Conditional Equational Specifications of
Data Types with Partial Operations
for Inductive Theorem Proving

Ulrich Kuhler
Claus-Peter Wirth

SEKI-Report SR-96-11

November 20, 1996

Fachbereich Informatik
Universitat Kaiserslautern

Postfach 3049
D-67653 Kaiserslautern

{kuehler,wirth}@informatik.uni-kl.de

Abstract

We propose a specification language for the formalization of data types with par-
tial or non-terminating operations as part of a rewrite-based logical framework
for inductive theorem proving. The language requires constructors for designat-
ing data items and admits positive/negative conditional equations as axioms in
specifications. The (total algebra) semantics for such specifications is based on
so-called data models. We present admissibility conditions that guarantee the
unique existence of a distinguished data model with properties similar to those
of the initial model of a usual equational specification. Since admissibility of a
specification requires confluence of the induced rewrite relation, we provide an
effectively testable confluence criterion which does not presuppose termination.

1 Introduction

Data types such as the natural numbers, lists, strings, trees, graphs etc. are essential
for the design and implementation of most software systems. In computer science a
collection D of data domains and operations on these data domains is usually called a
data type if all data items in the data domains of D are finitely generated by the oper-
ations of D. Therefore, mathematical induction — as the proof method corresponding
to finitely generated or inductively defined objects — constitutes the basis of a suitable
formal method for reasoning about data types. Since formal methods are indispens-
able to verification activities in the development process of safety-critical algorithms,
proof by mathematical induction or inductive theorem proving (I'TP) is likely to gain
economic significance in the next few years.

In this paper we propose an algebraic (i.e. equational) specification language for
the formalization of data types with partial operations which is part of a new first-order
and rewrite-based logical framework for I'TP. Essentially, our specification language is
given by its syntax, its (inductive) semantics and its admissibility conditions. While
the syntax determines the signature and the set of axioms admitted in a specification,
the semantics indicates what particular model class is to be associated with a speci-
fication as its meaning. Furthermore, the admissibility conditions have to guarantee
that the semantics is actually meaningful, i.e. the associated model class is not empty.
Obviously, inductive inference methods for formal reasoning about data types form the
other integral part of a logical framework for I'TP. We refer to [WK95] for an inference
system on the basis of the proposed specification language.

The simple examples below are intended to motivate the major objectives which
have guided the development of our specification language.

Example 1.1 Let D be a data type that comprises the natural numbers as its data
domain and the division along with other arithmetic operations (see below). The
following set F of conditional equations could be the set of axioms in an algebraic
specification spec = (sig,) of D (s denotes the successor-function).

plus(z,0) ==z times(z,0) =0

plus(z,s(y)) = s(plus(z,y)) times(z,s(y)) = plus(times(z,y), z)
: less(z,0) = false

m!nus(:r:, 0) -7 less(0,s(y)) = true

minus(s(z),s(y)) = minus(z, y) Iess(s(;t:)i,ys(y)) — less(z, y)

div(z,y) =0
div(z,y) = s(div(minus(z,y),y))

ess(x,y) = true
ess(z,y) = false

— y#0 Al
— y#0 Al

Although F yields an appropriate axiomatization of D, the axioms in £ (or their re-
spective formulations) are not admissible wrt. the specification formalisms of various
first-order frameworks for ITP: Firstly, spec = (sig,) is not sufficiently complete
wrt. the constructors true, false, 0 and s (see [Wir90]), since neither minus nor div are
completely defined by FE. However, in the specification formalisms of inductive theo-
rem provers such as SPIKE (see [BR95]), NQTHM (see [BMT79]) or INKA (see [HS96]),
each non-constructor operation must be completely defined, i.e. for a partial operation
(such as subtraction or division) some of its total extensions has to be axiomatized.
Secondly, the rewrite-based specification languages of SPIKE and RRL (see [KS96])
require the left-hand side of each conditional equation to be greater than any other
term in this conditional equation wrt. a reduction order. Since div(z,y) is smaller than
s(div(minus(z,y),y)) wrt. any simplification order (see [D.J90]), it is fairly difficult to
prove such admissibility of £. Thirdly, two conditional equations in £ each contain a
negative condition, namely y #0. This is ruled out in [BR95] e.g.

Example 1.2 (Ezample 1.1 continued) A tail-recursive variant of div that is non-
terminating but “efficient” on its domain can be axiomatized as follows:

divl(z,y,z1,22) = — T =2
divl(z,y, z1, 22) = divl(z,y,s(z1), plus(z2,y)) = # 29

If n > 0 then divl(s®™(0),s"(0),0,0) can be evaluated to s™(0) with E’, where £’

consists of £ and the two axioms for divl. Hence, the equational clause
y=0 V times(y,z) #z V divl(z,y,0,0) =z (1)

formalizes an intuitively “true” statement and should be valid in the class of models
(i.e. the semantics) associated with the specification spec’ = (sig’, E').

Due to their requirement that axiomatizations of operations “terminate”, none of the
frameworks for ITP described in [BR95], [BM79], [HS96] or [KS96] accept E’ (or its

respective formulations) as an admissible set of axioms.

In the remainder of the paper we present an algebraic specification language which
is to allow adequate formalizations of data types with partial and non-terminating op-
erations. The specification language requires constructor symbols for each sort in a sig-
nature so that all data items in a data type can be designated with constructor ground
terms, and provides constructor variables which range over data items only. Moreover,
conditional equations (or rewrite rules) with positive and negative conditions are ad-
mitted as axioms in our so-called specifications with constructors. In addition to the
usual notion of a model we define so-called data models as a basis for a suitable (total
algebra) semantics of specifications with constructors (Sect. 3). For every admissible
specification spec the unique existence of a “best” data model M (spec) is guaranteed —
“best” in the sense that M(spec) has interesting algebraic properties resembling those
of the initial model of a usual equational specification (Sect. 4). The appropriateness
of our semantics is underlined by an important monotonicity result: Contrary to initial
algebra semantics, the extension of an admissible specification in a “consistent” way

does not result in the loss of inductive theorems. In other words, every formula valid
in the class of all data models of the original specification remains valid in the class of
all data models of the extended specification (Sect. 6).

Essentially, admissibility of a specification with constructors spec means that the
rewrite relation which we associate with the positive/negative conditional rewrite rules
in spec is confluent. Since we are also interested in formalizing data types with non-
terminating operations, we provide a confluence criterion in Sect. 5 which does not
presuppose termination of the rewrite relation but is based on simple syntactic prop-
erties of the specifying rewrite system. As a consequence, we obtain easily testable
admissibility conditions that are fulfilled by many relevant specifications including the
ones in Examples 1.1 and 1.2. Note that all proofs can be found in the Appendix.

It should be mentioned that the specification language proposed in this paper has
its origin in the more general specification approach of [WG94a] and [WG94b|. We
have adapted the latter to the requirements of practical I'TP, which facilitated a sim-
plified presentation, and augmented it with new and effectively testable admissibility
conditions.

2 Basic Notions and Notations

We assume that the reader is familiar with the basic terminology of algebraic specifi-
cation and rewriting. For more details we refer to [EMS85], [Wir90] and [D.J90].

A many-sorted signature sig = (5, F,a) comprises a set S of sort symbols, a set
F' of function symbols and an arity function a mapping F into S*. For f € F,
a(f) = s1...s,s indicates the argument sorts s ...s, and the result sort s of f. For
every signature sig = (5, F, a), we assume a fixed S-sorted family of mutually disjoint
sets of variables V = (V;)ses where FNV =0. The well-sorted terms (over sig and V')
are denoted by T (sig,V) = (T (sig,V)s)ses, and GT (sig) = (GT (sig)s)ses is used for

the ground terms (over sig).

A position (or occurrence) p within a term ¢ is a sequence of positive integers. By
t/p, we denote the sub-term of ¢ at position p, and t[u], stands for the term ¢ with its
sub-term t/p replaced with a term u. We use Pos(¢) for the set of all positions of ¢. A
term ¢ is called linear if no variable occurs more than once in t.

A sig-algebra A = (A, F4) is given by A = (A,)ses and FA = (f4);cr where
(a) for all s € S, A, is a non-empty set called the carrier of A for s; and
(b) for all f € F with a(f) = s1...5,8, fA A, x...x A, — A, is a function.

Let B = (B, F®) be another sig-algebra. A sig-homomorphism h: A — B is a family
h = (hs)ses of functions hs: A; — B such that for all f € F' and for all a; € A,

hs(fA(ay,. .. an)) = fB(hs (ar),. .., hs,(an))

where a(f) = s1...8,s. If all functions hs: Ay — B, are bijective (surjective), then h
is called a sig-isomorphism (sig-epimorphism).

A sig-algebra T is initial in a class K of sig-algebras if Z€ K and for every A€ K
there is a unique sig-homomorphism from Z to A. Note that the ground term algebra
GT (sig) is initial in the class of all sig-algebras. By eval?, we denote the unique
(initial) sig-homomorphism from GT (sig) to a sig-algebra A, which is defined by

evalA(f(tl,) = fAeval(ty), . . . eval?(t,))

for all f € F and for all ; € GT (sig),,. We usually write ¢4 instead of evalA(t).

A sig-congruence on A is a family ~ = (~),es of equivalences ~; on A, such
that a; ~;, b; for i = 1,...,n implies fA(ay,...,a,) ~5 fA(b1,...,b,) forall f € F.
Every sig-homomorphism h: A — B induces a sig-congruence on 4, namely the kernel
ker(h) of h defined by ker(h), = {(a,b)|a,b € A, and hy(a) = hy(b)} for all s € S.
The quotient algebra A/~ of A modulo ~ is the sig-algebra Q = (Q, F'?) satisfying

(a) forall s € S, Qs ={[a]|a € Ay} where [a]={b€ A;|a~b}; and
(b) for all f € F and for all a; € A,,, f2([a1],...,[an]) = [fA(ar,...,a)].

Let X C V be an S-sorted family of variables and — be a relation on 7T (sig, X).
Then <— is its reverse, «— its symmetric closure, — its transitive closure and ——
its transitive-reflexive closure. By |, we denote the joinability relation —— o «— of
—, that is ¢y | {5 if there is a ¢ such that ¢, = ¢ <— {,.

Moreover, — is called confluent if <— o — C | . We call — monotonic if
t1 — tg implies t[t1], —> t[ts2], for all t1,,,1 € T (sig, X) and for all p € Pos(t) where
ty,la,t/p€ T (sig, X), for some s € S. We speak of sort-invariance of — if t; — 1,
entails that #;,%, € T (sig, X), for some s € S. Note that <~ is a sig-congruence on
T (sig, X) if — is monotonic and sort-invariant. A term ¢ is —-irreducible if there
is no ¢’ such that t — .

3 Specifications with Constructors

As mentioned before in the introduction, our interest in inductive theorem proving
is mainly due to its fundamental significance to methods that allow formal reasoning
about data types. Formal proofs of statements which express valid properties of the
operations of a given data type require a preceding formalization of the data type. To
state more precisely what we mean by a “data type” we quote the following conceptual

definition from [EM85]:

“A data type is a collection of data domains, designated basic data items,
and operations on these domains such that all data items of the data do-
mains can be generated from the basic data items by use of the operations.
Moreover the data domains are assumed to be countable.”

It is generally accepted that initial algebra semantics for usual (positive conditional)
equational specifications is rarely appropriate when data types with partial or non-
terminating operations have to be formalized (see [Wir90], [WG94b]). Consider e.g.
the specification whose axioms are those from Example 1.1 that define minus and less.
The carrier of its initial model for the sort bool consists of infinitely many elements
represented by “junk terms” like less(0, minus(0,s"*1(0))) instead of just two (for true
and false). In some cases, lack of sufficient completeness as the essential problem can
be avoided by demanding that the specification describe total extensions of the par-
tial operations. For our specifications with constructors, however, we do not require
sufficient completeness for adequate representations of data types with partial opera-
tions any more — mainly because we acknowledge the importance constructors have in
describing the data items of a data type.

3.1 Syntax of Specifications with Constructors

In order to ensure that a data type D with partial operations will be adequately
represented by certain model classes of a specification of D (see below), our specification
language requires the user to indicate the constructors for D, i.e. those function symbols
which are needed for designating the data items of D. Let sig = (S, F,a) be a
signature. Formally, a subset C' C F' is said to be a set of constructors for sig if the
signature sig” = (S,C,alc) induced by C is sensible, i.e. for each s € S there is at
least one constructor ground term ¢ € GT (sig”), of sort s. We call sig” the constructor
signature of sig.

We assume that for each sort s € S, the set V; of variables for s is composed of
two disjoint subsets V.¢ and V.. The elements of V¢ are called constructor variables,
while the elements of V¢ are called general variables. Intuitively, constructor variables
range over data items only, whereas general variables allow statements about undefined
objects as well. T (sig, V) denotes the set of (pure) constructor terms. A substitution
o: V. — T(sig,V) is said to be a constructor substitution if o(V°) C T (sig?,V°), and
we call o an inductive substitution if o(VC) C GT (sig”) and o(VE) C T (sig, V).

An equation is a pair t; =ty such that 1,3 € T(sig,V), for some s € S. An
atom is an equation or a definedness atom def(t) where ‘def’ is a predefined predicate
symbol and ¢ € T (sig, V). Informally, def(¢) means that the applications of operations
denoted by ¢ can be evaluated to data items. A positive literal is an atom, and a
negative literal is a negated atom. A literal is a positive or a negative literal. The
complement X of a positive literal X is =\, and the complement =) of a negative literal
- is A. A (disjunctive) clause is a possibly empty sequence Ay ...\, of literals.

A (positive) conditional equation is an expression of the form [=r + A where A
is a possibly empty sequence of (positive) condition literals. The clause representation

of I=r « A... A, is (I=r) A1 ... A,. When emphasizing its directed use we call a
conditional equation a (conditional) rewrite rule.

Given an expression e (e.g. a term, a clause or a rewrite rule), let Var(e) denote
the set of variables in e.

Definition 3.1 A specification with constructors spec = (sig,C, E) is composed of a
signature sig such that C' is a set of constructors for sig, and of a set E of conditional
equations (over sig and V).

Note that at this point we do not place any restrictions on the conditional equations to
be used in specifications. In Sect. 4, however, we will develop restricting admissibility
conditions which will guarantee that appropriate notions of inductive semantics are
actually meaningful for admissible specifications.

3.2 Model Semantics of Specifications with Constructors

We now have to determine the elements of a sig-algebra A which may be assigned
to constructor variables. As constructor variables are meant to range over data items
only, we assign those elements of A which are designated by constructor ground terms
to constructor variables. These elements form the carriers of a sig®-algebra, which we

call the data reduct A® of A:

Definition 3.2 Let A = (A, F'4) be a sig-algebra. The data reduct of A is the sig®-
algebra A® = (A®, CA) satisfying

(a) for each s € S, AY = {tA € A |t e gT(SiQ'O)s }; and

(b) for each ¢ € C and for all a; € Ag, cAC(al, coay) = cMay, ... ay)
where a(c) = s1...5,5.

The data reduct A€ is in fact a sig“-algebra: Since (' is a set of constructors for sig,
sig® is sensible, and so AS #£) for each s € S. Furthermore, let ay,...,a, € A°. Then
there are t1,...,t, € GT (sig”) such that c*(ay,...,a,) = A(#{,...,t4), and since
eval’: GT (sig) — A is a sig-homomorphism, we have c¢A(t{, ... t4) = ¢(ty,...,1,)".
Hence, ¢*(ay,...,a,) € A, which shows that A is closed under ¢* for each ¢ € C'.!

Given an S-sorted family of variables X C V', the data reduct of the term algebra
T (sig, X) is obviously GT (sig”). Moreover, the image of a data reduct under a sig-
homomorphism is a data reduct:

Lemma 3.3 Let A and B be sig-algebras, and let h: A — B be a sig-homomorphism.
Let h® = (h)ses be the family of functions defined by hS = h,|sc for all s € S.
Then h®: A° — BY is a sig®-epimorphism.

We can now give meaning to terms, literals and clauses.

Definition 3.4 Let A = (A, F4) be a sig-algebra.

(i) Let X C V. A valuation of X in Ais a function ¢: X — A such that ¢(z) € AY
for every z € X,NV and ¢(z) € A, for every z € X,NVE. By eval“; we denote
the unique sig-homomorphism from 7T (sig, X) to A that extends .

LAC is the (sig®-) homomorphic image of GT (sig®) under eval, and hence a term-generated
sub-algebra of the sig®-reduct Algige of A.

(ii) Let ¢ be a valuation of V in A. Then A satisfies an equation t; =t with ¢ if
eval“;(tl) = evalﬁ(tg), and A satisfies a definedness atom def(¢) for ¢t € T (sig, V)5
with ¢ if eval:;‘(t) € AY. Moreover, A satisfies a negative literal =\ with ¢ if A
does not satisfy A with . Finally, A satisfies a clause I' with ¢ if there is a
literal in I" which A satisfies with .

(iii) A clause I' is valid in A if A satisfies [with every valuation of V in A. This is
denoted by A | I'. Let K be a class of sig-algebras and F be a set of clauses.
We write K E E ifft AET for every A € K and for every I' in E.

The inductive substitutions are exactly the valuations of V in T (sig, VS). Besides
the equality axioms of a signature sig, there are other clauses which are valid in all
sig-algebras, e.g. def(c¢(Xy,...,X,)) V ~def(Xy) V...V ~def(X,) where ¢ € C' is a

constructor and X; € Vf’ fori=1,...,n.

The following useful result relates valuations and constructor substitutions.

Lemma 3.5 Let A be a sig-algebra, X C V', ¢ be a valuation of X in A and o be
a constructor substitution with o(V') C T (sig,X). Then evalf:(ta) = evalf‘eval,aw)(t)

for all t € T(sig,V).
The models of a specification with constructors can now be defined as usual.

Definition 3.6 Let spec = (sig,C, E) be a specification with constructors. A sig-
algebra A is called a (sig-) model of spec if (the clause representation of) each condi-
tional equation in F is valid in A. The class of all sig-models of spec is denoted by

Mod(spec).

Since the clause representation of any conditional equation contains at least one positive
literal, every conditional equation (over sig and V') is valid in the trivial sig-algebra
whose carriers consist of one element each. Therefore, Mod(spec) is not empty for
any specification with constructors spec. Moreover, when restricting the variables in
clauses to constructor variables, validity in Mod(spec) can be characterized as follows.

Proposition 3.7 Let spec = (sig,C, E) be a specification with constructors, and let I’
be a clause with Var(I') C V. Then the following statements are equivalent:

(1) Mod(spec) =TI’
(2) For every inductive substitution o there is a literal X in I' with Mod(spec) |E Ao .

Still, we do not really consider Mod(spec) an appropriate inductive semantics for a
specification with constructors spec. The reason for that is that Mod(spec) includes
also those sig-models of spec which unnecessarily equate or confuse data items. In other
words, sig-models of this kind satisfy equations between constructor ground terms that
are not valid in all sig-models of spec. An extreme example of such a sig-model is the
trivial sig-algebra.

3.3 Data Models

In eliminating those models from Mod(spec) that confuse data items we obtain a par-
ticularly suited class of models as the semantics for a specification with constructors.
Since usually the data reduct of each of the models in the resulting class yields a one-
to-one representation of the data domains of the given data type we call these models
data models.

Definition 3.8 Let spec = (sig,C,) be a specification with constructors. We say
that a sig-model A of spec is a data model of spec if, for all constructor ground terms
ti,ta € GT (sig%), 1 = 15! implies Mod(spec) =t =t,. Let DMod(spec) denote the
class of all data models of spec.

Note that DMod(spec) may be empty (see below). Moreover, the data reducts of any
two data models in DMod(spec) are isomorphic:

Lemma 3.9 Let A be a sig-model of spec. Then A is a data model of spec if and only
if its data reduct A is initial in the class of sig”-algebras { B |B € Mod(spec) }.

Corollary 3.10 Let A and B be data models of spec. Then their data reducts A and
B are (sig®-) isomorphic.

Consequently, data models do not differ in the evaluation of constructor terms, i.e. for
any A, B € DMod(spec) and 1,1, € T (sig”, V) we have A|=t, =1, iff B=t,=1,.
For general terms, however, the corresponding statement does not hold — not even for
ground terms whose definedness is valid in all models of spec:

Example 3.11 Let spec = (sig,C, E') be the specification with constructors over the
signature sig = (5, F, «) such that S = {any}, C' = {c1,c2}, F' = C U{d}, a(o) = any
foreach o€ Fyand F = {d=c¢; «d#c }.

Let A = (A, F4) be the sig-algebra with Aany = {a1, a2}, cf =ay, ¢ = ay and
d4 = a;. Since ¢ £ ¢ and d* = ¢! we have A € DMod(spec). Moreover, let
B = (B, F®) be the sig-algebra with Bany = {a1,as}, b =ay, 5 =ay and d® = a,.
Now cf # c5 and d® = c§, so B is also a data model of spec.

Hence, we have A, B € DMod(spec), Mod(spec) |= def(d) and d* = c*, but not

B _ B
d® =c7.

In section 4, however, we will show that all “defined” terms are uniformly evaluated in
all data models of admissible specifications (see Theorem 4.8).

We have mentioned before that the class of all data models of a specification
with constructors may be empty. In order to demonstrate this and to motivate our
admissibility conditions for guaranteeing the existence of data models (see Sect. 4), we
give the following two examples.

Example 3.12 Let sig = (S, F,) be the signature with S = {any}, C = {c1, ca, 3},
F = CU{d}, and a(o) = any for each 0 € F. Let £y = {c1=cy ¢ ¢1#c3} and
spec, = (sig, C, Fy).

Obviously, neither Mod(spec;) = ¢; =c2 holds nor Mod(spec,) | ¢ =c3, but for
any A € Mod(spec,) we have cf = c3' or ¢ = ¢f (because of F;). Hence A cannot

be a data model of spec;.

Example 3.13 Let sig and C be as in the preceding example, Ky = {d=c¢; + ¢; #c3,
d=cy ¢« c1 #c3}, and let spec, = (sig, C, F»).

One easily shows that neither Mod(specy) | ¢1 =c3 nor Mod(spec,) = ¢ = ca.
Let A € Mod(specy). If cf* = ¢t then A is not a data model of spec,. Otherwise, due

to Ey, we have ¢t = d4 = cj', so A is not a data model of spec, either.

4 Admissibility Conditions

So far, we have not placed any restrictions on the set of positive/negative conditional
equations in a specification with constructors. The two preceding examples, however,
show that certain restrictions are necessary to ensure that DMod(spec) is meaningful
(i.e. not empty) as an inductive semantics. In this section we therefore present the
admissibility conditions of our specification language which guarantee the existence
of a distinguished data model M(spec) for any admissible specification spec. Hence,

DMod(spec) # (.

Our admissibility conditions are based on terminology and concepts from the the-
ory of term rewriting; recall that every conditional equation can be regarded as a
(conditional) rewrite rule. We will show in the following that the rewrite relation — g
associated with an admissible specification spec = (sig, C', R) can be defined in such a
way that — g yields a sound and complete operationalization of equality in all data
models: ¢, «——g ty iff DMod(spec) |= t1 =1y, for t1,ty € T (sig,VS). Moreover, ad-
missibility of spec will be proved to ensure that the sig-algebra T (sig, V¢)/< =g is a
data model of spec, namely the so-called standard data model M(spec), which is free
over V¢ in DMod(spec).

4.1 Positive/Negative Conditional Rewrite Specifications

We begin with the idea of extending the distinction made between constructors and
the other function symbols in signatures to the axioms in specifications. That is, we
require that the set R of rewrite rules (or conditional equations) in a specification with
constructors can be partitioned into a set RY of constructor rules and a set R” of
defining rules. Intuitively, the constructor rules in R are to specify the relations on
the constructor ground terms necessary for representing the data items of the given
data type, while the defining rules in RP describe the effects of the other operations of
the data type consistently (see below).

10

Note that we have to forbid negative equational condition literals in constructor
rules, as is shown in Example 3.12: The class of data models of a specification including
a constructor rule with a negative equational condition may be empty, since the class
of the data reducts of all models of such a specification need not contain an initial
element (see Lemma 3.9). In defining rules, however, we do admit negative equational
conditions. To prevent a defining rule [=r < A from being applied to a constructor
(ground) term, its left-hand side [must contain at least one non-constructor function
symbol.

Definition 4.1 Let sig = (5, F,a) be a signature such that ¢ C F' is a set of con-
structors for sig.

(i) A constructor rule is a rewrite rule [=r u; =wvy,...,u, =v, such that
(a) I,r € T(sig®, V) and u;,v; € T(sig", V) fori =1,...,n
(b) Var(r) C Var(l) and Var(u;), Var(v;) C Var(l) for e =1,...,n
(ii) A defining rule is a rewrite rule [=r + A satisfying
(a) 1€ T (sig, V)\T (sig”,V)
(b) A does not contain any literal of the form —def(?).

A major purpose of the rewrite relation —p associated with a specification with
constructors spec = (sig, C, R) is to give an explicit characterization of the “best” data
model M spec) as the quotient algebra 7 /< =g of a suitable term algebra 7. It is
possible to define — g on G7T (sig) in such a way that admissibility of spec implies
initiality of GT (sig)/+—gr in DMod(spec) (see [AM95], [WG94a]). In this paper,
however, we will define —s g on T (sig, VY), since for T := G7T(sig) a respective
formulation of Theorem 4.8 does not hold for clauses with general variables.

In accordance with the distinction we make between the constructor rules R and
the defining rules RP in R, we define the rewrite relation —=x in two steps. Firstly,
rewriting constructor ground (sub-) terms is only possible with the rewrite relation
——spe induced by RY. Since R® is a positive conditional rewrite system —3pc can
be defined as usual. Secondly, for a rewrite step t[lo], —r t[ro], with a defining
rule /[=r < A in RP, each condition literal in Ac must be fulfilled. This means for
a negative condition u# v in A that both wo and vo can be rewritten (using —g)
to constructor ground terms which are not joinable using —szc. A definedness atom
def(u) in A is fulfilled if uc —g @ for some constructor ground term 1.

Definition 4.2 Let spec = (sig,C, R) be a specification with constructors and R =
RY W RP where R is a set of constructor rules and RP a set of defining rules.

(i) Let the sequence (—pgc;)ienv of relations on T (sig, V9) be defined by
(a) —>RC70 = @ .
(b) t1 —>Re iy t2 if there is a rewrite rule I=r « uy=v1,...,u,=v, in
RY, a position p € Pos(#;) and an inductive substitution o such that (1)
ti/p=lo (2) ty =tro], and (3) uxo lpe; vko for k=1,...,n.

Then —>RC = UiE]N —>Rc,i .

11

(ii) Let the sequence (—g.;)ien of relations on T (sig, V) be defined by

(a) —>R70 = —RC .

(b) t1 —R.ig1 ta if {1 —spo ty or there is a rewrite rule [=7 < A in RP a
position p € Pos(#1) and an inductive substitution o such that (1) ¢1/p =lo
(2) ty = ty[ro], (3) for each u=v in A, wo |p; vo (4) for each def(u) in
A there is a @ € QT(sigc) such that uoc g ; @& and (5) for each u#wv
in A there are u,0 € QT(sigC) such that wo —spg; @, vo —3p; © and
'lAL(tRC ﬁ

Then —R = UiE]N —>R72' .

Basic properties of —pc and — g are listed in the following lemma.

Lemma 4.3
(1) —pe; € —gre 41 © —pe foralli € IN

(2) —pe C —R,i - —R,i+1 C —p fOT all 1 € IN

(3) If t —sgp 1 fort € GT(sig”) and t' € T (sig, V) then t —spc t' and ' €
GT (sig").

(4) — g is sort-invariant and monotonic.

Example 3.13 shows that requiring R to consist of constructor rules and defining rules
only is not sufficient for the existence of data models. Note that the specification in Ex-
ample 3.13 contains an inconsistent definition for the function symbol d — inconsistent
in the sense that there are constructor ground terms ¢; and ¢3 such that ¢ sp iy
but not t; «—spe t3. Such inconsistencies cannot arise if —»p is confluent: Then
ty ¢“r 1y entails t; [g ty for 11,y € GT (sig”), and by applying Lemma 4.3(3) one
obtains #; Jgc t; and hence t; <~ pc t5. To put it another way, confluence of —
guarantees that spec = (sig, C, R) is a consistent extension of the “base” or constructor
specification spec® = (sig”, RY) (see [EM85]).

A further admissibility condition is needed to ensure that T (sig, V¥)/< =g is
a (data) model of spec (see Example 3.11). In order to achieve correspondence of
the model semantics with our method of testing negative condition literals in defining
rules, there needs to be a definedness condition literal for each (non-constructor) term
occurring in a negative condition literal.

Definition 4.4 A specification with constructors spec = (sig,C, R) is called an ad-
missible specification if spec satisfies the following conditions:
(a) R = R® W RP where RY is a set of constructor rules and RP a set of defining
rules.

(b) — g is confluent.

(c) For each [=r < A in RP and for each ¢t € T (sig, V)\T (sig”, V®) occurring (on
top-level) in a negative literal in A there is a literal def(¢) in A.

Note that we do not require termination of — g in our admissibility conditions.

12

4.2 The Standard Data Model M (spec)

Having defined our admissibility conditions we can now show that, for any admissible
specification spec = (sig, C, R), the sig-algebra T (sig, V%)/+ g is a data model of
spec that plays a particular role in the class of all data models of spec: It is free over V&
in DMod(spec). Thus, M(spec) := T (sig, V¢) /< =g has algebraic properties similar
to those of the initial model of a usual equational specification in that M(spec) may
be regarded as a distinguished “representative” of the class of all data models (see
Theorem 4.8). This gives rise to two appropriate kinds of semantics for specifications
with constructors of data types with partial operations, namely (i) DMod(spec) and
(ii) (the isomorphism class of) the so-called standard data model M(spec).

Proposition 4.5 Let spec = (sig,C, R) be an admissible specification. Then
(1) T(sig,VY)/< =g is a data model of spec.

(2) Let A be any data model of spec. Then its data reduct A° and GT (sig®) [+ ge
are (sig”-) isomorphic.

Hence, the data reduct of every data model of an admissible specification can be
explicitly characterized in terms of G7 (sig”) and —s ge.

The following lemma justifies the view that —pr yields a sound and complete
operationalization of equality in all data models of spec. It is of central importance in
the proofs of Theorems 4.7 and 4.8.

Lemma 4.6 Let spec = (sig,C, R) be an admissible specification, and let
ti,ty € T(sig, V). Then t, <~grty iff DMod(spec) =1, =1,.

Freeness of an algebra is usually defined as follows. Let K be a class of sig-algebras,
and let X C V be an S-sorted family of variables. A sig-algebra F(X) is free over X in
K if F(X) € K and there is a valuation u of X in F(X) such that for every valuation
¢ of X in a sig-algebra A € K there is a unique sig-homomorphism h: F(X) — A
such that the following diagram commutes, i.e. ¢ = hou.

xX—*% .4
U
h
F(X)

Note that the free algebra is unique up to isomorphism: If sig-algebras Fi(X) and
Fa(X) are free over X in K then Fi(X) and F,(X) are isomorphic (see [EM85]).

Theorem 4.7 Let spec = (sig,C, R) be an admissible specification.
Then T (sig,VG) /< =g is free over VS in DMod(spec).

13

We call T (sig, V¢) /g the standard data model of an admissible specification spec
and use M(spec) to denote it. Its significance as a “representative” of DMod(spec) is
confirmed in the following characterization of the relation between validity in M (spec)
and validity in all data models of spec.

Theorem 4.8 Let spec = (sig,C, R) be an admissible specification, and let I' be a
clause such that M(spec) |= def(t) for every (top-level) term t occurring in a negative
literal of I'. Then M(spec) = I' is sufficient for DMod(spec) = I'.

In particular, every equation valid in M(spec) is valid in every data model of spec.

It should be noted that Theorems 4.7, 4.8 and 6.2 have counterparts in the more
general specification approach of [WG94a] and [WG94b] from which the specification
language presented in this paper originates (see Sect. 1).

5 A Confluence Criterion

Contrary to most other specification formalisms for ITP, the one proposed in this
paper does not require termination. However, its admissibility conditions require con-
fluence, and since many interesting rewrite systems (i.e. sets of rewrite rules) are non-
decreasing (see [DOS88] for a definition of “decreasing”) or even non-terminating (see
Example 1.2), we need a confluence criterion that does not presuppose termination.

Note that several basic results on confluence of unconditional rewrite systems that
are based on syntactic considerations do not hold in the conditional case. In particular,
local confluence of conditional rewrite systems is not equivalent to joinability of all
critical pairs. In other words, variable overlaps may be “critical” as well. This may
even happen when termination is given (combined with left-linearity and normality;
see [DOS88], Example B, p. 36). If we do not require termination, the situation is even
more complicated: There are left-linear positive conditional rewrite systems that do
not have any critical pairs but lack confluence (see [DOS88], Example A, p. 36; taken
from [BK86]). Therefore, reasonable syntactic confluence criteria for non-terminating
rewrite systems need strengthened forms of joinability of critical pairs and syntactic
restrictions on rewrite rules such as left-linearity and (weakened forms of) normality.

Another major problem is caused by the infinite number of substitutions that must
be tested for fulfilling the conditions in critical pairs. Therefore, effectively testable
conditions which guarantee the infeasibility of the critical pairs have practical relevance.
In this paper, we introduce a confluence criterion (see Theorem 5.2) which essentially
makes use of the fact that critical pairs with complementary literals in the conditions are
infeasible and need not be considered hence. It is not the strongest known confluence
criterion applicable to non-terminating constructor-based rewrite systems? but it is
effectively testable. Moreover, it extends the class of specifications admitted for I'TP
since it no longer requires termination. To our knowledge it is the strongest confluence

2See Theorems 68 and 71 of [Wir95]. Theorem 68 is the version for w-shallow confluence, Theo-
rem 71 the one for w-level confluence.

14

criterion without a termination precondition that can be effectively used in practice.
Furthermore, it also applies to terminating systems, which may be attractive if one does
not know how to (effectively) show termination or if the correctness of the technique
for proving termination requires confluence.

As our rewrite systems consist of constructor rules and defining rules the problem
of establishing confluence of the whole rewrite system can be decomposed into three
smaller sub-problems: Firstly, we show confluence of — e, then commutation of the
constructor rules with the defining rules, and finally, using these assumptions, conflu-
ence of —sp. Thus, different criteria may be applied to handle these sub-problems.
For example, unless it is trivial, proving confluence of — gc may often call for sophis-
ticated semantic considerations or confluence criteria that apply to terminating rewrite
systems only. For — g, however, neither semantic confluence criteria nor confluence
criteria with termination preconditions are practically feasible in general. One reason
for this may be that effective applications of semantic confluence criteria require the
specification given by the whole rewrite system to have been modeled before in some
formalism. Another reason is that termination of the whole rewrite system may not
be given or difficult to show without any confluence assumptions.

Since the confluence criterion we present in this section presupposes confluence of
— e, we first discuss how to establish that — ge is confluent. Without constructor
rules, i.e. R® = (), confluence of —=pc is trivial. While this seems rather restrictive,
this case of free constructors is very important in practice since a lot of data structures
are freely generated. Besides, non-free constructors pose serious problems in most
frameworks for I'TP — if they can be handled at all. Another way to prove confluence
of —> e 1s to use one of the known confluence criteria for positive conditional rewrite
systems (see [DOS88]). Note that the application of most of these confluence criteria
requires termination of — gc. Termination of the constructor rules, however, does not
mean termination of the whole rewrite system. More syntactic criteria for confluence
of —pe can be found in Sect. 15 of [Wir95]. Sometimes, however, confluence of
— e can only be shown by using the semantic knowledge of the specifier: either with
semantic confluence criteria in the style of [Pla85] (see Theorem 6.5 of [WG94b]) or in
a way that only works for the concrete set of constructor rules at hand.

Before formally presenting our syntactic confluence criterion we have to introduce
more notions concerning (conditional) critical pairs and properties of rewrite systems.

Let ty,15 € T (sig,V). We call a constructor substitution ¢ a unifier of ¢, =t; if
tio = tyo. A unifier o of t; =t, is said to be most general on a finite set X C V' if for
every unifier i of {{ =1 there is a constructor substitution 7 such that (o7)|x = y|x .
Note that if ¢; =¢; has a unifier, then it also has a most general unifier on X, which
we denote by mgu(t; =13, X).

15

Definition 5.1 Let spec = (sig,C, R) be a specification with constructors and R =
R W RP where RY is a set of constructor rules and RP a set of defining rules.
(i) Let l;=r; « A, be a rewrite rule in R with X; := Var(l;,r;, 4;) for 1 € {0,1}.
Assume w.l.o.g. XoNX; = 0. If there is a non-variable position p € Pos(/;) such
that o = mgu(lp =1;/p, XoU X1) exists and [1[ro],0 # rio, then

((l[rolpo, Ago, ag), (rio, Avo, ay))
is a (non-trivial) eritical pair of the form (ag,a1) where, for 1 € {0,1}, a; = 0 if
li=r;+ A; isin R and a; = 1if [;=r; « A; isin RP.
The set of all critical pairs between rewrite rules in R is denoted by CP(R).

(ii) The above critical pair is complementary if

(a) there are u,v €T (sig,V) and an ¢ € {0,1} such that u=wv or v =wu occurs
in A;o and u=# v occurs in Ay_;0; or

(b) there are ¢, 4, € T (sig, V) such that ¢ and ¢ are distinct — g-irreducible
ground terms, t =4 or t =1 occurs in Ago and t =0 or 0 =1 occurs in A;o.

Consider e.g. the critical pairs of the rewrite system in Example 1.1: There are only
two critical pairs resulting from overlapping the two div-rules into each other. Since
the two critical pairs are symmetric and the notion of complementarity is symmetric
too, we just have to consider one of the critical pairs, say

((0,y #0 A less(z,y) =true, 1), (s(div(minus(z,y),y)),y # 0 A less(z, y) =false, 1)) .

It is complementary according to Part (b) of Definition 5.1 (instantiate ¢ with less(z, y),
@ with true and © with false). Similarly, for the complementarity of the critical pairs
of the rewrite system of Example 1.2 we only have to check that the critical pair
((21,2 =129,1),(divl(z,y,s(z1), plus(zs,y)), z # 22, 1)) is complementary, which is ob-
viously the case (see Part (a) of Definition 5.1).

In addition, two further notions are presupposed in our confluence criterion, namely
left-linearity and a weakened form of normality. These properties of rewrite systems are
necessary for establishing confluence of non-terminating rewrite systems (see above).

A rewrite system R is called left-linear if the left-hand side [of each rewrite rule
[=r < A in R is linear. Moreover, we call R weakly normal if each [=r + A in R
satisfies the following condition: For each ¢; =1, in A there is an ¢ € {1,2} such that
t; is a —>p-irreducible ground term or ¢; € T(sigc, VE) or def(t;) occurs in A,

Obviously, the rewrite systems in Examples 1.1 and 1.2 are left-linear. Assuming
that all variables are constructor variables these rewrite systems are also weakly normal,
because the right-hand sides of all equational conditions are constructor terms. Thus,
we can directly apply the following syntactic confluence criterion to prove confluence
of the rewrite relations in these examples.

16

Theorem 5.2 Let spec = (sig, C, R) be a specification with constructors such that R is
left-linear as well as weakly normal and R = R W RP where R is a set of constructor
rules and RP a set of defining rules.

Assume that —s e is confluent. If each critical pair in CP(R) of the form (0,1), (1,0)
or (1,1) is complementary, then — g is confluent.

Note that this confluence criterion is stronger than a similar theorem of [BK86] (also
cited in [DOS88]) since instead of normality it only requires weak normality, a property
that is less restrictive because we can always achieve it by adding definedness atoms to
the condition literals. Moreover, instead of requiring orthogonality, our theorem can
deal with critical pairs provided they are complementary — a property which could again
be weakened, but (to our knowledge) not in an effective manner that would satisfy the
practical requirements of an admissibility condition for a specification language.

6 Discussion

We conclude this paper by providing some evidence for the usefulness of the proposed
specification language as part of a rewrite-based logical framework for I'TP.

Concerning the syntaz of the language it should be noted that an additional kind
of variables, namely constructor variables, is offered. Since our constructor variables
restrict the validity of statements to the finitely generated data items, they are mostly
preferred to general variables in the context of ITP. We also offer negative conditions
in conditional equations. Therefore, tedious axiomatizations of equality predicates for
various sorts in terms of bool-valued eg-operations can be avoided (consider the natural
definitions of div and divl in Sect. 1).

The appropriateness of the semantics of our specification language can also be
demonstrated with Examples 1.1 and 1.2. Consider the class of data models of the
specification spec’ in Example 1.2. Since spec’ is an admissible specification (see Theo-
rem 5.2), the standard data model M(spec’) exists so that DMod(spec’) is not empty.
It is obvious that every data model of spec’ has the two truth values and the natural
numbers as its data reduct. Hence, in spite of the existence of “junk terms”, clauses
such as plus(z,y) =plus(y,z) or clause (1) (see Example 1.2) are valid in DMod(spec’)
assuming that all variables are constructor variables. Furthermore, the “invariant” for
a proof of clause (1), namely

y=0 V less(z, times(y,z)) = true V divl(z,y,0,0) =divl(z,y, z, times(y, z))

is also valid in DMod(spec’) (as can be proved by induction on z).

As inductive proofs often call for extensions of the specification in order to facili-
tate the formulation of missing lemmas or stronger induction hypotheses, an essential
requirement for an inductive semantics is its monotonicity of validity wrt. “consistent”
extension of the specification. For DMod(spec), this monotonicity property is given as
is shown in the following.

17

Definition 6.1 For i€ {0, 1} let spec; = (sig,, C;, R;) be a specification with construc-
tors where sig; = (S;, Fi, o), and let V; = (V;;),e 5, be a variable system for sig;. We
say that spec, is a constructor-consistent extension of spec, if the following conditions
are met: (1) So C Sy, Fo C Fy, Co C Cy and ag C oy (2) Vo s = Vi 5 for each s € Sy (3)
Ro C Ry (4) for each ¢ € C1\Cy with a1(¢) = s1...8,s we have s ¢ Sy and (5) for each
constructor rule [=r < A in Ry\ Ry we have [¢ T (sigs°, V).

Theorem 6.2 For i €{0,1} let spec; = (sig;, Ci, R;) be an admissible specification.
Assume thal spec, is a constructor-consistenl exlension of spec,, and let I' be a clause

(over sig, and V). Now if DMod(specy) |= I', then DMod(spec,) = I

Theorems 4.8 and 6.2 imply a similar monotonicity for the validity in M(spec), which,
however, requires the definedness of the terms in the negative literals of the clauses.
This requirement is in fact needed: The clause minus(0,s(0))#0 is valid in M (spec)
(but not in DMod(spec)) where spec is the specification of Example 1.1. However,
after a constructor-consistent extension of spec with the rewrite rule minus(0,s(y))=0
the clause minus(0,s(0))# 0 is no longer valid in the resulting standard data model.
Mainly because of Theorem 6.2 we prefer DMod(spec) as the inductive semantics of
our specification language.

Finally, we would like to emphasize the (logical) weakness and suitability of our
admissibility conditions. Contrary to many (first-order) specification formalisms for
ITP, we can model partial operations that may result from incomplete defining case
distinctions or from non-termination. Note that axiomatizing an arbitrary completion
(i.e. a total extension) of a partially defined function is not adequate because it may
result in unintended inductive theorems and unnecessary implementation requirements.
Moreover, defining the semantics of a partially specified operation as that of all its
consistent completions is not reasonable either: A consistent completion is often not
possible (consider e.g. a = s(a) for a non-constructor constant a) making this approach
meaningless for non-terminating rewrite systems.

Furthermore, even if the specifying rewrite system terminates, it may be difficult
to show this (see our discussion of Example 1.1). Since confluence as the essential
admissibility condition of our specification language can often be effectively proved by
means of our new confluence criterion that does not presuppose termination, we do
not have the typical termination related problems as in the rewrite-based approaches
of [BR95] and [KS96]: For example, we can easily axiomatize operations that are
naturally defined by destructor recursion (such as div or merge-sort).

Note that the reduction order given by a terminating rewrite relation is usually not
necessary for rewrite-based ITP as is shown in [WK95], where we propose the use of
an independent induction order for justifying the applications of induction hypotheses:
For example, we can easily prove the above “invariant” by structural induction on z.

18

A The Proofs

Proof of Lemma 3.3. G7(sig) is initial in the class of all sig-algebras, and so
there is only one sig-homomorphism from G7 (sig) to B, namely eval®. Hence, we have
hs(t?) = B for all t € GT (sig), and for all s € S, which implies that h,(a) € B
for all @ € AY. Thus, hY is a function with AY: AY — BY. With the assumption
that h is a sig-homomorphism, it is easy to show that A® is a sig”-homomorphism.
As GT (sig?) is initial in the class of all sig”-algebras, we have eval?” = hC o eval®” .

Since eval® s a sig®-epimorphism, h¢ must be a sig”-epimorphism as well. a

Proof of Lemma 3.5. Since o is a constructor substitution, (evalf; oo)(zx) € AY
forallz € XN VY, so evalﬁ oo is indeed a valuation of X in 4. A simple structural

1;‘00)(t) for all t € T(sig, V). O

induction on ¢t shows that evalﬁ(ta) = evalf(leva

Proof of Proposition 3.7. TLet A € Mod(spec) and ¢ be a valuation of V¢ in A.

(1)=-(2): Let o be an inductive substitution. Since A € Mod(spec), A satisfies I
with evalﬁ o o. Thus, there is a literal A in I" such that A satisfies A with eval? oo.
Now Lemma 3.5 shows that A satisfies Ao with ¢. Since Ao is a ground literal we

obtain A = Ao .

(2)=(1): Since AY is term-generated, there must be an inductive substitution &
such that ¢ = eval’” 0o = evalf: o o. Using Lemma 3.5 and that {o is a ground

term if ¢t € T (sig, V®), we obtain evalﬁ(t) = evalf(tevalAw)(t) = eval“:(ta) = to? for
all t € T(sig,V?). Because of (2), A |= Ao holds for some literal X in I', and since
evalﬁ(t) = to* it is clear that A satisfies A with . Hence, A satisfies I with ¢, which

proves that A= T". 0

Proof of Lemma 3.9. Let A be a data model, and let B € Mod(spec). Define
a family h = (hy)ses of functions h,: AY — BY by hy(a) = t¥ where a = t* and
t € GT(sig%),. We show that h, is well-defined. Let 1,1, € GT (sig”), such that
t4 = a =14 Since A is a data model, Mod(spec) |= t; =1, and hence % = ¢5. Thus
we have h,(t{') = 1% =15 = h,(13'). A simple argument proves that h: A° — B is a
sig®-homomorphism. Now let A’: A — BY be another sig”-homomorphism from A®
to B. An induction over GT (sig”) shows that Ah(t4) = h/(14) for all t € GT (sig?),
which implies that h(a) = A'(a) for all @ € A®. Hence, there is exactly one sig®-
homomorphism from A% to BY, and so A” is initial in { B¢ | B € Mod(spec) }.
Conversely, let A® be initial in { BY | B € Mod(spec) }. Let B € Mod(spec) and
h: A — BY be the unique sig”-homomorphism from A to BY. If ¢ = ¢3! for any
ti,t2 € GT (sig”) then ¢85 = h(t{) = h(t5') = t5 due to the definition of k. As ¢, =1,
is a ground equation, t; =15 is valid in B. Thus, Mod(spec) |= 11 =13, and so A is a
data model. O

Proof of Corollary 3.10. As both A% and B¢ are initial in { BY | B € Mod(spec) },
they must be (sig”-) isomorphic (see e.g. [EM85]). O

19

Proof sketch of Lemma 4.3. (1) and (2) can be shown by induction on ¢, and (3)
and (4) follow immediately from Definitions 4.1 and 4.2. O

In the following proofs, let [t] denote the sig-congruence class of ¢ € T (sig, V) with
respect to ¢——g, i.e. [t] = {t' € T(sig, V)|t +rt}.
Proof of Proposition 4.5. (1) Let M = T (sig,VY)/+—g. By Lemma 4.3(4),
— g is sort-invariant and monotonic. Thus, g is a sig-congruence on T (sig, V%)
so that M = (M, FM) is actually a sig-algebra satisfying

o M,={[t]|t € T(sig,V%),} and ME = {[t]|t € GT (sig"), } for all s € S,

o fM(],...,[ta]) = [f(t1,...)] for all f € F and for all ¢; € T(sig,VY),,

where a(f) =s1...sps and i =1,... n.

First we prove that M is a sig-model of spec. Let [=r <+ A be a conditional rewrite
rule in R and ¢ be a valuation of V in M such that M satisfies each literal in A with ¢.
We have to show that evaly(l) = evalgA(r) . Let u be the valuation of V& in M with
u(z) = [z] for all z € VY. By the Axiom of Choice, there is an inductive substitution
o for ¢ such that ¢(z) = (eval¥ 0 0)(z) = [za] for all z € V. Then, by Lemma 3.5,
evalg/l(t) = evalj(\gvalyw)(t) = [to] for all t € T(sig,V). We claim that lo —p ro
with [=r < A: For u=v in A we have evalgA(u) = eval’f(v) and hence [uo] = [vo].
Since — g is confluent, it follows that wo | g vo. For def(u) in A we have evalf;/l(u) €
MC. Thus, there is a t € GT (sig®) with [uc] = [t], and hence uo |r . Because of
L € GT (sig”), confluence of —sp and Lemma 4.3(3), there must be a @ € GT (sig“)
with uo g @. For u#v in A we have evalﬁ/l(u) # evalf;{(v). Condition (c¢) in
Definition 4.4 implies that evalf;{(u), evalﬁ’l(v) € M. Thus, there are @t,o € GT (sig)

such that uoc g @ and uo —sg . Since [i] = evalﬁ/((u) # evalg/t(v) = [?], it
follows that @t 4r © and hence u {gc ©. Consequently, [=r < A is applicable to lo,
and we obtain [lo] = [ro]. Hence, evaly(l) = evalf:l(r).

That M is also a data model of spec can be seen as follows. A simple induction
on i shows that t; —pgc ; 15 entails Mod(spec) |= t; =1, for all ¢1,1; € GT (sig?).
Thus, Mod(spec) = ¢, =t, obviously holds if #; |ge ¢, which is implied by M = ¢
as —p is confluent. Hence, M € DMod(spec).

(2) For s€ S and for t € GT (sig”), define hy: (GT (sig”)/+—spe)s — ME by
hs([t]c) = [t] where [t]e = {#' €GT (sig")s |t +—gec t}. Then h, is obviously well-
defined and surjective, and by making use of the confluence of — g, one easily proves
that h, is injective. Moreover, it is trivial to show that A is a sig”-homomorphism.
Therefore, M% and GT (sig”)/+— pe are sig”-isomorphic. Hence, (2) follows from (1)
and Corollary 3.10. O

Proof of Lemma 4.6. Let A € DMod(spec) and ¢ be a valuation of V¢ in A.
Given that ¢; <= t» we have to show that evalﬁ(tl) = evalﬁ(tg). First we claim
that for all i € IN and sy, s, € T (sig, V) the following statements hold:

(i) If sy —>go ; so then eval“;(sl) = evalﬁ(sz).

(ii) If sy —g,i s2 then evalf;(sl) = evalﬁ(sz).

20

We omit the simple proof of (i) and show (ii) by induction on . If ¢+ = 0 or if
$1 —R,i+1 S2 holds because of s; —ge sy then (ii) follows from (i). Otherwise
we have sy —>p it1 S2 since there is a p € Pos(s1), an inductive substitution o and
a defining rule I=r < A such that s;/p = lo,sy = si[ro], and each literal in
Ao is “fulfilled” by — g, (see Definition 4.2). We show that A satisfies each literal
in Ao with ¢ which implies evalﬁ(la) = evalﬁ(ra) as A € Mod(spec), and hence
evalﬁ(sl) = eval?(sz). For u=v in Ao we have u |gr; v, and evalfs(u) = eval“;(v)
follows from the induction hypothesis. For def(u) in Ao there is a @t € GT (sig”) such
that u —+p ; @, and the induction hypothesis implies that evalfs(u) = eval?(ﬁ) = a4,
and hence eval“;(u) € AY. For u#v in Ao there are @1,o € GT(sig”) such that
U —$p;t, v —sp; 0 and U {pe ©. Again, it follows from the induction hypothesis
that evalf;(u) = o4 and eval:;‘(v) = o4, As @ {pc O, we have @ g © by Lemma
4.3(3), and thus aM #£ oM for M = T(sig,V9)/++r. Now A is a data model
of spec, so AY is isomorphic to MY by Corollary 3.10 and Proposition 4.5. Hence,
4 # o4 which shows that evalﬁ(u) + eval“:(v) . This completes the proof of (ii), and

by applying (ii) we can easily conclude eval“;(tl) = evalﬁ(tg) from t; <—sgt;.

Conversely, let DMod(spec) = ¢1 =15 and M = T (sig,V)/<—r. By Proposi-
tion 4.5, M is a data model of spec. Hence, evalf;/‘ (t1) = eV.":LLpM (t2) for every valuation
@ of V¥ in M. Let u be the valuation of V¢ in M defined by u(z) = [z] for all
z € VG, Then [t;] = evaluM(tl) = evaluM(tQ) = [ty], which entails that ¢, «<~pl,. O

Proof of Theorem 4.7. Let M = T(sig, V%)/<"=x and u be the valuation of V¢
in M with u(z) = [z] for all z € VY. Since M € DMod(spec) by Proposition 4.5,
we still have to show that, given a sig-algebra A € DMod(spec) and a valuation ¢
of VY in A, there is a unique sig-homomorphism h: M — A such that ¢ = hou,
i.e. p(z) = h([z]) for all z € VE. By Lemma 4.6, {; +—g lo implies A | t; =1,
which means that eval“;(tl) = eval“;(tg) for all ¢1,t, € T(sig,VY). Thus we have
—srC ker(evalﬁ), and by the Homomorphism Theorem (see [EM85]) we obtain a
sig-homomorphism h: M — A such that eval“:(t) = (h omat)(t) = h([t]) for all
t € T(sig,VE). In particular, p = hou. Now let h: M — A be another sig-
homomorphism with ¢ = A’ ou. A simple induction on ¢ proves that A'(t) = h(t) for
all t € T (sig,VY). Hence, h is unique. O

The following lemma is applied in the proof of Theorem 4.8.

Lemma A.1 Let spec = (sig,C, R) be an admissible specification, and let I' be a
clause. Then M(spec) | I' iff for every inductive substitution o there is a literal A
in 1" such that

(1) X is of the form ty=t; and tyo [gtyo or

(2) X is of the form def(t) and to gt for some i € GT(sig®) or

(3) X is of the form t1 #ty and ty0 4R tao or

(4) X is of the form —def(t) and not to —sp i for every i € GT (sig®)

21

Proof sketch of Lemma A.1. Essentially, the lemma follows from the fact that
for every valuation ¢ of V' in M(spec) there is an inductive substitution o (and vice
Ver)sa) such that evalﬁ/((sf’ec)(t) = [to] for all t € T (sig, V) (see the proof of Proposition
4.5). 0

Proof of Theorem 4.8. Let A € DMod(spec) and ¢ be a valuation of V in A.
We have to show that there is a literal A in I" such that A satisfies A with ¢. By
the Axiom of Choice, there is an inductive substitution ¢ such that o(z) = ¢ for some
t € GT (sig?) with t4 = () for every z € VC, and o(z) = z for every z € VEC.
Now (*) evalﬁ(t) = eval?(ta) for all t € T (sig, V), which can be shown by induction
on t. Since M(spec) |= I', there is a literal A in I' for o such that one of the cases
(1) to (3) of Lemma A.1 must hold — case (4) contradicts the assumption made for
I'. In case of (1), A is of the form ¢t; =13 and A |= t;o0 =130 by Lemma 4.6. Hence,
evalﬁ(tla) = evalﬁ(tga), and by (*) it follows that evalﬁ(tl) = evalﬁ(tg). In case of
(2), A is of the form def(t) and A |= to=1{ for some i € GT(sig®) by Lemma 4.6.
Thus, evalﬁ(t) = evalﬁ(ta) = evalﬁ(f) = {4, and A satisfies def(t) with ¢. In case of
(3), A is of the form ¢y #15 and t10 4r t90. The assumption for I and the preceding
case imply that evalﬁ(tl) = tAlA and evalﬁ(tg) = tAQA for some 1,1, € GT (sig?).

Obviously, we have f; {gc {3, and hence tAlM(SPEC) + tAQM(SpeC) . By Proposition 4.5(2),

we obtain tAlA + tAgA, and thus eval“:(tl) + evalﬁ(tg)) a

Proof of Theorem 5.2. For a proof of the theorem we will apply Theorem 68(I) of
[Wir95], which guarantees w-shallow confluence of R, V4. By Corollary 23 of [Wir95],

w-shallow confluence of R, V¢ is sufficient for confluence of —sp.

The rewrite relation —+p is not changed when, for a term ¢ € T (sig®, V©), the
literal def(?) is added to the condition literals of a rewrite rule. Thus, w.l.o.g., each
[=r + A in R satisfies the following (simplified) weak normality condition: For each
t1 =1y in A there is an ¢ € {1,2} such that ¢; is a —>g-irreducible ground term or
def(t;) occurs in A. This implies the quasi-normality of Definition 58 of [Wir95] which
is required for the application of Theorem 68(I) — just like conservative constructors
(which follows directly from our definition of constructor rule), (a weak form of) left-
linearity of R and confluence of —pe.

Theorem 68(I) requires us to show some sophisticated w-shallow joinability proper-
ties for the critical pairs of the form (0,1), (1,0) or (1,1). Since we want to make use of
the assumed complementarity of the critical pairs for showing that their conditions are
infeasible, we do not really need the complete definitions of these joinability properties,
but only show that the conditions under which the critical pairs must be joined are
never satisfied.

Let us consider the critical pairs ((tgo, Ago, ag), (t10, A10,a1)) of the form (0,1)
or (1,0) at first. The conditions of the w-shallow joinability properties allow us to
assume that (AgA;)o7 is “fulfilled” by — g (see Definition 4.2) for those inductive
substitutions 7 for which some special form of joinability of {07 and 107 is to be
given. Due to the assumed complementarity, there are two possible cases:

22

Case 1. There are u,v € T (sig, V) and an ¢ € {0, 1} such that u=v or v =wu occurs in
A;o and v # v occurs in Ay_;0:

Under this assumption there are some @, € GT (sig”) such that @ <—g ur g
0 ¢ —prvr —sr v and @ $pc 9. By Lemma 4.3(3) and by Claim 1 below we get
fi <~ pc UT —$pc 0 ——pe VT —3pe 0 and then by confluence of —szc the contra-
dictory @ Jre 0.

Claim 1. We have ur,vr € GT (sig?).

Proof of Claim 1. Since the critical pair is of the form (0,1) or (1,0), one of the rules
generating the critical pair must be a constructor rule. Thus, since v and v occur
in both instantiated condition lists, they occur also in the instantiated condition list
of the constructor rule, such that we have u,v € T(sigc, VY) by Definition 4.1 and
because ¢ is a constructor substitution, and thus ur,vr € GT (sig”) because T is an
inductive substitution.

Case 2. There are t, 4,0 € T (sig, V') such that @, v are distinct — g-irreducible ground
terms, t =u or =1 occurs in Ago and { =0 or v =1 occurs in A;o:

Under this assumption we have @ <—g {7 —g 0. By Lemma 4.3(3) and by Claim 2
below we get @ <—pc t7 —spc © and then by the assumed confluence of —s e the
contradictory @ | ge 0.

Claim 2. We have t1 € GT (sig®).

Proof of Claim 2. Since the critical pair is of the form (0,1) or (1,0), one of the rules
generating the critical pair must be a constructor rule. Thus, since ¢ occurs in both
instantiated condition lists, it occurs also in the instantiated condition list of the con-
structor rule, such that we have ¢ € T (sig”, V) by Definition 4.1 and because ¢ is a
constructor substitution, and thus ¢ € GT (sig”) because 7 is an inductive substitu-
tion.

Let us now consider the critical pairs ((too, Ao, ag), (110, A10,a1)) of the form (1,1).
The conditions of the w-shallow joinability properties allow us to assume the following
for those ng,n; € IN and inductive substitution 7 for which some special form of join-
ability of tooT and t107 is to be given: For i € {0,1}, A,o7 is “fulfilled” by — g ,,;, and
R, VY is w-shallow confluent up to w+ng+n;. Due to the assumed complementarity,
there are two possible cases:

Case 1. There are ug,u; € T(sig, V) and an ¢ € {0, 1} such that wg=1uy or u; =ug oc-
curs in Ao and ug # vy occurs in Ay_;o:

Since ug = u; occurs in A;o, by the above statement there is some j € {0, 1} such that
def(u;) occurs in A;o or u; is a —pg-irreducible ground term. Thus, by the above
fulfilledness, there are some u}, u!,t' € GT(sig”) such that u) < —gn,_. UoT ——Rn;
0 <*—R7ni uLT %le_i uy, uydge uy, and u;T L>R,n¢ t" or u;T is — p-irreducible.
By Lemma 69(4) of [Wir95] and the w-shallow confluence of R,V up to wtng+n,
this implies ugy }r.n, v}, which by Lemma 4.3(3) implies the contradictory uy | re u].
Case 2. There are t, 0,0 € T (sig, V) such that @, v are distinct — g-irreducible ground
terms, t =u or =1 occurs in Ago and { =0 or v =1 occurs in A;o:

In this case we have éR,no tr L>R,n1 d. By the w-shallow confluence of R, V¢ up
to w+ng+n; this implies the contradictory %le) éR,no v. O

23

Proof of Theorem 6.2. Let A = ((A;)ses,, (f*)ser) be a data model of spec,,
and let ¢ be a valuation of V; in A. We have to show that A satisfies I with .
Let B = ((Bs)sesy, (f%)ser,) be the sigyreduct of A, i.e. B, = A, for each s € Sp
and f8 = fA for each f € Fy. Now ¢ := ply, is a valuation of V; in B such that
evalﬁ(t) = evalg(t) for every t € T (sigy, Vo). Due to condition (4) in Definition 6.1,
GT (sigs") = GT (sig§") for each s € Sy, and so we have AS* = B for each s € Sq.
Moreover, I' is a clause over sig, and V5. Thus, we obtain: (*) A satisfies I" with ¢
iff B satisfies I" with ¢. Assume that B € DMod(specy). Since DMod(specy) = I, B
satisfies I" with ¢. Hence, by (*), A satisfies I" with ¢.

We still have to show that B is a data model of spec,. Since A is a (sig,)-model of
specy, it follows with an argument similar to (*) that each rewrite rule in Ry is valid
in B. Thus, B is a (sig,)-model of specy. Let t1,t, € GT (sig5?) such that t5 = ¢&.
Then ¢ = 4, which entails ¢, iRlcl ty by Proposition 4.5(2). Using condition (5) in
Definition 6.1 we obtain ¢; \LR(?O ty. This implies that Mod(specy) |= t1 =12 as is easily

shown. Hence, B is a data model of spec,. O

24

References

[AMO5]

[BKS6]

[BM79]
[BR95]

[DJ90]

[DOSSS]

[EMSS5]

[HS96]

[KS96]

[Pla85]

[WG94al

[WG94b)

[Wir90]

[Wir95]

[WK95]

J. Avenhaus and K. Madlener. Theorem proving in hierarchical clausal speci-
fications. SEKI-Report SR-95-14, FB Informatik, Universitat Kaiserslautern,
1995.

J. A. Bergstra and J. W. Klop. Conditional rewrite rules: Confluence and
termination. J. Computer and System Sci., 32:323-362, 1986.

R. Boyer and J Moore. A Computational Logic. Academic Press, 1979.

A. Bouhoula and M. Rusinowitch. Implicit induction in conditional theories.

J. Automated Reasoning, 14:189-235, 1995.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of Theo-
retical Computer Science, pages 243-320. Elsevier Science Publ. B. V., 1990.

N. Dershowitz, M. Okada, and G. Sivakumar. Confluence of conditional
rewrite systems. In 15 CTRS, volume 308 of LNCS, pages 31-44. Springer,
1988.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification. Springer,
1985.

D. Hutter and C. Sengler. INKA: The next generation. In 13" CADE,
volume 1104 of LNAIL pages 288-292. Springer, 1996.

D. Kapur and M. Subramaniam. New uses of linear arithmetic in automated
theorem proving by induction. J. Automated Reasoning, 16:39-78, 1996.

D. A. Plaisted. Semantic confluence tests and completion methods. Infor-

mation and Control, 65:182-215, 1985.

C.-P. Wirth and B. Gramlich. A constructor-based approach to positive/
negative-conditional equational specifications. J. Symbolic Computation,

17:51-90, 1994.

C.-P. Wirth and B. Gramlich. On notions of inductive validity for first-order
equational clauses. In 12* CADE, volume 814 of LNAI pages 162-176.
Springer, 1994.

M. Wirsing. Algebraic specification. In Handbook of Theoretical Computer
Science, pages 675—788. Elsevier Science Publishers B. V., 1990.

C.-P. Wirth. Syntactic confluence criteria for positive/negative-conditional
term rewriting systems. SEKI-Report SR-95-09, FB Informatik, Universitat
Kaiserslautern, 1995.

C.-P. Wirth and U. Kuhler. Inductive theorem proving in theories speci-
fied by positive/negative-conditional equations. SEKI-Report SR-95-15, FB
Informatik, Universitat Kaiserslautern, 1995.

