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Abstract

Inflation modeling is a very important tool for conducting an efficient monetary pol-
icy. This doctoral thesis reviewed inflation models, in particular the Phillips curve
models of inflation dynamics. We focused on a well known and widely used model,
the so-called three equation model which is a system of equations consisting of a
new Keynesian Phillips curve (NKPC ), an investment and saving (IS) curve and
an interest rate rule.

We gave a detailed derivation of these equations. The interest rate rule used in this
model is normally determined by using a Lagrangian method to solve an optimal
control problem constrained by a standard discrete time NKPC which describes the
inflation dynamics and an IS curve that represents the output gaps dynamics. In
contrast to the real world, this method assumes that the policy makers intervene
continuously. This means that the costs resulting from the change in the interest
rates are ignored. We showed also that there are approximation errors made, when
one log-linearizes non linear equations, by doing the derivation of the standard dis-
crete time NKPC.

We agreed with other researchers as mentioned in this thesis, that errors which result
from ignoring such log-linear approximation errors and the costs of altering interest
rates by determining interest rate rule, can lead to a suboptimal interest rate rule
and hence to non-optimal paths of output gaps and inflation rate.

To overcome such a problem, we proposed a stochastic optimal impulse control
method. We formulated the problem as a stochastic optimal impulse control prob-
lem by considering the costs of change in interest rates and the approximation error
terms . In order to formulate this problem, we first transform the standard discrete
time NKPC and the IS curve into their high-frequency versions and hence into their
continuous time versions where error terms are described by a zero mean Gaussian
white noise with a finite and constant variance. After formulating this problem, we
use the quasi-variational inequality approach to solve analytically a special case of
the central bank problem, where an inflation rate is supposed to be on target and
a central bank has to optimally control output gap dynamics. This method gives
an optimal control band in which output gap process has to be maintained and an
optimal control strategy, which includes the optimal size of intervention and optimal
intervention time, that can be used to keep the process into the optimal control band.

Finally, using a numerical example, we examined the impact of some model param-
eters on optimal control strategy. The results show that an increase in the output
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gap volatility as well as in the fixed and proportional costs of the change in interest
rate lead to an increase in the width of the optimal control band. In this case, the
optimal intervention requires the central bank to wait longer before undertaking
another control action.
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Zusammenfassung

Die Modellierung von Inflation ist ein wichtiges Hilfsmittel um eine Geldpolitik ef-
fizient durchzuführen. Im Rahmen dieser Dissertation wurde eine Übersicht über
mehrere Inflationsmodelle gegeben, insbesondere über die Modelle der Phillips-
Kurve für die Inflationsdynamik. Hierbei haben wir den Schwerpunkt auf die so
gennante Drei-Gleichung -Modell gelegt, eins der bekanntesten und am weitesten
benutztes makroökonomisches Modell. Dieser Makroökonomische Ansatz umfasst
die Neukeynesianische Phillips-Kurve (NKPC), die Investitions-und Sparkurve und
eine Zinssatzregel. Zunächst wurde eine detaillierte Herleitung diseser Drei Gle-
ichungen gemacht. Die in diesem Ansatz benutzte Zinssatzregel, ist normalerweise
eine Lösung von einem Optimalsteuerungsproblem, die durch eine inflationsdynamik
beschreibende NKPC und Investitions-und Sparkurve eingeschränkt und mit Hilfe
einer Lagrange-Methode bestimmt wird. Im Gegensatz zu der Realwelt geht diese
Methode davon aus, dass die Entscheidungsträger durchgehend eingreifen. Somit
bleiben die Kosten, die aus Veränderung des Zinssatzes resultieren, unberücksichtigt.
Außerdem wurde gezeigt, dass Näherungsfehler entstehen, wenn man eine Log-
linearisierung von nicht linearen Gleichungen während der Herleitung der diskreten
Zeit Standard NKPC macht.

Im Rahmen dieser Arbeit wurden Forschungsergebnisse aus in dieser Arbeit zi-
tierten Quellen bestätigt, dass Fehler, die aus log-linear Näherungsfehlern und den
Veränderungskosten des Zinssatzes durch die Festlegung der Zinssatzregel resul-
tieren, dazu führen können, dass eine suboptimale Zinssatzregel und somit nich-
toptimale Pfad von Output-Lücke und Inflationsrate entsteht.

Um dieses Problem zu überwinden, wurde eine stochastische optimale Impuls-Control-
Methode vorgeschlagen. Das Problem wurde als stochastisch optimalen Impuls-
Control-Problem formuliert, wobei die Veränderungskosten des Zinssatzes und die
Näherungsfehler in das Modell miteinbezogen wurden.

Um das Problem zu formulieren wurde zuerst eine Transformation der diskreten
Zeit Standard NKPC und der Investitions-und Sparkurve zu ihrer ”high-frequency”
Versionen und damit zu ihrer stetige Zeit Versionen gemacht, wobei die Fehlerterme
durch Gaußsches weißes Rauschen mit einer Mittelwert Null und einer endlichen
und konstanten Varianz beschrieben werden.
Nach der Formulierung dieses Problems, wurde die Quasi-Variationsungleichung
Ansatz verwendet, um analytisch ein Sonderproblem der Zentralbank zu lösen. Bei
dem Problem wird davon ausgegangen, dass eine Inflationsrate im Plan liegt und
die Zentralbank den Output-Lücke-Prozess optimal kontrollieren muss.
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Dieses Verfahren ergibt eine optimales Kontrollband, in dem ein Output-Lücke
Prozess erhalten werden muss, und eine optimale Regelsstraegie, die die Optimalen
Eingriffsgrösse und -zeit umfasst, die dazu dient den Prozess in dem optimalen Kon-
trollband zu halten.

Im letzten Teil wurde durch ein numerisches Beispiel die Auswirkung von solchen
Modellparametern auf optimalen Steuerungsstrategie untersucht. Die Ergebnisse
zeigen, dass eine Erhöhung sowohl in der output gap volatilität als auch in den fixen
und variablen Kosten in Abhängigkeit von der Zinssatzänderung zu einer erhöhten
Breite des optimalen Kontrollband führen. In diesem Zusammenhang sollte die Zen-
tralbank länger warten um einen Steuerungsseingriff vorzunehmen.

vii



Chapter 1
Introduction

Motivation. Unstable and high inflation rate is regarded as a considerable eco-
nomic, social and political problem because it results in arbitrary redistribution of
wealth favoring a group of society (e.g. debtors) and hurting another (e.g. creditors
and fixed income earners). This makes people feel insecure and can affect the public
morality. It additionally causes capital flight, which can lead to a disappearance of
wealth, since many people can decide to invest their money in foreign assets. As
a consequence, falling investment and savings can inhibit economic growth. For
this reason, there was a broad consensus around the world that maintenance of low
inflation rate should be a primary goal of the central banks (see also [73] P.2). This
mandate has been extended for most central banks after the global financial crisis in
2008 and effectively promoted the goals of low unemployment, maximum economic
growth and low inflation reinforced by an increased adoption of flexible inflation
targeting. But quite often, these goals conflict. This leads to an optimal control
problem whose solution is an optimal policy that can be applied to achieve these
three objectives. In order to formulate such a problem mathematically, one needs
a good mathematical description (or model) of the dynamics of variables that must
be controlled. This is one of the main reasons why a great variety of macroeconomic
models has been developed that represent the dynamics of the key macroeconomic
variables such as inflation, output gap (or unemployment) and interest rates. The
most widely used model in modern monetary macroeconomics is the 3-equation new
keynesian model (see for example [32]). This is a dynamic system which involves
a new keynesian Phillips curve that relates inflation to output gap, an IS equation
that links the evolution of the output gap to the nominal interest rate and an inter-
est rate rule.
This dissertation will focus on this class of models of inflation dynamics.

Contribution. In this dissertation we contribute to the existing literature on in-
flation modeling and controlling as follows:
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1.1. Outline of the Dissertation

First, we do a detailed derivation of the existing discrete time New Keynesian
Phillips curve model of inflation dynamics,
we transform it into its corresponding high-frequency version (i.e. the length pe-
riod between two consecutive observed data is reduced) and hence into a continuous
time New Keynesian Phillips curve model by considering rational expectation and
approximation errors (which are made by doing Log-linearization of some equations
during the derivation of the model) in form of two dimensional stochastic differential
equations. Furthermore, the obtained system of two stochastic differential equations
will be solved analytically.
Second, we introduce an alternative framework for controlling inflation and output
gaps by means of interest rates. Indeed, the interest rate rule in the Standard dis-
crete time New Keynesian Phillips Curve model is usually determined by solving
an optimal control problem via Lagrangian methods. It is assumed that the control
must be applied every time instant and that the control computed in this manner
would lead to an optimal trajectory of inflation and output gap over time. However,
in the real world, the central banks alter interest rates discontinuously, due to the
costs related to the manipulation of interest rates. As it has been illustrated by
Sami et al. 2013 (see [66]), and King et al.2005 (see [82]), the interest rate rule
determined by using the method above can lead to the sub-optimal trajectory of
output gap and inflation over time. To overcome such problems, this dissertation
proposes a stochastic impulse control method. This method gives an optimal band
and optimal control strategy (which consists of the sequence of optimal intervention
times and the corresponding actions) that can be applied to keep output gap and
inflation process into an optimal band. To this end, we formulate the central bank
problem where inflation and output have to be maintained near their targets by
means of interest rate as a stochastic impulse control problem constrained by the
two obtained stochastic differential equations which describe inflation and output
gap process. Moreover, we will solve analytically the special case, where the central
bank has to control only the output gap process through interest rates by assuming
that inflation is on target, using quasi-variational inequality method. Finally, we
examine the influence of some model parameters to the optimal band.

1.1 Outline of the Dissertation

The remainder of this dissertation proceeds as follows:
The next chapter introduces some mathematical tools, concepts and stochastic con-
trol theory that will be used in subsequent chapters. In chapter 3 we will first briefly
discuss the meaning and measurement of inflation.
Section 2 of this chapter presents a wide view of inflation modeling. Finally, we dis-
cuss the relationship between inflation and other three key macroeconomic variables,

2



Chapter 1. Introduction

namely output gap, unemployment and interest rates, via the Phillips curve models
of inflation dynamics. In this section a detailed derivation of the discrete time New
Keynesian Phillips Curve model of inflation and its continuous time version will be
given.
The fourth chapter will deal with the problem of controlling inflation and the output
gap process. In section one of this chapter, we rigorously formulate the problem as
a stochastic optimal impulse control problem where the central bank has to find op-
timal strategies in order to keep inflation and output gap process inside an optimal
control band by means of interest rates. In section two, we will apply the quasi-
variational inequality method and solve analytically the problem where under the
assumption that inflation is on target, the central bank has to maintain the output
gap process inside an optimal interval using interest rates.
Finally, the last section of this chapter will present a numerical example to illustrate
the effects of some model parameters to the optimal impulse strategies.

3



Chapter 2
Some Mathematical Preliminaries

In this chapter we introduce some mathematical tools, concepts and stochastic con-
trol theory that will be used throughout this work. For the reason of keeping this
chapter a reasonable size, many proofs are omitted and we will give references where
the interested reader can find them. Basic references used for this chapter are [113],
[39], [114], [25], [72],[87] and [110]

2.1 Stochastic Processes

In real world, we usually observe most variables and especially economic variables
whose values change randomly over time. This phenomenon is usually called a
stochastic (random) process and it is formally defined as follows:

Definition 2.1.1. A stochastic process is a family of random variables {Xt, t ∈ I}
defined on the same probability space (Ω,F ,P), where Ω is a collection of outcomes
ω, F stands for a σ-algebra of subsets of Ω and P is a probability measure.
If I = N, the process is said to be a discrete time stochastic process and it is
expressed by Xt.
If I = [0,∞), the process is called a continuous time stochastic process and it
is denoted by X(t). In this dissertation t and Xt represent the time and the position
or “state ”of the process at time t respectively.
For every fixed ω ∈ Ω, the mapping t 7→ Xt(ω) is called the sample path or the
sample realization or the trajectory of the process.

An important example of a stochastic process that will be used in this dissertation
is the Brownian motion. To define this process, let us start with a definition of a
filtered probability space.

4



Chapter 2. Some Mathematical Preliminaries

Definition 2.1.2. A quadruple (Ω,F ,F,P), where F is an increasing collection of
sub-σ-algebra {Ft}t≥0 with Ft ⊂ F and Fs ⊂ Ft, ∀ 0 ≤ s < t < ∞, is called a
filtered probability space or a stochastic basis and F is a filtration.
We say that a filtration F is complete if the following conditions are satisfied:
(i) F0 contains all subsets of P-null sets of F and
(ii) the filtration F is right-continuous, i.e Ft+ :=

∩
s>tFs = Ft, ∀t ≥ 0.

A filtered probability space (Ω,F ,F,P) is complete if the underlying probability
space (Ω,F ,P) and the Filtration F are complete 1.
Intuitively, one may see the filtration F as a means of modeling the complete flow
of information over time assuming that no information is lost and Ft as the set of
informations available at time t.
A filtration FX

t generated by the process X = {Xt, t ≥ 0}, which is also called
natural filtration or (canonical) of X, is FX

t = σ (Xs, o ≤ s ≤ t) , t ∈ [0,∞), the
smallest σ-algebra under which Xs is measurable for all 0 ≤ s ≤ t. One can think
FX

t as the set of all informations which can be extracted from the observation of
the paths of X between 0 and t.

Definition 2.1.3. Given a filtered probability space (Ω,F ,F,P), a stochastic pro-
cess B = (B(t))t≥0 starting at 0 with mean value µ and variance σ2 on this space is
called a P-Brownian motion (or a P-Wiener process) if:
i) B(0)= 0 P-a.s 2 that is P (B(0) = 0) = 1
ii) B has independent increments, i.e., B(t)−B(s) is independent of

B(t
′
)−B(s

′
) ∀0 ≤ s

′ ≤ t
′ ≤ s ≤ t <∞.

iii) B has stationary increments, i.e. the distribution of B(t+u)−B(t) only depends
on u, ∀u ≥ 0.
iv) B has a.s. continuous sample paths.
(B(t))t≥0 is called a normalized ( or standard) Brownian motion if µ = 0 and σ2 = 1.

We call B with B = (B1, . . . , Bd) = (B1(t), . . . , Bd(t))t≥0 a d-dimensional Brownian
motion, d ∈ N, if its components Bi, i = 1, . . . , d, d ∈ N, are independent Brownian
motions.

As we will see in subsection 2.2.1, a stochastic optimal impulse control problem

1A probability space (Ω,F ,P) is complete if any subset of any P-null set A is also in F . It is
always possible to make any probability space (Ω,F ,P) a complete probability space by adding to
a σ-algebra F a P -null set N ⊂ N , where

N := {N : N ⊆ A for some A ⊂ F with P(A) = 0} (see[39]p.14).

2 a.s., is an abbreviation for an event that almost surely happens.
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2.1. Stochastic Processes

formulation requires the existence of a unique solution of the stochastic differential
equations which represent the processes to be controlled. For this reason, we first
define what we call a unique (strong) solution. Then we present two results that will
be used in order to check if the system of stochastic differential equations describing
inflation and output gap processes has a strong unique solution.

Definition 2.1.4. Let (Ω,F ,P) be a probability space and B =
{
B(t),FB

t ; 0 ≤ t <∞
}

be a m-dimensional Brownian motion on it. In addition, assume that this space is
rich enough to accommodate a random vector ξ ∈ Rd which is independent of FB

∞
and whose distribution is Fξ(A) = P (ξ ∈ A); A ∈ B

(
Rd
)
.

when one considers the left-continuous filtration {Gt}t≥0 := σ (ξ, B(s); 0 ≤ s ≤ t) for
0 ≤ t <∞, and creates the augmented filtration 3

(2.0) {Ft}t≥0 := σ (Gt ∪N ) , 0 ≤ t <∞; F∞ := σ
(∪

t≥0Ft

)
,

where N := {N ⊆ Ω;∃G ∈ G∞ with N ⊆ G and P (G) = 0},
one gets an m-dimensional Brownian motion {B(t),Ft, 0 ≤ t <∞} as it has been
proven in [78] .
Considering all these above, a strong solution X of the stochastic differential equa-
tion

dX(t) = b(X(t), t)dt+ σ(X(t), t)dB(t), t ≥ 0, (2.1)

with
b : Rd × [0,∞) −→ Rd,
σ : Rd × [0,∞) −→ Rd×m measurable, on (Ω,F,P) with respect to the fixed m-
dimensional Brownian motion B and the initial condition ξ (which is independent
of B) over this probability space is a stochastic process (X(t), t ≥ 0) which obeys the
following properties:
a) X is adapted 4 to the augmented filtration {Ft}t≥0 represented by (2.0) above;
b) X is a continuous process;
c) P (X(0) = ξ) = 1;
d)
∫ t

0
||b (X(s), s) ||+ ||σ (X(s), s) ||2ds is finite almost surely and

e) X(t) = X(0)+
∫ t

0
b (X(s), s) ds+

∫ t

0
σ (X(s), s) dB(s); ∀t ≥ 0, holds almost surely.

Assume that, whenever (Ω,F,P) is a probability space equipped with a Brownian
motion B and an independent random variable ξ, any two strong solutions X, Y of
the stochastic differential equation (2.1) with initial conditions ξ satisfy

P (∀t ≥ 0, X(t) = Y (t)) = 1.

3This filtration is right-continuous and hence complete (for the proof see [78] P.90).
4Adapted process is defined as follows:

Let (Ω,F ,F = {Ft, t ≥ 0} ,P) be a filtered probability space. A stochastic process {X(t), t ≥ 0} on Ω
is adapted to the filtration {Ft, t ≥ 0} if for every t ≥ 0 the random variable X(t) is Ft measurable
(In this case the processe X(t) is also called ”non-anticipating process” ). One can say that an
adapted process is a process whose value at any time t is revealed by the information Ft.

6



Chapter 2. Some Mathematical Preliminaries

Then one says that the strong uniqueness holds for (2.1)

Theorem 2.1.1 (Existence and uniqueness theorem for stochastic differ-
ential equations).
Let T > 0 and b(., .) : [0, T ]×Rn −→ Rn, σ(., .) : [0, T ]×Rn −→ Rn×m be measurable
functions for which there exist constants C and D such that

a) ∥b(t, x)∥+ ∥σ(t, x)∥ ≤ C(1− ∥x∥);

b) ∥b(t, x)− b(t, y)∥+ ∥σ(t, x)− σ(t, y)∥ ≤ D(∥x− y∥);

∀x, y ∈ Rn and ∀t ∈ [0, T ] (where ∥σ∥2 =
∑

∥σij∥2) and let

c) ξ be a random variable which is independent of the σ-algebra F (m)
∞ generated by

Bs(.), s ≥ 0 with finite second moment(i.e E [∥ξ∥2] < +∞).

Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (2.2)

for t ∈ [0, T ] and X0 = ξ; possesses a unique continuous strong solution Xt(ω) with
the property that Xt(ω) is adapted to filtration Ft (as in (2.0)) generated by ξ and

Bs(.); s ≤ t and E
[∫ T

0
∥Xt∥2dt

]
<∞.

Proof of the theorem 2.1.1 see [114] P.69-71

The main technical tool in stochastic calculus is Itô's Formula which we state below.

Itô's Formula: (Multi-Dimensional Itô’s formula).5 Let u(t,z) be a continuous
function in [0,∞)×Rm with continuous partial derivatives ∂u

∂t
, ∂u

∂zi
, ∂u

∂zizj
. Further,

let X(t) be a m-dimenional process presented by a stochastic differential equation:

dX(t) = µ(t)dt+ σ(t)dB(t) (2.3)

where µ1, . . . µm and σ = (σij), (1 ≤ i ≤ m), (1 ≤ j ≤ n), belong to L1
w [0, T ] and

L2
w [0, T ]6 respectively. Then u (t,X(t)) has a stochastic differential representation:

5Itô’s formula and its proof can be found for example in[114] , [108] and [98].
6 Recall that Lp

w [α, β] is the set consisting of classes of all separable ft - adapted measur-

able processes f(t) with (1 ≤ p ≤ ∞) satisfying: P
{∫ β

α
∥f(t)∥pdt <∞

}
= 1, 1 ≤ p < ∞ and

P {ess supα<t<β∥f(t)∥ <∞} = 1, p = ∞.

7



2.1. Stochastic Processes

du(t,X(t)) =

[
∂u

∂t
(t,X(t)) +

m∑
i=1

∂u

∂X i
(t,X(t))µi(t)

+
1

2

n∑
l=1

m∑
i,j=1

∂u

∂X iXj
(t,X(t))σil(t)σjl(t)

]
dt+

n∑
l=1

m∑
i=1

∂u

∂X i
(t,X(t))σil(t)dwl(t)

The next theorem is useful when one needs to interchange the limit and expectation.
It gives conditions that guarantee the validity of this interchange. Before presenting
it, let us define the following terms.
Definition 2.1.5. Let X : Ω −→ R be a random variable.
Define

X+(ω) =

{
X(ω) if X(ω) ≥ 0

0 if X(ω) < 0
, X−(ω) =

{
0 if X(ω) > 0

−X(ω) if X(ω) ≤ 0

Then X+ and X− are non-negative, X(ω) = X+(ω)−X−(ω) for all ω,
and |X(ω)| = X+(ω) +X−(ω).
If at least one of

∫
Ω
X+(ω)dP(ω) < ∞ or

∫
Ω
X−(ω)dP(ω) < ∞ holds, X is said to

be (Lebesgue)-integrable with respect to the probability measure P and we define∫
Ω
X(ω)dP(ω) :=

∫
Ω
X+(ω)dP(ω)−

∫
Ω
X−(ω)dP(ω).

X is called summable if and only if
∫
Ω
|X(ω)|dP(ω) <∞.

If X is integrable then the number E(X) =
∫
Ω
X(ω)dP(ω) is called the expectation

of X with respect to the probability measure P.

Theorem 2.1.2 ( Dominated convergence theorem (DCT)). Let xn be a se-
quence of Borel functions converging to x almost surely. Assume that there exists a
µ-summable function y ≥ |xn| almost surely.
Then limn→∞E(xn) = E(limn→∞ xn) = E(x). Proof see [121].

Another important concept that will be used in this work, is the conditional expec-
tation (CE). In the following, we start with the construction of the space on which
it is defined and thereafter we give a formal definition of the CE.

Definition 2.1.6. For a random variable X : Ω −→ Rd and 1 ≤ P < ∞ we define

the LP -norm of X, ||X||P , by ||X||P = ||X||LP (Ω,F ,P) =
(∫

Ω
|X(ω)|PdP(ω)

) 1
P . If

P = ∞, ||X||∞ = ||X||L∞(Ω,F ,P) = sup {|X(ω)|;ω ∈ Ω}.
The corresponding spaces LP (Ω,F ,P) =

{
X : Ω −→ Rd; ||X||P <∞

}
are called

LP - spaces.

8



Chapter 2. Some Mathematical Preliminaries

Definition 2.1.7. let X be an element of L1 (Ω,F ,P) and let G be a sub σ-algebra
of F . The conditional expectation E (X|G) of X given G is a random variable
which satisfies the following conditions:
i) E (X|G) is measurable with respect to G, and
ii) for any A ⊂ G we have E {E (X|G) 1A} = E {X1A} where 1A is the indicator
function defined by

1A(ω) =

{
1 if ω ∈ A

0 if ω /∈ A

The following are the properties of conditional expectation7:
1. If y is G-measurable, then E(Y X|G) = Y E(X|G), and
2. If X and G are independent, then E(X|G) = E(X).

Second-order Linear Ordinary Differential Equations

For solving stochastic control problems one typically reduces the search for the value
function (i.e. the optimal utility as a function of the initial time and position of con-
trolled process) to the solution of an ordinary or a partial differential equation. This
part provides the results that will help us to solve a second order differential equa-
tion presented in chapter 4.

Definition 2.1.8. Equations of the form

y
′′
(x) + P (x) y

′
(x) +Q (x) y (x) = R (x) , (2.4)

where P,Q and R stand for continuous functions on an open interval I are called
the Second -Order Linear Ordinary Differential equations. If R(x) = 0 for
all x, then the equation (2.4) becomes

y
′′
(x) + P (x) y

′
(x) +Q (x) y (x) = 0, (2.5)

and we call it the second order linear homogeneous ODE. If R(x) ̸= 0 for
some x, equation (2.5) is inhomogeneous. A solution y1 to such equation is a
function that
satisfies this equation. A particular solution yp is a solution with no arbitrary
constant. A general solution y is a solution with arbitrary constants from which
every particular solution can be determined by appropriate choice of coefficients. A
homogeneous solution is the general solution to a linear homogeneous ODE. Ho-
mogeneous solution of inhomogeneous equation yhis the general solution of the
corresponding homogeneous ODE.

7See [125].
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The following theorem gives sufficient conditions for such equations to have a unique
solution.

Theorem 2.1.3. Existence and uniqueness (see also [25]): consider an ini-
tial value problem y

′′
(x) + P (x) y

′
(x) + Q (x) y (x) = R (x), y (x(0)) = y(0)

y
′
(x(0)) = y

′
(0) where P, Q and R are continuous functions on an open interval

(a, b) containing the point x = x(0). Then there exists a unique solution y = ϕ(x)
of this problem, and the solution exists throughout the interval (a, b).

How can we form the general solution of equation 2.4 and 2.5? The answer is given
by the proposition 2.1.1 and 2.1.2 below.

Proposition 2.1.1: The general solution of equation (2.5) is of the form

C1y1 + C2y2

, where y1 and y2 are two linearly independent solutions of equation (2.5).
The proof of this proposition can be found for example in [139]P.125.

Proposition 2.1.2: every solution of inhomogeneous equation can be written in the
form

y(x) = C1y1(x) + C2y2(x)︸ ︷︷ ︸
:=yh(x)

+yp, where yh(x) is homogeneous ( or general) solution of

equation (2.5) and yp(x) is some specific (or particular ) solution of inhomogeneous
equation. (Proof see [25]).

How can we verify that two solutions are linearly independent?
In order to answer this question, we need to define first the Wronskian determinant
which is a very useful tool for :
1. checking if the two solutions are linearly independent,
2. finding a second solution if we know one solution,
3. determining a particular solution of inhomogeneous equation.

Definition 2.1.9. A 2 × 2 determinant for two differentiable functions y1 and y2
of the form

W [y1, y2] (x) =

∣∣∣∣∣∣
y1(x) y2(x)

y
′
1(x) y

′
2(x)

∣∣∣∣∣∣ = y1(x)y
′
2(x) − y2(x)y

′
1(x) is called the Wronskian

determinant.

10



Chapter 2. Some Mathematical Preliminaries

Proposition 2.1.3. Let y1(x) and y2(x) be the solutions of equation (2.5). Then
y1(x) and y2(x) are linearly independent if and only if W [y1, y2] (x) ̸= 0 for all
x ∈ I.
(The proof can be found in [25])

Remark 2.1.1. If we know one solution of the equation (2.5), say y1(x), then

y2(x) = y1(x)

∫ x exp
(
−
∫ t
P (u)du

)
(y1(t))

2 dt. (2.6)

Proof of the remark 2.1.1. Let us consider

W [y1,y2](x)

(y1(x))
2 =

y1(x)y
′
2(x)−y2(x)y

′
1(x)

(y1(x))
2 =

(
y2(x)
y1(x)

)′

.

Applying the integral on both sides and the Abel's theorem 8 we have

y2(x)
y1(x)

=
∫ x W [y1,y2](x)

(y1(x))
2 dx =

∫ x exp(−
∫ t P (u)du)

(y1(t))
2 dt+ C.

The constant C can be dropped because it only adds to y2(x) a multiple of y1(x),
and thus our final formula for y2(x) will be

y2(x) = y1(x)
∫ x exp(−

∫ t P (u)du)
(y1(t))

2 dt. �

One can determine a particular solution of an inhomogeneous ODE as follows.

Theorem 2.1.4 (see also [25]). If the functions y1(x) and y2(x) are linear in-
dependent solutions of equation (2.5), then a particular solution of inhomogeneous
equation can be given by

yp(x) = −y1(x)
∫ y2(x)R(x)

W [y1,y2](x)
dx+ y2(x)

∫ y1(x)R(x)
W [y1,y2](x)

dx.

Depending on the form of some functions R(x) in equation (2.5), the forms of par-
ticular solution of inhomogeneous equation are known.

8 The Abel's states that:
If y1(x) and y2(x) are two solutions of the equation (2.5), then

W [y1, y2] (x) = D exp
(
−
∫
P (u)du

)
,

where D is a certain constant that is independent on x, but dependent on y1 and y2. Further,
W [y1, y2] (x) = 0 for all x ∈ I, only if D = 0 . (Proof see [25]).
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For example, if R(x) = anx
n + . . .+ a0, then the form of yp is

anx
n + . . .+ a0 (see also [25] p.175).

2.2 Stochastic Optimal Control Theory

Stochastic optimal control theory (SOCT) is a mathematical description of how to
find an optimal control among all possible ones for the purpose of optimizing the
expected discounted cost or reward function either over a given finite or an infi-
nite interval of time subject to the constraint equations in the form of stochastic
differential or difference equations. SOCT has played an important role in solving
the range of problems which arise in a wide variety of disciplines including different
fields of engineering, financial mathematics and economics. These problems can be
classified into two main groups depending on the kind of control which is used 9:
• Classical stochastic optimal control problem, where the control has to be applied
at every time instant and
• Stochastic optimal stopping problem, where at each time point the control is either
to stop or continue. In this case, there is no further control action after stopping
the system. A key example of stochastic optimal stopping problem is the American
option pricing problem.
In real world situation, one often deals with a mixture of the above mentioned prob-
lems where the decision-maker can influence continuously the dynamic behavior of
the system and furthermore has the opportunity to stop it at an optimal stopping
time.
Another significant intermediate case is:
Stochastic optimal impulse control problems in which the control is applied only at
distinct stopping times. In finance, impulse control is applied to the problems where
the fixed and proportional transaction costs are taken into account in contrast to
the classical stochastic optimal control where transaction costs are neglected. The
other difference between these two stochastic controls is that in stochastic optimal
impulse control the effect of the control is to shift the process without affecting
either the drift or the volatility as it is done in the classical stochastic optimal con-
trol. In the absence of fixed transaction costs (when one considers only proportional
transaction costs), stochastic optimal impulse control problems can be reduced to
singular stochastic control problems (see [140]).
Some other important stochastic optimal control problems known in literature and
their applications can be found for instance in [120] and [74].

Motivated by Korn (1999) (see [87]), Long et al. 2012 (see [2]) , Verhangen et al.
1999 (see [147]) and Caicedo et al. 2014 (see [30]), we choose the stochastic impulse
control problem in infinite horizon from others to be studied in this section and we

9See [34].
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will apply it to the central bank problem of controlling inflation and output gap
dynamics in chapter 4.

2.2.1 Stochastic optimal impulse control problem

In the following, we start with the problem formulation and then we will introduce
the quasi-variational inequality approach10 to solve this type of problem.

Problem formulation

Assume that in the absence of intervention, the uncontrolled process X(t) is given
as the solution of one-dimensional stochastic differential equation of the form:

dX(t) = b (X(t)) dt+ σ (X(t)) dB(t), X(0) = ξ, (2.7)

where B (X(t)) : R −→ R and σ (X(t)) : R −→ R are functions satisfying the usual
conditions for the existence and uniqueness solution of the equation (2.7)11 for every
initial condition ξ ∈ R on some complete probability space (Ω,F ,P) endowed with
the complete filtration {Ft}t≥0,
B(t) stands for one-dimensional Brownian motion defined on the complete filtered
probability space

(
Ω,F , {Ft}t≥0 ,P

)
and ξ denotes a real valued random variable

independent of B(t) with a finite second moment (i.e., E (|ξ|2) <∞).
At chosen intervention times τi the decision-maker can shift the process X(t) to an-
other value X(τi) = X(τ−i )−∆Xi , where X(τ−i ) represents the state of the process
before control is applied and ∆Xi ∈ R denotes the control action at time τi which is
also chosen by the decision-maker. After an action, the process follows its original
dynamics until the decision-maker decides to shift it again.
Now the decision-maker faces the problem of how to select an impulse control strat-
egy S from a set of admissible impulse control strategies Z that solve the following
problem:

min
{(τi,∆Xi),i∈N}∈A

ES
x

(∫ ∞

0

e−ρtf (X(t)) dt+
∞∑
i=1

e−ρτi (K + k|∆Xi|) 1{τi<∞}

)
, (2.8)

where f : R −→ [0,∞) is a continuous function which represents the running cost,
K ∈ (0,∞) denotes the fix cost per intervention,
k ∈ (0,∞) stands for the proportional cost per intervention,

10This is one of the two known standard approaches to solve the stochastic optimal impulse
control problem. The second method is called iterative method where one uses iterative approach
to find a solution from a sequence of optimal stopping which will converge to the solution of impulse
control (see[110]).

11These conditions are the linear growth and the global Lipschitz conditions presented in
the theorem 2.1.1.
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ES
x (.) is the expectation when the process X(t) starts with initial value x and the

strategy S = {(τi,∆Xi) , i ∈ N} is selected by the decision-maker,
ρ is a contant discount rate and hence e−ρt is a discount factor, and
impulse control strategy and a set of admissible impulse control strategies are de-
fined as follows:

Definition 2.2.1. An impulse control strategy S = {(τi,∆Xi), i ∈ N} is a se-
quence of intervention times τi and control actions ∆Xi that obeys the following
conditions:
i) 0 ≤ τi ≤ τi+1 a.s ∀i ∈ N
ii) τi is a stopping time 12 with respect to the filtration Ft := σ {X(s−), s ≤ t} , t ≥ 0
iii) ∆Xi is measurable with respect to Fτi

iV ) X(τi) = X(τ−i )−∆Xi

An impulse control strategy will be called admissible if the following conditions are
fulfilled:
V ) P (limi→∞ τi ≤ T ) = 0 ∀ T ≥ 0.
V i) ES

x

(∫∞
0
e−ρtf (X(t)) dt

)
<∞

V ii) limT→∞ES
x

(
e−ρTX(T )

)
= 0

Definition 2.2.2. The value function V : [0,∞) −→ R associated with the
problem which is described in (2.8) is defined by

V (x) := inf
S∈A

ES
x

(∫ ∞

0

e−ρtf (X(t)) dt+
∞∑
i=1

e−ρτi (K + k|∆Xi|) 1{τi<∞}

)
. (2.9)

Quasi-Variational Inequalities (QVI)

A quasi-variational inequalities approach consists of constructing the value function
V (x) as a solution to the system of inequalities (commonly referred to as quasi-
variational inequalities) whose heuristic derivations will be given below.
In order to find the optimal impulse control strategy and its corresponding value
function V (x), it is necessary to define first the following operator:

Definition 2.2.3. Assume that H is a space of all measurable functions ϕ : R −→
R. We define the intervention operator (or minimum cost operator) M : H −→ H
by
Mϕ(x) := inf∆x∈R [ϕ (x−∆x) +K + k|∆x|] .

Heuristic derivation of the QVI for the problem (2.8)

12A stopping time is defined as follows.
Let (Ω,F ,F = {Ft, t ≥ 0} ,P) be a filtered probability space. A random variable τ : Ω −→ [0,∞] is
called a stopping time if {ω : τ(ω) ≤ t} ⊂ Ft ∀t ≥ 0.
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Now we are interested in M applied to the value function V. In this case, the value
function MV (x) will represent the value of strategy which consists of taking the
best immediate action when starting in x and then following an optimal strategy.
However, due to the fact that the fixed cost K > 0, there are states where an
immediate action is not optimal at all, and therefore we have V (x) < MV (x). V (x)
and MV (x) should be equal at the first time after starting in x when it is optimal
to do an action. Then we have:

V (x) ≤MV (x) for all x ∈ R. (2.10)

In the following we will use the minimum cost operator M to formulate a dynamic
programming principle that will serve us to derive the QVI heuristically.
Let I ∈ R be a continuation region such that τ ∗ = inf {t ≥ 0 : X(t) /∈ I} is optimal
for all x ∈ R where τ ∗ <∞ almost surely.
Fix x ∈ R and let τ be an arbitrary {Ft}-stopping time with τ < ∞ almost surely
and consider the following strategy:
Before time τ there is no intervention. At time τ we intervene and apply the optimal
impulse value at this time and then we proceed optimally afterward.
According to the minimum cost operator M, we know that starting from the state
X(τ−), the cost of our strategy is given by MV (X(τ−)). Also, because no action is
done over [0, τ ] the cost of our strategy on this interval is just ES

x

[∫ τ

0
e−ρuf (X(u)) du

]
.

Thus , because τ is arbitrary, we have

V (x) ≤ ES
x

[∫ τ

0

e−ρuf (X(u)) du+ e−ρuMV
(
X(u−)

)]
,

where the right hand side is the total of our strategy.
Now assume that we use the same strategy above with τ replaced by τ ∗ which is the
first time at which it is optimal to apply the control. Then according to our strat-
egy we are always acting optimally. Thus considering X∗ to be the corresponding
controlled process, we have

MV
(
X∗ (τ ∗−)) = V

(
X∗ (τ ∗−)) . (2.11)

and

V (x) = ES
x

[∫ τ∗

0

e−ρuf (X∗(u)) du+ e−ρτ∗V
(
X∗(τ ∗−)

)]
. (2.12)

Combining (2.11) and (2.12) yield the following dynamic programming principle:

V (x) = inf ES
x

[∫ τ

0

e−ρuf (X(u)) du+ e−ρτMV
(
X(τ−)

)]
. (2.13)

Now let us consider the optimal stopping time τ ∗ for which infimum in (2.13) will
be attained and we additionally suppose that V (x) is sufficiently smooth to apply
Itô’s formula.
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2.2. Stochastic Optimal Control Theory

Under these assumptions, the combination of (2.13) and (2.11), and the application
of Itô’s formula to e−ρuV (X(u)), we can rewrite e−ρuV (X(u−)), yield

V (x) = inf ES
x

[∫ τ

0

e−ρuf (X(u)) du+ e−ρτMV
(
X(τ−)

)]

= ES
x

[
V (x) +

∫ τ∗

0

e−ρu

(
f (X(u))− ρV (X(u)) + V

′
(X(u)) b (X(u))+

1

2
σ2 (X(u))V

′′
(X(u))

)
du

]
+ ES

x

[∫ τ∗

0

e−ρuV
′
(X(u))σ (X(u)) dB(u)

]

≤ ES
x

[
V (x) +

∫ t

0

e−ρu

(
f (X(u))− ρV (X(u)) + V

′
(X(u)) b (X(u))+

1

2
σ2 (X(u))V

′′
(X(u))

)
du

]
+ ES

x

[∫ t

0

e−ρuV
′
(X(u))σ (X(u)) dB(u)

]
,

(2.14)

for a fixed but otherwise arbitrary t > 0.
Assuming that the expectation of the stochastic integral vanishes, substracting V (x)
on both sides of (2.14) and multiplying both sides by 1

t
we get

0 ≤ 1

t
ES

x

[ ∫ t

0

e−ρu
(
f (X(u))− ρV (X(u)) + V

′
(X(u)) b (X(u))

+
1

2
σ2 (X(u))V

′′
(X(u))du

]
.

Applying the mean value theorem for integrals, letting t converge to zero and as-
suming that this limit can be interchanged with the expectation, we have

0 ≤ 1

t
ES

x

[ ∫ t

0

e−ρu
(
f (X(u))− ρV (X(u)) + V

′
(X(u)) b (X(u))

+
1

2
σ2 (X(u))V

′′
(X(u))du

]
= ES

x

[
f (X(0))− ρV (X(0)) + V

′
(X(0)) b (X(0)) +

1

2
σ2 (X(0))V

′′
(X(0))

]
= f(x)− ρV (x) + V

′
(x)b(x) +

1

2
σ2(x)V

′′
(x).
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That is 13:
LV (x) + f(x) ≥ 0 for all x ∈ R, (2.15)

where LV (x) = 1
2
σ2(x)Vxx(x) + b(x)Vx(x)− ρV (x).

If the optimal stopping time τ ∗ would be equal to zero, then it is optimal to intervene
immediately and so

V (x) =MV (x) for any x such that τ ∗ = 0. (2.16)

If τ ∗ > 0, then with the equality that we have in equation (2.14) for τ ∗ and by
following the same calculations used to produce (2.15) we arrive at the following
equation:

LV (x) + f(x) = 0, for any x such that τ ∗ > 0. (2.17)

Hence we have two inequalities given by (2.15) and (2.10) which must hold for all
x ∈ R and in addition, equalities represented by (2.16) and (2.17) imply that both
inequalities can not hold at the same time. This means that we must have

[V (x)−MV (x)] [LV (x) + f(x)] = 0 for all x ∈ R. (2.18)

Definition 2.2.4. The three relations (2.10), (2.15) and (2.18) are called the
Quasi-variational inequalities(QVI) for the problem (2.8) .
Given a continuous solution of the QVI, the following control can be constructed:

Definition 2.2.5. Let V be a continuous solution of the QVI. Then the following
impulse control strategy is called QVI-control:

(i) (τ0,∆X0) := (0, 0).

And for every i ≥ 1,:

(ii) τi := inf {t ≥ τi−1 : V (X(t−)) =MV (X(t−))},

(iii) ∆Xi := arg min∆X

[
V
(
X(τ−i )−∆X

)
+K + k|∆X|

]
.

The theorem below guarantees that given the assumptions (2.19) and (2.20), a
smooth solution of the QVI coincides with the value function and the admissible
control associated with it solves the problem presented in (2.8).

Theorem 2.2.1 (Verification theorem 14): Assume that there exists a solution
V ∗ ∈ C2 (or better: a sufficiently regular solution 15) of QVI to the problem (2.8).

13Derivative appearing in equation (2.15) are only supposed to exist as left hand derivatives.
14This is the version from [87].
15In the proof of this theorem (see Appendix), we will see that the C2 assumption for the solution

V ∗ of the QVI is only required to apply Itô’s formula. But the proof can also go through even
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If V ∗ satisfies the growth conditions

ES
x

[∫ ∞

0

(
e−ρtσ (X(t))V ∗

x (X(t))
)2
dt

]
<∞, (2.19)

and
lim
T→∞

ES
x

[
e−ρTV ∗ (X(T ))

]
= 0 (2.20)

for every X(t) corresponding to an admissible impulse control strategy

S = {(τi,∆Xi)}i∈N ,

then we have V (x) ≥ V ∗(x) for every x ∈ R.
Moreover, if the QVI-control associated with V ∗ is admissible then it is an optimal
impulse control, and for every x ∈ R
V (x) = V ∗(x).
The proof of this theorem is provided in Appendix.

Remark 2.2.1. The solution V ∗ of the QVI splits the real line (R) in two regions:
1. Intervention region IR defined as

IR := {x ∈ R : V ∗(x) =MV ∗(x) and LV ∗(x) + f(x) > 0} .

and

2. Non-intervention region (or continuation region) defined as

NIR := {x ∈ R : V ∗(x) < MV ∗(x) and LV ∗(x) + f(x) = 0} .

Therefore, the solution V ∗ will be in the form of optimal band, say [a, b], with op-
timal restarting points α, β ∈ (a, b) at which the process X should be shifted by
the controller when the process hits the boundaries. This means that the problem
expressed by (2.8) can be reduced to the free boundary problem, where the problem
of searching for the optimal policy boils down to search for the optimal boundaries
of the continuation region and optimal restarting points inside the continuation
region when the process is pushed back into the interval (a, b) after reaching the
boundaries. As shown by Dixit (1991) (see [40]) and Buckley and Korn (1998) (see
[72]) among others, the optimal function V ∗ corresponding to impulse control band
strategy characterized by four parameters −∞ < a < α ≤ β < b < ∞ must satisfy
the continuous pasting conditions (or value matching conditions) and the smooth
pasting conditions which are used to determine unknown boundary and specify the
value function.
The figure 2.2.1 below illustrates such control strategy.

under the weaker assumptions on V ∗ where some generalised versions of Itô’s formula that require
weaker regularity assumptions (see also [86]) can be used.
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Figure 2.2.1: A path of a controlled process and the impulse control band. The
figure shows that the controller intervenes immediately with an intervention size
∆Xi = a− α (resp. ∆Xi = b− β) each time the process hits the boundary a (resp.
b) in order to push it upwards to α (resp. downwards to β).

In this case of free boundary problem, the definition 2.2.1 will be modified as follows:
ii∗) τi is a stopping time with respect to the filtration Ft := σ {X(s−), s ≤ t} , t ≥ 0,
with τi ≤ inf {t ≥ τi−1|X(t) /∈ (a, b)},

iV ∗) X(τi) = X(τ−i )−∆Xi = α1{X(τ−i )=a} + β1{X(τ−i )=b}
.
Further modifications will be done for:
• The operator M (where it is only minimised over such values of ∆X such that
condition iV ∗ above is fulfilled), and
• The definition of the QVI (where the condition V (x) =MV (x) for x ∈ (−∞, a]∪
[b,∞) in (2.10) have to be added and LV (x) + f(x) = 0, ∀x ∈ (a, b)).
Definition 2.2.5 can be adapted according to the modifications done above. With
the modification of QVI-control the verification theorem remains valid. but in this
case V ∗ is only required to be continuous on [a, b] and to be a C2-function on (a, b).
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Remark 2.2.2 (see also [87]) The results obtained above, in particular the verifi-
cation theorem hold also for:
• Multi-dimensional case where the process X is a vector process with dynamics
represented by

dXi(t) = bi (X(t)) dt +
∑k

j=1 σij (X(t)) dBj(t), i = 1, . . . , n, and the operator L in
QVI will be expressed by

LV (x) = 1
2

∑n
i=1

∑n
j=1

∑k
m=1 σim(x)σjm(x)Vxixk

(x) +
∑n

i=1 bi(x)Vxi
(x)− ρV (x).
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Chapter 3
Inflation Modeling

Inflation attracts a lot of attention from both professional economists and media
and general public due to the fact that there are many economic, social and politi-
cal costs of a high and unstable inflation rate. As a consequence, inflation controlling
has become a primary goal of central banks, and various types of inflation linked
products (for example inflation linked bonds and derivatives) have been created to
hedge the effects of inflation. These lead to a need of developing for sophisticated
inflation models which can be used by inflation linked market participants to price
inflation linked products and Monetary policy makers in order to analyze and hence
to control inflation dynamics.

In this chapter we will first briefly discuss two main aspects of inflation, namely, the
meaning and the measurement of inflation.
Furthermore, a review of the literature on inflation modeling will be presented before
discussing the Phillips curve models of the inflation process. Finally, we will give
a detailed derivation of the discrete time new Keynesian Phillips curve and we will
also transform it into its corresponding high frequency, and hence continuous time
versions for the purpose of being able to apply stochastic impulse control techniques
for solving the central bank’s problem presented in Chapter 4.

3.1 Inflation and Deflation

There are numerous accepted definitions of inflation in economic literature (see also
[35]). For instance, as documented by Dwivedi(2010) (see [45]), some economists like
Coulborn (1963) define inflation as a situation of too much money chasing too few
goods. According to the group led by Friedman (1970), inflation is a phenomenon
of continuously rising prices resulting from excess money supply.
Modern economists like Johnson (1970) define inflation as a sustained rise in prices.
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In the opinion of Ackley (1978), inflation means a situation of persistent and appre-
ciate rise in general level or average of prices. Samuelson (1955) regards inflation
as a state of rise in general level of prices. However, economists generally seem to
agree that inflation refers to a persistent and considerable increase in the general
level of prices which causes a decline in the purchasing power per unit of money.
This definition is criticized, saying that a considerable rate of increasing in price
level, which means the rate higher than the desirable rate, is not clear because it
varies from country to country and from time to time. For example, the European
Central bank (ECB) considers an inflation rate below but close to 2% over the
medium term to be a desirable inflation rate (see [54]). According to the South
African Reserve Bank (SARB), an inflation rate between 3 and 6% was a desirable
rate in 2002 and 2003, while in 2004 and 2005, the desirable inflation rate was set
to the range of 3 to 5% (see [90]).
The term deflation refers to a situation in which the inflation rate is below 0. This
is very rarely observed in practice. It can occur, for example, when there is a lack
of aggregate demand in the economy, forcing suppliers to reduce prices in order to
attract customers.
Deflation is also dangerous because, for instance, it can cause a falling in profitability
and ultimately increased unemployment 16. In contrast to the deflation, the state
of shrinking but still positive inflation rate is called the disinflation.

Remark 3.1.1. Any increase in price level in excess of a desirable rate can not
always be taken to be inflationary. The following factors must be considered and
the price rise has to be adjusted accordingly, while deciding on whether the rate of
increase in price level in excess of a desirable rate is really inflationary, especially
when one has to formulate anti-inflationary policies (see [45]).
1. Increase in price level due to change in the composition of GDP in which the
low-price farm products are replaced by the high-price industrial goods,
2. Increase in price level caused by the qualitative change in the products across the
board,
3. Increase in price level due to the change in price indexing system, and
4. Recovery in price after a period of recession.

Measurement of Inflation

A formal definition of inflation says that a (simple) inflation rate πt is the rate of
change in the price index per year expressed in percentages (see [61]) i.e.

πt =
Pt−Pt0

Pt0
,

16More details about the causes and consequences of the deflation can be found in [27].
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where Pt and Pto are the consumer price indexes at the time point t and the time
point (or the base period) t0 respectively.
Therefore, measuring inflation requires the determination of price indexes. The
most widely used price indexes to monitor inflation are the consumer price indexes
(CPIs)17. These indexes are mostly calculated using a fixed-weighted Laspeyres for-
mula which is presented by the following equation: 18

It =
∑n

i=1 Pi,tWi,0∑n
i=1 Pi,0Wi,0

× 100,

where It is the price index at time point t,

Pi,t is the price of the ith item in the basket of goods and services at the time t,
Pi,0 denotes the price of the ith item in the basket of goods and services at the base
period,
Wi,0 represents the quantity of an item i in basket of good and prices at the base
period,
n is the number of items in basket of goods and prices being priced.

3.2 Literature Review on Inflation Models

Approaches for modeling inflation are generally classified into two types (see [17]
P.18) :
Macroeconomic based models which are analytical tools designed to describe and
quantify the impact of macroeconomic variables like the level of exchange rates,
nominal interest rates, output gap, unemployment and money supply in order to
describe the fundamentals that may have an impact on the inflation level. These
models are widely used for example by central banks to generate inflation forecasts.
Another class of models are option pricing based models. These models do not
consider any fundamental impact but rather take the dynamic of inflation for granted
and aim at providing option prices based on the assumed dynamics. These models
play an important role when it comes to the pricing of complex inflation-indexed
products and to determining hedging solutions for them.

17See also [88].
18See also [129] and [69].
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3.2.1 Some macroeconomic based approaches used in infla-
tion modeling literature

Over the years, a considerable number of macroeconomic based models are devel-
oped in order to forecast and to model inflation. Among them, Phillips curves are
popular models used by many central banks in describing and forecasting inflation
(see [112] P.1 and [9] P.112).

For examples: Barkubu (2005) ( see [58]) utilized hybrid new Keynesian Phillips
curve to study the relationship between inflation and the marginal cost both for
United States and Euro area over the period 1975-2003 and they found out that the
hybrid new Keynesian Phillips curve approach fits the data for the United States
and the Euro area.
Kapur (2012) (see [77]) employed expectations-augmented Phillips curve to model
and to forecast inflation in India and discovered that demand factors (like unem-
ployment gap or output gap) and supply factors (like imported inflation or exchange
rate movements) are the main factors of inflation in India.
Ivo Krznar (2011) (see [89]) analyzed the domestic inflation rate in Croatia using
different versions of Phillips curve but as a result from his study, the hybrid new
Keynesian version is better than the others to explain the dynamics of the domestic
inflation rate.
The empirical study done by Hasan (2012) (see [63]) stressed that Phillips curve is
a good tool for inflation modeling in Bangladesh.
Even though Phillips curve is also some times used in sub-saharan Africa,
Durevall (2012) ( see [43]) claimed that the Phillips curve19 approach is inappro-
priate for describing inflation in sub-saharan african countries, whose economy is
mostly are agricultural based. They argued that there is a weak or even no rela-
tionship between unemployment, aggregate demand and wage increases due to the
extensive self- and underemployment, large informal markets and a low degree of
labour-market organization that some times characterize these countries.
Like Durevall, most researchers proposed models based on quantity theory of money
to describe the dynamic of inflation in developing countries in general, and in East
African Community (EAC) in particular (see [76] P.5). Error Correction Model
(ECM) and P ∗ model are two examples of these models. ECM has been employed
for instance by Alain (1999) ([42]) to analyze the dynamic of inflation in Kenya.
Samuel and Ussif (2001) (see [95]) applied ECM to estimate Tanzania’s inflation
rates and Emilio (2001) (see [133]) used ECM model to study dynamics of inflation
in Madagascar in the period 1971-2000.
P ∗ model is used by many researchers for the purpose of analyzing inflation in both
developed and developing countries. Among them, Katrin (1998) (see [153]) studied

19The Phillips Curve argues that an increase in aggregate demand leads to higher employment,
which in turn exerts pressure on wages and then to general price level.
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inflation in the European area using P ∗ model and found that it is an adequate
model to explain inflation on the national level and for the whole European area.
Also Abdul et al. 2005(see [124]) applied this model to determine the leading indi-
cator of inflation in Pakistan.
In the literature, there are other approaches like linear time series, in particular
Auto-regressive Integrated Moving Average model (ARIMA) and Vector Autore-
gressive model, which are utilized for modeling and forecasting inflation rates.
These models have been widely documented in the literature, see e.g. Junttila (2001)
(see [75]) and Samuel et al. 2011 (see [4]) who employed ARIMA to study inflation
process in Finland and Ghana respectively.
Caesar (2006) (see [92]) applied VAR model in forecasting Swiss inflation and Gi-
chondo and Kimenyi (2012) (see [6]) used VAR model to study inflation process in
Rwanda.
In addition to these mentioned approaches for inflation modeling and forecasting,
nonlinear models have been developed. The most common nonlinear models in lit-
erature are Markov-Switching Autoregressive model (MSAR), Smooth Transition
Autoregressive model (STAR) and Threshold Autoregressive model (TAR).
These models may be superior to linear models to explain the behavior of inflation
processes for the reason that there exists a high degree of nonlinearity and the pres-
ence of jumps in correspondence with some crucial dates and historical episodes (see
[7]).
These aspects of inflation comportment have been reported for many countries. For
instance, empirical study done by Shyh-Wei Chen (see [33] P.55) for eleven OECD
countries20 gave the result that inflation rates in these nations are nonlinear series.

3.2.2 Some option pricing based approaches used in infla-
tion modeling literature

The most known model among this model group is the Jarrow Yildrim's 2003 (JY)
model (see [152]) . In this model, under the risk neutral measure assumption, the
real and the nominal rates follow one- factor Gaussian process and the evolution of
the inflation index I(t) (or CPI at time t) is described by the following equation
preserving the macroeconomic concept of Fisher 21 (see [107]).

dI(t)
I(t)

= (Rn(t)−Rr(t)) dt+ σIdWI(t),

20OECD is an Organization for Economic Co-operation and Development. The eleven countries
considered are: Australia, Austria, Belgium, Denmark, Greece, New Zealand, Norway, Portigal,
Spain, Sweden and Switzerland.

21Fisher equation states that the nominal interest rate is the sum of the real interest rate and
the expected inflation (see also [88]).
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where Rn(t) and Rr(t) are nominal and real instantaneous short rates respectively,
WI is the standard Brownian motion and σI is a positive constant.
Korn and Kruse's 2004 paper (see [88] P. 351-367) provided another modeling frame-
work for the evolution of consumer price indexes that is related in some aspect to
the Jarrow and Yildirim's 2003 model. In this paper, a consumer price index is
modeled as a geometric Brownian motion with a drift which is equal to the dif-
ference of the nominal and the real interest rate. These authors also gave other
possible approaches for inflation modeling which are mainly based on the interest
rate modeling. In this approach, the instantaneous inflation rate is modeled as a
stochastic process similarly to the short rate approaches for interest rate modeling
(one example of these approaches is the Hull-White-Model). Additionally, it has
been shown that under some assumptions, the macroeconomic concept of Fisher
can be reflected by such models(we refer the interested reader to [88] and [17] for
details on these approaches used to model inflation process).

3.3 Relationships between Key

Macroeconomic Variables: Phillips Curve Mod-

els

The question ”What is the connection between inflation and unemployment?” is
not new in macroeconomic field. Thomas M. Humphrey in his paper (see[68]) cited
economists who investigated this relationship before the birth of the Phillips curve.
For example in 1752 and 1802, inflation-unemployment trade-off was an essential
component of the monetary doctrines of David Hume and Henry Thornton respec-
tively. In 1926, Irving Fisher introduced the first statistical study of the correlation
between inflation and unemployment, and he found a causality relationship that
runs from inflation to unemployment.
Despite many early efforts, the curve describing the relationship between inflation
and unemployment was born as an empirical regularity documented by the New
Zealand-born economist Alban William Phillips in 1958. In that year A. W. Phillips
published a paper in which he fitted a statistical equation

w = g(U) = −a+ bU−c (3.1)

where, g
′
< 0, g

′′
> 0

or
ln(w + a) = ln(b)− c ln(U) (3.2)

(where w + a, b, U ∈ R+ and a ̸= 0, b and c ̸= 0 are the real parameters) to the
scatter of annual observations on rates of growth of nominal wages (w) and unem-
ployment rates (U) for United Kingdom between 1861 and 1957.
According to his findings, there exists a stable inverse relationship between the rate
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of growth of nominal wages and unemployment rate, and a high non-linearity be-
tween the two (see [68],[16] and [111]). Graphing the above equation in the standard
form with w on the ordinate and U on the abscissa gives the Phillips curve that looks
like the following figure.

Figure 3.1: Original Phillips curve

The point U0 = ( b
a
)
1
c on the graph is an intersection of the Phillips curve and

the abscissa line. This means that when the rate of growth of nominal wages is sta-
ble (i.e., w=0), the Phillips curve intercepts the abscissa line. And the asymptote
(the vertical line which intercepts the abscissa line in point A) means that even if
the rate of growth of nominal wages were to be increased continuously, there is a
threshold below which an unemployment could not fall.
Following the work of Phillips, many other macro-economists have been interested in
investigating if there exists similar relationship in other countries. Most industrial-
ized countries appeared to have a stable Phillips curve over some periods, especially
the 1960s. Like others, Samuelson and Solow estimated the Phillips curve for the
USA in 1960 and came to the conclusion that there is a similar relationship. They
pointed out additionally that the Phillips curve represents not only a relationship
between the rate of growth of nominal wages and unemployment rate, but also the
relationship between inflation and unemployment (see [111] P.20).
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Since then, the trade-off between inflation and unemployment presented by the
Phillips curve was accepted among macro-economists and policymakers and by the
end of 1960s it had become an important part of the Keynesian approach because
it was consistent with the Keynesian thinking (see [67] and [10]). According to
Keynes, it can not be possible to enter into a stagflation period (i.e., a period of
simultaneous occurrence of high inflation and high unemployment). Based on this
understanding, policymakers in 1960s could manage aggregate demand to lower or
increase unemployment at the cost of higher or lower inflation. However, there were
several problems with this view, among them two will be cited in the following (see
[36]):

(i) One of the problems is that the original Phillips curve was essentially a statis-
tical relationship and Phillips gave only a few theoretical explanations of his findings.

(ii) The second problem was a conflict between the traditional presumption in eco-
nomic theory which said that, in long run, the real magnitudes in the economy are
determined by real rather than nominal forces and the view that lower unemploy-
ment could be permanently achieved by accepting higher inflation.

In addition to these two problems, the stagflation that happened in USA in 1970s
contributed to raise doubts about the legitimacy of the original Phillips curve. Con-
sequently, this gave many other macro-economists the opportunity to criticize and
to reformulate the original Phillips curve.
Criticisms, interpretations and extensions of the Phillips curve which have been done
by different groups of macro-economists will be reviewed below.

Monetarist View of Phillips Curve

As we have seen before, the original Phillips curve stands for a stable trade-off
between rate of growth of nominal wages and unemployment rate. This means that
the nominal variable affects the real variable. If this relationship is understood
in this fashion, it seems to be assumed that there is no difference between the
changes in current nominal wages and the changes in expected future real wages,
taking into consideration the forward looking nature of wage contracts (see [59]).
Milton Friedman, the founder of monetarism, was not convinced of the assumption
above. According to him this assumption is valid if it is supposed that“the price
expectations are sticky in the sense that people do not expect the price level to
vary and workers do not resist a decrease in their real wages caused by a high
inflation ”. These two assumptions are far away from the reality. Milton Friedman
and Edmund Phelps agreed with the neoclassical labor market theory which states
that labor markets determine real wages and employment through the interaction
of labor demand and supply.
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According to this theory, neither labor demand nor labor supply are affected by
inflation. This implies that inflation does not also affect unemployment. Briefly
Friedman and Phelps criticized Phillips to not distinguish nominal wages and real
wages and not to take into account the effect of expected inflation in the fixation of
the wages.
Based on the idea that the workers in wage negotiations are interested in the increase
in real wages but not nominal wages, Friedman (1968) and Phelps (1968) modified
the original Phillips curve - illustrated in equation 3.1- by substituting the rate of
growth of nominal wages by the rate of growth of real wages and this yielded the
following equation:

w = g(U) + Πe, (3.3)

where Πe is the expected inflation rate. This equation is called “expectations aug-
mented Phillips curve ”in literature. According to equation (3.3), expected inflation
rate determines the position of the modified Phillips curve, but does not change
its slope. As it will be illustrated in the figure 2, there is a Phillips curve for each
expected inflation rate and the Phillips curve will shift either to the right if expected
inflation increases or to the left if it decreases. As a result, there is an inverse rela-
tionship between inflation and unemployment only in short run as it will be clarified
(in the following). Friedman and Phelps concluded that expectations are formed
adaptively, meaning that workers based their expectations of future inflation on re-
cent past inflation. In this view, an increase in current inflation rate may surprise
workers because they consider expected inflation rate to be equal to the inflation
rate in the last period. This unexpected rise in inflation rate reduces the real wage
of workers, but this occurs for a short time since people would learn about the al-
tered policy stance as time goes by and they would adapt to the situation and would
revise their expectations. This decrease in real wage of workers causes an increase
in the labor demand by firms which leads to the rise in employment rate and thus to
the decline in unemployment rate. Consequently, the rise in inflation makes unem-
ployment rate go down in short run, just as predicted by the original Phillips curve
but here the transmission runs from aggregate demand via unexpected inflation to
unemployment rate, while in the original Phillips curve it runs from aggregate de-
mand via unemployment rate to nominal wages and inflation (see [59] ).
In the long run, expectations augmented Phillips curve implies a disappearance of
negative correlation between inflation and unemployment. In long run the curve
becomes a straight vertical line that intersects the X-axis at the steady state un-
employment rate U0 (This is a Natural Rate of Unemployment NRU according to
Friedman and Phelps) which means that changes in inflation rate do not affect un-
employment rate.
These behaviors of expectations-augmented Phillips curve can be illustrated as in
the figure 3.2 which shows what happens in short and long term when policymakers
adopt either an expansionary or contractionary policy.
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Figure 3.2: Short and Long Term Phillips Curve.

In figure 3.2 above we start at point U0 where inflation is equal to zero. Suppose that
policymakers find unemployment rate at the level of U0 too high to be tolerated and
decide to stimulate aggregate demand by means of expansionary monetary policy22

in order to reduce unemployment from U0 to U1. This policy will cause inflation
rate to rise to π1 and therefore real wages to decline. This fall in real wages causes
firms to increase their demand for labour and consequently unemployment will de-
crease until it reaches U1 (See [44] P.452). As a result the economy moves along
STPC0 from the point (U0, 0) to the point (U1, π1). But it will stay temporarily in
this position for the reason that workers will feel the pinch of decrease in their real
wages and will adapt their inflation expectation according to their past experiences.
And as a result they will negotiate for higher monetary wage rates at the time of
the renewal of the labour contract by considering their expectations so that they
can resist the rise of price. This will lead to an increase in real wages again until
reaching their initial level and unemployment rate U1 will rise to U0. Now economy
is in the new equilibrium point (U0, π1) which corresponds to the point B on the

22Expansionary monetary policy is a set of actions by the monetary policymakers to increase
quantity of money in circulation. They can do this for example by decreasing interest rates, by
lowering reserve requirements for banks etc.
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new curve STPC1. This means that the Phillips curve STPC0 shifts to the curve
STPC1.
If the policymakers try again to reduce the unemployment rate to the targeted level,
they have to adopt the similar policy (here the expansionary monetary policy). In
this case the consequences will be the same as the previous ones in the sense that
the system will move along the curve STPC1 from the point B to the point C and
then from the point C to D after a period of time. This means the curve STPC1

will shift towards the curve STPC2 as shown in figure 3.2.
From these observations, the conclusion is that expansionary policies can not enable
policymakers to reduce the natural rate of unemployment permanently. It leads
only to accelerating inflation, to an upward shift in short-term Phillips curves and
then to the long- run Phillips curve which is a straight vertical line joining here the
points U0, B and D. In other words there is no long-run trade-off between inflation
rates and unemployment rates and the Phillips curve is a vertical line in the long
run.
Point F in the figure 3.2 indicates what happen when policymakers consider infla-
tion rate (for instance π2) to be very high and decide to reduce it by applying an
anti- inflationary monetary policy 23. If such policies are applied, there will result
a decrease in the quantity of money in circulation and consequently unemployment
will rise. This situation is illustrated by the movement from the point D to the point
F along STPC2. This can be interpreted as a period of recession with deceleration
in inflation rate (See [44] P.453).

New Classical View of Phillips Curve

Robert Lucas (the founder of the New Classical School) and his disciples criticized
the way monetarists modeled expectation of inflation which have been incorporated
in original Phillips curve in order to formulate expectations augmented Phillips
curve. In monetarists’view, expectations are formed adaptively, meaning that eco-
nomic agents anticipate inflation rates based on recent past inflation rates and they
learn from their errors. According to them, the workers adjust their inflation ex-
pectations by a fraction of the error made as expressed in the following equation
24:

Πe
t = Πe

t−1 + β
(
Πt−1 − Πe

t−1

)
, (3.4)

Where 0 < β < 1 is a constant,
Πe

t denotes current expectations of future inflation,
Πe

t−1 refers to previous expected inflation,
Πt−1 −Πe

t−1 previous estimation error (which is the deviation between the observed

23Anti-inflationary monetary policy is a set of actions by the monetary policy makers to decrease
the quantity of money in circulation. They can do this for example by increasing interest rates, by
rising reserve requirements for banks etc.

24 See for example [99] and [47].
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and expected inflation).

New classical economists have not accepted this approach of forming expectations,
since it assumes that economic agents only partially adjust their expectations by
a fraction of last errors made and that they neglect additional informations which
are available to them other than past values of inflation rate. According to them,
expectations formed in this manner will contain systematic errors.
As alternative, Robert Lucas, Thomas Sargent and their followers believed that the
only acceptable way to incorporate expectations into macroeconomic models was
to adopt the rational expectations hypothesis, initially proposed by John Muth in
the early 1960s. Models that incorporate rational expectations are called “forward
looking ”models. In such models economic agents use all accessible informations in
order to make the best possible estimate of future inflation.
In the Muthian version also called version of rational expectations, agent’s expecta-
tions of inflations (πe

t ) may be represented by the following equation25:

πe
t = E(πt|Ωt−1), (3.5)

where πt is the actual rate of inflation;
E(πt|Ωt−1) is the rational expectation of the rate of inflation subject to all informa-
tions known before the time t (Ωt−1).
Inflation expectations formed rationally will be correct on average, meaning that
agents can make errors but rationality implies that they avoid systematic errors. If
economic agents over- or underestimate inflation rates, the forecasting errors that
are made are random, have a mean of zero and the lowest variance, and they are not
correlated with the information set available at time when expectations are formed
(See [144] P.227). More formally, the expected rate of inflation (πe

t ) is given by the
equation below:

πe
t = πt + ϵt, (3.6)

where E(ϵt|Ωt−1) := Et−1ϵt = 0, πt denotes actual rate of inflation and ϵt is the
random error term.
Substituting adaptive expectations included in expectations augmented Phillips
curve illustrated in equation (3.3) by rational expectations and assuming that all
markets clear continuously and instantaneously26 via perfectly flexible price, Robert
and others developed the new classical Phillips curve (see[1] and [11]).
New classical economists such as Lucas (1972, 1978) and Mindford (1983) argued
that such Phillips curve is a vertical line about the natural rate of unemployment
not only in the long term but also in the short term (see [143] P.351).
For new classical macro-economists, any fluctuations in unemployment rate coming
from random errors in predicting inflation rates are only caused by unexpected and

25 See [144] P. 226.
26Market clearing means that markets always go to where the quantity supplied equals the

quantity demanded.
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unannounced changes in policy by authorities. But such fluctuations will only occur
in short term as economic agents learn the change in policy and correct immedi-
ately their forecasts of inflation. In this approach, the speed at which inflation rate
changes is higher than that in adaptive expectations method used to predict infla-
tion rate. The reason is that agents wait until the present becomes the past before
changing their expectations because the last ones is based on the past.
The policy implication of new classical Phillips curve is that demand management
policies can not affect unemployment. According to Smith (see [143]) the only poli-
cies that can affect unemployment are micro-economic, supply-side forces which
increase the will and capacity to work and the will and capacity to employ. Ex-
amples of such policy recommendations are27: reducing replacement ratio; cutting
income and profit taxes; improving labour productivity; lowering employment taxes;
removing employment protection legislation and so on.

Closed Economy New Keynesian Phillips Curve(CENKPC)

The assumption of new classical models that all markets (including labour market)
clear continuously and instantaneously and monetary policy ineffectiveness on real
variables like employment and output as one of their implications have not been ac-
cepted by macro-economists who maintained Keynesian beliefs. According to Hicks
(1974), new keynesians, in contrast to new classical macro-economists, argue that
there exist markets which are characterized by rigid prices28, predominantly the
labor market and a large section of the goods markets. These disagreements stimu-
lated incentive of many researchers to build models with coherent micro-foundations
in order to explain why prices and wages do not change fast enough to always clear
markets even in the presence of rational agents. In doing so, they have thought to
re-establish and to justify a case for policy effectiveness where monetary policies can
influence real economic variables at least in short term.
In order to explain the existence of prices and wages rigidity, several contributions
of new keynesians have been done in literature. One of examples is the work that
has been done by Fischer (1977) and Taylor (1979) where they initiated the nomi-
nal contract theory (see[106]). According to Fischer (1977) and Taylor (1979), price
rigidity comes from the fact that a big number of firms does business on the basis
of written nominal contracts for fixed term. Once an individual firm uses this kind
of contract, it is impossible for the price to be adjusted to demand and supply dis-
equilibria during the time of contract. Here the legal economic coercion is the root
cause of the price rigidity. This idea is supported by Blanchard (1983). He argued
that even if firms can rewrite contracts when the current ones mature, all can not

27 See [143].
28Price rigidity is defined as the inability or resistance of firms to adjust instantaneously the

prices of most goods and services in response to underlying cost and demand shocks. Other terms
used in literature to describe price rigidity are price inertia, price stickiness, price inflexibility and
nominal rigidity (see [80], [37] and [12]).
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review their price at the same time and thus some inertia in price level will occur29.
Fischer (see[48]) showed that in the presence of overlapping30 labour contracts which
put an element of stickiness into the nominal wages, monetary policy has an ability
to affect real variables in short term even when the policy is fully anticipated. Fis-
cher considered the world of overlapping labour contracts with each labour contract
being made for two periods in order to explain how wage (or price) rigidity leads
to non-neutrality of monetary policy in short term. Given these types of contracts,
monetary authority can react (for example by supplying money) during the second
period of the contract, in reaction to new information about recent economic shocks.
Because in the second period the nominal wage has already been negotiated and all
wage can not be adjusted at the same time, the changes caused by these reaction are
not matched by one- for -one changes in expected inflation. This leads to changes
in consumption and investment, and resulting in fluctuations in output and employ-
ment. All of these happen only in the short run, since in the long run, all wages
adjust and the economy comes back to its natural equilibrium (see [51]).
Other popular researchers who explained the source of the price rigidity under the
assumption of monopolistic competition31 are Rotemberg (1982) and Calvo (1983).
According to Rotemberg, this rigidity is due to the fact that firms face at any point
in time some convex costs of adjusting their price (See [71], [79], [23], [93] and [56]
). Whereas for Calvo (1983), the price rigidity explanation is based on the idea that
fraction 1−α of firms are able to reset their price to optimize profits in response to
changes in various costs while the remaining fraction α (0 < α < 1) of firms do not
adjust their prices (See for example: [71], [1], [49] and [105]).
Based on theoretical works of Fischer (1977), Taylor (1980), Rotemberg (1982),
Calvo (1983) and others, new keynesians extended new classical Phillips curve by
introducing new aspects such as monopolistic competition and nominal rigidities
to a standard marginal cost-based new Keynesian Phillips curve32 (NKPC) model
which describes inflation dynamics as a function of inflation expectations one period
ahead and current real marginal costs (i.e., real resource costs that firms spend to
produce an extra unit of their good or service) in a closed economy framework.

29(See [106]).
30Overlapping(or staggered ) contracts means that all contracts do not all end at the same time

(see [148]; [31] and [91]).
31Monopolistic competition means that each firm produces a differentiated good for which it sets

the price. Because the products are not exactly the same each supplier has some ability to set the
price for its own product. This assumption is important because price rigidity only make sense in
a context where firms have some monopoly power to allow them to set their prices and therefore to
choose when to change their price. See [130], [154], [127] and [117].

32New Keynesian Phillips curve has been initially proposed by Calvo(1983) (See [94]).
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This model is represented by the following equation33:

πt = βEt(πt+1) + λψt (3.7)

where,
πt is inflation rate at time t,
ψt represents firms real marginal costs expressed as a percentage deviation around
its steady state in period t,
Et(πt+1) consists in rational expectations of inflation rate at time t + 1 formed in
the current time t, that is E(πt+1|Ωt), where Ωt is a set of all informations available
at time t 34 .
0 < β < 1 is the subjective discount factor and λ = (1−α)(1−αβ)

α
(a positive parameter)

is a slope coefficient that depends on parameter α which measures price rigidity and
β.
A detailed derivation of NKPC will be done in the following subsection by applying
calvo’s version 35

The equation(3.7) indicates that inflation rate will tend to rise following the rise in
real marginal costs, as firms pass on higher costs in the form of higher prices, and
when expectations of future inflation rate rise, due to the fact that firms raise their
price today anticipating higher prices in following days. Furthermore, this equation
implies that inflation is a purely forward-looking phenomenon and real marginal
cost is an important driving variable for inflation dynamics. In particular, this can
be emphasized by the following equation obtained when equation (3.7)36 is solved

33This equation can be derived from various versions such as Taylor’s (1980) fixed duration stag-
gered wage-price contract setting, Rotemberg’s (1982) adjustment cost price setting and Calvo’s
(1983) random time dependent price setting (see[1]).

34Conventionally this set contains at least current and past values of the endogenous variable
πt and the real variables (for example output gaps or other measures of real marginal costs) yt,
namely
ρt = (πt, πt−1, ...; yt, yt−1, ...) (see [103]).

35 Calvo's version is chosen because of its simplicity and the similar equations of NKPC emerge
under other models of nominal rigidity like those of Rotemberg(1982) and Taylor (1980) as it has
been demonstrated by Robert(1995) (see for example: [1] and [123]).

36This equation can be derived by using the law of iterated projection, which states that
E(E(Y |X,Z)|X) = E(Y |X) (see [62]), and iterating equation (3.16) forward in the following way:

- Iterating one step forward, we get

πt = βEt(

πt+1︷ ︸︸ ︷
βEt+1(πt+2 + λψt+1)) + λψt. (3.8)

The law of iterated projection implies that Et(Et+1(πt+2)) = Et(πt+2) so that

πt = β2Et(πt+2) + βλEt(ψt+1) + λψt. (3.9)

-Iterating one step forward and once again apply the law of iterated projection, we get

πt = β3Et(πt+3) + β2λEt(ψt+2) + βλEt(ψt+1) + λψt. (3.10)
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forward.

πt = λ
∞∑
i=0

βiEt(ψt+i) (3.12)

The NKPC has become attractive on the theoretical grounds because of its features
that it is derived from optimizing models under rational expectations, its policy im-
plication that monetary policy can affect real economic variables in short term due
to the nominal rigidity assumption and its simplicity. These characteristics have
made the NKPC to be widely applied by many central banks in order to simulate
inflation consequences of alternative monetary policies (see [94], [146], [112] and
[51]).
However, despite its appeal on theoretical side, there is a growing literature on em-
pirical problems of NKPC regarding, for example, the measurement of real marginal
cost and its implications which are at odds with the findings from the study of real
world data.
For one, equation (3.21) implies that shifts in either current or expected future
marginal costs affect immediately current inflation. This makes inflation to be a
jump variable and thus not a persistent37 variable in contrast to the results from
the data38.
An other problem that occurs when it comes to implementing the NKPC empirically
relates to the finding of a proxy for the real marginal cost, since it is not directly
observable from the data. To deal with this issue, most of empirical literature uses
output gap as a proxy for real marginal cost since one can find a correlation be-
tween the two variables under certain conditions, as it is expressed by the following
equation 39 :

ψt = κ(yt − ynt ), (3.13)

where κ is a parameter,
yt is actual output and ynt the natural level of output(or flexible-price equilibrium
output).
Given this proportionality, equation (3.7) can be transformed to the output gap -
based on new Keynesian Phillips curve:

πt = βEt(πt+1) + λ̃(yt − ynt ) (3.14)

Continuing the process, we get πt = λ limk−→∞
∑k

i=0 β
iEt(ψt+i) + limk−→∞ βk+1Et(πt+k+1).

Imposing that limt−→∞ |πt| <∞ holds, we have
limk−→∞ βk+1Et(πt+k+1) = 0 because 0 < β < 1. then we have

πt = λ
∞∑
i=0

βiEt(ψt+i). (3.11)

37Inflation persistence means the tendency of inflation to converge sluggishly towards a targeted
value (see [41]).

38 See for example [151] P.254; [41] and related literature.
39Derivation of relationship between real marginal cost and output gap (see Appendix A of this

work).
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and equation (3.12) becomes:

πt = λ̃
∞∑
i=0

βiEt(yt+i − ynt+i), (3.15)

where λ̃ = λκ.
An other proxy for marginal cost known in literature is for example the labor income
share (or Real unit labor share ). It has been proposed for instance by Lopez-
Salido et al. 2001 (see [55]) after finding that the output gap is a poor measure
of marginal cost when NKPC is estimated for USA and Euro- areas. According to
these authors, under the assumption that the production function follows a Coob-
Dooglas technology, firms take wages as given and there are no labour adjustment
costs, the real marginal cost can be expressed by:

ψt = wt + lt − pt − yt = st,

where wt , lt , pt , st and yt are respectively nominal wage, employment, price level
and value added output in log-deviations from steady state (see for example [15],
[52] and [55]).
From equation (3.15), it is obvious that there is a positive correlation between
inflation and output gap, meaning that as far as a central bank can commit to
stabilizing of output gap, it can achieve price stability. But the reverse is observed
in the data 40

Furthermore, rearranging equation (3.14) in the following way:

πt = βEtπt+1 + λ̃(yt − ynt ) ⇐⇒ Etπt+1 =
1

β
πt −

λ̃

β
(yt − ynt ), (3.16)

so

Etπt+1 − πt =
1

β
πt − πt −

λ̃

β
(yt − ynt )

=
1− β

β
πt −

λ̃

β
(yt − ynt ),

(3.17)

and

(yt − ynt ) =
β

λ̃
[
1− β

β
πt + πt − Etπt+1]

=
β

λ̃
[πt − Etπt+1] +

1− β

λ̃
πt,

(3.18)

40 See for example [55] , [1] and related literatures.
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it is clear from equation (3.18) to conclude that an expected disinflation (i.e πt >
Etπt+1) leads to an output boom which is opposite to the outcomes from the data
41.
Moreover, due to its purely forward-looking aspect, the NKPC does not imply the
hump-shaped property42 of impulse response function 43 for inflation in response to
monetary policy shock that estimated Vector Auto-regressive Models (VAR) char-
acterize 44.
In order to avoid such unrealistic implications many authors suggest that an ad-
ditional lagged inflation term to the NKPC is required 45. In this vein, several
modifications of the NKPC theoretical formulations have been developed to intro-
duce the lagged inflation term in standard new Keynesian Phillips curve 46. The
most popular and widely used model is the modification of the basic Calvo formu-
lation by Gali and Gertler in 1999 (see [52] P.210). According to these authors,
instead of allowing all 1 − α firms ( i.e. a set of firms which are allowed to adjust
their prices) to set prices of their good in a rational manner, a fraction 1−ω of them
set their prices in forward looking manner as before, while the remaining proportion
ω of 1− α firms use a simple backward-looking rule of thumb47 .
Based on this assumption, Gali and Gertler extended the NKPC to the standard
forward- and backward-looking NKPC named as Hybrid New Keynesian Phillips

41 See for example [101] , [57] , [1] and related literature.
42 Hump-shaped property means the gradual rise of inflation after an expansionary monetary

policy or gradual fall of inflation after a contractionary monetary policy.
43 As it has been defined by Mankiw (See [100]), impulse response function is a dynamic path of

some variables (for instance: Inflation) in response to some shock (for example: shock to monetary
policy).

44 See [83], [104], [149] and [46] for detailed discussions.
45See [71], [89], and [81] and related literature.
46Other examples of these modifications are:

• Relative contracting model developed by Jeffrey Fuhrer and George Moore in 2005 as an extension
of Taylor’s (1980) model. They suggested that workers negotiate their real wages with reference to
the real wages that other workers earned in the past. The result was a HNKPC with γf = γb =

1
2

(See [64] P.3).
• An other modification is an extension of Calvo’s formulation introduced in Sbordone, and Smets
and wouter’s papers (See [136] and [142] respectively). They assume that all firms adjust their
price at each period. But only a random proportion of firms can reset their prices rationally (i.e.
in a manner consistent with profit maximization) and the remaining (i.e. firms which are not able
to reoptimize their price) updates last period’s price only by indexing partially to past inflation.
This yields the HNHPC with γf = β

1+kβ and γb = k
1+kβ where k denotes the partial indexation

parameter and β ≤ γf + γb ≤ 1 is the discount factor.
• Christiano, Eichenbaum, and Evans ( See [46]) proposed an other extension of Calvo’s model.
According to these authors, the firms which can not reoptimize their prices updates their last
period’s price simply by indexing to lagged inflation while in model of Sbordone and his partners
as mensioned above, these firms updates their price by indexing partially to the lagged inflation.
This leads to the HNKPC with γf = β

1+β and γb =
1

1+β . For more details about these modifications

see for example [71], [131] and [19].
47According to the simple backward looking rule of thumb, firms adjust prices at time t by first

checking the price from the previous period and correcting it for inflation at time t-1.
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curve (HNKPC) and expressed by the following equation: 48

πt = γfEtπt+1 + γbπt−1 + λψt, (3.19)

where

λ ≡ (1− α)(1− ω)(1− βα)ϕ−1,

γf ≡ βαϕ−1 , γb ≡ ωϕ−1,

with

ϕ ≡ α + ω [1− α (1− β)] .

Open Economy New Keynesian Phillips Curve (OENKPC)

In 1990s the world has experienced a decline in inflation rates in general and a sig-
nificant increase in economic integration (i.e. Globalization49) due to agreements
signed between countries in order to facilitate international trade 50 . This moti-
vated researchers to study the impact of trade openness (T.O) on inflation and to
analyze channels through which T.O can influence inflation dynamic. The results of
several empirical studies suggested that globalization may affect inflation dynamics.
Some examples of these studies about the role of open-economy aspects on inflation
process are:
Romer’s (1993)51, where He found that an increase in openness leads to the disin-
flation. Other empirical studies whose results provide support for Romer’s outcome
have been done for example by Nasser in 2009 52, Chen ,Imbs and Scott in 2004 53,
Gruben and MCleord in 2004 54, Bowdler and Malik in 200555 and Allard in 2007
56 among others. Furthermore, Banerjee and Botini’s (2004)57 studies show that
openness affects real marginal cost and hence inflation. They found that real im-
port prices can play a relevant role in determining inflation in UK, Italy, France and

48 Derivation of HNKPC see for example [55]and [102].
49 Globalization is taken to indicate a process of increasing the connectivity and interdependence

of markets and business by removing restrictions and barriers on exchange of knowledge, products
and commodities across the borders and regions.

50 Examples of agreements can be found in [28] P.15. Important episodes of globalization are
the 1992 single market reform in Europe and the formation of the Euro zone.

51See [128].
52See [134].
53See[70].
54See [60].
55 See [24].
56See [3].
57See [15].
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Australia. They argued that this result may be connected with different exchange
rate dynamics across these countries. Moreover, in order to confirm this findings
they considered an open economy external competitive pressures on imported sub-
stitutable final goods as one of ways through which the openness can affect the
evolution of inflation (since it can vary the equilibrium price markup on marginal
cost which is assumed to be constant and equal to actual markup in the case of
CONKPC) 58. Another is Balakrishnan’s (2002)59 research which also concluded
that movements in real prices of imported materials caused changes in the marginal
cost and thus in inflation.
Taking these considerations into account, researchers found that it is more impor-
tant to build open economy aspects into the NKPC in order to improve the fit of
NKPC models.
In this vein, several authors have done extensions of the CENKPC to the OENKPC
60. These reformulations can be generally classified in two main groups based on
their assumptions and the ways they introduce open economy factors into the basic
closed economy new keynesian phillips curve models ( See [1] P.27).
The first group modifies CENKPC by incorporating imported intermediate inputs
into the production function. This group can be also decomposed into two sub-
groups based on their assumptions. The first part assumes that trade is only done
at the level of intermediate goods 61 whereas for the second, the trade takes place
at the level of the final and intermediate goods 62 .
The second group focuses on the interaction between exchange rate dynamics, price
setting and inflation instead of paying attention to the role of intermediate inputs
used in production. They either suppose that law of one price (LOOP)63 holds and
that there is complete exchange rate pass through or that there are deviations from
LOOP and exchange rate pass through is incomplete 64 . One example of these

58 For other channels through which globalization may affect inflation dynamics see for example
[119], [118] and [137].

59 See [13].
60Leith and Malley (2003) (see [97]), Gali and Monacelli (2005) (see [53]), Balakrishnan and

Lopez-salido (2002) (see [13]), Monacelli (2003) (see [109]), Holmberg (2006) (see [65]), Banerjee
and Batini (2004) (see [15]) and Rumler (2005) (see [132]) are some examples of them.

61 Examples of these models is the model developed by Balakrishnan and Lopez-Salido (2002)
and Holmberg (2006) see [13] and [65] respectively.

62Example of this model is Rumler’s (2005) model (see [132] ).
63According to the LOOP, in an efficient market identical commodities tend to have the same

price heedless of where they are traded. If goods and services obey the LOOP then the exchange
rate should be equivalent to the prices of traded goods and services sold in two or more countries
when measured in the same currency. For instance, if the domestic price of good x is denoted by
p(x) and the foreign currency price of the same good is denoted by p∗(x), then according to to the
LOOP, p(x) = nP ∗(x) where n is the nominal exchange rate between the two countries measured
as the domestic currency price of foreign exchange.

64 Exchange rate pass through is defined as the percentage change in local currency import prices
due to a one percent change in the exchange rate between the importing and exporting countries .
We say complete pass through if local currency import prices change one to one with the exchange.
If it happens that the local currency import prices are totally not sensitive to the exchange rate
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models is that which have been developed by Monacelli in (2003) (See [109]).

3.3.1 Derivation of IS-Curve and New Keynesian Phillips
Curve (NKPC)

In the following we give a detailed (mathematical) derivation of the IS-Curve and
the New Keynesian Phillips Curve65. For this, we first state some assumptions.

Assumptions

• Economy consists of a large number of identical consumer-producer households
indexed by j ∈ [0, 1] (where Households supply labor, they purchase goods for
consumptions and they hold money and bonds) and firms which produce and sell
several differentiated goods (indexed along the unit interval) in monopolicitically
competitive markets,
• Firms set their prices in a staggered way of Calvo (1983),
• Labor is supposed to be the only factor of production and firm’s production
function is assumed to follow the Cobb-Douglas production function:

Cjt = AtNjt with E(At) = 1, (3.20)

where At is a random variable which denotes the economy-wide technology level
(Total Factor Productivity 66) (For simplicity we assume that the returns to scale
technology is constant).
• Households seek to minimize their costs of buying the composite consumption
good ct and to maximize their expected utility,
• The objective of firms is to minimize their costs of production and to maximize
the profits,
•The utility function of households is supposed to follow a constant relative risk
aversion utility function67 of the form:

u

(
Ct, Nt,

Mt

Pt

)
=
C1−σ

t

1− σ
+

m̄

1− b
(
Mt

Pt

)1−b − n̄
N1+η

t

1 + η
, (3.21)

changes then we say that there is zero pass through. Something in between these two cases is called
incomplete exchange rate pass through. (These definitions are referred to [1]).

65References are for example [115] and [85].
66 Total Factor Productivity is a variable which accounts for effects in total output not caused

by traditionally measured inputs. If all inputs are accounted for, then the total factor productivity
can be considered as a measure of an economy’s long-run technological change or technological
dynamism.

67The constant relative risk aversion utility function (CRRA-UF) is defined as

u(C) =

{
1

1−γ c
1−γ , if γ > 0, γ ̸= 1

ln c, if γ = 1
, where the elasticity of substitution between consumption at

any two points in time is constant and equal to 1
γ . see [22] p.44.
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where Ct, Nt and
Mt

Pt
are consumption level, labor and real money holdings respec-

tively,
m̄ and n̄ are positive real numbers,
σ(̸= 1) > 0 is the degree of relative risk aversion and 1

σ
the elasticity of intertempo-

ral substitution,
η denotes the inverse of the elasticity of labor supply regarding output
and b ̸= 1 is the elasticity of money demand.
• The composite consumption good Ct (the sum of consumption of all goods j) is
defined by the constant elasticity of substitution (CES) of Dixit and Stiglitz68:

Ct =

[∫ 1

0

C
θ−1
θ

jt dj

] θ
θ−1

, (3.22)

where Cjt denotes differentiated goods produced by firms j,
θ ̸= 1 gives price elasticity of demand (which measures the responsiveness of demand
after a change in price) for individual goods.

Household’s Optimization Problems:

a) A cost minimization problem can be written mathematically as:

minCjt

∫ 1

0
PjtCjtdj

s.t
[∫ 1

0
C

θ−1
θ

jt dj
] θ

θ−1

≥ Ct,

where Pjt denotes prices of the individual goods.

b) Expected utility maximization problem defined as:

maxCt,Mt,Nt,Bt Et

∑∞
l=0 β

l

[
C1−σ

t+l

1−σ
+ m̄

1−b
(Mt+l

Pt+l
)1−b − n̄

N1+η
t+l

1+η

]
,

subject to the following household's period-by-period budget constraint:

Ct +
Mt

Pt
+ Bt

Pt
= (Wt

Pt
)Nt +

Mt−1

Pt
+ (1 + it−1)

(
Bt−1

Pt

)
+ Tt,

where Bt, and Tt are one period bonds and real profits paid by firms respectively,
Wt

Pt
denotes real labor income,

Bt

Pt
is the real financial investments (bond purchases), βl represents a discount factor,

and (1 + it−1)
Bt−1

Pt
represents the nominal interest gained from bond holdings from

68 See [138] .
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the previous period.

After formulating the optimization problems, we are now going to solve them using
the Lagrangian method. Solving for Lagrange multiplier, we get the aggregate
consumption price index.
Lagrangian function for the problem a reads:

L :=

∫ 1

0

PjtCjtdj −Ψt

([∫ 1

0

C
θ−1
θ

jt dj

] θ
θ−1

− Ct

)
, (3.23)

where Ψt is the Lagrange multiplier.
Taking the first order condition (FCO) for Cjt we get:

∂L
∂Cjt

≡ Pjt −Ψt
θ

θ − 1

[∫ 1

0

C
θ−1
θ

jt dj

] θ
θ−1

−1

︸ ︷︷ ︸
Outer derivative

[
θ − 1

θ
C

θ−1
θ

−1

jt

]
︸ ︷︷ ︸
Inner derivative

= 0. (3.24)

This implies that:

Pjt = ΨtC
− 1

θ
jt

[∫ 1

0

C
θ−1
θ

jt dj

] 1
θ−1

︸ ︷︷ ︸
C

1
θ
t

⇔ Pjt = ΨtC
− 1

θ
jt C

1
θ
t ⇔ Cjt = Ct

(
Pjt

Ψt

)−θ

. (3.25)

Substituting equation(3.25) in equation (3.22) we get:

Ct =


∫ 1

0

[
Ct

(
Pjt

Ψt

)−θ
] θ−1

θ

dj


θ

θ−1

= Ct

(
1

Ψt

)−θ (∫ 1

0

P 1−θ
jt dj

) θ
θ−1

. (3.26)

This implies that:(
1

Ψt

)−θ (∫ 1

0

P 1−θ
jt dj

) θ
θ−1

= 1 ⇔ Ψt =

(∫ 1

0

P 1−θ
jt dj

) 1
1−θ

. (3.27)

The Lagrangian multiplier Ψt gives aggregate consumption price index Pt which is
described by the following equation:

Pt :=

(∫ 1

0

P 1−θ
jt dj

) 1
1−θ

. (3.28)

Substituting Ψt [in equation(3.25)] by Pt we get the demand function for good j in
the following form:

Cjt = Ct

(
Pjt

Pt

)−θ

. (3.29)
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From the equation (3.29), it is clear that when household knows prices and has made
a decision on Ct, it also knows the quantity of good j to consume. Furthermore as
θ −→ ∞ the individual goods become closer substitutes and consequently the market
power of individual firms decreases.
By solving the Problem b (also by means of Lagrangian method) one gets the relation
(Euler equation) which determine an optimal decision on Ct.
The Lagrangian function for b is:

L : = Et

∞∑
l=0

βl

{[
C1−σ

t+l

1− σ
+

m̄

1− b

(
Mt+l

Pt+l

)1−b

− n̄
N1+η

t+l

1 + η

]
−

Λt+l

(
Ct+l +

Mt+l

Pt+l

+
Bt+l

Pt+l

− Wt+l

Pt+l

Nt+l −
Mt−1+l

Pt+l

− (1 + it−1+l)
Bt−1+l

Pt+l

− Tt+l

)}
.

First order conditions give:

∂L
∂Ct

=
(1− σ)C−σ

t

(1− σ)
− Λt = 0 ⇐⇒ Λt =

1

Cσ
t

, (3.30)

∂L
∂Ct+1

=
(1− σ)βEt

(
C−σ

t+1

)
(1− σ)

− βΛt+1 = 0 ⇐⇒ Λt+1 = Et

(
C−σ

t+1

)
, (3.31)

∂L
∂Mt

=
(1− b)m̄

(1− b)

1

Pt

(
Mt

Pt

)−b

− Λt
1

Pt

− βEt

(
−Λt+1

1

Pt+1

)
= 0, (3.32)

∂L
∂Nt

=
(1 + η)n̄Nη

t

(1 + η)
− Λt

Wt

Pt

= 0, (3.33)

and
∂L
∂Bt

= −Λt
1

Pt

+ βEt

(
Λt+1(1 + it)

1

Pt+1

)
= 0. (3.34)

Using (3.30) and (3.31) in (3.34) gives:

− 1

Cσ
t

1

Pt

+ βEt

(
1

EtCσ
t+1

(1 + it)
1

Pt+1

)
= 0 ⇔ C−σ

t

Pt

1

1 + it
= βEt

(
C−σ

t+1

Pt+1

)
. (3.35)

Equation (3.35) is the Euler equation for the intertemporal allocation of consumption
which will be log-linearized in order to determine Ct.
Combining equation(3.35) with (3.30) and (3.32), it follows that:

m̄
1

Pt

(
Mt

Pt

)−b

− C−σ
t

1

Pt

+
C−σ

t

Pt

1

1 + it
= 0. (3.36)

Rearranging this yields:

m̄

(
Mt

Pt

)−b

=
it

1 + it
. (3.37)
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This is an equation of an optimal money holdings 69.
Substituting (3.30) in (3.33) gives

n̄Nη
t − C−σ

t

Wt

Pt

= 0 ⇔ n̄Nη
t

C−σ
t

=
Wt

Pt

. (3.38)

The relationship which is expressed by the equation (3.38) describes the optimal
labor supply 70

Log-linearization of Euler Equation

Log-linearization is an approximation technique used to convert a non-linear equa-
tion into an equation which is linear in terms of the log-deviations of the associated
variables from their steady state values. The log-linearization of non-linear functions
is commonly done by applying the first order Taylor approximation. According to
Taylor’s formula
(see for example [84] p.16), the first order Taylor expansion of a function of n real
variables f (x1, x2, . . . , xn), which is differentiable at point X = (x1, x2, . . . , xn),
around the point X0 = (x0,1, x0,2, . . . , x0,n) is given by:

f(X) = f(X0)+
∑n

i=1
∂f(X0)
∂xi

(xi − x0,i)+o (R), where o denotes the Landau symbol,

and R =
√∑n

i=1 (xi − x0,i)
2 is the approximation error term for which

limR→0
o(R)
R

= 0 (i.e. o (R) approaches 0 faster than R.). By omitting the error term,

f(X0)+
∑n

i=1
∂f(X0)
∂xi

(xi − x0,i) will be the linear approximation of the function f(x).

Now, let us first define πt+1 and ρ̄ as follows :
πt+1 :=

Pt+1−Pt

Pt
and

ρ̄ := ln β.
Noting that for small it and

Pt+1−Pt

Pt
, ln (1 + it) can be linearly approximated by it,

the linear approximation of ln
(
1 + Pt+1−Pt

Pt

)
= ln

(
Pt+1

Pt

)
= lnPt+1−lnPt =: pt+1−pt

is Pt+1−Pt

Pt
=: πt+1, and considering all mentioned above, the equation (3.35) can be

written as:

1
x=eln x

= Et

[
eρ̄+it−σ(ct+1−ct)−πt+1

]
. (3.39)

From equation(3.39) we can determine the value of ρ̄ in the steady state 71 as follows:

0 = ρ̄+ i− π ⇔ ρ̄ = π − i. (3.40)

69This means that the intratemporal optimality condition setting the marginal rate of substitution
between money and consumption is equal to the opportunity cost of holding money.

70Equation (3.38) shows that the intratemporal optimality condition setting the marginal rate of
substitution between leisure and consumption is equal to the real wage.

71A steady state is a situation in which endogenous variables do not change anymore.
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Applying the first order Taylor approximation on the right side of the equation
(3.39) we have:

1 = Et

e(
ρ̄︷ ︸︸ ︷

π − i)+i−π︸ ︷︷ ︸
1

+1.(it − i)− 1.σ(ct+1 − c) + 1.σ(ct − c)− 1(πt+1 − π)


(3.41)

⇕

0 = −i+ π︸ ︷︷ ︸
ρ̄

+it + σct − σEtct+1 − Etπt+1 (3.42)

⇕

ct = Etct+1 −
1

σ
(it − Etπt+1 − ρ̄) . (3.43)

Assuming that ct = yt
72 it is possible to write:

yt = Etyt+1 −
1

σ
(it − Etπt+1 − ρ̄) . (3.44)

The actual output can be different from the natural output due to the assumption
of the nominal rigidities [Calvo’s (1983)] and the monopolistic competition in this
model. Hence, the output gap ỹt has the following form:
ỹt = yt − ynt .
Considering the Fisher’s equation which states that real interest rate rt is equal to
the nominal interest rate it minus expected inflation rate Etπt+1 we have:

ỹt = Etỹt+1 −
1

σ
(it − Etπt+1 − rnt ) . (3.45)

where rnt denotes the real natural interest rate.

Firm’s Optimization Problems

1) Cost (of productions) minimization problem described by the following equation:

minNt

(
Wt

Pt

)
Nt s.t Cjt = AtNt. (3.46)

This can be solved by means of Lagrangian method as it has been done before.
Lagrangian function L is given by:

L :=

(
Wt

Pt

Nt

)
+Ψt (Cjt − AtNjt) . (3.47)

72 In case ct ̸= yt one can add the other aggregate demand components a an additional shock,
called demand shock.
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First order condition yields:

Wt

Pt

−ΨtAt = 0 ⇔ Ψt =
Wt/Pt

At

, (3.48)

where Ψt in this case represents firm’s real marginal costs 73.

2) Firm’ profit maximization problem expressed by the following representation:

maxPjt
Et


∞∑
l=0

αl

discountfactor︷ ︸︸ ︷
∆l,t+l


real revenues (assuming that no price change happened)︷ ︸︸ ︷

Pjt

Pt+l

Cjt+l −
real production cost︷ ︸︸ ︷

Ψt+lCjt+l




(3.49)

s.t Cjt =

(
Pjt

Pt

)−θ

Ct, (3.50)

and the assumption of Calvo’ s pricing 74 where ∆l,t+l = βl
(

Ct+l

Ct

)−σ

(because firms

must consider the furure demand when they set prices) and α denotes a measure of
rigidity.
Substituting equation (3.50) in Equation (3.49) we come to the following expression:

maxPjt
Et

{
∞∑
l=0

αl∆l,t+l

[
Pjt

Pt+l

(
Pjt

Pt+l

)−θ

Ct+l −Ψt+l

(
Pjt

Pt+l

)−θ

Ct+l

]}
(3.51)

⇕

maxPjt
Et

{
∞∑
l=0

αl∆l,t+l

[(
Pjt

Pt+l

)1−θ

−Ψt+l

(
Pjt

Pt+l

)−θ
]
Ct+l

}
. (3.52)

Here the price Pjt is assumed to be not changed to Pjt+l because firms choose their
price in the period t expecting that they are not allowed to change this price in
future periods.
For Pjt := P ∗

t the first order condition gives:

Et

{
∞∑
l=0

αl∆l,t+l

[
(1− θ)

1

Pt+l

(
P ∗
t

Pt+l

)−θ

+ θΨt+l
1

Pt+l

(
P ∗
t

Pt+l

)−θ−1
]
Ct+l

}
= 0

(3.53)

⇕
73 Equation (3.48) means that the firm’s marginal costs in a flexible price equilibrium is equal to

the ratio of real wage and marginal product of labor At.
74 See the page 33 of this work.
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Et

{
∞∑
l=0

αl∆l,t+l

[
(1− θ)

1

Pt+l

+ θΨt+l
1

Pt+l

(
P ∗
t

Pt+l

)−1
](

P ∗
t

Pt+l

)−θ

Ct+l

}
= 0 (3.54)

⇕

Et


∞∑
l=0

αl∆l,t+l

(1− θ)
P ∗
t

Pt+l

+ θΨt+l

1︷ ︸︸ ︷
1

Pt+l

(
1

Pt+l

)−1


(

1

P ∗
t

)(
P ∗
t

Pt+l

)−θ

Ct+l

 = 0

(3.55)

⇕

Et

{
∞∑
l=0

αl∆l,t+l

[
(1− θ)

P ∗
t

Pt+l

+ θΨt+l

](
1

P ∗
t

)(
P ∗
t

Pt+l

)−θ

Ct+l

}
= 0. (3.56)

Substituting the value of ∆l,t+l in equation (3.56) yields:

Et

{
∞∑
l=0

αlβl

(
Ct+l

Ct

)−σ

Ct+l

[
(1− θ)

P ∗
t

Pt+l

+ θΨt+l

](
1

P ∗
t

)(
P ∗
t

Pt+l

)−θ
}

= 0 (3.57)

⇕

Et

∞∑
l=0

αlβl

(
Ct+l

Ct

)−σ

Ct+l(θ − 1)
P ∗
t

Pt+l

(
1

P ∗
t

)(
P ∗
t

Pt+l

)−θ

= θEt

∞∑
l=0

αlβl

(
Ct+l

Ct

)−σ

Ct+lΨt+l

(
1

P ∗
t

)(
P ∗
t

Pt+l

)−θ

⇕

(θ − 1)
1

C−σ
t

(P ∗
t )

−θ Et

∞∑
l=0

αlβlC1−σ
t+l

1

Pt+l

(
1

Pt+l

)−θ

= θ
1

C−σ
t

(P ∗
t )

−1−θ Et

∞∑
l=0

αlβlC1−σ
t+l Ψt+l

(
1

Pt+l

)−θ
(3.58)

⇕

1

Pt

(P ∗
t )

−θ

(P ∗
t )

−1−θ
=

θ

θ − 1

Et

∑∞
l=0 α

lβlC1−σ
t+l Ψt+lP

θ
t+l

Et

∑∞
l=0 α

lβlC1−σ
t+l P

θ−1
t+l

1

Pt

(3.59)
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⇕

P ∗
t

Pt

=
θ

θ − 1

Et

∑∞
l=0 α

lβlC1−σ
t+l Ψt+lP

θ
t+l

Et

∑∞
l=0 α

lβlC1−σ
t+l P

θ−1
t+l Pt

P θ−1
t

P θ−1
t

. (3.60)

This implies that:

P ∗
t

Pt

=
θ

θ − 1

Et

∑∞
l=0 α

lβlC1−σ
t+l Ψt+l

(
Pt+l

Pt

)θ
Et

∑∞
l=0 α

lβlC1−σ
t+l

(
Pt+l

Pt

)θ−1
. (3.61)

Equation (3.61) represents the price setting rule for firms facing sticky prices.

Considering the case where the measure of regidity α is equal to zero, we can derive
the relation which describes the natural output (also called flexible price equilibrium
output). In this case the problem 2 collapses to a one period problem and the
equation (3.61) becomes:

P ∗
t

Pt

=
θ

θ − 1

β0C1−σ
t Ψt

(
Pt

Pt

)θ
β0C1−σ

t

(
Pt

Pt

)θ−1
=

θ

θ − 1
Ψt = µΨt, (3.62)

where µ denotes mark-up.
Knowing that under flexible prices all firms set the same price (i.e P ∗

t = Pt and thus
Ψt =

1
µ
) and combining this with the equation (3.48) we get:

Wt/Pt

At

=
1

µ
⇔ Wt

Pt

=
At

µ
. (3.63)

Substituting the equation (3.38) in equation (3.63) we come to the following relation:

n̄Nη
t

C−σ
t

=
At

µ
⇔ 1 =

µn̄Nη
t

AtC
−σ
t

. (3.64)

This equation shows that in a flexible price equilibrium a marginal rate of substitu-
tion between leisure and consumption is equal to the ratio of marginal product and
mark-up.

Log-linearization of the Equation (3.64)

Following the same procedure as before, we have:

1 =
µn̄Nη

t

AtC
−σ
t

⇔ 1 = elnµ+ln n̄+η lnNt−lnAt+σ lnCt︸ ︷︷ ︸
V

. (3.65)
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From equation (3.65), in the steady state ln n̄ = − lnµ− η lnN + lnA− σ lnC, and
then the right hand side of equation (3.65) is equal to one in the steady state.

As ∂V
∂Nt

= η 1
Nt
V , ∂V

∂At
= − 1

At
V and ∂V

∂Ct
= σ 1

Ct
V , the application of the first order

Taylor approximation around the steady state yields:

1 = e0 + η
1

N
e0(Nt −N)− 1

A
e0(At − A) + σ

1

C
e0(Ct − C). (3.66)

This implies that:

At − A

A︸ ︷︷ ︸
:=at

= η
Nt −N

N︸ ︷︷ ︸
:=nt

+σ
Ct − C

C︸ ︷︷ ︸
:=ct

⇔ at = ηnt + σct. (3.67)

The production function (Cjt = AtNjt) can also be approximated in the same way
and we get the following relation in flexible price equilibrium:

cnt = nn
t + ant ⇔ nn

t = cnt − ant . (3.68)

Noting that the natural output ynt is equal to the consumption cnt and considering
the relations expressed by the equations (3.67) and (3.68), the following relation
holds:

η(ynt − ant ) + σynt = ant ⇔ (η + σ)ynt = (1 + η)ant . (3.69)

Consequently, the output ynt is described by:

ynt =
1 + η

η + σ
ant . (3.70)

Consideration of sticky price (i.e., α > 0)

From the equation (3.28) we can define the price index in period t as follows 74:

Pt =

∫ 1−α

0

(
P ∗
jt

)1−θ
dj +

∫ 1

1−α

(Pjt−1)
1−θ︸ ︷︷ ︸

Price of non-adjusting firms in t

dj


1

1−θ

. (3.71)

Considering that non-adjusters were randomly selected (and hence Pjt−1 = Pt−1 on
average) and calculating this integral we get the average price for all firms in t:

P 1−θ
t = (1− α)

(
P ∗
jt

)1−θ
+
[
(Pt−1)

1−θ (1)− (Pt−1)
1−θ (1− α)

]
(3.72)

74Note that in equation (3.71) prices of adjusting firms in period t are all identical due to the
assumption of identical producers.
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⇕

P 1−θ
t = (1− α)

(
P ∗
jt

)1−θ
+ α (Pt−1)

1−θ (3.73)

⇕

1 =

[
(1− α)

(
P ∗
t

Pt

)1−θ

+ α

(
Pt−1

Pt

)1−θ
]
= e

ln

(
(1−α)

(
P∗
t

Pt

)1−θ

+α
(

Pt−1
Pt

)1−θ
)
. (3.74)

Log-linearization of the Equation (3.74)

Due to the fact that θ is not equal to one, as it has already been assumed, it is clear
from the equation (3.74) that the ratio of P ∗

t and Pt is equal to one in the steady
state.
Applying first order Taylor approximation around the steady state on the equation

1 = e
ln

(
(1−α)

(
P∗
t

Pt

)1−θ

+α
(

Pt−1
Pt

)1−θ
)
, (3.75)

we get:

(1− θ)(1− α)
Qt −Q

Q
= (1− θ)α

(
Pt

Pt−1

− 1

)
⇒ qt =

α

1− α
πt, (3.76)

where
P ∗
t

Pt
:= Qt.

Log-linearization of the Equation (3.61)

P ∗
t

Pt

=
θ

θ − 1

Et

∑∞
l=0 α

lβlC1−σ
t+l Ψt+l

(
Pt+l

Pt

)θ
Et

∑∞
l=0 α

lβlC1−σ
t+l

(
Pt+l

Pt

)θ−1
(3.77)

⇕

0 = Qt

[
Et

∞∑
l=0

αlβlC1−σ
t+l

(
Pt+l

Pt

)θ−1
]

︸ ︷︷ ︸
I

−µ

[
Et

∞∑
l=0

αlβlC1−σ
t+l Ψt+l

(
Pt+l

Pt

)θ
]

︸ ︷︷ ︸
II

. (3.78)
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Using the first order Taylor approximation as before and considering that Qt = Q =
1 in the steady state, the log-linearization of the equation (3.78) can be done as
follows 75:

I = Et

∞∑
l=0

αlβlC1−σ + Et

∞∑
l=0

αlβlC1−σqt + Et

∞∑
l=0

αlβl(1− σ)C−σCct+l

+ Et

∞∑
l=0

αlβlC1−σ(θ − 1)pt+l − Et

∞∑
l=0

αlβlC1−σ(θ − 1)pt

=
∞∑
l=0

αlβlC1−σ + Et

∞∑
l=0

αlβlC1−σqt − Et

∞∑
l=0

αlβlC1−σ(θ − 1)pt

+ Et

∞∑
l=0

αlβlC1−σ(θ − 1)pt+l + Et

∞∑
l=0

αlβl(1− σ)C1−σct+l

= C1−σEt

∞∑
l=0

αlβl [1 + qt − (θ − 1)pt + (θ − 1)pt+l + (1− σ)ct+l] .

(3.79)

II = Et

∞∑
l=0

αlβlC1−σΨ+ Et

∞∑
l=0

αlβl(1− σ)ΨC−σCct+l + Et

∞∑
l=0

αlβlC1−σΨψt+l

+ Et

∞∑
l=0

αlβlC1−σΨθpt+l − Et

∞∑
l=0

αlβlC1−σΨθpt

= C1−σΨEt

∞∑
l=0

αlβl [1− θpt + θpt+l + ψt+l + (1− σ)ct+l] .

(3.80)
Substituting I and II in the equation (3.78) , we have:

0 = Et

∞∑
l=0

αlβl [1 + qt − (θ − 1)pt + (θ − 1)pt+l + (1− σ)ct+l]

−ΨEt

∞∑
l=0

αlβl [1− θpt + θpt+l + ψt+l + (1− σ)ct+l] .

(3.81)

75Note that there will not be change in our result if the constant µ is ignored by doing approxi-
mation.
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Noting that |αβ| < 1 (and hence
∑∞

l=0 α
lβl is a geometric series which converges to

the value 1
1−αβ

) the equation (3.81) becomes:

0 =
1

1− αβ
+

1

1− αβ
qt +

∞∑
l=0

αlβl [(θ − 1) (Etpt+l − pt) + (1− σ)Etct+l]

−Ψ

{
1

1− αβ
+

∞∑
l=0

αlβl [θ (Etpt+l − pt) + Etψt+l + (1− σ)Etct+l]

}
.

(3.82)

In approximation the constant Ψ and can be suppressed and we have:

0 =
1

1− αβ
qt +

∞∑
l=0

αlβl [(θ − 1) (Etpt+l − pt) + (1− σ)Etct+l]

−
∞∑
l=0

αlβl [θ (Etpt+l − pt) + Etψt+l + (1− σ)Etct+l]

(3.83)

⇕

1

1− αβ
qt +

∞∑
l=0

αlβl [θ (Etpt+l − pt)− (Etpt+l − pt) + (1− σ)Etct+l]

=
∞∑
l=0

αlβl [θ (Etpt+l − pt) + Etψt+l + (1− σ)Etct+l]

(3.84)

⇕

1

1− αβ
qt +

∞∑
l=0

αlβl(−1) (Etpt+l − pt) =
∞∑
l=0

αlβlEtψt+l (3.85)

⇕

1

1− αβ
(qt + pt) =

∞∑
l=0

αlβlEtpt+l +
∞∑
l=0

αlβlEtψt+l (3.86)

⇕

(qt + pt) = (1− αβ)

(
∞∑
l=0

αlβlEtpt+l +
∞∑
l=0

αlβlEtψt+l

)
. (3.87)

Note that since Qt :=
P ∗
t

Pt
, P ∗

t = QtPt holds and consequently we have:

p∗t = qt + pt. (3.88)
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In addition, the equation (3.87) can be written in a two period framework, where
quadratic terms are ignored. This yields:

pt + qt = (1− αβ) (ψt + pt) + αβ (Etqt+1 + Etpt+1) (3.89)

⇕

qt = (1− αβ)ψt + αβ (Etqt+1 + Etpt+1 − pt)

= (1− αβ)ψt + αβ (Etqt+1 + Etπt+1) .

(3.90)

Substituting equation (3.76) in equation (3.90) we get:

α

1− α
πt = (1− αβ)ψt + αβ

(
α

1− α
Etπt+1 + Etπt+1

)

= (1− αβ)ψt +
α2β

1− α
Etπt+1 + αβ

1− α

1− α
Etπt+1

= (1− αβ)ψt +
αβ

1− α
Etπt+1

(3.91)

⇕

πt = βEtπt+1 +
(1− α)(1− αβ)

α
ψt. (3.92)

This equation is the standard New Keynesian Phillips Curve in closed economy
framework. Note that, according to the theoretical derivation of the NKPC proposed
by Rotemberg (1982) and Calvo (1983) , no error term tacked onto the NKPC
equation. However, in much of literature, researchers add a stochastic error term to
the equation of NKPC. They argue that the error term may capture for example:
approximation errors which can result from linearization of the theoretical model,
measurement errors or shocks to desired markups (see [1] and [19]).

New Keynesian Phillips Curve in terms of output gap

First note that, under the assumption of a flexible price, the following equations
hold : 76

P ∗
t

Pt
= µΨt,

Wt

Pt
= At

µ
=

n̄Nη
t

C−σ
t

and Wt/Pt

At
= Ψt.

Considering their log-linearization, we have:
wt − pt = ηntσyt ,

76See equations 3.62, 3.63, 3.38 and 3.48.
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πt = (wt − pt)− at, and from the production function
yt = nt + at.
Combining these we get:

πt = ηnt + σyt − (yt − nt) (3.93)

⇕

ψt = [η(yt − at) + σyt]− (yt − yt + at)

= ηyt − ηat + σyt − at

= (η + σ)yt − (1 + η)at

= (η + σ)

[
yt −

1 + η

η + σ
at

]
.

(3.94)

Substituting equation (3.70) in equation (3.94) yields:

ψt = (η + σ) (yt − ynt ) . (3.95)

Substituting equation (3.95) in equation (3.92) we get the New Keynesian Phillips
Curve in terms of output gap described by the following equation:

πt = βEtπt+1 +
(1− α)(1− αβ)(η + σ)

α
ỹt, (3.96)

where ỹt := yt − ynt is the output gap.

3.3.2 Continuous time analogue of the New Keynesian Phillips
Curve (NKPC)

New Keynesian Phillips curve models are developed in many literatures in discrete
time. In this framework it is mostly assumed that their underlying period length is
a quarter. Moreover one supposes that agents make decisions discontinuously and
all transactions of certain class take place in the same synchronized rhythm. But
in this section we will derive the continuous time version of the NKPC in order to
make the model technology accessible for optimal control methods 77. To obtain
a continuous time form of the NKPC we first transform it into its high-frequency
equivalent by referring to the works done by Sacht (see [135]), and Franke and Sacht

77In a discrete time framework inflation rates are observed at fixed intervals of time (t) and
they do not change between these observation points whereas in continuous time inflation can be
measured at any time t and they can take different values at any time.
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(see [50]). By calculating the limit of this high-frequency version of the NKPC as
the length of period (defined as 0 < h = 1

f
< 1 , where f represents the frequency

of decision making) shrinks to zero, we will find that it converges to a well-defined
continuous time formulation of the New Keynesian Phillips curve model.

High-Frequency Version of the New Keynesian Phillips Curve (NKPC)

The high-frequency economy version of NKPC (denoted as h-economy NKPC) is
defined as a model version with a shorter period length than that in its original
formulation. In other words, an h-economy NKPC is constituted by a period of
length 0 < h = 1

f
< 1 78, if the period of the benchmark model is considered as

the time unit which is fixed. A h-economy NKPC can be achieved by adapting the
frequency-dependent parameters and variables of the NKPC to the period length h.
Impact of this transformation on dynamic properties of the NKPC in quarterly mag-
nitudes has been investigated by Franke and Sacht (2010) ( See [50]). By comparing
the Impulse-Response Functions (IRFs) based on different values of h they found
that there are in general qualitative and quantitative dissimilarities between those
IRFs. But by checking the limiting behavior of h-economy NKPC as the frequency
of decisions tends to infinity (i.e h −→ 0) they showed that in limit as h shrinks to
zero, one must arrive at a well defined continuous time formulation of NKPC. This
result emphasizes the conventional procedure to convert a discrete time model to its
continuous time version which is applied since the works done for example by Foley
(1975) and May (1970) on the relation between continuous time and discrete time
models (See [14] p.2). According to this procedure, one resizes all the key equations
describing the economy along any sub-interval [t, t+ h] and lets the period length h
shrinks to zero in case the limit of this equations exists.
In the following we will use the transition rules79 given by Sacht (2014) in order
to transform our model into a h-economy model and then we determine the corre-
sponding model in continuous time by computing the limit of its h-economy version
as mentioned before.
The model which is going to be transformed is:

πt = pt − pt−1 = βEt(πt+1) + λ̃(yt − ynt ), (3.97)

where

λ̃ =
(1− α)(1− αβ)

α
(η + σ), (3.98)

0 < α < 1 is the Calvo’s fraction of the firms which do not adjust their prices,
0 < β < 1 denotes the discount factor, as it has been presented in previous sections
of this chapter, η and σ are positive constant parameters,
and pt := logPt with Pt denotes the price index.

78Frequency f expresses the number of transactions made by agents over the length of period.
79These rules will be summarized in appendix A. More details can be found in [135] P.19-20.
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The evolution of the output gap (yt − ynt ) will be assumed to be determined by an
Investiment-Savings (IS) curve of the following form (see derivation of IS curve in
subsection 3.2.1):

yt − ynt = Et(yt+1 − ynt+1)−
1

σ
(it − Etπt+1 − rnt ), (3.99)

where the monetary policy is supposed to operate according to the interest rate
given by the following equation:

it = rnt + πT + aỹt + b(πt − πT ), (3.100)

where a =
ϕỹ

σϕi
, b = λ̃ϕπ

σϕi
,

ϕi > 0 reflects the central bank’s aversion to deviations of it from its target int =
rnt + πT 80,
rnt denotes the natural (or equilibrium) real interest rate,
πT symbolizes inflation target for the central bank,
ϕπ and ϕỹ are positive coefficients given by the central bank, that express the
strength of the interest rate response to the fluctuations of inflation and the output
gap from their target levels respectively,
and πt, ỹt := yt − ynt are inflation rate and output gap respectively.
Interest rate rule given by the equation (3.100) will be derived in appendix A of this
work by solving an optimal control problem of a flexible inflation-targeting81 central
bank where costs related to changes in interest rate are assumed to be equal to zero.
In this case the control (interest rate represented by the equation 3.100) may be
applied every time instant and it would lead to the optimal trajectory over time
of output gap and inflation variables. However, in real world, the rule mentioned
above tends to give inefficient stabilization of output and inflation for the following
reasons:

80See for example [5].
81According to the European Central Bank (see the the work of the European Central Bank

with the title ” the monetary policy of the ECB” 2004), inflation-targeting is a central bank’s
strategy aimed at maintaining price stability by focusing on deviations in published inflation
forecasts from an announced inflation target. This strategy can be divided into two types,
namely strict and flexible inflation-targeting, depending on the objectives of the central banks.
The difference is that a flexible inflation-targeting central bank is concerned not only by the
stability of inflation around the inflation targeting but also by the stability of the real economic
variables whereas in strict inflation- targeting strategy, it is only concerned about the stability
of inflation rate. Following macro-econometric literature, see for example [96],[18],[155] and
the work of Svensson entitled ”Optimal Inflation Targeting: Further Developments of Inflation
Targeting”, an inflation-targeting framework would employ a general loss function Lt expressed by :

Lt = Et

∞∑
τ=0

1

2
δτ
[
ϕπ(πt+τ − πT )2 + ϕỹ(yt+τ − ynt+τ )

2 + ϕi(it+τ − int+τ )
2
]
, (3.101)

where Et is the expectation conditional on information available in period t and δ denotes the
discount factor.
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Input variables that occur in this rule are very difficult to measure in practice. As
shown by Billi (2011) (see [20] and [21]) and Orphanides (1998) (see [116]), flawed
estimates of those variables (i.e., Output gap and natural real interest rate) will
lead the central bank to set inappropriate policy rates which can cause unnecessary
fluctuations in output gap and inflation. Moreover, as illustrated by Sami et al.
2013 (see[66]) and King et al.2005 (see [82]), this type of rules exacerbate output
gap and inflation fluctuations mainly when the central bank alters interest rate in
a discontinuous way.
In order to determine a more realistic interest rate, we will consider interest rate
adjustment costs and we assume that fluctuations in output gap and inflation are
represented by the Gaussian white noises. This brings us to the chapter 4 where
we will use stochastic control techniques to control the continuous time version of
equation 3.97 and 3.99 which will be formulated in the following.
In model considered above, the frequency-dependent parameters which have to be
adjusted by 0 < h < 1 are α, β and hence λ̃.
As we want to consider the limiting case (h −→ 0), these parameters can be trans-
formed as follow:
In h-economy, the time preference discount rate δ becomes hδ because the house-
hold is less discounting future changes in the utility over interval of time 0 < h < 1.
Therefore the discount factor β(h) = 1

1+hδ
.

α(h) = 1−h(1−α) since in period of length 0 < h < 1 the probability for resetting
the price of the firms will be h(1− α).
By substituting β(h) and α(h) in equation (3.98) we get:

λ̃(h) =
{1− [1− h(1− α)]}

{
1− [1−h(1−α)]

1+hδ

}
[1− h(1− α)]

(η + σ)

=
h(1− α) [1 + hδ − 1 + h(1− α)]

(1 + hδ) [1− h(1− α)]
(η + σ)

=
h(1− α) [hδ + h(1− α)]

(1 + hδ) [1− h(1− α)]
(η + σ)

=
h2(1− α) [δ + 1− α]

(1 + hδ) [1− h(1− α)]
(η + σ).

(3.102)

πt , it and r
n
t are the only variables which must be adjusted by h. In h-economy πt

will be hπt (i.e inflation rate is given by πt =
pt−pt−h

h
), it will change to hit and r

n
t

will fall to hrnt .

Output gap ỹt which is measured by log
(

GDPa

GDPp

)
(where GDPa is actual output

and GDPp symbolizes potential output) is obviously the log of ratio of two flow
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magnitudes. Consequently it will not be adjusted by h since it is a contemporaneous
adjustment rate.
When we substitute β(h) and λ̃(h) in equation 3.97 we get a h-economy NKPC
which is expressed by the following equation:

πh
t = hπt = pt − pt−h =

1

1 + hδ
Et(pt+h − pt) +

h2(1− α) [δ + 1− α]

(1 + hδ) [1− h(1− α)]
(η + σ)ỹt

(3.103)

⇕

πt =
1

1 + hδ
Et

(
pt+h − pt

h

)
+

h2(1− α) [δ + 1− α]

h(1 + hδ) [1− h(1− α)]
(η + σ)ỹt

=
1

1 + hδ
Et(πt+h) +

h(1− α) [δ + 1− α]

(1 + hδ) [1− h(1− α)]
(η + σ)ỹt.

(3.104)

By definition (in the context of rational expectation),

Etπt+h = πt+h + ϵt+h, (3.105)

where Etϵt+h = 0 and ϵt+h is the error term of rational expectation.
In this work we will consider the error term ϵt+h as a zero mean Gaussian white noise
with a finite and constant variance σ2

π which is customary modeled by increments
of the Brownian motions on infinitesimal intervals (see for example [38] and [141]).
Therefore the term ϵt+h can be represented by the following equation:

ϵt+h = σπ (Bt+h −Bt) , for a very small h (i.e., h −→ 0+), (3.106)

where Bt is a standard Brownian motion.
By substituting equation 3.105 and 3.106 in 3.104 we obtain:

πt =
1

1 + hδ
πt+h +

σπ
1 + hδ

(Bt+h −Bt) +
h(1− α) [δ + 1− α]

(1 + hδ) [1− h(1− α)]
(η + σ)ỹt. (3.107)

The equation 3.107 can be rearranged algebraically into the following:

πt(1−
1

1 + hδ
) =

1

1 + hδ
(πt+h − πt)+

σπ
1 + hδ

(Bt+h −Bt)+
h(1− α) [δ + 1− α]

(1 + hδ) [1− h(1− α)]
(η+σ)ỹt

(3.108)

⇕

hδπt
1 + hδ

=
1

1 + hδ
(πt+h − πt)+

σπ
1 + hδ

(Bt+h −Bt)+
h(1− α) [δ + 1− α]

(1 + hδ) [1− h(1− α)]
(η+σ)ỹt

(3.109)
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⇕

hδπt = (πt+h − πt) + σπ (Bt+h −Bt) + h
(1− α) [δ + 1− α]

[1− h(1− α)]
(η + σ)ỹt (3.110)

⇕

(πt+h − πt) = h

{
δπt −

(1− α) [δ + 1− α]

[1− h(1− α)]
(η + σ)ỹt

}
− σπ (Bt+h −Bt) . (3.111)

In h-economy equation (3.99) becomes

ỹt = Etỹt+h −
1

σ
(hit − hEtπt+h − hrnt ) . (3.112)

And equation (3.100) will be

hit = hrnt + hπT + hb(πt − πT ) + haỹt. (3.113)

Combining equation (3.112) with equation (3.113) yields

ỹt = Etỹt+h −
h

σ

(
πT + a(ỹt) + b(πt − πT )− Etπt+h

)
. (3.114)

Knowing that πt − Etπt+h = h (1−α)(δ+1−α)(η+σ)
[1−h(1−α)]

ỹt − hδπt from the equation (3.104)

and substituting this value in equation (3.114) we have

ỹt = Etỹt+h−
h

σ

{
(b− 1)πt + (1− b)πT + aỹt +

h(1− α)(δ + 1− α)(η + σ)

[1− h(1− α)]
ỹt − hδπt

}
(3.115)

⇕

ỹt = Etỹt+h−h
{
(b− 1)

σ
πt +

(1− b)

σ
πT +

a

σ
ỹt +

h(1− α)(δ + 1− α)(η + σ)

σ [1− h(1− α)]
ỹt −

h

σ
δπt

}
.

(3.116)
Assuming rational expectations as before and substituting equation (3.106) for ỹ in
equation (3.116), it results in the following stochastic difference equation

ỹt+h − ỹt = h

{
(b− 1)

σ
πt +

(1− b)

σ
πT +

a

σ
ỹt +

h(1− α)(δ + 1− α)(η + σ)

σ [1− h(1− α)]
ỹt −

h

σ
δπt

}

− σỹ(B̄t+h − B̄t).
(3.117)
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In the field of applied mathematics, the continuous-time interpretation of stochastic
difference equations (3.111) and (3.117) for h −→ 0 are the following stochastic
differential equations82 :

dπ(t) = (δπ(t)− (1− α)(δ + 1− α)(η + σ)ỹ(t)) dt− σπdB(t) (3.118)

and

dỹ(t) =

(
(1− b)

σ
πT +

(b− 1)

σ
π(t) +

a

σ
ỹ(t)

)
dt− σỹdB̄(t), (3.119)

where b = ϕπλ̃
σϕi

, a =
ϕỹ

σϕi
, λ̃ = (1−α)(1−αβ)

α
(η + σ), B(t) and B̄(t) are standard corre-

lated Brownian motions defined on a filtered probability space (Ω,F , {Ft, t ≥ 0} ,P)
with correlation coeffiecient ρ̂ ∈ (−1, 1),
σỹ and σπ denote standard deviations of output gap and inflation respectively.

For simplicity, we transform the correlated Brownian motions B(t) and B̄(t) as fol-
lows 83:

B(t) = Bπ(t) (3.120)

and

B̄(t) = ρ̂Bπ(t) +
√

1− ρ̂2Bỹ(t), (3.121)

where Bπ(t) and Bỹ(t) are two independent standard Brownian motions which are
also defined on a filtered probability space (Ω,F , {Ft, t ≥ 0} ,P).
Substituting equation (3.120) and (3.121) in equation (3.118) and (3.119) respec-
tively we get the following system of equations:

dY (t) = (q + AY (t)) dt+ CdB̂(t), (3.122)

where dY (t) =

 dπ(t)

dỹ(t)

, A =

 δ −(1− α)(δ + 1− α)(η + σ)

(b−1)
σ

a
σ

, q =

 0

(1−b)
σ
πT

,

Y (t) =

 π(t)

ỹ(t)

, C =

−σπ 0

−σỹρ̂ −σỹ
√

1− ρ̂2

 and dB̂(t) =

 dBπ(t)

dBỹ(t)


82For discussions on these convergences see for example [126] and its references, [122], [8] and

[29].
83 For the proof see [150].
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Proposition 3.2.2.1: Assume that the matrix A has 2 linear independent eigenvec-
tors P1 and P2 which correspond to two distinct real eigenvalues λ̂1 and λ̂2 respec-
tively. Then the equation(3.122) has an explicit analytic and unique solution which
is expressed by the following equation:

Y (t) = etA
(
Y (0) +

∫ t

0

e−sAqds+

∫ t

0

e−sACdB̂(s)

)
(3.123)

⇕

Y (t) = etAY (0) + (etA − I)A−1q + etA
∫ t

0

e−sACdB̂(s), (3.124)

where etA = P

etλ̂1 0

0 etλ̂2

P−1 (P is a matrix of 2 column vectors P1 and P2) is

solution of the homogeneous part of equation(3.122).

Proof: Define X(t) = Y (0) +
∫ t

0
e−sAqds+

∫ t

0
e−sACdB̂(t),

the following stochastic differential equation holds:

dX(t) = e−tA
(
qdt+ CdB̂(t)

)
.

Applying Ito’s formula for Y (t) = u (t,X(t)) = etAX(t),

dY (t) =

[
ut (t,X(t)) + uX (t,X(t)) e−tAq +

1

2
uXX (t,X(t)) e−tACe−tAC

]
dt+

uX (t,X(t)) e−tACdB̂(t)

=
[
AetAX(t) + etAe−tAq + 0

]
dt+ etAe−tACdB̂(t)

= [AY (t) + q] dt+ CdB̂(t).

The uniqueness of this solution follows from the theorem 2.1.1 and the fact that the
following verifications indicate that the conditions a)-c) are fulfilled.
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a)

∥b(t, Y )∥+ ∥σ(t, Y )∥ = ∥q + AY ∥+ ∥C∥

≤ ∥q∥+ ∥C∥+ ∥A∥∥Y ∥ = F1 + F2∥Y ∥

≤ max (F1, F2) (1 + ∥Y ∥) = F (1 + ∥Y ∥),

where F1 = ∥q∥+ ∥C∥ and F2 = ∥A∥ are constants.

b)

∥b(t, Y )− b(t,X)∥+ ∥σ(t, Y )− σ(t,X)∥ = ∥q + AY − q − AX∥+ ∥C − C∥

= ∥AY − AX∥ = ∥A(Y −X)∥

≤ ∥A∥∥Y −X∥ = D∥Y −X∥,

Where D is a constant.

c) ξ =

(
π(0)
ỹ(0)

)
is independent of B̂(t) and it is most reasonable to assume that

E [∥ξ∥2] <∞. �

Explicit expression for the exponential of the matrix (tA )

Assumption for the matrix A ensures that the matrix A is diagonalizable. From the
definition of eA and the fact that A is diagonalizable, we have:

etA =
∞∑
k=0

1

k!
(tA)k =

∞∑
k=0

1

k!
(PtDP−1)k = P

(
∞∑
k=0

1

k!
(tD)k

)
P−1 = PetDP−1,

(3.125)

where etD = tI + tD + 1
2!
(tD)2 + 1

3!
(tD)3 . . . = diag(etλ̂1 , etλ̂2) and P = (P1

...P2) is a
matrix of 2 column eigenvectors P1 and P2 of the matrix A.

Eigenvalues of matrix A
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The characteristic equation of A is:

(δ − λ̂)(
ϕỹ

σ2ϕi
− λ̂) + (b−1)

σ
(1− α)(δ + 1− α)(η + σ)︸ ︷︷ ︸

:=η1

= 0

⇕

λ̂2 − λ̂

(
δ +

ϕỹ

σ2ϕi

)
︸ ︷︷ ︸

:=Γ1

+
(b− 1)

σ
η1 + δ

ϕỹ

σ2ϕi︸ ︷︷ ︸
Γ2

= 0.

This implies that :

Eingenvalue λ̂1 =
Γ1+

√
Γ2
1−4Γ2

2
and

Eingenvalue λ̂2 =
Γ1−

√
Γ2
1−4Γ2

2
where λ̂1 and λ̂2 are two distinct real eigenvalues of

A from the assumption for the matrix A (i.e. Γ2
1 − 4Γ2 > 0).

Eigenvectors of matrix A

Let P1 =

 P11

P21

 ̸=

 0

0

 and P2 =

 P12

P22

 ̸=

 0

0

 be 2 vectors corre-

sponding to λ̂1 and λ̂2 respectively. Then , according to the definition of eigenvector,

(
A− λ̂1I

)
P1 = 0 and

(
A− λ̂2I

)
P2 = 0 where I =

1 0

0 1

. These mean that:

 δ −η1

(b−1)
σ

ϕỹ

σ2ϕi

−

λ̂1 0

0 λ̂1

 P11

P21

 = 0 =⇒

{
(δ − λ̂1)P11 − η1P21 = 0
(b−1)
σ
P11 +

(
ϕỹ

σ2ϕi
− λ̂1

)
P21 = 0

,

and

 δ −η1

(b−1)
σ

ϕỹ

σ2ϕi

−

λ̂2 0

0 λ̂2

 P12

P22

 = 0 =⇒

{
(δ − λ̂2)P12 − η1P22 = 0
(b−1)
σ
P12 +

(
ϕỹ

σ2ϕi
− λ̂2

)
P22 = 0

.

Choosing P21 = 1 and P22 = 1 we get two eigenvectors:
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P1 =


η1

(δ−λ̂1)

1


and

P2 =


η1

(δ−λ̂2)

1

 of matrix A, which are linear independent from the assumption

for the matrix A.

Using the formula for the inverse of 2× 2 matrix we have that,

for P =


η1

(δ−λ̂1)
η1

(δ−λ̂2)

1 1

, inverse of matrix P is P−1 =


(δ−λ̂1)(δ−λ̂2)

η1(λ̂1−λ̂2)
− (δ−λ̂1)

(λ̂1−λ̂2)

− (δ−λ̂1)(δ−λ̂2)

η1(λ̂1−λ̂2)

(δ−λ̂2)

(λ̂1−λ̂2)

 .

From the equation (3.125) we have:

etA =


η1

(δ−λ̂1)
η1

(δ−λ̂2)

1 1


etλ̂1 0

0 etλ̂2




(δ−λ̂1)(δ−λ̂2)

η1(λ̂1−λ̂2)
− (δ−λ̂1)

(λ̂1−λ̂2)

− (δ−λ̂1)(δ−λ̂2)

η1(λ̂1−λ̂2)

(δ−λ̂2)

(λ̂1−λ̂2)



=


(δ−λ̂2)etλ̂1−(δ−λ̂1)etλ̂2

λ̂1−λ̂2

−η1etλ̂1+η1etλ̂2

λ̂1−λ̂2

(δ−λ̂1)(δ−λ̂2)

η1(λ̂1−λ̂2)
(etλ̂1 − etλ̂2) −(δ−λ̂1)etλ̂1+(δ−λ̂2)etλ̂2

λ̂1−λ̂2

 .

(3.126)

Substituting equation (3.126) into equation (3.124) we have:(
π(t)
ỹ(t)

)
= etAY (0)︸ ︷︷ ︸

:=i

+
(
etA − I

)
A−1q︸ ︷︷ ︸

:=ii

+

∫ t

0

e(t−s)ACdB̂(s)︸ ︷︷ ︸
:=iii

, (3.127)

where

i =


(

(δ−λ̂2)etλ̂1−(δ−λ̂1)etλ̂2

λ̂1−λ̂2

)
π(0) +

(
−η1etλ̂1+η1etλ̂2

λ̂1−λ̂2

)
ỹ(0)

[
(δ−λ̂1)(δ−λ̂2)

η1(λ̂1−λ̂2)
(etλ̂1 − etλ̂2)

]
π(0) +

[
−(δ−λ̂1)etλ̂1+(δ−λ̂2)etλ̂2

λ̂1−λ̂2

]
ỹ(0)

,
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ii =


(δ−λ̂2)etλ̂1−(δ−λ̂1)etλ̂2

λ̂1−λ̂2
− 1 −η1etλ̂1+η1etλ̂2

λ̂1−λ̂2

(δ−λ̂1)(δ−λ̂2)

η1(λ̂1−λ̂2)
(etλ̂1 − etλ̂2) −(δ−λ̂1)etλ̂1+(δ−λ̂2)etλ̂2

λ̂1−λ̂2
− 1




ϕỹ

[(ϕỹδ+η1σϕi)(b−1)]
η1σ2ϕi

[(ϕỹδ+η1σϕi)(b−1)]

− σϕi(b−1)

[(ϕỹδ+η1σϕi)(b−1)]
σ2ϕiδ

[(ϕỹδ+η1σϕi)(b−1)]


 0

(1−b)
σ
πT



=



[(
(δ−λ̂2)etλ̂1−(δ−λ̂1)etλ̂2

λ̂1−λ̂2
− 1
)(

η1σ2ϕi

[(ϕỹδ+η1σϕi)(b−1)]

)
+

(
−η1etλ̂1+η1etλ̂2

λ̂1−λ̂2

)(
σ2ϕiδ

[(ϕỹδ+η1σϕi)(b−1)]

)]
(1−b)
σ
πT

[
(δ−λ̂1)(δ−λ̂2)

η1(λ̂1−λ̂2)
(etλ̂1 − etλ̂2) η1σ2ϕi

[(ϕỹδ+η1σϕi)(b−1)]
+

(
−(δ−λ̂1)etλ̂1+(δ−λ̂2)etλ̂2

λ̂1−λ̂2
− 1
)

σ2ϕiδ

[(ϕỹδ+η1σϕi)(b−1)]

]
(1−b)
σ
πT



and

iii =
∫ t

0


(δ−λ̂2)e(t−s)λ̂1−(δ−λ̂1)e(t−s)λ̂2

λ̂1−λ̂2

−η1e(t−s)λ̂1+η1e(t−s)λ̂2

λ̂1−λ̂2

(δ−λ̂1)(δ−λ̂2)

η1(λ̂1−λ̂2)
(e(t−s)λ̂1 − e(t−s)λ̂2) −(δ−λ̂1)e(t−s)λ̂1+(δ−λ̂2)e(t−s)λ̂2

λ̂1−λ̂2


−σπ 0

−σỹρ̂ −σỹ
√

1− ρ̂2

 dBπ(s)

dBỹ(s)
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=

∫ t

0



(
−σπ (δ−λ̂2)e(t−s)λ̂1−(δ−λ̂1)e(t−s)λ̂2

λ̂1−λ̂2
− σỹρ̂

−η1e(t−s)λ̂1+η1e(t−s)λ̂2

λ̂1−λ̂2

)
dBπ(s)

+
(
−σỹ

√
1− ρ̂2

(
−η1e(t−s)λ̂1+η1e(t−s)λ̂2

λ̂1−λ̂2

))
dBỹ(s)

(
−σπ (δ−λ̂1)(δ−λ̂2)

η1(λ̂1−λ̂2)
(e(t−s)λ̂1 − e(t−s)λ̂2)− σỹρ̂

−(δ−λ̂1)e(t−s)λ̂1+(δ−λ̂2)e(t−s)λ̂2

λ̂1−λ̂2

)
dBπ(s)

+
(
−σỹ

√
1− ρ̂2

(
−(δ−λ̂1)e(t−s)λ̂1+(δ−λ̂2)e(t−s)λ̂2

λ̂1−λ̂2

))
dBỹ(s)



Then i + ii + iii give:

π(t) =

(
(δ − λ̂2)e

tλ̂1 − (δ − λ̂1)e
tλ̂2

λ̂1 − λ̂2

)
π(0) +

(
−η1etλ̂1 + η1e

tλ̂2

λ̂1 − λ̂2

)
ỹ(0)

+

[(
(δ − λ̂2)e

tλ̂1 − (δ − λ̂1)e
tλ̂2

λ̂1 − λ̂2
− 1

)(
η1σ

2ϕi

[(ϕỹδ + η1σϕi)(b− 1)]

)]
(1− b)

σ
πT

+

[(
−η1etλ̂1 + η1e

tλ̂2

λ̂1 − λ̂2

)(
σ2ϕiδ

[(ϕỹδ + η1σϕi)(b− 1)]

)]
(1− b)

σ
πT

+

∫ t

0

(
−σπ

(δ − λ̂2)e
(t−s)λ̂1 − (δ − λ̂1)e

(t−s)λ̂2

λ̂1 − λ̂2
− σỹρ̂

−η1e(t−s)λ̂1 + η1e
(t−s)λ̂2

λ̂1 − λ̂2

)
dBπ(s)

+

(
−σỹ

√
1− ρ̂2

(
−η1e(t−s)λ̂1 + η1e

(t−s)λ̂2

λ̂1 − λ̂2

))
dBỹ(s).

(3.128)
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ỹ(t) =

[
(δ − λ̂1)(δ − λ̂2)

η1(λ̂1 − λ̂2)
(etλ̂1 − etλ̂2)

]
π(0) +

[
−(δ − λ̂1)e

tλ̂1 + (δ − λ̂2)e
tλ̂2

λ̂1 − λ̂2

]
ỹ(0)

+

[
(δ − λ̂1)(δ − λ̂2)

η1(λ̂1 − λ̂2)
(etλ̂1 − etλ̂2)

η1σ
2ϕi

[(ϕỹδ + η1σϕi)(b− 1)]

]
(1− b)

σ
πT

+

[(
−(δ − λ̂1)e

tλ̂1 + (δ − λ̂2)e
tλ̂2

λ̂1 − λ̂2
− 1

)
σ2ϕiδ

[(ϕỹδ + η1σϕi)(b− 1)]

]
(1− b)

σ
πT

+

∫ t

0

(
− σπ

(δ − λ̂1)(δ − λ̂2)

η1(λ̂1 − λ̂2)
(e(t−s)λ̂1 − e(t−s)λ̂2)−

σỹρ̂
−(δ − λ̂1)e

(t−s)λ̂1 + (δ − λ̂2)e
(t−s)λ̂2

λ̂1 − λ̂2

)
dBπ(s)

+

(
−σỹ

√
1− ρ̂2

(
−(δ − λ̂1)e

(t−s)λ̂1 + (δ − λ̂2)e
(t−s)λ̂2

λ̂1 − λ̂2

))
dBỹ(s).

(3.129)
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Chapter 4
Inflation Controlling

Nowadays many central banks have adopted inflation-targeting strategy to control
inflation rate.
In order to achieve their target, inflation-targeting central banks can typically change
domestic nominal interest rates or manipulate money supply through insurance or
withdrawal of domestic government securities. In doing so, central banks can face
some costs arising from these changes, on the one hand, and the losses stemming
from deviations of inflation from their target on the other hand. In practice, costs
which arise from changes in interest rate stimulate incentive of central banks of not
responding immediately to current small deviations from the target. Even in the
case where the current loss due to output gap and inflation gap exceeds these costs,
they find it not optimal to react rapidly hoping that inflation gap and output gap
will revert back towards the target due to other future macroeconomic shocks.
This induces a relatively large range of inaction around the official inflation target
and output target for which it holds that interest rate will be maintained constant
as long as the actual rate of inflation and output gap are inside of this band. In this
case the central bank’s problem boils down to an optimal control problem where
one has to determine threshold levels for the inflation gap and output gap which
will trigger an interest rate manipulation and an optimal strategy (namely find an
optimal intervention time and an optimal additional interest rate ∆ζ) to push back
output gap and inflation processes into the inaction region when they hit the bor-
ders.
Impulse control method is useful to optimal control problems of this type by assum-
ing that the change in interest rate ∆ζ would lead to a direct change in output gap
∆ỹ = γỹ∆ζ and in inflation rate ∆π = γπ∆ζ for γỹ, γπ ∈ R .
In the following we will formulate this central bank’s problem and we will apply the
QVI-approach to solve the special case of this problem where the central bank has
to choose an optimal control to minimize the output gaps (i.e., the case in which in-
flation is considered to be on target) and the choice of parameters ϕỹ and ϕi respect
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the equation
ϕỹ

ϕi
= δσ2.

4.1 Problem Formulation

We assume that the dynamics of inflation rate and output gap processes, in the
absence of control, are given by unique strong solutions πt and ỹt of equation 3.122
which are driven by standard Brownian motions Bπ

t and Bỹ
t defined on a filtered

probability space ((Ω,F , {Ft, t ≥ 0} ,P)).
We consider an inflation-targeting central bank with an interest rate as one monetary
tool available and which is allowed to choose intervention times τi where it can shift
directly the output gap and inflation processes to other values by adjusting interest
rate (i.e., change in interest rate ∆ζ reads to an instantaneous change in output
gap ∆ỹ = γỹ∆ζ and in inflation rate ∆π = γπ∆ζ as it has been assumed above).
Additionally we suppose that the cost of raising interest rate and the costs of lowering
it are equal.
In the same way as presented in chapter 2, the infinite-horizon optimal control
problem consists of minimizing the expected discounted controlling cost and running
costs 84 over the set of admissible impulse control strategies A and it is described
by the following equations:

min
{(τi,∆ζi),i∈N}∈A

ES
π(0),ỹ(0)

{∫ ∞

0

1

2
e−δt

[
ϕπ

(
π(t)− πT

)2
+ ϕỹ (ỹ(t))

2
]
dt+

∞∑
i=1

e−δτi (K + k|∆ζi|) 1{τi<∞}

} (4.1)

Subject to:

dπ(t) =
[
δπ(t−)− (1− α) (1− α + δ) (η + σ) ỹ(t−)

]
dt−σπdBπ(t)−γπ

∞∑
i=1

∆ζi1{τi=t}

(4.2)

and

84The running cost considered here is the one period loss function given by the equation 3.101,
where inflation-targeting central bank is only concerned about the deviations of inflation rate and
output gap from their target.
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dỹ(t) =

[
1− b

σ

(
πT − π(t−)

)
+

ϕỹ

σ2ϕi

ỹ(t−)

]
dt−σỹ

(
ρ̂dBπ(t) +

√
1− ρ̂2dBỹ(t)

)
︸ ︷︷ ︸

dB̄(t)

−

γỹ

∞∑
i=1

∆ζi1{τi=t},

(4.3)
where ∆ζi = (γπ∆ζi, γỹ∆ζi) denotes the two-dimenional vector of the desired amounts
to push the processes back to the continuation region,
ES

π(0),ỹ(0)(.) is the expectation when processes π(t) and ỹ(t) start with initial value

π(0) and ỹ(0) respectively, and the strategy S is selected by the controller,
the constant K ∈ (0,∞) denotes the fix cost per intervention,
k ∈ (0,∞) represents the proportional cost per intervention,
δ is a constant discount rate and hence e−δt denotes the discount factor.

4.2 Application of QVI-approach:

Optimal Control of the Output Gap Dynam-

ics.

Now we have to determine the optimal impulse control that optimally minimizes
the output gaps by solving the following equation:

V (ỹ) := min
{(τi,∆ỹi),i∈N}∈A

ES
ỹ(0)

{
1

2

∫ ∞

0

e−δtϕỹ (ỹ(t))
2 dt+

∞∑
i=1

e−δτi (K + k|∆ỹi|) 1{τi<∞}

}
(4.4)

Subject to:

dỹ(t) =
ϕỹ

σ2ϕi
ỹ(t−)dt− σỹdB̄(t)−

∑∞
i=1 ∆ỹi1{τi=t}.

The following is the strategy that we will use to find an optimal solution:
we propose an optimal impulse control band S characterized by four parameters
−∞ < a < α ≤ β < b <∞ as illustrated in figure 2.2.1.
Next, we use it to construct a solution V ∗ of the QVI for which S is the QVI-control.
As we know from the chapter 2 that a candidate for value function must meet the
continuous and smooth pasting conditions, we will assume that these requirements
hold for our solution V ∗ and we will use them to calculate the unknown parameters
(a, α, β and b) and specify our solution V ∗.
Finally, we will verify that the hypothesis of the verification theorem are fulfilled for
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V ∗ and its corresponding QVI-control is admissible. If all of these assumptions are
satisfied, then we apply the theorem 2.2.1 to conclude that our control strategy S
is optimal and the solution V ∗ obtained is the value function for our problem.

Now, the definition 2.2.4 and remark 2.2.1 indicate that
• for every ỹ in intervention region we have

V ∗ (ỹ) = V ∗ [ỹ − (ỹ − α)] +K + k|ỹ − α|

= V ∗ (α) +K + k (α− ỹ) ∀ỹ ∈ (−∞, a] ,

(4.5)

and

V ∗ (ỹ) = V ∗ [ỹ − (ỹ − β)] +K + k|ỹ − β|

= V ∗ (β) +K + k (ỹ − β) ∀ỹ ∈ [b,∞) .

(4.6)

Equation 4.5 - 4.6 together with the continuity assumption for V ∗ imply that:

V ∗ (a) = V ∗ (α) +K + k (α− a) , (4.7)

and

V ∗ (b) = V ∗ (β) +K + k (b− β) . (4.8)

Furthermore, the consideration of equation 4.5 -4.6 and smooth pasting assumption
for V ∗ in {a, b} (i.e. the continuity condition for the first derivative of V ∗ in {a, b})
yields that:

V ∗′ (a) = −k and V ∗′ (b) = k, (4.9)

and lastly from the optimality assumption for our impulse control band and knowing
from definition 2.2.3 and (2.10) that ∆ỹ = b− β is the value for which the infimum
holds for V ∗ (ỹ −∆ỹ)+K+k|∆ỹ|, the necessary conditions for optimality of actions
in {a, b} requires that:

At b : 0 =
∂

∂∆
(V ∗ [b+∆] +K − k∆) |∆=β−b (4.10)

⇕

V ∗′ (β) = k. (4.11)

The same procedure yields that:

At a : V ∗′ (α) = −k. (4.12)
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• for every ỹ ∈ (a, b) ,

0 = LV ∗(ỹ) + f(ỹ) =
1

2
(−σỹ)2 V ∗′′ (ỹ) +

ϕỹ

σ2ϕi

ỹV ∗′ (ỹ)− δV ∗(ỹ) +
1

2
ϕỹỹ

2

= V ∗′′ (ỹ) +
2ϕỹ

σ2
ỹσ

2ϕi

ỹV ∗′ (ỹ)− 2δ

σ2
ỹ

V ∗(ỹ) +
ϕỹ

σ2
ỹ

ỹ2

(4.13)

⇕

V ∗′′(ỹ) +
2ϕỹ

σ2
ỹσ

2ϕi︸ ︷︷ ︸
=C1

ỹV ∗′(ỹ)− 2δ

σ2
ỹ︸︷︷︸

=C2

V ∗(ỹ) = − ϕỹ

σ2
ỹ︸︷︷︸

=C3

ỹ2. (4.14)

Since the choice of parameters ϕỹ and ϕi must satisfy the equation
ϕỹ

ϕi
= δσ2

(i.e., C2 = C1 ) as previously assumed, we deal with the inhomogeneous differential
equation

V ∗′′(ỹ) + C1ỹV
∗′(ỹ)− C1V

∗(ỹ) = −C3ỹ
2. (4.15)

This equation can be solved as follows:

Particular solution V ∗
p (ỹ) of equation 4.15.

As we have seen in chapter 2, the particular solution of this equation has the form
V ∗
p (ỹ) = c+ bỹ + dỹ2. Then V ∗′

p (ỹ) = b+ 2dỹ and V ∗′′
p (ỹ) = 2d.

Substituting these in equation 4.15 we get:
0 = 2d + C1ỹ(b + 2dỹ) − C1(c + bỹ + dỹ2) + C3ỹ

2 = 2d − C1c + ỹ(C1b − C1b) +
ỹ2(2C1d− C1d+ C3).
This implies that:
b can be any number of R(here we choose b = 0), c = −2C3

C2
1
and d = −C3

C1
.

Then the particular solution is given by:

V ∗
p (ỹ) = −2C3

C2
1

− C3

C1

ỹ2. (4.16)

Homogeneous solution V ∗
h (ỹ) of equation 4.15.

V ∗
h1(ỹ) = ỹ.
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From the remark 2.1.1 we have:

V ∗
h2(ỹ) = V ∗

h1(ỹ)

∫ ỹ [ 1

(Vh1(t))2
e−

C1
2
t2
]
dt

= V ∗
h1(ỹ)

∫ ỹ exp
(
−
∫ t
C1udu

)
(V ∗

h1(ỹ))
2 dt

= ỹ

∫ [
1

ỹ2
e−

C1
2
ỹ2
]
dỹ.

(4.17)

Using integration by part method which says
∫
UV

′
dx = UV −

∫
U

′
V dx, and by

assuming that V
′
= 1

ỹ2
and U = e−

C1
2
ỹ2 we have :

V ∗
h2(ỹ) = ỹ

∫ [
1

ỹ2
e−

C1
2
ỹ2
]
dỹ = − ỹ

ỹ
e−

C1
2
ỹ2 − ỹC1

∫
e−

C1
2
ỹ2dỹ

= −e−
C1
2
ỹ2 − ỹC1

∫
e−

C1
2
ỹ2dỹ,

(4.18)

and hence the homogeneous solution V ∗
h (ỹ) is

V ∗
h (ỹ) = Aỹ +B

{
−e−

C1
2
ỹ2 − ỹC1

∫
e−

C1
2
ỹ2dỹ

}
. (4.19)

From the proposition 2.1.2, the general solution V ∗
g (ỹ) of the equation 4.15 has the

form:

V ∗
g (ỹ) = Aỹ +B

{
−e−

C1
2
ỹ2 − ỹC1

∫
e−

C1
2
ỹ2dỹ

}
− 2C3

C2
1

− C3

C1

ỹ2

= Aỹ −Be−
C1
2
ỹ2 −BC1ỹ

 √
π

2
√

C1

2

erf

(
ỹ

√
C1

2

)− 2C3

C2
1

− C3

C1

ỹ2.

(4.20)

And

V ∗′
g (ỹ) = A−B

{
−C1ỹe

−C1
2
ỹ2 + C1

[∫
e−

C1
2
ỹ2dỹ + ỹ

d

dỹ

(∫
e−

C1
2
ỹ2dỹ

)]}
− 2C3

C1

ỹ.

(4.21)
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Applying the second fundamental theorem of calculus , we have

V ∗′
g (ỹ) = A−B

{
−C1ỹe

−C1
2
ỹ2 + C1

[∫
e−

C1
2
ỹ2dỹ + ỹe−

C1
2
ỹ2
]}

− 2C3

C1

ỹ

= A−BC1

 √
π

2
√

C1

2

erf

(
ỹ

√
C1

2

)− 2C3

C1

ỹ.

(4.22)

Finally our function V ∗ (ỹ) for all ỹ becomes

V ∗ (ỹ) =



V ∗ (α) +K + k (α− ỹ) for ỹ ≤ a,

Aỹ −Be−
C1
2
ỹ2 −BC1ỹ

[
√
π

2
√

C1
2

erf
(
ỹ
√

C1

2

)]
− 2C3

C2
1
− C3

C1
ỹ2 for a < ỹ < b,

V ∗ (β) +K + k (ỹ − β) for ỹ ≥ b.

(4.23)

And

The parameters A,B,a, α, β and b such that −∞ < a < α ≤ β < b < ∞ can be
determined by solving the system of equations (4.7), (4.8), (4.9), (4.11) and (4.12)
which imply that

Aa−Be−
C1
2
a2 −BC1a

 √
π

2
√

C1

2

erf

(
a

√
C1

2

)− C3

C1

a2 =

Aα−Be−
C1
2
α2 −BC1α

 √
π

2
√

C1

2

erf

(
α

√
C1

2

)− C3

C1

α2 +K + k (α− a) ,

(4.24)

Ab−Be−
C1
2
b2 −BC1b

 √
π

2
√

C1

2

erf

(
b

√
C1

2

)− C3

C1

b2 =

Aβ −Be−
C1
2
β2 −BC1β

 √
π

2
√

C1

2

erf

(
β

√
C1

2

)− C3

C1

β2 +K + k (b− β) ,

(4.25)

A−BC1

 √
π

2
√

C1

2

erf

(
a

√
C1

2

)− 2C3

C1

a = −k, (4.26)
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A−BC1

 √
π

2
√

C1

2

erf

(
α

√
C1

2

)− 2C3

C1

α = −k, (4.27)

A−BC1

 √
π

2
√

C1

2

erf

(
β

√
C1

2

)− 2C3

C1

β = k, (4.28)

and

A−BC1

 √
π

2
√

C1

2

erf

(
b

√
C1

2

)− 2C3

C1

b = k. (4.29)

The following proposition verfies that V ∗(ỹ) is equal to V (ỹ) presented in equation
(4.4) and that our proposed impulse control strategy S is optimal.

Proposition 4.1.1. Let A,B,a, α, β and b, with −∞ < a < α ≤ β < b < ∞
be a solution of the system of equations (4.24) - (4.29). Consider the function V ∗

expressed by the equation (4.23).
If for all ỹ ∈ [b,∞),

− 1

2
BC1e

−C1
2
β2

+
σ2
ỹC3

C1

+ 2δβk +
1

2
ϕỹβ

2 − δK +
1

2
ϕỹỹ

2 > 0, (4.30)

and for all ỹ ∈ (−∞, a]

− 1

2
BC1e

−C1
2
α2

+
σ2
ỹC3

C1

− 2δαk +
1

2
ϕỹα

2 − δK +
1

2
ϕỹỹ

2 > 0, (4.31)

then the function V ∗ coincides with the value function defined by the equation (4.4),
and the QVI-control associated with V ∗ is optimal.

Proof. We have to check that the QVI-control corresponding to V ∗ is admissible,
to verify that the growth conditions (2.19) and (2.20) are satisfied and to show that
the function V ∗ satisfies the QVI.
From the definition of the proposed impulse control (see figure 2.2.1), we observe that

lim
n→∞

τn = ∞ almost surely. (4.32)

From the assumption that the drift and the volatility of our process satisfy the global

Lipschitz conditions, the discount factor ensures that
∫∞
0
e−δt 1

2
ϕỹ (ỹ(t))

2︸ ︷︷ ︸
f(ỹ)

dt <∞ and
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thus

ES
x

∫ ∞

0

e−δt 1

2
ϕỹ (ỹ(t))

2︸ ︷︷ ︸
f(ỹ)

dt

 <∞. (4.33)

Furthermore, since e−δtỹ(t) is bounded, we can apply the theorem 2.1.2 (DCT)
on limT→∞ES

x

[
e−δT ỹ(T )

]
and we get

lim
T→∞

ES
x

[
e−δT ỹ(T )

]
= ES

x

[
lim
T→∞

e−δT ỹ(T )
]
= 0. (4.34)

Thus, from the definition 2.2.1, equations (4.32), (4.33) and (4.34) imply that the
QVI-control associated with V ∗ is admissible.

In addition, it is clear that the function V ∗ defined by the equation (4.23) is twice
continuous differentiable in (a, b), once continuously differentiable and linear in
(−∞, a] ∪ [b,∞). Moreover, V ∗′ is indeed continuous in [a, b] and is constant in
(−∞, a] ∪ [b,∞). From the extrem values theorem 85, V ∗ and V ∗′ are bounded on
the interval [a, b]. So the equation (4.32), the linearity of V ∗ in (−∞, a]∪ [b,∞) and
its boundedness imply that

lim
T→∞

ES
x

[
e−δTV ∗ (ỹ(T ))

]
= 0. (4.35)

and

from the fact that σ is a finite constant together with the equation (4.31) and V ∗′

is bounded we have

ES
x

[∫ ∞

0

(
e−δtσV ∗′ ỹ(t)

)2
dt

]
<∞. (4.36)

As V ∗ satisfies the growth conditions (2.19) and (2.20), and the QVI-control cor-
responding to V ∗ is admissible, it remains to show that V ∗ obeys the following
conditions for all ỹ ∈ R

LV ∗(ỹ) +
1

2
ϕỹỹ

2 ≥ 0, (4.37)

V ∗(ỹ) ≤MV ∗(ỹ), (4.38)

and

85The Extrem values theorem states that:
If a function f is continuous on the closed interval [a, b], then it is bounded on [a, b] (i.e. there
exists points c and d in [a, b] such that f(c) ≤ f(x) ≤ f(d) ∀x ∈ [a, b]). (Proof of this theorem
can be found in [26]P.151).
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(LV ∗(ỹ) +
1

2
ϕỹỹ

2) (V ∗(ỹ)−MV ∗(ỹ)) = 0. (4.39)

First inequality: By construction of V ∗,

LV ∗(ỹ) +
1

2
ϕỹỹ

2 = 0

for all ỹ ∈ (a, b). So we have to show that

LV ∗(ỹ) +
1

2
ϕỹỹ

2 :=
1

2
σ2
ỹV

∗′′(ỹ) + δỹV ∗′(ỹ)− δV ∗(ỹ) +
1

2
ϕỹỹ

2 > 0

for all ỹ ∈ (−∞, a] ∪ [b,∞).
Considering b ≤ ỹ <∞, we have

LV ∗(ỹ)
(4.6) and (4.11)

= δỹk − δ [V ∗(β) +K + k(ỹ − β)]

= δỹk − δV ∗(β)− δK − δk(ỹ − β)

(4.13) and (4.11)
= δỹk +

1

2
σ2
ỹV

∗′′(β) + δβk +
1

2
ϕỹβ

2 − δK − δk(ỹ − β)

=
1

2
σ2
ỹV

∗′′(β) + δβk +
1

2
ϕỹβ

2 − δK + δkβ

= −1

2
BC1e

−C1
2
β2

+
σ2
ỹC3

C1

+ 2δβk +
1

2
ϕỹβ

2 − δK.

(4.40)

From the equation (4.30) we have LV ∗(ỹ) + 1
2
ϕỹỹ

2 > 0.

For ỹ ∈ (−∞, a], we have

LV ∗(ỹ)
(4.5) and (4.12)

= −δỹk − δ [V ∗(α) +K + k(α− ỹ)]

= −δỹk − δV ∗(α)− δK − δk(α− ỹ)

(4.13) and (4.12)
= −δỹk + 1

2
σ2
ỹV

∗′′(α)− δαk +
1

2
ϕỹα

2 − δK − δk(α− ỹ)

=
1

2
σ2
ỹV

∗′′(α)− δαk +
1

2
ϕỹα

2 − δK − δkα

= −1

2
BC1e

−C1
2
α2

+
σ2
ỹC3

C1

− 2δαk +
1

2
ϕỹα

2 − δK.

(4.41)
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From the equation (4.31) we have LV ∗(ỹ) + 1
2
ϕỹỹ

2 > 0.

Second inequality: By construction V ∗(ỹ) =MV ∗(ỹ) for all ỹ ∈ (−∞, a]∪ [b,∞).
Because −k ≤ V ∗′(ỹ) ≤ k for all ỹ ∈ [α, β], it is not optimal to intervene (i.e., the
process will not move but incurs the fixed costs K which means that MV ∗(ỹ) =
V ∗(ỹ) +K) in this interval. This implies that MV ∗(ỹ)− V ∗(ỹ) = K > 0.
For ỹ ∈ (β, b], the argument of the operator M is ỹ − β. So the construction of β
and b implies that

V ∗(ỹ) ≤ V ∗(β) +K + k|ỹ − β| =MV ∗(ỹ).

For ỹ ∈ [a, α) we also have

V ∗(ỹ) ≤ V ∗(α) +K + k|ỹ − α| =MV ∗(ỹ)

because the argment of the operator M is ỹ − α in this interval.
The equation (4.39) holds as a result of the first and the second inequalities.
Applying the verification theorem (theorem 2.2.1), we can conclude that V ∗ is the
value function of the problem (4.4) and the corresponding QVI-control is optimal.�

4.2.1 Numerical example

In this part, we provide the numerical solution to the system of equations 4.24−4.29
using the Matlab nonlinear system solver “fsolve”. In addition, we study the effect
of the parameters K, k, σỹ and ϕỹ on the optimal two band policy. These sensitivity
analysis will be tested as follows.
We choose a parameter from other parameters, which are considered to be fixed, of
the system and we observe how the optimal band policy changes when the value of
the chosen parameter decreases or increases. The test results are summarized in the
table 4.1− 4.4 below.

From the results presented in the tables 4.1, 4.2 and 4.4, we observe that the optimal
band width (b− a) increases as one of the parameters K, k and σỹ increases. In this
case, the central bank waits longer to intervene.

In contrast, as it has been illustrated in the table 4.3, the optimal band width (b− a)
reaches its maximum as the value of the parameter ϕỹ decreases.
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4.2. Application of QVI-approach:
Optimal Control of the Output Gap Dynamics.

Table 4.1: Effect of the parameter K for fixed values ϕỹ = 0.6, σ = 0.1, ϕi = 0.1,
σỹ = 0.05 and k = 20.

case K=5 K=0.1 K=0.15

a -100.0045 -14.1474 -17.3257
α -0.0041 -0.0049 -0.0048
β 0.0041 0.0049 0.0048
b 100.0045 14.1474 17.3257
A -0.0000 -0.0000 0.0000
B -0.0231 -0.0230 -0.0231

b - a 200.0090 28.2948 34.6514

Table 4.2: Effect of the parameter k for fixed values ϕỹ = 0.6, σ = 0.1, ϕi = 0.1,
σỹ = 0.05 and K = 5.

case k=20 k=0.20 k=0.40

a -100.0045 -100.0022 -100.0025
α -0.0041 -0.0014 -0.0018
β 0.0041 0.0014 0.0018
b 100.0045 100.0022 100.0025
A -0.0000 0.0000 0.0000
B -0.0231 -0.0003 -0.0006

b - a 200.0090 200.0044 200.0050

Table 4.3: Effect of the parameter ϕỹ for fixed values k = 20, σ = 0.1, ϕi = 0.1,
σỹ = 0.05 and K = 5.

case ϕỹ = 0.6 ϕỹ = 0.50 ϕỹ = 0.80

a -100.0045 -100.0049 -100.0039
α -0.0041 -0.0044 -0.0035
β 0.0041 0.0044 0.0035
b 100.0045 100.0049 100.0039
A -0.0000 0.0000 0.0000
B -0.0231 -0.0254 -0.0200

b - a 200.0090 200.0098 200.0078

80



Chapter 4. Inflation Controlling

Table 4.4: Effect of the parameter σỹ for fixed values k = 20, σ = 0.1, ϕỹ = 0.6,
ϕi = 0.1 and K = 5.

case σỹ = 0.05 σỹ = 0.1 σỹ = 0.2

a -100.0045 -100.0090 -100.0179
α -0.0041 -0.0081 -0.0162
β 0.0041 0.0081 0.0162
b 100.0045 100.0090 100.0179
A -0.0000 -0.0000 0.0000
B -0.0231 -0.0463 -0.0926

b - a 200.0090 200.0180 200.0358

Figure 4.1: The Value function presented by the equation (4.23) for k = 20, σỹ =
0.05, ϕỹ = 0.6, ϕi = 0.1, σ = 0.20 and K = 5

Figure 4.2: Zoom in toward the point (0, V ∗(0))
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Appendix A
Transition rules

Firstly, the baseline model with h = 1 must be formulated. As a main assumption,
it is assumed that the functional form of the model will not change accross different
frequences 86.
Secondly, the frequency-dependent components of the model have to be suitably
transformed under the consideration of h. For instance, the discount rates must be
adjusted, while fractions remain unchanged. With respect to the variables, growth
rates exhibit a certain time dimension and hence they must be divided by h, while
contemporaneous adjustment rates (e.g. output gap) have no time dimension.
Finally, the variables have to be normalized. Note that a variable without time-
dimension such as the output gap have not to be normalized (or quarterized).
Normalization refers to a specific aggregation technique applied on high-frequency
variables relative to the benchmark period length. The skip sampling aggregation
scheme based on the deviation of the corresponding variables by h is one among
others, which exist in econometric literature, that will be used in this work.

A.1 Heuristic Derivation of Interest Rate given

by the Equation 3.100: Lagrangian Method

The optimal short-term nominal interest rate it can be realized from the first order
condition of the solution to the inflation-targeting central bank’s problem of mini-
mizing the loss function of the form:

Lt = Et

∑∞
τ=0

1
2
δτ
[
ϕπ(πt+τ − πT )2 + ϕỹ(ỹt+τ )

2 + ϕi(it+τ − int+τ )
2
]

86It has been shown that the functional form of the NKPC will remain unchanged when the
period length is reduced (see [145]).
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subject to the constraints:
πt = βEtπt+1 + λ̃ỹt,
ỹt = Etỹt+1 − 1

σ
it +

1
σ
Etπt+1 +

1
σ
rnt .

Its Lagrangian expression is:

L = Et

∞∑
τ=0

1

2
δτ
[
ϕπ(πt+τ − πT )2 + ϕỹ(ỹt+τ )

2 + ϕi(it+τ − int+τ )
2
]

+ λ1

(
βEtπt+1 + λ̃ỹt − πt

)
+ λ2

(
Etỹt+1 −

1

σ
it +

1

σ
Etπt+1 +

1

σ
rnt − ỹt

)
.

The first order conditions for τ = 0 are:

∂L
∂ỹt

= ϕỹỹt − λ1λ̃− λ2 = 0, (A.1)

∂L
∂πt

= ϕπ

(
πt − πT

)
− λ1 = 0 =⇒ λ1 = ϕπ

(
πt − πT

)
, (A.2)

∂L
∂it

= ϕi (it − int )−
λ2
σ

= 0, (A.3)

Substituting equation (A.2) into equation (A.1) we have:

λ2 = ϕỹỹt + λ̃ϕπ

(
πt − πT

)
. (A.4)

Inserting the value of λ2 in equation (A.3) we get:

ϕi (it − int )−
ϕỹ

σ
ỹt − ϕπλ̃

σ

(
πt − πT

)
= 0 =⇒ it = int +

ϕỹ

σϕi︸︷︷︸
:=a

ỹt +
ϕπλ̃

σϕi︸︷︷︸
:=b

(
πt − πT

)
⇐⇒ it = rnt + πT + aỹt + b

(
πt − πT

)
.

A.2 Proof of the Verification Theorem

Let S = {(τm,∆Xm)}m∈N be an admissible impulse control strategy with τ0 = 0 .
Define θm = t ∧ τm := min t, τm for every t > 0 and m ∈ N. Then we have

e−ρθmV ∗ (X(θm))− V ∗(x) =
m∑
i=1

(
e−ρθiV ∗ (X(θ−i )

)
− e−ρθi−1V ∗ (X(θi−1))

)︸ ︷︷ ︸
(∗)

+
m∑
i=1

1{τi≤t} e
−ρτi

(
V ∗ (X(θi))− V ∗ (X(θ−i )

))︸ ︷︷ ︸
∗∗

.

(A.5)
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A.2. Proof of the Verification Theorem

For the term (*) of the first summand in (A.5), the application of the Itô’s formula
presented in chapter 2 leads to the following equation:

(∗) =
∫ θi

θi−1

e−ρu

[
−ρV ∗ (X(u)) + b (X(u))V ∗

x (X(u)) +
1

2
σ (X(u))V ∗

xx (X(u))

]
︸ ︷︷ ︸

=LV ∗(X(u))

du

+

∫ θi

θi−1

e−ρuV ∗
x (X(u))σ (X(u)) dB(u).

(A.6)
According to inequality (2.15) we get:

e−ρθiV ∗ (X(θ−i )
)
− e−ρθi−1V ∗ (X(θi−1)) ≥

∫ θi

θi−1

e−ρu (−f (X(u))) du

+

∫ θi

θi−1

e−ρuV ∗
x (X(u))σ (X(u)) dB(u).

(A.7)
For the term (**) of the second summand in (A.5), we have for {τi ≤ t} 87:

e−ρθi
(
V ∗ (X(θi))− V ∗ (X(θ−i )

))
≥ −e−ρθi (K + k|∆Xi|) . (A.8)

Substituting (A.8) and (A.7) into (A.5) we get:

V ∗(x)− e−ρθmV ∗ (X(θm)) ≤
m∑
i=1

∫ θi

θi−1

e−ρu (f (X(u))) du

−
m∑
i=1

∫ θi

θi−1

e−ρuV ∗
x (X(u))σ (X(u)) dB(u)

+
m∑
i=1

1{τi≤t}e
−ρτi (K + k|∆Xi|) .

(A.9)

87Inequality presented in (A.8) holds beacause our X(θi) = X(θ−i ) − ∆Xi according to the
definition 2.2.1 (iV) and the definition 2.2.3 and (2.10) imply that

V ∗ (X(θ−i )
)
≤ V ∗

X(θ−i )−∆Xi︸ ︷︷ ︸
:=X(θi)

+K + k|∆Xi|

which also implies that:
V ∗ (X(θi))− V ∗ (X(θ−i )

)
≥ V ∗ (X(θi))− V ∗ (X(θi))−K − k|∆Xi|

⇕

e−ρθi
[
V ∗ (X(θi))− V ∗ (X(θ−i )

)]
≥ −e−ρθi (K + k|∆Xi|).
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Application of the expectation operator ES
x on the both sides of (A.9) yields

V ∗(x)− ES
x

[
e−ρθmV ∗ (X(θm))

]
≤ ES

x

[
m∑
i=1

∫ θi

θi−1

e−ρu (f (X(u))) du

]

− ES
x

[
m∑
i=1

∫ θi

θi−1

e−ρuV ∗
x (X(u))σ (X(u)) dB(u)

]

+ ES
x

[
m∑
i=1

1{τi≤t}e
−ρτi (K + k|∆Xi|)

]
.

(A.10)
Taking limit as m −→ ∞, the left hand side of (A.10) becomes88

lim
m→∞

{
V ∗(x)− ES

x

[
e−ρθmV ∗ (X(θm))

]}
= V ∗(x)− ES

x

[
e−ρtV ∗ (X(t))

]
, (A.11)

together with the condition (2.19) which implies that the expectation of the stochas-
tic integral vanishes, the inequality expressed by (A.10) simplifies to

V ∗(x)− ES
x

[
e−ρtV ∗ (X(t))

]
≤ ES

x

[
∞∑
i=1

∫ θi

θi−1

e−ρu (f (X(u))) du

]

+ ES
x

[
∞∑
i=1

1{τi≤t}e
−ρτi (K + k|∆Xi|)

]
.

(A.12)

Taking the limit as t −→ ∞ and considering the condition (2.20), the left hand side
of (A.12) will be equal to V ∗(x). Together with the definition of θm and the theorem
2.1.2 we can write the right-hand side of (A.12) as

lim
t→∞

ES
x

[
∞∑
i=1

∫ θi

θi−1

e−ρu (f (X(u))) du

]
+ lim

t→∞
ES

x

[
∞∑
i=1

1{τi≤t}e
−ρτi (K + k|∆Xi|)

]

= ES
x

[∫ ∞

0

e−ρu (f (X(u))) du+
∞∑
i=1

1{τi<∞}e
−ρτi (K + k|∆Xi|)

]
.

And hence

V ∗(x) ≤ ES
x

[∫ ∞

0

e−ρu (f (X(u))) du+
∞∑
i=1

1{τi<∞}e
−ρτi (K + k|∆Xi|)

]
. (A.13)

88This follows from the definition 2.2.1(V) which implies that τ∞ = ∞ and the definition of θm.
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A.2. Proof of the Verification Theorem

Therefore, for every S = {(τm,∆Xm)}m∈N ∈ Z, where Z(x) denotes a the set of
admissible impulse control strategies for the starting state x,

V ∗(x) ≤ V (x). (A.14)

If there exists an admissible QVI-control associated with V ∗ , then it is an optimal
impulse control and then V ∗(x) = V (x) for every x ∈ R.�
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