A reduction algorithm for integer multiple objective linear programs

D. Schweigert and P. Neumayer

We consider a multiple objective linear program (MOLP) \(\max \{ Cx | Ax = b, x \in \mathbb{N}_0^p \} \) where \(C = (c_{ij}) \) is the \(p \times n \)-matrix of \(p \) different objective functions \(z_i(x) = c_{i1}x_1 + \ldots + c_{in}x_n, i = 1, \ldots, p \) and \(A \) is the \(m \times n \)-matrix of a system of \(m \) linear equations \(a_{k1}x_1 + \ldots + a_{kn}x_n = b_k, k = 1, \ldots, m \) which form the set of constraints of the problem. All coefficients are assumed to be natural numbers or zero. The set \(M \) of admissable solutions is given by \(M = \{ x | Ax = b, x \in \mathbb{N}_0^n \} \). An efficient solution \(\overline{x} \) is an admissable solution such that there exists no other admissable solution \(x' \) with \(C\overline{x} < Cx' \). The efficient solutions play the role of optimal solutions for the MOLP and it is our aim to determine the set of all efficient solutions.

From the \(p \) different objective function we generate a new parametric objective function \(f \) which has the property to preserve the canonical order on \((\mathbb{N}_0^n; \leq_{lex}) \). Therefore we can use \(f \) to find all efficient solutions in a lexicographic order. An efficient solution which is already found will be eliminated by some constraints to get the next efficient solution.

This is a theoretical approach to solve the problem because of the high complexity of the procedures involved. But we have already shown in [] that for small bicriteria integer linear programs it is applicable. This approach generalizes the results in [] to the multicriteria case by introducing an objective function \(f \) which is strictly monotone for two different orderings.

1 The scaling

We determine for every objective function \(z_i(x) \) the minimal value \(a_i \) and the maximal value \(b_i \). We denote the difference by \(d_i = b_i - a_i + 1 \). If for some objective function \(z_i(x) \) we have \(d_i = 1 \) then we may drop this objective function because it is unnecessary as a criterion for the decision. Without a loss of generality we assume that \(d_i = 1 \) then we may drop this objective function because it is unnecessary as a criterion for the decision. Without a loss of generality we assume that \(d_i > 1 \) and introduce a new parametrix
objective function $f : \mathbb{N}_0^n \to \mathbb{N}_0^n$

$$f(x) = \sum_{i=1}^p \left(\prod_{j=1}^i d_j \right)^{-1} z_i(x)$$

We write $z_i(x) = c_i(x)$ where $c_i = (c_{i1}, ..., c_{im})$, and have $f(x) = f(x) = \sum_{i=1}^p \left(\prod_{j=1}^i d_j \right)^{-1} c_i(x) = \frac{1}{d_1} c_1 x + \frac{1}{d_1 d_2} c_2 x + ... + \frac{1}{d_1 ... d_p} c_p x$. We consider the canonical order \leq on \mathbb{N}_0^p which is defined componentwise. $(a_1, ..., a_p) \leq (b_1, ..., b_p)$ if and only if $a_i \leq b_i$ for every $i = 1, ..., p$. The criterion space of the MOLP is given by $Z = \{ z \in \mathbb{N}_0^p | z = Cx, x \in \mathbb{N} \}$

under the above hypothesis. It is obvious that $(Z; \leq)$ is a suborder of $(\mathbb{N}_0^p; \leq)$. Furthermore the function $g : Z \to \mathbb{R}_0$ $g(z) = g(c_1 x, ..., c_n x) = f(x)$ is strictly monotone on Z as

$$\left(\prod_{j=1}^i d_j \right)^{-1} > 0.$$

On the other hand let us consider the lexicographic order $<_{lex}$ on \mathbb{N}_0^p which is defined in the following way: $(a_1, ..., a_p) <_{lex} (b_1, ..., b_p)$ if there exists $m \in \mathbb{R}_0$ with $0 \leq m < p$ such that $a_k = a_k$ for $k = 1, ..., m$ and $a_m < b_m$. The linear order $(\mathbb{N}_0^p; <_{lex})$ has the linear suborder $(Z; <_{lex})$. Furthermore we may consider $(\mathbb{R}; <)$ as a lexicographic order as well. Our aim is to show that $g : Z \to \mathbb{R}_0$ also preserves the lexicographic order. We will use the following

Proposition 1.1

Let $\Delta c_i d_i \in \mathbb{N}$ with $0 < \Delta c_i < d_i$ and $i = 1, ..., p$. If $a_i = \Delta c_i + \frac{a_i + 1}{d_{i+1}}$ for $i = 1, ..., p-1$ and $a_p = \Delta c_p$ for $i = p$ then we have $\frac{a_i}{d_i} < 1$ for $i = 1, ..., p$.

Proof. For $i = p$ we have $a_p < d_p$ and hence $\frac{a_p}{d_p} < 1$. Assume that we have proved $\frac{a_i}{d_i} < 1$ for some $i = 1, ..., p-1$. We have

$$a_i = \Delta c_i + \frac{a_i + 1}{d_i + 1} \leq d_i - 1 + \frac{d_i + 1}{d_i + 1} < d_i - 1 + 1 = d_i.$$
Hence we have \(\frac{a_i}{d_i} < 1 \).

Theorem 1.2

The function \(g : Z \to \mathbb{R}_0 \) defined by \((z) = g(c_1 x, \ldots, c_p x) = f(x) \) preserves the lexicographic order.

Proof. Let \(z^1 <_{leq} z^2 \) and hence \((c_1 x^1, \ldots, c_n x^1) \leq_{leq} (c_1 x^2, \ldots, c_n x^2) \). We have

\[
\left(\prod_{j=1}^{i} d_j \right)^{-1} c_i x^1 = \left(\prod_{j=1}^{i} d_j^{-1} \right) c_i x^2 \text{ for } i = 1, \ldots, m - 1
\]

and

\[
\left(\prod_{j=1}^{m} d_j \right)^{-1} c_m x^1 < \left(\prod_{j=1}^{m} d_j \right)^{-1} c_m x^2.
\]

It remains to show that

\[
\left| \sum_{i=m+1}^{p} \left(\prod_{j=1}^{m} d_j \right)^{-1} c_i (x^2 - x^1) \right| < \left(\prod_{j=1}^{m} d_j \right)^{-1} c_m (x^2 - x^1)
\]

or after a division that

\[
\sum_{i=m+1}^{p} \left(\prod_{j=m+1}^{i} d_j \right)^{-1} c_i |x^2 - x^1| < c_m (x^2 - x^1)
\]

(We also notice that \(1 \leq c_m (x^2 - x^1) \) because we have only integers). For our convenience we put \(\Delta \bar{c}_i := |c_i (x^2 - x^1)| \)

\[
\sum_{i=m+1}^{p} \left(\prod_{j=m+1}^{i} d_j \right)^{-1} \Delta \bar{c}_i = \frac{\Delta c_{m+1}}{d_{m+1}} + \frac{\Delta c_{m+2}}{d_{m+1} \cdot d_{m+2}} + \cdots + \frac{\Delta c_{p-1}}{d_{m+1} \cdots d_{p-1}} + \frac{\Delta c_p}{d_{m+1} \cdots d_p} = \frac{1}{d_{m+1}}
\]
\[
(\Delta c_{m+1} + \frac{1}{d_{m+2}}(\Delta c_{m+2} + \ldots + \frac{1}{d_{p-1}}(\Delta c_{p-1} + \frac{1}{d_p} \Delta c).
\]

Using the proposition 1.1 we get

\[
= \frac{1}{d_{m+1}}(\Delta c_{m+1} + \frac{1}{d_{m+2}}(\Delta c_{m+2} + \ldots + \frac{1}{d_{p-1}}(\Delta c_{p-1} + \frac{a_p}{d_p}).
\]

\[
= \frac{1}{d_{m+1}}(\Delta c_{m+1} + \frac{1}{d_{m+2}}(\Delta c_{m+2} + \ldots + \frac{a_{p-1}}{d_{p-1}}) = \ldots
\]

\[
= \frac{a_{m+1}}{d_{m+1}} < 1 \leq c_m (x^2 - x^1)
\]

Corollary 1.3

The function \(f \) has the properties

(1.3.1) \(Cx^1 < Cx^2 \) implies \(f(x^1) < f(x^2) \)

(1.3.2) \(Cx^1 <_{\text{lex}} Cx^2 \) implies \(f(x^1) < f(x^2) \)

Assume that the admissible solution \(x^0 \in M \) is not efficient. Then there exists an admissible solution \(x' \) with \(Cx^0 < Cx' \). By (1.3.1) \(x^0 \) is not an optimal solution of \(\max\{f(x)|Ax = b, x \in \mathbb{N}_0^n\} \).

Corollary 1.4

If \(x^0 \) is an optimal solution of \(\max\{f(x)|Ax = b, x \in \mathbb{N}_0^n\} \) then \(x^0 \) is an efficient solution of \(\max\{Cx|Ax = b, x \in \mathbb{N}_0^n\} \)

2 The adaptation of constraints

Let \(x^0 \) be the efficient solution which is found as an optimal solution of the linear program \(\max\{f(x)|Ax = b, x \in \mathbb{N}_0^n\} \). Let \(f_0 = f(x^0) \) the optimal value
of the objective function f. Then we eliminate this efficient solution by the constraint $f(x) < f_0$.

We call a solution $x^1 \in M$ dominated by a solution $x^2 \in M$ if $C x^1 < C x^2$. We eliminate all solutions $x \in M$ which are dominated by x^0 with the constraint $y^i(C x - (x^0)) > 0$ then x^0 determinates no $x \in X$ for $y \in \mathbb{N}^n, (y \neq 0)$. By adding these constraints the set of admissible solutions changes.

Lemma 2.1

Let x be the set of all admissible solutions. If for every $x \in X$ there is a vector $y \in \mathbb{N}^n$ with $y^i(C x - C x^0) > 0$ then x^0 dominates no $x \in X$.

Proof. If we have $y^i(C x - C x^0) = \sum_{i=1}^{p} ((C x)_i - (C x^0)_i) y_i > 0$ then there exists at least one index i such that $(C x)_i - (C x^0)_i > 0$. It means that at least in one component i the value of the new solution x in the objective function is greater than the value of x^0. Hence x will not be dominated by x^0.

Let $z^1 = C x^1, z^2 = C x^2, ... , z^j = C x^j$ be different efficient solutions for the problem $\max\{C x | A x = b, x \in \mathbb{N}_0\}$. Let $L = \{x^1, ..., x^j\}$ be the set of the efficient solutions which were found till now.

Lemma 2.2

Let $(C x)_i > 0$ for $i = 1, ..., p$ and $x \in X$. For $x^j \in L$ there exists $y^j \in \mathbb{N}^n$ with $y^j(C x - C x^j) > 0$ if and only if $(C x)_i - (C x^j)_i y_i^j > 0$ for $i = 1, ..., p$ and $\sum_{i=1}^{p} y_i^j \geq 1$.

Proof. If $y^j(C x - C x^0) > 0$ holds then we have $(C x - C x^0)_i > 0$ for at least one component i_0. We choose $y_{i_0}^j = 1$ and all other components $y_i^j = 0$. As $C x > 0$ we have $((C x)_i - (C x^j)_i) y_i^j > 0$ for every $i = 1, ..., p$ and $\sum_{i=1}^{p} y_i^j \geq 1$.

On the other hand from $\sum_{i=1}^{p} y_i^j \geq 1$ it follows that there is a vector $y_k^j = m \geq 1$ for some k. For this k we have $((C x)_k - (C x^j)_k) y_k^j > 0$. Now we choose $y_k^j = 1$ and every other component $y_i^j = 0$ and we have $y^j(C x - C x^j) > 0$.

Theorem 3.3
Let X be the set of all admissible solutions which fulfill the following constraints $Ax = b, f(x) < f(x^j), y^j(Cx - Cx^j) > 0$ for every $x^j \in L$ with $x \in \mathbb{N}_0^p, y^j \in \mathbb{N}_0^p$. If $x \neq 0$ then the linear program $\max\{f(x) | x \in X\}$ generates a new efficient solution. If $x = \emptyset$ then all efficient solutions have been already found in the list L.

Proof. The new solution x' has the property that for every efficient solution x^j of our list L we have $f(x^j) > f(x')$. We have to show that x' is efficient. If x' is not efficient then either x' is dominated by an element of the admissible set x of the actual calculation or by an already eliminated element.

Case 1. $z^j = Cx'$ is dominated by $z = Cx$ of the actual admissible set X. Then we have $Cx > Cx'$ and as f is strictly monotone $f(x) > f(x')$, a contradiction.

Case 2. z^j is dominated by the already eliminated point z^j. But this contradicts the constraint $y^j(Cx - Cx^j) > 0$. Hence x' is an efficient solution.

3 The reduction algorithm.

We use the notations of the preceding sections.

Step 1. Calculation of the objective function f for $i = 1, ..., p$ do

\[b_i = \max\{c_i x | Ax = b, x \in \mathbb{N}_0^p\} \]
\[a_i = \min\{c_i x | Ax = b, x \in \mathbb{N}_0^p\} \]
\[d_i = b_i - a_i + 1 \]
\[f(x) = \sum_{i=1}^{p} \left(\prod_{j=1}^{i} d_j \right)^{-1} c_i x \]

Step 2. Initial solution (z^1, x^1)

(z^1, x^1) is calculated by $\max\{f(x) | Ax = b, x \in \mathbb{N}_0^n\}$

$L := \{(z^1, x^1)\}$

$x^1 := \{x | Ax = b, x \in \mathbb{N}_0^n, \text{there is } y^1 \in \mathbb{N}_0^p \text{ with } (Cx)_j - z^1_j y^1_j \geq 1\}$
\(i := 1 \)

Step 3: Searching loop

for \(x^i \neq \emptyset \) do \((z^{i+1}, x^{i+1})\) is calculated by \(\max \{ f(x) | x \in x^i \} \)

\[L := L u \{(z^{i+1}, x^{i+1})\} \]

\[x^{i+1} = \{ x \in x^i : f(x) < f(x^{i+1}) \} \text{ if there is } y^{i+1} \in \mathbb{N}_0^p \text{ with } \sum_{j=1}^p y^{i+1}_j \geq 1 \text{ and } \\
(C x)_j - z^{i+1} y^{i+1}_j > 0 \text{ for every } j = 1, ..., p \}

\(i := i + 1 \)

Step 4. Output

for \(j = 1, ..., i \) do print \((z^j, x^j)\)

Theorem 3.1

The reduction algorithm finds every efficient solution of the integer multiple objective linear program

\[
\max \{ C x | A x = b, x \in \mathbb{N}_0^n \}
\]

Proof. Assume there is an efficient solution \(z^0 = C x^0 \) of \(\max \{ C x | A x = b, x \in \mathbb{N}_0^n \} \). Then there exists \(z^k, z^{k+1} \in L \) such that \(z^k >_{\text{lex}} z >_{\text{lex}} z^i \) and such that for \(z^i \in L \) we have either \(z^i >_{\text{lex}} \ z^k \) or \(z^{k+1} >_{\text{lex}} z^i \). We consider the \((k + 1)^{st}\) iteration of the searching loop in step 3. In this state \(z \) belongs to admissible set \(x \) as \(f(x^k) > f(x) \) and \(z \) is efficient by hypothesis. The algorithm found \(z^{k+1} \) as \(f(x^{k+1}) \geq f(x) \) holds in contradiction to \(z >_{\text{lex}} z^{k+1} \) and hence \(f(x) > f(x^{k+1}) \).
Literatur

D. Schweigert
FB Mathematik
Universität
67663 Kaiserslautern
Germany

P. Neumayer
SAP
69185 Walldorf
Germany

8