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Abstract

Geometric Programming is a useful tool with a wide range of appli-
cations in engineering. As in real-world problems input data is likely
to be affected by uncertainty, Hsiung, Kim, and Boyd introduced robust
geometric programming to include the uncertainty in the optimization
process. They also developed a tractable approximation method to tackle
this problem. Further, they pose the question whether there exists a
tractable reformulation of their robust geometric programming model in-
stead of only an approximation method. We give a negative answer to this
question by showing that robust geometric programming is co-NP hard
in its natural posynomial form.

Keywords Robust optimization; Geometric Programming; Complexity; co-
NP hardness

1 Introduction

Geometric programming can cover constraints that might be neither linear nor
convex and, hence, it can be used to model problems that cannot be formulated
by standard optimization tools such as linear or convex programs. Despite the
possibly difficult constraints in a geometric program, it can be solved efficiently
by transforming it to a convex optimization problem using variable transforma-
tion. For a general overview of geometric programming and its applications we
refer to the survey of Ecker [4].

In the field of classic optimization one assumes to have perfect knowledge
of the input parameters that are used in the description of the problem. For
real-world problems this assumption can be violated by, e.g., erroneous mea-
surements or wrong forecasts. A solution that is computed under the assump-
tion of wrong input parameters can yield a bad performance in reality. Hence,
researchers have tried to incorporate the aspect that data is afflicted with un-
certainty into the model formulation of the optimization problem. Well-known
such approaches are due to Ben-Tal and Nemirovski [1], and Bertsimas and

∗Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Com-
mand, USAF, under grant number FA8655-13-1-3066. The U.S Government is authorized to
reproduce and distribute reprints for Governmental purpose notwithstanding any copyright
notation thereon.
†Corresponding author. Email: chassein@mathematik.uni-kl.de

1



Sim [3]. For more information about robust optimization we refer to the sur-
veys of Bertsimas, Brown, and Caramanis [2], and of Goerigk and Schöbel [6].

To introduce uncertainty into the optimization problem, one defines an un-
certainty set that describes the possible realizations of the input parameters of
the model. The classic approach of robust optimization is to find a solution that
is feasible under all possible realizations of the input data.

Hsiung, Kim, and Boyd applied this general method to geometric program-
ming and defined the robust geometric program [7]. They note that the problem
complexity is unknown. In this note we study the computational complexity of
the robust geometric programming reformulation if it is provided in its natural
posynomial form, thus providing an answer to this open question. Using a re-
duction from the complement of the partition problem, we show that geometric
programming is co-NP hard.

2 Robust Geometric Programming

A robust geometric program in convex form is defined as

minimize cT y

subject to lse(Aiy + bi) ≤ 0 i = 1, . . . ,m

Gy + h = 0

where Ai ∈ RKi×n, bi ∈ RKi

for i = 1, . . . ,m, c ∈ Rn, G ∈ R`×n, and h ∈ R`
denote the input parameters, and y ∈ Rn is the vector of decision variables.
The convex log-sum-exp function lse: Rk → R is defined as

lse(z1, . . . , zk) = log(ez1 + . . .+ ezk).

In robust optimization it is assumed that the input parameter of the problem
are not given exactly. A common approach to allow variability in the input data
is to parameterize it with respect to some vector u ∈ RL that belongs to a fixed
uncertainty set U . The same method is used in [7]. The authors assume that the
problem data (Ai, bi) depends affinely on the vector of uncertain parameters u.

(Ãi(u), b̃i(u)) =

A0
i +

L∑
j=1

ujA
j
i , b

0
i +

L∑
j=1

ujb
j
i

 , u ∈ U ⊂ RL.

The robust geometric program in convex form (RGP – con) is then given by

minimize cT y

subject to sup
u∈U

lse(Ãi(u)y + b̃i(u)) ≤ 0 i = 1, ...,m

Gy + h = 0

The authors of [7] suggest two different uncertainty sets: A polyhedral uncer-
tainty set U = {u ∈ RL | Du ≤ d}, where d ∈ RK and D ∈ RK×L, and an
ellipsoidal uncertainty set U = {u + Pρ | ||ρ||2 ≤ 1, ρ ∈ RL}, where ū ∈ RL
and P ∈ RL×L. In this paper, we consider polyhedral uncertainty sets. The
authors note that it is an open question whether (RGP – con) has a tractable
reformulation.
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Note that geometric programs appear in practice in their posynomial and
not in their convex form. Hence, we discuss tractability issues for problems in
their posynomial form. The difficulty with the convex form is that a problem
given in posynomial form with rational input data leads in general to a convex
problem with irrational data. An exact description in convex form with bounded
input size is, therefore, impossible.

We first transform the problem to a robust geometric program in posynomial
form. This can be done in two steps. First by replacing each variable yl = log(xl)
and then taking the exponential function on both sides of every (in)equality and
on the objective function.

An affine equality constraint

GTj y + hj = 0

with Gj being the jth row of G is transformed to a monomial equality constraint

fj(x) = ehj

n∏
l=1

x
Gjl

l = 1.

Note that the objective function is also transformed to a monomial function
f0(x). An inequality constraint of the form

lse(Ãi(u)y + b̃i(u)) ≤ 0

is transformed to a posynomial inequality constraint with parameter u

fi(u, x) =

Ki∑
k=1

(
eb̃

k
i (u)

n∏
l=1

x
Ãk

il(u)
l

)
≤ 1.

The robust geometric program in posynomial form (RGP – pos) has, there-
fore, the form

minimize f0(x)

subject to sup
u∈U

fi(u, x) ≤ 1 i = 1, . . . ,m

fj(x) = 1 j = 1, . . . , p

3 Complexity Result

In this section we show that the decision version of robust geometric program-
ming in posynomial form (Dec – RGP – pos) is co-NP hard.

Definition 3.1. (Dec – RGP – pos)
Given a constant k. Does there exists a solution x ∈ Rn such that f0(x) ≤ k,
supu∈Ufi(u, x) ≤ 1 ∀i = 1, . . . ,m, and fj(x) = 1 ∀j = 1, . . . , p?

For the reduction we use the complement of the partition problem (co – PART ),
which is known to be a co-NP complete problem, as partition is a NP complete
problem [5].
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Definition 3.2. (co – PART )
Given N numbers a1, ..., aN ∈ N. Does it hold for all subsets S ⊂ {1, ..., N} of
these N items that

∑
i∈S ai 6=

∑
j /∈S aj?

Theorem 3.3. (Dec – RGP – pos) is co-NP hard.

Proof. To show that the decision version of (RGP – pos) is co-NP hard, we have
to find a reduction from another co-NP hard problem. This means that we
have to construct for every instance Πco−P of (co – PART ) an instance ΠRGP of
(Dec – RGP – pos) in polynomial time (with respect to the size of Πco−P ) such
that ΠRGP is a yes−instance if and only if Πco−P is a yes−instance.

Given an instance Πco−P with N natural numbers a1, ..., aN ∈ N, we define
the following robust geometric program in posynomial form:

minimize 0

subject to sup
u∈U

(
N∑
l=1

xul + x−ul

)
≤ N

(
2 +

1

2

)
− 1

2N(amax + 1)

x = 2

where U = {u ∈ RN | −1 ≤ ul ≤ 1 ∀ l = 1, . . . , N ∧
∑N
l=1 ulal = 0} and

amax = maxl=1,...,N al. We complete the description of ΠRGP by setting k = 0.
Note that this problem is indeed an instance of (Dec – RGP – pos), and the
uncertainty set is a polyhedron. It is straightforward to check that the definition
of ΠRGP can be done in polynomial time (with respect to the size of Πco−P ). We
need to show that ΠRGP is a yes−instance if and only if Πco−P is a yes−instance.

We start with the easier direction. Assume that Πco−P is a no−instance.
Then we have to show that ΠRGP is also a no−instance. If Πco−P is a no−instance
there must exist a subset S ⊂ {1, . . . , N} such that

∑
i∈S ai =

∑
j /∈S aj . Define

the vector û as follows, ûl = 1 if l ∈ S and ûl = −1 otherwise ∀ l = 1, . . . , N .
By construction, û ∈ U . Therefore, we get

sup
u∈U

(
N∑
l=1

xul + x−ul

)
= sup
u∈U

(
N∑
l=1

2ul + 2−ul

)

≥
N∑
l=1

(
2ûl + 2−ûl

)
=

N∑
l=1

(
21 + 2−1

)
= N

(
2 +

1

2

)
> N

(
2 +

1

2

)
− 1

2N(amax + 1)

Hence, the geometric program is infeasible and ΠRGP is clearly a no−instance.
It is left to show that from ΠRGP being a no−instance follows that Πco−P is

also a no−instance. Assume that ΠRGP is a no−instance. This means that the
robust geometric program is infeasible. Hence, there must exists a ũ ∈ U such
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that

N∑
l=1

(
2ũl + 2−ũl

)
> N

(
2 +

1

2

)
− 1

2N(amax + 1)
.

Assume that there exists an index l∗ such that |ũl∗ | < 1− 1
N(amax+1) . Note that

the function s : [−1, 1] → R, s(α) = 2α + 2−α is maximal for α ∈ {−1, 1} and
that s(α) ≤ 2 + 0.5|α| ∀ α ∈ [−1, 1]. Therefore, we get a contradiction as

N∑
l=1

(
2ũl + 2−ũl

)
=
∑
l 6=l∗

(
2ũl + 2−ũl

)
+ 2ũl∗ + 2−ũl∗

≤ (N − 1)

(
2 +

1

2

)
+ 2ũl∗ + 2−ũl∗

≤ (N − 1)

(
2 +

1

2

)
+ 2 +

1

2
|ũl∗ |

< (N − 1)

(
2 +

1

2

)
+ 2 +

1

2

(
1− 1

N(amax + 1)

)
= N

(
2 +

1

2

)
− 1

2N(amax + 1)

Hence, we know that |ũl| ≥ 1 − 1
N(amax+1) ∀ l = 1, . . . , N . Next we define the

vector û = sgn(ũ), where sgn is the multidimensional extension of the signum
function, as well as δ = û− ũ. Note that |δl| ≤ 1

N(amax+1) ∀ l = 1, . . . , N .∣∣∣∣∣
N∑
l=1

ûlal

∣∣∣∣∣ =

∣∣∣∣∣
N∑
l=1

(ũl + δl)al

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
l=1

ũlal

∣∣∣∣∣+

∣∣∣∣∣
N∑
l=1

δlal

∣∣∣∣∣
≤

N∑
l=1

|δl|al (as ũ ∈ U)

≤
N∑
l=1

al
N(amax + 1)

< 1

As û ∈ ZN and al ∈ N ∀l = 1, . . . , N , we know that
∑N
l=1 ûlal ∈ Z. Therefore,

we can conclude that
∑N
l=1 ûlal = 0. This gives a partition S = {l | ûl = 1}

with
∑
i∈S ai =

∑
j /∈S aj . Hence, Πco−P is a no−instance. This finishes the

proof.

Note that we used only a sinlge posynomial constraint for the reduction in
the proof of Theorem 3.3. Additionaly, only the exponents of the posynomial
constraint where affected by uncertainty.

Remark 3.4. (Dec – RGP – pos) is co-NP hard even if only a single posynomial
constraint is part of the problem and if all coefficients of the posynomial are
certain.
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