1

5∑
l=k+1

6∑
m=l+1

7∑
n=m+1

(
PiPjPkPlPmPn

(Cm −C8)

)
,

and T8 = P1P2P3P4P5P6P7(C7 −C8).

This concludes the first part of the reliability analysis. In our evalua-
tion (Section 5.5), we show that the correction terms added to ensure
monotonicity have a very small impact on the overall failure probabil-
ity, in the sense that they do not result in appreciable pessimism. Next,
we use the proposed analysis to upper-bound the overall failure rate
of the IC protocol, given a specific hard real-time implementation.

5.4 analysis instantiation

The recursive analysis in Section 5.3 relies on exact protocol-specific
message error probabilities, which are unknown in practice. In the
second part of the reliability analysis, we instantiate the recursive
analysis with implementation-specific upper bounds on these exact
probabilities, which is safe since we have explicitly addressed all relia-
bility anomalies. For the instantiation, we rely on the hard real-time
design of the IC protocol (which was presented in Section 4.2.2) and
on the probabilistic modeling of basic errors (which was presented in
Section 3.3.3). We start by summarizing all notations and assumptions
from the previous sections that are relevant to the following analysis.

In Section 4.2.2, we mapped the IC protocol steps to a periodic task
model. We realized the Nr sending steps using tasks T1s , T2s , . . . , TNrs ,

5.4 analysis instantiation 85

notation remark

P(x, δ,γcrash(Ei)) PMF for crash errors on host Ei
P(x, δ,γcrash(Sl)) PMF for crash errors on switch Sl
P(x, δ,γcorrupt(Ei)) PMF for corruption errors on host Ei
P(x, δ,γcorrupt(Sl)) PMF for corruption errors on switch Sl
P(x, δ,γcorrupt(Lk)) PMF for corruption errors on network link Lk

Table 5.5: Probability Mass Function (PMF) for different types of basic errors.

the Nr state transition steps using tasks T1t , T2t , . . . , TNrt , and the re-
duction step using task Tr. To ensure that these tasks are activated
in the order required by the IC protocol, they were assigned appro-
priate release offsets. The release offsets were defined as a function
of the network latency bound ∆NW (which denotes the worst-case la-
tency for the exchange of IC protocol messages over the network) and
response-time bounds Rrs and Rrt (which denote the global worst-case
response time of each task Trs and Trt , respectively). Both these bounds
can be easily derived using network- and host-specific schedulability
analyses. Thus, the hard real-time implementation, besides ensuring
timeliness, ensures that tasks always execute in deterministic intervals,
which helps us upper-bound different message error probabilities.

To quantify the probability of non-zero crash or corruption events
in any given interval of time, we proposed in Section 3.3.3 a Poisson-
based arrival model for the basic errors. As per the model, the proba-
bility that x instances of any basic error type err affect any component
comp in any interval of length δ, given the peak error rate γerr(comp),
is denoted P(x, δ,γerr(comp)). In the case of an Ethernet-based system,
which we analyze in this chapter, the crash and corruption error prob-
abilities on each host Ei, switch Sl, and network link Lk are modeled
using a similar notation (see Table 5.5).

The proposed implementation-specific upper bounds also relies
on the following set of assumptions regarding crash and corruption
errors. A crashed system remains unavailable for some time while it
reboots and thus causes an interval in which messages are continu-
ously omitted. We assume that the recovery interval of each PE Ei and
switch Si is upper-bounded by ∆reboot(Ei) and ∆reboot(Si), respectively,
and that any messages queued in a switch are lost upon a crash. Re-
garding corruption errors, we assume that process states are checked
at least once between consecutive activations of the protocol. Thus,
an IC protocol task cannot be affected by memory corruptions that
occur prior to the end of the previous protocol instance. Finally, as also
mentioned in Section 3.3.3, we consider all basic errors as independent
events based on their stochastic nature (recall that we focus exclusively
on basic errors due to environmentally-induced transient faults).

86 reliability analysis of a bft protocol

�reboot(Ek)
<latexit sha1_base64="6MUXr0nnI14DPpp0wclhbinR21s=">AAACBHicbVDLSgNBEJz1GeNr1WMui0GIl7AbBXMMqOAxgnlAEpbZSScZMruzzPSKYcnBi7/ixYMiXv0Ib/6Nk8dBEwsaiqpuuruCWHCNrvttrayurW9sZray2zu7e/v2wWFdy0QxqDEppGoGVIPgEdSQo4BmrICGgYBGMLyc+I17UJrL6A5HMXRC2o94jzOKRvLtXPsKBFI/bSM8YKogkBLH48K1Pzz17bxbdKdwlok3J3kyR9W3v9pdyZIQImSCat3y3Bg7KVXImYBxtp1oiCkb0j60DI1oCLqTTp8YOydG6To9qUxF6EzV3xMpDbUehYHpDCkO9KI3Ef/zWgn2yp2UR3GCELHZol4iHJTOJBGnyxUwFCNDKFPc3OqwAVWUockta0LwFl9eJvVS0Tsrlm7P85XyPI4MyZFjUiAeuSAVckOqpEYYeSTP5JW8WU/Wi/VufcxaV6z5zBH5A+vzBxSBmFQ=</latexit>

⇧k
<latexit sha1_base64="zw5Xn0hnwsNu2wNpZo0upP0uMHI=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWMF0xbaUDbbTbt0swm7E6GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfzsbm1vbObmmvvH9weHRcOTltmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ3dzvPHFtRKIecZryIKYjJSLBKFrJ77fEYDKoVN2auwBZJ15BqlCgNah89YcJy2KukElqTM9zUwxyqlEwyWflfmZ4StmEjnjPUkVjboJ8ceyMXFplSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKNGkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT9mG4K2+vE7a9Zp3Xas/3FSbjSKOEpzDBVyBB7fQhHtogQ8MBDzDK7w5ynlx3p2PZeuGU8ycwR84nz+b+46F</latexit>

T r
t

<latexit sha1_base64="Bolg++8LOx+JNTo7mg7h0By+88s=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy223bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEhh0HW/nY3Nre2d3cJecf/g8Oi4dHLaMnGqGfdZLGPdCanhUijuo0DJO4nmNAolb4eTu7nffuLaiFg1cZrwIKIjJYaCUbSS3+zjo+6Xym7FXYCsEy8nZcjR6Je+eoOYpRFXyCQ1puu5CQYZ1SiY5LNiLzU8oWxCR7xrqaIRN0G2OHZGLq0yIMNY21JIFurviYxGxkyj0HZGFMdm1ZuL/3ndFIe1IBMqSZErtlw0TCXBmMw/JwOhOUM5tYQyLeythI2ppgxtPkUbgrf68jppVSvedaX6cFOu1/I4CnAOF3AFHtxCHe6hAT4wEPAMr/DmKOfFeXc+lq0bTj5zBn/gfP4AwH2OnQ==</latexit>

t1
<latexit sha1_base64="0OaYIontm67T2LorNHwBlz31178=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzjwBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtfvrSqOex1GEMziHS/DgBhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwPkjZY=</latexit>

t2
<latexit sha1_base64="d04zkK/ml8T/jWPxf4r6CevJVK0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk3at6l1Va/fXlUY9j6MIZ3AOl+DBDTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwVojZc=</latexit>

�NW
<latexit sha1_base64="bDhFQSoLVjCsMnc3Pzh1A/xqZQE=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LGgB09SwX5AGspmu22XbjZhdyKU0J/hxYMiXv013vw3btsctPXBwOO9GWbmhYkUBl3321lb39jc2i7sFHf39g8OS0fHLROnmvEmi2WsOyE1XArFmyhQ8k6iOY1Cydvh+Gbmt5+4NiJWjzhJeBDRoRIDwShaye/ecom0l923p71S2a24c5BV4uWkDDkavdJXtx+zNOIKmaTG+J6bYJBRjYJJPi12U8MTysZ0yH1LFY24CbL5yVNybpU+GcTalkIyV39PZDQyZhKFtjOiODLL3kz8z/NTHNSCTKgkRa7YYtEglQRjMvuf9IXmDOXEEsq0sLcSNqKaMrQpFW0I3vLLq6RVrXiXlerDVbley+MowCmcwQV4cA11uIMGNIFBDM/wCm8OOi/Ou/OxaF1z8pkT+APn8wco/JEk</latexit>

Rr
s

<latexit sha1_base64="WbH4H1Vrl95GkzHVRAA135N1rOU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoeuY/PKHSPJH3ZpxiENOB5BFn1FjJv+vpR9UrV9yqOwdZJV5OKpCj2St/dfsJy2KUhgmqdcdzUxNMqDKcCZyWupnGlLIRHWDHUklj1MFkfuyUnFmlT6JE2ZKGzNXfExMaaz2OQ9sZUzPUy95M/M/rZCaqBxMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lrVrVu6jWbi8rjXoeRxFO4BTOwYMraMANNMEHBhye4RXeHOm8OO/Ox6K14OQzx/AHzucPu+eOmg==</latexit>

T r
s

<latexit sha1_base64="AMAv/mDihvZnfFAmPxkWxNpUkgg=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+OxubW9s7u4W94v7B4dFx6eS0peNUMfRZLGLVCalGwSX6hhuBnUQhjUKB7XByN/fbT6g0j2XTTBMMIjqSfMgZNVbym339qPqlsltxFyDrxMtJGXI0+qWv3iBmaYTSMEG17npuYoKMKsOZwFmxl2pMKJvQEXYtlTRCHWSLY2fk0ioDMoyVLWnIQv09kdFI62kU2s6ImrFe9ebif143NcNakHGZpAYlWy4apoKYmMw/JwOukBkxtYQyxe2thI2poszYfIo2BG/15XXSqla860r14aZcr+VxFOAcLuAKPLiFOtxDA3xgwOEZXuHNkc6L8+58LFs3nHzmDP7A+fwBvveOnA==</latexit>

Rr
t

<latexit sha1_base64="QcfmidxUZGd/CJsbft5j58tJ9kk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwhH1zP/4YlrIxJ1j+OUBzEdKBEJRtFK/l0PH3WvXHGr7hxklXg5qUCOZq/81e0nLIu5QiapMR3PTTGYUI2CST4tdTPDU8pGdMA7lioacxNM5sdOyZlV+iRKtC2FZK7+npjQ2JhxHNrOmOLQLHsz8T+vk2FUDyZCpRlyxRaLokwSTMjsc9IXmjOUY0so08LeStiQasrQ5lOyIXjLL6+SVq3qXVRrt5eVRj2PowgncArn4MEVNOAGmuADAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHvW2Omw==</latexit>

Earliest crash
that can affect TsT r

s
<latexit sha1_base64="+7SFRfetyTvhn99yDQX82O2Xl/Y=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9ikoa23ghePFZq20May2W7bpZtN2N0IJfQ3ePGgiFd/kDf/jZu2goo+GHi8N8PMvDDhTGmEPqzCxubW9k5xt7S3f3B4VD4+6ag4lYT6JOax7IVYUc4E9TXTnPYSSXEUctoNZ9e5372nUrFYtPU8oUGEJ4KNGcHaSH57qO7ksFxB9lWj5no1iGyE6o7r5MSte1UPOkbJUQFrtIbl98EoJmlEhSYcK9V3UKKDDEvNCKeL0iBVNMFkhie0b6jAEVVBtjx2AS+MMoLjWJoSGi7V7xMZjpSaR6HpjLCeqt9eLv7l9VM9bgQZE0mqqSCrReOUQx3D/HM4YpISzeeGYCKZuRWSKZaYaJNPyYTw9Sn8n3Rc26na7q1XaaJ1HEVwBs7BJXBAHTTBDWgBHxDAwAN4As+WsB6tF+t11Vqw1jOn4Aest08crY7W</latexit>

�reboot(Ei)
<latexit sha1_base64="79bQbVt01DBOczrCFtL2CPnO1pM=">AAACBHicbVDLSgNBEJz1GeNr1WMui0GIl7AbBXMMqOAxgnlAEpbZSScZMruzzPSKYcnBi7/ixYMiXv0Ib/6Nk8dBEwsaiqpuuruCWHCNrvttrayurW9sZray2zu7e/v2wWFdy0QxqDEppGoGVIPgEdSQo4BmrICGgYBGMLyc+I17UJrL6A5HMXRC2o94jzOKRvLtXPsKBFI/bSM8YKogkBLH48K1z099O+8W3SmcZeLNSZ7MUfXtr3ZXsiSECJmgWrc8N8ZOShVyJmCcbScaYsqGtA8tQyMagu6k0yfGzolRuk5PKlMROlP190RKQ61HYWA6Q4oDvehNxP+8VoK9ciflUZwgRGy2qJcIB6UzScTpcgUMxcgQyhQ3tzpsQBVlaHLLmhC8xZeXSb1U9M6KpdvzfKU8jyNDcuSYFIhHLkiF3JAqqRFGHskzeSVv1pP1Yr1bH7PWFWs+c0T+wPr8ARF3mFI=</latexit>

t0
<latexit sha1_base64="R62CT5RJRsyybggwmjPE8AA1Cz8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzhwB+WKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtfvrSqOex1GEMziHS/DgBhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwJgjZU=</latexit>

time
⇧i

<latexit sha1_base64="zT2nolsVtmNUo3PBgGHcICw1tn0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWMF0xbaUDbbSbt0swm7G6GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nY3Nre2d3dJeef/g8Oi4cnLa1kmmGPosEYnqhlSj4BJ9w43AbqqQxqHATji5m/udJ1SaJ/LRTFMMYjqSPOKMGiv5/RYf8EGl6tbcBcg68QpShQKtQeWrP0xYFqM0TFCte56bmiCnynAmcFbuZxpTyiZ0hD1LJY1RB/ni2Bm5tMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJmoEOZdpZlCy5aIoE8QkZP45GXKFzIipJZQpbm8lbEwVZcbmU7YheKsvr5N2veZd1+oPN9Vmo4ijBOdwAVfgwS004R5a4AMDDs/wCm+OdF6cd+dj2brhFDNn8AfO5w+Y846D</latexit>

T r
t

<latexit sha1_base64="Bolg++8LOx+JNTo7mg7h0By+88s=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy223bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEhh0HW/nY3Nre2d3cJecf/g8Oi4dHLaMnGqGfdZLGPdCanhUijuo0DJO4nmNAolb4eTu7nffuLaiFg1cZrwIKIjJYaCUbSS3+zjo+6Xym7FXYCsEy8nZcjR6Je+eoOYpRFXyCQ1puu5CQYZ1SiY5LNiLzU8oWxCR7xrqaIRN0G2OHZGLq0yIMNY21JIFurviYxGxkyj0HZGFMdm1ZuL/3ndFIe1IBMqSZErtlw0TCXBmMw/JwOhOUM5tYQyLeythI2ppgxtPkUbgrf68jppVSvedaX6cFOu1/I4CnAOF3AFHtxCHe6hAT4wEPAMr/DmKOfFeXc+lq0bTj5zBn/gfP4AwH2OnQ==</latexit>

T r
s

<latexit sha1_base64="AMAv/mDihvZnfFAmPxkWxNpUkgg=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+OxubW9s7u4W94v7B4dFx6eS0peNUMfRZLGLVCalGwSX6hhuBnUQhjUKB7XByN/fbT6g0j2XTTBMMIjqSfMgZNVbym339qPqlsltxFyDrxMtJGXI0+qWv3iBmaYTSMEG17npuYoKMKsOZwFmxl2pMKJvQEXYtlTRCHWSLY2fk0ioDMoyVLWnIQv09kdFI62kU2s6ImrFe9ebif143NcNakHGZpAYlWy4apoKYmMw/JwOukBkxtYQyxe2thI2poszYfIo2BG/15XXSqla860r14aZcr+VxFOAcLuAKPLiFOtxDA3xgwOEZXuHNkc6L8+58LFs3nHzmDP7A+fwBvveOnA==</latexit>

Rr
t

<latexit sha1_base64="QcfmidxUZGd/CJsbft5j58tJ9kk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwhH1zP/4YlrIxJ1j+OUBzEdKBEJRtFK/l0PH3WvXHGr7hxklXg5qUCOZq/81e0nLIu5QiapMR3PTTGYUI2CST4tdTPDU8pGdMA7lioacxNM5sdOyZlV+iRKtC2FZK7+npjQ2JhxHNrOmOLQLHsz8T+vk2FUDyZCpRlyxRaLokwSTMjsc9IXmjOUY0so08LeStiQasrQ5lOyIXjLL6+SVq3qXVRrt5eVRj2PowgncArn4MEVNOAGmuADAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHvW2Omw==</latexit>

time

 �clock
<latexit sha1_base64="5VzVoa/UsOVAWA+g8xF1mFhzWYg=">AAACA3icdVDLSgNBEJz1bXxFvellMAiewk4UE2+CHjwqmAdkQ5iddOKQ2YczvWJYAl78FS8eFPHqT3jzb5xNIqhoQUNR1U13lx8radB1P5yp6ZnZufmFxdzS8srqWn59o2aiRAuoikhFuuFzA0qGUEWJChqxBh74Cup+/yTz6zegjYzCSxzE0Ap4L5RdKThaqZ3f8hRcU+8UFPJ26iHcYipUJPrDYTtfcIuu6zLGaEZY+dC15OioUmIVyjLLokAmOG/n371OJJIAQhSKG9NkboytlGuUQsEw5yUGYi76vAdNS0MegGmlox+GdNcqHdqNtK0Q6Uj9PpHywJhB4NvOgOOV+e1l4l9eM8FupZXKME4QQjFe1E0UxYhmgdCO1CBQDSzhQkt7KxVXXHOBNracDeHrU/o/qZWKbL9YujgoHFcmcSyQbbJD9ggjZXJMzsg5qRJB7sgDeSLPzr3z6Lw4r+PWKWcys0l+wHn7BPjtmF8=</latexit>Mi,k may be delivered at Ek

any time in this interval
Mr

i,k
<latexit sha1_base64="aTtVhOhwqG8kNeJ6zLdquXWwJzE=">AAAB8HicdVDLSgMxFM3UV62vqks3wSK4kCGpHe2y4MaNUME+pB1LJs20oZnMkGSEMvQr3LhQxK2f486/MX0IKnrgwuGce7n3niARXBuEPpzc0vLK6lp+vbCxubW9U9zda+o4VZQ1aCxi1Q6IZoJL1jDcCNZOFCNRIFgrGF1M/dY9U5rH8saME+ZHZCB5yCkxVrq96mX8ZDS5U71iCbnozKvgKkSuh3AVe5aUPYxQGWIXzVACC9R7xfduP6ZpxKShgmjdwSgxfkaU4VSwSaGbapYQOiID1rFUkohpP5sdPIFHVunDMFa2pIEz9ftERiKtx1FgOyNihvq3NxX/8jqpCat+xmWSGibpfFGYCmhiOP0e9rli1IixJYQqbm+FdEgUocZmVLAhfH0K/yfNsotP3fJ1pVRDizjy4AAcgmOAwTmogUtQBw1AQQQewBN4dpTz6Lw4r/PWnLOY2Qc/4Lx9AuuUkHA=</latexit>

Ek
<latexit sha1_base64="7jc1Shk0UBmqSr1HjNg+IrXOHsw=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpKxo10WRHBZ0T6gHUomzbShmcyQZIQy9BPcuFDErV/kzr8xfQgqeuDC4Zx7ufeeMBVcG4Q+nMLK6tr6RnGztLW9s7tX3j9o6SRTlDVpIhLVCYlmgkvWNNwI1kkVI3EoWDscX8789j1TmifyzkxSFsRkKHnEKTFWur3qj/vlCnLRuV/FNYhcH+Ea9i3xfIyQB7GL5qiAJRr98ntvkNAsZtJQQbTuYpSaICfKcCrYtNTLNEsJHZMh61oqScx0kM9PncITqwxglChb0sC5+n0iJ7HWkzi0nTExI/3bm4l/ed3MRLUg5zLNDJN0sSjKBDQJnP0NB1wxasTEEkIVt7dCOiKKUGPTKdkQvj6F/5OW5+Iz17upVupoGUcRHIFjcAowuAB1cA0aoAkoGIIH8ASeHeE8Oi/O66K14CxnDsEPOG+fYGaNzw==</latexit>

All crashes in this interval can
omit messages Mi,* sent by Ts T r

s
<latexit sha1_base64="+7SFRfetyTvhn99yDQX82O2Xl/Y=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9ikoa23ghePFZq20May2W7bpZtN2N0IJfQ3ePGgiFd/kDf/jZu2goo+GHi8N8PMvDDhTGmEPqzCxubW9k5xt7S3f3B4VD4+6ag4lYT6JOax7IVYUc4E9TXTnPYSSXEUctoNZ9e5372nUrFYtPU8oUGEJ4KNGcHaSH57qO7ksFxB9lWj5no1iGyE6o7r5MSte1UPOkbJUQFrtIbl98EoJmlEhSYcK9V3UKKDDEvNCKeL0iBVNMFkhie0b6jAEVVBtjx2AS+MMoLjWJoSGi7V7xMZjpSaR6HpjLCeqt9eLv7l9VM9bgQZE0mqqSCrReOUQx3D/HM4YpISzeeGYCKZuRWSKZaYaJNPyYTw9Sn8n3Rc26na7q1XaaJ1HEVwBs7BJXBAHTTBDWgBHxDAwAN4As+WsB6tF+t11Vqw1jOn4Aest08crY7W</latexit>

Mr
i,⇤

<latexit sha1_base64="P5230/7Ha1ZO+76FO17dTDWON9o=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQRGTLToa27ghs3QgX7kHYsmTRtQ5OZIckIZehXuHGhiFs/x51/Y6atoKIHLhzOuZd77wlizpRG6MNaWl5ZXVvPbeQ3t7Z3dgt7+00VJZLQBol4JNsBVpSzkDY005y2Y0mxCDhtBeOLzG/dU6lYFN7oSUx9gYchGzCCtZFur3opOzud3sleoYjs82rZ9coQ2QhVHNfJiFvxSh50jJKhCBao9wrv3X5EEkFDTThWquOgWPsplpoRTqf5bqJojMkYD2nH0BALqvx0dvAUHhulDweRNBVqOFO/T6RYKDURgekUWI/Uby8T//I6iR5U/ZSFcaJpSOaLBgmHOoLZ97DPJCWaTwzBRDJzKyQjLDHRJqO8CeHrU/g/abq2U7Lda69YQ4s4cuAQHIET4IAKqIFLUAcNQIAAD+AJPFvSerRerNd565K1mDkAP2C9fQKZwJA7</latexit>

All crashes in this interval can omit
messages M*,k received by Ts Mr

⇤,k
<latexit sha1_base64="s/UpdJ6Tp4WoqYd7ObfbDW2hziA=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQRGWamQ1t3BTduhAr2Ie1YMmnahiaZIckIZehXuHGhiFs/x51/Y6atoKIHLhzOuZd77wljRpV2nA9raXlldW09t5Hf3Nre2S3s7TdVlEhMGjhikWyHSBFGBWloqhlpx5IgHjLSCscXmd+6J1LRSNzoSUwCjoaCDihG2ki3V7309Gw8vZO9QtGxz6tlzy9Dx3aciuu5GfEqfsmHrlEyFMEC9V7hvduPcMKJ0JghpTquE+sgRVJTzMg0300UiREeoyHpGCoQJypIZwdP4bFR+nAQSVNCw5n6fSJFXKkJD00nR3qkfnuZ+JfXSfSgGqRUxIkmAs8XDRIGdQSz72GfSoI1mxiCsKTmVohHSCKsTUZ5E8LXp/B/0vRst2R7136x5iziyIFDcAROgAsqoAYuQR00AAYcPIAn8GxJ69F6sV7nrUvWYuYA/ID19gmcUJA9</latexit>

T r
t

<latexit sha1_base64="8O1KP7RB1yOHNGB87STcnUNLZFE=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9ikoa23ghePFZq20May2W7bpZtN2N0IJfQ3ePGgiFd/kDf/jZu2goo+GHi8N8PMvDDhTGmEPqzCxubW9k5xt7S3f3B4VD4+6ag4lYT6JOax7IVYUc4E9TXTnPYSSXEUctoNZ9e5372nUrFYtPU8oUGEJ4KNGcHaSH57qO/ksFxB9lWj5no1iGyE6o7r5MSte1UPOkbJUQFrtIbl98EoJmlEhSYcK9V3UKKDDEvNCKeL0iBVNMFkhie0b6jAEVVBtjx2AS+MMoLjWJoSGi7V7xMZjpSaR6HpjLCeqt9eLv7l9VM9bgQZE0mqqSCrReOUQx3D/HM4YpISzeeGYCKZuRWSKZaYaJNPyYTw9Sn8n3Rc26na7q1XaaJ1HEVwBs7BJXBAHTTBDWgBHxDAwAN4As+WsB6tF+t11Vqw1jOn4Aest08eM47X</latexit>

t01
<latexit sha1_base64="9vTICWdx6LohF87rB2K75F+/L2g=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mqYI8FLx4r2A9oQ9lsN+3S3U3Y3Qgh9C948aCIV/+QN/+N2zQHbX0w8Hhvhpl5QcyZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV0eJIrRDIh6pfoA15UzSjmGG036sKBYBp71gdrfwe09UaRbJR5PG1Bd4IlnICDa5NPIuR9WaW3dzoHXiFaQGBdqj6tdwHJFEUGkIx1oPPDc2foaVYYTTeWWYaBpjMsMTOrBUYkG1n+W3ztGFVcYojJQtaVCu/p7IsNA6FYHtFNhM9aq3EP/zBokJm37GZJwYKslyUZhwZCK0eByNmaLE8NQSTBSztyIyxQoTY+Op2BC81ZfXSbdR967rjYebWqtZxFGGMziHK/DgFlpwD23oAIEpPMMrvDnCeXHenY9la8kpZk7hD5zPH2Tsjcc=</latexit>

t02
<latexit sha1_base64="3s4fPskm/9dUacuvDYoojPCEu3E=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mqYI8FLx4r2A9oQ9lsN+3S3U3Y3Qgh9C948aCIV/+QN/+N2zQHbX0w8Hhvhpl5QcyZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV0eJIrRDIh6pfoA15UzSjmGG036sKBYBp71gdrfwe09UaRbJR5PG1Bd4IlnICDa5NGpcjqo1t+7mQOvEK0gNCrRH1a/hOCKJoNIQjrUeeG5s/Awrwwin88ow0TTGZIYndGCpxIJqP8tvnaMLq4xRGClb0qBc/T2RYaF1KgLbKbCZ6lVvIf7nDRITNv2MyTgxVJLlojDhyERo8TgaM0WJ4aklmChmb0VkihUmxsZTsSF4qy+vk26j7l3XGw83tVaziKMMZ3AOV+DBLbTgHtrQAQJTeIZXeHOE8+K8Ox/L1pJTzJzCHzifP2Zxjcg=</latexit>

t00
<latexit sha1_base64="ITNIX7lJO16l6+PdWMaxwjsM5as=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mqYI8FLx4r2A9oQ9lsN+3S3U3Y3Qgh9C948aCIV/+QN/+N2zQHbX0w8Hhvhpl5QcyZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV0eJIrRDIh6pfoA15UzSjmGG036sKBYBp71gdrfwe09UaRbJR5PG1Bd4IlnICDa5NHIvR9WaW3dzoHXiFaQGBdqj6tdwHJFEUGkIx1oPPDc2foaVYYTTeWWYaBpjMsMTOrBUYkG1n+W3ztGFVcYojJQtaVCu/p7IsNA6FYHtFNhM9aq3EP/zBokJm37GZJwYKslyUZhwZCK0eByNmaLE8NQSTBSztyIyxQoTY+Op2BC81ZfXSbdR967rjYebWqtZxFGGMziHK/DgFlpwD23oAIEpPMMrvDnCeXHenY9la8kpZk7hD5zPH2NnjcY=</latexit>

Earliest task
release time
Latest task
finishing time

Earliest crash that
can affect the

delivery of M*,kMr
⇤,k

<latexit sha1_base64="s/UpdJ6Tp4WoqYd7ObfbDW2hziA=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQRGWamQ1t3BTduhAr2Ie1YMmnahiaZIckIZehXuHGhiFs/x51/Y6atoKIHLhzOuZd77wljRpV2nA9raXlldW09t5Hf3Nre2S3s7TdVlEhMGjhikWyHSBFGBWloqhlpx5IgHjLSCscXmd+6J1LRSNzoSUwCjoaCDihG2ki3V7309Gw8vZO9QtGxz6tlzy9Dx3aciuu5GfEqfsmHrlEyFMEC9V7hvduPcMKJ0JghpTquE+sgRVJTzMg0300UiREeoyHpGCoQJypIZwdP4bFR+nAQSVNCw5n6fSJFXKkJD00nR3qkfnuZ+JfXSfSgGqRUxIkmAs8XDRIGdQSz72GfSoI1mxiCsKTmVohHSCKsTUZ5E8LXp/B/0vRst2R7136x5iziyIFDcAROgAsqoAYuQR00AAYcPIAn8GxJ69F6sV7nrUvWYuYA/ID19gmcUJA9</latexit>

Figure 5.2: Illustration to demonstrate when a crash on the sender side (or
the receiver side) may result in the omission of messages that are
to be sent from (or delivered to) that host.

5.4.1 Upper-Bound Node Error Probabilities

Using the Poisson arrival model, we first upper-bound the probability
of node errors. Let t1 and t ′1 denote the release time of task Trs (respon-
sible for the sending step in round r) on PEs Ei and Ek, respectively.
Similarly, let t2 = t1 + R

r
s + ∆NW and t ′2 = t ′1 + R

r
s + ∆NW denote

Trt ’s release time on PEs Ei and Ek, respectively. Since the IC protocol
rounds on all PEs execute synchronously and since the PE clocks dif-
fer by at most ∆clock time units, |t ′1 − t1| 6 ∆clock and |t ′2 − t2| 6 ∆clock.
These parameters along with error scenarios are illustrated in Fig. 5.2.

The sending step on PE Ei may be omitted if node Ei is crashed at
any time during task Trs ’s scheduling window [t1, t1 + Rrs). Thus, the
event “round r msgs. omitted at source Ei” may occur if at least one
crash occurs during interval [t1 −∆reboot(Ei), t1 + Rrs), i.e.,

P(“round r msgs. omitted at source Ei”)

6 1− P(0, Rrs +∆reboot(Ei), γcrash(Ei)). (5.8)

The round r messages sent from Πi to Πk may arrive at Πk any time
during [t1, t1 + Rrs +∆NW). These messages are then used to update
the EIG tree on Ek any time during task Trt ’s scheduling window
[t ′2, t ′2 + R

r
t). Thus, the event “round r msgs. omitted at dest. Ek” may

occur if at least one crash occurs during [t1, t ′2 + R
r
t). Since time t2

5.4 analysis instantiation 87

and t ′2 may differ by at most ∆clock (as also shown in Fig. 5.2), the
event “round r msgs. omitted at dest. Ek” may occur if at least one
crash occurs during interval [t1, t2 +∆clock + R

r
t), i.e.,

P(“round r msgs. omitted at dest. Ek”)

6 1− P

(
0,

(
Rrs +∆NW + Rrt+

∆clock +∆reboot(Ek)

)
, γcrash(Ek)

)
. (5.9)

Furthermore, all round r messages sent from Ei that are routed
through switch Sl can be omitted if switch Sl is crashed at any time
during the interval [t1, t1+Rrs+∆NW). Similarly, any round rmessage
sent from Ek that is routed through switch Sl may be omitted if switch
Sl is crashed at any time during time interval [t ′1, t ′1 + R

r
s + ∆NW).

Since these two intervals are expected to be offset by at most ∆clock

time units, by generalizing across all round r messages that are routed
through Sl, we get the following upper bound.

P(“round r msgs. omitted at switch Sl”)

6 1− P(0, Rrs +∆NW +∆clock +∆reboot(Sl), γcrash(Sl)) (5.10)

The recovery interval of nodes from crashes is typically signifi-
cantly larger than the task scheduling windows. Hence, for each of
the omission errors whose probability is upper-bounded above, we
conservatively assume that if a crash error occurs once during the
protocol instance, it affects all subsequent tasks (and rounds) on that
node in the remaining part of the protocol instance.

To upper-bound the probability of corruption errors, we need to
argue about their exposure intervals. The entire message broadcast
Mr
i,∗ may be corrupted if the common payload is corrupted dur-

ing preparation as part of the sending task Trs ’s execution. The pay-
load corruption may even depend on state corruption during earlier
rounds of the same protocol instance (e.g., corruption of the EIG tree).
However, due to memory protection mechanisms (recall from Sec-
tion 3.3.2), latent errors prior to the beginning of the protocol instance
do not affect the protocol’s execution. Hence, since Trs ’s release off-
set φrs denotes the time since the start of the IC protocol instance,
and since Rrs denotes the maximum response time of Trs , the event
“round r msgs. corrupted at source Ei” may occur if at least one cor-
ruption error occurs during an interval of length φrs + Rrs.

P(“round r msgs. corrupted at source Ei”)

6 1− P(0, φrs + R
r
s, γcorrupt(Ei)) (5.11)

88 reliability analysis of a bft protocol

5.4.2 Upper-Bound Network Error Probabilities

Next, we upper-bound the probability of network errors. Upper-
bounding the probability of message omission or corruption by the
network layer is non-trivial because the network itself is constituted
of multiple components (links and switches), each of which may expe-
rience different rates of transient faults.

The standard 32-bit Cyclic Redundancy Check (CRC) used in Ether-
net networks successfully detects every message corruption with three
or fewer bit flips [118], whereas error detection becomes increasingly
more difficult with larger numbers of bit-flips. Thus, if the message
frame carrying Mr

i,k suffers up to three bit-flips during transmission,
the corruption is detected and the frame is dropped. In contrast, if the
message frame experiences more than three bit-flips, the corruption
may remain undetected. Hence, if events A1 and A2 hold, where

• A1 denotes event “Mr
i,k suffers no corruption on any of the

Ethernet links in routei,k” and

• A2 denotes event “Mr
i,k suffers no corruption on any of the

switches in routei,k,”

Mr
i,k is guaranteed to not be omitted during transmission, i.e.,

P

(
“round r frame from Πi

to Πk omitted by NW”

)
6 1− P(A1) · P(A2). (5.12)

Supposing that routei,k = 〈Ll1Sl1Ll2Sl2 . . . Lln−1Sln−1Lln〉 consists of
n hops, and using the independence assumption, the probabilities of
events A1 and A2 are defined as

P(A1) =
∏

16x6n

P
(
0,∆link(M

r
i,k),γcorrupt(Llx)

)
and

P(A2) =
∏

16x<n

P
(
0,R+(Mr

i,k,Slx),γcorrupt(Slx)
)

, (5.13)

where R+(Mr
i,k,Slx) denotes the maximum queuing delay of message

frame Mr
i,k on switch Slx and ∆reboot(Slx) denotes the recovery time

of switch Slx from a fault-induced reboot.
Frame Mr

i,k is corrupted by the network only if it is undetectably
corrupted (i.e., with four or more bit-flips). To accurately upper-bound
its probability, we must account for two factors.

1. If Mr
i,k is undetectably corrupted once, any corruptions later on

the network path need not be accounted for (as a worst case, we
assume that more bit-flips later do not reverse previous bit-flips
and do not render the corruption detectable).

2. Before Mr
i,k is undetectably corrupted for the first time, it does

not suffer any detectable corruptions so as to cause its omission.

5.5 evaluation 89

Thus, we define the probability upper bound as a sum of the probabil-
ities of events C1,x and C2,y for each 1 6 x 6 n and 1 6 y < n,

• where C1,x denotes event “the first undetectable corruption
occurs on the xth link in routei,j” and

• C2,y denotes event “the first undetectable corruption occurs on
the yth switch in routei,j,” i.e.,

P(“round r frame from Πi to Πk corrupted by NW”)

6
∑

16x6n

P(C1,x) +
∑

16y<n

P(C2,y). (5.14)

Like P(A1) and P(A2), the probabilities of events C1,x and C1,y are
defined using the independence assumption:

P(C1,x) =

(∏

16y<x

(
P(0,Lky)P(0,Sky)

))

× P(4+,Lkx)

 and

P(C2,y) =

(∏

16z<y (P(0,Lkz)P(0,Skz))
)

× P(0,Lky)P(4+,Sky)

 , (5.15)

where P(0,Lky) = P(0,∆link(M
r
i,k),γcorrupt(Lky)),

P(0,Sky) = P(0,R+(Mr
i,k,Sky),γcorrupt(Sky)),

P(4+,Lky) =
∑
i>4

P(i,∆link(M
r
i,k),γcorrupt(Lky)),

P(4+,Sky) =
∑
i>4

P(i,R+(Mr
i,k,Sky),γcorrupt(Sky)).

The network analyses above are defined assuming a 32-bit CRC.
However, they can be trivially modified if an alternative CRC is being
used. We only require that the number of bit-flips up to which the
CRC guarantees detection is known in advance. More generally, the
analysis can be defined for any predictable networking standard, as
long as corresponding timing anaylses are available.

5.5 evaluation

We evaluate first the pessimism incurred due to the correction factors
added to compensate for reliability anomalies. For this, we compared
our monotonic probabilistic analysis with simulations. Second, we
demonstrate that the analysis can be used to reveal and quantify
non-obvious differences in the reliability of workloads with different
design parameters and subject to varying error rates.

We implemented the recursive analysis (Algorithms 5.1 and 5.2) in
C++ using the GNU MPFR library [217]. To ensure correct rounding

90 reliability analysis of a bft protocol

Star

Line

Not a SPoF switch

Ring

No
 sw

itc
h

is
a S

Po
F Ring

Single-round protocol:
Each switch is a SPoF

Two-round protocol:
No switch is a SPoF

E1
<latexit sha1_base64="VPyZXLBicAuCJD97AWPzgIW+wUY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FETxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCobeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+WMwvp75j09cGxGrB5wk3I/oUIlQMIpWur/pe/1yxa25c5BV4uWkAjma/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzyM6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0m7XvPOa/W7i0qjmsdRhBM4hSp4cAkNuIUmtIDBEJ7hFd4c6bw4787HorXg5DPH8AfO5w+3a41X</latexit>

E2
<latexit sha1_base64="4J942Rzwsku+Ck57z9itom4rqgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FETxWtLXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRW8epYthisYhVJ6AaBZfYMtwI7CQKaRQIfAzG1zP/8QmV5rF8MJME/YgOJQ85o8ZK9zf9er9ccWvuHGSVeDmpQI5mv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE175GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5J2vead1+p3F5VGNY+jCCdwClXw4BIacAtNaAGDITzDK7w5wnlx3p2PRWvByWeO4Q+czx+4741Y</latexit>

E3
<latexit sha1_base64="Zln1WbjdKhPyLGKFQA2yXKJyBMQ=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9hNBD0GRPAY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eQ2Nre2d/K7hb39g8Oj4vFJy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn77SeujYjVI04S7kd0qEQoGEUrPdz2a/1iya24C5B14mWkBBka/eJXbxCzNOIKmaTGdD03QX9KNQom+azQSw1PKBvTIe9aqmjEjT9dnDojF1YZkDDWthSShfp7YkojYyZRYDsjiiOz6s3F/7xuiuG1PxUqSZErtlwUppJgTOZ/k4HQnKGcWEKZFvZWwkZUU4Y2nYINwVt9eZ20qhWvVqneX5bq5SyOPJzBOZTBgyuowx00oAkMhvAMr/DmSOfFeXc+lq05J5s5hT9wPn8AunONWQ==</latexit>

S1
<latexit sha1_base64="oNnNZcTeqZm2GgeSDGAK5AM6mnM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4rtbXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZ37j09cGxGrB5wm3I/oSIlQMIpWarUG3qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKp17zLWv3+qtKo5nEU4QzOoQoeXEMD7qAJbWAwgmd4hTdHOi/Ou/OxbC04+cwp/IHz+QPMv41l</latexit> S2

<latexit sha1_base64="5p8kJkZEn+7hxSiidiExpg88e0w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4rtbXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJR8epYthmsYhVN6AaBZfYNtwI7CYKaRQIfAwmt3P/8QmV5rF8MNME/YiOJA85o8ZKrdagPihX3Jq7AFknXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkr9VGNC2YSOsGeppBFqP1ucOiMXVhmSMFa2pCEL9fdERiOtp1FgOyNqxnrVm4v/eb3UhDd+xmWSGpRsuShMBTExmf9NhlwhM2JqCWWK21sJG1NFmbHplGwI3urL66RTr3mXtfr9VaVRzeMowhmcQxU8uIYG3EET2sBgBM/wCm+OcF6cd+dj2Vpw8plT+APn8wfOQ41m</latexit>

S3
<latexit sha1_base64="a1S1M2LODHzibQDZ37iJbIama/U=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9hNBD0GvHiMxDwgWcLspDcZMju7zMwKYcknePGgiFe/yJt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip2RzUBsWSW3EXIJvEW5ESrNAYFL/6w5ilEUrDBNW657mJ8TOqDGcCZ4V+qjGhbEJH2LNU0gi1ny1OnZErqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73uzcX/vF5qwls/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0CjYEb/3lTdKuVrxapfpwXaqXV3Hk4QIuoQwe3EAd7qEBLWAwgmd4hTdHOC/Ou/OxbM05q5lz+APn8wfPx41n</latexit>

S4
<latexit sha1_base64="eX9iP+mYZ9DIOxraoWW1AxRrFTA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHhRHaRRI8kXjxikEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mlmMfkjHko84o8ZKzeagNiiW3Iq7BNkkXkZKkKExKH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGd36KZdxYlCy1aJRIoiJyOJvMuQKmREzSyhT3N5K2IQqyoxNp2BD8NZf3iTtasW7rlQfaqV6OYsjDxdwCWXw4AbqcA8NaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx/RS41o</latexit>

S1
<latexit sha1_base64="oNnNZcTeqZm2GgeSDGAK5AM6mnM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4rtbXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZ37j09cGxGrB5wm3I/oSIlQMIpWarUG3qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKp17zLWv3+qtKo5nEU4QzOoQoeXEMD7qAJbWAwgmd4hTdHOi/Ou/OxbC04+cwp/IHz+QPMv41l</latexit>

S1
<latexit sha1_base64="oNnNZcTeqZm2GgeSDGAK5AM6mnM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4rtbXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZ37j09cGxGrB5wm3I/oSIlQMIpWarUG3qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKp17zLWv3+qtKo5nEU4QzOoQoeXEMD7qAJbWAwgmd4hTdHOi/Ou/OxbC04+cwp/IHz+QPMv41l</latexit>

S1
<latexit sha1_base64="oNnNZcTeqZm2GgeSDGAK5AM6mnM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4rtbXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZ37j09cGxGrB5wm3I/oSIlQMIpWarUG3qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKp17zLWv3+qtKo5nEU4QzOoQoeXEMD7qAJbWAwgmd4hTdHOi/Ou/OxbC04+cwp/IHz+QPMv41l</latexit>

S3
<latexit sha1_base64="a1S1M2LODHzibQDZ37iJbIama/U=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9hNBD0GvHiMxDwgWcLspDcZMju7zMwKYcknePGgiFe/yJt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip2RzUBsWSW3EXIJvEW5ESrNAYFL/6w5ilEUrDBNW657mJ8TOqDGcCZ4V+qjGhbEJH2LNU0gi1ny1OnZErqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73uzcX/vF5qwls/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0CjYEb/3lTdKuVrxapfpwXaqXV3Hk4QIuoQwe3EAd7qEBLWAwgmd4hTdHOC/Ou/OxbM05q5lz+APn8wfPx41n</latexit>

S2
<latexit sha1_base64="5p8kJkZEn+7hxSiidiExpg88e0w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4rtbXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJR8epYthmsYhVN6AaBZfYNtwI7CYKaRQIfAwmt3P/8QmV5rF8MNME/YiOJA85o8ZKrdagPihX3Jq7AFknXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkr9VGNC2YSOsGeppBFqP1ucOiMXVhmSMFa2pCEL9fdERiOtp1FgOyNqxnrVm4v/eb3UhDd+xmWSGpRsuShMBTExmf9NhlwhM2JqCWWK21sJG1NFmbHplGwI3urL66RTr3mXtfr9VaVRzeMowhmcQxU8uIYG3EET2sBgBM/wCm+OcF6cd+dj2Vpw8plT+APn8wfOQ41m</latexit>

S2
<latexit sha1_base64="5p8kJkZEn+7hxSiidiExpg88e0w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4rtbXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJR8epYthmsYhVN6AaBZfYNtwI7CYKaRQIfAwmt3P/8QmV5rF8MNME/YiOJA85o8ZKrdagPihX3Jq7AFknXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkr9VGNC2YSOsGeppBFqP1ucOiMXVhmSMFa2pCEL9fdERiOtp1FgOyNqxnrVm4v/eb3UhDd+xmWSGpRsuShMBTExmf9NhlwhM2JqCWWK21sJG1NFmbHplGwI3urL66RTr3mXtfr9VaVRzeMowhmcQxU8uIYG3EET2sBgBM/wCm+OcF6cd+dj2Vpw8plT+APn8wfOQ41m</latexit>

S3
<latexit sha1_base64="a1S1M2LODHzibQDZ37iJbIama/U=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9hNBD0GvHiMxDwgWcLspDcZMju7zMwKYcknePGgiFe/yJt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip2RzUBsWSW3EXIJvEW5ESrNAYFL/6w5ilEUrDBNW657mJ8TOqDGcCZ4V+qjGhbEJH2LNU0gi1ny1OnZErqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73uzcX/vF5qwls/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0CjYEb/3lTdKuVrxapfpwXaqXV3Hk4QIuoQwe3EAd7qEBLWAwgmd4hTdHOC/Ou/OxbM05q5lz+APn8wfPx41n</latexit>

S4
<latexit sha1_base64="eX9iP+mYZ9DIOxraoWW1AxRrFTA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHhRHaRRI8kXjxikEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mlmMfkjHko84o8ZKzeagNiiW3Iq7BNkkXkZKkKExKH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGd36KZdxYlCy1aJRIoiJyOJvMuQKmREzSyhT3N5K2IQqyoxNp2BD8NZf3iTtasW7rlQfaqV6OYsjDxdwCWXw4AbqcA8NaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx/RS41o</latexit>

E1
<latexit sha1_base64="VPyZXLBicAuCJD97AWPzgIW+wUY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FETxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCobeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+WMwvp75j09cGxGrB5wk3I/oUIlQMIpWur/pe/1yxa25c5BV4uWkAjma/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzyM6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0m7XvPOa/W7i0qjmsdRhBM4hSp4cAkNuIUmtIDBEJ7hFd4c6bw4787HorXg5DPH8AfO5w+3a41X</latexit>

E2
<latexit sha1_base64="4J942Rzwsku+Ck57z9itom4rqgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FETxWtLXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRW8epYthisYhVJ6AaBZfYMtwI7CQKaRQIfAzG1zP/8QmV5rF8MJME/YgOJQ85o8ZK9zf9er9ccWvuHGSVeDmpQI5mv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE175GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5J2vead1+p3F5VGNY+jCCdwClXw4BIacAtNaAGDITzDK7w5wnlx3p2PRWvByWeO4Q+czx+4741Y</latexit>

E3
<latexit sha1_base64="Zln1WbjdKhPyLGKFQA2yXKJyBMQ=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9hNBD0GRPAY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eQ2Nre2d/K7hb39g8Oj4vFJy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn77SeujYjVI04S7kd0qEQoGEUrPdz2a/1iya24C5B14mWkBBka/eJXbxCzNOIKmaTGdD03QX9KNQom+azQSw1PKBvTIe9aqmjEjT9dnDojF1YZkDDWthSShfp7YkojYyZRYDsjiiOz6s3F/7xuiuG1PxUqSZErtlwUppJgTOZ/k4HQnKGcWEKZFvZWwkZUU4Y2nYINwVt9eZ20qhWvVqneX5bq5SyOPJzBOZTBgyuowx00oAkMhvAMr/DmSOfFeXc+lq05J5s5hT9wPn8AunONWQ==</latexit>

E4
<latexit sha1_base64="FRXt7yX88o9WsvxAz7D3fv6NJGY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9iNAT0GRPAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328ltbG5t7+R3C3v7B4dHxeOTlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GN3O//YRK81g+mkmCfkSHkoecUWOlh9t+rV8suRV3AbJOvIyUIEOjX/zqDWKWRigNE1Trrucmxp9SZTgTOCv0Uo0JZWM6xK6lkkao/eni1Bm5sMqAhLGyJQ1ZqL8npjTSehIFtjOiZqRXvbn4n9dNTXjtT7lMUoOSLReFqSAmJvO/yYArZEZMLKFMcXsrYSOqKDM2nYINwVt9eZ20qhXvslK9r5Xq5SyOPJzBOZTBgyuowx00oAkMhvAMr/DmCOfFeXc+lq05J5s5hT9wPn8Au/eNWg==</latexit>

E1
<latexit sha1_base64="VPyZXLBicAuCJD97AWPzgIW+wUY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FETxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCobeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+WMwvp75j09cGxGrB5wk3I/oUIlQMIpWur/pe/1yxa25c5BV4uWkAjma/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzyM6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0m7XvPOa/W7i0qjmsdRhBM4hSp4cAkNuIUmtIDBEJ7hFd4c6bw4787HorXg5DPH8AfO5w+3a41X</latexit>

E2
<latexit sha1_base64="4J942Rzwsku+Ck57z9itom4rqgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FETxWtLXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRW8epYthisYhVJ6AaBZfYMtwI7CQKaRQIfAzG1zP/8QmV5rF8MJME/YgOJQ85o8ZK9zf9er9ccWvuHGSVeDmpQI5mv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE175GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5J2vead1+p3F5VGNY+jCCdwClXw4BIacAtNaAGDITzDK7w5wnlx3p2PRWvByWeO4Q+czx+4741Y</latexit>

E3
<latexit sha1_base64="Zln1WbjdKhPyLGKFQA2yXKJyBMQ=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9hNBD0GRPAY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eQ2Nre2d/K7hb39g8Oj4vFJy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn77SeujYjVI04S7kd0qEQoGEUrPdz2a/1iya24C5B14mWkBBka/eJXbxCzNOIKmaTGdD03QX9KNQom+azQSw1PKBvTIe9aqmjEjT9dnDojF1YZkDDWthSShfp7YkojYyZRYDsjiiOz6s3F/7xuiuG1PxUqSZErtlwUppJgTOZ/k4HQnKGcWEKZFvZWwkZUU4Y2nYINwVt9eZ20qhWvVqneX5bq5SyOPJzBOZTBgyuowx00oAkMhvAMr/DmSOfFeXc+lq05J5s5hT9wPn8AunONWQ==</latexit>

E4
<latexit sha1_base64="FRXt7yX88o9WsvxAz7D3fv6NJGY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9iNAT0GRPAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328ltbG5t7+R3C3v7B4dHxeOTlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GN3O//YRK81g+mkmCfkSHkoecUWOlh9t+rV8suRV3AbJOvIyUIEOjX/zqDWKWRigNE1Trrucmxp9SZTgTOCv0Uo0JZWM6xK6lkkao/eni1Bm5sMqAhLGyJQ1ZqL8npjTSehIFtjOiZqRXvbn4n9dNTXjtT7lMUoOSLReFqSAmJvO/yYArZEZMLKFMcXsrYSOqKDM2nYINwVt9eZ20qhXvslK9r5Xq5SyOPJzBOZTBgyuowx00oAkMhvAMr/DmCOfFeXc+lq05J5s5hT9wPn8Au/eNWg==</latexit>

E1
<latexit sha1_base64="VPyZXLBicAuCJD97AWPzgIW+wUY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FETxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCobeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+WMwvp75j09cGxGrB5wk3I/oUIlQMIpWur/pe/1yxa25c5BV4uWkAjma/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzyM6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0m7XvPOa/W7i0qjmsdRhBM4hSp4cAkNuIUmtIDBEJ7hFd4c6bw4787HorXg5DPH8AfO5w+3a41X</latexit>

E2
<latexit sha1_base64="4J942Rzwsku+Ck57z9itom4rqgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FETxWtLXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRW8epYthisYhVJ6AaBZfYMtwI7CQKaRQIfAzG1zP/8QmV5rF8MJME/YgOJQ85o8ZK9zf9er9ccWvuHGSVeDmpQI5mv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE175GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5J2vead1+p3F5VGNY+jCCdwClXw4BIacAtNaAGDITzDK7w5wnlx3p2PRWvByWeO4Q+czx+4741Y</latexit>

E3
<latexit sha1_base64="Zln1WbjdKhPyLGKFQA2yXKJyBMQ=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9hNBD0GRPAY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eQ2Nre2d/K7hb39g8Oj4vFJy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn77SeujYjVI04S7kd0qEQoGEUrPdz2a/1iya24C5B14mWkBBka/eJXbxCzNOIKmaTGdD03QX9KNQom+azQSw1PKBvTIe9aqmjEjT9dnDojF1YZkDDWthSShfp7YkojYyZRYDsjiiOz6s3F/7xuiuG1PxUqSZErtlwUppJgTOZ/k4HQnKGcWEKZFvZWwkZUU4Y2nYINwVt9eZ20qhWvVqneX5bq5SyOPJzBOZTBgyuowx00oAkMhvAMr/DmSOfFeXc+lq05J5s5hT9wPn8AunONWQ==</latexit>

E4
<latexit sha1_base64="FRXt7yX88o9WsvxAz7D3fv6NJGY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9iNAT0GRPAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328ltbG5t7+R3C3v7B4dHxeOTlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GN3O//YRK81g+mkmCfkSHkoecUWOlh9t+rV8suRV3AbJOvIyUIEOjX/zqDWKWRigNE1Trrucmxp9SZTgTOCv0Uo0JZWM6xK6lkkao/eni1Bm5sMqAhLGyJQ1ZqL8npjTSehIFtjOiZqRXvbn4n9dNTXjtT7lMUoOSLReFqSAmJvO/yYArZEZMLKFMcXsrYSOqKDM2nYINwVt9eZ20qhXvslK9r5Xq5SyOPJzBOZTBgyuowx00oAkMhvAMr/DmCOfFeXc+lq05J5s5hT9wPn8Au/eNWg==</latexit>

SPoF switches

Figure 5.3: Network topologies with static routes (dotted arrows) from E1
to other PEs. SPoF denotes “Single Point of Failure”.

in floating-point computations involving very small probabilities, all
analysis computations were carried out at a precision of 200 decimal
places.1 For the timing analysis of the network layer (i.e., to upper-
bound message transmission jitters on switches), we modeled each
Ethernet output port as a resource with non-preemptive fixed-priority
scheduling, and computed message queuing delays on each port us-
ing Compositional Performance Analysis (CPA) [59, 98, 227]. Recall
from Section 2.1.3.2 that Ethernet allows only up to eight distinct
priority classes, and that messages of equal priorities are stored in
and serviced from a dedicated FIFO queue. All experiments were
carried out on Intel Xeon E7-8857 v2 machines (48 cores, 1.5 TB of
memory) clocked at 3 GHz. While each analysis instance executed
sequentially, the multi-core machines were used to run multiple in-
stances of the analysis in parallel.

The analyzed workload consisted of up to four processes on four
different PEs periodically executing a hard real-time IC protocol in-
stance every P = 100ms. The global worst-case response time for each
IC protocol task was assumed to be 1ms, based on a prototype imple-
mentation of the protocol used for the key-value service case study
(see Section 4.2.3). The PEs were assumed to be connected via a single
switch (star topology) or via multiple switches arranged in either a
line or a ring topology (Fig. 5.3). We used a transfer rate of 100Mbps
for each port and a wire delay of 330ns for each link. The PEs also pe-
riodically exchanged PTP messages for clock synchronization, which
were assigned to the highest priority network class. Based on PTPd
version 2.3.2, these messages have a payload of 76 bytes each and a
period of 500ms. We assumed periodic exchanges of maximum-sized

1 The precision of a variable indicates the number of bits used to store its significand.

5.5 evaluation 91

frames between PEs to model lower-priority traffic, which results in
worst-case blocking delay for the IC protocol messages at each switch.

The crash recovery times were set to 1 s. Error rates are reported
as the mean number of errors per microsecond. Unless mentioned other-
wise, experiments assume the strong correctness criterion (which was
defined in Section 5.3.1).

5.5.1 Analysis vs. Simulation

We compared Unsafe-Analysis and Mono-Analysis (i.e., with and
without reliability anomalies, respectively) with simulation baselines
Sim-v1 and Sim-v2 to evaluate the pessimism incurred due to reliabil-
ity anomalies elimination.
Sim-v1 knows in advance the message error probabilities for each

IC protocol message. Thus, for every error type, Sim-v1 draws a num-
ber uniformly at random from the range [0, 1], compares it with the
respective error probability to decide whether the error is encountered
or not, and if the error is encountered, simulates the corresponding
error scenario. Sim-v1 thus helps to isolate the pessimism incurred (if
any) in our recursive analysis procedure.

In contrast, Sim-v2 simulates FIFO priority queues at the network
layer and uses Poisson processes to generate the respective fault events
on each host and on the network. These events may manifest as
message errors if they coincide with the message’s lifetime, e.g., as
an incorrect computation error if they coincide with the message’s
exposure interval. Sim-v2 evaluates the pessimism incurred when
upper-bounding the message error probabilities as a function of the
raw transient fault rates using the Poisson model.

Both Sim-v1 and Sim-v2 make the worst-case assumption that any
two faulty message copies are identical, as in the analysis. The simu-
lations were run as a discrete event simulation for 100 000 iterations
each to ensure that the 99

th percentile confidence intervals were of
negligible magnitude relative to the absolute values.

We compared the four baselines Unsafe-Analysis, Mono-Analysis,
Sim-v1, and Sim-v2 for different topologies, PE crash error rates (0
or 10−8), switch crash error rates (0 or 10−8), PE corruption rates
(0 or 10−5), switch corruption rates (0 or 10−5), and link corruption
rates (0 or 0.001). We used higher error rates than can be realistically
expected in practice as otherwise the simulations would be extremely
time-consuming. In Fig. 5.4a, we illustrate the results absolute failure
probabilities for Np = 3 processes and Nr = 2 rounds. In Fig. 5.4b, we
illustrate only the failure probabilities for Mono-Analysis, but normal-
ized with respect to the failure probabilities obtained using Sim-v2.
Unsafe-Analysis exactly tracks Sim-v1, which indicates that the

recursive analysis presented in Section 5.3.3 incurs no substantial
pessimism. Mono-Analysis also closely tracks Unsafe-Analysis and

92 reliability analysis of a bft protocol

0 10 20 30 40 50 60 70
Configurations

10-4

10-3

10-2

10-1

100
P
 (

p
ro

to
co

l
fa

ils
)

Mono-Analysis

Unsafe-Analysis

Sim-v1

Sim-v2

(a)

0 10 20 30 40 50 60 70
Configurations

0.0

0.5

1.0

1.5

2.0

Re
la

tiv
e

ac
cu

ra
cy

 w
rt

Si
m

-v
2

Mono-Analysis

(b)

Figure 5.4: (a) Failure probabilities estimated by analyses Unsafe-Analysis
and Mono-Analysis, and using simulation versions Sim-v1 and
Sim-v2 (sorted in increasing order of Unsafe-Analysis results).
(b) Failure probabilities estimated by Mono-Analysis normalized
with respect to failure probabilities estimated by Sim-v2, for the
same set and order of configurations as in (a).

5.5 evaluation 93

Sim-v1, (i.e., it does not exhibit notable pessimism), which we attribute
to the anomaly correction terms having negligibly small magnitudes
when not needed.

In contrast, the analysis results do not closely track Sim-v2 for some
configurations (with the maximum observed relative error of about
2.066×, as shown in Fig. 5.4b). Higher pessimism results from the
analysis to upper-bound PE corruption errors (Section 5.4.1), since
the exposure intervals for different protocol tasks overlap, i.e., the
exposure interval of each task includes the time since the start of the
IC protocol instance.

5.5.2 Reliability Trade-offs

The next set of experiments were conducted to understand the ben-
efits (if any) of using the weak correctness criterion (whenever the
application permits), and the effects of non-uniform fault rates and
different network topologies on the protocol reliability. The error rates
used are much smaller than those used in the previous section, since
the analysis runtime (unlike simulations) does not depend on the mag-
nitude of error rates. In particular, we use realistic error rates derived
from prior studies on transient fault rates [12, 97]. In addition, in the
following experiments, we report FIT rates, which can be derived from
the failure probability of a single IC protocol invocation using the
steps outlined in Section 5.2.

5.5.2.1 Experiment 1

We evaluated FIT bounds for the strong and weak correctness criteria
for six configurations with Np ∈ {2, 3, 4} and Nr ∈ {1, 2}. We only
considered crash errors in this experiment (each PE has a crash rate
of 10−15), since the two criteria differ in terms of how they treat
omissions, which in turn are aggravated by crash errors.

The results in Fig. 5.5 show that the FIT bounds for the strong
criterion are orders of magnitude higher than the FIT bounds for the
weak criterion, which indicates that the protocol is much more likely
to violate the strong criterion (as expected). Therefore, an effective
reliability analysis should account for the weak criterion whenever it
suffices for an application, to obtain more accurate failure rates. In
addition, when the number of processes is increased from two to three,
while the FIT bounds for the weak criterion decrease, the FIT bounds
for the strong criterion remain the same. This observation corroborates
the findings from classical BFT theory (which relies on the strong
correctness criterion) that going from an odd number of replicas to an
even number of replicas does not yield any reliability benefits.

Surprisingly, the results in Fig. 5.5 indicate that additional rounds
seemingly never help. This is a consequence of crash errors, which
dominate in these scenarios, since a crash is likely to keep the node

94 reliability analysis of a bft protocol

2 3 4

Number of Processes (Np)

10-27
10-24
10-21
10-18
10-15
10-12
10-9
10-6
10-3
100
103
106

FI
T

weak,Nr=1

weak,Nr=2

strong,Nr=1

strong,Nr=2

Figure 5.5: FIT bounds estimated in the presence of PE crash errors.

Line, Np=3 Line, Np=4 Ring, Np=3 Ring, Np=4

Configurations

10-710-610-510-410-310-210-1100101102103104105106107

FI
T

Nr=1 Nr=2

Figure 5.6: FIT bounds estimated in the presence of switch crash errors.

unavailable for all rounds of the protocol. We repeated a similar
experiment for Np = 3 while considering only network corruption
errors. The resulting FIT bounds for Nr = 1 and Nr = 2 were 3.623×
10−5 and 6.993× 10−14 (respectively), clearly indicating the benefit
of multiple rounds when the dominant error sources affect different
rounds independently.

5.5.2.2 Experiment 2

Next, we sought to understand the impact of different network topolo-
gies as well as non-uniform error rates on the evaluated FIT analysis.
Therefore, we considered only switch crash errors in this experiment,
assigned a crash error rate of 10−15 to switches S1 and S2 (see Fig. 5.3
for reference), whereas other switches were assumed to execute error-
free. Assuming the strong correctness criterion, we computed FIT

5.5 evaluation 95

bounds for eight different configurations: line and ring topology,
Np ∈ {3, 4}, and Nr ∈ {1, 2}. The results are illustrated in Fig. 5.6.
We observe that all configurations with line topology have very high
FIT bounds with negligible differences. This is because switch S2 is a
single point of failure (SPoF) in a line topology with three or four PEs
(two PEs cannot form a quorum if Np = 4). In contrast, if three PEs
are arranged in a ring topology, the FIT bounds are low since no single
switch is a Single Point of Failure (SPoF) (failure results only if both
S1 and S2 crash). Interestingly, four PEs benefit from the ring topology
only if Nr = 2. We attribute this to a combination of two factors: static
routing and asymmetric IC protocol rounds. Static routing prevents
switches from immediately moving to an alternate route. Thus, every
single switch becomes a SPoF for Nr = 1. However, for Nr = 2, if Π3
misses a message from Π1 in the first round owing to S2’s crash, it
still gets a chance to receive Π1’s private value from Π4 in the second
round, since messages from Π4 and Π1 are not routed through S2.

5.5.2.3 Experiment 3

In the final experiment, we applied different shielding factors (that lead
to reduced error rates) with the aim of simulating practical tradeoffs
between using more resilient processors, better quality links, or just
better casing (each of which helps to reduce environmental effects)
versus auxiliary factors (e.g., cost, weight, power, etc.).

In absence of any shielding, the node crash rates, node corruption
rates, and link corruption rates are 10−15, 10−17, and 10−7, respec-
tively. We considered Node Shielding Factors (NSF), Link Shielding
Factors (LSF), and Overall Shielding Factors (OSF) that lead to re-
duced error rates across nodes, links, or the entire system, respectively
(e.g., an LSF of 10 indicates that the link corruption rates are 10 times
smaller, i.e., 10−8 instead of 10−7). The results are illustrated in Fig. 5.7.

In case of the star topology, since the switch denotes a SPoF, its
crash rate is the determining factor. Nonetheless, given a reliability
objective in terms of a maximum acceptable FIT, the analysis can help
determine appropriate levels of shielding. In contrast, the FIT bounds
for the ring topology vary in complex ways, and given a FIT objective,
multiple shielding options can be used (e.g., to achieve a FIT of under
10−4 with ring topology, either better quality casing is needed so that
the OSF exceeds 103, or simply more resilient nodes could be used
that provide a NSF greater than 100).

To conclude, we presented in this chapter the first quantitative
reliability analysis of a hard real-time IC protocol over Ethernet in the
presence of environmentally induced Byzantine errors (which are the
most general kind). Our analysis explicitly models PE nodes, network
switches, and network links and considers the effect of transient
faults in any of them. Importantly, our analysis is free from reliability

96 reliability analysis of a bft protocol

10-3 10-2 10-1 100 101 102 103 104

Overall Shielding Factor

10-22

10-19

10-16

10-13

10-10

10-7

10-4

10-1

102

105

108

FI
T

Ring, NSF=1, LSF=1

Ring, NSF=1, LSF=100

Ring, NSF=100, LSF=1

Ring, NSF=100, LSF=100

Star, NSF=1, LSF=1

Star, NSF=1, LSF=100

Star, NSF=100, LSF=1

Star, NSF=100, LSF=100

Figure 5.7: FIT bounds for different shielding factors.

anomalies, i.e., when a non-maximal fault rate in some component
can counter-intuitively result in an increase of the system’s overall
failure rate. In fact, to the best of our knowledge, this is the first
work to formalize the concept of reliability anomalies, and to propose
techniques to eliminate such anomalies in a hard real-time setting.
Our evaluation has demonstrated the proposed analysis to reveal non-
obvious reliability trade-offs and to closely track simulation results.

In future work, it would be interesting to evaluate a practical proto-
type of the analyzed protocol, and to incorporate recent advances in
real-time Ethernet standards related to flow integrity, such as different
stream reservation and path control protocols, into our quantitative
reliability analysis framework.

Part III

N E T W O R K E D C O N T R O L S Y S T E M S

6 R E L I A B I L I T Y A N A LY S I S O F A N
N C S I T E R AT I O N *

* This chapter is
based on our ECRTS
2018 [91] paper.

Chapters 4 and 5 dealt with Byzantine error scenarios, which are
possible in distributed real-time systems that are connected over point-
to-point networks, such as Ethernet. We presented a hard real-time
design for a classical IC protocol and a corresponding reliability anal-
ysis, which can together be used to implement an ultra-reliable atomic
broadcast service over COTS networks for building safety-critical CPS.
Such an analysis-driven implementation can be configured to provide
comparable levels of reliability as that of conventional field buses like
CAN (see Section 2.1.3.1), or as that of customized bus architectures
like those used in MeshKin [207] and SPIDER [151] (see Section 4.1.1),
each of which implicitly provides atomic broadcast guarantees.

However, for a full-system reliability analysis (recall our goals from
Chapter 1), we must also upper-bound the FIT rate of other critical
software components, even if they are deployed on top of an atomic
broadcast network layer. To this end, in this chapter and the following
chapter, we present analyses to safely upper-bound the FIT rate of one
or more NCS applications.

We focus on NCS applications since they constitute a major share
of all safety-critical applications in CPS devices. Other critical services
that are also of primary interest from a safety perspective include,
for instance, the clock synchronization module and the operating
system, which we however do not consider here as they are orthogonal
concerns (recall the SOFR approach discussed in Chapter 1).

Prior work on the analysis of actively replicated NCS has focussed
on very coarse-grained methods that analyze the probability of per-
manent host failures, evaluate the system state transitions arising out
of such failures (e.g., from a highly redundant TMR configuration to a
less redundant DMR configuration), and report the expected lifetime
of the system. Examples include Dugan and Van Buren’s [66] relia-
bility analysis of a fly-by-wire system with passive replication and
Sinha’s [202] reliability analysis of a fail-operational brake-by-wire
system networked with CAN and FlexRay buses. Fine-grained analy-
ses have also been proposed, but they do not report full-system (or
end-to-end NCS) reliability. For example, prior studies on the effect of
EMI on CAN-based systems [38, 54, 163, 179, 198, 221] only analyze
the response times of individual CAN messages.

In this dissertation, we evaluate the reliability of an actively repli-
cated NCS in the presence of transient faults at the granularity of
network messages, like we did for the IC protocol. Errors due to
transient faults, such as crash and reboot errors, may keep a host

99

100 reliability analysis of an ncs iteration

unavailable for a small amount of time. Corruption errors may affect
the integrity of certain messages. However, in an actively replicated
NCS, such errors do not affect the final actuation if masked by the
redundancy. Even if they do, in most cases, the control might be robust
enough to withstand a few skipped or incorrect actuations. Hence,
especially for actively replicated NCS applications, a fine-grained reli-
ability analysis is needed to more accurately capture the benefits of
active replication, which we present in this and the following chapter.

The remainder of this chapter is organized as follows. We first
provide a formal model of an NCS with active replication that is
connected using a network with atomic broadcast guarantees (Sec-
tion 6.1). Following the system model, we provide an overview of
the reliability analysis (Section 6.2) and describe the detailed analysis
(Sections 6.3 and 6.4). For brevity, we defer all soundness proofs to
Appendix A. Finally, we evaluate the pessimism incurred in our anal-
ysis by comparing its results with simulation results for a CAN-based
active suspension workload (Section 6.5).

In our evaluation, we emphasize on NCS applications based on
CAN since the bandwidth limitations in CAN (unlike in Ethernet) can
seriously impact the reliability of a time-sensitive system. Also, the use
of CAN is still prevalent in the development of many safety-critical
CPS, especially in subsystems that are attached to the physical sensors
and actuators. For example, the architecture of Care-O-bot 4, which
is a next-generation service robot developed by Fraunhofer IPA, uses
Ethernet to bridge the different hosts, but CAN buses to bridge each
host with sensors and actuators [42, 139, 187].

6.1 system model and assumptions

We model and analyze a Single-Input Single-Output (SISO) control
loop with active replication (as described below), which is necessary
for fault tolerance. The SISO control loop is hence also referred to
as an FT-SISO control loop. In the end (Section 6.5), we consider
extensions for more complex system models with multi-input single-
output (MISO) and multi-input multi-output (MIMO) controllers.

The FT-SISO networked control loop, denoted L, is deployed on
hosts H = {H1,H2, . . .} connected by a broadcast medium N, which is
shared with other traffic as well, e.g., other control loops, the clock syn-
chronization protocol, etc. A block diagram of the analyzed FT-SISO
loop with all notations is illustrated in Fig. 6.1. The notations are
explained next, and summarized in Table 6.1 for quick reference.

The sensor task replicas S = {S1,S2, . . .} periodically generate sensor
output and broadcast it over N. As a convention, we let superscripts
denote replica IDs. We let Xi denote the message stream carrying

6.1 system model and assumptions 101

Sensor ActuatorControlled Plant

S1
<latexit sha1_base64="te3Dqq0B0hbDoBdKrVGcDuvF+uU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+V2lpoY9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY38z8hyeujYjVPU4S7kd0qEQoGEUrNZuPXr9ccavuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdKuVb2Lau3uslKv53EU4QRO4Rw8uII63EIDWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wfSco18</latexit>

S2
<latexit sha1_base64="QZRmlWtquZf7E+u+vz7WoKIoa8k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+V2lpoY9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTjm5n/8IRK81jem0mCfkSHkoecUWOlZvOx1i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3oX1drdZaVez+Mowgmcwjl4cAV1uIUGtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/T9o19</latexit>

C2
<latexit sha1_base64="n9+NsllGTjnk1KY+k0fDjUQPE4w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMdCLx4r2lpoY9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTjxsx/eEKleSzvzSRBP6JDyUPOqLHSXeOx1i9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3oX1drtZaVez+Mowgmcwjl4cAV1uIEmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w+7lo1t</latexit>

C1
<latexit sha1_base64="SM2t/+wJcfXIBfykG+t2XhShqzc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMdCLx4r2lpoY9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYN2b+wxPXRsTqHicJ9yM6VCIUjKKV7hqPXr9ccavuHGSVeDmpQI5mv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdKuVb2Lau32slKv53EU4QRO4Rw8uII63EATWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8we6Eo1s</latexit>

A<latexit sha1_base64="hhsU9cgrx2RBj1ZOBVUP3rD89WA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeKF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5k2/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+Sdq3qXVRrzctKvZ7HUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fk5GMxw==</latexit>

X1
<latexit sha1_base64="Wub44MwJd8xFuk93Yju+1ATDZt4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+86j1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru7rNTreRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHaEI2B</latexit>

X2
<latexit sha1_base64="JW37z/2fLD5TXamHbdkNoU/G8Vg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+85jrV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnVqt5FtXZ3WanX8ziKcAKncA4eXEEdbqEBTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QPblI2C</latexit> Y 2

<latexit sha1_base64="60a4oJOOYMiB/C1VcD34M3g4k50=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rGi/ZA2ls120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtJ1Sax/LejBP0IzqQPOSMGivdPTxWe6WyW3FnIMvEy0kZctR7pa9uP2ZphNIwQbXueG5i/Iwqw5nASbGbakwoG9EBdiyVNELtZ7NTJ+TUKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadog3BW3x5mTSrFe+8Ur29KNdqeRwFOIYTOAMPLqEGN1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QPdGo2D</latexit>

Y 1
<latexit sha1_base64="9cFCTO7apqWgBMrELdMpWtclVwA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rGi/ZA2ls120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR9dRvPXFtRKzucZxwP6IDJULBKFrp7uHR65XKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5elGu1PI4CHMMJnIEHl1CDG6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AHblo2C</latexit>

Z
<latexit sha1_base64="fPW2/9hHGfSjlpdru7mQcdZlcWo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2FZsQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnGNzO/84RK81jemUmCfkSHkoecUWOl5kO/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+Sdq3qXVRrzctKvZ7HUYQTOIVz8OAK6nALDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fuXWM4A==</latexit>

N
<latexit sha1_base64="TAIL0DmqaJ4hbEEdPJVrqUCa7ZI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF0/Sgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvpn5D0+oNI/lvZkk6Ed0KHnIGTVWat71yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5odOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmX5MBV8iMmFhCmeL2VsJGVFFmbDYlG4K3/PIqadeq3kW11rys1Ot5HEU4gVM4Bw+uoA630IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AadFjNQ=</latexit>

N
<latexit sha1_base64="TAIL0DmqaJ4hbEEdPJVrqUCa7ZI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF0/Sgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvpn5D0+oNI/lvZkk6Ed0KHnIGTVWat71yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5odOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmX5MBV8iMmFhCmeL2VsJGVFFmbDYlG4K3/PIqadeq3kW11rys1Ot5HEU4gVM4Bw+uoA630IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AadFjNQ=</latexit>

Controller
task replicas

Sensor
task replicas

Actuator
task

Sensor
msg. streams

Control
msg. streams

Figure 6.1: An FT-SISO networked control loop. Solid boxes denote hosts.
Each dashed box denotes a task replica set or a set of message
streams transmitted by a task replica set. Dashed arrows denote
message streams broadcast over the shared network N, e.g., X1

and X2 are received by all tasks in C.

the sensor values of the ith replica of the sensor task, and let X =

{X1,X2, . . .} denote the set of all such message streams.
The controller task replicas C = {C1,C2, . . .}, upon periodic activa-

tion, read the latest received sensor messages, compute a new control
command for the plant, update their local states (e.g., in a PID con-
troller, the integrator), and broadcast the control command. They are
assigned appropriate offsets to ensure that, in an error-free execution,
the sensor messages are available before any controller task replicas
are activated. The message streams carrying control commands are
denoted Y = {Y1, Y2, . . .}.

The actuator task A is directly connected to the plant. Upon periodic
activation, it reads the latest received control commands and actuates
the plant accordingly. Like the controller tasks, A is also assigned an
appropriate offset to ensure that, in an error-free execution, all control
commands are received before its activation. Unlike the sensor and
controller tasks, A is not replicated since it requires special hardware
in the plant actuator to handle redundant inputs [109].

All tasks and messages in the control loop have a period of T
time units. The nth runtime activations or jobs of sensor task replicas
in S = {S1,S2, . . . } and controller task replicas in C = {C1,C2, . . . }
are denoted Sn = {S1n,S2n, . . . } and Cn = {C1n,C2n, . . . }, respectively;
and the nth job of actuator task A is denoted An. Similarly, the nth

messages in sensor message streams X = {X1,X2, . . . } and controller
message streams Y = {Y1, Y2, . . . } are denoted Xn = {X1n,X2n, . . . } and
Yn = {Y1n, Y2n, . . . }, respectively. In general, as a convention, we let
subscripts denote the job ID (or iteration).

Finally, we let Zn denote the actuator command applied to the
physical plant in the nth iteration, i.e., output of job An, and let

102 reliability analysis of an ncs iteration

purpose main rep i, all reps, rep i,
symbol all iters iter n iter n

FT-SISO loop L - - -
Network N - - -
Host H Hi - -

Sensor task S Si Sn Sin

Controller task C Ci Cn Cin

Actuator task A - An -

Sensor message X Xi Xn Xin

Control command Y Yi Yn Yin

Actuation Z - Zn -

Controller voter o/p U Ui Un Uin

Actuator voter o/p V - Vn -

Table 6.1: Summary of notations. rep denotes replica, and iter denotes
iteration. The main symbol corresponds to a union of per-replica
partitions or a union of per-iteration partitions (if applicable),
e.g., S = ∪∀iSi = ∪∀nSn. The per-replica and per-iteration nota-
tions correspond to a union of per-replica per-iteration partitions
(if applicable), e.g., Si = ∪∀nSin and Sn = ∪∀iSin.

Z = {Z1,Z2, . . . } denote the ordered set of such commands applied to
the physical plant across all iterations.

To suppress redundancy, we assume that each task resolves re-
dundant inputs at the start of every iteration through voting (Algo-
rithm 6.1). We let Un = {U1n,U2n, . . . } denote the voter outputs after
resolving the redundant inputs for controller jobs Cn = {C1n,C2n, . . . },
respectively. Similarly, we let Vn denote the voter output after resolv-
ing the redundant inputs for the actuator job An. Since all inputs are
available before the task is activated in an error-free scenario, message
streams that are delayed or omitted due to transmission or crash errors
are ignored during voting (Line 5 of Algorithm 6.1). In the worst case,
if no input is available on time to the voter due to errors, the task’s
activation is skipped, i.e., the task’s output for that iteration is omitted
(Line 7). We assume that old inputs from previous iterations are not
reused. While computing the simple majority (Line 8), any ties in
quorum size are broken deterministically using message IDs, i.e., the
message with the smallest ID is favored.

Inputs to the voters may be corrupted. However, whether or not
the corrupted inputs (messages) are likely to be identical is highly
system- and application-specific. Transient faults normally do not
cause identically corrupted patterns and many systems use end-to-
end checksums; the likelihood of identically corrupted messages is

6.1 system model and assumptions 103

Algorithm 6.1 Voting procedure before the activation of any controller
task Cin. The voting procedure before any actuator task An is defined
similarly by replacing the input set Xn with Yn.

1: procedure PeriodicControllerTaskActivation

2: Latestn ← ∅ . start voting protocol
3: for all Xkn ∈ Xn do
4: if Xkn not received by its deadline then
5: continue . also accounts for omissions

6: Latestn ← Latestn ∪Xkn
7: if Latestn = ∅ then return . omit output

8: resultn ← SimpleMajority(Latestn)
9: main logic of the task starts

thus small. In contrast, if the application payload is of boolean type or
encoded using only a few bits, the likelihood of identically corrupted
messages is non-negligible. In this work, we (pessimistically) assume
that corrupted message replicas are identically corrupted because it
is a worst-case scenario with respect to the voting protocol. That is,
if the number of corrupted messages exceeds the number of correct
messages, then assuming identically corrupted messages implies that
the voting outcome is corrupted, while in the case of non-identically
corrupted messages, there is a high likelihood that correct messages
still form the largest quorum.

We also require that all tasks that are part of the networked con-
trol application are deterministic. That is, given identical inputs and
identical states, any two sensor (controller) task replicas produce iden-
tical sensor messages (control messages, respectively), unless one is
affected by memory corruption.

Regarding the underlying platform, we make three important as-
sumptions. First, we assume that NCS hosts are synchronized using
a clock synchronization protocol, such as PTP [106], and that task
and message offsets have been chosen to account for the maximum
clock synchronization error. Without this assumption, and without
any other explicit replica determinism protocol (such as Achal, which
was presented in Section 4.2.3), it is much more challenging to ensure
replica determinism [176]. Simply assigning appropriate offsets to
tasks and messages is insufficient.

Second, we assume that the underlying network always guarantees
atomic broadcast, even in the presence of faults. As mentioned in
Section 3.5, this strong assumption does not compromise the safety
of the proposed analysis. In fact, any flaw in the implementation of
the underlying network protocol that might cause a violation of the
atomic broadcast guarantee can be analyzed separately and accounted
for in the overall failure rate computation.

104 reliability analysis of an ncs iteration

In other words, even though we derive the atomic broadcast as-
sumption from the use of BFT middleware like Achal (Section 4.2.3) or
from the protocol descriptions of CAN and similar other field buses,
these networking layers may not provide atomic broadcast every single
time. For example, Rufino et al. [188] identify one such corner case
in the CAN specification that is triggered when there are bit-slips in
specific bits of the CAN message frame. Similarly, middleware like
Achal, when configured with a replication factor of four, may fail if
more than one replica behaves erroneously during a single instance
of the protocol. The probability of such corner cases, or any flaws in
the protocol implementations, could be separately computed (such as
the failure analysis of Achal’s atomic broadcast protocol in Chapter 5)
and associated with a full-system failure in the worst case using the
SOFR model (recall the discusssion in Section 1.2); the resulting failure
rate can then be composed with the failure rate of the NCS (assum-
ing perfect atomic broadcast) derived from the proposed analysis.
A similar argument also holds for the failure of the assumed clock
synchronization algorithm.

Third, we assume that a message that is delayed beyond its deadline
is discarded by its receivers, or not transmitted by its sender in the first
place (the latter scenario is possible if the start time of the message
transmission is delayed beyond its latest start time). Clock synchro-
nization can be leveraged in such cases to ensure that a message is
safely discarded on all hosts. Broster and Burns [37] discuss multiple
ways to achieve this in the context of CAN.

The deterministic tasks and the atomic broadcast assumption to-
gether ensures that all correct, functionally identical replicas in the
NCS produce the same output and fail in the same manner (since
correct replicas can fail only due to faulty inputs). We explicitly handle
this correlation in our analysis.

6.2 analysis overview

We analyze the probability that the nth iteration of the control loop
fails, for any n. Thus, we mostly use the notations in the last two
columns of Table 6.1 while defining the analysis. In the end, we argue
that the derived probability is, in fact, identically and independently
distributed (IID) with respect to n. The IID property is leveraged by
the MTTF/FIT analyses in Chapter 7.

Due to clock synchronization and the atomic broadcast property of
the underlying network, and due to the deterministic nature of NCS
tasks, message replicas function identically in an error-free scenario.
That is, the messages in Xn carry identical sensor values and the
messages in Yn carry identical control commands in the absence of
any errors. However, due to incorrect computation errors, one or more

6.2 analysis overview 105

voter o/p
incorrect

m
es

sa
ge

co
rru

pt
ed

m
es

sa
ge

de
la

ye
d

message
omitted voter o/p

incorrect

m
es

sa
ge

co
rru

pt
ed

voter o/p
omitted

message
delayed

m
es

sa
ge

om
itt

ed

message
corrupted

voter o/p
omitted

message
omitted

ac
tu

at
io

n
in

co
rre

ct

failed
iteration

actuation
omitted

Figure 6.2: Propagation of error probabilities in a CAN-based wheel control
loop (see Section 6.5 for details). Arrows denote dependencies
among error probabilities of the different control loop stages.

messages in Xn may be corrupted. Due to transmission errors and
crash-induced omissions, one or more messages in Xn may also be
delayed or omitted. Thus, the controller voter instances may have to
work with fewer inputs and/or incorrect inputs.

In such a scenario, depending on whether the controller voter in-
stances choose a corrupted sensor value as their outputs (i.e., whether
each Uin is incorrect), and whether the controller tasks experience
fault-induced incorrect computation errors themselves (resulting in
some Uin being incorrect), some or all of the messages in Yn carrying
the control commands may also be corrupted. In the worst case, if all
the message in Xn are either delayed or omitted, the controller voter
instances have no inputs to work with, and consequently the messages
in Yn would not be prepared in the first place.

Similarly, the controller to actuator information flow may be affected
by errors, resulting in An’s output Zn being corrupted or omitted.

These dependencies between different events during the nth con-
trol loop iteration are illustrated using an example in Fig. 6.2, along
with the event probabilities associated with each event (which are a
byproduct of the proposed analysis). The objective of our analysis is
to capture these dependencies accurately without compromising the
soundness requirement. We start with an overview of the analysis.

In a nutshell, the proposed analysis is similar to that of an IC proto-
col instance, which was presented in Section 5.3. That is, (i) we start
with a set of message errors; (ii) quantify the NCS iteration failure
probability in the presence of these errors, and as a function of ex-
act message error probabilities; (iii) eliminate the effect of reliability
anomalies on the derived failure probability bound (as in Section 5.3,
we add correction terms to each analysis step whose output is not
monotonic in the exact message error probabilities); and (iv) instanti-
ate the analysis using implementation-specific upper bounds on the
message error probabilities. However, unlike the IC protocol analysis
in Section 5.3, we also deal with correlated errors in case of NCS
applications, which result due to clock synchronization and the atomic
broadcast property of the underlying network (as explained above).

106 reliability analysis of an ncs iteration

In addition, since the active replication protocol is simpler than the IC
protocol, we define the analysis steps in more detail in this chapter.

Throughout the analysis, we use P(·) to denote exact probabilities
and Q(·) to denote upper bounds on the corresponding exact proba-
bilities. This distinction is necessary to simplify reasoning about the
analysis safety, that is, to ensure that the derived probability of an
iteration failure is indeed an upper bound. Thus, while we freely use
the complement 1− P(·) of any exact probability P(·) in our analysis
definitions, we ensure that the complementary probability 1−Q(·)
of any probability upper bound Q(·) is never used, since it denotes a
lower bound. Also, for brevity, we let P(·) = 1− P(·).

The analysis proceeds as follows. First, we define the following three
exact (but unknown) message error probabilities for each message m
based on the fault model description provided in Chapter 3.

definition 6.1. P(m omitted) denotes the exact probability with
which message m is omitted.

definition 6.2. P(m delayed) denotes the exact probability with
which message m suffers a deadline violation.

definition 6.3. P(m corrupted) denotes the exact probability with
which message m is incorrectly computed.

In the above definitions, m can denote a message carrying a sensor
value (i.e., one of the messages in Xn), a message carrying a control
command (i.e., one of the messages in Yn), or the final actuation com-
mand Zn that is applied to the physical plant (although, since the final
actuation Zn is not applied over the shared network N, probability
P(Zn delayed) is not defined). In addition to these, since the effect
of message corruption on Algorithm 6.1’s output also depends on
the application-specific message payload, the analysis initially also
assumes the following exact (but unknown) probability.

definition 6.4. P(SimpleMajority incorrect | I, C) denotes the exact
probability with which the SimpleMajority(I∪ C) procedure in Algo-
rithm 6.1 (Line 8) outputs an incorrect value, given a set I of incorrect
inputs and set C of correct inputs.1

Given the aforementioned exact probabilities, we derive the per-
iteration failure probability (Section 6.3). For safety reasons, i.e., to
avoid reliability anomalies, the derived probability must be either
independent of or increasing in these exact error probabilities. In the
second part of the analysis (Section 6.4), we provide upper bounds for
the exact probabilities in Definition 6.1-Definition 6.4 (since their exact

1 We use the terms corrupted and incorrect differently. A corrupted message is directly
affected by incorrect computation errors, whereas an incorrect message simply refers
to a message that differs from the corresponding message in an error-free scenario.
Therefore, to denote a voter output that is corrupted because a majority of inputs to
the voter instance were corrupted, we use the term incorrect.

6.3 probabilistic analysis 107

values are unknown), and then instantiate the per-iteration failure
probability derived in Section 6.3 with these upper bounds in place
of the exact probabilities. As a result of the monotonicity property,
despite this replacement, it is implicitly guaranteed that the resulting
per-iteration failure probability upper-bounds the actual per-iteration
failure probability. Therefore, the proposed analysis is safe even in the
event that error probabilities experienced in practice are lower than
those used for the analysis (which is usually the case).

6.3 probabilistic analysis

We estimate the probability that the final actuation output Zn is either
corrupted or omitted, in a bottom-up fashion, and in small steps of a
few lemmas each. We analyze the controller voter instance output in
Section 6.3.1, the actuator voter instance output in Section 6.3.2, and
the final actuation output in Section 6.3.3.

6.3.1 Controller Output

In this section, we analyze output Uyn of the controller voter instance
(that executes before controller task instance Cyn). In particular, we
separately analyze the probability thatUyn is either incorrect or omitted
in Sections 6.3.1.1 and 6.3.1.2, respectively.

Recall from the system model that Xn denotes the set of all sensor
message replicas that are inputs to this voter instance. Fault-induced
errors in each message in Xn can affect Uyn’s since the message can be
omitted due to timing errors or delayed due to retransmission errors.
Even if the message is transmitted on time, the received message could
have been corrupted due to incorrect computation errors. To model
all such possibilities, we represent the error status of messages in Xn
using an ordered 5-tuple E(Xn), which is defined as follows.

definition 6.5. The error status of messages in Xn is defined as
E(Xn) = 〈On,Dn, In,Cn,Zn〉 where

• sets On, Dn, In, Cn, and Zn partition the message set Xn;

• On denotes the set of messages that are omitted;

• Dn denotes the set of messages that are not omitted, but delayed
due to retransmissions;

• In denotes the set of messages that are neither omitted nor
delayed, but are incorrectly computed;

• Cn denotes the set of messages that are neither omitted, delayed,
nor incorrectly computed; and

108 reliability analysis of an ncs iteration

• Zn denotes the set of messages whose status is unknown.

The distinction made in Definition 6.5 among different elements
of the 5-tuple helps reduce pessimism in the analysis. For example,
the definition ignores events such as a message being both omitted
and incorrectly computed, since whether a message is corrupted or
not is inconsequential once the message has been omitted. In general,
Zn denotes the set of messages whose fate is undecided, or in other
words, each message Xyn ∈ Zn may still be omitted with probability
P(Xyn omitted), delayed with probability P(Xyn delayed), and incor-
rectly computed with probability P(Xyn corrupted). As a result, there
can be multiple valid definitions of the error status tuple. For example,
〈∅, ∅, ∅, ∅,Xn〉 is a valid definition denoting that none of the messages
in Xn is guaranteed to be omitted, delayed, or incorrectly computed,
but that each message in Xn can be affected by any message error.

6.3.1.1 Analyzing the Correctness of Uyn

Using the error status in Definition 6.5, and using the exact probabili-
ties in Definition 6.1-Definition 6.4, we first define the probability that
the output of controller task Cyn’s voter instance Uyn is incorrect.

definition 6.6. The probability that Uyn is incorrect is given by
P(Uyn incorrect | 〈∅, ∅, ∅, ∅,Xn〉), where

P (Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) =P(SimpleMajority incorrect | In,Cn) Zn = ∅
Γ1 + Γ2 + Γ3 + Γ4 Zn 6= ∅

,

Γ1 =P(U
y
n incorrect | 〈On ∪ {Xsn},Dn, In,Cn,Zn \ {Xsn}〉)

× P(Xsn omitted),

Γ2 =P(U
y
n incorrect | 〈On,Dn ∪ {Xsn}, In,Cn,Zn \ {Xsn}〉)

× P(Xsn omitted)× P(Xsn delayed),

Γ3 =P(U
y
n incorrect | 〈On,Dn, In ∪ {Xsn},Cn,Zn \ {Xsn}〉)

× P(Xsn omitted)× P(Xsn delayed)× P(Xsn corrupted),

Γ4 =P(U
y
n incorrect | 〈On,Dn, In,Cn ∪ {Xsn},Zn \ {Xsn}〉)

× P(Xsn omitted)× P(Xsn delayed)× P(Xsn corrupted),

and Xsn denotes the message with the smallest ID in Zn. The probabil-
ity P(Uyn incorrect | 〈∅, ∅, ∅, ∅,Xn〉) is also denoted as P(Uyn incorrect).

6.3 probabilistic analysis 109

In each step of the recursion, a single message Xsn ∈ Zn is ei-
ther (i) omitted with probability P(Xyn omitted) and inserted into set
On; (ii) not omitted but delayed with probability P(Xyn omitted) ×
P(Xyn delayed) and inserted into set Dn; (iii) transmitted on time,
i.e., neither omitted nor delayed, but is incorrectly computed with
probability P(Xyn omitted) × P(Xyn delayed) × P(Xyn corrupted) and
inserted into set In; or (iv) transmitted timely and correctly with prob-
ability P(Xyn omitted) × P(Xyn delayed) × P(Xyn corrupted), and thus
inserted into set Cn. The recursion terminates when all cases have been
exhaustively enumerated, i.e., Zn = ∅ and On ∪Dn ∪ In ∪ Cn = Xn.

Note that Definition 6.6 could be rephrased alternatively without
the use of recursion by simply enumerating all possible cases (i.e., all
possible values of On, Dn, In, Cn, and Zn), associating with each case
a case probability and a conditional probability that Uyn is incorrect,
and then summing up the product of respective case and conditional
probabilities. However, the recursive formulation helps in proving that
P(Uyn incorrect) is monotonic with respect to the exact probabilities.
In particular, for each step of the recursion, we only need to prove
monotonicity with respect to error probabilities of message Xsn (and
not of other messages in Xn); whereas the recursive call is indepen-
dent of the error probabilities of message Xsn, which simplifies the
monotonicity proof.

In case of Definition 6.6, however, we show in Appendix A.1 that
P(Uyn incorrect) is not monotonically increasing in the omission and
delay probabilities. In fact, for any message Xsn ∈ Xn, its monotonic-
ity in P(Xsn omitted) and P(Xsn delayed) depends on P(Xsn corrupted).
This is because the overall failure probability could be reduced by
simply delaying or omitting a message, if that message is likely
to be incorrectly computed and thus has the potential to tilt the
voting outcome in favor of an incorrect quorum. In other words,
P(Uyn incorrect) can be decreased by increasing either P(Xsn delayed)
or P(Xsn corrupted), or both. To get around this problem, we define
instead an upper bound on P(Uyn incorrect) that compensates for all
non-monotonic terms in Definition 6.6 by adding a residual term for
the recursive case Zn 6= ∅. A detailed proof of monotonicity for the
upper bound is provided in Appendix A.2.

definition 6.7. An upper bound on the probability that Uyn is
incorrect is given by Q(Uyn incorrect | 〈∅, ∅, ∅, ∅,Xn〉), where

Q (Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) =P(SimpleMajority incorrect | In,Cn) Zn = ∅
Γ ′1 + Γ

′
2 + Γ

′
3 + Γ

′
4 + Γ

′
5 Zn 6= ∅

,

110 reliability analysis of an ncs iteration

Γ ′1 =Q(Uyn incorrect | 〈On ∪ {Xsn},Dn, In,Cn,Zn \ {Xsn}〉)
× P(Xsn omitted),

Γ ′2 =Q(Uyn incorrect | 〈On,Dn ∪ {Xsn}, In,Cn,Zn \ {Xsn}〉)
× P(Xsn omitted)× P(Xsn delayed),

Γ ′3 =Q(Uyn incorrect | 〈On,Dn, In ∪ {Xsn},Cn,Zn \ {Xsn}〉)
× P(Xsn omitted)× P(Xsn delayed)× P(Xsn corrupted),

Γ ′4 =Q(Uyn incorrect | 〈On,Dn, In,Cn ∪ {Xsn},Zn \ {Xsn}〉)
× P(Xsn omitted)× P(Xsn delayed)× P(Xsn corrupted),

Γ ′5 = Q(Uyn incorrect | 〈On,Dn, In ∪ {Xsn},Cn,Zn \ {Xsn}〉)

×
(
P(Xsn omitted)× P(Xsn delayed)× P(Xsn corrupted)

+ P(Xsn omitted)× P(Xsn corrupted)

)
,

and Xsn denotes the message with the smallest ID in Zn. The probabil-
ity Q(Uyn incorrect | 〈∅, ∅, ∅, ∅,Xn〉) is also denoted as Q(Uyn incorrect).

Definition 6.7 differs from Definition 6.6 in two ways. First, while
terms Γ ′1, Γ ′2, Γ ′3, and Γ ′4 in Definition 6.7 are similar to terms Γ1, Γ2, Γ3,
and Γ4 in Definition 6.6, they rely on Q(Uyn incorrect | . . .) instead of
P(Uyn incorrect | . . .). Second, case Z 6= ∅ in Definition 6.7 is defined
using an addition term Γ ′5, which, as shown in Appendix A.2, ensures
that the upper bound is monotonic in the exact message error proba-
bilities. Q(Uyn incorrect) thus yields a monotonic upper bound on the
probability that Uyn is incorrect.

6.3.1.2 Analyzing whether Uyn is Omitted

In this step, we evaluate the probability that the output of controller
task Cyn’s voter instance Uyn is omitted because all its inputs were
either delayed or omitted, i.e., the special case in Algorithm 6.1 (Line 7).
Similar to Step 1, we state the probability as a recursive expression,
relying on the exact probabilities in Definition 6.1-Definition 6.3, as
well as on the error status in Definition 6.5, as follows.

6.3 probabilistic analysis 111

definition 6.8. The probability that Uyn is omitted is given by
P(Uyn omitted | 〈∅, ∅, ∅, ∅,Xn〉), where

P (Uyn omitted | 〈On,Dn, In,Cn,Zn〉) =
Λ1 +Λ2 +Λ3 +Λ4 Zn 6= ∅
1 In ∪ Cn = ∅
0 In ∪ Cn 6= ∅

,

Λ1 =P(U
y
n omitted | 〈On ∪ {Xsn},Dn, In,Cn,Zn \ {Xsn}〉)

× P(Xsn omitted),

Λ2 =P(U
y
n omitted | 〈On,Dn ∪ {Xsn}, In,Cn,Zn \ {Xsn}〉)

× P(Xsn omitted)× P(Xsn delayed),

Λ3 =P(U
y
n omitted | 〈On,Dn, In ∪ {Xsn},Cn,Zn \ {Xsn}〉)

× P(Xsn omitted)× P(Xsn delayed)× P(Xsn corrupted),

Λ4 =P(U
y
n omitted | 〈On,Dn, In,Cn ∪ {Xsn},Zn \ {Xsn}〉)

× P(Xsn omitted)× P(Xsn delayed)× P(Xsn corrupted),

and Xsn denotes the message with the smallest ID in Zn. The probabil-
ity P(Uyn omitted | 〈∅, ∅, ∅, ∅,Xn〉) is also denoted as P(Uyn omitted).

Definition 6.8 has the same termination condition as Definition 6.6
and Definition 6.7 in Step 1, i.e., Zn = ∅. However, the evaluation of the
probability for the termination condition in Definition 6.8 is different.
In particular, when evaluating the probability of message omission,
it suffices to check whether the voter has some input to work with, in
which case the voter output is certainly not omitted. The probability
of omission is thus zero when In ∪ Cn 6= ∅ and one otherwise.

In addition, as a result of this difference in termination condition,
Definition 6.8 does not depend on the correctness of inputs used to
compute Uyn or (consecutively) on the simple majority procedure in
Algorithm 6.1, but only on the timeliness of these inputs. Hence, Def-
inition 6.8’s monotonicity in exact probabilities P(Xsn omitted) and
P(Xsn delayed) does not depend on P(Xsn corrupted), unlike Defini-
tion 6.6 (see Appendix A.3 for a detailed proof). As a result, addition
of a residual probability term, such as Γ5 in Definition 6.7, is not
required in this case to obtain monotonicity.

112 reliability analysis of an ncs iteration

6.3.2 Actuator Voter Output

In this step, we evaluate the probability that the output Vn of the
actuator voter task An’s voter instance is incorrect or omitted.

Recall from the system model description that the network guaran-
tees atomic broadcast and that the NCS tasks are deterministic. Under
these assumptions, if any one correct controller voter instance outputs
an incorrect value because of wrong inputs (corrupted sensor values),
it implies that all correct controller voter instances output incorrect
values as well, since all controller voter instances operate on the same
input values. In fact, in such a scenario, the actuator voter instance too
is guaranteed to get only incorrect control messages, since all of the
control messages will be prepared using the corrupted sensor values.

A similar observation holds for the controller voter output omission.
Proper deadline and offset assignment guarantees that, in an error-free
scenario, messages in Xn are transmitted before the voter instances in
Vn are activated. Thus, each voter instance can decide locally whether
a message was received past its deadline (in which case it is discarded,
recall Algorithm 6.1). As explained in Section 6.1, if the host clocks are
synchronized, delayed messages can be discarded consistently on all
correct replicas (i.e., while maintaining the atomic broadcast property).
As a result, if any one controller voter instance does not choose any
value because all its inputs are delayed or omitted, then all controller
voter instances do not choose any values either. Thus, no output is
generated by the controller task replicas and the actuator voter omits
its output, too, which results in a skipped actuation.

In light of these correlations between the sensor inputs to the con-
troller tasks and the final actuation of the control loop, analyzing the
output of the actuator voter instance is either straightforward if the
input control commands are incorrect, delayed, or omitted due to
these problematic inputs begin consistently observed at all PEs, or it
requires a recursive decomposition approach similar to that used in
Section 6.3.1. Since the former case results in a guaranteed failure, we
consider it directly in Step 4 (Section 6.3.3) where we analyze the prob-
ability that the final actuation Zn is faulty or omitted. In the following,
we only define the probability that the actuator voter instance output
Vn is incorrect or omitted for the latter case.

definition 6.9. P(Vn incorrect) denotes the probability that Vn is
incorrect, conditioned on the assumption that the sensor inputs to
the controller voter instances during this iteration did not result in a
corrupted output.

definition 6.10. Q(Vn incorrect) denotes an upper bound on the
probability that Vn is incorrect, conditioned on the assumption that
the sensor inputs to the controller voter instances during this iteration
did not result in a corrupted output.

6.3 probabilistic analysis 113

definition 6.11. P(Vn omitted) denotes the probability that Vn is
omitted, conditioned on the assumption that the sensor inputs to the
controller voter instances during this iteration did not result in an
omitted output.

Probabilities P(Vn incorrect), Q(Vn incorrect) and P(Vn omitted)
are defined using the recursive procedures discussed in Section 6.3.1,
respectively, by replacing the set of voter inputs Xn with Yn (recall
from the system model in Section 6.1 that Yn denotes the set of
all inputs to the actuator voter instance during the nth control loop
iteration). For monotonicity reasons, same as in Section 6.3.1, the upper
bound in Definition 6.10 is introduced since the exact probability in
Definition 6.9 is not monotonic. Definition 6.11, on the other hand, is
monotonic by itself.

6.3.3 Final Output

In this step, we bound the probability that the final output of the nth

control loop iteration, Zn, is either skipped or incorrect.
We first bound the probability that the actuation during the nth

control loop iteration is incorrect, followed by the probability that
it is omitted, and finally the joint probability of both events (see
Definition 6.12-Definition 6.14, respectively).

definition 6.12. An upper bound on the probability that the actua-
tion during the nth control loop iteration is incorrect is given by

Q(Zn incorrect) =

(
P(Zn corrupted) + Q(Uyn incorrect)

+ Q(Vn incorrect)

)

+

(
P(Zn corrupted) × Q(Uyn incorrect)

× Q(Vn incorrect)

)
,

for any Uyn ∈ Un.

definition 6.13. An upper bound on the probability that the actua-
tion during the nth control loop iteration is skipped is given by

Q(Zn skipped) =

(
P(Zn omitted) + P(Uyn omitted)

+ P(Vn omitted)

)

+

(
P(Zn omitted) × P(Uyn omitted)

× P(Vn omitted)

)
,

for any Uyn ∈ Un.

The upper bound in Definition 6.12 (and in Definition 6.13) is de-
rived by considering the two cases described in Step 3, i.e., whether the
sensor inputs result in a consistent corruption (omission, respectively)

114 reliability analysis of an ncs iteration

of the controller voter instance outputs, or not; and then dropping any
negative terms for ensuring monotonicity. A detailed proof for both
the upper bounds is given in the Appendix A.4.

In Definition 6.14, we compose the probability upper bounds in
Definition 6.12 and Definition 6.13 to derive the probability that the nth

control loop iteration fails, i.e., that the actuation during this iteration
is either incorrect or delayed (or omitted). We do not assume that
the probability upper bounds in Definition 6.12 and Definition 6.13

are mutually independent, since it is possible that an omitted control
message tilted the majority in favor of the correct quorum, thereby
reducing the probability that the actuation is incorrect. However, the
negative term corresponding to mutual dependence is dropped for
the sake of preserving monotonicity.

definition 6.14. An upper bound on the probability that the nth

control loop iteration fails, i.e., the actuation during the nth control
loop iteration is either incorrect or skipped, is given by

Q(nth control loop iteration fails) =

(
Q(Zn incorrect)

+ Q(Zn skipped)

)
.

In summary, Definitions 6.6 to 6.14 account for all direct and indirect
dependencies between the individual message error events and the
final actuation of the controlled plant, and the probability upper bound
Q(nth control loop iteration fails) automates propagation of the exact
message error probabilities along this dependency tree.

Although the analysis has exponential time complexity in the num-
ber of sensor message streams |Xn| and the number of controller
message streams |Un| due to the branching recursions in Sections 6.3.1
and 6.3.2, since the number of replicas of any task is likely small,
i.e., typically under five, the analysis can be quickly performed.

6.4 analysis instantiation

As mentioned in the analysis overview (Section 6.2), since the exact
error probabilities in Definition 6.1-Definition 6.4 are impossible to
obtain, we instantiate the analysis presented in the previous section
with upper bounds on these exact probabilities. Given that the analysis
is monotonically increasing in the exact probabilities, soundness is
guaranteed despite the use of upper bounds.

We next define upper bounds on the individual message error
probabilities and an upper bound on the probability that the simple
majority procedure in Algorithm 6.1 outputs an incorrect value.

Like in Section 6.2, let m denote a message carrying a sensor value
(i.e., one of the messages in Xn), a message carrying a control com-
mand (i.e., one of the messages in Un), or the final actuation command

6.4 analysis instantiation 115

Zn that is applied to the physical plant. Recall the description of the
fault-induced errors and the modeling of their arrivals from Section 3.3.
In particular, recall that γerr(comp) denotes the peak rate at which
component comp experiences errors belonging to class err, and that
P(x, δ,γerr(comp)) denotes the probability that x instances of such
errors occur in any interval of length δ on component comp.

An upper bound on P(m omitted) depends on whether the host
from which message m is transmitted experiences a crash error or
not. For instance, suppose that message m’s sender task is deployed
on host Hm, and that message m is expected to be scheduled for
transmission at the earliest by time t and at the latest by time t+ j
(where j denotes the maximum release jitter of the message). If Rm
is the maximum time to recover from a crash error on host Hm, and
if there is at least one crash error during the interval [t− Rm, t+ J),
message m’s arrival may be skipped. Thus,

P(m omitted) 6
∑
x>0

P(x, Rm + J, γcrash(Hm)). (6.1)

An upper bound on P(m corrupted) can be similarly obtained by
evaluating the probability that there is at least one incorrect compu-
tation error during the exposure interval of message m. Recall from
Section 3.3.2 that the exposure interval of a message denotes the interval
during which it is exposed to and can be potentially corrupted by
incorrect computation PE errors. Thus, if E(m) denotes the exposure
interval of message m, and if m’s sender task is deployed on host Hm,

P(m corrupted) 6
∑
x>0

P(x, E(m), γcorrupt(Hm)). (6.2)

While we can use a similar method to upper-bound P(m delayed),
i.e., evaluate the probability that there is at least one retransmission
error on the network during message m’s transmission window, the
resulting upper bound would be extremely pessimistic since real-time
workloads are typically provisioned assuming interference from a
finite number of such retransmissions. Instead, more accurate network
timing analyses could be used, such as the one proposed by Broster
et al. [39] in the context of CAN, or our prior work [88] that simulta-
neously analyses timing properties of multiple message replicas.

Next, we upper-bound the probability that the SimpleMajority(I∪
C) procedure in Algorithm 6.1 outputs an incorrect value, i.e., prob-
ability P(SimpleMajority incorrect | I, C), given that C and I denote
the sets of correct and incorrect inputs, respectively. To upper-bound
P(SimpleMajority incorrect | I, C), we make the worst-case assump-
tion that incorrect inputs in I are identically faulty. Suppose that
s0 ∈ C ∪ I denotes the message in C ∪ I with the smallest ID. Recall
that any ties in quorum size while computing the simple majority
(Algorithm 6.1, Line 8) are broken deterministically using message IDs.

116 reliability analysis of an ncs iteration

Let nc = |C| and ni = |I|. If ni > nc, the largest-sized quorum
belongs to incorrect messages, and the simple majority is incorrect
with probability 1. If ni = nc 6= 0, there are two largest-sized quorums.
If message s0 with the smallest ID is incorrect (s0 ∈ I), the simple
majority is incorrect; otherwise (s0 ∈ C), it is correct. If ni < nc, the
largest-sized quorum belongs to correct messages, and the simple
majority is again correct. If ni = nc = 0, the voter has received no
inputs, so the probability of choosing an incorrect output in this case
is also 0. Considering all of these cases,

P

(
SimpleMajority

incorrect

∣∣∣∣ I, C

)
6

1 ni > nc

1 ni = nc 6= 0∧ s0 ∈ I

0 ni = nc 6= 0∧ s0 ∈ C

0 ni < nc

0 ni = nc = 0

(6.3)

the iid property Since each of the upper bounds defined above is
independent of n, the upper bound in Definition 6.14 can be iteratively
unfolded until it consists only of terms that are independent of n. The
bound is thus identical for any control loop iteration. In addition, the
upper bounds are derived under worst-case assumptions with respect
to interference from other messages on the network [39, 54]; and failure
of the nth control loop iteration, defined as a deviation from an error-
free execution of that iteration, is independent of whether past itera-
tions encountered any failures or not. Thus, the bounds obtained using
Definition 6.14 for any two iterations n1 and n2 are mutually inde-
pendent as well. As a result, when Q(nth control loop iteration fails),
which is monotonic in the error rates, is instantiated with the afore-
mentioned upper bounds on the error rates, it satisfies the IID property
with respect to n. The IID property is useful for a long-run analysis of
the system across all its iterations, e.g., for evaluating metrics such as
MTTF and FIT, which is discussed in Chapter 7.

analysis instantiation for other networks The analysis can
similarly be instantiated for other types of networks. Instantiation
for CAN-like field buses is trivial; only the analysis to upper-bound
P(m delayed) must be altered as per the protocol specifications. On the
other hand, for point-to-point networks like Ethernet, the analysis to
upper-bound P(m delayed) must be updated to take into account the
end-to-end delay encountered by messagem across every transmission
step. Use of an Achal-like system in an Ethernet-based NCS to ensure
replica coordination does not affect the analysis presented in this
chapter, since the FIT rate of the replica coordination protocol would
be separately computed and added to the system-wide SOFR analysis.

6.5 evaluation 117

6.5 evaluation

The objective of the evaluation is to assess the accuracy of the proposed
reliability analysis of an NCS iteration. To achieve this objective, we
compare the analytically-derived bound on the iteration failure prob-
ability (using Definition 6.14) with an estimate of the mean iteration
failure probability obtained through simulation.

Since timing analysis of network messages is an integral component
of our reliability analysis, we implemented the proposed analysis
using the SchedCAT (Schedulability test Collection And Toolkit) li-
brary [33]. We extended SchedCAT to support CAN-based FT-SISO
control loops, and implemented Broster et al.’s probabilistic response-
time analysis [38] for CAN messages as the underlying timing analysis
of the network. To ensure correct rounding in floating-point computa-
tions involving very small probabilities, all computations related to
the analysis were carried out at a precision of 200 decimal places using
the mpmath Python library for arbitrary precision arithmetic [234]. As
a baseline, we also implemented a discrete-event simulation of a CAN-
based FT-SISO control loop along with CAN’s network transmission
protocol (see Section 2.1.3.1 for a detailed description).

workload and parameters We base our experiments on a fault-
tolerant version of the CAN-based active suspension workload studied
by Anta and Tabuada [8], since it nicely matches our FT-SISO model
and since active suspension (see [132] for more details) plays an
important role in ensuring the stability of a vehicle. The workload
consists of tasks and messages corresponding to four control loops
(L1, L2, L3, and L4), each of which corresponds to the control of
four wheels (W1, W2, W3, and W4) with magnetic suspensions and
executes with a time period of 1.75ms. In addition, the workload
consists of two hard real-time messages that report the current in the
power line cable and the internal temperature of the coils. Both these
messages are critical to the NCS and are transmitted every 4ms and
10ms, respectively.

Since we assume that hosts have synchronized clocks, we assumed
the presence of clock synchronization messages with a period of 50ms
based on the protocol by Gergeleit and Streich [84]. We also assumed
a soft real-time message responsible for logging (which is common in
many CPS) with a period of 100ms. Note that these additions were
not part of the workload studied by Anta and Tabuada [8].

The logging messages carried payloads of eight bytes each, the
control loop messages carried payloads of three bytes each, and
the remaining messages carried one-byte payloads (recall from Sec-
tion 2.1.3.1 that each CAN message can carry up to eight bytes of
payload). Considering a bus rate of 1Mbit/s (CAN buses are typ-
ically operated at bus rates of 256 kbit/s, 512 kbit/s, 1Mbit/s, or

118 reliability analysis of an ncs iteration

4Mbit/s), the workload resulted in a total bus utilization of 40%. The
clock synchronization message stream had the highest priority (which
is required as per Gergeleit and Streich’s scheme), followed by the cur-
rent and temperature monitoring message streams (since these were
carrying hard real-time messages without any redundancy), followed
by the control message streams, and last, the logging message stream.

The recovery time from a crash was set to Rh = 1 s for each host
Hh ∈ H, and the exposure interval of each message stream was set to
ten times its period to reflect the possibility of latent errors (recall from
Section 6.4 that these are necessary to upper-bound the iteration failure
probability). The error rates used in each experiment are mentioned
along with the experiment descriptions. All error rates are reported as
the mean number of errors per ms.

For context, Ferreira et al. [72] and Rufino et al. [188] reported peak
transmission error rates range from 10−4 in aggressive environments
to 10−10 in lab conditions, and as per Hazucha and Svensson [97], a
4Mbit SRAM chip has a fault rate of approximately 10−12. However,
the error rates used in the following experiments are relatively higher
than realistically expected values as otherwise the simulations would
be extremely time-consuming.

experiment setup Recall from Section 6.3 that:

1. the analysis first upper-bounds the control loop iteration failure
probability as a monotonic function of the exact message error
probabilities; and

2. since it is impossible to determine the exact message error prob-
abilities, a safe upper bound on the iteration failure probability
is then obtained by instantiating the monotonic function from
(1) with upper bounds on the exact message error probabilities.

To separately evaluate the pessimism incurred in steps (1) and (2),
we used two different simulator versions Sim-v1 and Sim-v2. These
are similar to those used in Section 5.5 for evaluating the pessimism
incurred in the IC protocol analysis.

In the simple version (Sim-v1), for each sensor message (and simi-
larly for each control message), the message error probabilities were
known to the simulator. Thus, each time any message is activated, the
simulator draws a number uniformly at random from the range [0, 1],
compares it with the respective message error probabilities to decide
whether the message is affected by that error type, and if the message
is affected, simulates the corresponding error scenario. Thus, Sim-v1
does not actually simulate Poisson processes, nor does it simulate the
CAN protocol, but it helps to isolate the pessimism incurred in step (1).

The second version Sim-v2 is more complex than Sim-v1, and sim-
ulates the entire NCS along with the CAN transmission protocol.
Separate Poisson processes are used to generate the respective fault

6.5 evaluation 119

configuration γcrash(Hi) γcorrupt(Hi) γretransmission

A 10−4 10−20 3× 10−20
B 10−20 10−4 3× 10−20
C 10−20 10−20 3

D 10−5 10−5 3× 10−1

Table 6.2: Error rate configurations used for evaluation. Notations γcrash(Hi),
γcorrupt(Hi), and γretransmission, denote the omission error rate on
host Hi, the incorrect computation error rate on host Hi, and
the retransmission error rate on the CAN bus, respectively. High-
lighted error rates indicate non-negligible values.

events on each host and on the network. These fault events may mani-
fest as message errors if they coincide with the message’s lifetime, e.g.,
as an incorrect computation error if they coincide with the message’s
exposure interval and a retransmission error if they coincide with
the message’s network transmission interval. Sim-v2 evaluates the
pessimism incurred when upper-bounding the message error proba-
bilities as a function of the raw transient fault rates using the Poisson
model, e.g., when using the Poisson-based CAN timing analysis [39]
to determine bounds on deadline violation probabilities. It also evalu-
ates whether this pessimism significantly impacts the overall iteration
failure probability bound.

Both Sim-v1 and Sim-v2 make the worst-case assumption that any
two faulty message copies are identical, as in the analysis. Thus, any
pessimism due to this assumption is not evaluated.

We compared the analysis, Sim-v1, and Sim-v2 for four different
sets of error rates, which are enumerated in Table 6.2. To understand
the effects of individual error types, in each of the first three configu-
rations, one of the three error types was assigned a non-negligible er-
ror rate, i.e., γcrash(Hi) = 10

−4 (Configuration A), γcorrupt(Hi) = 10
−4

(Configuration B), and γretransmission = 3 (Configuration C), respec-
tively, whereas the other error rates were assigned negligible values.
Additionally, in Configuration D, all three error rates were assigned
non-negligible values, i.e., γcrash(Hi) = 10

−5, γcorrupt(Hi) = 10
−5, and

γretransmission = 3× 10−1. For each configuration, the number of sensor
and controller task replicas of L1 were varied from one to five. The
results are illustrated in Figs. 6.3 and 6.4.

We also compared the failure probabilities for different CAN bus
utilizations (by assuming increased message payload sizes) and for
different reboot times (100ms to 2000ms), with a replication factor of
three. For the first experiment with varying bus utilizations, we used
Configuration D (where all error types are assigned non-negligible
error rates). For the second experiment with different reboot times, we
used Configuration A (where crash errors dominate). The results for
these experiments are illustrated in Figs. 6.5a and 6.5b, respectively.

120 reliability analysis of an ncs iteration

1 2 3 4 5
sensor and controller task replicas

10 6

10 5

10 4

10 3

10 2

10 1

100

P(
fa

ile
d

ite
ra

tio
n)

Analysis Sim1 Sim2

(a) Configuration A (crash errors dominate)

1 2 3 4 5
sensor and controller task replicas

10 10

10 8

10 6

10 4

10 2

100

P(
fa

ile
d

ite
ra

tio
n)

Analysis Sim1 Sim2

(b) Configuration B (corruption errors dominate)

Figure 6.3: Results for configurations A and B. See Table 6.2 for the corre-
sponding error rates.

For each experiment, simulations were run for 10,000,000 iterations
to compute high-confidence failure probability estimates along with
99% confidence intervals (which are shown as vertical errors bars).

results and observations Several trends can be clearly seen.
First, in all evaluated scenarios, the analysis results always track
Sim-v1 extremely closely, which indicates that any pessimism intro-
duced in step (1) to ensure monotonicity of the model with respect to
the exact error rates is negligible.

The results shown in Figs. 6.3a, 6.3b and 6.4b further show that the
analysis tracks Sim-v2 quite closely, too, provided that the underlying
CAN timing analysis is not the bottleneck (i.e., if message delays are
not the dominant source of failures, as is the case in Fig. 6.4a). Specifi-
cally, we observe that the full analysis, including step (1), results in less
than an order of magnitude difference between the predicted and ob-
served failure probabilities if crash or incorrect computation errors are
the dominant source of failures. This confirms the overall accuracy of

6.5 evaluation 121

1 2 3 4 5
sensor and controller task replicas

10 10

10 8

10 6

10 4

10 2

100

P(
fa

ile
d

ite
ra

tio
n)

Analysis Sim1 Sim2

(a) Configuration C (retransmission errors dominate)

1 2 3 4 5
sensor and controller task replicas

10 10

10 8

10 6

10 4

10 2

100

P(
fa

ile
d

ite
ra

tio
n)

Analysis Sim1 Sim2

(b) Configuration D (all error types assigned non-negligible rates)

Figure 6.4: Results for configurations C and D. See Table 6.2 for the corre-
sponding error rates.

the approach for the intended use cases: the proposed analysis closely
tracks and soundly bounds the actual iteration failure probabilities in
the presence of crashes, retransmissions, and message corruptions.

However, as is evident from Figs. 6.3a, 6.3b and 6.4b, there exist cases
where the analysis diverges significantly from Sim-v2. The common
factor in these scenarios is that the underlying CAN analysis is the
dominating factor. Most prominently, this is visible in Fig. 6.4a, which
focuses exclusively on transmission faults: while the analytical failure
bound is initially large and then decreases gradually with increasing
replication factor, the observed failure probability is several orders of
magnitude smaller than the analytical bound and actually indicates
the opposite trend—the analysis is not at all a good predictor of actual
failure rates in this scenario.

Fig. 6.5a indicates that the gap between Sim-v2 and the analysis
increases with CAN bus utilization. And even in Fig. 6.3a, when
the replication factor is increased to five (resulting in high network
contention), Sim-v2 begins to deviate from the analysis. We attribute

122 reliability analysis of an ncs iteration

58.7% 65.9% 73.1% 80.3% 87.6% 94.8%
CAN bus utilization

10 10

10 8

10 6

10 4

10 2

100

P(
fa

ile
d

ite
ra

tio
n)

Analysis Sim1 Sim2

(a) Configuration D with varying CAN bus utilization

100 500 1000 1500 2000
Reboot time (ms)

10 10

10 8

10 6

10 4

10 2

100

P(
fa

ile
d

ite
ra

tio
n)

Analysis Sim1 Sim2

(b) Configuration A with varying reboot times

Figure 6.5: Variation in the iteration failure probability when the CAN bus
utilization and the reboot times are increased. The results are
illustrated in insets (a) and (b), respectively. Configurations D
and A (see Table 6.2) were used to obtain the results in (a) and
(b), respectively. In each case, three sensor and controller task
replicas of L1 were configured.

the pessimism caused by the timing analysis to the fact that not
every message instance experiences worst-case interference during
transmission (i.e., not every message is released at a critical instant), and
consequently, the derived deadline violation probability is extremely
pessimistic for most message instances.

We conclude that the pessimism incurred by the current CAN timing
analysis is significant. However, this has a measurable effect only in
cases where the network becomes the dominant reliability bottleneck,
which is rather unlikely in the case of realistic error rates. That is, the
extremely high error rates assumed in this experiment for the sake of
simulation speed exaggerate the impact of the CAN analysis.

Finally, Fig. 6.5b indicates that the pessimism incurred by step (1)
also increases with the reboot time, which is also an exaggerated
trend due to the extremely high rate of crash errors in this scenario

6.5 evaluation 123

(i.e., γcrash(Hi) = 10
−4 perms, which means a reboot is expected every

10 seconds on average). As a result, with increasing reboot times, it
becomes more likely that a crash fault affects an already-crashed host
while it is rebooting—which “masks” in part the effects of the prior
crash, which our analysis does not exploit. For more realistic crash
rates, the effect is negligible, and even in this exaggerated setup, the
analysis stays within an order of magnitude of the observed failure
rate (note the y-axis scales).

7 F R O M I T E R AT I O N TO S Y S T E M
FA I L U R E *

* This chapter is
based on our CERTS
2017 [90] and
ECRTS 2019 [89]
papers.

Quantifying the reliability of a CPS involves bounding the probability
that a failure occurs in any one step of operation, as well as bounding
the probability of failure of the entire system. These are distinct prob-
lems because many CPS are designed to continue to operate safely
even in the presence of occasional failures. This is especially true
for NCS applications, which are routinely designed to be robust to
occasional failures.

For example, Majumdar et al. [141] describe an NCS where the
control system continues using the previous iteration parameters
in case the current iteration is dropped. Using networked control
techniques [35], they also provide methods to estimate a maximum
dropout rate tolerated by a control system without compromising its
stability (e.g., they show that an inverted pendulum control system
with mass 0.5 kg, length 0.20m, and sampling time 10ms remains
asymptotically stable with at least 76.51% successful control loop
iterations). Recently, Pazzaglia et al. [172] used the intrinsic robustness
of well-designed controllers to propose a novel Deadline-Miss-Aware
Control (DMAC) strategy, which can be implemented in a real-time
task that may miss some deadlines.

In general, prior studies [22, 35, 45, 95, 141, 142, 172] have demon-
strated that a control system can be (and typically is) designed to
withstand occasionally failing control loop iterations, without compro-
mising its intended service (i.e., the first control loop iteration failure
does not denote a full-system failure). We denote such well-designed
control systems as temporally robust.

In this chapter, we address the problem of bounding the long-run
failure probability of periodic systems (NCS applications being a
specific example), given a specification of their temporal robustness
and given bounds on their per-iteration failure probabilities (which
can be derived using the analysis presented in Chapter 6). In particular,
we consider the problem of soundly and accurately estimating the
Mean Time To Failure (MTTF) (or equivalently, the Failures-In-Time
(FIT) rate) of a periodic control system whose temporal robustness is
expressed as one or more weakly-hard constraints.

As an example, consider the (m,k) constraint, which is one of the
simplest forms of weakly-hard constraints. It specifies that a peri-
odic system remains functional as long as at least m iterations in
any window of k consecutive iterations are successful. The temporal
robustness of the inverted pendulum control system discussed above

125

126 from iteration to system failure

(i.e., asymptotic stability with at least 76.51% successful iterations)
directly translates to an (m,k) constraint with m = 77 and k = 100.

In many cases, such a single (m,k) constraint may not be sufficient
to satisfy other performance specifications (such as settling time), and
must be appended with an additional short-range “liveness” constraint.
For example, given a sampling time of 10ms, the inverted pendulum
control system would surely crash if it experienced 33 consecutive
dropouts. In such cases, the temporal robustness of the control system
is better specified using either a harder constraint (e.g., m = 4 and k =

5 instead of m = 77 and k = 100) or multiple constraints (e.g., using
both m1 = 77 and k1 = 100 as well as m2 = 1 and k2 = 4) [27].
The objective of this chapter is thus to use the temporal robustness
property of control systems, specified using one or more generic
weakly-hard constraints, for estimating their long-run reliability from
the per-iteration failure probabilities.

We start by discussing the limitations of prior work from the reli-
ability modeling literature in estimating MTTF/FIT of periodic sys-
tems with weakly-hard constraints, and characteristics expected of
in an ideal MTTF/FIT analysis (Section 7.1). We then formalize the
MTTF/FIT estimation problem as the expectation of the stopping time
of a stochastic process (Section 7.2), and propose three orthogonal
analyses, PMC, MART, and SAP, with different trade-offs (Section 7.3).
We provide an empirical evaluation of these techniques in terms of
their accuracy and numerical precision, their expressiveness for dif-
ferent definitions of weakly-hard constraints, and their space and
time complexities, which affect their scalability and applicability in
different regions of the space of weakly-hard constraints (Section 7.4).

Finally, using the analyses from this chapter and the previous chap-
ter, we explore how different weakly-hard parameters (e.g., different
values of m and k) and different error rates impact the reliability
estimates of a temporally robust NCS (Section 7.5). We use an active
suspension workload (the same as in Section 6.5) for this exploration.

7.1 prior work and objectives

Weakly-hard constraints have been widely studied in the context of
firm real-time systems to represent robustness of a time-sensitive task
against occasional timing failures [22, 41, 95, 180, 183]. In particular,
the focus has been on analyzing task schedulability according to
a given weakly-hard (usually (m,k)) constraint [180, 181], design
of online schedulers to meet these constraints [22, 41, 95], and co-
design approaches to find the schedulable set of (m,k) parameters
that maximizes an application’s quality of service [45, 114, 209].

Most recently, Pazzaglia et al. [171] introduced state-based represen-
tation of the evolution of a control system with respect to deadline

7.1 prior work and objectives 127

misses, and showed the merits of having multiple (m,k) constraints
for a control application. Similarly, Kauer et al. [114] derived a bound
on the consecutive message drops an architecture can experience, and
translated it to a set of (m,k) constraints.

However, none of these works provides a means for bounding a
system’s MTTF with respect to its weakly-hard specification.

In contrast, in the general reliability literature, there is a long tradi-
tion of work on deriving a system’s MTTF if the occurrence of failures
is described by well-known probability distributions (see [124] for a
comprehensive overview). Similarly, the problem of evaluating the reli-
ability of series- or parallel-redundant systems, both with and without
repairs, in the context of robustness specifications such as k-out-of-
n, consecutive-k-out-of-n, multidimensional consecutive-k-out-of-n,
etc. is well understood, e.g., see [174, 192]. However, the available
techniques in this domain do not directly apply to the problem at
hand. Either the constraints cannot be reduced to these techniques
or symbolically integrating the applicable technique over an infinite
domain is non-trivial. Further, for multiple weakly-hard specifications,
a model-based approach helps to account for dependencies.

Therefore, even given a bound on per-iteration failure probability,
soundly characterizing the overall MTTF/FIT rate remains challeng-
ing. While simulation-based methods can be used to estimate the
MTTF/FIT of weakly-hard periodic systems, they do not yield exact
answers—they may even under-approximate the true failure rate—and
scale poorly, especially when analyzing low-probability events. In fact,
an ideal MTTF/FIT analysis must satisfy three requirements:

• It must be generic or expressive enough to support complex
weakly-hard requirements in order to stand for the needs of
larger and more complicated systems.

• Further, it must be accurate, ideally, exact, to minimize pessimism
in the final system reliability.

• Last, but not least, it must be scalable with respect to the problem
size, since capturing asymptotic properties requires dealing with
large problem windows.

To respond to each of these requirements, we propose and compare
three approaches for MTTF/FIT analysis: PMC, MART, and SAP.

PMC (Probabilistic Model Checking) models the problem as an
expected reward problem in a discrete-time Markov chain, which
can be solved using state-of-the-art probabilistic model checkers such
as PRISM [125] and Storm [55]. PMC is able to express complex
robustness constraints as well as sophisticated system models with
state-dependent probabilities of failure, such as in [171].

For the special case of Bernoulli systems, where failure probabilities
are independent and identically distributed (IID), martingale theory

128 from iteration to system failure

appraoch accuracy scalability expressiveness

PMC Exact Poor General sys., all properties

MART Exact Poor IID systems, all properties

SAP Approx. Good IID systems, single (m,k)

Table 7.1: Approaches to MTTF/FIT derivation.

allows for a direct approach that we call MART. It constructs a system
of linear equations, whose solution gives the expected time to failure,
and is therefore able to leverage powerful linear algebra routines such
as the Linear Algebra PACKage (LAPACK) [127] and Basic Linear
Algebra Subprograms (BLAS) [16]. Like PMC, MART provides an
exact analysis, too, and can support general weakly-hard constraints,
but both PMC and MART have limited scalability.

To scale to large window-size constraints, we introduce SAP (Sound
Approximation), an empirically-driven, scalable, and yet sound, ap-
proach designed to evaluate a single (m,k) constraint.

The tradeoffs of the three proposed techniques, which are all sound
by construction, are summarized in Table 7.1.

7.2 system model

We model the problem of computing a system’s MTTF/FIT as the ex-
pected stopping time of a stochastic process. To that end, we model a
periodic system S abstractly as a stochastic process (Xn)n>0 evolving
in discrete time. We assume that system S is periodic with a period of
T time units, i.e., the observation Xn is emitted at time nT . Each ran-
dom variable Xn is boolean-valued: Xn = 1 indicates that S executes
correctly in its nth period and Xn = 0 indicates S executes incorrectly.
An execution of system S is a string in {0, 1}∗ denoting an outcome
of the stochastic process (Xn)n>0. We emphasize that S is not just a
single, periodic task, but the entire system, divided into logical itera-
tions. For example, one iteration of the system may involve end-to-end
execution of a set of real-time tasks and message exchanges, as in the
CAN-based NCS with active replication analyzed in Chapter 6, or the
NCS over Achal/Ethernet analyzed in Chapter 5.

Failure probabilities in system S can be modeled as in a Bernoulli
system where each observation Xn is an Independent and Identically
Distributed (IID) Bernoulli variable, with Pr[Xi = 0] = PF and Pr[Xi =
1] = 1− PF. Such a system represents a periodic system where errors
occur independently in each iteration, and the probability of error
in each iteration is (bounded by) PF. It can also represent periodic
systems where errors in multiple iterations are dependent, but the

7.2 system model 129

bound PF derived for each iteration is independent of the iteration
(this is possible if PF is derived pessimistically assuming the worst-
possible error scenario, which is a common approach in the analysis
of hard real-time systems, and also used in Chapters 5 and 6).

Alternatively, to capture history-dependence in failures and more
accurate iteration-specific error scenarios, the failure probabilities can
be modeled more expressively using a discrete-time labeled Markov chain
[17]. In this case, the system is modeled as a set of states Q and a
probabilistic transition function Pr(s ′ | s) : Q×Q 7→ [0, 1] that specifies
the probability with which the system transitions from state s at any
step n to state s ′ at step n+ 1. Each state is labeled with a Boolean
variable denoting success (1) or failure (0), and observation Xn is the
label of the (random) state at step n.

Next, we formalize robustness specifications to capture the intuition
that a periodic system, such as a well-designed controller, continues to
provide overall acceptable service despite individual iteration failures,
as long as there are not “too many” such iteration failures. In particular,
we characterize the set of safe executions for which a periodic system
is guaranteed to provide its service as a prefix-closed1 set of executions
R ⊆ {0, 1}∗. Thus, the intersection of two robustness specifications is
again a robustness specification.

We focus on the classic (m,k), 〈m,k〉, and 〈m〉 weakly-hard robust-
ness specifications, which have been originally proposed in the context
of firm real-time systems that can tolerate a limited number of deadline
misses [21] (see Section 2.1.2.2 for more details).

Formally, an execution w ∈ {0, 1}∗ is (m,k) robust if every window
of size k has at least m successes, i.e.,

∀u, v,w ′ : w = uw ′v∧ |w ′| = k⇒ π1(w
′) > m, (7.1)

where π1(w) denotes the number of 1’s in w; it is 〈m,k〉 robust if
every window of size k has at least m consecutive successes, i.e.,

∀u, v,w ′ : w = uw ′v∧ |w ′| = k⇒ ∃u ′, v ′ : w ′ = u ′1mv ′; (7.2)

and 〈m〉 robust if there are never more than m failures in a row, i.e.,

6 ∃u ′, v ′ : w = u ′0m+1v ′. (7.3)

For a given system, one can be interested in several robustness
specifications simultaneously, e.g., to express both asymptotic prop-
erties (such as “no more than 5% failed iterations”) and short-term
requirements (such as “no more than two iteration failures in a row”).
Thus, for example, we can ask that a system is (m1,k1) robust and
also 〈m2〉 robust. This just means that executions of the system satisfy

1 Recall that a set is prefix-closed if whenever an execution belongs to the set, all prefixes
of the execution also belong to the set.

130 from iteration to system failure

both the (m1,k1) constraint and the 〈m2〉 constraint. In general, given
a set of robustness specifications, an execution is considered correct if
it satisfies all the specifications in the set.

Given a periodic system S and its robustness specification R, we
next define its MTTF based on the definition in Section 2.2.2.

Let a system failure denote an execution that is not in R. For exam-
ple, for a system with a robustness specification (2, 5), an execution
010100100 denotes a failure (since the last five iterations consist of
only one successful iteration). We assume that system S stops if it
encounters a system failure, and therefore to compute the MTTF and
FIT we are interested in a failing execution whose proper prefixes
(i.e., prefixes excluding the last iteration) satisfy the robustness specifi-
cation. Accordingly, given a robustness specification R, we define the
stopping time of system S as a random variable

N(S,R) = min

{
n > 0

∣∣∣ X0 . . . Xn 6∈ R∧

∀i < n X0 . . . Xi ∈ R

}
. (7.4)

The MTTF is the expectation of the stopping time multiplied by the
period T of the system,

MTTF = T

∞∑
n=0

n · Pr[N(S,R) = n]. (7.5)

Eq. (7.5) is anologous to Eq. (2.10) in Section 2.2.2, except that the
stopping time of system S is defined taking into consideration its
robustness specification R. Also recall from Section 2.2.2 that the FIT
is simply the inverse of the MTTF, with a human-friendly scale factor,
to the effect that the FIT represents the expected number of failures in
one billion operating hours. That is, FIT = 109/(MTTF in hours).

7.3 probabilistic analyses

In the following, we propose three approaches for FIT derivation:
PMC, MART, and SAP. To explain the techniques in detail, we initially
focus on a single (m,k) robustness specification, and discuss the
applicability of the respective technique for evaluating a generic set
of robustness specifications such as {(m1,k1), 〈m2,k2〉, 〈m3〉} at the
end of each section. Wherever a Bernoulli system is considered, PF is
used to denote the probability of a failed iteration, and PS = 1− PF.

7.3.1 PMC: Markov Chain Analysis

We provide a method to compute the MTTF by modeling the system as
a labeled discrete-time Markov chain. Our observation is that computing

7.3 probabilistic analyses 131

S0

S1

P
F 1� P

F

1� P
F

P
F

(a) Markov chain of a Bernoulli system

11 01

10 00
P10,00

P10
,01

P11,11 P
1
1
,1

0

P01
,10

P01,11

(b) Monitor (Type 1) for k = 2

Figure 7.1: PMC approach. In inset (b), Px1x2, y1y2 is a shorthand for tran-
sition probability P ′(q | q ′) where states q and q ′ have labels
L ′(q) = x1x2 and L ′(q ′) = y1y2, respectively. Transitions with
zero probability are marked with dashed arrows. The state la-
beled 00, which is the only state in Bad(1, 2), is colored red.

the MTTF reduces to finding the expected total reward in an absorbing
Markov chain. Our method conceptually works for any regular robust-
ness specification (i.e., robustness specifications that can be accepted
by a finite automaton), but we focus our discussion on the class of
weakly-hard robustness specifications, which we expect to be most
widely used in practice, and for concreteness.

Suppose that system S is modeled as a Markov chainM = (Q,P,L, si),
where Q denotes a finite set of system states, P : Q×Q 7→ [0, 1] de-
notes the transition probability matrix, L : Q 7→ {0, 1} denotes the state
labels with 1 and 0 corresponding to success and failure (respec-
tively), and si ∈ Q denotes the initial state. For example, if S is a
Bernoulli system, then M, as illustrated in Fig. 7.1a, consists of states
s0 and s1 and transition probabilities P(s0, s0) = P(s1, s0) = PF and
P(s0, s1) = P(s1, s1) = 1− PF.

Given the Markov model M and a robustness specification R =

(m,k), we run a monitor Markov chain along withM, which is denoted
Monitor(M,k) = (Q ′,P ′,L ′,qi). The monitor tracks a finite execution
history of M of length k to decide whether S has failed, i.e., whether
there were more than k −m failures in the last k steps. Thus, Q ′

consists of 2k states, and each state q ∈ Q ′ is labeled with a unique
label L ′(q) ∈ {0, 1}k, e.g., a label of 1k−10 implies that every but the
last iteration was successful. Every time M takes a step, the monitor
state is updated to reflect the past k steps of M’s execution. Thus, the
transition probability of Monitor(M,k) from state q with label w to
state q ′ with label w ′ is P ′(q,q ′) = P(s, s ′) if system S can transition
from history w to w ′ by transitioning from state s to s ′; otherwise, it is
P ′(q,q ′) = 0. The initial state qi ∈ Q ′ is labeled 1k to model absence
of any failures during system start.

In addition, recall from Section 7.2 that system S stops as soon as
it encounters an execution that does not satisfy (m,k) robustness. To
model this aspect, we define Bad(m,k) as the set of all “bad” states in

132 from iteration to system failure

Q ′ and make all these states absorbing, i.e., once the monitor enters a
state in Bad(m,k), it does not transition into another state. Formally,

Bad(m,k) = {(q | q ∈ Q ′ ∧ L ′(q) 6∈ R}. (7.6)

As an example, the monitor representation for R = (1, 2) is illustrated
in Fig. 7.1b, with states in Bad(2, 3) explicitly marked in red.

Given the monitor Markov chain, we reduce the MTTF computation
to deriving the expected number of steps until the monitor enters a
bad state. For this, assume that each step of the monitor has a reward
of 1. We define the expected number of steps E as the expected reward
until any state in Bad(m,k) is reached (starting from the initial state
qi ∈ Q ′), which can be obtained using probabilistic model checkers
such as PRISM [125] and Storm [55]. Thus, if system S has period T ,
the MTTF of S with respect to robustness specification (m,k) is T × E.

Note that the monitor representation discussed above is indepen-
dent of m. While the monitor’s simple structure makes it trivial to
implement, its O(2k) space complexity can be detrimental in practice.
Fortunately, for the common case where k−m� k, e.g., (98, 100), the
monitor representation can be optimized to be much more space effi-
cient. Since the system stops as soon as the (m,k) constraint is violated,
we need not keep any executions that have more than k−m failures.
In other words, it suffices to store a limited history as a string of
length k−m, where each element in the string is from {1, . . . ,k}∪ {⊥},
representing the positions along the previous k steps when a failure
occurred (⊥ is used in case we have seen fewer than k−m failures).
Furthermore, we can coalesce all states in Bad(m,k) into a single “bad”
state, resulting in a space complexity of only O((k+ 1)(k−m) + 1).

As an example, the monitor representation for R = (2, 3) is illus-
trated in Fig. 7.2. The optimized monitor representation consists of
only five states, whereas otherwise it would have required eight states.
Since this monitor representation is more concise, the node labels are
not equal to the execution histories, unlike in the simple monitor rep-
resentation illustrated in Fig. 7.1b, e.g., label ‘3’ indicates an execution
history of ‘110’ where the latest iteration has failed.

Similarly, for m � k, we can optimize the model by storing a
history as a string of length m, where each element in the string is
from {1, . . . ,k}. We refer to the three representations, i.e., the default
one, the optimized version for k−m� k, and the optimized version
for m� k, as Type 1, Type 2, and Type 3 models, respectively.2

Compared to the aforementioned monitor representations for an
(m,k) robustness specification, monitor representations for 〈m,k〉 and
〈m〉 robustness specifications are both simpler and more efficient.

For 〈m,k〉 robustness, the monitor needs to keep track of positions
corresponding to (i) the latest run of 1’s of length at leastm and (ii) the

2 See Appendix C for an encoding of each monitor type in PRISM.

7.3 probabilistic analyses 133

1 2 3

F

T P11
0,
10

0

P110,101

P 10
1,
01

0

P101,011

P011,110

P011,111
P

1
1
1
,1

1
1

P111,110

Figure 7.2: Monitor (Type 2) for (2, 3). Px1x2x3, y1y2y3 is a shorthand for
P ′(q | q ′), where states q and q ′ correspond to execution histo-
ries x1x2x3 and y1y2y3, respectively. Transitions with zero prob-
ability are marked with dashed arrows, and states in Bad(2, 3)
are coalesced in to a single state, which is colored in red.

current run of 1’s of length at most m. For (i), since the beginning
and the end of run can be any element in a window of size k, a string
of length two belonging to {1 . . . k}2 is needed, whereas for (ii), since
the current run must always include the latest element, a string of
length one belonging to {1 . . .m} is sufficient. In both cases, ⊥ can be
used to denote the absence of a run, resulting in a space complexity of
O((k+1)2 · (m+1)). For 〈m〉 robustness, the monitor can be simplified
even further, since we only need one accumulator to store the current
sequence of consecutive 0’s, and so the space complexity is O(m).

For a generic robustness specification of the form R = {(m,k),
〈m ′,k ′〉, 〈m ′′〉}, we run the monitor for each specification in parallel,
and set Bad to denote states where some monitor is in a bad state.

7.3.2 MART: The Martingale Approach

While the PMC approach allows modeling history-dependent failures,
in the special case of Bernoulli systems, there is a direct and elegant
approach based on the martingale theory to deriving a linear system
of equations whose solution provides the expected stopping time. We
summarize this approach for (m,k) robustness next.

The first step is similar to enumerating the “bad” states of the
monitor Markov chain in the PMC approach. In particular, we list all
failure strings over {0, 1}k that correspond to a violation of the (m,k)
constraint: these are strings of length up to k in which at least k−m+1

failures occur. We do this by fixing the last position to be a failure and
then choosing all possible combinations of k−m indices from the set
{1, . . . ,k}. There are O(k(k−m)) such strings.

In the second step, given an exhaustive list of failure strings, we
reduce the problem of computing MTTF to that of computing the
expected waiting time until one of the failure strings is realized by

134 from iteration to system failure

the system execution. To find the expected waiting time, we use an
elegant algorithm from the theory of occurrence patterns in repeated
experiments proposed by Li [133]. Li’s algorithm translates the failure
strings into a set of linear equations, such that solving these linear
equations directly yields an expected waiting time for each individual
failure string (i.e., until a specific failure string is realized by the
system) as well as an expected waiting time until any of the failure
strings manifests. To compute the MTTF, we require only the latter.

We summarize Li’s algorithm in the following. Let Π = {π1,π2, . . .}
be the set of failure strings obtained in the first step. Let |πi| denote
the length of a string πi ∈ Π, and let πi,j denote the jth character
in string πi. Key to Li’s algorithm is a combinatorial operator ‘∗’
(Eq. 2.3 in [133]) between any pair of strings πa and πb from Π:

πa ∗ πb = (δ1,1δ2,2 . . . δx,x) + (δ2,1δ3,2 . . . δx,x−1)

+ . . . + (δx−1,1δx,2) + (δx,1), (7.7)

where

δi,j =

1
PF

if i ∈ [1, x], j ∈ [1,y], πa,i = πb,j = 0

1
PS

if i ∈ [1, x], j ∈ [1,y], πa,i = πb,j = 1

0 otherwise,

x = |πa|, and y = |πb|.

Using this operator, the expected waiting time e0 until any one of the
sequence patterns in Π occurs for the first time satisfies the following
linear system of n = |Π| equations for vector 〈e0, e1, . . . , en〉.

0 1 1 . . . 1

−1 π1 ∗ π1 π2 ∗ π1 . . . πn ∗ π1
−1 π1 ∗ π2 π2 ∗ π2 . . . πn ∗ π2

...
...

...
...

...

−1 π1 ∗ πn π2 ∗ πn . . . πn ∗ πn

e0

e1

e2
...

en

=

1

0

0
...

0

(7.8)

Thus, if S has period T , the MTTF is given by eo × T .
In the following, we show a step-by-step computation of the MTTF

for an example periodic system S using the MART approach.

example Consider a system with period 5ms, iteration failure prob-
ability bounded by PF = 0.1, and robustness specification (2, 3), i.e., at
most one 0 is allowed in any execution of length three.

The set of all strings over {0, 1}3 that violate (2, 3) robustness and
end in a failure is given by Π = {00, 010, 100}. Using Eq. (7.7), π2 ∗ π2,
for example, is computed as follows.

π2 ∗ π2 = δ1,1δ2,2δ3,3 + δ2,1δ3,2 + δ3,1

7.3 probabilistic analyses 135

{since π2,2 6= π2,1, δ2,1 = 0}

= δ1,1δ2,2δ3,3 + δ3,1

{since π2,1 = π2,3 = 0, δ1,1 = δ3,3 = 1/PF = 10}

= 10 · δ2,2 · 10+ δ3,1

{since π2,3 = π2,1 = 0, δ3,1 = 1/PF = 10}

= 10 · δ2,2 · 10+ 10

{since π2,2 = 1, δ2,2 = 1/PS = 10/9}

= 10 · 10
9
· 10+ 10 = 1090

9
.

Other πa ∗ πb’s can be similarly computed, resulting in the following
system of linear equations:

0 1 1 1

−1 110 10 110

−1 10 1090
9 10

−1 10 100
9

1000
9

e0

e1

e2

e3

=

1

0

0

0

, (7.9)

which yields e0 = 62.63 and MTTF = e0 × 5 = 313.15ms.

Asymptotically, the aforementioned MART approach has the same
complexity as the PMC approach. Solving the expected reward until
absorption in a Markov chain to compute the MTTF (as per the PMC
approach) also reduces to the problem of solving a system of n lin-
ear equations, where n denotes the number of states in the Markov
model [17]. However, since the MART approach directly provides us
with the final set of linear equations, we can leverage mature linear al-
gebra libraries (such as LAPACK [127] and BLAS [16]), to compute the
MTTF in a more scalable way than PMC (see Section 7.4 for details).

In addition, with the MART approach, accounting for a generic set
of robustness specifications, such as {(m1,k1), 〈m2,k2〉, 〈m3〉}, is rela-
tively straightforward in comparison to PMC. We need to modify only
the first step of MART to obtain an appropriate set of failure strings
that corresponds to violation of any of the robustness specifications,
which is used as before to instantiate the system of linear equations
defined in Eq. (7.8). However, it must be ensured that any two pat-
terns πa,πb ∈ Π do not contain one another [133]. This is possible if,
for example, the failure patterns for constraints (95, 100) and 〈3〉 are
merged. For such cases, the longer pattern is removed from Π, since
the shorter pattern occurs first.

136 from iteration to system failure

7.3.3 SAP: Sound Approximation

We present next an approximate analysis with the objective of scaling
it to large values of k. The presented analysis SAP is sound, that is,
it estimates an approximate value of the MTTF that lower-bounds
the MTTF as given by exact analyses PMC and MART. Like MART,
SAP can be used only for Bernoulli systems. Unlike PMC and MART
though, SAP is applicable only for a single (m,k) robustness con-
straint; it does not support constraints of the form 〈m,k〉 or 〈m〉, or
combinations thereof.

SAP consists of two key steps. Recall the definition of MTTF from
Section 7.2. For brevity, let g(n) = Pr[N(S,R) = n]. In the first step,
we derive a lower bound on g(n), denoted gLB(n). For this, we split
the (m,k) robustness specification into three conditions, compute an
exact or lower bound on the probability for each of these conditions,
and then compute a product of these probabilities. In the second step,
as per Eq. (7.5), we integrate n · gLB(n) numerically (but in a sound
manner) to strictly lower-bound the MTTF of system S. The two steps
are discussed in detail below.

For S to violate the (m,k) specification for the first time during its
nth iteration, the following three conditions must hold.

E1: The nth iteration must fail.

E2: Exactly k −m iterations must fail out of the k − 1 iterations
between the (n− k+ 1)th and the (n− 1)th iteration.

E3: Fewer than k−m+ 1 iterations fail out of any k consecutive
iterations, among the first n− 1 iterations.

Then g(n) = Pr(E1) × Pr(E2) × Pr(E3). Now, Pr(E1) = PF, and
summing over all possible combinations of k−m iteration failures
in k− 1 consecutive iterations yields Pr(E2) =

(
k−1
k−m

)
P
(k−m)
F P

(m−1)
S .

However, obtaining the exact value of Pr(E3) is challenging.
To tackle this challenge, we use the a-within-consecutive-b-out-of-c:F

model [124, §11.4] (or a/Con/b/c:F in short), proposed originally for a
system that consists of c (c > a) linearly ordered components and that
fails iff at least a (a 6 b) components fail among any b consecutive
components. Thus, in terms of the (m,k) constraint, for a = k−m+ 1,
b = k, and c = n− 1, a successful execution of an a/Con/b/c:F system
is equivalent to condition E3, and the reliability of an a/Con/b/c:F
system, whose approximations have been well studied in the past,
yields Pr(E3). Since we are interested in a sound approximation, we
reuse the reliability lower bound RLB(a,b, c) of the a/Con/b/c:F
system as proposed by Sfakianakis et al. [199].3 Using this reliability

3 RLB(a,b, c) is defined unambiguously for all possible cases in Appendix B.

7.4 evaluation 137

lower bound and the definitions of Pr(E1) and Pr(E2), we define a
lower bound gLB(n) on g(n) as

gLB(n) =

(
k− 1

k−m

)
P
(k−m+1)
F P

(m−1)
S RLB (k−m+ 1,k,n− 1) .

(7.10)

The next step is to use gLB(n) for lower-bounding the system’s
MTTF. This requires solving Eq. (7.5), but with gLB(n) in place of
Pr[N(S,R) = n]. Unfortunately, we were not able to obtain a closed-
form solution with current symbolic solvers due to the complicated
definition of gLB(n). In particular, gLB(n) is defined in terms of
RLB(k−m+ 1,k,n− 1), which is a recursive expression with complex
definitions of its subproblems, as is explained in detail in Appendix B.

Therefore, similar to numerical integration methods, we adopt an
empirical solution for MTTF derivation that is both fast and reasonably
accurate. We empirically compute the value of function gLB(n) at
finitely many sampling points d0,d1,d2, . . . ,dD ∈N such that d0 =
k −m + 1, and d0 < d1 < d2 < . . . < dD. Using the empirically-
determined values gLB(d0), gLB(d1), . . . , gLB(dD), we then define a
lower bound on the MTTF as follows.4

MTTFLB =

D−1∑
i=0

(
diT × gLB(di+1)× (di+1 − di)

)
(7.11)

Since scalability is the primary motivation for SAP, we choose
D� dD, so that MTTFLB can be quickly computed from Eq. (7.11). We
further choose the sampling points d1, . . . ,dD to minimize the amount
of pessimism introduced by numerical integration. Another source
of inaccuracy is the use of the reliability lower bound RLB(a,b, c)
proposed by Sfakianakis et al. [199], which inherently introduces some
pessimism. We discuss the choice of sampling points in detail in Sec-
tion 7.4, and compare SAP with PMC and MART in terms of accuracy.

7.4 evaluation

In this section, we discuss implementation choices and challenges,
compare the three types of Markov chain models discussed in Sec-
tion 7.3.1, and then explore the scalability versus accuracy tradeoffs
of PMC, MART, and SAP. Since the approximate analysis SAP is not
applicable to generic robustness specifications as defined in Section 7.2,
and since (m,k) constraints are the limiting factor when it comes to
scaling up the analysis, we focus on Bernoulli systems and a single
(m,k) constraint in the evaluation. In the end, we revisit the strengths
and weaknesses of each approach.

4 Eq. (7.11) is derived in Appendix B.

138 from iteration to system failure

All experiments were carried out on Intel Xeon E7-8857 v2 machines
with 4x12 cores and 1.5TB of memory.

implementation choices and challenges We realized PMC
using the state-of-the-art probabilistic model checker PRISM [125].5

However, configuring PRISM properly to ensure that the estimated re-
sults are both accurate and sound is not trivial. PRISM provides many
different configuration options that affect the method used for linear
equation solving (e.g., Jacobi, Gauss-Seidel, etc.), the model checking
engine (MTBDD, Sparse, Hybrid, or Explicit), parameters for precision
tuning (i.e., the epsilon value and maximum number of iterations for
convergence checks during iterative linear solving), and even options
to select exact (with arbitrary precision) or parametric model checking
(where some model parameters are not fixed). Choosing the right set
of options is thus important because they can significantly affect the
estimated MTTF, as we show next.

With the parametric model checking option, PRISM outputs the
MTTF as a function of parameter PF, e.g., the MTTF for (2, 4) is:

T × P5F − 3P
4
F + 3P

3
F − 2P

2
F − PF − 1

P10F − 4P9F + 6P
8
F − 5P

6
F − 3P

5
F + 4P

4
F − 3P

3
F

.

Parametric model checking is thus an ideal choice since it allows for
fast reliability analysis across a range of failure probabilities without
the need to build and check the model repeatedly. However, as we
show later, parametric model checking is also the costliest analysis
approach. Thus, for scalability purposes, we also considered both
exact and non-exact alternatives to parametric model checking.

We observed that non-exact model checking resulted in significant
inaccuracy. For example, Table 7.2 reports the MTTF results for speci-
fication (2, 4) obtained with non-exact model checking (using PRISM’s
Explicit engine) and with exact model checking. The non-exact engine
did not converge (first row of the table) for default configuration op-
tions. For PF = 10−10, even upon decreasing the epsilon value and
increasing the maximum number of iterations, the estimated MTTF is
several orders of magnitude off from the exact value, indicating the
sensitivity of non-exact model checking to small probabilities. In our
evaluation of PMC, we thus worked only with parametric and exact
model checking, which we denote as PMC-P and PMC-E, respectively.

The MART approach was implemented in C++ using the Elemental
library [69], since it uses LAPACK-based routines [127] for solving
linear equations, allows for arbitrary precision using the GNU MPFR
library [217], and is parallelized using OpenMPI [167]. SAP was im-
plemented in Python using the mpmath library [234] for arbitrary

5 See Appendix C for PMC encoded in the PRISM modeling language, and an empirical
comparison of PRISM with Storm [55], a more recent probabilistic model checker.

7.4 evaluation 139

engine iterations epsilon mttf for mttf for
PF = 10

−2 PF = 10
−10

1004 10−06 – –
Explicit 1009 10−06 3.36× 1005 0.23× 1015

1009 10−10 3.41× 1005 1.21× 1017

Exact N/A N/A 3.41× 1005 3.33× 1029

Table 7.2: MTTF values derived using PRISM engines.

precision PF = y · 10−10 PF = y · 10−30 PF = y · 10−50

10 −2.20× 10−00 −3.96× 10−01 −1.42× 10−00
20 +1.81× 10−04 −2.70× 10−04 +3.04× 10−04
30 +3.39× 10−07 −5.26× 10−07 +1.36× 10−06
40 −2.75× 10−10 +1.20× 10−09 −2.00× 10−09
50 −1.89× 10−14 +2.99× 10−13 −4.80× 10−13

Table 7.3: % errors in FIT for R = (8, 10) and y = 1.234,567,89.

precision. Thus, for MART and SAP, unlike for PMC-E, we could
explicitly set the global working precision, i.e., the number of decimal
digits used to represent the floating point significand.

However, the choice of the global working precision was not obvious.
Table 7.3 reports the percentage errors in the estimated FIT when the
precision is varied from 10 to 50, with respect to the FIT estimated
using a precision of 1000. The results indicate that low precision may
result in significant errors if PF is also small, and sometimes, the
results can even be unsafe (i.e., resulting in negative errors). In general,
estimating a precision that is safe to use based on the computations
involved requires rigorous analysis, e.g., [110]. To be on the safe side,
we used a precision of 1000 for MART and SAP, which ensures that
any remaining errors are of negligible magnitude.

Finally, when implementing SAP, recall that we need a mechanism
to choose an appropriate set of data points d0, d1, d2, . . . , dD over
which to run the empirical computations. We discuss this mechanism
with the help of an example. Let m = 3, k = 10, and PF = 10−7. In
Fig. 7.3, we illustrate gLB(n) given these parameters. Since MTTFLB
depends on gLB(n), the key idea is to ensure that points d0, d1, d2, . . . ,
dD are sufficient to trace the shape of function gLB(n), and that the
magnitude of gLB(n) is negligible beyond n = dD. The first point d0,
as mentioned before, is set to (k−m+ 1). To compute the last point
dD, i.e., the point at which gLB(n) becomes negligible, we observed
the logarithm of function gLB(n) for n ∈ {1, 101, 102, 103, . . .}. That is,
we plotted the function gLB(n) on a logarithmic scale for both the x-

140 from iteration to system failure

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
n (normal scale) 1e55

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

g L
B
(n

)
(n

o
rm

a
l
sc

a
le

)

1e 55

(a) Normal-scale axes

100 10510101015102010251030103510401045105010551060

n (log scale)

10-29810-27710-25610-23510-21410-19310-17210-15110-13010-10910-8810-6710-4610-25

g L
B
(n

)
(l

o
g
 s

ca
le

)

(b) Log-scale axes

Figure 7.3: MTTF estimation using the SAP approach. Insets (a) and (b) illus-
trate the sampling points gLB(d0), gLB(d1), . . . , gLB(dD) for R =
(3, 10), PF = 10−7, and T = 10ms in normal scale and log scale,
respectively. In this example, D = 5050 and dD = 9.90× 1057.

and y-axes as in Fig. 7.3b, and then determined a threshold at which
the curve starts falling rapidly (e.g., dD ≈ 1055 in Fig. 7.3b).

The intermediate points d1,d2, . . . ,dD−1 were chosen such that the
step size di+1 − di between any two consecutive points di and di+1
(i) is small enough to closely track the function gLB(n), and (ii) yet still
proportional to the order of magnitude of di, to avoid evaluating an
exponential number of points. For example, while generating Fig. 7.3,
the step size was 1 for n ∈ (10, 100] and 1052 for n ∈ (1053, 1054].

pmc model types Recall from Section 7.3.1 that we introduced
three different types of Markov chain models, Type 1, Type 2, and

7.4 evaluation 141

0 5 10 15 20

m (with k=20 and PF =10−10)

101
103
105
107
109

1011
1013
1015
1017
1019
1021
1023
1025

O
(m

o
d
e
l
si

ze
)

Type 1

Type 2

Type 3

(a)

0 5 10 15 20

m (with k=20 and PF =10−10)

0

1000

2000

3000

4000

5000

#
 T

ra
n
s.

 m
a
tr

ix
 n

o
d
e
s

Type 1

Type 2

Type 3

(b)

Figure 7.4: Asymptotic model size and the number of nodes in the transition
matrix (as reported by PRISM) for the three PMC models.

Type 3, each resulting in a different asymptotic model size. Does the
use of one model over the other affect the computation times or even
the model building times in practice? To answer this question, we
measured the asymptotic model sizes for k = 20 and m ∈ [1,k− 1],
and compared the measurements with the model size and build time
statistics reported by PRISM. We also measured the checking time
statistics for k = 10 (since model checking for k = 20 frequently timed
out). We summarize the results obtained for PMC-E in Figs. 7.4 and 7.5.

Fig. 7.4a plots the asymptotic size for each model type, indicat-
ing that none of the models is an optimal choice for all parameters.
Fig. 7.4b report the number of elements in the transition matrix as
reported by PRISM. The number of transition matrix nodes varies
with m in the same way as the asymptotic model size, but the absolute

142 from iteration to system failure

0 5 10 15 20

m (with k=20 and PF =10−10)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

M
o
d
e
l
co

n
st

ru
ct

io
n
 t

im
e
 (

s)

Type 1

Type 2

Type 3

(a)

0 2 4 6 8 10

m (with k=10 and PF =10−10)

0

10

20

30

40

50

60

70

80

M
o
d
e
l
ch

e
ck

in
g
 t

im
e
 (

s)

Type 1

Type 2

Type 3

(b)

Figure 7.5: Model building and solving times for the three PMC models.
Unlike in Figs. 7.4a, 7.4b and 7.5a, k = 10 was used in Fig. 7.5b
since model checking for k = 20 frequently timed out.

numbers are less than the asymptotic sizes. This is because PRISM
already prunes some states that are unreachable during the build
process. Fig. 7.5a and Fig. 7.5b illustrate the time to build and check
the models, respectively. The model construction time for each model
type is proportional to the respective model size. The model checking
time, however, is independent of the model type, since the models are
equivalent and result in the same set of linear equations.

In summary, to achieve maximum scalability, it is important to
choose a model that requires the minimum time for construction. In
the subsequent experiments, we thus use the asymptotic model sizes
as a guideline to choose the appropriate model type for an (m,k)

7.4 evaluation 143

configuration m PF Results

A m = bk/2c PF = 10
−10 Fig. 7.6a

B m = bk/2c PF = 10
−20 Fig. 7.6b

C m = k− 2 PF = 10
−10 Fig. 7.7a

D m = k− 2 PF = 10
−20 Fig. 7.7b

Table 7.4: (m,k) and PF configurations used for evaluation, k ∈ [2, 20]

specification. That is, if k = 20, based on Fig. 7.4a, we use the Type 3

model if m 6 4, the Type 2 model if m > 16, or the Type 1 model.

scalability versus accuracy We start by evaluating the scalabil-
ity of the analyses PMC-P, PMC-E, MART, and SAP by measuring the
analysis duration for each k ∈ [2, 20], and for four different configura-
tions of m and PF (see Table 7.4).

Since evaluating (m,k) requires maximum time if m = bk/2c and
minimum time if m is close to either 1 or k− 1 (see Fig. 7.5b), compar-
ing the results of Configurations A and C (or Configurations B and D)
indicate the minimum and maximum scalability that can be achieved
by the analyses. In contrast, comparing the results of Configurations A
and B (or Configurations C and D) help us to understand the impact,
if any, of PF’s value on the analysis scalability. In all cases, a time out
of one hour was applied.

First, as evident from Figs. 7.6 and 7.7, and as expected, PMC-P,
PMC-E, and MART do not scale well in comparison to SAP. For Con-
figurations A and B, where m = bk/2c (see Fig. 7.6), PMC-P and
PMC-E scale only up to k = 9 and k = 11, respectively. The MART ap-
proach performs better and scales up to k = 15 for both configurations,
mainly because it gives up exactness (but still guarantees soundness
owing to its very high precision). In contrast, SAP easily scales up to
the maximum value of k = 20. Also, notice that while SAP’s analysis
time grows exponentially in k (the y-axis is log scale), PMC’s and
MART’s analysis times grow super-exponentially. For Configurations
C and D, where m = k− 2 (see Fig. 7.7), PRISM-based analyses scale
better than in the first two configurations because the Type 3 model
allows for a concise representation of the (m,k) specification and
hence fast building of the model. SAP’s scalability also improves sig-
nificantly in this case because the recursion involved in computing
RLB(k−m+ 1, k, n− 1) for the empirical data points is eliminated.

Between Configurations A and B as well as between Configurations
C and D, only the failure probability PF is changed from 10−10 to
10−20. As a result, PMC-E takes an order of magnitude more time. This
is because lower probabilities require more space for exact representa-
tion, and hence more time for computations on these representations.
SAP is also affected since the number of data points to be measured is

144 from iteration to system failure

2 4 6 8 10 12 14 16 18 20

k (with m=
⌊
k
2

⌋
 and PF =10−10)

10-2

10-1

100

101

102

103

104

A
n
a
ly

si
s

d
u
ra

ti
o
n
 (

s)
PMC-P

PMC-E

MART

SAp

(a) Configuration A

2 4 6 8 10 12 14 16 18 20

k (with m=
⌊
k
2

⌋
 and PF =10−20)

10-2

10-1

100

101

102

103

104

A
n
a
ly

si
s

d
u
ra

ti
o
n
 (

s)

PMC-P

PMC-E

MART

SAp

(b) Configuration B

Figure 7.6: Comparing analysis duration for PMC-P, PMC-E, MART, and
SAP for Configurations A and B (see Table 7.4). The analysis
duration for MART for k 6 5 was extremely small and is hence
not illustrated.

larger in this case. MART is unaffected because irrespective of PF, it
uses a precision of 1000. Parametric model checking is also unaffected
since it is independent of PF.

To summarize the discussion on analysis scalability, we illustrate in
Fig. 7.8 for each k ∈ [1, 25] and m ∈ [2,k− 1] whether analyses PMC-P,
PMC-E, MART, and SAP finished on time, i.e., within a one-hour
timeout window. For each cell, P denotes that PMC-P was successful,
E denotes that PMC-P timed out but PMC-E was successful, M denotes
that both PMC-P and PMC-E timed out but MART was successful,
and A denotes that only SAP was successful.

7.4 evaluation 145

2 4 6 8 10 12 14 16 18 20

k (with m=k−2 and PF =10−10)

10-2

10-1

100

101

102

103

104

A
n
a
ly

si
s

d
u
ra

ti
o
n
 (

s) PMC-P

PMC-E

MART

SAp

(a) Configuration C

2 4 6 8 10 12 14 16 18 20

k (with m=k−2 and PF =10−20)

10-2

10-1

100

101

102

103

104

A
n
a
ly

si
s

d
u
ra

ti
o
n
 (

s) PMC-P

PMC-E

MART

SAp

(b) Configuration D

Figure 7.7: Comparing analysis duration for PMC-P, PMC-E, MART, and
SAP for Configurations A and B (see Table 7.4). The analysis
duration for MART for k 6 5 was extremely small and is hence
not illustrated. The configuration k = 2 was ignored since (0, 2)
is not a valid (or rather a trivial) specification.

Clearly, the results indicate that exact analyses can be used only
if k 6 15, or else if m is either very small or very large relative to k.
Thus, for larger values of k, an approximate analysis, such as SAP, is
needed, that trades some accuracy for scalability. But is SAP accurate
enough to be useful at very large values of k? And is it accurate for
small values of k so that the costly exact analyses may not be needed
at all? To answer these questions, we evaluate next SAP’s accuracy
with respect to MART and PMC.

In Fig. 7.9a (similar in structure to Fig. 7.8), we report the percentage
error in the MTTF obtained using SAP versus that obtained from

146 from iteration to system failure

Figure 7.8: Scalability results for different values of m and k.

either PMC or MART (PMC was preferred, if available) for each k ∈
[2, 12] and m ∈ [1,k − 1]. As expected, SAP always resulted in a
lower, pessimistic MTTF than PMC and MART since it is sound by
construction. Thus, error signs are not explicitly denoted in the figure.

We make the two key observations regarding SAP’s accuracy. First,
even for small values of k, the relative errors are significant (see the
red cells in Fig. 7.9 denoting specifications with relative error greater
than 50%). This validates the need for an exact analysis whenever
feasible. Second, the relative errors are higher if the ratio m/k is closer
to one. To investigate this further, we also plot the percentage errors
for m = k− 2, m = 2, and m = k/2 with respect to k in Fig. 7.9b. From
this figure, we observe that in all evaluated cases, the MTTF estimated
with SAP was within an order of magnitude of the exact MTTF. Since
in the context of reliability analyses the order of magnitude is typically
of prime interest (rather than the exact value), we conclude that SAP
is a reasonably accurate alternative for large values of k.

In summary, MART always outperforms both PMC-P and PMC-E,
which is not surprising. In fact, for the scenario with IID iteration
failure probabilities that we evaluated, MART directly represents the
underlying system of linear equations without needing to construct a
model. PMC’s benefits lie in its ability to express non-IID iteration fail-
ure probabilities. SAP on the other hand scales much better than both
PMC and MART, at the cost of acceptable, but non-zero pessimism.

7.4 evaluation 147

(a) Summary of SAP’s accuracy with respect to MART and PMC

2 4 6 8 10 12 14 16
k

0

10

20

30

40

50

60

70

80

P
e
rc

e
n
ta

g
e
 e

rr
o
r

m = k - 2

m = 2

m = k / 2

(b) SAP’s accuracy trend for m = 2, m = k/2, and m = k− 2

Figure 7.9: Accuracy for different m and k.

PMC, MART, and SAP are useful alternatives for reliability evalua-
tion depending on the value of m and k. PMC and MART are ideal
to evaluate short-range properties on short window lengths to ensure
short-term safety properties, e.g., such as “there should not be more
than 3 consecutive failures in any window of 10 iterations” [45]. In
contrast, SAP can evaluate asymptotic properties that are defined over
a large window of events and reflect minimum acceptable longterm
quality-of-service levels, e.g., such as “at least 90% of actuation com-
mands must be applied on the plant in every 100 iterations” [193].

Although we focused on a binary failure type, i.e., each iteration
was categorized either as a successful iteration or a failed iteration,
one could also use fine-grained label types for each iteration, such
as deadline violation, message loss, miscomputation, and so on. That
is, an execution of system S could be modeled as a string in {0 . . . λ}∗,

148 from iteration to system failure

instead of a string in {0, 1}∗, where λ is the number of failure categories.
Both PMC and MART easily extend to such systems.

As mentioned earlier, SAP has limited extensibility in its current
form, since our objective when designing SAP was primarily to scale
the evaluation of (m,k) specifications that are widely used in practice.
However, the same blueprint could be used to safely approximate
other types of robustness specifications as well, i.e., by breaking each
specification into smaller events, computing the product of respective
event probabilities (or a lower bound), and then reusing Eq. (7.11) for
MTTF estimation. We leave similar approximate analysis for the other
types of robustness constraints as future work.

7.5 case study: active suspension

The analyses proposed in the previous chapter and in this chapter can
be used together to upper-bound the FIT rate of actively replicated
NCS applications with temporal robustness properties. We demon-
strate these benefits using a case study of an active suspension work-
load (the same as that used in Section 6.5). We first demonstrate the
ability of our analyses to reveal and quantify non-obvious differences
in the reliability of workloads with different weakly-hard require-
ments, thereby emphasizing the need for temporal robustness-aware
reliability analyses. Thereafter, we illustrate the utility of our analysis
in a design-space exploration context by comparing FITs of different
replication schemes. We rely on (m,k) constraints and FIT rates ob-
tained using the SAP approach in this case study, since we evaluate
very large values of k for one of the experiments.

workload and parameters Like in Section 6.5, we base our ex-
periments on a fault-tolerant version of the CAN-based active sus-
pension workload studied by Anta and Tabuada [8]. The workload
consists of tasks and messages corresponding to four control loops
(L1, L2, L3, and L4), each of which corresponds to the control of four
wheels (W1, W2, W3, and W4) with magnetic suspensions, two hard
real-time messages that report the current in the power line cable
and the internal temperature of the coil, another hard real-time clock
synchronization message, and a soft real-time message responsible for
logging. The message parameters are summarized in Table 7.5.

fit for different values of m and k To evaluate the impact
of different (m,k) requirements, we evaluated control loop L1’s FIT
while varying the value of parameters m and k for varying numbers of
sensor and controller task replicas. In Fig. 7.10a, m and k were varied
as follows: 1 6 m 6 5, and k = 5 or k = 2m; and in Fig. 7.10b, m and
k were varied such that m/k is either 90%, 95%, 99%, or 99.99% (in

7.5 case study: active suspension 149

messages payload size period

Clock synchronization 1 byte 50ms

Current monitoring 1 byte 4ms

Temperature monitoring 1 byte 10ms

L1 sensor & control messages 3 bytes 1.75ms
L2 sensor & control messages 3 bytes 1.75ms
L3 sensor & control messages 3 bytes 1.75ms
L4 sensor & control messages 3 bytes 1.75ms
L1–L4 message replicas (if any) 3 bytes 1.75ms
Logging 8 bytes 100ms

Table 7.5: CAN messages transmitted as part of the active suspension work-
load. The message list is ordered by priority, with the topmost
message being the highest priority message. The highlighted mes-
sage(s) depend on the replication factor used, and therefore vary
with each experiment.

each case, minimizing the values of m and k). In both these cases, L1’s
replication factor was varied from 1 to 5.

Overall, the experiments confirm that hard specifications—where
m = k (such as the (5, 5) configuration in Fig. 7.10a) or where m/k
is close to 100% (such as the 99.99% configuration in Fig. 7.10b)—
yield much higher FIT rates compared to all other specifications,
which highlights the need for a temporal robustness-aware reliability
analysis. In addition, Fig. 7.10a shows that increasing both m and
k while keeping m/k constant reduces the FIT rate, which indicates
that an asymptotic specification that relies only on the ratio m/k (and
where k can hence be chosen to be arbitrarily large) can be easily
supported by our analysis. Interestingly, different (m,k) specifications
can result in very similar FIT rates, e.g., the curves of (3, 5) and (2, 4)
or the curves of (3, 6) and (2, 5) in Fig. 7.10a overlap.

fit for different replication schemes To demonstrate that
the analysis is useful for identifying reliability bottlenecks with respect
to resource constraints, and for identifying opportunities to signifi-
cantly increase a system’s reliability at modest costs, we conducted
a case study in which we analyzed different replication schemes of
the workload. Our objective was to identify a replication scheme with
a FIT rate under 10. That is, if such an active suspension workload
is deployed in, say, 100,000,000 cars, then as per Mancuso’s calcula-
tions [147], no more than about one vehicle per day will experience a
failure in its active suspension NCS.

We considered the following error rates: γretransmission = 10−4 for the
CAN bus, and γcrash(Hi) = 10−8 and γcorrupt(Hi) = 10−12 for each
host Hi (each rate is reported as the mean number of errors per ms).

150 from iteration to system failure

1 2 3 4 5
sensor and controller task replicas

10 120
10 109
10 98
10 87
10 76
10 65
10 54
10 43
10 32
10 21
10 10

101
1012

FI
T

(5,5)
(4,5)
(3,5)
(2,5)
(1,5)

(1,2)
(2,4)
(3,6)
(4,8)

(a) 1 6 m 6 5 and k = 5 or k = 2m

1 2 3 4 5
sensor and controller task replicas

10 26
10 23
10 20
10 17
10 14
10 11
10 8
10 5
10 2
101
104
107

1010

FI
T

90.0%
95.0%
99.0%
99.99%

(b) m/k is either 90%, 95%, 99%, or 99.99% (while minimizing m and k)

Figure 7.10: Parameters m and k are varied.

To model practical design constraints, we assumed that the rear wheels
W1 and W2 were close to many electromechanical parts, and assigned
the hosts of the respective sensor tasks an order of magnitude higher
crash and incorrect computation error rates.

Given a period of 1.75ms and an (m,k)-firm specification of (9, 10)
for each control loop, the bound on the total FIT rate without any
replication is greater than 1010. Therefore, to find a replication scheme
with a FIT rate under 10, we conducted an exhaustive search over all
possible replication schemes, varying the replication factor of each task
from one to five, ignoring any scheme that did not result in a schedu-
lable system. While we do not report the results of this exhaustive
search due to space constraints, we observed that all feasible replica-
tion schemes can be partitioned into a few groups, where each group
corresponds to schemes that result in FIT rate bounds of roughly the
same order of magnitude. Thus, for each group, we report only the

7.5 case study: active suspension 151

W1 W2 W3 W4 period (m,k) util.

1 2S, 2C 2S, 2C 1S, 1C 1S, 1C 1.75ms (9, 10) 59%
2 2S, 2C 2S, 2C 2S, 1C 2S, 1C 1.75ms (9, 10) 68%
3 2S, 2C 2S, 2C 2S, 2C 2S, 2C 1.75ms (9, 10) 77%
4 4S, 2C 4S, 2C 2S, 2C 2S, 2C 1.75ms (9, 10) 96%

5 2S, 1C 2S, 1C 1S, 1C 1S, 1C 1.25ms (3, 5) 68%

6 2S, 2C 2S, 2C 2S, 2C 2S, 2C 2.50ms (19, 20) 55%
7 3S, 2C 3S, 2C 2S, 2C 2S, 2C 2.50ms (19, 20) 61%
8 3S, 3C 3S, 3C 3S, 3C 3S, 3C 2.50ms (19, 20) 81%

Table 7.6: Different replication schemes. Parameters xS and yC denote that x
and y replicas were provisioned for the sensor and the controller
task of the respective wheel control loops.

scheme with the minimum number of replicas, as given by Config-
urations 1–4 in Table 7.6 and Fig. 7.11a (Configurations 5–8 and the
corresponding Fig. 7.11b are discussed below).

Unfortunately, none of the feasible replication schemes yields a FIT
rate under 10. Configuration 1 contains two copies of the sensor and
controller tasks for L1 and L2, which helps reduce their respective
FIT rate to under 102, but the system’s total FIT rate still remains
high (≈ 108) owing to L3 and L4’s high individual FIT rates. Adding
an extra replica of the sensor task for L3 and L4 (Configuration 2)
does not help reduce this difference, but adding an extra copy of both
sensor and controller tasks for L3 and L4 (Configuration 3) reduces the
total FIT to around 102. In fact, while L3 and L4 are the bottleneck in
Configuration 1 and Configuration 2, the bottleneck in Configuration
3 is L1 and L2. At this point, it seems that adding another pair of
replicas for the rear wheel sensors (Configuration 4) to tolerate the
relatively higher fault rates might be sufficient to bring down the total
FIT rate under 10. However, this does not yield any significant benefit,
and since we have maxed out the bus utilization, we cannot add any
more replicas. This shows that with the current set of parameters, we
cannot guarantee a FIT of under 10, which would have been difficult
to realize without the proposed analysis.

Can we instead relax the parameters of the control loops at the
cost of slightly affecting their instantaneous quality-of-control [8]? For
example, does (i) a shorter period of 1.25mswith a relaxed (m,k)-firm
specification of (3, 5), or alternatively, (ii) a relaxed period of 2.5ms
with a stricter (m,k)-firm specification of (19, 20) allow designing the
system with the desired levels of reliability, i.e., with a FIT rate of 10
or less? To answer this question, we once again exhaustively generated
FIT bounds for all schedulable replication schemes and report four
representative cases (Configurations 5–8 in Table 7.6 and Fig. 7.11b).

152 from iteration to system failure

W1 W2 W3 W4 W1 -W4

10-8
10-6
10-4
10-2
100
102
104
106
108

FI
T

Config 1
Config 2

Config 3
Config 4

(a) Configurations 1–4

W1 W2 W3 W4 W1 -W4

10-8
10-6
10-4
10-2
100
102
104
106
108

FI
T

Config 5
Config 6

Config 7
Config 8

(b) Configurations 5–8

Figure 7.11: Replication factors of the different control loops are varied.

For case (i), the best possible FIT bound (≈ 103) is obtained when
two copies of the L1 and L2 sensor tasks are provisioned (Configu-
ration 5). While we could add a few more replicas to Configuration
5 without saturating the bus, this does not help to reduce the FIT
bound any further. Case (ii), however, allows us to add many more
replicas (Configurations 6–8) because of the relaxed period, yielding
much better FIT bounds despite the stricter (m,k)-firm specification.
In particular, Configuration 7 yields a total FIT bound under 1 and
Configuration 8 yields a total FIT bound of around 10−5. Thus, while
case (i) is not a useful alternative, case (ii) shows clear reliability
benefits. In fact, the substantial FIT reduction in case (ii) makes it a
worthwhile tradeoff, despite the slightly degraded control quality [8],
whereas case (i) would give up control quality for no appreciable gain.

In summary, this case study highlights the importance of quantify-
ing system reliability for design-space exploration and for identifying
and strengthening the weakest link of a system (e.g., in this study, L3
and L4 in Configurations 1 and 2, and L1 and L2 in Configuration 3),
and that the proposed analysis is an effective aid in this process.

Part IV

T H E R OA D A H E A D

8 C O N C L U S I O N

This dissertation proposes reliability analyses of actively replicated
NCS applications that are deployed on CAN or Ethernet in the pres-
ence of errors due to environmentally induced transient faults. In this
chapter, we summarize our contributions, discuss open questions and
future work, and finally conclude.

8.1 summary of results

The contributions of this dissertation are broadly divided into two
parts. The first part deals with tolerating Byzantine errors in CPS using
an appropriate BFT protocol and analysing an upper bound on the
FIT of the BFT protocol. The second part deals with the FIT analysis
of temporally robust NCS applications. The resulting FIT bounds can
then be used as inputs for a system-wide FIT analysis.

8.1.1 Byzantine Fault Tolerance

Ethernet-based implementations of NCS can fail due to environmen-
tally induced Byzantine errors. To make such implementations ultra-
reliable, we presented in Chapter 4 the design of a hard real-time, BFT
IC protocol. Our choice of the IC protocol follows from an extensive
survey of prior work on custom processors and networks that were
developed for building ultra-reliable avionics systems.

In addition, based on the proposed design, we prototyped a BFT,
time-aware key-value service (called Achal) for actively replicated
NCS applications. The key-value service case study demonstrated that
(i) the hard real-time IC protocol design can be implemented with-
out difficulty on COTS processors and Ethernet-like networks; (ii) it
provides a useful primitive to implement atomic broadcast or reliable
communication on top of Ethernet despite Byzantine errors, while
taking into account the real-time requirements of NCS applications;
and that (iii) Achal outperforms similar services implemented using
state-of-the art systems like Cassandra and BFT-SMaRt.

Ultra-reliability implies quantifiably negligible failure rates. Using
BFT protocols helps reduce the failure rate in the presence of Byzantine
errors. The next step is thus to quantify the failure rate, and validate
if it is negligible. To this end, we proposed in Chapter 5 a reliability
analysis to upper-bound the FIT rate of the presented hard real-time IC

155

156 conclusion

protocol. A key contribution is identifying and formalizing the notion
of reliability anomalies in a hard real-time setting, and ensuring that
our analysis is sound despite such anomalies. We also demonstrated
the usefulness of such an analysis with a design-space exploration
of the IC protocol and Ethernet network topology parameter space.
Our experiments revealed non-trivial reliability trade-offs, such as the
significant impact of the number of message exchange rounds and the
network topology on the overall reliability.

8.1.2 Networked Control Systems

Actively replicated NCS (e.g., in DMR, TMR, or QMR configurations)
can be used to safeguard safety-critical applications against crash
and corruption errors. Clock synchronization and atomic broadcast
services ensure that the active replicas do not diverge. Nonetheless,
the NCS may still fail, say, when a sensor source is faulty or when
the replicas experience correlated errors. Such scenarios necessitate an
additional FIT analysis of the active replication protocol.

To this end, we presented in Chapter 6 a reliability analysis to
upper-bound the failure probability of a single NCS iteration that
is implemented on a CAN-based distributed real-time system. The
analysis takes into account any correlations that may arise due to the
synchronous execution of replicas and the voting semantics used for
redundancy suppression. While the CAN protocol implicitly exposes
an atomic broadcast layer, our analysis can also be applied to NCSs
implemented over a software atomic broadcast layer (such as Achal).

We next presented in Chapter 7 analyses to derive an upper bound
on the FIT rate of the NCS as a function of its iteration failure probabil-
ity, periodicity, and weakly-hard temporal robustness specification. In
particular, we presented three different techniques—PMC, MART, and
SAP—which are based on probabilistic model checking, martingale
theory, and sound approximation, respectively. PMC is expressive and
yields exact results; MART also yields exact results but is not as expres-
sive as PMC; SAP does not yield exact results, but is highly scalable
in the parameter sizes of the weakly-hard robustness specification.

Our experiments combining the analyses in Chapters 6 and 7 also
showed that accounting for an NCS’s temporal robustness resulted in
vastly more accurate FIT estimates, as opposed to using the conven-
tional approach of computing MTTF using the time to first fault.

8.2 open questions and future work

In the following, we discuss open questions and opportunities for
future work regarding development of distributed real-time systems
with ultra-reliability guarantees.

8.2 open questions and future work 157

8.2.1 Improving the Analysis Accuracy

The proposed analyses currently consider the NCS application running
on each node as a black box. In future work, we plan to exploit the pro-
gram source of NCS applications to improve the modeling accuracy of
the reliability analysis framework. In particular, we intend to develop a
finer-grained strategy, at the granularity of program variables, to more
accurately upper-bound the probability of application-specific mes-
sage errors. For example, using program analysis techniques, we can
trace the propagation of bit flips from registers to program variables;
identify program variables that, if corrupted, result in the payload
corruption; and then more accurately upper-bound the probability of
silent data corruption in the network message payload.

Such program analysis techniques have been previously used to com-
pute error bounds in the approximate computing domain, e.g., [110].
In the reliability domain, similar techniques have been used to replace
fault injection (empirical) techniques with faster analyses without
much loss in accuracy, e.g., [184]. We thus believe that using fine-
grained techniques to improve the existing reliability analysis frame-
work is both feasible and will help design ultra-reliable systems with
better resource efficiency.

8.2.2 Reliability Analysis of Other Critical Services

In order to evaluate an upper bound on the system-wide FIT as per
the SOFR model, failures in every critical service must be accounted
for as part of one of the many constituent FIT analyses. Clock synchro-
nization is one such critical service and an integral assumption in this
dissertation. One of the open questions is, thus, how can the FIT rate of
a PTP-like software clock synchronization protocol be upper-bounded
when the protocol is realized over Ethernet-like COTS networks.

Prior work in this regard analyses upper bounds on the clock skews
of deterministic clock synchronization algorithms, and also analyses
upper bounds on the invalidation probabilities of probabilistic clock
synchronization algorithms (i.e., the probability with which a given
clock skew bound is exceeded) [157]. Both sets of upper bounds rely
on implementation-specific parameters such as the time that a pro-
cess takes to read another process’s local clock (recall background
on clock synchronization from Section 2.1.1.2). However, when clock
synchronization is implemented in software over contemporary COTS
hardware, these implementation-specific parameters may no longer be
predictable (as expected by the prior analyses). The unpredictability
may render existing provably correct clock synchronization algorithms
to be only “intuitively correct,” and also significantly increase their
minimum achievable clock skew. Hence, in future, we would also like

158 conclusion

to bring COTS-based implementations of fault-tolerant clock synchro-
nization algorithms into the ultra-reliability fold.

8.2.3 Reliability Analysis of Intelligent NCS

Next-generation CPS will also consist of NCS with Artificial Intelli-
gence (AI) components. For instance, control loops integrated with
Deep Neural Networks (DNNs) will be responsible for making crit-
ical scene recognition and trajectory planning decisions on the fly.
However, certifying the reliability of AI components, specifically DNN
implementations, is quite challenging. Unlike conventional software,
DNNs are guided by millions of tunable parameters, which means
analyzing their entire state space is not feasible. Furthermore, to meet
strict end-to-end latency goals (e.g., 100ms in autonomous vehicles),
DNNs are typically executed on highly parallel accelerator platforms,
e.g., Google’s TensorFlow [216] and MIT’s Eyeriss [70], which have not
yet been analyzed from a safety or timeliness perspective. Reliability
analysis of safety-critical DNN frameworks is thus an open question.

We are particularly interested in extending our existing reliability
analysis framework to explore ultra-reliable designs for NCS that
consist of DNN executions. In particular, recent studies have shown
that DNNs have intrinsic resilience against transient faults owing to
their sparse network structure, but the resilience of different structural
units (e.g., layers and neurons) within a single DNN differ significantly.
Hence, there is an opportunity to design DNN frameworks that are
as resilient as a triple modular redundant system (i.e., with three
functionally identical DNNs executing in parallel) but at roughly one-
third the cost. That is, conceptually, if the most critical computations
inside a DNN can be accurately identified, we can selectively safeguard
them through spatial or temporal redundancy mechanisms. Our goal
is to design analyses to estimate a minimal spare capacity needed for
achieving the desired reliability target (e.g., the number of processing
elements in a hardware accelerator to be reserved as spares) and
propose mechanisms to efficiently orchestrate critical computations
over this spare capacity while maximizing data reuse, so that end-to-
end latencies remain under the specified threshold.

8.3 closing remarks

The commercial aircraft industry has over the years set very high
standards of reliability. Each aircraft design is rigorously tested before
deployment; it is engineered to remain functional despite intolerable
errors during runtime (such as environmentally-induced hardware
faults); and its failure probability is quantified in advance and shown
to be negligible for safety certification.

8.3 closing remarks 159

In this dissertation, we take inspiration from reliability engineer-
ing practices in the commercial aircraft industry. Our aim is to bring
the notion of ultra-reliability—i.e., the practice of ensuring quantifi-
ably negligible residual failure rates—to the next generation of fully-
autonomous CPS, including autonomous vehicles, drones, robots, and
industrial automation systems. To this end, we have designed analyses
to upper bound the failure rates of COTS-based implementations of
NCS applications, which are integral to many of these CPS. Over the
next few decades, when the use of fully autonomous CPS and their im-
pact on human lives grows substantially, we hope that these analyses
will be useful to build CPS that are as trustworthy as airplanes.

Part V

A P P E N D I C E S

A M O N OTO N I C I T Y P R O O F S

In this Appendix, we provide monotonicity proofs for the reliability
analysis of an NCS iteration provided in Chapter 6.

a.1 non-monotonicity of P(Uyn incorrect)

Recall the controller output analysis from Section 6.3.1. Definition 6.6
defines a recursive procedure to compute the probability that Uyn
(which denotes the output of controller task Cyn’s voter instance) is
incorrect, using the notion of an error status tuple (Definition 6.5). In
each step of the recursion, a message Xsn ∈ Zn is selected and placed
in one of the four sets (On, Dn, In, or Cn) in the error status tuple.

In the following, we show that for any tuple 〈On,Dn, In,Cn,Zn〉,
while P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) is either independent of,
or monotonically increasing in, the exact probability P(Xsn corrupted),
it is not independent of or monotonically increasing in the exact proba-
bilities P(Xsn delayed) and P(Xsn omitted). The result implies that prob-
ability P(Uyn incorrect | 〈∅, ∅, ∅, ∅,Xn〉), also denoted as P(Uyn incorrect),
is subject to reliability anomalies, when computed using upper bounds
on the exact message error probabilities.

For brevity of the following proofs, we introduce a shorthand nota-
tion to denote the exact error probabilities and the intermediate proba-
bilities used in the definition of P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉).
(Definition 6.6). The shorthand notation is summarized in Table A.1.
Based on the new notation, we first restate in Eq. (A.1) below the
definition of P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉).

P (Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) =
Ps Zn = ∅
 Co · Po + Cd · Po · Pd

+ Ci · Po · Pd · Pi + Cc · Po · Pd · Pi

 Zn 6= ∅.

(A.1)

Note that Po, Pd, and Pi are not defined with respect to any message,
but with respect to the specific message Xsn. Thus, probabilities Co,
Cd, Ci, and Cc are independent of Po, Pd, and Pi. In particular, since
P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) only depends on message error
probabilities of the messages in set Zn, and since Xsn 6∈ Zn for each
Co, Cd, Ci, and Cc, they are each independent of Po, Pd, and Pi.

163

164 monotonicity proofs

notation used in section 6.3 shorthand

P(SimpleMajority incorrect | In,Cn) Ps

P(Xsn omitted) Po

P(Xsn delayed) Pd

P(Xsn corrupted) Pi

P(Xsn omitted) Po

P(Xsn delayed) Pd

P(Xsn corrupted) Pi

P(Uyn incorrect | 〈On ∪ {Xsn},Dn, In,Cn,Zn \ {Xsn}〉) Co

P(Uyn incorrect | 〈On,Dn ∪ {Xsn}, In,Cn,Zn \ {Xsn}〉) Cd

P(Uyn incorrect | 〈On,Dn, In ∪ {Xsn},Cn,Zn \ {Xsn}〉) Ci

P(Uyn incorrect | 〈On,Dn, In,Cn ∪ {Xsn},Zn \ {Xsn}〉) Cc

Table A.1: Shorthand notation for the analysis in Section 6.3.

Likewise, Ps, too, is independent of Po, Pd, and Pi. This is be-
cause Po, Pd, and Pi only determine the probability with which a
message is inserted into In or Cn, whereas in the computation of
Ps = P(SimpleMajority incorrect | In,Cn), In and Cn are given.

In addition, note that Co, Cd, Ci, and Cc differ only in terms of
whether message Xsn is inserted from set Zn into set On, Dn, In, or
Cn, respectively. In the first two cases, Xsn is either omitted or delayed
and hence it does not participate in voting. Thus, the probability that
U
y
n is incorrect is the same for these cases, i.e., Cd = Co. In the third

case, Xsn is neither omitted nor delayed but corrupted, and hence it
participates in voting with a faulty value. Thus, the probability that
U
y
n is incorrect can only increase in comparison with the first two

cases, i.e., Ci > Cd = Co. In contrast, in the forth case, Xsn is neither
omitted, delayed, nor corrupted, and hence it participates in voting
with a correct value. Thus, the probability that Uyn is incorrect can only
decrease in comparison with the first two cases, i.e., Cd = Co > Cc.
In summary, Co, Cd, Ci, and Cc are related in the following way.

Ci > Cd = Co > Cc. (A.2)

Next, we prove the main results in Theorem A.1 to Theorem A.3.

theorem a.1. P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) is either inde-
pendent of or monotonically increasing in Pi.

A.1 non-monotonicity of P(Uyn incorrect) 165

Proof. If Zn = ∅, then P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) = Ps, and
Ps is independent of Pi. If Zn 6= ∅, then from Eq. (A.1),

P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉)

=

(
Co · Po + Cd · Po · Pd + Ci · Po · Pd · Pi
+ Cc · Po · Pd · Pi

)

{since Co = Cd (from Eq. (A.2)), replacing Cd with Co}

=

(
Co · Po + Co · Po · Pd + Ci · Po · Pd · Pi
+ Cc · Po · Pd · Pi

)

{replacing Pi with 1− Pi, and simplifying}

=

(
Co · Po + Co · Po · Pd + Ci · Po · Pd · Pi
+ Cc · Po · Pd − Cc · Po · Pd · Pi

)

{letting K1 = Co · Po + Co · Po · Pd + Cc · Po · Pd}

= K1 + Ci · Po · Pd · Pi − Cc · Po · Pd · Pi

{letting K2 = (Ci − Cc) · Po · Pd}

= K1 + K2 · Pi. (A.3)

In Eq. (A.3), by definition, K1 and K2 are independent of Pi. K1 > 0,
because it is defined as a sum of all positive terms (each term is a
product of probabilities). Also, K2 > 0, since Ci > Cc (from Eq. (A.2)).
Thus, K1 +K2 · Pi is monotonically increasing in Pi.

While P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) is always either inde-
pendent of or monotonically increasing in Pi, this is not the case for Pd.
In particular, we show that under specific conditions, P(Uyn incorrect |
〈On,Dn, In,Cn,Zn〉) decreases if Pd is increased.

theorem a.2. If Zn 6= ∅ and (Co − Cc) − (Ci − Cc) · Pi < 0, then
P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) decreases with increasing Pd.

Proof. If Zn 6= ∅, then from Eq. (A.1),

P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉)

=

(
Co · Po + Cd · Po · Pd + Ci · Po · Pd · Pi
+ Cc · Po · Pd · Pi

)

166 monotonicity proofs

{since Co = Cd (from Eq. (A.2)), replacing Cd with Co}

=

(
Co · Po + Co · Po · Pd + Ci · Po · Pd · Pi
+ Cc · Po · Pd · Pi

)

{replacing Pd with 1− Pd, and simplifying}

=

(
Co · Po + Co · Po · Pd + Ci · Po · Pi − Ci · Po · Pd · Pi
+ Cc · Po · Pi − Cc · Po · Pd · Pi

)

{letting K1 = Co · Po + Ci · Po · Pi + Cc · Po · Pi}

= K1 + Co · Po · Pd − Ci · Po · Pd · Pi − Cc · Po · Pd · Pi

{replacing Pi with 1− Pi, and simplifying}

=

(
K1 + Co · Po · Pd − Ci · Po · Pd · Pi
− Cc · Po · Pd + Cc · Po · Pd · Pi

)

{taking out Po · Pd as a common factor, and upon further simplifying}

= K1 + ((Co −Cc) − (Ci − Cc) · Pi) · Po · Pd

{letting K2 = (Co −Cc) − (Ci − Cc) · Pi}

= K1 + K2 · Po · Pd. (A.4)

In Eq. (A.4), by definition, K1 and K2 are independent of Pd. Hence,
since K2 = (Co − Cc) − (Ci − Cc) · Pi < 0 (from the premise), the
probability K1 + K2 · Po · Pd decreases with increasing Pd.

Like Theorem A.3, we show next that under specific conditions,
P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) decreases if Po is increased.

theorem a.3. If Zn 6= ∅ and (Co − Cc) − (Ci − Cc) · Pi < 0, then
P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) decreases with increasing Po.

Proof. If Zn 6= ∅, from Eq. (A.1),

P(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉)

=

(
Co · Po + Cd · Po · Pd + Ci · Po · Pd · Pi
+ Cc · Po · Pd · Pi

)

A.2 monotonicity of Q(Uyn incorrect) 167

{since Co = Cd (from Eq. (A.2)), replacing Cd with Co}

=

(
Co · Po + Co · Po · Pd + Ci · Po · Pd · Pi
+ Cc · Po · Pd · Pi

)

{replacing Po with 1− Po, and simplifying}

=

(
Co · Po + Co · Pd − Co · Po · Pd + Ci · Pd · Pi
− Ci · Po · Pd · Pi + Cc · Pd · Pi − Cc · Po · Pd · Pi

)

{letting K1 = Co · Pd + Ci · Pd · Pi + Cc · Pd · Pi}

= K1 + Co · Po − Co · Po · Pd − Ci · Po · Pd · Pi − Cc · Po · Pd · Pi

{taking out Po as a common factor}

= K1 + Po · (Co − Co · Pd − Ci · Pd · Pi − Cc · Pd · Pi)

{replacing Co − Co · Pd with Co · Pd, and taking out Pd as a common
factor}

= K1 + (Co − Ci · Pi − Cc · Pi) · Po · Pd

{replacing Pi with 1− Pi, and upon further simplifying}

= K1 + ((Co − Cc) − (Ci − Cc) · Pi) · Po · Pd

{letting K2 = (Co − Cc) − (Ci − Cc) · Pi}

= K1 + K2 · Po · Pd. (A.5)

In Eq. (A.5), by definition, K1 and K2 are independent of Po. Hence,
since K2 = (Co − Cc) − (Ci − Cc) · Pi < 0 (from the premise), the
probability K1 + K2 · Po · Pd decreases with increasing Po.

a.2 monotonicity of Q(Uyn incorrect)

The exact probability that Uyn is incorrect, as defined in Definition 6.6,
may decrease with increasing message error probabilities (as we
proved in the previous section). Hence, for safety reasons, i.e., to
avoid reliability anomalies, we also defined in Section 6.3.1 an upper
bound on the probability that Uyn is incorrect (Definition 6.7). We
prove below that this probability is independent of or monotonic in
all the message error probabilities.

168 monotonicity proofs

notations used in section 6.3 shorthand

Q(Uyn incorrect | 〈On ∪ {Xsn},Dn, In,Cn,Zn \ {Xsn}〉) C ′o
Q(Uyn incorrect | 〈On,Dn ∪ {Xsn}, In,Cn,Zn \ {Xsn}〉) C ′d
Q(Uyn incorrect | 〈On,Dn, In ∪ {Xsn},Cn,Zn \ {Xsn}〉) C ′i
Q(Uyn incorrect | 〈On,Dn, In,Cn ∪ {Xsn},Zn \ {Xsn}〉) C ′c

Table A.2: Extensions to the shorthand notation for the analysis in Section 6.3.

In particular, we show that for any tuple 〈On,Dn, In,Cn,Zn〉, up-
per bound Q(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) is independent of or
monotonic in the exact probabilities P(Xsn corrupted), P(Xsn delayed)
and P(Xsn omitted). The result implies that probabilityQ(Uyn incorrect |
〈∅, ∅, ∅, ∅,Xn〉), also denoted as Q(Uyn incorrect), is can be safely com-
puted using upper bounds on the message error probabilities, i.e., with-
out the possibility of any reliability anomalies. Monotonicity with
respect to the exact probability Ps = P(SimpleMajority incorrect |

In,Cn) trivially holds since Q(Uyn incorrect) is only defined in terms
of Ps and not in terms of Ps.

Once again, for the brevity of the following proofs, we extend the
shorthand notation introduced in Table A.1 with shorthand for the
new intermediate probability upper bounds that are used in the def-
inition of Q(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) (Definition 6.7). See
Table A.2 for the extensions. Using the extended shorthand notation,
we first restate the definition of Q(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉).

Q (Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) =

Ps Zn = ∅

C ′o · Po + C ′d · Po · Pd
+ C ′i · Po · Pd · Pi + C ′c · Po · Pd · Pi
+ C ′i · Po · Pd · Pi + C ′i · Po · Pi

 Zn 6= ∅.

(A.6)

Also recall from Appendix A.1 that Ps is independent of Po, Pd, and
Pi. In addition, similar to Co, Cd, Ci, and Cc in Appendix A.1, C ′o,
C ′d, C ′i, and C ′c, too, are independent of Po, Pd, and Pi, as well as

C ′i > C
′
d = C ′o > C ′c. (A.7)

The monotonicity proofs (Theorem A.4-Theorem A.6) follow.

theorem a.4. Q(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) is either inde-
pendent of or monotonically increasing in Pi.

A.2 monotonicity of Q(Uyn incorrect) 169

Proof. If Zn = ∅, then Q(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) = Ps,
and Ps is independent of Pi. If Zn 6= ∅, then from Eq. (A.1),

Q(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉)

=

(
C ′o · Po + C ′d · Po · Pd + C ′i · Po · Pd · Pi
+ C ′c · Po · Pd · Pi + C ′i · Po · Pd · Pi + C ′i · Po · Pi

)

{since C ′o = C ′d (from Eq. (A.7)), replacing C ′d with C ′o}

=

(
C ′o · Po + C ′o · Po · Pd + C ′i · Po · Pd · Pi
+ C ′c · Po · Pd · Pi + C ′i · Po · Pd · Pi + C ′i · Po · Pi

)

{replacing Pi with 1− Pi, and simplifying}

=

C ′o · Po + C ′o · Po · Pd + C ′i · Po · Pd · Pi
+ C ′c · Po · Pd − C ′c · Po · Pd · Pi + C ′i · Po · Pd · Pi
+ C ′i · Po · Pi

{letting K1 = C ′o · Po + C ′o · Po · Pd + C ′c · Po · Pd}

=

(
K1 + C ′i · Po · Pd · Pi − C ′c · Po · Pd · Pi
+ C ′i · Po · Pd · Pi + C ′i · Po · Pi

)

{letting K2 = (C ′i − C ′c) · Po · Pd}

= K1 + K2 · Pi + C ′i · Po · Pd · Pi + C ′i · Po · Pi

{letting K3 = C ′i · Po · Pd + C ′i · Po}

= K1 + K2 · Pi + K3 · Pi. (A.8)

In Eq. (A.8), by definition, K1, K2, and K3 are independent of Pi.
K1 > 0 and K3 > 0, since both are defined as a sum of all positive
terms (each term is a product of probabilities). Also, K2 > 0, since
C ′i > C

′
c (from Eq. (A.7)). Thus, K1 +K2 · Pi +K3 · Pi is monotonically

increasing in Pi.

theorem a.5. Q(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) is either inde-
pendent of or monotonically increasing in Pd.

170 monotonicity proofs

Proof. If Zn = ∅, then Q(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) = Ps,
and Ps is independent of Pd. If Zn 6= ∅, then from Eq. (A.1),

Q(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉)

=

(
C ′o · Po + C ′d · Po · Pd + C ′i · Po · Pd · Pi
+ C ′c · Po · Pd · Pi + C ′i · Po · Pd · Pi + C ′i · Po · Pi

)

{since C ′o = C ′d (from Eq. (A.7)), replacing C ′d with C ′o}

=

(
C ′o · Po + C ′o · Po · Pd + C ′i · Po · Pd · Pi
+ C ′c · Po · Pd · Pi + C ′i · Po · Pd · Pi + C ′i · Po · Pi

)

{replacing Pd with 1− Pd, and simplifying}

=

C ′o · Po + C ′o · Po · Pd + C ′i · Po · Pi − C ′i · Po · Pd · Pi
+ C ′c · Po · Pi − C ′c · Po · Pd · Pi + C ′i · Po · Pd · Pi
+ C ′i · Po · Pi

{cancelling C ′i · Po · Pd · Pi}

=

(
C ′o · Po + C ′o · Po · Pd + C ′i · Po · Pi + C ′c · Po · Pi
− C ′c · Po · Pd · Pi + C ′i · Po · Pi

)

{letting K1 = C ′o · Po + C ′i · Po · Pi + C ′c · Po · Pi + C ′i · Po · Pi}

= K1 + C ′o · Po · Pd − C ′c · Po · Pd · Pi

{letting K2 = C ′o · Po −C ′c · Po · Pi = (C ′o −C
′
c · Pi) · Po}

= K1 + K2 · Pd. (A.9)

In Eq. (A.9), by definition, K1 and K2 are independent of Pd. K1 > 0,
because it is defined as a sum of all positive terms (each term is a
product of probabilities). Also, K2 > 0, since C ′o > C ′c (from Eq. (A.7)),
which in turn implies C ′o > Pi · C ′c (Pi being a probability). Thus,
K1 + K2 · Pd is monotonically increasing in Pd.

theorem a.6. Q(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) is neither inde-
pendent of nor monotonically increasing in Po.

A.2 monotonicity of Q(Uyn incorrect) 171

Proof. If Zn = ∅, then Q(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉) = Ps,
and Ps is independent of Pd. If Zn 6= ∅, then from Eq. (A.1),

Q(Uyn incorrect | 〈On,Dn, In,Cn,Zn〉)

=

(
C ′o · Po + C ′d · Po · Pd + C ′i · Po · Pd · Pi
+ C ′c · Po · Pd · Pi + C ′i · Po · Pd · Pi + C ′i · Po · Pi

)

{since C ′o = C ′d (from Eq. (A.7)), replacing C ′d with C ′o}

=

(
C ′o · Po + C ′o · Po · Pd + C ′i · Po · Pd · Pi
+ C ′c · Po · Pd · Pi + C ′i · Po · Pd · Pi + C ′i · Po · Pi

)

{replacing Pd with 1− Pd, and simplifying}

=

C ′o · Po + C ′o · Po · Pd + C ′i · Po · Pi − C ′i · Po · Pd · Pi
+ C ′c · Po · Pi − C ′c · Po · Pd · Pi + C ′i · Po · Pd · Pi
+ C ′i · Po · Pi

{cancelling C ′i · Po · Pd · Pi}

=

(
C ′o · Po + C ′o · Po · Pd + C ′i · Po · Pi + C ′c · Po · Pi
− C ′c · Po · Pd · Pi + C ′i · Po · Pi

)

{replacing Po with 1− Po, and simplifying}

=

C ′o · Po + C ′o · Pd − C ′o · Po · Pd + C ′i · Pi
− C ′i · Po · Pi + C ′c · Pi − C ′c · Po · Pi − C ′c · Pd · Pi
+ C ′c · Po · Pd · Pi + C ′i · Po · Pi

{cancelling C ′i · Po · Pi}

=

(
C ′o · Po + C ′o · Pd − C ′o · Po · Pd + C ′i · Pi + C ′c · Pi
− C ′c · Po · Pi − C ′c · Pd · Pi + C ′c · Po · Pd · Pi

)

{letting K1 = C ′o · Pd + C ′i · Pi + C ′c · Pi − C ′c · Pd · Pi}

=

(
K1 + C ′o · Po − C ′o · Po · Pd − C ′c · Po · Pi
+ C ′c · Po · Pd · Pi

)

{taking out Po as a common factor}

= K1 + Po · (C ′o − C ′o · Pd − C ′c · Pi + C ′c · Pd · Pi)

172 monotonicity proofs

notations used in section 6.3 shorthand

P(Uyn omitted | 〈On ∪ {Xsn},Dn, In,Cn,Zn \ {Xsn}〉) Ro

P(Uyn omitted | 〈On,Dn ∪ {Xsn}, In,Cn,Zn \ {Xsn}〉) Rd

P(Uyn omitted | 〈On,Dn, In ∪ {Xsn},Cn,Zn \ {Xsn}〉) Ri

P(Uyn omitted | 〈On,Dn, In,Cn ∪ {Xsn},Zn \ {Xsn}〉) Rc

Table A.3: Extensions to the shorthand notation for the analysis in Section 6.3.

{replacing C ′o − C ′o · Pd with C ′o · Pd}

= K1 + Po · (C ′o · Pd − C ′c · Pi + C ′c · Pd · Pi)

{replacing (− C ′c · Pi + C ′c · Pd · Pi) with (− C ′c · Pd · Pi)}

= K1 + Po · (C ′o · Pd − C ′c · Pd · Pi)

{letting K2 = (C ′o −C
′
c · Pi) · Pd}

= K1 + K2 · Po. (A.10)

In Eq. (A.10), by definition, K1 and K2 are independent of Po. K1 > 0,
because it is defined as a sum of all positive terms (each term is a
product of probabilities). Also, K2 > 0, since C ′o > C ′c (from Eq. (A.7)),
which in turn implies C ′o > Pi · C ′c (Pi being a probability). Thus,
K1 + K2 · Po is monotonically increasing in Po.

a.3 monotonicity of P(Uyn omitted)

In this section, we show that the exact probability with which Uyn
is omitted, as defined in Definition 6.8, is either independent of or
monotonic in all message error probabilities.

In particular, we show that for any tuple 〈On,Dn, In,Cn,Zn〉, proba-
bility P(Uyn omitted | 〈On,Dn, In,Cn,Zn〉) is independent of or mono-
tonic in the exact probabilities P(Xsn corrupted), P(Xsn delayed) and
P(Xsn omitted). The result implies that P(Uyn omitted | 〈∅, ∅, ∅, ∅,Xn〉),
also denoted as P(Uyn omitted), can be safely computed using upper
bounds on the exact message error probabilities, without the possibil-
ity of reliability anomalies.

For brevity of the following proofs, like in the previous section, we
extend the shorthand notation introduced in Table A.1 with shorthand
for the new intermediate probabilities that are used in the definition
of P(Uyn omitted | 〈On,Dn, In,Cn,Zn〉) (Definition 6.8). See Table A.3
for the extensions. Using the extended shorthand notation, we first
restate the definition of P(Uyn omitted | 〈On,Dn, In,Cn,Zn〉).

A.3 monotonicity of P(Uyn omitted) 173

P (Uyn omitted | 〈On,Dn, In,Cn,Zn〉) =

Ro · Po + Rd · Po · Pd
+ Ri · Po · Pd · Pi
+ Rc · Po · Pd · Pi

 Zn 6= ∅

1 In ∪ Cn = ∅
0 In ∪ Cn 6= ∅.

(A.11)

Note that probabilities Ro, Rd, Ri, and Rc differ only in terms of
whether message Xsn is inserted from set Zn into set On, Dn, In, or
Cn, respectively. In the first two cases, Xsn is either omitted or delayed
and hence it does not participate in voting. Thus, the probability that
U
y
n is omitted is the same for these cases, i.e., Rd = Ro. In contrast, in

the last two cases, Xsn is neither omitted nor delayed and hence it is
guaranteed to participate in voting. Thus, the probability that Uyn is
omitted is zero for these cases, irrespective of whether message Xsn is
incorrectly computed or not, i.e., Ri = Rc = 0. In summary,

Ro = Rd > Ri = Rc = 0. (A.12)

Next, we prove the monotonicity result.

theorem a.7. P(Uyn omitted | 〈On,Dn, In,Cn,Zn〉) is either indepen-
dent of or increasing in Po, Pd, and Pi.

Proof. If Zn = ∅, then P(Uyn omitted | 〈On,Dn, In,Cn,Zn〉) is either 0

or 1, and thus independent of Po, Pd, and Pi. If Zn 6= ∅, then from
Eq. (A.11),

P(Uyn omitted | 〈On,Dn, In,Cn,Zn〉)
= Ro · Po + Rd · Po · Pd + Ri · Po · Pd · Pi + Rc · Po · Pd · Pi

{since Ri = Rc = 0 (from Eq. (A.12))}

= Ro · Po + Rd · Po · Pd (A.13)

{replacing Po with 1− Po, and simplifying}

= Ro · Po + Rd · Pd − Rd · Po · Pd

{since Ro = Rd (from Eq. (A.12))}

= Ro · Po + Ro · Pd − Ro · Po · Pd

174 monotonicity proofs

{replacing 1− Pd with Pd, and simplifying}

= Ro · Po · Pd + Ro · Pd. (A.14)

In Eq. (A.13), Ro · Po + Rd · Po · Pd is independent of Pi, as well as
monotonically increasing in Pd, since all other terms are positive. Sim-
ilarly, in Eq. (A.14), Ro · Po · Pd + Ro · Pd is monotonically increasing
in Po since all other terms are positive.

a.4 analysis of final output Fn
In this section, we provide proofs for the upper bounds on the probabil-
ity that the actuation during the nth control loop iteration is incorrect
and the probability that it is omitted. The upper bound were defined
earlier in Definitions 6.12 and 6.13, respectively, in Section 6.3.3.

theorem a.8. An upper bound on the probability that the actuation
during the nth control loop iteration is incorrect is given by

Q(Zn incorrect) =

P(Zn corrupted)

+ Q(Uyn incorrect)

+ Q(Vn incorrect)

 +

P(Zn corrupted)

× Q(Uyn incorrect)

× Q(Vn incorrect)

 ,

for any Uyn ∈ Un.

Proof. We consider two cases based on whether the sensor inputs to
any controller voter instance during the nth control loop iteration
results in corruption of the controller voter outputs (case 1) or not
(case 2). From Definition 6.6, the probability that case 1 occurs is

φcase1 = P(Uyn incorrect). (A.15)

For this case, since the sensor inputs to controller voter instance in
controller task Cyn results in corruption of its output, voter instances
in all controller tasks choose an incorrect output, too. Thus, all control
commands transmitted are incorrect, and it is guaranteed that the
actuation during the nth control loop iteration is incorrect. Hence, the
conditional probability in this case is

φcond1
= 1. (A.16)

The probability that case 2 occurs is

φcase2 = 1−φcase1 = 1− P(Uyn incorrect). (A.17)

A.4 analysis of final output Fn 175

For this case, the conditional probability that the actuation during the
nth control loop iteration is incorrect depends on two sources:

(a) actuator voter instance output Vn is incorrect, and

(b) actuator host is affected by incorrect computation errors.

From Definition 6.9, the probability for case (a) is

φcase2a = P(Vn incorrect), (A.18)

and from Definition 6.3, the probability for case (b) is

φcase2b = P(Zn corrupted). (A.19)

Using theorem P(A1 ∪A2) = P(A1) + P(A2) − P(A1) · P(A2), the con-
ditional probability for case 2 is

φcond2
= φcase2a +φcase2b −φcase2aφcase2b. (A.20)

By the law of total probability, the probability that the actuation
during the nth control loop iteration is incorrect is given by

P(Zn incorrect)

= φcase1φcond1
+φcase2φcond2

.

{simplifying using Eq. (A.15)-Eq. (A.20)}

=

P(Uyn incorrect)

+

(1− P(Uyn incorrect))

×
(
P(Vn incorrect) + P(Zn corrupted)

−P(Vn incorrect)× P(Zn corrupted)

)

{simplifying, and dropping all negative terms to obtain an upper
bound}

6

(
P(Uyn incorrect) + P(Vn incorrect)

+ P(Zn corrupted)

)

+

(
P(Uyn incorrect))× P(Vn incorrect)

× P(Zn corrupted)

)

{replacing exact probabilities with monotonic upper bounds}

6

(
Q(Uyn incorrect) +Q(Vn incorrect)

+ P(Zn corrupted)

)

+

(
Q(Uyn incorrect)×Q(Vn incorrect)

× P(Zn corrupted)

)

.

176 monotonicity proofs

Theorem A.8 is similar to Theorem A.9, except for the last step of
the proof, where exact probabilities are replaced with the respective
monotonic upper bounds.

theorem a.9. An upper bound on the probability that the actuation
during the nth control loop iteration is skipped is given by

Q(Zn skipped) =

(
P(Zn omitted) + Q(Uyn omitted)

+ Q(Vn omitted)

)

+

(
P(Zn omitted) × Q(Uyn omitted)

× Q(Vn omitted)

)
,

for any Uyn ∈ Un.

Proof. We consider two cases based on whether the sensor inputs to
any controller voter instance during the nth control loop iteration
results in omission of the controller voter outputs (case 1) or not
(case 2). From Definition 6.8, the probability that case 1 occurs is

φcase1 = P(Uyn omitted). (A.21)

For this case, since the delayed/omitted sensor inputs to controller
voter instance in controller task Cyn results in omission of its output,
voter instances in all controller tasks omit their outputs, too (see
Section 6.3.1.2 for details). Thus, none of the control commands are
prepared, and it is guaranteed that the actuation during the nth control
loop iteration is skipped. Hence, the conditional probability here is

φcond1
= 1. (A.22)

The probability that case 2 occurs is

φcase2 = 1−φcase1 = 1− P(Uyn omitted). (A.23)

For this case, the conditional probability that the actuation during the
nth control loop iteration is skipped depends on two sources:

(a) actuator voter instance output Vn is omitted, and

(b) actuator host is affected by message omission errors.

From Definition 6.11, the probability for case (a) is

φcase2a = P(Vn omitted), (A.24)

and from Definition 6.1, the probability for case (b) is

φcase2b = P(Zn omitted). (A.25)

A.4 analysis of final output Fn 177

Using theorem P(A1 ∪A2) = P(A1) + P(A2) − P(A1) · P(A2), the con-
ditional probability for case 2 is

φcond2
= φcase2a +φcase2b −φcase2aφcase2b. (A.26)

By the law of total probability, the probability that the actuation
during the nth control loop iteration is skipped is given by

P(Zn skipped)

= φcase1φcond1
+φcase2φcond2

.

{simplifying using Eq. (A.21)-Eq. (A.26)}

=

P(Uyn omitted)

+

(1− P(Uyn omitted))

×
(
P(Vn omitted) + P(Zn omitted)

−P(Vn omitted)× P(Zn omitted)

)

{simplifying, and dropping all negative terms for an upper bound}

6

(
P(Uyn omitted) + P(Vn omitted)

+ P(Zn omitted)

)

+

(
P(Uyn omitted))× P(Vn omitted)

× P(Zn omitted)

)

.

B S A P P R O O F S

In Section 7.3.3, we introduced SAP, a sound approximation approach
based on numerical analysis to estimate a lower bound on the MTTF
of periodic systems with weakly-hard constraints. The approach rested
on prior results from the reliability modeling literature, particularly the
reliability lower bound of the a-within-consecutive-b-out-of-c:F system
model (or a/Con/b/c:F in short).1

In the following, we first provide a primer on the a/Con/b/c:F
system model along with an unambiguous definition of its reliability
lower bound, since prior works do not explicitly enumerate all its
corner cases. We also provide a proof of monotonicity of this reliability
lower bound. Using this monotonicity result, we then derive the MTTF
lower bound defined in Eq. (7.11) as part of the SAP approach.

b.1 the a/con/b/c:f system model

An a/Con/b/c:F system [124, Section 11.4] consists of c linearly or
cyclically ordered components. The system fails if there are a (a 6
b) or more failed components among any consecutive b (b 6 c)
components. This model can be used, for example, in quality control of
a manufacturing process, where b items manufactured consecutively
are randomly selected for a quality check, and if at least a of these are
defective, the manufacturing process is required to be readjusted. In
this dissertation, since we apply the model to the problem of MTTF
estimation of periodic systems, we are interested in the linear model.

We are particularly interested in the reliability of the a/Con/b/c:F
system with IID components, i.e., the probability that the system
does not fail given an IID failure probability PF for each of the c
components. This problem has been thoroughly studied in the past
[143–145, 162, 168, 169, 177, 178, 199] for different flavors of the system
model and resulting in exact as well as approximate solutions (see
[124, Section 11.4] for a comprehensive summary). However, since
we use the reliability definition to define gLB(n), a lower bound on
g(n) = Pr[N(S,R) = n] (with a = k−m+ 1, b = k, c = n− 1, and
R = (m,k)), and since n · gLB(n) needs to be soundly integrated as

1 While the a-within-consecutive-b-out-of-c:F system model is typically denoted as
k-within-consecutive-m-out-of-n:F system in the reliability modeling literature, we
choose to replace k, m, and n with a, b, and c (respectively) in order to disambiguate
the system model notation from the notation corresponding to the weakly-hard
robustness specifications defined in Section 7.2.

179

180 sap proofs

per Eq. (7.5) to estimate a lower bound on the MTTF of a periodic
system with (m,k) robustness, we need a reliability definition (exact
or a lower bound) of the linear a/Con/b/c:F system model that can
be either:

• symbolically integrated with respect to n, or

• computed quickly for multiple (thousands of) and very large
values of n (up to n = 1050) for numerical integration.

Since we were not able obtain a reliability definition satisfying the first
requirement, the SAP approach relies on the second alternative, and
specifically on the results of Sfakianakis et al. [199].

b.1.1 Reliability of an a/Con/b/c:F System

Consider a linear a/Con/b/c:F system with IID components, each of
which fails with probability PF, and let PS = 1 − PF. Let R(a,b, c)
denote the exact reliability of the system. We use the results of
Sfakianakis et al. [199] to derive a lower bound on R(a,b, c), de-
noted RLB(a,b, c), for large values of c. Sfakianakis et al.’s analysis
breaks the problem into smaller subproblems for which exact analyses
are available and that can be computed quickly. However, neither
Sfakianakis et al. [199] nor any prior work explicitly enumerates the
reliability definitions for an exhaustive set of subproblems, i.e., which
covers all possibles values of parameters a, b, and c. Therefore, we
provide an unambiguous definition of the reliability lower bound
RLB(a,b, c) that draws from Sfakianakis et al.’s analysis for large val-
ues of c and from other prior works for some special cases and smaller
values of c. Note that in many cases, there are multiple ways to define
RLB(a,b, c), in which case we prefer a definition that can be quickly
computed. We summarize our definition of RLB(a,b, c) in Table B.1,
and provide a reliability definition for each case in Table B.1 next.

Case 1 is trivial: if a = 0, the system is always unreliable, thus,

R1(a,b, c) = 0. (B.1)

Similarly, Case 2 is also trivial: if a = 1, the system is reliable only if
none of the c components fail, thus,

R2(a,b, c) = (PS)
c. (B.2)

For the special case when a = 2, Naus [162] and Sfakianakis et al.
[199] provide an exact reliability definition (or see Equation 11.9 and

B.1 the a/con/b/c:f system model 181

case description definition type

1 a = 0 R1(a,b, c) Exact

2 a = 1 R2(a,b, c) Exact

3 a = 2∧ c 6 4b R3(a,b, c) Exact

4 a = 2∧ c > 4b R4(a,b, c) Lower Bound

5 a > 2∧ c 6 2b ∧ a = b R5(a,b, c) Exact

6 a > 2∧ c 6 2b ∧ a 6= b∧ c 6 b R6(a,b, c) Exact

7 a > 2∧ c 6 2b ∧ a 6= b∧ c > b R7(a,b, c) Exact

8 a > 2∧ c > 2b R8(a,b, c) Lower Bound

Table B.1: Reliability lower bound of a linear a/Con/b/c:F system with IID
components. type indicates whether the reliability definition is
an exact value or a lower bound on the exact value.

11.10 in [124, Section 11.4.1]). If c is small, this exact definition can be
quickly computed. Thus, we define

R3(a,b, c) =
b c+b−1b c∑
i=0

(
c− (i− 1)(b− 1)

i

)
(PF)

i(PS)
c−i. (B.3)

If c is large, though, we do not use an exact reliability but rely on
the reliability lower bound proposed by Sfakianakis et al. [199] (see
Equation 11.16 in [124, Section 11.4.1] for an explanation of this lower
bound).2 In particular, for a = 2 and c > 4b (Case 4), this lower bound
reduces to the following definition,

R4(a,b, c) = R3(a,b,b+ t− 1)(R3(a,b,b+ 3))u, (B.4)

where t = (c− b+ 1)mod 4 and u =

⌊
c− b+ 1

4

⌋
.

For the general case a > 2, we consider four sub-cases. First, we
consider the special case a = b, for which the a/Con/b/c:F system
reduces to a simpler Con/a/c:F system [124, Chapter 9]. In particular,

2 Notice that while we are interested in a reliability lower bound, we point to Equation
11.16 in [124, Section 11.4.1] that refers to an upper bound. This mismatch is due to
slight inconsistency in how the textbook chapter [124, Section 11.4.1] adopts the result
from the original paper by Sfakianakis et al. [199]. Notations L and U in Table I in
[199] denote lower and upper bounds (respectively) on the failure rate of the system.
Equation 11.16 in [124, Section 11.4.1] uses the same notation. Thus, UBa in Equation
11.16 in [124, Section 11.4.1] actually refers to an upper bound on the system failure
probability, and not an upper bound on the system reliability (although the text in
the chapter may seem contradictory). Since we require a lower bound on the system
reliability, and since system reliability is one minus its failure rate, we use 1−UBa,
where UBa is defined as in Equation 11.16 in [124, Section 11.4.1].

182 sap proofs

for a = b and c 6 2b (Case 5), we define an exact reliability using the
following closed-form expression [124, Section 9.1.1, Equation 9.20]:

R5(a,b, c) =

1 0 6 c < a

1− (PF)
a − (c− a)(PF)

a(PS) a 6 c 6 2a.
(B.5)

Next, we consider the special case where a 6= b but c 6 b (Case 6). In
this case, the number of working components in the system follows the
binomial distribution with parameters c and PF. Thus, as per Equation
7.2 in [124, Section 7.1.1], the exact reliability in this case is

R6(a,b, c) =
c∑

i=c−a+1

(
c

i

)
(PS)

i(PF)
c−i. (B.6)

Case 7 is the last special case where a 6= b and b < c 6 2b. In this case,
Sfakianakis et al. [199]’s analysis provides an exact reliability using
the aforementioned cases as subproblems (see Equation 11.14 in [124,
Section 11.4.1] for details). Their recursive definition is given below.

R7(a,b, c) =
a−1∑
i=0

(
b− s

i

)
(PF)

i(PS)
b−s−iM(a ′, s, 2s), (B.7)

where s = c− b and a ′ = a− i

and M(a ′, s, 2s) =

1 a ′ > s

R2(a
′, s, 2s) a ′ = 1

R3(a
′, s, 2s) a ′ = 2

R5(a
′, s, 2s) a ′ > 2∧ a ′ = s

R7(a
′, s, 2s) a ′ > 2∧ a ′ 6= s.

Finally, we consider the most general case where a > 2 and c > 2b
(Case 8). For this case, we once again rely on the reliability lower bound
proposed by Sfakianakis et al. [199], which we also used for Case 4.
However, the lower bound cannot be further simplified as in Case 4,
and relies on Cases 5-7, which we denote together as R5-7(a,b, c).

R8(a,b, c) = R5-7(a,b,b+ t− 1)× (R5-7(a,b,b+ 3))u, (B.8)

where t = (c− b+ 1)mod 4 and u =

⌊
c− b+ 1

4

⌋

and R5-7(a,b, c) =

R5(a,b, c) a > 2∧ a = b

R6(a,b, c) a > 2∧ a 6= b∧ c 6 b
R7(a,b, c) a > 2∧ a 6= b∧ c > b.

(B.9)

B.1 the a/con/b/c:f system model 183

Cases 1 to 8 are mutually exclusive and exhaustive, i.e., they cover
all possible values of parameters a, b, and c. Therefore, a generic lower
bound RLB(a,b, c) is defined by combining all of these cases.

b.1.2 Monotonicity of Reliability Lower Bound

The derivation of the MTTF lower bound (which is provided in Ap-
pendix B.2 next) depends on the property that the reliability lower
bound RLB(a,b, c) decreases with increasing c. This property triv-
ially holds for cases a = 0 and a = 1, as seen from the definitions
of R1(a,b, c) (Eq. (B.1)) and R2(a,b, c) (Eq. (B.2)). However, proving
the property for cases a > 2 and a = 2 is not trivial and discussed
explicitly in the following.

The definition of RLB(a,b, c) for a > 2 is split into multiple cases
(Cases 5-8 in Table B.1). In fact, because of the recursive definitions for
Cases 7 and 8, the definition of RLB(a,b, c) for a > 2 actually depends
on the remaining cases as well. This recursive dependence makes it
hard to prove that RLB(a,b, c) decreases with increasing c.

Instead, we prove a weaker property: we show that if RLB(a,b, c)
decreases with increasing c for small values of c (i.e., for c 6 2b),
then RLB(a,b, c) also decreases with increasing c for larger values of
c (i.e., for c > 2b). Since b is typically relatively small (recall from
Section 7.3.3 that b = k), the premise can be easily checked for specific
values of a, b, c and PF through exhaustive enumeration.

Note that in all theorems below, we consider a 6 b 6 c (recall the
a/Con/b/c:F system model).

theorem b.1. For a > 2, if RLB(a,b, c) is monotonically decreasing for
c ∈ {a, . . . , 2b+ 1}, then RLB(a,b, c) is also monotonically decreasing
for c > 2b+ 1, i.e.,

if ∀c 6 2b : RLB(a,b, c) > RLB(a,b, c+ 1),

then ∀c > 2b : RLB(a,b, c) > RLB(a,b, c+ 1). (B.10)

proof. Let

Ω =
RLB(a,b, c)

RLB(a,b, c+ 1)
. (B.11)

We prove that Ω > 1 when c > 2b.
Since a > 2 and c > 2b, both terms RLB(a,b, c) and RLB(a,b, c+

1) in Eq. (B.11) are resolved using Case 8 in Table B.1. Thus, from
R8(a,b, c)’s definition in Eq. (B.8), and letting x = c− b+ 1,

Ω =
R5-7(a,b,b+ (x mod 4) − 1)(R5-7(a,b,b+ 3))b x4c

R5-7(a,b,b+ ((x+ 1) mod 4) − 1)(R5-7(a,b,b+ 3))b x+14 c
.

(B.12)

184 sap proofs

To simplify Eq. (B.12), we consider two separate cases based on
whether x mod 4 = 3 or x mod 4 < 3.

Case A (x mod 4 = 3): Since x mod 4 = 3 implies that (x+1) mod 4 =
0 and

⌊
x+1
4

⌋
=
⌊
x
4

⌋
+ 1, Eq. (B.12) is simplified as follows.

Ω =
R5-7(a,b,b+ 2)(R5-7(a,b,b+ 3))b x4c

R5-7(a,b,b− 1)(R5-7(a,b,b+ 3))b x4c+1

{dividing numerator and denominator by (R5-7(a,b,b+ 3))b x4c}

Ω =
R5-7(a,b,b+ 2)

R5-7(a,b,b− 1)R(a,b,b+ 3)

{since R5-7(a,b,b− 1) 6 1 (being a probability)}

Ω >
R5-7(a,b,b+ 2)
R5-7(a,b,b+ 3)

. (B.13)

Case B (x mod 4 < 3): Since x mod 4 < 3 implies that
⌊
x+1
4

⌋
=
⌊
x
4

⌋

and (x+ 1) mod 4 = 1+ x mod 4, Eq. (B.12) can be simplified as

Ω =
R5-7(a,b,b+ (x mod 4) − 1)(R5-7(a,b,b+ 3))b x4c

R5-7(a,b,b+ (x mod 4))(R5-7(a,b,b+ 3))b x4c

{dividing numerator and denominator by (R(a,b,b+ 3))b x4c}

Ω =
R5-7(a,b,b+ (x mod 4) − 1)
R5-7(a,b,b+ (x mod 4))

. (B.14)

Next, we unify the two cases. Since a 6 b,

2 < a =⇒ 2 < b =⇒ 2+ b < 2b. (B.15)

Also, for Case B in particular,

x mod 4 < 3 =⇒ b+ (x mod 4) − 1 < b+ 2

{from Eq. (B.15)}

=⇒ b+ (x mod 4) − 1 < 2b (B.16)

Using Eq. (B.15) and Eq. (B.16), the constraints on Ω in both the cases,
i.e. Eq. (B.13) and Eq. (B.14), can be unified as

Ω >
R5-7(a,b, c ′)

R5-7(a,b, c ′ + 1)
, (B.17)

B.1 the a/con/b/c:f system model 185

where c ′ < 2b (c ′ = b + 2 in case of Eq. (B.13), and c ′ = b +

(x mod 4) − 1 in case of Eq. (B.14)). Now we simply need to show
that the RHS in Eq. (B.17) is greater than or equal to 1.

Since c ′ < 2b, from the premise in Eq. (B.10),

RLB(a,b, c ′) > RLB(a,b, c ′ + 1). (B.18)

In addition, since a > 2 and c ′ < 2b, we define RLB(a,b, c ′) us-
ing Cases 5-7 in Table B.1. Thus, from Eq. (B.9), RLB(a,b, c ′) =

R5-7(a,b, c ′) (which combines Cases 5-7). Similarly, a > 2 and c ′+ 1 6
2b, and thus RLB(a,b, c ′ + 1) = R5-7(a,b, c ′ + 1). Substituting these
definitions of RLB(a,b, c ′) and RLB(a,b, c ′ + 1) in Eq. (B.18),

R5-7(a,b, c ′) > R5-7(a,b, c ′ + 1)

{upon rearranging, and from Eq. (B.17)}

Ω >
R5-7(a,b, c ′)

R5-7(a,b, c ′ + 1)
> 1. (B.19)

We adopt a similar approach for a = 2 as well. That is, we once again
prove a weaker monotonicity property: we show that if RLB(a,b, c)
decreases with increasing c for small values of c (i.e., for c 6 4b), then
RLB(a,b, c) also decreases with increasing c for larger values of c (in
this case, for c > 4b). This is because the reliability lower bound for
a = 2 is defined using Cases 3 and 4, and definitions of both R3(a,b, c)
and R4(a,b, c) make it non-trivial to establish monotonicity.

Since R4(a,b, c)’s definition is similar in structure to R8(a,b, c)’s
definition (both use Sfakianakis et al.’s analysis), the proof structure
of the following theorem is same as that of Theorem B.1.

theorem b.2. For a = 2, if RLB(a,b, c) is monotonically decreasing for
c ∈ {a, . . . , 4b+ 1}, then RLB(a,b, c) is also monotonically decreasing
for c > 4b+ 1, i.e.,

if ∀c 6 4b : RLB(a,b, c) > RLB(a,b, c+ 1),

then ∀c > 4b : RLB(a,b, c) > RLB(a,b, c+ 1). (B.20)

proof. Let

Ω =
RLB(a,b, c)

RLB(a,b, c+ 1)
. (B.21)

We prove that Ω > 1 when c > 4b.

186 sap proofs

Since a = 2 and c > 4b, both terms RLB(a,b, c) and RLB(a,b, c+
1) in Eq. (B.21) are resolved using Case 4 in Table B.1. Thus, from
R4(a,b, c)’s definition in Eq. (B.4), and letting x = c− b+ 1,

Ω =
R3(a,b,b+ (x mod 4) − 1)(R3(a,b,b+ 3))b x4c

R3(a,b,b+ ((x+ 1) mod 4) − 1)(R3(a,b,b+ 3))b x+14 c
.

(B.22)

To simplify Eq. (B.22), we consider two separate cases based on
whether x mod 4 = 3 or x mod 4 < 3.

Case A (x mod 4 = 3): Since x mod 4 = 3 implies that (x+1) mod 4 =
0 and

⌊
x+1
4

⌋
=
⌊
x
4

⌋
+ 1, Eq. (B.22) simplifies as follows.

Ω =
R3(a,b,b+ 2)(R3(a,b,b+ 3))b x4c

R3(a,b,b− 1)(R3(a,b,b+ 3))b x4c+1

{dividing numerator and denominator by (R3(a,b,b+ 3))b x4c}

Ω =
R3(a,b,b+ 2)

R3(a,b,b− 1)R3(a,b,b+ 3)

{since R3(a,b,b− 1) 6 1 (being a probability)}

Ω >
R3(a,b,b+ 2)
R3(a,b,b+ 3)

. (B.23)

Case B (x mod 4 < 3): Since x mod 4 < 3 implies that
⌊
x+1
4

⌋
=
⌊
x
4

⌋

and (x+ 1) mod 4 = 1+ x mod 4, Eq. (B.22) can be simplified as

Ω =
R3(a,b,b+ (x mod 4) − 1)(R3(a,b,b+ 3))b x4c

R3(a,b,b+ (x mod 4)(R3(a,b,b+ 3))b x4c

{dividing numerator and denominator by (R(a,b,b+ 3))b x4c}

Ω =
R3(a,b,b+ (x mod 4) − 1)
R3(a,b,b+ (x mod 4))

. (B.24)

Next, we unify the two cases. Since a 6 b,

2 = a =⇒ 2 6 b =⇒ 2+ b 6 2b < 4b. (B.25)

Also, for Case B in particular,

x mod 4 < 3 =⇒ b+ (x mod 4) − 1 < b+ 2

B.2 derivation of the mttf lower bound 187

{from Eq. (B.25)}

=⇒ b+ (x mod 4) − 1 < 4b. (B.26)

Using Eq. (B.25) and Eq. (B.26), the constraints on Ω in both the cases,
i.e., Eq. (B.23) and Eq. (B.24), can be unified as

Ω >
R3(a,b, c ′)

R3(a,b, c ′ + 1)
, (B.27)

where c ′ < 4b (c ′ = b + 2 in case of Eq. (B.23), and c ′ = b +

(x mod 4) − 1 in case of Eq. (B.24)). Now we simply need to show
that the RHS in Eq. (B.27) is greater than or equal to 1.

Since c ′ < 4b, from the if condition in Eq. (B.20),

RLB(a,b, c ′) > RLB(a,b, c ′ + 1). (B.28)

In addition, since a = 2 and c ′ < 4b, from Table B.1, RLB(a,b, c ′) is
defined using Case 3. Thus, from Eq. (B.3), RLB(a,b, c ′) = R3(a,b, c ′).
Similarly, since c ′ < 4b also implies that c ′ + 1 6 4b, RLB(a,b, c ′ +
1) = R3(a,b, c ′ + 1). Substituting these definitions of RLB(a,b, c ′) and
RLB(a,b, c ′ + 1) in Eq. (B.28),

R3(a,b, c ′) > R3(a,b, c ′ + 1)

{upon rearranging, and from Eq. (B.27)}

Ω >
R3(a,b, c ′)

R3(a,b, c ′ + 1)
> 1. (B.29)

In the next section, while deriving the MTTF lower bound, we
assume that RLB(a,b, c) decreases with increasing c. When applying
the proposed analysis SAP (e.g., in the evaluation results presented in
Section 7.4), for every use of RLB(a,b, c), we check that the premise of
Theorem B.1 or Theorem B.2 (depending on the value of a) holds in
order to justify the monotonicity assumption.

b.2 derivation of the mttf lower bound

In the following, we derive MTTFLB defined in Eq. (7.11) as part of
the SAP approach (Section 7.3.3). Recall the definition of gLB(n) from
Eq. (7.10). The MTTF lower bound derivation depends on the property
that gLB(n) decreases with increasing n. Since all the terms except
RLB (k−m+ 1,k,n− 1) in the definition of gLB(n) are independent

188 sap proofs

of n, gLB(n) decreases with increasing n if RLB (k−m+ 1,k,n− 1)

decreases with increasing n, which we proved in the previous section.

theorem b.3. A lower bound on the MTTF of system S with period
T and robustness specification (m,k) is given by:

MTTFLB =

D−1∑
i=0

(
diT × gLB(di+1)× (di+1 − di)

)
. (B.30)

Proof. From Eq. (7.5), MTTF is defined as

MTTF = T

∞∑
n=0

n · Pr[N(S,R) = n]. (B.31)

Since gLB 6 g(n) = Pr[N(S,R) = n] (recall from Section 7.3.3), we
lower-bound MTTF as

MTTF > T
∞∑
n=0

n× gLB(n). (B.32)

Next, we split the summation range (0,∞) in Eq. (B.32) into a finite
number of subintervals (0,d0], (d0, d1], . . . , (dD−1, dD], (dD, ∞). Fur-
ther, since all terms under the summation are non-negative, and since
we are interested in a lower bound, we drop the summation terms
corresponding to subintervals (0,d0] and (dD, ∞). Thus,

MTTF > T
D−1∑
i=0

di+1∑
n=di

n× gLB(n). (B.33)

Now, since gLB(n) is decreasing with increasing n, for each interval
(di, di+1], we replace gLB(n) with gLB(di+1), which is a constant
with respect to n. This replacement yields the desired lower bound.

MTTF > T
D−1∑
i=0

gLB(di+1)×
di+1∑
n=di

n

{using sum of arithmetic progression}

MTTF > T
D−1∑
i=0

gLB(di+1)×
(di+1 − di + 1)(di + di+1)

2

{since di+1 − di + 1 > di+1 − di and di + di+1 > 2di}

MTTF > T
D−1∑
i=0

gLB(di+1)× (di+1 − di)× (di). (B.34)

C I M P L E M E N T I N G P M C I N
P R I S M

In Section 7.3.1, we introduced PMC, an approach based on Markov
chain analysis to estimate the exact MTTF of periodic systems with
weakly-hard constraints. As per PMC, the system is modeled as a
labeled discrete-time Markov chain M. For the (m,k) weakly-hard
constraint, for example, another monitor Markov chain Monitor(M, k)
(classified as a Type-1 monitor) runs alongside M. Each step of the
monitor is assumed to have a reward of 1. The set of all states in
Monitor(M, k) that violate the (m,k) constraints are denoted Bad(m,k)
and are made absorbing. The MTTF of the system is then given by T ×E,
where T denotes the system period, and E denotes the expected reward
until any state in Bad(m,k) is reached starting from an initial state.

In this chapter, we explain how the Type-1 monitor representation
Monitor(M, k) and its optimized variants (Type 2 and Type 3) can
be encoded in the PRISM language, and given an encoded model,
how the expected reward E is computed. In the end, we report on
comparison of PRISM’s performance with that of Storm, which is a
more recent probabilistic model checker.

c.1 example

PRISM accepts discrete-time Markov chains described using a state-
based modeling language based on the reactive modules formalism of
Alur and Henzinger [4]. For an example robustness specification of
(5, 10), we illustrate implementations of the corresponding Type-1,
Type-2, and Type-3 monitors in the PRISM language in Listing C.1,
Listing C.2, and Listing C.3, respectively. These implementations are
explained in brief in the following.

c.1.1 Type-1 Monitor

The keyword dtmc indicates to PRISM that the following model should
be interpreted as a discrete time Markov chain. Constant q denotes the
iteration failure probability bound PF. Each boolean variable si keeps
track of whether the ith most recent iteration of the system was suc-
cessful (true) or not (false). The formula num_failures_k_1 thus
computes the number of failed iterations among the last k− 1 consec-
utive iterations. It is used to decide whether a new iteration results in
the violation of the (m,k) robustness specification. That is, if the new

189

190 implementing pmc in prism

Listing C.1: Type-1 PRISM model for (5, 10)

1 dtmc

3 const int m = 5;
4 const int k = 10;
5 const double q = 1e-10;
6 formula p = 1.0 - q;

8 formula num_failures_k_1 = (s1?0:1) + (s2?0:1) + (s3?0:1) +
9 (s4?0:1) + (s5?0:1) + (s6?0:1) +

10 (s7?0:1) + (s8?0:1) + (s9?0:1);

12 formula failure_allowed = (num_failures_k_1 < k-m);

14 module reliability_analysis

16 s1 : bool init true;
17 s2 : bool init true;
18 s3 : bool init true;
19 s4 : bool init true;
20 s5 : bool init true;
21 s6 : bool init true;
22 s7 : bool init true;
23 s8 : bool init true;
24 s9 : bool init true;
25 s10 : bool init true;

27 safe : bool init true;

29 [] true -> p: (safe’=safe)
30 & (s1’=true) & (s2’=s1) & (s3’=s2) & (s4’=s3)
31 & (s5’=s4) & (s6’=s5) & (s7’=s6) & (s8’=s7)
32 & (s9’=s8) & (s10’=s9)
33 + q: (safe’=safe & failure_allowed)
34 & (s1’=false) & (s2’=s1) & (s3’=s2) & (s4’=s3)
35 & (s5’=s4) & (s6’=s5) & (s7’=s6) & (s8’=s7)
36 & (s9’=s8) & (s10’=s9);

38 endmodule

40 rewards "steps"
41 true : 1;
42 endrewards

C.1 example 191

iteration is not successful, and if the last k− 1 consecutive iterations al-
ready consisted of k−m or more failures (num_failures_k_1 > k−m),
less than m iterations are successful in the last k consecutive itera-
tions and hence the (m,k) specification is violated. Alternatively, if
num_failures_k_1 < k−m (defined using formula failure_allowed),
even if the new iteration is not successful, the (m,k) specification is
not violated.

A single step of the monitor corresponds to an execution of one
iterations of the system. The command from Line 29 to Line 36 updates
the global state at the end of each step. Note that si’ denotes the
updated state of variable si. Since the ith latest iteration before the
step corresponds to the i+ 1st latest iteration after the step, for each
2 6 j = i+ 1 6 k, variable sj is updated to si (e.g., s4’=s3).

If the latest iteration is successful, which happens with probability p,
variable s1 is updated to true; otherwise, with probability q, variable
s1 is updated to false. In the latter case, the command also check
if the (m,k) specification is violated, and updates the safe variable
accordingly. Note that variable safe is mainly used to simply property
specification (described below). The reward structure in the end of the
listing (Line 40 to Line 42) associates a reward of one with each step,
which is then used to compute the MTTF.

Once the model file is built, it can be queried with temporal logic
queries, which must be specified in PRISM’s property specification
language. In particular, to compute the MTTF, we query the model
with the reward-based property R=? [F safe=false], which is es-
sentially asking PRISM the following question: “what is the expected
reward accumulated (denoted R) until (i.e., operator F) the safety
property is violated (safe=false)?” To answer the question, PRISM’s
engine performs a reachability analysis over the model state space.
Since we associate one reward per step, PRISM in this case returns
the expected number of steps to failure, and the result can then be
multiplied with the system’s time period T to obtain the MTTF. Alter-
natively, one could simply associate a reward of T with each step.

c.1.2 Type-2 Monitor

Listing C.2 illustrates the optimized monitor representation of Type
2. In this case, only k−m = 5 variables (s1-s5), instead of k = 10

variables, are needed to capture the global state, i.e., the status of last k
consecutive iterations. However, each variable si denotes the position
of a failed iteration (among the last k consecutive iterations) and thus
takes up to k+ 1 different values (0 is a sentinel value that indicates
that variable si does not point to a failed iteration). In addition, the
global state update (Line 20 to Line 27) ensures that each variable si

points to a unique failed iteration (i.e., 6 ∃i, j : 1 6 i, j 6 k−m ∧ si =

192 implementing pmc in prism

Listing C.2: Type-2 PRISM model for (5, 10)

1 dtmc

3 const int m = 5;
4 const int k = 10;
5 const double q = 1e-10;
6 formula p = 1.0 - q;

8 formula failure_allowed = ((s1<2)|(s2<2)|(s3<2)|(s4<2)|(s5<2));

10 module reliability_analysis

12 s1 : [0..k] init 0;
13 s2 : [0..k] init 0;
14 s3 : [0..k] init 0;
15 s4 : [0..k] init 0;
16 s5 : [0..k] init 0;

18 safe : bool init true;

20 [] true -> p: (safe’=safe)
21 & (s1’=((s1>0)?(s1-1):0)) & (s2’=((s2>0)?(s2-1):0))
22 & (s3’=((s3>0)?(s3-1):0)) & (s4’=((s4>0)?(s4-1):0))
23 & (s5’=((s5>0)?(s5-1):0))
24 + q: (safe’=safe & failure_allowed)
25 & (s1’=k) & (s2’=((s1>0)?(s1-1):0))
26 & (s3’=((s2>0)?(s2-1):0)) & (s4’=((s3>0)?(s3-1):0))
27 & (s5’=((s4>0)?(s4-1):0));

29 endmodule

31 rewards "steps"
32 true : 1;
33 endrewards

C.1 example 193

Listing C.3: Type-3 PRISM model for (5, 10)

1 dtmc

3 const int m = 5;
4 const int k = 10;
5 const double q = 1e-10;
6 formula p = 1.0 - q;

8 formula failure_allowed = ((s1>1)&(s2>1)&(s3>1)&(s4>1)&(s5>1));

10 module reliability_analysis

12 s1 : [0..k] init (k-0);
13 s2 : [0..k] init (k-1);
14 s3 : [0..k] init (k-2);
15 s4 : [0..k] init (k-3);
16 s5 : [0..k] init (k-4);

18 safe : bool init true;

20 [] true -> p: (safe’=safe)
21 & (s1’=k)
22 & (s2’=((s1>1)?(s1-1):0)) & (s3’=((s2>1)?(s2-1):0))
23 & (s4’=((s3>1)?(s3-1):0)) & (s5’=((s4>1)?(s4-1):0))
24 + q: (safe’=safe & failure_allowed)
25 & (s1’=((s1>1)?(s1-1):0)) & (s2’=((s2>1)?(s2-1):0))
26 & (s3’=((s3>1)?(s3-1):0)) & (s4’=((s4>1)?(s4-1):0))
27 & (s5’=((s5>1)?(s5-1):0));

29 endmodule

31 rewards "steps"
32 true : 1;
33 endrewards

sj 6= 0). In particular, the variable si always points to the ith most
recent failed iteration.

Since (m,k) robustness allows for up to k−m failed iterations, a
new failed iteration violates safety only if there are already k−m failed
iterations among the last k− 1 consecutive iterations (i.e., for each
1 6 i 6 k−m, variables si > 2). The status of the (kth) oldest iteration
does not matter after the new iteration is executed, since it does not
affect the (m,k) robustness specification anymore. In other words, the
system remains safe despite the new iteration being not successful if,
for some 1 6 i 6 k−m, variable si < 2 (i.e., failure_allowed).

194 implementing pmc in prism

2 4 6 8 10 12

k (with m=
⌊
k
2

⌋
 and PF =10−1)

10-3

10-2

10-1

100

101

102

103

M
o
d
e
l
ch

e
ck

in
g
 t

im
e
 (

s)

PRISM
STORM

(a)

2 3 4 5 6 7 8 9 10 11

k (with m=
⌊
k
2

⌋
 and PF =10−10)

10-3

10-2

10-1

100

101

102

103

M
o
d
e
l
ch

e
ck

in
g
 t

im
e
 (

s)

PRISM
STORM

(b)

Figure C.1: Exact model checking in PRISM and Storm.

c.1.3 Type-3 Monitor

Listing C.3 illustrates the Type-3 monitor representation. It is similar
to the Type-2 representation, except that state variables in this case
track the successful iterations instead of the failed iterations (since
Type 2 is optimized for m � k and not k−m � k). In particular,
the representation uses m = 5 variables (s1-s5), where each variable
si denotes the position of the ith most recent successful iteration. A
failed iteration does not violate the (m,k) specification as long as there
are at least m successful iterations among the last k− 1 consecutive
iterations, i.e., for each 1 6 i 6 m, variable si > 1 (denoted as formula
failure_allowed in the listing). Once again, the status of the oldest
iteration does not matter after the new iteration is executed, since it
does not affect (m,k) robustness anymore.

c.2 prism versus storm

While PRISM is a state-of-the-art probabilistic model checker and has
been widely used for probabilistic analyses, Storm provides another
alternative. In fact, Dehnert et al. [55] reported that for exact model
checking (which is needed for numerical precision), Storm performs
better than PRISM by up to three orders of magnitude. However, when
we compared their performance in the context of our MTTF estimation
problem, we observed that both the tools have similar performance for
k > 10 and k > 8 when PF = 10−1 and PF = 10−10, respectively (see
Fig. C.1). Hence, we favored PRISM over Storm owing to its better
tool support.

B I B L I O G R A P H Y

[1] 32-bit TriCore™ AURIX™ - TC2xx - Infineon Technologies. url:
https://infineon.com/cms/en/product/microcontroller/

32-bit-tricore-microcontroller/32-bit-tricore-aurix-

tc2xx/.

[2] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter,
and J. J. Wylie. “Fault-scalable Byzantine fault-tolerant ser-
vices.” In: ACM SIGOPS Operating Systems Review 39.5 (2005),
p. 59. issn: 01635980. doi: 10.1145/1095809.1095817. url:
http : / / portal . acm . org / citation . cfm ? doid = 1095809 .

1095817.

[3] Adaptive Cruise Control. url: https://www.nxp.com/docs/en/
product-selector-guide/SG2025.pdf.

[4] R. Alur and T. Henzinger. “Reactive modules.” In: 11th IEEE
Symposium on Logic in Computer Science (LICS 1996). New Brunswick,
NJ, USA, pp. 207–218. isbn: 978-0-8186-7463-1. doi: 10.1109/
LICS . 1996 . 561320. url: http : / / ieeexplore . ieee . org /

document/561320/.

[5] H. Alzer. “On some inequalities for the incomplete gamma
function.” In: Mathematics of Computation 66.218 (1997). issn:
0025-5718. doi: 10.1090/S0025-5718-97-00814-4. url: http:
/ / www . ams . org / journal - getitem ? pii = S0025 - 5718 - 97 -

00814-4.

[6] Y. Amir, B. Coan, J. Kirsch, and J. Lane. “Byzantine replication
under attack.” In: IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN 2008), pp. 197–
206. isbn: 978-1-4244-2397-2. doi: 10.1109/DSN.2008.4630088.
url: http://ieeexplore.ieee.org/document/4630088/.

[7] Y. Amir, B. Coan, J. Kirsch, and J. Lane. “Prime: Byzantine
Replication under Attack.” In: IEEE Transactions on Dependable
and Secure Computing 8.4 (2011), pp. 564–577. issn: 1545-5971.
doi: 10.1109/TDSC.2010.70. url: http://ieeexplore.ieee.
org/document/5654509/.

[8] A. Anta and P. Tabuada. “On the Benefits of Relaxing the
Periodicity Assumption for Networked Control Systems over
CAN.” In: 30th IEEE Real-Time Systems Symposium (RTSS 2009).
Washington DC, USA, pp. 3–12. isbn: 978-0-7695-3875-4. doi:
10.1109/RTSS.2009.39. url: http://ieeexplore.ieee.org/
document/5369357/.

195

https://infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/
https://infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/
https://infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/
https://doi.org/10.1145/1095809.1095817
http://portal.acm.org/citation.cfm?doid=1095809.1095817
http://portal.acm.org/citation.cfm?doid=1095809.1095817
https://www.nxp.com/docs/en/product-selector-guide/SG2025.pdf
https://www.nxp.com/docs/en/product-selector-guide/SG2025.pdf
https://doi.org/10.1109/LICS.1996.561320
https://doi.org/10.1109/LICS.1996.561320
http://ieeexplore.ieee.org/document/561320/
http://ieeexplore.ieee.org/document/561320/
https://doi.org/10.1090/S0025-5718-97-00814-4
http://www.ams.org/journal-getitem?pii=S0025-5718-97-00814-4
http://www.ams.org/journal-getitem?pii=S0025-5718-97-00814-4
http://www.ams.org/journal-getitem?pii=S0025-5718-97-00814-4
https://doi.org/10.1109/DSN.2008.4630088
http://ieeexplore.ieee.org/document/4630088/
https://doi.org/10.1109/TDSC.2010.70
http://ieeexplore.ieee.org/document/5654509/
http://ieeexplore.ieee.org/document/5654509/
https://doi.org/10.1109/RTSS.2009.39
http://ieeexplore.ieee.org/document/5369357/
http://ieeexplore.ieee.org/document/5369357/

196 bibliography

[9] Apache Cassandra Documentation v4.0. url: https://cassandra.
apache.org/doc/latest/.

[10] M. Appel, A. Gujarati, and B. B. Brandenburg. “A Byzantine
Fault-Tolerant Key-Value Store for Safety-Critical Distributed
Real-Time Systems.” In: 2nd Workshop on the Security and Depend-
ability of Critical Embedded Real-Time Systems (CERTS 2017). url:
https://certs2017.uni.lu/wp-content/uploads/sites/39/

2017/11/certs_2017-proceedings.pdf.

[11] R. B. Ash. Basic probability theory. Mineola, N.Y: Dover Publica-
tions, 2008. isbn: 978-0-486-46628-6.

[12] A. Atallah, G. Bany Hamad, and O. Ait Mohamed. “Reliability-
Aware Routing of AVB Streams in TSN Networks.” In: Re-
cent Trends and Future Technology in Applied Intelligence (2018).
Vol. 10868. Springer International Publishing, pp. 697–708. isbn:
978-3-319-92057-3 978-3-319-92058-0. doi: 10.1007/978-3-319-
92058-0_67. url: http://link.springer.com/10.1007/978-
3-319-92058-0_67.

[13] P.-L. Aublin, S. B. Mokhtar, and V. Quema. “RBFT: Redundant
Byzantine Fault Tolerance.” In: IEEE 33rd International Confer-
ence on Distributed Computing Systems (ICDCS 2013), pp. 297–
306. isbn: 978-0-7695-5000-8. doi: 10.1109/ICDCS.2013.53. url:
http://ieeexplore.ieee.org/document/6681599/.

[14] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings.
“Hard Real-Time Scheduling: The Deadline-Monotonic Ap-
proach.” In: IFAC Proceedings Volumes 24.2 (1991), pp. 127–
132. issn: 1474-6670. doi: 10.1016/S1474-6670(17)51283-5.
url: http://www.sciencedirect.com/science/article/pii/
S1474667017512835.

[15] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. “Basic
concepts and taxonomy of dependable and secure computing.”
In: IEEE Transactions on Dependable and Secure Computing 1.1
(2004), pp. 11–33. issn: 1545-5971. doi: 10.1109/TDSC.2004.2.
url: http://ieeexplore.ieee.org/document/1335465/.

[16] BLAS (Basic Linear Algebra Subprograms). url: http://www.
netlib.org/blas/.

[17] C. Baier and J.-P. Katoen. Principles of model checking. Cambridge,
Mass: The MIT Press, 2008. isbn: 978-0-262-02649-9.

[18] S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer.
“Hands Off the Wheel in Autonomous Vehicles?: A Systems
Perspective on over a Million Miles of Field Data.” In: 48th
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2018). Luxembourg City, pp. 586–597. isbn:
978-1-5386-5596-2. doi: 10.1109/DSN.2018.00066. url: https:
//ieeexplore.ieee.org/document/8416518/.

https://cassandra.apache.org/doc/latest/
https://cassandra.apache.org/doc/latest/
https://certs2017.uni.lu/wp-content/uploads/sites/39/2017/11/certs_2017-proceedings.pdf
https://certs2017.uni.lu/wp-content/uploads/sites/39/2017/11/certs_2017-proceedings.pdf
https://doi.org/10.1007/978-3-319-92058-0_67
https://doi.org/10.1007/978-3-319-92058-0_67
http://link.springer.com/10.1007/978-3-319-92058-0_67
http://link.springer.com/10.1007/978-3-319-92058-0_67
https://doi.org/10.1109/ICDCS.2013.53
http://ieeexplore.ieee.org/document/6681599/
https://doi.org/10.1016/S1474-6670(17)51283-5
http://www.sciencedirect.com/science/article/pii/S1474667017512835
http://www.sciencedirect.com/science/article/pii/S1474667017512835
https://doi.org/10.1109/TDSC.2004.2
http://ieeexplore.ieee.org/document/1335465/
http://www.netlib.org/blas/
http://www.netlib.org/blas/
https://doi.org/10.1109/DSN.2018.00066
https://ieeexplore.ieee.org/document/8416518/
https://ieeexplore.ieee.org/document/8416518/

bibliography 197

[19] M. Barborak, A. Dahbura, and M. Malek. “The consensus prob-
lem in fault-tolerant computing.” In: ACM Computing Surveys
25.2 (1993), pp. 171–220. issn: 03600300. doi: 10.1145/152610.
152612. url: http://portal.acm.org/citation.cfm?doid=
152610.152612.

[20] M. Ben-Or. “Another advantage of free choice (Extended Ab-
stract): Completely asynchronous agreement protocols.” In: 2nd
ACM Symposium on Principles of Distributed Computing (PODC
1983). Montreal, Quebec, Canada, pp. 27–30. isbn: 978-0-89791-
110-8. doi: 10.1145/800221.806707. url: http://portal.acm.
org/citation.cfm?doid=800221.806707.

[21] G. Bernat, A. Burns, and A. Liamosi. “Weakly hard real-time
systems.” In: IEEE Transactions on Computers 50.4 (2001), pp. 308–
321. issn: 00189340. doi: 10.1109/12.919277. url: http://
ieeexplore.ieee.org/document/919277/.

[22] G. Bernat and A. Burns. “Combining (/sub m//sup n/)-hard
deadlines and dual priority scheduling.” In: 18th IEEE Real-
Time Systems Symposium (RTSS 1997). San Francisco, CA, USA,
pp. 46–57. isbn: 978-0-8186-8268-1. doi: 10.1109/REAL.1997.
641268. url: http://ieeexplore.ieee.org/document/641268/.

[23] P. A. Bernstein. “Sequoia: a fault-tolerant tightly coupled multi-
processor for transaction processing.” In: Computer 21.2 (1988),
pp. 37–45. doi: 10.1109/2.17.

[24] M. Bertogna and M. Cirinei. “Response-Time Analysis for Glob-
ally Scheduled Symmetric Multiprocessor Platforms.” In: 28th
IEEE International Real-Time Systems Symposium (RTSS 2007),
pp. 149–160. doi: 10.1109/RTSS.2007.31.

[25] A. Bessani, J. Sousa, and E. E. Alchieri. “State Machine Replica-
tion for the Masses with BFT-SMART.” In: 44th IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN
2014), pp. 355–362. isbn: 978-1-4799-2233-8. doi: 10.1109/DSN.
2014.43. url: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6903593.

[26] A. Birolini. Reliability engineering: theory and practice. 8th edition.
New York, NY: Springer Berlin Heidelberg, 2017. isbn: 978-3-
662-54208-8.

[27] R. Blind and F. Allgower. “Towards Networked Control Sys-
tems with guaranteed stability: Using weakly hard real-time
constraints to model the loss process.” In: 54th IEEE Confer-
ence on Decision and Control (CDC 2015). Osaka, pp. 7510–7515.
isbn: 978-1-4799-7886-1. doi: 10.1109/CDC.2015.7403405. url:
http://ieeexplore.ieee.org/document/7403405/.

https://doi.org/10.1145/152610.152612
https://doi.org/10.1145/152610.152612
http://portal.acm.org/citation.cfm?doid=152610.152612
http://portal.acm.org/citation.cfm?doid=152610.152612
https://doi.org/10.1145/800221.806707
http://portal.acm.org/citation.cfm?doid=800221.806707
http://portal.acm.org/citation.cfm?doid=800221.806707
https://doi.org/10.1109/12.919277
http://ieeexplore.ieee.org/document/919277/
http://ieeexplore.ieee.org/document/919277/
https://doi.org/10.1109/REAL.1997.641268
https://doi.org/10.1109/REAL.1997.641268
http://ieeexplore.ieee.org/document/641268/
https://doi.org/10.1109/2.17
https://doi.org/10.1109/RTSS.2007.31
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6903593
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6903593
https://doi.org/10.1109/CDC.2015.7403405
http://ieeexplore.ieee.org/document/7403405/

198 bibliography

[28] G. Boole and J. Slater. The mathematical analysis of logic: being an
essay towards a calculus of deductive reasoning. Repr. from the 1847

ed. Key texts. Bristol: Thoemmes, 1998. isbn: 978-1-85506-583-3.

[29] F. Borran and A. Schiper. “A Leader-Free Byzantine Consen-
sus Algorithm.” In: 11th International Conference on Distributed
Computing and Networking (ICDCN 2010). Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 67–78. isbn: 978-3-642-11322-2.
doi: 10.1007/978-3-642-11322-2_11. url: https://link.
springer.com/chapter/10.1007%2F978-3-642-11322-2_11.

[30] R. C. Bose and D. K. Ray-Chaudhuri. “On a class of error
correcting binary group codes.” In: Information and Control
3.1 (1960), pp. 68–79. issn: 0019-9958. doi: 10.1016/S0019-
9958(60)90287- 4. url: http://www.sciencedirect.com/

science/article/pii/S0019995860902874.

[31] B. B. Brandenburg. “Scheduling and Locking in Multiprocessor
Real-time Operating Systems.” PhD Thesis. Chapel Hill, NC,
USA: University of North Carolina at Chapel Hill, 2011.

[32] B. B. Brandenburg and M. Gul. “Global Scheduling Not Re-
quired: Simple, Near-Optimal Multiprocessor Real-Time Schedul-
ing with Semi-Partitioned Reservations.” In: IEEE Real-Time
Systems Symposium (RTSS 2016). Porto, Portugal, pp. 99–110.
isbn: 978-1-5090-5303-2. doi: 10.1109/RTSS.2016.019. url:
http://ieeexplore.ieee.org/document/7809847/.

[33] B. B. Brandenburg. The Schedulability Test Collection And Toolkit.
url: https://www.mpi-sws.org/~bbb/projects/schedcat.

[34] B. B. Brandenburg. Liu and Layland and Linux: A Blueprint for
“Proper” Real-Time Tasks. 2020. url: https://sigbed.org/2020/
09/05/liu- and- layland- and- linux- a- blueprint- for-

proper-real-time-tasks/.

[35] M. S. Branicky, S. M. Phillips, and Wei Zhang. “Scheduling and
feedback co-design for networked control systems.” In: 41st
IEEE Conference on Decision and Control (CDC 2002). Vol. 2. Las
Vegas, NV, USA, pp. 1211–1217. isbn: 978-0-7803-7516-1. doi:
10.1109/CDC.2002.1184679. url: http://ieeexplore.ieee.
org/document/1184679/.

[36] N. Braud-Santoni, R. Guerraoui, and F. Huc. “Fast byzantine
agreement.” In: ACM Symposium on Principles of Distributed
Computing (PODC 2013). Montréal, Québec, Canada,
p. 57. isbn: 978-1-4503-2065-8. doi: 10.1145/2484239.2484243.
url: http : / / dl . acm . org / citation . cfm ? doid = 2484239 .

2484243.

https://doi.org/10.1007/978-3-642-11322-2_11
https://link.springer.com/chapter/10.1007%2F978-3-642-11322-2_11
https://link.springer.com/chapter/10.1007%2F978-3-642-11322-2_11
https://doi.org/10.1016/S0019-9958(60)90287-4
https://doi.org/10.1016/S0019-9958(60)90287-4
http://www.sciencedirect.com/science/article/pii/S0019995860902874
http://www.sciencedirect.com/science/article/pii/S0019995860902874
https://doi.org/10.1109/RTSS.2016.019
http://ieeexplore.ieee.org/document/7809847/
https://www.mpi-sws.org/~bbb/projects/schedcat
https://sigbed.org/2020/09/05/liu-and-layland-and-linux-a-blueprint-for-proper-real-time-tasks/
https://sigbed.org/2020/09/05/liu-and-layland-and-linux-a-blueprint-for-proper-real-time-tasks/
https://sigbed.org/2020/09/05/liu-and-layland-and-linux-a-blueprint-for-proper-real-time-tasks/
https://doi.org/10.1109/CDC.2002.1184679
http://ieeexplore.ieee.org/document/1184679/
http://ieeexplore.ieee.org/document/1184679/
https://doi.org/10.1145/2484239.2484243
http://dl.acm.org/citation.cfm?doid=2484239.2484243
http://dl.acm.org/citation.cfm?doid=2484239.2484243

bibliography 199

[37] I. Broster and A. Burns. “Timely use of the CAN protocol in
critical hard real-time systems with faults.” In: 13th Euromicro
Conference on Real-Time Systems (ECRTS 2001). Delft, Nether-
lands, pp. 95–102. isbn: 978-0-7695-1221-1. doi: 10.1109/EMRTS.
2001.934009. url: http://ieeexplore.ieee.org/document/
934009/.

[38] I. Broster, A. Burns, and G. Rodriguez-Navas. “Probabilistic
analysis of CAN with faults.” In: 23rd IEEE Real-Time Systems
Symposium (RTSS 2002). Austin, TX, USA, pp. 269–278. isbn:
978-0-7695-1851-0. doi: 10.1109/REAL.2002.1181581. url:
http://ieeexplore.ieee.org/document/1181581/.

[39] I. Broster, A. Burns, and G. Rodriguez-Navas. “Timing Anal-
ysis of Real-Time Communication Under Electromagnetic In-
terference.” In: Real-Time Systems 30.1-2 (2005), pp. 55–81. issn:
0922-6443, 1573-1383. doi: 10.1007/s11241-005-0504-z. url:
http://link.springer.com/10.1007/s11241-005-0504-z.

[40] CAN specification version 2.0. 1991.

[41] M. Caccamo and G. Buttazzo. “Exploiting skips in periodic
tasks for enhancing aperiodic responsiveness.” In: 18th IEEE
Real-Time Systems Symposium (RTSS 1997). San Francisco, CA,
USA, pp. 330–339. isbn: 978-0-8186-8268-1. doi: 10.1109/REAL.
1997.641294. url: http://ieeexplore.ieee.org/document/
641294/.

[42] Care-O-bot 4 User Manual. 2018. url: https://wiki.ros.org/
Robots/cob4/manual.

[43] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance.”
In: 3rd USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 1999). event-place: New Orleans, Louisiana,
USA. Berkeley, CA, USA, pp. 173–186. isbn: 978-1-880446-39-3.
url: http://dl.acm.org/citation.cfm?id=296806.296824.

[44] J.-J. Chen et al. “Many suspensions, many problems: a review
of self-suspending tasks in real-time systems.” In: Real-Time
Systems (2018). issn: 1573-1383. doi: 10.1007/s11241- 018-
9316-9. url: https://doi.org/10.1007/s11241-018-9316-9.

[45] H. S. Chwa, K. G. Shin, and J. Lee. “Closing the Gap Between
Stability and Schedulability: A New Task Model for Cyber-
Physical Systems.” In: 24th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS 2018). Porto, pp. 327–
337. isbn: 978-1-5386-5295-4. doi: 10.1109/RTAS.2018.00040.
url: https://ieeexplore.ieee.org/document/8430094/.

[46] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
“Making Byzantine Fault Tolerant Systems Tolerate Byzantine
Faults.” In: 6th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 2009). Vol. 9. Boston, MA, USA,

https://doi.org/10.1109/EMRTS.2001.934009
https://doi.org/10.1109/EMRTS.2001.934009
http://ieeexplore.ieee.org/document/934009/
http://ieeexplore.ieee.org/document/934009/
https://doi.org/10.1109/REAL.2002.1181581
http://ieeexplore.ieee.org/document/1181581/
https://doi.org/10.1007/s11241-005-0504-z
http://link.springer.com/10.1007/s11241-005-0504-z
https://doi.org/10.1109/REAL.1997.641294
https://doi.org/10.1109/REAL.1997.641294
http://ieeexplore.ieee.org/document/641294/
http://ieeexplore.ieee.org/document/641294/
https://wiki.ros.org/Robots/cob4/manual
https://wiki.ros.org/Robots/cob4/manual
http://dl.acm.org/citation.cfm?id=296806.296824
https://doi.org/10.1007/s11241-018-9316-9
https://doi.org/10.1007/s11241-018-9316-9
https://doi.org/10.1007/s11241-018-9316-9
https://doi.org/10.1109/RTAS.2018.00040
https://ieeexplore.ieee.org/document/8430094/

200 bibliography

pp. 153–168. url: https://www.usenix.org/legacy/events/
nsdi09/tech/full_papers/clement/clement.pdf.

[47] Clemson Vehicular Electronics Laboratory: Airbag Deployment Sys-
tems. url: https://cecas.clemson.edu/cvel/auto/systems/
airbag_deployment.html.

[48] M. Correia, N. F. Neves, and P. Veríssimo. “From Consen-
sus to Atomic Broadcast: Time-Free Byzantine-Resistant Proto-
cols without Signatures.” In: The Computer Journal 49.1 (2006),
pp. 82–96. issn: 1460-2067, 0010-4620. doi: 10.1093/comjnl/
bxh145. url: http://academic.oup.com/comjnl/article/
49/1/82/419030/From- Consensus- to- Atomic- Broadcast-

TimeFree.

[49] M. Correia, G. S. Veronese, N. F. Neves, and P. Verissimo.
“Byzantine consensus in asynchronous message-passing sys-
tems: a survey.” In: International Journal of Critical Computer-
Based Systems 2.2 (2011), p. 141. issn: 1757-8779, 1757-8787. doi:
10.1504/IJCCBS.2011.041257. url: http://www.inderscience.
com/link.php?id=41257.

[50] G. F. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Dis-
tributed systems: concepts and design. 5th ed. Boston: Addison-
Wesley, 2012. isbn: 978-0-13-214301-1.

[51] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira.
“HQ Replication: A Hybrid Quorum Protocol for Byzantine
Fault Tolerance.” In: 7th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 2006). event-place: Seat-
tle, Washington. Berkeley, CA, USA, pp. 177–190. isbn: 978-
1-931971-47-8. url: http://dl.acm.org/citation.cfm?id=
1298455.1298473.

[52] R. I. Davis and A. Burns. “Robust priority assignment for
messages on Controller Area Network (CAN).” In: Real-Time
Systems 41.2 (2009), pp. 152–180. issn: 1573-1383. doi: 10.1007/
s11241-008-9065-2. url: https://doi.org/10.1007/s11241-
008-9065-2.

[53] R. I. Davis and A. Burns. “A survey of hard real-time schedul-
ing for multiprocessor systems.” In: ACM Computing Surveys
43.4 (2011), pp. 1–44. issn: 03600300. doi: 10.1145/1978802.
1978814. url: http : / / dl . acm . org / citation . cfm ? doid =

1978802.1978814.

[54] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. “Controller
Area Network (CAN) schedulability analysis: Refuted, revisited
and revised.” In: Real-Time Systems 35.3 (2007), pp. 239–272.
issn: 0922-6443, 1573-1383. doi: 10.1007/s11241-007-9012-7.
url: http://link.springer.com/10.1007/s11241-007-9012-
7.

https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/clement/clement.pdf
https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/clement/clement.pdf
https://cecas.clemson.edu/cvel/auto/systems/airbag_deployment.html
https://cecas.clemson.edu/cvel/auto/systems/airbag_deployment.html
https://doi.org/10.1093/comjnl/bxh145
https://doi.org/10.1093/comjnl/bxh145
http://academic.oup.com/comjnl/article/49/1/82/419030/From-Consensus-to-Atomic-Broadcast-TimeFree
http://academic.oup.com/comjnl/article/49/1/82/419030/From-Consensus-to-Atomic-Broadcast-TimeFree
http://academic.oup.com/comjnl/article/49/1/82/419030/From-Consensus-to-Atomic-Broadcast-TimeFree
https://doi.org/10.1504/IJCCBS.2011.041257
http://www.inderscience.com/link.php?id=41257
http://www.inderscience.com/link.php?id=41257
http://dl.acm.org/citation.cfm?id=1298455.1298473
http://dl.acm.org/citation.cfm?id=1298455.1298473
https://doi.org/10.1007/s11241-008-9065-2
https://doi.org/10.1007/s11241-008-9065-2
https://doi.org/10.1007/s11241-008-9065-2
https://doi.org/10.1007/s11241-008-9065-2
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1145/1978802.1978814
http://dl.acm.org/citation.cfm?doid=1978802.1978814
http://dl.acm.org/citation.cfm?doid=1978802.1978814
https://doi.org/10.1007/s11241-007-9012-7
http://link.springer.com/10.1007/s11241-007-9012-7
http://link.springer.com/10.1007/s11241-007-9012-7

bibliography 201

[55] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk. “A Storm is
Coming: A Modern Probabilistic Model Checker.” In: 29th In-
ternational Conference on Computer Aided Verification (CAV 2017).
Springer International Publishing, pp. 592–600. isbn: 978-3-319-
63390-9.

[56] T. J. Dell. A White Paper on the Benefits of Chipkill-Correct ECC for
PC Server Main Memory. 1997.

[57] Y. Deswarte, K. Kanoun, and J.-C. Laprie. “Diversity against
accidental and deliberate faults.” In: IEEE Conference on Com-
puter Security, Dependability, and Assurance: From Needs to Solu-
tions (Cat. No.98EX358) (CSDA 1998), pp. 171–181. isbn: 978-
0-7695-0337-0. doi: 10.1109/CSDA.1998.798364. url: http:
//ieeexplore.ieee.org/document/798364/.

[58] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal. Understanding
and Using the Controller Area Network Communication Protocol.
New York, NY: Springer New York, 2012. isbn: 978-1-4614-0313-
5 978-1-4614-0314-2. doi: 10.1007/978-1-4614-0314-2. url:
http://link.springer.com/10.1007/978-1-4614-0314-2.

[59] J. Diemer, D. Thiele, and R. Ernst. “Formal worst-case timing
analysis of Ethernet topologies with strict-priority and AVB
switching.” In: 7th IEEE International Symposium on Industrial
Embedded Systems (SIES 2012). Karlsruhe, Germany, pp. 1–10.
isbn: 978-1-4673-2684-1 978-1-4673-2685-8 978-1-4673-2683-4.
doi: 10.1109/SIES.2012.6356564. url: http://ieeexplore.
ieee.org/document/6356564/.

[60] J. Diemer, J. Rox, and R. Ernst. “Modeling of Ethernet AVB
Networks for Worst-Case Timing Analysis.” In: IFAC Proceed-
ings Volumes 45.2 (2012), pp. 848–853. issn: 14746670. doi: 10.
3182/20120215-3-AT-3016.00150. url: https://linkinghub.
elsevier.com/retrieve/pii/S1474667016307832.

[61] S. Distefano and Liudong Xing. “A new approach to modeling
the system reliability: dynamic reliability block diagrams.” In:
IEEE Reliability and Maintainability Symposium (RAMS 2006).
Newport Beach, CA, USA, pp. 189–195. isbn: 978-1-4244-0007-2.
doi: 10.1109/RAMS.2006.1677373. url: http://ieeexplore.
ieee.org/document/1677373/.

[62] T. Distler, C. Cachin, and R. Kapitza. “Resource-Efficient Byzan-
tine Fault Tolerance.” In: IEEE Transactions on Computers 65.9
(2016), pp. 2807–2819. issn: 0018-9340. doi: 10.1109/TC.2015.
2495213. url: http://ieeexplore.ieee.org/document/7307998/.

[63] D. Dolev, C. Dwork, and L. Stockmeyer. “On the minimal
synchronism needed for distributed consensus.” In: 24th IEEE
Symposium on Foundations of Computer Science (SFCS 1983). Tuc-
son, AZ, USA, pp. 393–402. isbn: 978-0-8186-0508-6. doi: 10.

https://doi.org/10.1109/CSDA.1998.798364
http://ieeexplore.ieee.org/document/798364/
http://ieeexplore.ieee.org/document/798364/
https://doi.org/10.1007/978-1-4614-0314-2
http://link.springer.com/10.1007/978-1-4614-0314-2
https://doi.org/10.1109/SIES.2012.6356564
http://ieeexplore.ieee.org/document/6356564/
http://ieeexplore.ieee.org/document/6356564/
https://doi.org/10.3182/20120215-3-AT-3016.00150
https://doi.org/10.3182/20120215-3-AT-3016.00150
https://linkinghub.elsevier.com/retrieve/pii/S1474667016307832
https://linkinghub.elsevier.com/retrieve/pii/S1474667016307832
https://doi.org/10.1109/RAMS.2006.1677373
http://ieeexplore.ieee.org/document/1677373/
http://ieeexplore.ieee.org/document/1677373/
https://doi.org/10.1109/TC.2015.2495213
https://doi.org/10.1109/TC.2015.2495213
http://ieeexplore.ieee.org/document/7307998/
https://doi.org/10.1109/SFCS.1983.41
https://doi.org/10.1109/SFCS.1983.41

202 bibliography

1109/SFCS.1983.41. url: http://ieeexplore.ieee.org/
document/4568103/.

[64] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg. “Byzantine
Fault Tolerance, from Theory to Reality.” In: Computer Safety,
Reliability, and Security. Vol. 2788. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 235–248. isbn: 978-3-540-20126-7
978-3-540-39878-3. doi: 10.1007/978-3-540-39878-3_19. url:
http://link.springer.com/10.1007/978- 3- 540- 39878-

3_19.

[65] C. Drăgoi, T. A. Henzinger, H. Veith, J. Widder, and D. Zuf-
ferey. “A Logic-Based Framework for Verifying Consensus
Algorithms.” In: Verification, Model Checking, and Abstract In-
terpretation. Vol. 8318. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2014, pp. 161–181. isbn: 978-3-642-54012-7 978-3-642-
54013-4. doi: 10.1007/978-3-642-54013-4_10. url: http:
//link.springer.com/10.1007/978-3-642-54013-4_10.

[66] J. B. Dugan and R. Van Buren. “Reliability evaluation of fly-
by-wire computer systems.” In: Journal of Systems and Software
25.1 (1994), pp. 109–120. issn: 01641212. doi: 10.1016/0164-
1212(94)90061-2. url: http://linkinghub.elsevier.com/
retrieve/pii/0164121294900612.

[67] C. Dwork, N. Lynch, and L. Stockmeyer. “Consensus in the
presence of partial synchrony.” In: Journal of the ACM 35.2
(1988), pp. 288–323. issn: 00045411. doi: 10.1145/42282.42283.
url: http://portal.acm.org/citation.cfm?doid=42282.
42283.

[68] J. C. Eidson. Measurement, control, and communication using IEEE
1588. Advances in industrial control. London: Springer, 2006.
isbn: 978-1-84628-250-8 978-1-84628-251-5.

[69] Elemental: distributed-memory dense and sparse-direct linear algebra
and optimization — Elemental. url: http://libelemental.org/.

[70] Eyeriss Project. url: http://eyeriss.mit.edu/.

[71] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino. “An
EDF scheduling class for the Linux kernel.” In: 11th Real-Time
Linux Workshop (RTLWS 2009), p. 8.

[72] J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca. “An Exper-
iment to Assess Bit Error Rate in CAN.” In: 3rd International
Workshop of Real-Time Networks (RTN 2004), pp. 15–18.

[73] M. J. Fischer and N. A. Lynch. “A lower bound for the time to
assure interactive consistency.” In: Information Processing Letters
14.4 (1982), pp. 183–186. issn: 00200190. doi: 10.1016/0020-
0190(82)90033-3. url: https://linkinghub.elsevier.com/
retrieve/pii/0020019082900333.

https://doi.org/10.1109/SFCS.1983.41
https://doi.org/10.1109/SFCS.1983.41
http://ieeexplore.ieee.org/document/4568103/
http://ieeexplore.ieee.org/document/4568103/
https://doi.org/10.1007/978-3-540-39878-3_19
http://link.springer.com/10.1007/978-3-540-39878-3_19
http://link.springer.com/10.1007/978-3-540-39878-3_19
https://doi.org/10.1007/978-3-642-54013-4_10
http://link.springer.com/10.1007/978-3-642-54013-4_10
http://link.springer.com/10.1007/978-3-642-54013-4_10
https://doi.org/10.1016/0164-1212(94)90061-2
https://doi.org/10.1016/0164-1212(94)90061-2
http://linkinghub.elsevier.com/retrieve/pii/0164121294900612
http://linkinghub.elsevier.com/retrieve/pii/0164121294900612
https://doi.org/10.1145/42282.42283
http://portal.acm.org/citation.cfm?doid=42282.42283
http://portal.acm.org/citation.cfm?doid=42282.42283
http://libelemental.org/
http://eyeriss.mit.edu/
https://doi.org/10.1016/0020-0190(82)90033-3
https://doi.org/10.1016/0020-0190(82)90033-3
https://linkinghub.elsevier.com/retrieve/pii/0020019082900333
https://linkinghub.elsevier.com/retrieve/pii/0020019082900333

bibliography 203

[74] M. J. Fischer, N. A. Lynch, and M. S. Paterson. “Impossibility
of distributed consensus with one faulty process.” In: Journal
of the ACM 32.2 (1985), pp. 374–382. issn: 00045411. doi: 10.
1145/3149.214121. url: http://portal.acm.org/citation.
cfm?doid=3149.214121.

[75] D. Fontanelli, D. Macii, P. Wolfrum, D. Obradovic, and G.
Steindl. “A clock state estimator for PTP time synchronization
in harsh environmental conditions.” In: IEEE International Sym-
posium on Precision Clock Synchronization for Measurement, Control
and Communication (ISPCS 2011). Munich, Germany, pp. 99–104.
isbn: 978-1-61284-893-8. doi: 10.1109/ISPCS.2011.6070142.
url: http://ieeexplore.ieee.org/document/6070142/.

[76] E. Foxlin. “Inertial head-tracker sensor fusion by a comple-
mentary separate-bias Kalman filter.” In: IEEE Virtual Reality
Annual International Symposium (VRAIS 1996). Santa Clara, CA,
USA, pp. 185–194. isbn: 978-0-8186-7296-5. doi: 10.1109/VRAIS.
1996.490527. url: http://ieeexplore.ieee.org/document/
490527/.

[77] L. Franks. “Carrier and Bit Synchronization in Data Commu-
nication - A Tutorial Review.” In: IEEE Transactions on Commu-
nications 28.8 (1980), pp. 1107–1121. doi: 10.1109/TCOM.1980.
1094775.

[78] R. Friedman and R. Licher. “Hardening Cassandra Against
Byzantine Failures.” In: Leibniz International Proceedings in
Informatics (LIPIcs) 95 (). Ed. by J. Aspnes, A. Bessani, P. Felber,
and J. Leitão, 27:1–27:20. issn: 1868-8969. doi: 10.4230/LIPIcs.
OPODIS.2017.27. url: http://drops.dagstuhl.de/opus/
volltexte/2018/8642.

[79] H. C. Gabler and J. Hinch. “Evaluation of Advanced Air Bag De-
ployment Algorithm Performance using Event Data Recorders.”
In: Annals of Advances in Automotive Medicine / Annual Scien-
tific Conference 52 (2008), pp. 175–184. issn: 1943-2461. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256779/.

[80] G. M. Garner, F. Feng, K. D. Hollander, H. Jeong, B. Kim,
Byoung-Joon Lee, Tae-Chul Jung, and J. Joung. “IEEE 802.1 AVB
and Its Application in Carrier-Grade Ethernet [Standards Top-
ics].” In: IEEE Communications Magazine 45.12 (2007), pp. 126–
134. doi: 10.1109/MCOM.2007.4395377.

[81] M. Gaukler, A. Michalka, P. Ulbrich, and T. Klaus. “A New
Perspective on Quality Evaluation for Control Systems with
Stochastic Timing.” In: 21st ACM International Conference on
Hybrid Systems: Computation and Control (HSCC 2018). Porto,
Portugal, pp. 91–100. isbn: 978-1-4503-5642-8. doi: 10.1145/
3178126.3178134. url: http://dl.acm.org/citation.cfm?
doid=3178126.3178134.

https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
http://portal.acm.org/citation.cfm?doid=3149.214121
http://portal.acm.org/citation.cfm?doid=3149.214121
https://doi.org/10.1109/ISPCS.2011.6070142
http://ieeexplore.ieee.org/document/6070142/
https://doi.org/10.1109/VRAIS.1996.490527
https://doi.org/10.1109/VRAIS.1996.490527
http://ieeexplore.ieee.org/document/490527/
http://ieeexplore.ieee.org/document/490527/
https://doi.org/10.1109/TCOM.1980.1094775
https://doi.org/10.1109/TCOM.1980.1094775
https://doi.org/10.4230/LIPIcs.OPODIS.2017.27
https://doi.org/10.4230/LIPIcs.OPODIS.2017.27
http://drops.dagstuhl.de/opus/volltexte/2018/8642
http://drops.dagstuhl.de/opus/volltexte/2018/8642
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256779/
https://doi.org/10.1109/MCOM.2007.4395377
https://doi.org/10.1145/3178126.3178134
https://doi.org/10.1145/3178126.3178134
http://dl.acm.org/citation.cfm?doid=3178126.3178134
http://dl.acm.org/citation.cfm?doid=3178126.3178134

204 bibliography

[82] W. Gautschi. “Some Elementary Inequalities Relating to the
Gamma and Incomplete Gamma Function.” In: Journal of Math-
ematics and Physics 38.1-4 (1959), pp. 77–81. issn: 00971421. doi:
10.1002/sapm195938177. url: http://doi.wiley.com/10.
1002/sapm195938177.

[83] L. George, N. Rivierre, and M. Spuri. Preemptive and Non-
Preemptive Real-Time Uniprocessor Scheduling. Tech. rep. 1996.
url: https://hal.inria.fr/inria-00073732.

[84] M. Gergeleit and H. Streich. “Implementing a Distributed High-
Resolution Real-Time Clock using the CAN-Bus.” In: 1st Inter-
national CAN Conference (iCC 1994). Mainz, Germany, p. 7.

[85] A. E. P. Goodloe. Monitoring Distributed Real-Time Systems: A
Survey and Future Directions. Tech. rep. 2010. url: https://
ntrs.nasa.gov/search.jsp?R=20100027427.

[86] M. Gottscho, C. Schoeny, L. Dolecek, and P. Gupta. “Software-
Defined Error-Correcting Codes.” In: 46th IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks Workshop
(DSN-W 2016). Toulouse, France, pp. 276–282. isbn: 978-1-5090-
3688-2. doi: 10.1109/DSN-W.2016.67. url: http://ieeexplore.
ieee.org/document/7575399/.

[87] R. Guerraoui and A. Schiper. “Fault-tolerance by replication in
distributed systems.” In: Reliable Software Technologies — Ada-
Europe ’96. Vol. 1088. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1996, pp. 38–57. isbn: 978-3-540-61317-6 978-3-540-68457-2.
doi: 10.1007/BFb0013477. url: http://link.springer.com/
10.1007/BFb0013477.

[88] A. Gujarati and B. B. Brandenburg. “When Is CAN the Weakest
Link? A Bound on Failures-in-Time in CAN-Based Real-Time
Systems.” In: 36th IEEE Real-Time Systems Symposium (RTSS
2015). San Antonio, Texas, pp. 249–260. isbn: 978-1-4673-9507-6.
doi: 10.1109/RTSS.2015.31. url: http://ieeexplore.ieee.
org/document/7383582/.

[89] A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg.
“From Iteration to System Failure: Characterizing the FITness of
Periodic Weakly-Hard Systems.” In: 31st Euromicro Conference
on Real-Time Systems (ECRTS 2019). Vol. 133. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs). Stuttgart, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 9:1–9:23.
isbn: 978-3-95977-110-8. doi: 10.4230/lipics.ecrts.2019.9.
url: http://drops.dagstuhl.de/opus/volltexte/2019/
10746/.

[90] A. Gujarati, M. Nasri, and B. B. Brandenburg. “Lower-Bounding
the MTTF for Systems with (m,k) Constraints and IID Itera-
tion Failure Probabilities.” In: 2nd Workshop on the Security

https://doi.org/10.1002/sapm195938177
http://doi.wiley.com/10.1002/sapm195938177
http://doi.wiley.com/10.1002/sapm195938177
https://hal.inria.fr/inria-00073732
https://ntrs.nasa.gov/search.jsp?R=20100027427
https://ntrs.nasa.gov/search.jsp?R=20100027427
https://doi.org/10.1109/DSN-W.2016.67
http://ieeexplore.ieee.org/document/7575399/
http://ieeexplore.ieee.org/document/7575399/
https://doi.org/10.1007/BFb0013477
http://link.springer.com/10.1007/BFb0013477
http://link.springer.com/10.1007/BFb0013477
https://doi.org/10.1109/RTSS.2015.31
http://ieeexplore.ieee.org/document/7383582/
http://ieeexplore.ieee.org/document/7383582/
https://doi.org/10.4230/lipics.ecrts.2019.9
http://drops.dagstuhl.de/opus/volltexte/2019/10746/
http://drops.dagstuhl.de/opus/volltexte/2019/10746/

bibliography 205

and Dependability of Critical Embedded Real-Time Systems (CERTS
2017). url: https://certs2017.uni.lu/wp-content/uploads/
sites/39/2017/11/certs_2017-proceedings.pdf.

[91] A. Gujarati, M. Nasri, and B. B. Brandenburg. “Quantifying the
Resiliency of Fail-Operational Real-Time Networked Control
Systems.” In: 30th Euromicro Conference on Real-Time Systems
(ECRTS 2018). Vol. 106. Leibniz International Proceedings in In-
formatics (LIPIcs). Barcelona, Spain: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 16:1–16:24. isbn: 978-3-95977-075-0.
doi: 10.4230/lipics.ecrts.2018.16. url: http://drops.
dagstuhl.de/opus/volltexte/2018/8988/.

[92] A. Gujarati, S. Bozhko, and B. B. Brandenburg. “Real-Time
Replica Consistency over Ethernet with Reliability Bounds.” In:
26th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2020). Sydney, Australia, pp. 376–389. isbn:
978-1-72815-499-2. doi: 10.1109/RTAS48715.2020.00012. url:
https://ieeexplore.ieee.org/document/9113102/.

[93] A. Gujarati, M. Appel, and B. B. Brandenburg. “Achal: Building
Highly Reliable Networked Control Systems.” In: 15th ACM
SIGBED International Conference on Embedded Software Companion
(EMSOFT 2019). New York, New York: ACM Press, 2019, pp. 1–
2. isbn: 978-1-4503-6924-4. doi: 10.1145/3349568.3351545. url:
http://dl.acm.org/citation.cfm?doid=3349568.3351545.

[94] Hagbae Kim and K. Shin. “Modeling of externally-induced/common-
cause faults in fault-tolerant systems.” In: 13th AIAA/IEEE
Digital Avionics Systems Conference (DASC 1994). Phoenix, AZ,
USA, pp. 402–407. isbn: 978-0-7803-2425-1. doi: 10.1109/DASC.
1994.369450. url: http://ieeexplore.ieee.org/document/
369450/.

[95] M. Hamdaoui and P. Ramanathan. “A dynamic priority as-
signment technique for streams with (m, k)-firm deadlines.” In:
IEEE Transactions on Computers 44.12 (1995), pp. 1443–1451. issn:
00189340. doi: 10.1109/12.477249. url: http://ieeexplore.
ieee.org/document/477249/.

[96] K. Hashimoto, T. Tsuchiya, and T. Kikuno. “Effective Schedul-
ing of Duplicated Tasks for Fault Tolerance in Multiprocessor
Systems.” In: IEICE TRANSACTIONS on Information and Sys-
tems E85-D.3 (2002), pp. 525–534. issn: , 0916-8532. url: http:
//search.ieice.org/bin/summary.php?id=e85-d_3_525&

category=D&year=2002&lang=E&abst=.

[97] P. Hazucha and C. Svensson. “Impact of CMOS technology
scaling on the atmospheric neutron soft error rate.” In: IEEE
Transactions on Nuclear Science 47.6 (2000), pp. 2586–2594. issn:
00189499. doi: 10.1109/23.903813. url: http://ieeexplore.
ieee.org/document/903813/.

https://certs2017.uni.lu/wp-content/uploads/sites/39/2017/11/certs_2017-proceedings.pdf
https://certs2017.uni.lu/wp-content/uploads/sites/39/2017/11/certs_2017-proceedings.pdf
https://doi.org/10.4230/lipics.ecrts.2018.16
http://drops.dagstuhl.de/opus/volltexte/2018/8988/
http://drops.dagstuhl.de/opus/volltexte/2018/8988/
https://doi.org/10.1109/RTAS48715.2020.00012
https://ieeexplore.ieee.org/document/9113102/
https://doi.org/10.1145/3349568.3351545
http://dl.acm.org/citation.cfm?doid=3349568.3351545
https://doi.org/10.1109/DASC.1994.369450
https://doi.org/10.1109/DASC.1994.369450
http://ieeexplore.ieee.org/document/369450/
http://ieeexplore.ieee.org/document/369450/
https://doi.org/10.1109/12.477249
http://ieeexplore.ieee.org/document/477249/
http://ieeexplore.ieee.org/document/477249/
http://search.ieice.org/bin/summary.php?id=e85-d_3_525&category=D&year=2002&lang=E&abst=
http://search.ieice.org/bin/summary.php?id=e85-d_3_525&category=D&year=2002&lang=E&abst=
http://search.ieice.org/bin/summary.php?id=e85-d_3_525&category=D&year=2002&lang=E&abst=
https://doi.org/10.1109/23.903813
http://ieeexplore.ieee.org/document/903813/
http://ieeexplore.ieee.org/document/903813/

206 bibliography

[98] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. “System level performance analysis – the SymTA/S
approach.” In: IEE Proceedings - Computers and Digital Tech-
niques 152.2 (2005), p. 148. issn: 13502387. doi: 10.1049/ip-
cdt:20045088. url: https://digital-library.theiet.org/
content/journals/10.1049/ip-cdt_20045088.

[99] T. Henzinger, B. Horowitz, and C. Kirsch. “Giotto: a time-
triggered language for embedded programming.” In: Proceed-
ings of the IEEE 91.1 (2003), pp. 84–99. issn: 0018-9219. doi:
10.1109/JPROC.2002.805825. url: http://ieeexplore.ieee.
org/document/1173196/.

[100] A. Hopkins, T. Smith, and J. Lala. “FTMP—A highly reliable
fault-tolerant multiprocess for aircraft.” In: Proceedings of the
IEEE 66.10 (1978), pp. 1221–1239. issn: 0018-9219. doi: 10 .

1109/PROC.1978.11113. url: http://ieeexplore.ieee.org/
document/1455382/.

[101] A. L. Hopkins. “A New Standard for Information Processing
Systems for Manned Space Flight.” In: IFAC Proceedings Volumes
3.1 (1970), pp. 223–229. issn: 14746670. doi: 10.1016/S1474-
6670(17)68779-2. url: http://linkinghub.elsevier.com/
retrieve/pii/S1474667017687792.

[102] K. Hoyme and K. Driscoll. “SAFEbus (for avionics).” In: IEEE
Aerospace and Electronic Systems Magazine 8.3 (1993), pp. 34–
39. issn: 0885-8985. doi: 10.1109/62.199819. url: http://
ieeexplore.ieee.org/document/199819/.

[103] M. Y. Hsiao. “A Class of Optimal Minimum Odd-weight-
column SEC-DED Codes.” In: IBM Journal of Research and Devel-
opment 14.4 (1970), pp. 395–401. doi: 10.1147/rd.144.0395.

[104] IEEE 802.1: 802.1Qat - Stream Reservation Protocol. url: http:
//www.ieee802.org/1/pages/802.1at.html.

[105] IEEE 802.1: 802.1Qav - Forwarding and Queuing Enhancements for
Time-Sensitive Streams. 2018. url: http://www.ieee802.org/1/
pages/802.1av.html.

[106] IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems. Tech. rep. IEEE. doi:
10.1109/IEEESTD.2008.4579760. url: http://ieeexplore.
ieee.org/document/4579760/.

[107] ISO 11519-3:1994. url: http://www.iso.org/cms/render/
live/en/sites/isoorg/contents/data/standard/01/94/

19471.html.

https://doi.org/10.1049/ip-cdt:20045088
https://doi.org/10.1049/ip-cdt:20045088
https://digital-library.theiet.org/content/journals/10.1049/ip-cdt_20045088
https://digital-library.theiet.org/content/journals/10.1049/ip-cdt_20045088
https://doi.org/10.1109/JPROC.2002.805825
http://ieeexplore.ieee.org/document/1173196/
http://ieeexplore.ieee.org/document/1173196/
https://doi.org/10.1109/PROC.1978.11113
https://doi.org/10.1109/PROC.1978.11113
http://ieeexplore.ieee.org/document/1455382/
http://ieeexplore.ieee.org/document/1455382/
https://doi.org/10.1016/S1474-6670(17)68779-2
https://doi.org/10.1016/S1474-6670(17)68779-2
http://linkinghub.elsevier.com/retrieve/pii/S1474667017687792
http://linkinghub.elsevier.com/retrieve/pii/S1474667017687792
https://doi.org/10.1109/62.199819
http://ieeexplore.ieee.org/document/199819/
http://ieeexplore.ieee.org/document/199819/
https://doi.org/10.1147/rd.144.0395
http://www.ieee802.org/1/pages/802.1at.html
http://www.ieee802.org/1/pages/802.1at.html
http://www.ieee802.org/1/pages/802.1av.html
http://www.ieee802.org/1/pages/802.1av.html
https://doi.org/10.1109/IEEESTD.2008.4579760
http://ieeexplore.ieee.org/document/4579760/
http://ieeexplore.ieee.org/document/4579760/
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/01/94/19471.html
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/01/94/19471.html
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/01/94/19471.html

bibliography 207

[108] Industrial communication networks – Fieldbus specifications – Part
6-2: Application layer protocol specification – Type 2 elements. Tech.
rep. IEC 61158-6-2:2019. International Electrotechnical Com-
mission, 2019. url: https://webstore.iec.ch/publication/
65168.

[109] R. Isermann, R. Schwarz, and S. Stölzl. “Fault-Tolerant Drive-
by-Wire Systems – Concepts and Realizations –.” In: IFAC
Proceedings Volumes 33.11 (2000), pp. 1–15. issn: 14746670. doi:
10.1016/S1474-6670(17)37335-4. url: https://linkinghub.
elsevier.com/retrieve/pii/S1474667017373354.

[110] A. Izycheva and E. Darulova. “On Sound Relative Error Bounds
for Floating-point Arithmetic.” In: 17th Conference on Formal
Methods in Computer-Aided Design (FMCAD 2017). Austin, TX,
pp. 15–22. isbn: 978-0-9835678-7-5. url: http://dl.acm.org/
citation.cfm?id=3168451.3168462.

[111] J. Kaiser and M. A. Livani. “Achieving Fault-Tolerant Ordered
Broadcasts in CAN.” In: 3rd European Dependable Computing
Conference (EDCC 1999). Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 351–363. isbn: 978-3-540-48254-
3. doi: 10.1007/3-540-48254-7_24.

[112] KapDae Ahn, Jong Kim, and SungJe Hong. “Fault-tolerant real-
time scheduling using passive replicas.” In: IEEE Pacific Rim
International Symposium on Fault-Tolerant Systems (PRFTS 1997),
pp. 98–103. doi: 10.1109/PRFTS.1997.640132.

[113] T. Karnik and P. Hazucha. “Characterization of soft errors
caused by single event upsets in CMOS processes.” In: IEEE
Transactions on Dependable and Secure Computing 1.2 (2004), pp. 128–
143. issn: 1545-5971. doi: 10.1109/TDSC.2004.14. url: http:
//ieeexplore.ieee.org/document/1350778/.

[114] M. Kauer, D. Soudbakhsh, D. Goswami, S. Chakraborty, and
A. M. Annaswamy. “Fault-tolerant Control Synthesis and Verifi-
cation of Distributed Embedded Systems.” In: EDAA Conference
on Design, Automation & Test in Europe (DATE 2014). 3001 Leu-
ven, Belgium, Belgium, 56:1–56:6. isbn: 978-3-9815370-2-4. url:
http://dl.acm.org/citation.cfm?id=2616606.2616675.

[115] R. Keichafer, C. Walter, A. Finn, and P. Thambidurai. “The
MAFT architecture for distributed fault tolerance.” In: IEEE
Transactions on Computers 37.4 (1988), pp. 398–404. issn: 00189340.
doi: 10.1109/12.2183. url: http://ieeexplore.ieee.org/
document/2183/.

[116] K. Kihlstrom, L. Moser, and P. Melliar-Smith. “The SecureRing
protocols for securing group communication.” In: 31st IEEE
Hawaii International Conference on System Sciences (HICSS 1998).
Vol. 3. Kohala Coast, HI, USA, pp. 317–326. isbn: 978-0-8186-

https://webstore.iec.ch/publication/65168
https://webstore.iec.ch/publication/65168
https://doi.org/10.1016/S1474-6670(17)37335-4
https://linkinghub.elsevier.com/retrieve/pii/S1474667017373354
https://linkinghub.elsevier.com/retrieve/pii/S1474667017373354
http://dl.acm.org/citation.cfm?id=3168451.3168462
http://dl.acm.org/citation.cfm?id=3168451.3168462
https://doi.org/10.1007/3-540-48254-7_24
https://doi.org/10.1109/PRFTS.1997.640132
https://doi.org/10.1109/TDSC.2004.14
http://ieeexplore.ieee.org/document/1350778/
http://ieeexplore.ieee.org/document/1350778/
http://dl.acm.org/citation.cfm?id=2616606.2616675
https://doi.org/10.1109/12.2183
http://ieeexplore.ieee.org/document/2183/
http://ieeexplore.ieee.org/document/2183/

208 bibliography

8255-1. doi: 10 . 1109 / HICSS . 1998 . 656294. url: http : / /

ieeexplore.ieee.org/document/656294/.

[117] C. M. Kirsch and A. Sokolova. “The Logical Execution Time
Paradigm.” In: Advances in Real-Time Systems. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, pp. 103–120. isbn: 978-
3-642-24348-6 978-3-642-24349-3. doi: 10.1007/978- 3- 642-
24349-3_5. url: http://link.springer.com/10.1007/978-3-
642-24349-3_5.

[118] P. Koopman. “32-bit cyclic redundancy codes for Internet appli-
cations.” In: IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN 2002). Washington, DC, USA, pp. 459–
468. isbn: 978-0-7695-1597-7. doi: 10.1109/DSN.2002.1028931.
url: http://ieeexplore.ieee.org/document/1028931/.

[119] H. Kopetz, H. Kantz, G. Grunsteidl, P. Puschner, and J. Reisinger.
“Tolerating transient faults in MARS.” In: 20th International Sym-
posium on Fault-Tolerant Computing (FTCS 1990), pp. 466–473.
doi: 10.1109/FTCS.1990.89384.

[120] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl,
C. Senft, and R. Zainlinger. “Distributed fault-tolerant real-
time systems: the Mars approach.” In: IEEE Micro 9.1 (1989),
pp. 25–40. issn: 0272-1732. doi: 10.1109/40.16792. url: http:
//ieeexplore.ieee.org/document/16792/.

[121] H. Kopetz. Real-Time Systems. Real-Time Systems Series. Boston,
MA: Springer US, 2011. isbn: 978-1-4419-8236-0 978-1-4419-
8237-7. doi: 10.1007/978-1-4419-8237-7. url: http://link.
springer.com/10.1007/978-1-4419-8237-7.

[122] H. Kopetz, G. Bauer, and S. Poledna. “Tolerating Arbitrary
Node Failures in the Time-Triggered Architecture.” In: SAE
2001 World Congress. doi: 10.4271/2001-01-0677. url: https:
//www.sae.org/content/2001-01-0677/.

[123] R. Kotla, A. Clement, E. Wong, L. Alvisi, and M. Dahlin.
“Zyzzyva: speculative Byzantine fault tolerance.” In: Commu-
nications of the ACM 51.11 (2008), p. 86. issn: 00010782. doi:
10.1145/1400214.1400236. url: http://portal.acm.org/
citation.cfm?doid=1400214.1400236.

[124] W. Kuo and M. J. Zuo. Optimal reliability modeling: principles
and applications. Hoboken, N.J: John Wiley & Sons, 2003. isbn:
978-0-471-39761-8.

[125] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0:
Verification of Probabilistic Real-Time Systems.” In: 23rd Inter-
national Conference on Computer Aided Verification (CAV 2011).
Vol. 6806. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 585–
591. isbn: 978-3-642-22109-5 978-3-642-22110-1. doi: 10.1007/

https://doi.org/10.1109/HICSS.1998.656294
http://ieeexplore.ieee.org/document/656294/
http://ieeexplore.ieee.org/document/656294/
https://doi.org/10.1007/978-3-642-24349-3_5
https://doi.org/10.1007/978-3-642-24349-3_5
http://link.springer.com/10.1007/978-3-642-24349-3_5
http://link.springer.com/10.1007/978-3-642-24349-3_5
https://doi.org/10.1109/DSN.2002.1028931
http://ieeexplore.ieee.org/document/1028931/
https://doi.org/10.1109/FTCS.1990.89384
https://doi.org/10.1109/40.16792
http://ieeexplore.ieee.org/document/16792/
http://ieeexplore.ieee.org/document/16792/
https://doi.org/10.1007/978-1-4419-8237-7
http://link.springer.com/10.1007/978-1-4419-8237-7
http://link.springer.com/10.1007/978-1-4419-8237-7
https://doi.org/10.4271/2001-01-0677
https://www.sae.org/content/2001-01-0677/
https://www.sae.org/content/2001-01-0677/
https://doi.org/10.1145/1400214.1400236
http://portal.acm.org/citation.cfm?doid=1400214.1400236
http://portal.acm.org/citation.cfm?doid=1400214.1400236
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

bibliography 209

978-3-642-22110-1_47. url: http://link.springer.com/10.
1007/978-3-642-22110-1_47.

[126] M. Kwiatkowska, G. Norman, and D. Parker. “Controller de-
pendability analysis by probabilistic model checking.” In: Con-
trol Engineering Practice 15.11 (2007), pp. 1427–1434. issn: 09670661.
doi: 10.1016/j.conengprac.2006.07.003. url: https://
linkinghub.elsevier.com/retrieve/pii/S0967066106001262.

[127] LAPACK – Linear Algebra PACKage. url: http://www.netlib.
org/lapack/.

[128] J. Lala, R. Harper, K. Jaskowiak, G. Rosch, L. Alger, and A.
Schor. “Advanced Information Processing System (AIPS)-based
fault tolerant avionics architecture for launch vehicles.” In: 9th
IEEE/AIAA/NASA Conference on Digital Avionics Systems (DASC
1990), pp. 125–132. doi: 10.1109/DASC.1990.111274. url:
http://ieeexplore.ieee.org/document/111274/.

[129] L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals
Problem.” In: ACM Transactions on Programming Languages and
Systems 4.3 (1982), pp. 382–401. issn: 01640925. doi: 10.1145/
357172.357176. url: http://portal.acm.org/citation.cfm?
doid=357172.357176.

[130] D. Lavo, T. Larrabee, and B. Chess. “Beyond the byzantine
generals: unexpected behavior and bridging fault diagnosis.”
In: International Test Conference (TEST 1996). Washington, DC,
USA, pp. 611–619. isbn: 978-0-7803-3541-7. doi: 10.1109/TEST.
1996.557118. url: http://ieeexplore.ieee.org/document/
557118/.

[131] W. Lawrenz, ed. CAN System Engineering. London: Springer
London, 2013. isbn: 978-1-4471-5612-3 978-1-4471-5613-0. doi:
10.1007/978-1-4471-5613-0. url: http://link.springer.
com/10.1007/978-1-4471-5613-0.

[132] H. Li. “Robust Control Design for Vehicle Active Suspension
Systems with Uncertainty.” PhD thesis. Portsmouth: University
of Portsmouth, 2012. url: https://core.ac.uk/download/
pdf/40012843.pdf.

[133] S.-Y. R. Li. “A Martingale Approach to the Study of Occurrence
of Sequence Patterns in Repeated Experiments.” In: The Annals
of Probability 8.6 (1980), pp. 1171–1176. issn: 0091-1798. url:
https://www.jstor.org/stable/2243018.

[134] X. Li, S. V. Adve, P. Bose, and J. A. Rivers. “Architecture-Level
Soft Error Analysis: Examining the Limits of Common Assump-
tions.” In: 37th IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2007). Edinburgh, UK, pp. 266–
275. isbn: 978-0-7695-2855-7. doi: 10.1109/DSN.2007.15. url:
http://ieeexplore.ieee.org/document/4272978/.

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://link.springer.com/10.1007/978-3-642-22110-1_47
http://link.springer.com/10.1007/978-3-642-22110-1_47
https://doi.org/10.1016/j.conengprac.2006.07.003
https://linkinghub.elsevier.com/retrieve/pii/S0967066106001262
https://linkinghub.elsevier.com/retrieve/pii/S0967066106001262
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
https://doi.org/10.1109/DASC.1990.111274
http://ieeexplore.ieee.org/document/111274/
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
http://portal.acm.org/citation.cfm?doid=357172.357176
http://portal.acm.org/citation.cfm?doid=357172.357176
https://doi.org/10.1109/TEST.1996.557118
https://doi.org/10.1109/TEST.1996.557118
http://ieeexplore.ieee.org/document/557118/
http://ieeexplore.ieee.org/document/557118/
https://doi.org/10.1007/978-1-4471-5613-0
http://link.springer.com/10.1007/978-1-4471-5613-0
http://link.springer.com/10.1007/978-1-4471-5613-0
https://core.ac.uk/download/pdf/40012843.pdf
https://core.ac.uk/download/pdf/40012843.pdf
https://www.jstor.org/stable/2243018
https://doi.org/10.1109/DSN.2007.15
http://ieeexplore.ieee.org/document/4272978/

210 bibliography

[135] S. Lin and D. J. Costello. Error control coding: fundamentals and
applications. 2nd ed. Upper Saddle River, N.J: Pearson-Prentice
Hall, 2004. isbn: 978-0-13-042672-7 978-0-13-017973-9.

[136] B. Littlewood and L. Strigini. “Redundancy and Diversity in
Security.” In: 9th European Symposium on Research in Computer
Security (ESORICS 2004). Vol. 3193. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 423–438. isbn: 978-3-540-22987-2 978-3-
540-30108-0. doi: 10.1007/978-3-540-30108-0_26. url: http:
//link.springer.com/10.1007/978-3-540-30108-0_26.

[137] C. L. Liu and J. W. Layland. “Scheduling Algorithms for Mul-
tiprogramming in a Hard-Real-Time Environment.” In: Jour-
nal of the ACM 20.1 (1973), pp. 46–61. issn: 00045411. doi:
10 . 1145 / 321738 . 321743. url: http : / / portal . acm . org /

citation.cfm?doid=321738.321743.

[138] Lui Sha, R. Rajkumar, and S. S. Sathaye. “Generalized rate-
monotonic scheduling theory: a framework for developing real-
time systems.” In: Proceedings of the IEEE 82.1 (1994), pp. 68–82.
doi: 10.1109/5.259427.

[139] M. Lüdtke. “The service robot Care-O-bot 4.” In: CAN Newslet-
ter 1 (2016), pp. 36–39. url: https://can-newsletter.org/
uploads/media/raw/fa0136c44242f5e4befa4594b97bf8cb.pdf.

[140] R. Maier, G. Bauer, G. Stoger, and S. Poledna. “Time-triggered
architecture: a consistent computing platform.” In: IEEE Mi-
cro 22.4 (2002), pp. 36–45. issn: 0272-1732. doi: 10.1109/MM.
2002.1028474. url: http://ieeexplore.ieee.org/document/
1028474/.

[141] R. Majumdar, I. Saha, and M. Zamani. “Performance-aware
scheduler synthesis for control systems.” In: 9th ACM Interna-
tional Conference on Embedded Software (EMSOFT 2011). Taipei,
Taiwan, p. 299. isbn: 978-1-4503-0714-7. doi: 10.1145/2038642.
2038689. url: http : / / dl . acm . org / citation . cfm ? doid =

2038642.2038689.

[142] R. Majumdar, I. Saha, and M. Zamani. “Synthesis of Minimal-
error Control Software.” In: 10th ACM International Confer-
ence on Embedded Software (EMSOFT 2012). EMSOFT ’12. New
York, NY, USA, pp. 123–132. isbn: 978-1-4503-1425-1. doi: 10.
1145/2380356.2380380. url: http://doi.acm.org/10.1145/
2380356.2380380.

[143] F. Makri and Z. Psillakis. “Bounds for reliability of k-within
two-dimensional consecutive-r-out-of-n failure systems.” In:
Microelectronics Reliability 36.3 (1996), pp. 341–345. issn: 00262714.
doi: 10.1016/0026-2714(95)00102-6. url: http://linkinghub.
elsevier.com/retrieve/pii/0026271495001026.

https://doi.org/10.1007/978-3-540-30108-0_26
http://link.springer.com/10.1007/978-3-540-30108-0_26
http://link.springer.com/10.1007/978-3-540-30108-0_26
https://doi.org/10.1145/321738.321743
http://portal.acm.org/citation.cfm?doid=321738.321743
http://portal.acm.org/citation.cfm?doid=321738.321743
https://doi.org/10.1109/5.259427
https://can-newsletter.org/uploads/media/raw/fa0136c44242f5e4befa4594b97bf8cb.pdf
https://can-newsletter.org/uploads/media/raw/fa0136c44242f5e4befa4594b97bf8cb.pdf
https://doi.org/10.1109/MM.2002.1028474
https://doi.org/10.1109/MM.2002.1028474
http://ieeexplore.ieee.org/document/1028474/
http://ieeexplore.ieee.org/document/1028474/
https://doi.org/10.1145/2038642.2038689
https://doi.org/10.1145/2038642.2038689
http://dl.acm.org/citation.cfm?doid=2038642.2038689
http://dl.acm.org/citation.cfm?doid=2038642.2038689
https://doi.org/10.1145/2380356.2380380
https://doi.org/10.1145/2380356.2380380
http://doi.acm.org/10.1145/2380356.2380380
http://doi.acm.org/10.1145/2380356.2380380
https://doi.org/10.1016/0026-2714(95)00102-6
http://linkinghub.elsevier.com/retrieve/pii/0026271495001026
http://linkinghub.elsevier.com/retrieve/pii/0026271495001026

bibliography 211

[144] J. Malinowski and W. Preuss. “A recursive algorithm evaluat-
ing the exact reliability of a consecutive k-within-m-out-of-n:F
system.” In: Microelectronics Reliability 35.12 (1995), pp. 1461–
1465. issn: 00262714. doi: 10 . 1016 / 0026 - 2714(95) 91271 -

V. url: http://linkinghub.elsevier.com/retrieve/pii/
002627149591271V.

[145] J. Malinowski and W. Preuss. “A recursive algorithm evaluating
the exact reliability of a circular consecutive k-within-m-out-of-
n:F system.” In: Microelectronics Reliability 36.10 (1996), pp. 1389–
1394. issn: 00262714. doi: 10 . 1016 / 0026 - 2714(96) 00015 -

7. url: http://linkinghub.elsevier.com/retrieve/pii/
0026271496000157.

[146] D. Malkhi and M. Reiter. “Byzantine quorum systems.” In:
Distributed Computing 11.4 (1998), pp. 203–213. issn: 01782770.
doi: 10.1007/s004460050050. url: http://link.springer.
com/10.1007/s004460050050.

[147] R. Mancuso. “Next-generation safety-critical systems on multi-
core platforms.” PhD thesis. University of Illinois at Urbana-
Champaign, 2017. url: http://hdl.handle.net/2142/97399.

[148] K. Matheus and T. Königseder. Automotive Ethernet. Cambridge:
Cambridge University Press, 2015. isbn: 978-1-107-05728-9.

[149] F. Mathur. “On Reliability Modeling and Analysis of Ultrareli-
able Fault-Tolerant Digital Systems.” In: IEEE Transactions on
Computers C-20.11 (1971), pp. 1376–1382. issn: 0018-9340. doi:
10.1109/T-C.1971.223142. url: http://ieeexplore.ieee.
org/document/1671735/.

[150] P. McKenney. A realtime preemption overview [LWN.net]. 2005.
url: https://old.lwn.net/Articles/146861/.

[151] P. Miner, M. Malekpour, and W. Torres. “A conceptual design
for a Reliable Optical Bus (ROBUS).” In: 21st IEEE Digital
Avionics Systems Conference (DASC 2002). Vol. 2. Irvine, CA,
USA, pp. 13D3–1–13D3–11. isbn: 978-0-7803-7367-9. doi: 10.
1109/DASC.2002.1053014. url: http://ieeexplore.ieee.
org/document/1053014/.

[152] M. Modarres, M. Kaminskiy, and V. Krivtsov. Reliability engi-
neering and risk analysis. Quality and reliability 55. New York:
Marcel Dekker, 1999. isbn: 978-0-8247-2000-1.

[153] A. K. Mok. Fundamental Design Problens of Distributed Systems
for the Hard-Real-Ttime Environment. Tech. rep. Cambridge, MA,
USA: Massachusetts Institute of Technology, 1983.

https://doi.org/10.1016/0026-2714(95)91271-V
https://doi.org/10.1016/0026-2714(95)91271-V
http://linkinghub.elsevier.com/retrieve/pii/002627149591271V
http://linkinghub.elsevier.com/retrieve/pii/002627149591271V
https://doi.org/10.1016/0026-2714(96)00015-7
https://doi.org/10.1016/0026-2714(96)00015-7
http://linkinghub.elsevier.com/retrieve/pii/0026271496000157
http://linkinghub.elsevier.com/retrieve/pii/0026271496000157
https://doi.org/10.1007/s004460050050
http://link.springer.com/10.1007/s004460050050
http://link.springer.com/10.1007/s004460050050
http://hdl.handle.net/2142/97399
https://doi.org/10.1109/T-C.1971.223142
http://ieeexplore.ieee.org/document/1671735/
http://ieeexplore.ieee.org/document/1671735/
https://old.lwn.net/Articles/146861/
https://doi.org/10.1109/DASC.2002.1053014
https://doi.org/10.1109/DASC.2002.1053014
http://ieeexplore.ieee.org/document/1053014/
http://ieeexplore.ieee.org/document/1053014/

212 bibliography

[154] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin.
“A systematic methodology to compute the architectural vul-
nerability factors for a high-performance microprocessor.” In:
36th IEEE/ACM International Symposium on Microarchitecture
(MICRO 2003). San Diego, CA, USA, pp. 29–40. isbn: 978-0-
7695-2043-8. doi: 10.1109/MICRO.2003.1253181. url: http:
//ieeexplore.ieee.org/document/1253181/.

[155] N. Murphy. “Watchdog Timers.” In: Embedded Systems Program-
ming (2000), pp. 112–124. url: https://www.embedded.com/
design/debug-and-optimization/4402288/Watchdog-Timers.

[156] N. Murphy and M. Barr. “Watchdog Timers.” In: Embedded
Systems Programming (2001), pp. 79–80. url: https://www.
embedded . com / electronics - blogs / beginner - s - corner /

4023849/Introduction-to-Watchdog-Timers.

[157] NASA Technical Reports Server (NTRS). NASA Technical Re-
ports Server (NTRS) 19880011510: A survey of provably correct
fault-tolerant clock synchronization techniques. 1988. url: http:
//archive.org/details/NASA_NTRS_Archive_19880011510.

[158] NEC. NEC V60 CPU Manual. 1986. url: http://archive.org/
details/NEC_V60pgmRef.

[159] M. Nahas, M. Short, and M. J. Pont. “The impact of bit stuffing
on the real-time performance of a distributed control system.”
In: 10th International CAN Conference (iCC 2005).

[160] N. Nakka, G. P. Saggese, Z. Kalbarczyk, and R. K. Iyer. “An Ar-
chitectural Framework for Detecting Process Hangs/Crashes.”
In: 5th European Dependable Computing Conference (EDCC 2005).
Vol. 3463. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 103–
121. isbn: 978-3-540-25723-3 978-3-540-32019-7. doi: 10.1007/
11408901 _ 8. url: http : / / link . springer . com / 10 . 1007 /

11408901_8.

[161] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury. “Ultra-Low Latency (ULL)
Networks: The IEEE TSN and IETF DetNet Standards and
Related 5G ULL Research.” In: IEEE Communications Surveys
& Tutorials 21.1 (2019), pp. 88–145. issn: 1553-877X, 2373-745X.
doi: 10.1109/COMST.2018.2869350. url: https://ieeexplore.
ieee.org/document/8458130/.

[162] J. I. Naus. “The Teacher’s Corner: An Extension of the Birth-
day Problem.” In: The American Statistician 22.1 (1968), pp. 27–
29. issn: 0003-1305, 1537-2731. doi: 10.1080/00031305.1968.
10480438. url: http://www.tandfonline.com/doi/abs/10.
1080/00031305.1968.10480438.

https://doi.org/10.1109/MICRO.2003.1253181
http://ieeexplore.ieee.org/document/1253181/
http://ieeexplore.ieee.org/document/1253181/
https://www.embedded.com/design/debug-and-optimization/4402288/Watchdog-Timers
https://www.embedded.com/design/debug-and-optimization/4402288/Watchdog-Timers
https://www.embedded.com/electronics-blogs/beginner-s-corner/4023849/Introduction-to-Watchdog-Timers
https://www.embedded.com/electronics-blogs/beginner-s-corner/4023849/Introduction-to-Watchdog-Timers
https://www.embedded.com/electronics-blogs/beginner-s-corner/4023849/Introduction-to-Watchdog-Timers
http://archive.org/details/NASA_NTRS_Archive_19880011510
http://archive.org/details/NASA_NTRS_Archive_19880011510
http://archive.org/details/NEC_V60pgmRef
http://archive.org/details/NEC_V60pgmRef
https://doi.org/10.1007/11408901_8
https://doi.org/10.1007/11408901_8
http://link.springer.com/10.1007/11408901_8
http://link.springer.com/10.1007/11408901_8
https://doi.org/10.1109/COMST.2018.2869350
https://ieeexplore.ieee.org/document/8458130/
https://ieeexplore.ieee.org/document/8458130/
https://doi.org/10.1080/00031305.1968.10480438
https://doi.org/10.1080/00031305.1968.10480438
http://www.tandfonline.com/doi/abs/10.1080/00031305.1968.10480438
http://www.tandfonline.com/doi/abs/10.1080/00031305.1968.10480438

bibliography 213

[163] N. Navet, Y.-Q. Song, and F. Simonot. “Worst-case deadline
failure probability in real-time applications distributed over
controller area network.” In: Journal of Systems Architecture
46.7 (2000), pp. 607–617. issn: 13837621. doi: 10.1016/S1383-
7621(99)00016-8. url: http://linkinghub.elsevier.com/
retrieve/pii/S1383762199000168.

[164] E. Neuman. “Inequalities and Bounds for the Incomplete Gamma
Function.” In: Results in Mathematics 63.3-4 (2013), pp. 1209–
1214. issn: 1422-6383, 1420-9012. doi: 10.1007/s00025-012-
0263-9. url: http://link.springer.com/10.1007/s00025-
012-0263-9.

[165] R. R. Obelheiro, A. N. Bessani, L. C. Lung, and M. Correia. How
Practical Are Intrusion-Tolerant Distributed Systems? Technical Re-
port DI-FCUL-TR-06-15. Department of Informatics, University
of Lisbon, 2006. url: http://hdl.handle.net/10451/14093.

[166] D. Ongaro and J. Ousterhout. “In Search of an Understandable
Consensus Algorithm.” In: USENIX Annual Technical Conference
(ATC 2014), pp. 305–319. isbn: 978-1-931971-10-2. url: https:
//www.usenix.org/conference/atc14/technical-sessions/

presentation/ongaro.

[167] Open MPI: Open Source High Performance Computing. url: https:
//www.open-mpi.org/.

[168] S. Papastavridis and M. Koutras. “Bounds for reliability of
consecutive k-within-m-out-of-n:F systems.” In: IEEE Trans-
actions on Reliability 42.1 (1993), pp. 156–160. issn: 00189529.
doi: 10.1109/24.210288. url: http://ieeexplore.ieee.org/
document/210288/.

[169] S. G. Papastavridis and M. Sfakianakis. “Optimal-arrangement
and importance of the components in a consecutive-k-out-of-r-
from-n:F system.” In: IEEE Transactions on Reliability 40.3 (1991),
pp. 277–279. issn: 00189529. doi: 10.1109/24.85439. url:
http://ieeexplore.ieee.org/document/85439/.

[170] A. Patra, A. Choudhury, and C. P. Rangan. “Asynchronous
Byzantine Agreement with optimal resilience.” In: Distributed
Computing 27.2 (2014), pp. 111–146. issn: 0178-2770, 1432-0452.
doi: 10.1007/s00446-013-0200-5. url: http://link.springer.
com/10.1007/s00446-013-0200-5.

[171] P. Pazzaglia, L. Pannocchi, A. Biondi, and M. D. Natale. “Be-
yond the Weakly Hard Model: Measuring the Performance
Cost of Deadline Misses.” In: 30th Euromicro Conference on Real-
Time Systems (ECRTS 2018). Vol. 106. Leibniz International Pro-
ceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 10:1–10:22. isbn:

https://doi.org/10.1016/S1383-7621(99)00016-8
https://doi.org/10.1016/S1383-7621(99)00016-8
http://linkinghub.elsevier.com/retrieve/pii/S1383762199000168
http://linkinghub.elsevier.com/retrieve/pii/S1383762199000168
https://doi.org/10.1007/s00025-012-0263-9
https://doi.org/10.1007/s00025-012-0263-9
http://link.springer.com/10.1007/s00025-012-0263-9
http://link.springer.com/10.1007/s00025-012-0263-9
http://hdl.handle.net/10451/14093
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.open-mpi.org/
https://www.open-mpi.org/
https://doi.org/10.1109/24.210288
http://ieeexplore.ieee.org/document/210288/
http://ieeexplore.ieee.org/document/210288/
https://doi.org/10.1109/24.85439
http://ieeexplore.ieee.org/document/85439/
https://doi.org/10.1007/s00446-013-0200-5
http://link.springer.com/10.1007/s00446-013-0200-5
http://link.springer.com/10.1007/s00446-013-0200-5

214 bibliography

978-3-95977-075-0. doi: 10.4230/LIPIcs.ECRTS.2018.10. url:
http://drops.dagstuhl.de/opus/volltexte/2018/8993.

[172] P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin. “DMAC:
Deadline-Miss-Aware Control.” In: Leibniz International Pro-
ceedings in Informatics (LIPIcs) 133 (). Ed. by S. Quinton, 1:1–
1:24. issn: 1868-8969. doi: 10.4230/LIPIcs.ECRTS.2019.1. url:
http://drops.dagstuhl.de/opus/volltexte/2019/10738.

[173] M. Pease, R. Shostak, and L. Lamport. “Reaching Agreement
in the Presence of Faults.” In: Journal of the ACM 27.2 (1980),
pp. 228–234. issn: 00045411. doi: 10.1145/322186.322188. url:
http://portal.acm.org/citation.cfm?doid=322186.322188.

[174] H. Pham. “Optimal design of k-out-of-n redundant systems.”
In: Microelectronics Reliability 32.1 (1992), pp. 119–126. issn: 0026-
2714. doi: 10.1016/0026-2714(92)90091-X. url: http://www.
sciencedirect.com/science/article/pii/002627149290091X.

[175] L. M. Pinho and F. Vasques. “Improved fault tolerant broadcasts
in CAN.” In: 8th International Conference on Emerging Technologies
and Factory Automation. Proceedings (Cat. No.01TH8597) (ETFA
2001), 305–313 vol.1. doi: 10.1109/ETFA.2001.996383.

[176] S. Poledna. Fault-tolerant real-time systems: the problem of replica
determinism. The Kluwer international series in engineering
and computer science ; Real-time systems SECS 345. Boston:
Kluwer Academic Publishers, 1996. isbn: 978-0-7923-9657-4.

[177] E. Possan and J. J. d. O. Andrade. “Markov Chains and reliabil-
ity analysis for reinforced concrete structure service life.” In:
Materials Research 17.3 (2014), pp. 593–602. issn: 1980-5373, 1516-
1439. doi: 10.1590/S1516-14392014005000074. url: http://
www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-

14392014000300009&lng=en&tlng=en.

[178] W. Preuss. “On the reliability of generalized consecutive sys-
tems.” In: Nonlinear Analysis: Theory, Methods & Applications
30.8 (1997), pp. 5425–5429. issn: 0362546X. doi: 10.1016/S0362-
546X(96)00114-9. url: http://linkinghub.elsevier.com/
retrieve/pii/S0362546X96001149.

[179] S. Punnekkat, H. Hansson, and C. Norstrom. “Response time
analysis under errors for CAN.” In: 6th IEEE Real-Time Tech-
nology and Applications Symposium (RTAS 2000), pp. 258–265.
isbn: 978-0-7695-0713-2. doi: 10.1109/RTTAS.2000.852470.
url: http://ieeexplore.ieee.org/document/852470/.

[180] G. Quan and X. Hu. “Enhanced fixed-priority scheduling with
(m,k)-firm guarantee.” In: Proceedings 21st IEEE Real-Time Sys-
tems Symposium (RTSS 2000), pp. 79–88. doi: 10.1109/REAL.
2000.895998.

https://doi.org/10.4230/LIPIcs.ECRTS.2018.10
http://drops.dagstuhl.de/opus/volltexte/2018/8993
https://doi.org/10.4230/LIPIcs.ECRTS.2019.1
http://drops.dagstuhl.de/opus/volltexte/2019/10738
https://doi.org/10.1145/322186.322188
http://portal.acm.org/citation.cfm?doid=322186.322188
https://doi.org/10.1016/0026-2714(92)90091-X
http://www.sciencedirect.com/science/article/pii/002627149290091X
http://www.sciencedirect.com/science/article/pii/002627149290091X
https://doi.org/10.1109/ETFA.2001.996383
https://doi.org/10.1590/S1516-14392014005000074
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000300009&lng=en&tlng=en
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000300009&lng=en&tlng=en
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000300009&lng=en&tlng=en
https://doi.org/10.1016/S0362-546X(96)00114-9
https://doi.org/10.1016/S0362-546X(96)00114-9
http://linkinghub.elsevier.com/retrieve/pii/S0362546X96001149
http://linkinghub.elsevier.com/retrieve/pii/S0362546X96001149
https://doi.org/10.1109/RTTAS.2000.852470
http://ieeexplore.ieee.org/document/852470/
https://doi.org/10.1109/REAL.2000.895998
https://doi.org/10.1109/REAL.2000.895998

bibliography 215

[181] S. Quinton and R. Ernst. “Generalized Weakly-Hard Con-
straints.” In: Leveraging Applications of Formal Methods, Veri-
fication and Validation. Applications and Case Studies (ISoLA 2012).
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
pp. 96–110. isbn: 978-3-642-34032-1.

[182] M. O. Rabin. “Randomized byzantine generals.” In: 24th IEEE
Symposium on Foundations of Computer Science (SFCS 1983). Tuc-
son, AZ, USA, pp. 403–409. isbn: 978-0-8186-0508-6. doi: 10.
1109/SFCS.1983.48. url: http://ieeexplore.ieee.org/
document/4568104/.

[183] P. Ramanathan. “Overload management in real-time control
applications using (m, k)-firm guarantee.” In: IEEE Transactions
on Parallel and Distributed Systems 10.6 (1999), pp. 549–559. issn:
1045-9219. doi: 10.1109/71.774906.

[184] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan. “Modeling
the Propagation of Intermittent Hardware Faults in Programs.”
In: 16th IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC 2010). Tokyo, Japan, pp. 19–26. isbn: 978-
1-4244-8975-6. doi: 10.1109/PRDC.2010.52. url: http://
ieeexplore.ieee.org/document/5703223/.

[185] Raspberry Pi 3 Model B+. 2018. url: https://www.raspberrypi.
org/products/raspberry-pi-3-model-b-plus/.

[186] M. K. Reiter. “The Rampart toolkit for building high-integrity
services.” In: Theory and Practice in Distributed Systems. Vol. 938.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 99–
110. isbn: 978-3-540-60042-8 978-3-540-49409-6. doi: 10.1007/3-
540-60042-6_7. url: http://link.springer.com/10.1007/3-
540-60042-6_7.

[187] Robots/cob4/manual/modules - ROS Wiki. 2016. url: https://
wiki.ros.org/Robots/cob4/manual/modules.

[188] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Rodrigues.
“Fault-tolerant broadcasts in CAN.” In: 28th IEEE International
Symposium on Fault-Tolerant Computing (Cat. No.98CB36224)
(FTCS 1998). Munich, Germany, pp. 150–159. isbn: 978-0-8186-
8470-8. doi: 10.1109/FTCS.1998.689464. url: http://ieeexplore.
ieee.org/document/689464/.

[189] E. Ruijters and M. Stoelinga. “Fault tree analysis: A survey of
the state-of-the-art in modeling, analysis and tools.” In: Com-
puter Science Review 15-16 (2015), pp. 29–62. issn: 15740137. doi:
10.1016/j.cosrev.2015.03.001. url: http://linkinghub.
elsevier.com/retrieve/pii/S1574013715000027.

https://doi.org/10.1109/SFCS.1983.48
https://doi.org/10.1109/SFCS.1983.48
http://ieeexplore.ieee.org/document/4568104/
http://ieeexplore.ieee.org/document/4568104/
https://doi.org/10.1109/71.774906
https://doi.org/10.1109/PRDC.2010.52
http://ieeexplore.ieee.org/document/5703223/
http://ieeexplore.ieee.org/document/5703223/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://doi.org/10.1007/3-540-60042-6_7
https://doi.org/10.1007/3-540-60042-6_7
http://link.springer.com/10.1007/3-540-60042-6_7
http://link.springer.com/10.1007/3-540-60042-6_7
https://wiki.ros.org/Robots/cob4/manual/modules
https://wiki.ros.org/Robots/cob4/manual/modules
https://doi.org/10.1109/FTCS.1998.689464
http://ieeexplore.ieee.org/document/689464/
http://ieeexplore.ieee.org/document/689464/
https://doi.org/10.1016/j.cosrev.2015.03.001
http://linkinghub.elsevier.com/retrieve/pii/S1574013715000027
http://linkinghub.elsevier.com/retrieve/pii/S1574013715000027

216 bibliography

[190] S-18 Aircraft and Sys Dev and Safety Assessment Committee.
Guidelines and Methods for Conducting the Safety Assessment Pro-
cess on Civil Airborne Systems and Equipment. Tech. rep. SAE
International. doi: 10.4271/ARP4761. url: https://www.sae.
org/content/arp4761.

[191] G. Saggese, N. Wang, Z. Kalbarczyk, S. Patel, and R. Iyer.
“An Experimental Study of Soft Errors in Microprocessors.”
In: IEEE Micro 25.6 (2005), pp. 30–39. issn: 0272-1732. doi:
10.1109/MM.2005.104. url: http://ieeexplore.ieee.org/
document/1566554/.

[192] R. K. Sah. “An explicit closed-form formula for profit-maximizing
k-out-of-n systems subject to two kinds of failures.” In: Micro-
electronics Reliability 30.6 (1990), pp. 1123–1130. issn: 0026-2714.
doi: 10 . 1016 / 0026 - 2714(90) 90291 - T. url: http : / / www .

sciencedirect.com/science/article/pii/002627149090291T.

[193] I. Saha, S. Baruah, and R. Majumdar. “Dynamic Scheduling
for Networked Control Systems.” In: 18th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC
2015). New York, NY, USA, pp. 98–107. isbn: 978-1-4503-3433-4.
doi: 10.1145/2728606.2728636. url: http://doi.acm.org/10.
1145/2728606.2728636.

[194] J. Santic. Watchdog Timer Techniques. url: https://johnsantic.
com/comp/wdt.html.

[195] F. B. Schneider. “Implementing fault-tolerant services using
the state machine approach: a tutorial.” In: ACM Computing
Surveys 22.4 (1990), pp. 299–319. issn: 03600300. doi: 10.1145/
98163.98167. url: http://portal.acm.org/citation.cfm?
doid=98163.98167.

[196] S. Schuster, P. Ulbrich, I. Stilkerich, C. Dietrich, and W. SchröDer-
Preikschat. “Demystifying Soft-Error Mitigation by Control-
Flow Checking – A New Perspective on its Effectiveness.” In:
ACM Transactions on Embedded Computing Systems 16.5s (2017),
pp. 1–19. issn: 15399087. doi: 10.1145/3126503. url: http:
//dl.acm.org/citation.cfm?doid=3145508.3126503.

[197] ScyllaDB | The Real-Time Big Data Database. url: https://www.
scylladb.com/.

[198] M. Sebastian, P. Axer, and R. Ernst. “Utilizing Hidden Markov
Models for Formal Reliability Analysis of Real-Time Com-
munication Systems with Errors.” In: 17th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC 2011).
Pasadena, CA, USA, pp. 79–88. isbn: 978-1-4577-2005-5 978-
0-7695-4590-5. doi: 10.1109/PRDC.2011.19. url: http://
ieeexplore.ieee.org/document/6133069/.

https://doi.org/10.4271/ARP4761
https://www.sae.org/content/arp4761
https://www.sae.org/content/arp4761
https://doi.org/10.1109/MM.2005.104
http://ieeexplore.ieee.org/document/1566554/
http://ieeexplore.ieee.org/document/1566554/
https://doi.org/10.1016/0026-2714(90)90291-T
http://www.sciencedirect.com/science/article/pii/002627149090291T
http://www.sciencedirect.com/science/article/pii/002627149090291T
https://doi.org/10.1145/2728606.2728636
http://doi.acm.org/10.1145/2728606.2728636
http://doi.acm.org/10.1145/2728606.2728636
https://johnsantic.com/comp/wdt.html
https://johnsantic.com/comp/wdt.html
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
http://portal.acm.org/citation.cfm?doid=98163.98167
http://portal.acm.org/citation.cfm?doid=98163.98167
https://doi.org/10.1145/3126503
http://dl.acm.org/citation.cfm?doid=3145508.3126503
http://dl.acm.org/citation.cfm?doid=3145508.3126503
https://www.scylladb.com/
https://www.scylladb.com/
https://doi.org/10.1109/PRDC.2011.19
http://ieeexplore.ieee.org/document/6133069/
http://ieeexplore.ieee.org/document/6133069/

bibliography 217

[199] M. Sfakianakis, S. G. Kounias, and A. E. Hillaris. “Reliability of
a consecutive k-out-of-r-from-n:F system.” In: IEEE Transactions
on Reliability 41.3 (1992), pp. 442–447. issn: 0018-9529. doi:
10.1109/24.159817.

[200] L. Sha, M. H. Klein, and J. B. Goodenough. “Rate Monotonic
Analysis for Real-Time Systems.” In: Foundations of Real-Time
Computing: Scheduling and Resource Management. The Springer
International Series in Engineering and Computer Science.
Boston, MA: Springer US, 1991, pp. 129–155. isbn: 978-1-4615-
3956-8. doi: 10.1007/978- 1- 4615- 3956- 8_5. url: https:
//doi.org/10.1007/978-1-4615-3956-8_5.

[201] L. Sha, T. Abdelzaher, K.-E. årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. “Real
Time Scheduling Theory: A Historical Perspective.” In: Real-
Time Systems 28.2/3 (2004), pp. 101–155. issn: 0922-6443. doi:
10.1023/B:TIME.0000045315.61234.1e. url: http://link.
springer.com/10.1023/B:TIME.0000045315.61234.1e.

[202] P. Sinha. “Architectural design and reliability analysis of a
fail-operational brake-by-wire system from ISO 26262 perspec-
tives.” In: Reliability Engineering & System Safety 96.10 (2011),
pp. 1349–1359. issn: 09518320. doi: 10.1016/j.ress.2011.03.
013. url: http://linkinghub.elsevier.com/retrieve/pii/
S095183201100041X.

[203] C. Slayman. “Cache and memory error detection, correction,
and reduction techniques for terrestrial servers and worksta-
tions.” In: IEEE Transactions on Device and Materials Reliability
5.3 (2005), pp. 397–404. issn: 1530-4388. doi: 10.1109/TDMR.
2005.856487. url: http://ieeexplore.ieee.org/document/
1545899/.

[204] F. Smirnov, M. Glaß, F. Reimann, and J. Teich. “Formal re-
liability analysis of switched ethernet automotive networks
under transient transmission errors.” In: 53rd Design Automa-
tion Conference (DAC 2016). Austin, Texas: ACM Press, pp. 1–6.
isbn: 978-1-4503-4236-0. doi: 10.1145/2897937.2898026. url:
http://dl.acm.org/citation.cfm?doid=2897937.2898026.

[205] T. Smith and J. Yelverton. “Processor architectures for fault
tolerant avionic systems.” In: 10th IEEE/AIAA Digital Avion-
ics Systems Conference (DASC 1991). Los Angeles, CA, USA,
pp. 213–219. doi: 10.1109/DASC.1991.177169. url: http:

//ieeexplore.ieee.org/document/177169/.

[206] Soft real-time systems: predictability vs. efficiency. Series in com-
puter science. New York: Springer, 2005. isbn: 978-0-387-23701-
5.

https://doi.org/10.1109/24.159817
https://doi.org/10.1007/978-1-4615-3956-8_5
https://doi.org/10.1007/978-1-4615-3956-8_5
https://doi.org/10.1007/978-1-4615-3956-8_5
https://doi.org/10.1023/B:TIME.0000045315.61234.1e
http://link.springer.com/10.1023/B:TIME.0000045315.61234.1e
http://link.springer.com/10.1023/B:TIME.0000045315.61234.1e
https://doi.org/10.1016/j.ress.2011.03.013
https://doi.org/10.1016/j.ress.2011.03.013
http://linkinghub.elsevier.com/retrieve/pii/S095183201100041X
http://linkinghub.elsevier.com/retrieve/pii/S095183201100041X
https://doi.org/10.1109/TDMR.2005.856487
https://doi.org/10.1109/TDMR.2005.856487
http://ieeexplore.ieee.org/document/1545899/
http://ieeexplore.ieee.org/document/1545899/
https://doi.org/10.1145/2897937.2898026
http://dl.acm.org/citation.cfm?doid=2897937.2898026
https://doi.org/10.1109/DASC.1991.177169
http://ieeexplore.ieee.org/document/177169/
http://ieeexplore.ieee.org/document/177169/

218 bibliography

[207] A. K. Somani and M. Bagha. “Meshkin A Fault Tolerant Com-
puter Architecture with Distributed Fault Detection and Recon-
figuration.” In: Fehlertolerierende Rechensysteme / Fault-tolerant
Computing Systems. Vol. 214. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1989, pp. 197–208. isbn: 978-3-540-51565-4 978-
3-642-75002-1. doi: 10.1007/978-3-642-75002-1_16. url:
http://www.springerlink.com/index/10.1007/978-3-642-

75002-1_16.

[208] J. Song, J. Wittrock, and G. Parmer. “Predictable, Efficient
System-Level Fault Tolerance in C^3.” In: 34th IEEE Real-Time
Systems Symposium (RTSS 2013). Vancouver, BC, Canada, pp. 21–
32. isbn: 978-1-4799-2006-8. doi: 10.1109/RTSS.2013.11. url:
http://ieeexplore.ieee.org/document/6728858/.

[209] D. Soudbakhsh, L. T. X. Phan, O. Sokolsky, I. Lee, and A. An-
naswamy. “Co-design of Control and Platform with Dropped
Signals.” In: 4th ACM/IEEE International Conference on Cyber-
Physical Systems (ICCPS 2013). New York, NY, USA, pp. 129–140.
isbn: 978-1-4503-1996-6. doi: 10.1145/2502524.2502542. url:
http://doi.acm.org/10.1145/2502524.2502542.

[210] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus. “A
firm real-time system implementation using commercial off-
the-shelf hardware and free software.” In: 4th IEEE Real-Time
Technology and Applications Symposium (Cat. No.98TB100245)
(RTAS 1998), pp. 112–119. doi: 10.1109/RTTAS.1998.683194.

[211] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. “Lifetime Relia-
bility: Toward an Architectural Solution.” In: IEEE Micro 25.3
(2005), pp. 70–80. issn: 0272-1732. doi: 10.1109/MM.2005.54.
url: http://ieeexplore.ieee.org/document/1463187/.

[212] M. Stamatelatos and H. Dezfuli. Probabilistic Risk Assessment
Procedures Guide for NASA Managers and Practitioners. Technical
Report NASA/SP-2011-3421. 2011. url: https://ntrs.nasa.
gov/archive/nasa/casi.ntrs.nasa.gov/20120001369.pdf.

[213] D. H. Stamatis. Failure mode and effect analysis: FMEA from theory
to execution. 2nd ed., rev. and expanded. Milwaukee, Wisc: ASQ
Quality Press, 2003. isbn: 978-0-87389-598-9.

[214] S. Stanley. MTBF, MTTR, MTTF & FIT Explanation of Terms.
url: http://www.bb-elec.com/Learning-Center/All-White-
Papers/Fiber/MTBF, - MTTR, - MTTF, - FIT- Explanation- of-

Terms/MTBF-MTTR-MTTF-FIT-10262012-pdf.pdf.

[215] M. D. J. Teener, A. N. Fredette, C. Boiger, P. Klein, C. Gun-
ther, D. Olsen, and K. Stanton. “Heterogeneous Networks for
Audio and Video: Using IEEE 802.1 Audio Video Bridging.”
In: Proceedings of the IEEE 101.11 (2013), pp. 2339–2354. doi:
10.1109/JPROC.2013.2275160.

https://doi.org/10.1007/978-3-642-75002-1_16
http://www.springerlink.com/index/10.1007/978-3-642-75002-1_16
http://www.springerlink.com/index/10.1007/978-3-642-75002-1_16
https://doi.org/10.1109/RTSS.2013.11
http://ieeexplore.ieee.org/document/6728858/
https://doi.org/10.1145/2502524.2502542
http://doi.acm.org/10.1145/2502524.2502542
https://doi.org/10.1109/RTTAS.1998.683194
https://doi.org/10.1109/MM.2005.54
http://ieeexplore.ieee.org/document/1463187/
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120001369.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120001369.pdf
http://www.bb-elec.com/Learning-Center/All-White-Papers/Fiber/MTBF,-MTTR,-MTTF,-FIT-Explanation-of-Terms/MTBF-MTTR-MTTF-FIT-10262012-pdf.pdf
http://www.bb-elec.com/Learning-Center/All-White-Papers/Fiber/MTBF,-MTTR,-MTTF,-FIT-Explanation-of-Terms/MTBF-MTTR-MTTF-FIT-10262012-pdf.pdf
http://www.bb-elec.com/Learning-Center/All-White-Papers/Fiber/MTBF,-MTTR,-MTTF,-FIT-Explanation-of-Terms/MTBF-MTTR-MTTF-FIT-10262012-pdf.pdf
https://doi.org/10.1109/JPROC.2013.2275160

bibliography 219

[216] TensorFlow. url: https://www.tensorflow.org/.

[217] The GNU MPFR Library. url: https://www.mpfr.org/.

[218] H. A. Thompson. “Transputer-based fault tolerance in safety-
critical systems.” In: Microprocessors and Microsystems 15.5 (1991),
pp. 243–248. issn: 01419331. doi: 10.1016/0141- 9331(91)
90065-N. url: https://linkinghub.elsevier.com/retrieve/
pii/014193319190065N.

[219] Timing analysis solutions. 2018. url: https://auto.luxoft.com/
uth/timing-analysis-tools/.

[220] K. Tindell, A. Burns, and A. Wellings. “Calculating controller
area network (can) message response times.” In: Control Engi-
neering Practice 3.8 (1995), pp. 1163–1169. issn: 09670661. doi:
10.1016/0967-0661(95)00112-8. url: http://linkinghub.
elsevier.com/retrieve/pii/0967066195001128.

[221] K. Tindell and A. Burns. “Guaranteeing Message Latencies On
Control Network (CAN).” In: 1st International CAN Conference
(iCC 1994), pp. 1–2.

[222] K. S. Trivedi. Probability and Statistics with Reliability, Queuing
and Computer Science Applications. Hoboken, NJ, USA: John
Wiley & Sons, Inc., 2016. isbn: 978-1-119-28542-7 978-1-119-
28544-1. doi: 10.1002/9781119285441. url: http://doi.wiley.
com/10.1002/9781119285441.

[223] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung.
“Spin One’s Wheels? Byzantine Fault Tolerance with a Spin-
ning Primary.” In: 28th IEEE International Symposium on Reliable
Distributed Systems (SRDS 2009), pp. 135–144. isbn: 978-0-7695-
3826-6. doi: 10.1109/SRDS.2009.36. url: http://ieeexplore.
ieee.org/document/5283369/.

[224] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl.
NRC: Fault Tree Handbook (NUREG-0492). 1981. url: https://
www.nrc.gov/reading-rm/doc-collections/nuregs/staff/

sr0492/.

[225] N. Wang, J. Quek, T. Rafacz, and S. Patel. “Characterizing
the effects of transient faults on a high-performance processor
pipeline.” In: IEEE International Conference on Dependable Systems
and Networks (DSN 2004). Florence, Italy, pp. 61–70. isbn: 978-
0-7695-2052-0. doi: 10.1109/DSN.2004.1311877. url: http:
//ieeexplore.ieee.org/document/1311877/.

[226] S. Webber and J. Beirne. “The Stratus architecture.” In: 21st
International Symposium on Fault-Tolerant Computing (FTCS 1991),
pp. 79–85. doi: 10.1109/FTCS.1991.146637.

[227] Welcome — pyCPA current documentation. url: https://pycpa.
readthedocs.io/en/latest/.

https://www.tensorflow.org/
https://www.mpfr.org/
https://doi.org/10.1016/0141-9331(91)90065-N
https://doi.org/10.1016/0141-9331(91)90065-N
https://linkinghub.elsevier.com/retrieve/pii/014193319190065N
https://linkinghub.elsevier.com/retrieve/pii/014193319190065N
https://auto.luxoft.com/uth/timing-analysis-tools/
https://auto.luxoft.com/uth/timing-analysis-tools/
https://doi.org/10.1016/0967-0661(95)00112-8
http://linkinghub.elsevier.com/retrieve/pii/0967066195001128
http://linkinghub.elsevier.com/retrieve/pii/0967066195001128
https://doi.org/10.1002/9781119285441
http://doi.wiley.com/10.1002/9781119285441
http://doi.wiley.com/10.1002/9781119285441
https://doi.org/10.1109/SRDS.2009.36
http://ieeexplore.ieee.org/document/5283369/
http://ieeexplore.ieee.org/document/5283369/
https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/
https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/
https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/
https://doi.org/10.1109/DSN.2004.1311877
http://ieeexplore.ieee.org/document/1311877/
http://ieeexplore.ieee.org/document/1311877/
https://doi.org/10.1109/FTCS.1991.146637
https://pycpa.readthedocs.io/en/latest/
https://pycpa.readthedocs.io/en/latest/

220 bibliography

[228] J. Wensley, L. Lamport, J. Goldberg, M. Green, K. Levitt, P.
Melliar-Smith, R. Shostak, and C. Weinstock. “SIFT: Design
and analysis of a fault-tolerant computer for aircraft control.”
In: Proceedings of the IEEE 66.10 (1978), pp. 1240–1255. issn:
0018-9219. doi: 10 . 1109 / PROC . 1978 . 11114. url: http : / /

ieeexplore.ieee.org/document/1455383/.

[229] C. Whitby-Strevens. “The transputer.” In: ACM SIGARCH Com-
puter Architecture News 13.3 (1985), pp. 292–300. issn: 01635964.
doi: 10.1145/327070.327269. url: http://portal.acm.org/
citation.cfm?doid=327070.327269.

[230] Wikimedia Commons. File:CAN-Bus-frame in base format without
stuffbits.svg — Wikimedia Commons, the free media repository. 2017.
url: https://commons.wikimedia.org/w/index.php?title=
File:CAN-Bus-frame_in_base_format_without_stuffbits.

svg&oldid=232916576.

[231] T. Wolf and A. Strohmeier. “Fault Tolerance by Transparent
Replication for Distributed Ada 95.” In: Reliable Software Tech-
nologies — Ada-Europe’ 99. Vol. 1622. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 412–424. isbn: 978-3-540-66093-4
978-3-540-48753-1. doi: 10.1007/3- 540- 48753- 0_35. url:
http://link.springer.com/10.1007/3-540-48753-0_35.

[232] F. Yang and R. Saleh. “Simulation and analysis of transient
faults in digital circuits.” In: IEEE Journal of Solid-State Circuits
27.3 (1992), pp. 258–264. issn: 00189200. doi: 10.1109/4.121546.
url: http://ieeexplore.ieee.org/document/121546/.

[233] aiT Worst-Case Execution Time Analyzers. 2018. url: https://
www.absint.com/ait/index.htm.

[234] mpmath - Python library for arbitrary-precision floating-point arith-
metic. url: http://mpmath.org/.

[235] sched(7) - Linux manual page. url: http://man7.org/linux/man-
pages/man7/sched.7.html.

https://doi.org/10.1109/PROC.1978.11114
http://ieeexplore.ieee.org/document/1455383/
http://ieeexplore.ieee.org/document/1455383/
https://doi.org/10.1145/327070.327269
http://portal.acm.org/citation.cfm?doid=327070.327269
http://portal.acm.org/citation.cfm?doid=327070.327269
https://commons.wikimedia.org/w/index.php?title=File:CAN-Bus-frame_in_base_format_without_stuffbits.svg&oldid=232916576
https://commons.wikimedia.org/w/index.php?title=File:CAN-Bus-frame_in_base_format_without_stuffbits.svg&oldid=232916576
https://commons.wikimedia.org/w/index.php?title=File:CAN-Bus-frame_in_base_format_without_stuffbits.svg&oldid=232916576
https://doi.org/10.1007/3-540-48753-0_35
http://link.springer.com/10.1007/3-540-48753-0_35
https://doi.org/10.1109/4.121546
http://ieeexplore.ieee.org/document/121546/
https://www.absint.com/ait/index.htm
https://www.absint.com/ait/index.htm
http://mpmath.org/
http://man7.org/linux/man-pages/man7/sched.7.html
http://man7.org/linux/man-pages/man7/sched.7.html

D E C L A R AT I O N

The dissertation is my own work, all sources have been named, and
the dissertation (either in part or in full) has not been handed in as
part of any other examination procedures.

Kaiserslautern, October 2020

Arpan Gujarati

	Dedication
	Abstract
	 Abstract
	Acknowledgments

	 Acknowledgments
	Publications

	 Publications
	CV

	 Curriculum Vitae
	Contents

	 Contents
	List of Figures

	 List of Figures
	List of Tables

	 List of Tables
	Listings

	 Listings
	Acronyms

	 Acronyms
	 Motivation and Background
	1 Introduction
	1.1 Problem Statement
	1.2 Analysis Approach
	1.3 Thesis Contributions
	1.3.1 Tolerating Byzantine Errors in CPS
	1.3.2 Reliability Analysis of a BFT Protocol
	1.3.3 Reliability Analysis of an NCS Iteration
	1.3.4 Reliability Analysis of Weakly-Hard Systems

	1.4 Organization

	2 Background
	2.1 Distributed Real-Time Systems
	2.1.1 Distributed Systems
	2.1.2 Real-Time Systems
	2.1.3 Time-Sensitive Networks
	2.1.4 Realization on COTS Platforms

	2.2 Reliability Engineering
	2.2.1 Fault Tolerance
	2.2.2 Reliability Metrics
	2.2.3 Reliability Analysis

	3 Fault Model
	3.1 Faults, Errors, and Failures
	3.2 Transient Faults
	3.3 Fault-Induced Basic Errors
	3.3.1 Classification of Node and Network Errors
	3.3.2 Basic Errors in Safety-Critical CPS
	3.3.3 Probabilistic Modeling of Basic Errors

	3.4 Service Failures
	3.5 Reliability Assumptions

	 Byzantine Fault Tolerance
	4 Tolerating Byzantine Errors in CPS
	4.1 Prior Work
	4.1.1 BFT in the Avionics Domain
	4.1.2 General-Purpose BFT Systems

	4.2 Hard Real-Time Design
	4.2.1 Interactive Consistency Protocol
	4.2.2 Realization using the Periodic Task Model
	4.2.3 Case Study: Key-Value Store

	5 Reliability Analysis of a BFT Protocol
	5.1 Prior Work and Reliability Anomalies
	5.2 Analysis Overview
	5.3 Probabilistic Analysis
	5.3.1 Correctness Criteria
	5.3.2 Basic Errors to Message Errors
	5.3.3 Message Errors to Protocol Failure
	5.3.4 Reliability Anomalies

	5.4 Analysis Instantiation
	5.4.1 Upper-Bound Node Error Probabilities
	5.4.2 Upper-Bound Network Error Probabilities

	5.5 Evaluation
	5.5.1 Analysis vs. Simulation
	5.5.2 Reliability Trade-offs

	 Networked Control Systems
	6 Reliability Analysis of an NCS Iteration
	6.1 System Model and Assumptions
	6.2 Analysis Overview
	6.3 Probabilistic Analysis
	6.3.1 Controller Output
	6.3.2 Actuator Voter Output
	6.3.3 Final Output

	6.4 Analysis Instantiation
	6.5 Evaluation

	7 From Iteration to System Failure
	7.1 Prior Work and Objectives
	7.2 System Model
	7.3 Probabilistic Analyses
	7.3.1 PMC: Markov Chain Analysis
	7.3.2 MART: The Martingale Approach
	7.3.3 SAP: Sound Approximation

	7.4 Evaluation
	7.5 Case Study: Active Suspension

	 The Road Ahead
	8 Conclusion
	8.1 Summary of Results
	8.1.1 Byzantine Fault Tolerance
	8.1.2 Networked Control Systems

	8.2 Open Questions and Future Work
	8.2.1 Improving the Analysis Accuracy
	8.2.2 Reliability Analysis of Other Critical Services
	8.2.3 Reliability Analysis of Intelligent NCS

	8.3 Closing Remarks

	 Appendices
	A Monotonicity Proofs
	A.1 Non-Monotonicity of P (Uny incorrect)
	A.2 Monotonicity of Q (Uny incorrect)
	A.3 Monotonicity of P (Uny omitted)
	A.4 Analysis of Final Output Fn

	B SAP Proofs
	B.1 The a/Con/b/c:F System Model
	B.1.1 Reliability of an a/Con/b/c:F System
	B.1.2 Monotonicity of Reliability Lower Bound

	B.2 Derivation of the MTTF Lower Bound

	C Implementing PMC in PRISM
	C.1 Example
	C.1.1 Type-1 Monitor
	C.1.2 Type-2 Monitor
	C.1.3 Type-3 Monitor

	C.2 PRISM versus Storm

	 Bibliography
	Declaration

