DOMAIN DECOMPOSITION FOR KINETIC PROBLEMS
WITH STRONGLY CONTRASTED KNUDSEN NUMBERS

Axel Klar
DOMAIN DECOMPOSITION FOR KINETIC PROBLEMS
WITH STRONGLY CONTRASTED KNUDSEN NUMBERS

Axel Klar
Domain Decomposition for Kinetic Problems with Strongly Contrasted Knudsen Numbers

by AXEL KLAR

Abstract

A nonequilibrium situation governed by kinetic equations with strongly contrasted Knudsen numbers in different subdomains is discussed. We consider a domain decomposition problem for Boltzmann- and Euler equations, establish the correct coupling conditions and prove the validity of the obtained coupled solution. Moreover numerical examples comparing different types of coupling conditions are presented.

1 Introduction

Domain decomposition methods involving kinetic and aerodynamic equations have become of considerable interest, e.g. in space flight problems. The Boltzmann equation is in general considered to give the correct results for rarefied gas flows, but when the mean free path of the molecules becomes small the usual numerical methods to solve the Boltzmann equation are very expensive in computing time. Therefore in regions where Euler- or Navier-Stokes equations are valid, they should be solved.

One of the main problems is to find the correct coupling conditions at the interface between the two regions. The approach usually employed in numerical procedures, see Bourgat et al [3] or Lukschin et al [14], is the following: The boundary conditions at the interface for the aerodynamic equation are determined from the Boltzmann distribution function by equalizing the moments or fluxes. The boundary condition for the Boltzmann equation at the interface, i.e. the ingoing function for the Boltzmann region is given by a Maxwellian distribution with the aerodynamic quantities as parameters. For an equilibrium situation at the interface these coupling conditions are the appropriate ones.

If we consider instead of such a situation strongly contrasted Knudsen numbers in the aerodynamic and kinetic regions and nonequilibrium states then the above coupling conditions will not lead to the correct results. Here the matching requires a more exact analysis. It can be done by modelling the interface region by a transition layer. An asymptotic analysis leads to a kinetic linear half space problem. The asymptotic values of the solution of this problem determine the aerodynamic boundary conditions at the interface. The outgoing flux of the half space problem gives the ingoing distribution function for the Boltzmann region at the interface. Kinetic half space problems have been
widely considered. A mathematical investigation of these problems is among others done e.g. in Arthur and Cercignani [2], Bardos et al. [4], Bensoussan et al. [5], Coron et al. [7]. Many numerical investigations for various different situations have been performed by Sone and coworkers, see e.g. [1], [15]. Obviously the direct solution of the half space problem would be much too expensive. We could as well solve the Boltzmann equation also in the aerodynamic region. Moreover from the above we see that only the asymptotic states and the outgoing fluxes are really required. In Golse/Klar [9] we developed a fast numerical scheme which computes approximately these two things by a Chapman Enskog type expansion procedure. This makes the approach reasonable from a numerical point of view.

For a different approach to the coupling problem we refer to Illner/Neunzert [11].

The paper is organized as follows:
In Section 2 we consider a simple model problem and introduce the coupling conditions given by the analysis of the kinetic layer. We investigate whether the coupled solution obtained with these coupling conditions is the correct one, i.e. whether it is near to the kinetic solution in the whole domain. It is proved that, if the Knudsen number ε in the aerodynamic region tends to 0, the analysis of the kinetic layer gives the correct coupling conditions up to order ε.

In Section 3 we extend the analysis to the linearized Boltzmann equation coupled with the linearized Euler equations and point out the correct conditions in this case.

In Section 4 we present some numerical examples for the model problem in section 2 comparing the above coupling conditions with the ones obtained by equalizing moments or fluxes. Moreover numerical results for the 3-dimensional BGK model are shown comparing again the different types of coupling conditions.

2 Coupling Conditions and Physical Correctness of the Coupled Solution for a Simple Model Problem

We consider for simplicity a one dimensional geometry $x \in [-L, L]$ with an interface at $x = 0$. The physical situation is described by kinetic equations with different mean free paths in the domains $D_1 = [-L, 0]$ and $D_2 = [0, L]$.

We denote the mean free paths in D_1 and D_2 by ϵ_1 respectively ϵ_2. We assume ϵ_2 in D_2 to be small such that an aerodynamic approximation of the kinetic equation is valid, $\epsilon_2 := \varepsilon$ with ε tending to 0. In D_1 the mean free path ϵ_1 is assumed to be large compared to ϵ_2; we put $\epsilon_1 := 1$.

\[
\begin{array}{c|cc}
D_1 & D_2 \\
- L & \epsilon_1 = 1 & 0 \\
L & \epsilon_2 << 1 \\
\end{array}
\]

The kinetic equations in D_i, $i = 1, 2$ are here

\[
\partial_t \varphi^{(i)} + (v_1 + u)\partial_x \varphi^{(i)} + \frac{1}{\epsilon_i}(I - K)\varphi^{(i)} = 0, \quad (2.1)
\]
where \(x \in D_1, v = (v_1, v_2, v_3) \in S \subseteq \mathbb{R}^N, \ t \in [0, \infty), \ N = 1, 2, 3. \) \(S \) is assumed to be a ball or sphere in \(\mathbb{R}^N. \) \(u \in \mathbb{R} \setminus \{0\} \) is a constant and \(K \) an integral operator

\[
K \varphi(x, v, t) = \int_S \overline{k}(v, v')\varphi(x, v', t)dv',
\]

\(\overline{k} \) symmetric in \(v \) and \(v', 0 < k_1 < \overline{k}(v, v') < k_2, k_1, k_2 \) some constants and \(\int_S \overline{k}(v, v')dv' = 1. \) In particular \(K \) is an operator in \(L^\infty(S) \) with \(\|K\|_\infty \leq 1. \) Moreover the collision operator \(I - K \) has as collision invariants only constants. The aerodynamic equation in \(D_2 \) associated to (2.1) is a simple linear advection equation

\[
\partial_t \Theta + u \partial_x \Theta = 0, \ u \in \mathbb{R} \setminus \{0\}. \tag{2.2}
\]

Coupling the solution of (2.1) with \(\epsilon_1 = 1 \) in \(D_1 \) and the solution of (2.2) in \(D_2 \) one tries to obtain a coupled solution that approximates the global kinetic one. I.e. the reference solution to which the coupled solution is compared will be the solution of the kinetic equation in the whole domain with different mean free paths \(\epsilon_1 = 1 \) in \(D_1 \) and \(\epsilon_2 = \epsilon \) tending to 0 in \(D_2. \)

We describe now more precisely the coupled solution.

Let \(\varphi^{(1)} \) be the solution of (2.1) in \(D_1 \) with \(\epsilon_1 = 1 \) and

\[
\varphi^{(1)}(-L, v, t) = f_+(v, t), \ v_1 + u > 0 \\
\varphi^{(1)}(x, v, 0) = h(x, v),
\]

Let \(\Theta \) be the solution of (2.2) in \(D_2 \) with

\[
\Theta(x, 0) = g(x) \\
\Theta(L, t) = f_-(t)
\]

if \(u < 0. \)

\(f_+ \) is assumed to be uniformly bounded in \(v \) and \(t \) with \(v \in S \) and \(t \in [0, T], T \) fixed but arbitrary. \(f_-, h, g \) are also assumed to be uniformly bounded in \(x, v, t \) with \(t \in [0, T], \) resp. \(x \in D_1, v \in S, \) resp. \(x \in D_2. \) We assume all data to be as smooth as required and the necessary compatibility conditions for initial and boundary conditions to be satisfied in order to avoid problems connected with nonsmoothness.

It remains to fix the coupling conditions. Taking the usual ones, i.e. equality of moments or fluxes as described in Section 4, will in general lead to wrong results. See Section 4 for numerical examples. One has to make a more exact analysis of the situation near the interface. We neglect the boundary layer at \(x = L \) and proceed for the transition layer similar to the usual boundary layer expansions, see e.g. Cercignani [6]: We assume the distribution function in the aerodynamic region to be equal up to order \(\epsilon \) to the solution of
the macroscopic equation plus a kinetic layer term concentrated in a region in D_2 around the interface. The size of this region is of order ϵ. This corresponds to a scaling of the space coordinate x in the layer like $\frac{x}{\epsilon}$. This means that we have to find a solution $\Phi(x, v, t)$ of the kinetic equation to order ϵ in the domain D_2 in the form

$$\Phi(x, v, t) := \Theta(x, t) + \chi(\frac{x}{\epsilon}, v, t) + \epsilon \hat{W}(\frac{x}{\epsilon}, v, t) + \epsilon W(x, v, t).$$

Φ must fulfill

$$\partial_t \Phi + (v_1 + u) \partial_x \Phi + \frac{1}{\epsilon} (I - K)(\Phi) = 0(\epsilon).$$

The distribution function $\varphi^{(1)}$ in D_1 and the distribution function Φ in D_2 are moreover assumed to be continuous at the interface $x = 0$, i.e. $\Phi(0, v, t) = \varphi^{(1)}(0, v, t)$ up to order ϵ:

$$\Phi(0, v, t) = \varphi^{(1)}(0, v, t) + 0(\epsilon).$$

Computing $\partial_t \Phi + (v_1 + u) \partial_x \Phi$ one obtains

$$\partial_t \left(\Theta + \chi(\frac{x}{\epsilon}) + \epsilon \hat{W}(\frac{x}{\epsilon}) + \epsilon W \right) + (v_1 + u) \partial_x \left(\Theta + \epsilon W \right) + (v_1 + u) \frac{1}{\epsilon} \partial_x \chi(\frac{x}{\epsilon}) + (v_1 + u) \partial_x \hat{W}(\frac{x}{\epsilon}).$$

To order ϵ this must be equal to

$$-\frac{1}{\epsilon} (I - K) \left(\Theta + \chi(\frac{x}{\epsilon}) + \epsilon \hat{W}(\frac{x}{\epsilon}) + \epsilon W \right).$$

Comparing the terms of order ϵ^{-1} yields the half space problem

$$(v_1 + u) \partial_x \chi + (I - K)(\chi) = 0$$

with $\chi(\infty, v, t) = 0$, because the influence of the layer term must be concentrated near the interface. Assuming an ingoing flux of the form

$$\chi(0, v, t) = \varphi^{(1)}(0, v, t) - a(t), v_1 + u > 0$$

with $a(t)$ arbitrary, there is a unique solution χ of this problem for $u > 0$, see e.g. Greenberg et al. [9]. In particular a can not be prescribed, it is determined by the solution. For $u < 0$ the equation has a unique solution, if $a(t)$ is fixed in advance.

Terms of order 0 cancel if

$$\partial_t \Theta + (v_1 + u) \partial_x \Theta + (I - K)(W) = 0$$
is satisfied and if a halfspace problem for \(\hat{W} \) is fulfilled. This equation is uniquely solvable, if \(\Theta \) fulfills the macroscopic equation.

Considering the boundary values at \(x = 0 \) we obtain

\[
\Phi(0, v, t) = \Theta(0, t) + \chi(0, v, t) + o(\epsilon).
\]

Now for \(u > 0 \) it is easily seen that \(\Theta(0, t) \), the boundary condition for (2.2), has to be chosen equal to \(a(t) \) and \(\varphi^{(1)}(0, v, t) \) equal to \(\chi(0, v, t) + \Theta(0, t) \) for \(v_1 + u < 0 \) to achieve to order \(\epsilon \)

\[
\Phi(0, v, t) = \varphi^{(1)}(0, v, t).
\]

For \(u < 0 \) there is no need of a boundary condition for (2.2) at \(x = 0 \). This corresponds to the solvability of the halfspace equation, if \(a(t) \) is prescribed. \(a(t) \) must be defined by \(\Theta(0, t) \) and \(\varphi^{(1)}(0, v, t), v_1 + u < 0 \) has to be chosen as before. Then again the same result is obtained.

Due to this analysis the coupling conditions are found in the following way: Let \(\chi_H \) be the solution of the kinetic linear half space problem

\[
(v_1 + u) \partial_x \chi_H + (I - K) \chi_H = 0, \quad x \in [0, \infty) \tag{2.3}
\]

\[
\chi_H(0, v, t) = \varphi^{(1)}(0, v, t), \quad v_1 + u > 0.
\]

For \(u > 0 \) the solution \(\chi_H \) is unique. Solving (2.3) one obtains \(\chi_H(\infty, t) \) and \(\chi_H(0, v, t), v_1 + u < 0 \). These values will give us the coupling conditions. The condition at the interface for the aerodynamic equation is given by

\[
\Theta(0, t) = \chi_H(\infty, t).
\]

The condition for the kinetic equation in \([-L, 0]\) at \(x = 0 \) is

\[
\varphi^{(1)}(0, v, t) = \chi_H(0, v, t), \quad v_1 + u < 0.
\]

For \(u < 0 \) one needs a constraint to obtain again a unique solution. It will be given by the solution of the aerodynamic equation \(\Theta(x, t) \) with boundary condition \(f_-(t) \) at \(x = L \) :

\[
\chi_H(\infty, v, t) = \Theta(0, t).
\]

Solving (2.3) for \(u < 0 \) with this constraint gives \(\chi_H(0, v, t), v_1 + u < 0 \) and \(\varphi^{(1)}(0, v, t), v_1 + u < 0 \) is obtained as before.

\(\varphi^{(1)} \) and \(\Theta \) fulfilling the coupling and boundary conditions will be called the solution of the coupling problem. The reference solution in \([-L, L]\) to which the coupled solution is compared is the solution of (2.1) in \(D_1 \) and \(D_2 \) with \(\epsilon_1 = 1 \) respectively \(\epsilon_2 = \epsilon \), the boundary conditions

\[
\varphi^{(1)}(L, v, t) = f_+(v, t), \quad v_1 + u > 0
\]

\[
\varphi^{(2)}(L, v, t) = f_-(t), \quad v_1 + u < 0
\]
and the coupling conditions

$$\varphi_t^{(1)}(0, v, t) = \varphi_t^{(2)}(0, v, t).$$

The initial conditions are

$$\varphi_t^{(1)}(x, v, 0) = h(x, v) \quad \forall x \in D_1$$
$$\varphi_t^{(2)}(x, v, 0) = g(x) \quad \forall x \in D_2.$$

$$\varphi^{(1)}$$ is also indexed since it depends on $$\epsilon$$ by the coupling conditions.

The transition and boundary layer terms are modelled by functions, that are solutions of stationary kinetic linear half space problems. The value of these layer functions at infinity is zero, in order to restrict their influence to the interface and boundary regions. The layer functions are, at $$x = 0$$, the function $$\chi_1$$

$$\chi_1(x, v, t) := \chi_H(x, v, t) - \chi_H(\infty, t)$$

and, at $$x = L$$, the function $$\chi_2$$, where $$\chi_2(x, v, t)$$ is for $$u > 0$$ the solution of

$$(v_1 + u) \partial_x \chi_2 + (I - K) \chi_2 = 0, \quad x \in (-\infty, 0]$$
$$\chi_2(0, v, t) = f_{-}(t) - \Theta(L, t), \quad v_1 + u < 0$$

with the condition

$$\chi_2(-\infty, v, t) = 0.$$

For $$u < 0$$ we define

$$\chi_2 = 0.$$

Using a perturbation expansion, like e.g. in Bensoussan et al. [5] or Bardos et al. [4], and the above mentioned results on the linear half space problem one can then prove the following theorem, see Klar [12]
Theorem 2.1

1. For T fixed but arbitrary there is a unique coupled solution

$$(\varphi^{(1)}, \Theta) \text{ with } \varphi^{(1)} \in \mathcal{L}^\infty(D_1 \times S \times [0, T]), \Theta \in \mathcal{L}^\infty(D_2 \times [0, T])$$

fulfilling the above conditions and a unique reference solution

$$(\varphi^{(1)}_\epsilon, \varphi^{(2)}_\epsilon) \text{ with } \varphi^{(i)}_\epsilon \in \mathcal{L}^\infty(D_i \times S \times [0, T]), i = 1, 2 \quad \forall \epsilon > 0.$$

2. In D_1 we have

$$\|\varphi^{(1)}_\epsilon - \varphi^{(1)}\|_\infty \leq \epsilon C,$$

where C some constant.

3. In D_2 we get

$$\|\varphi^{(2)}_\epsilon - [\Theta(x, t) + \chi_1(x, \epsilon, v, t)$$

$$+ \chi_2(x - \frac{L}{\epsilon}, v, t)]\|_\infty \leq \epsilon C,$$

where Θ, χ_1 and χ_2 do not depend on ϵ.

Remark: We mention that in general - in contrast to the global kinetic reference solution - there will be a jump in the macroscopic quantities of the coupled solution at the interface. The coupled solution is a correct approximation for small ϵ of the global kinetic solution only outside of boundary and interface layers in D_2.

3 Coupling Conditions for Linearized Boltzmann and Euler Equations

We describe here the extension of the coupling conditions in the preceding section to the full Boltzmann and Euler equations linearized around a constant state $\bar{\rho}, \bar{u}, \bar{T}$ with $\bar{u} = (\bar{u}_1, \bar{u}_2, \bar{u}_3)$.

We restrict ourselves again to a 1-dimensional geometry $x \in [-L, L]$ and refer to the remark at the end of this section for possible extensions to the multidimensional case.

The kinetic equations in $D_i, i = 1, 2$, with $D_1 = [-L, 0]$ and $D_2 = [0, L]$ as before, are the Boltzmann equations with shifted velocities $v \rightarrow v + \bar{u}$

$$\partial_t \varphi^{(i)} + (\bar{u}_1 + \bar{u}_1) \partial_x \varphi^{(i)} + \frac{1}{\epsilon_i} 2Q(\bar{M}, \varphi^{(i)}) = 0,$$

$i = 1, 2$, where Q is the Boltzmann collision operator with a suitable collision law,

$$\bar{M} = \frac{\bar{\rho}}{(2\pi T)^{3/2}} \exp \left(-\frac{|v|^2}{2T}\right),$$
$\bar{u}_1 \in \mathbb{R}, x \in D_1 \text{ and } v = (v_1, v_2, v_3) \in \mathbb{R}^3$.

We assume again that $\epsilon_2 = \epsilon$ in D_2 is small and ϵ_1 in D_1 is large compared to ϵ_2. We set $\epsilon_1 := 1$.

The aerodynamic equation in D_2 is the compressible linearized Euler equation

$$\partial_t \Theta + A \partial_x \Theta = 0,$$

with $x \in [0, L], \Theta = (\rho, u_1, u_2, u_3, T)$. Let $c > 0$ defined by $c^2 = \frac{5}{3} T$ be the speed of sound. A is the following matrix

$$A = \begin{bmatrix} \bar{u}_1 & \tilde{\rho} & 0 & 0 & 0 \\ \frac{T}{\bar{\rho}} & \bar{u}_1 & 0 & 0 & 1 \\ 0 & 0 & \bar{u}_1 & 0 & 0 \\ 0 & 0 & 0 & \tilde{\rho}_1 & 0 \\ 0 & \frac{2}{5} c^2 & 0 & 0 & \bar{u}_1 \end{bmatrix}.$$

Now the coupling of (3.1) in $D_1 = [-L, 0]$ and (3.2) in $D_2 = [0, L]$ is considered and compared to the solution of the Boltzmann equation in the whole domain $[-L, L]$. We concentrate in the following on the coupling conditions at $x = 0$ disregarding the boundary conditions at $x = L$ and $x = -L$.

The system (3.2) is diagonalizable with Eigenvalues $\lambda_i = \bar{u}_i, i = 1, 2, 3, \lambda_4 = \bar{u}_1 + c, \lambda_5 = \bar{u}_1 - c$. One needs at $x = 0$ for (3.2) 0, 1, 4 or 5 boundary conditions for the characteristic variables according to the value of \bar{u}_1, i.e. $\bar{u}_1 < -c, -c < \bar{u}_1 < 0, 0 < \bar{u}_1 < c$ or $\bar{u}_1 > c$.

Here and in the following we assume $\bar{u}_1 \neq 0, c, -c$.

Simply using the equality of moments or fluxes at $x = 0$ will - as in Section 2 - not lead to the correct results, as we shall see from the simulations in Section 4. An analysis like in section 2 leads to the consideration of

$$(v_1 + \bar{u}_1) \partial_x \chi_H + 2Q(\tilde{M}, \chi_H) = 0, \quad x \in [0, \infty)$$

$$\chi_H(0, v, t) = \varphi(0, v, t), \quad v_1 + \bar{u}_1 > 0$$

(3.3)

where $\varphi(0, v, t)$ is the distribution function in D_1 at $x = 0$. This equation has a unique solution, see Coron et al [7] or Greenberg et al. [10], if - according to the values of \bar{u}_1 - a number of constraints is imposed. One needs 5, 4, 1 resp. 0 constraints if $\bar{u}_1 < -c, -c < \bar{u}_1 < 0, 0 < \bar{u}_1 < c$ resp. $\bar{u}_1 > c$ with $c^2 = \frac{5}{3} T$ as before. Solving the half space problem gives the asymptotic value

$$\chi_H(\infty, v, t) = \left(\frac{a_0(t)}{\tilde{\rho}} + \sum_{i=1}^{3} a_i(t) \frac{v_i}{\sqrt{T}} + \frac{a_4(t) |v|^2 - 3T}{2T} \right) \tilde{M}.$$

According to the number of constraints one already has 5, 4, 1 resp. 0 equations for a_0, \ldots, a_4. This means that for $\bar{u}_1 < -c, -c < \bar{u}_1 < 0, 0 < \bar{u}_1 < c$ resp. $\bar{u}_1 > c$ we obtain 0, 1, 4 resp. 5 new conditions on the asymptotic values a_0, \ldots, a_4. This fits exactly to what is needed for Euler's equations as already mentioned by Golse [8].
We restrict ourselves here to supersonic flow $|\bar{u}_1| > c$.

For $\bar{u}_1 > c$ the half space problem is solved for prescribed incoming fluxes without any constraints. This gives the asymptotic values $a_0(t), a_i(t), a_4(t), i = 1, 2, 3$.

The 'macroscopic density function' in D_2 is a linearized Maxwellian with parameters given by the solution of Euler's equations:

$$\varphi_{\text{macro}}(x, v, t) := \tilde{M}^{\text{lin}}_{(\rho, u, T)}(v)$$

with

$$\tilde{M}^{\text{lin}}_{(\rho, u, T)}(v) := \left(\frac{\rho}{\bar{\rho}} + \sum_{i=1}^{3} \frac{u_i}{\sqrt{T}} \frac{v_i}{\sqrt{T}} + \frac{T}{2T} \left| v \right|^2 - \frac{3T}{2T} \right) M.$$

At $x = 0$ this is

$$\tilde{M}^{\text{lin}}_{(\rho, u, T)}(v).$$

Comparing it to $\chi_H(\infty, v, t)$ one obtains

$$\begin{align*}
\rho(0, t) &= a_0(t) \\
u_i(0, t) &= a_i(t), \quad i = 1, 2, 3 \\
T(0, t) &= a_4(t)
\end{align*} \tag{3.4}$$

Thus the solution of the half space problem gives us the boundary conditions required for Euler's equations with $\bar{u}_1 > c$ at $x = 0$, i.e. $\rho(0, t), u(0, t), T(0, t)$.

Moreover the outgoing flux $\chi_H(0, v, t), v_1 + \bar{u}_1 < 0$ gives $\varphi^{(1)}(0, v, t), v_1 + \bar{u}_1 < 0$, i.e. the boundary condition at $x = 0$ for the domain D_1.

Remark: If $\varphi^{(1)}(0, v, t), v_1 + \bar{u}_1 > 0$ is a linearized Maxwellian

$$\varphi^{(1)}(0, v, t) = \tilde{M}^{\text{lin}}_{(\rho^{(1)}(t), u^{(1)}(t), T^{(1)}(t))}(v), \quad v_1 + \bar{u}_1 > 0,$$

we get

$$\chi_H(\infty, v, t) = \varphi^{(1)}(0, v, t) = \tilde{M}^{\text{lin}}_{(\rho^{(1)}(t), u^{(1)}(t), T^{(1)}(t))}(v), \forall v \in \mathbb{R}^3.$$

This yields equality of the macroscopic quantities $\rho(0, t) = \rho^{(1)}(t), u(0, t) = u^{(1)}(t), T(0, t) = T^{(1)}(t)$. For general functions $\varphi^{(1)}(0, v, t), v_1 + \bar{u}_1 > 0$ this is usually not the case. The moments of $\varphi^{(1)}(0, v, t)$ do not coincide with $\rho(0, t), u(0, t), T(0, t)$. One obtains a jump in the macroscopic quantities.

For $\bar{u}_1 < -c$ the situation is the following: To solve the half space problem 5 constraints on the solution are necessary. Comparing the macroscopic density function, with parameters given by the solutions of Euler's equations, with the asymptotic value $\chi_H(\infty, v, t)$, we get the necessary number of constraints. Remark that for $\bar{u}_1 < -c$ we do not need any boundary condition at $x = 0$ for Euler's equation in D_2. We can then solve the half space problem, which yields $\varphi^{(1)}(0, v, t) = \chi_H(0, v, t), v_1 + \bar{u}_1 < 0$.

Remark: In the multidimensional case one can proceed in the same way. Suppose that the interface Σ divides the computational domain Ω into subdomains Ω_1 and Ω_2. At each point $x \in \Sigma$ one has to solve a one dimensional half space problem with coordinate axis along the unit normal $n(x)$ to Σ at the point x. This will lead for each $x \in \Sigma$ to the correct boundary conditions.
4 Numerical Results

In this section we investigate the coupling procedure proposed in Sections 2 and 3 numerically. The coupling conditions described there are compared with the ones obtained by equalizing moments or fluxes. This means that they are determined by the following procedures:

For the model equations in Section 2 and \(u > 0 \) the following equations are used to determine \(\Theta(0, t) \) from \(\varphi^{(1)}(0, v, t) \)

\[
\int \varphi^{(1)}(0, v, t) dv = \int \Theta(0, t) dv
\]

resp.

\[
\int_{v_1 + u > 0} (v_1 + u) \varphi^{(1)}(0, v, t) dv = \int_{v_1 + u > 0} (v_1 + u) \Theta(0, t) dv
\]

The ingoing function for the Boltzmann region \(\varphi^{(1)}(0, v, t), v_1 + u < 0 \) is determined from \(\Theta(0, t) \) by

\(\varphi^{(1)}(0, v, t) = \Theta(0, t), \ v_1 + u < 0. \)

\(\Theta(0, t) \) must not be prescribed for \(u < 0 \). \(\varphi^{(1)}(0, v, t), v_1 + u < 0 \) is given by a function \(\tilde{\varphi}(t) \) independent of \(v \) s.t. the equality of moments is fulfilled. The equality of fluxes does in this case not give any conditions on the ingoing function. We simply take \(\varphi^{(1)}(0, v, t) = \Theta(0, t), v_1 + u < 0. \)

For Eulers equation in Section 3 the boundary values \(\rho(0, t), u(0, t) \) and \(T(0, t) \) are found for \(\tilde{u}_1 > c \) by

\[
\int \left(\frac{1}{v_i} \right) \varphi^{(1)}(0, v, t) dv = \int \left(\frac{1}{v_i} \right) \tilde{M}^{lin}_{\rho, u, T}(0, t)(v) dv
\]

resp.

\[
\int_{v_1 + \tilde{u}_1 > 0} \left(v_1 + \tilde{u}_1 \right) \left(\frac{1}{v_i} \right) \varphi^{(1)}(0, v, t) dv
\]

\[
= \int_{v_1 + \tilde{u}_1 > 0} \left(v_1 + \tilde{u}_1 \right) \left(\frac{1}{v_i} \right) \tilde{M}^{lin}_{\rho, u, T}(0, t)(v) dv, \ i = 1, 2, 3.
\]

The ingoing function is for \(v_1 + \tilde{u}_1 < 0 \)

\(\varphi^{(1)}(0, v, t) = \tilde{M}^{lin}_{\rho, u, T}(0, t)(v). \)

For the other values of \(\tilde{u}_1 \) one can proceed in an analogous way.
The coupling conditions obtained by the analysis of the kinetic half space problem are determined by the first step of the numerical scheme mentioned in the introduction and described in detail in Golse/Klar [9], see also Klar [12]. We remark that for $u_1 = 0$ the first step of the scheme reduces to the so called variational method, see Golse [8] or Loyalka [13].

In Figure 1 we consider the model problem in (2.1) with $v \in S = [-1, 1]$ and $K \varphi = \frac{1}{2} \int_{-1}^{1} \varphi(v) dv$. The macroscopic quantity $\int \varphi^{(1)}(x,v,t) dv$ in D_1 and $\Theta(x,t)$ the solution of (2.2) in D_2 is shown at a fixed time $t = T$ so large that a stationary state is obtained. We took $\epsilon_1 = 1$ and $u = 0.3 > 0$. For $t \in [0,T]$ the ingoing function at $x = -L$ was chosen as $f_+(v,t) = v$, at $x = L$ we took $f_-(t) = 1$. The figure shows the 3 kinds of coupling conditions. Moreover the kinetic solution in the whole domain with the parameters $\epsilon_1 = 1$ and $\epsilon_2 = 0.01$ is shown.

![Figure 1: Transport - Euler $u = 0.3$](image)

Figure 2 shows the same but in contrast to Figure 1 u is here less than 0, $u = -0.3$.

11
In Figure 3 the 3-dimensional BGK model is considered, i.e. in D_1 we consider equation (3.1) with $\epsilon_1 = 1$ and substitute the following expression for the collision operator $2Q(M, \varphi)$:

$$\varphi - \left(\int \varphi dv + \sum_{i=1}^{3} v_i \int v_i \varphi dv + \frac{|v|^2 - 3}{2} \int \frac{|v|^2 - 3}{3} \varphi dv \right) \bar{M}$$

with

$$\bar{M} = \frac{1}{(2\pi)^{3/2}} \exp \left(-\frac{|v|^2}{2} \right).$$

We linearized here around $\bar{\rho} = \bar{T} = 1$.

In D_2 Euler's equation (3.2) is solved. \bar{u}_1 is equal to 1.4, i.e. bigger than $c = \sqrt{\frac{5}{3}}$. The ingoing function at $x = -L$ is $f_+(v, t) = v(|v|^2 - 5)\bar{M}$ for $t \in [0, T]$.

The figure shows the temperature $\int \frac{|v|^2 - 3}{3} \varphi^{(1)}(x, v, t)dv$ on D_1 and $T(x, t)$ on D_2.

Again the 3 types of coupling conditions are shown together with the kinetic solution in the whole domain with $\epsilon_1 = 1$ and $\epsilon_2 = 0.002$.
Remark:
As can be seen in the figures the usual coupling conditions may in certain cases lead to completely wrong results. The kinetic layer analysis combined with only the first step of the above mentioned numerical scheme for half space problems however leads to a considerable improvement. The coupled solution is a good approximation of the true kinetic solution outside of boundary and interface layers.

Acknowledgements
I am grateful to F.Golse for very helpful discussions. I also wish to thank H.Neunzert, who initiated this work.

References

FOLGENDE BERICHTE SIND ERSCHIENEN:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Forschung/Bildung</th>
<th>Autor(e)</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Forschung</td>
<td>W.G. Eschmann und Ralph Götz</td>
<td>Optimierung von Gelenksechsecken</td>
</tr>
<tr>
<td>2</td>
<td>Weiterbildung</td>
<td>H. Neunzert, M. Schulz-Reese</td>
<td>Mathematische Weiterbildung</td>
</tr>
<tr>
<td>3</td>
<td>Forschung</td>
<td>W. Krüger</td>
<td>The Trippstadt Problem</td>
</tr>
<tr>
<td>4</td>
<td>Weiterbildung</td>
<td>H. Neunzert, M. Schulz-Reese, K.E. Hoffmann</td>
<td>Mathematics in the University and Mathematics in Industry - Complement or Contrast?</td>
</tr>
<tr>
<td>5</td>
<td>Forschung</td>
<td>A.K. Louis</td>
<td>The Limited Angle Problem in Computerized Tomography</td>
</tr>
<tr>
<td>6</td>
<td>Forschung</td>
<td>W. Krüger</td>
<td>Regression für Ellipsen in achsenparalleler Lage</td>
</tr>
<tr>
<td>7</td>
<td>Forschung</td>
<td>Th. Mietzner</td>
<td>Umströmung von Ecken und Kanten, Teil 1</td>
</tr>
<tr>
<td>8</td>
<td>Forschung</td>
<td>W. Krüger, J. Petersen</td>
<td>Simulation und Extrapolation von Rainflow-Matrizen</td>
</tr>
<tr>
<td>9</td>
<td>Forschung</td>
<td>W. Krüger, M. Scheutzow u. A. Beste, J. Petersen</td>
<td>Markov- und Rainflow-Rekonstruktionen stoßstatischer Beanspruchungszeitfunktionen</td>
</tr>
<tr>
<td>10</td>
<td>Forschung</td>
<td>Th. Mietzner</td>
<td>Umströmung von Ecken und Kanten, Teil 2</td>
</tr>
<tr>
<td>11</td>
<td>Forschung</td>
<td>H. Ploss</td>
<td>Simulationsmethoden zur Lösung der Boltzmanngleichung</td>
</tr>
<tr>
<td>12</td>
<td>Forschung</td>
<td>M. Keil</td>
<td>Mathematische Modelle für das Zeitverhalten stoßstatischer Beanspruchungszeitfunktionen</td>
</tr>
<tr>
<td>14</td>
<td>Forschung</td>
<td>H. Moeck</td>
<td>Ein mathematisches Verfahren zur Optimierung von Nocken</td>
</tr>
<tr>
<td>15</td>
<td>Forschung</td>
<td>F.-J. Pfreundt</td>
<td>Berechnung und Optimierung des Energiegewinnes bei Anlagen zur Luftwärmbung mittels Erdkanal</td>
</tr>
<tr>
<td>16</td>
<td>Forschung</td>
<td>F.-J. Pfreundt</td>
<td>Berechnung einer 2-dimensionalen Kanalströmung mit parallel eingeblasener Luft</td>
</tr>
<tr>
<td>17</td>
<td>Forschung</td>
<td>G. Alessandri</td>
<td>Some remarks on a problem of sound measurements from incomplete data</td>
</tr>
<tr>
<td>18</td>
<td>Bildung</td>
<td>W. Diedrich</td>
<td>Einfluß eines Latentwärmepeichers auf den Wärmefluß durch eine Ziegelwand</td>
</tr>
<tr>
<td>19</td>
<td>Forschung</td>
<td>M. Stöhr</td>
<td>Der Kalman-Filter und seine Fehlerprozesse unter besonderer Berücksichtigung der Auswirkung von Modelfehlern</td>
</tr>
<tr>
<td>20</td>
<td>Forschung</td>
<td>H. Babovsky</td>
<td>Berechnung des Schalldrucks im Innern eines Quadrers</td>
</tr>
<tr>
<td>21</td>
<td>Forschung</td>
<td>W.G. Eschmann</td>
<td>Toleranzuntersuchungen für Druckmessgeräte</td>
</tr>
<tr>
<td>22</td>
<td>Forschung</td>
<td>G. Schneider</td>
<td>Stratification of solids, a new perspective in three dimensional computer aided design</td>
</tr>
<tr>
<td>23</td>
<td>Forschung</td>
<td>H.-G. Stark</td>
<td>Identifikation von Amplituden und Phasensprüngen im Intensitätsverlauf eines Nd:YAG Festkörperlasers</td>
</tr>
<tr>
<td>24</td>
<td>Forschung</td>
<td>M. Scheutzow</td>
<td>Einfache Verfahren zur Planung und Auswertung von Navigationsversuchsfahrten</td>
</tr>
<tr>
<td>25</td>
<td>Forschung</td>
<td>G.R. Dargahi-Nobary</td>
<td>A Parametric Solution for Simple Stress-Strength Model of Failure with an Application</td>
</tr>
<tr>
<td>27</td>
<td>Forschung</td>
<td>G. Christmann</td>
<td>Zeitreihen und Modalanalyse</td>
</tr>
<tr>
<td>28</td>
<td>Forschung</td>
<td>H. Neunzert, B. Wetton</td>
<td>Pattern recognition using measure space metrics</td>
</tr>
<tr>
<td>29</td>
<td>Forschung</td>
<td>G. Steinebach</td>
<td>Semi-implizite Einschrittverfahren zur numerischen Lösung differential-algebraischer Gleichungen technischer Modelle</td>
</tr>
<tr>
<td>30</td>
<td>Forschung</td>
<td>M. Brokate</td>
<td>Properties of the Preisach Model for Hysteresis</td>
</tr>
</tbody>
</table>
Nr. 31 FORSCHUNG
H.-G. Stark, H. Trinkaus, Ch. Jansson
The Simulation of the Charge Cycle in a Cylinder of a
Combustion Engine

Nr. 32 FORSCHUNG
H. Babovsky, F. Gropengießer, H. Neunzert, J.
Struckmeier, B. Wiesen
Low Discrepancy Methods for the Boltzmann
Equation

Nr. 33 FORSCHUNG
M. Brokate
Some BV properties of the Preisach hysteresis
operator

1989

Nr. 34 FORSCHUNG
H. Neunzert
Industrial Mathematics: General Remarks and
Some Case Studies

Nr. 35 FORSCHUNG
M. Brokate
On a Characterization of the Preisach Model for
Hysteresis

Nr. 36 FORSCHUNG
C.-P. Fritzner, P. Hackh
Optimization of a Spring for Dental Attachments

Nr. 37 FORSCHUNG
U. Helmke, D. Prätzel-Wolters, S. Schmid
Adaptive Synchronization of Interconnected
Linear Systems

Nr. 38 FORSCHUNG
U. Helmke, D. Prätzel-Wolters, S. Schmid
Sufficient Conditions for Adaptive Stabilization and
Tracking

Nr. 39 FORSCHUNG
U. Helmke, D. Prätzel-Wolters, S. Schmid
Adaptive Tracking for Scalar Minimum Phase
Systems

Nr. 40 FORSCHUNG
F.-J. Pfreundt
Nähen als dynamisches System

1990

Nr. 41 FORSCHUNG
H.-G. Stark
Multiscale Analysis, Wavelets and Texture Quality

Nr. 42 FORSCHUNG
I. Einhorn, H. Mook
A Deterministic Particle Method for the Simulation of
the Boltzmann Transport Equation of
Semiconductors

Nr. 43 FORSCHUNG
F. Gropengießer, H. Neunzert, J. Struckmeier
Computational Methods for the Boltzmann
Equation

Nr. 44 FORSCHUNG
S. Nikitin, S. Schmid
Universal Adaptive Stabilizers for One-
Dimensional Nonlinear Systems

Nr. 45 FORSCHUNG
P. Hackh
Quality Control of Artificial Fabrics

Nr. 46 FORSCHUNG
S. Körber, B. Wiesen
A Comparison of a Microscopic and a
Phenomenological Model for a Polyatomic Gas

Nr. 47 FORSCHUNG
F. Gropengießer, H. Neunzert, J. Struckmeier,
B. Wiesen
Several Computer Studies on Boltzmann Flows in
Connection with Space Flight Problems

Nr. 48 FORSCHUNG
M. Brokate
Some Remarks on the Discretization of the
Preisach Operator

Nr. 49 FORSCHUNG
M. Brokate
On the Moving Preisach Model

1991

Nr. 50 FORSCHUNG
W. Wagner
A Stochastic Particle System Associated with the
Spatially Inhomogeneous Boltzmann Equation

Nr. 51 AUSBILDUNG
I. M. Sobol
Punkte, die einen mehrdimensionalen Würfel
gleichmäßig ausfüllen

Nr. 52 FORSCHUNG
M. Brokate, A. H. Siddiqi
Sensitivity in the Rigid Punch Problem

Nr. 53 FORSCHUNG
S. Nikitin, D. Prätzel-Wolters
Multiparameter, Polynomial Adaptive Stabilizers

Nr. 54 FORSCHUNG
S. Schmid, D. Prätzel-Wolters
Synchronization through System Interconnections

Nr. 55 FORSCHUNG
D. Prätzel-Wolters, R.D. Reinke
Simple Adaptive Control of a Discrete Almost
Strict Positive Real Heat Treatment System

Nr. 56 FORSCHUNG
S. Chen, D. Prätzel-Wolters
Modelling and Controller Design for Heat
Treatment Processing of Enameled Wires

Nr. 57 FORSCHUNG
B. Wiesen
On the Dependence of the Solution of Generalized
Boltzmann Equation on the Scattering Cross Section: The
Inverse Problem

Nr. 58 FORSCHUNG
G. Engl, R. Rösch
Studien zum Programmsystem PROM
(Berechnung des instationären Ladungswechsels
von zündenden Mehrzylinder- Verbrennungsmotoren)

Nr. 59 FORSCHUNG
J. Hoffmann, D. Prätzel-Wolters
Controllability Tests for Behaviour Systems in AR-
Representations

Nr. 60 FORSCHUNG
M. Bäcker, H. Neunzert, S. Sundar, S. Younis
A 2-D Kaniel Kinetical Scheme for the Isentropic
Compressible Flow

Nr. 61 FORSCHUNG
F.-J. Pfreundt, J. Struckmeier
On the Efficiency of Simulation Methods for the
Boltzmann Equation on Parallel Computers

Nr. 62 FORSCHUNG
M. Schreiner
Weighted particles in the finite pointset method
Nr. 63 FORSCHUNG
D. Prätzel-Wolters, R. Reinke
Discrete Positive Real Systems and High Gain Stability

Nr. 64 FORSCHUNG
J. Hoffmann, D. Prätzel-Wolters
Dipolynomial minimal bases and linear systems in AR-representation

Nr. 65 FORSCHUNG
P. Krejci
Global behaviour of solutions to the wave equations with hysteresis

Nr. 66 FORSCHUNG
P. Krejci
Asymptotic stability of periodic solutions to the wave equations with hysteresis

Nr. 67 FORSCHUNG
J. Hoffmann, D. Prätzel-Wolters
Controllability Indices for Behaviour Systems in AR-Representations

1992

Nr. 68 FORSCHUNG
S. Nikitin
Stabilizability of Nonlinear Systems

Nr. 69 FORSCHUNG
S. Nikitin
Decoupling Normalizing Transformation and Local Stabilization of Nonlinear Systems

Nr. 70 FORSCHUNG
R. Illner, W. Wagner
A Random Discrete Velocity Model and Approximation of the Boltzmann Equation

Nr. 71 FORSCHUNG
L. Arkeryd, R. Illner
The Broadwell Model in a Box: Strong L1-Convergence to Equilibrium

Nr. 72 FORSCHUNG
J. Weickert
A Mathematical Model for Diffusion and Exchange Phenomena in Ultra Napkins

Nr. 73 FORSCHUNG
S. Rjasanow
Optimierung einer doppelwandigen Rohrleitung

Nr. 74 FORSCHUNG
M. Brokate, K. Dressler, P. Krejci
On the Mröz Model

Nr. 75 FORSCHUNG
S. Nikitin
Sensitivity of Luenberger observers, ε-observability and uncertainty relations

Nr. 76 FORSCHUNG
M. Brokate, J. Theel
Some numerical simulations of pseudoelastic hysteresis in shape memory alloys

Nr. 77 FORSCHUNG
S. Nikitin, A. Ilchmann, D. Prätzel-Wolters
Multiparameter, polynomial adaptive tracking for minimum phase systems

Nr. 78 FORSCHUNG
S. Nikitin
Topological necessary conditions of smooth stabilization in the large

Nr. 79 FORSCHUNG
J. Hoffmann, P.A. Fuhrmann
Remarks on orthogonal polynomials and balanced realizations

Nr. 80 FORSCHUNG
P.A. Fuhrmann, R. Ober
State space formulas for coprime factorization

Nr. 81 FORSCHUNG
P.A. Fuhrmann
An algebraic approach to Hankel norm approximation problems

Nr. 82 FORSCHUNG
R. Ober, P.A. Fuhrmann
Diffeomorphisms between sets of linear systems

Nr. 83 FORSCHUNG
J. Struckmeier, K. Steiner
Boltzmann simulations with axisymmetric geometry

Nr. 84 FORSCHUNG
M. Reissel
On a transmission boundary-value problem for the time-harmonic Maxwell equations without displacement currents

Nr. 85 FORSCHUNG
M. Reissel
Artificial boundary conditions for a transmission boundary-value problem for the time-harmonic Maxwell equations without displacement currents

Nr. 86 FORSCHUNG
M. Reissel
On the equivalence of two transmission boundary-value problems for the time-harmonic Maxwell equations without displacement currents

1993

Nr. 87 FORSCHUNG
K. Steiner
An Analysis of Baganoff's Shuffle Algorithm

Nr. 88 FORSCHUNG
W. Freeden, T. Gervens, M. Schreiner
Tensor spherical harmonics and tensor spherical splines

Nr. 89 FORSCHUNG
M. Hack
Construction of Particlesets to Simulate Rarefied Gases

Nr. 90 FORSCHUNG
R. Illner, H. Neunzert
Domain decomposition: linking kinetic and aerodynamic descriptions

Nr. 91 FORSCHUNG
J. Struckmeier, K. Steiner
A Comparison of Simulation Methods for Rarefied Gas Flows

Nr. 92 FORSCHUNG
J. Fröhlich, K. Schneider
An Adaptive Wavelet Galerkin Algorithm for One and Two Dimensional Flame Computations

Nr. 93 FORSCHUNG
J. Struckmeier
Fast Generation of Low-Discrepancy Sequences

Nr. 94 FORSCHUNG
M. Reissel
3D Eddy-Current Computation Using Krylov Subspace Methods
Nr. 95 FORSCHUNG
J. Franke, T. Subba Rao
Multivariate first-order integer-valued autoregressions

Nr. 96 FORSCHUNG
H. Neunzert
Modelling and Numerical Simulation of Collisions

Nr. 97 FORSCHUNG
W. Freeden, M. Schreiner
Nonorthogonal Expansions on the Sphere

Nr. 98 FORSCHUNG
W. Freeden and R. Franke
Generalized Weighted Spline Approximation on the Sphere

Nr. 99 FORSCHUNG
A.V. Bobylev
Exact Solutions of Discrete Kinetic Models and Stationary Problems for the Plane Broadwell Model

Nr. 100 FORSCHUNG
J. Struckmeier
On a Kinetic Model for Shallow Water Waves 1994

Nr. 101 FORSCHUNG
P. Prasad
A Nonlinear Ray Theory

Nr. 102 FORSCHUNG
P.A. Fuhrmann, J. Hoffmann
Factorization theory for stable inner functions

Nr. 103 FORSCHUNG
P.A. Fuhrmann, J. Hoffmann
On balanced realizations of bounded real and positive real functions

Nr. 104 FORSCHUNG
J. Fröhlich, J. Weickert
Image Processing Using a Wavelet Algorithm for Nonlinear Diffusion

Nr. 105 FORSCHUNG
M. Hack
Lifetime estimation in the car industry

Nr. 106 FORSCHUNG
R. v. Sachs, K. Schneider
Wavelet smoothing of evolutionary spectra by non-linear thresholding

Nr. 107 FORSCHUNG
J. Struckmeier
Generation of Random Variates Using Asymptotic Expansions

Nr. 108 AUSBILDUNG
J. Struckmeier
Tutorial on Asymptotic Analysis I

Nr. 109 FORSCHUNG
W. Freeden, M. Schreiner
A: New Wavelet Methods for Approximating Harmonic Functions
B: Satellite Gradiometry - from Mathematical and Numerical Point of View

Nr. 110 FORSCHUNG
J. Weickert
Scale-Space Properties of Nonlinear Diffusion Filtering with a Diffusion Tensor

Nr. 111 FORSCHUNG
Th. Grünholz
On the Computation of Stress in Stationary Loaded Journal Bearings