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Abstract

We develop a framework for shape optimization problems under state equation con-
straints where both state and control are discretized by B-splines or NURBS. In other
words, we use isogeometric analysis (IGA) for solving the partial differential equation
and a nodal approach to change domains where control points take the place of nodes
and where thus a quite general class of functions for representing optimal shapes and
their boundaries becomes available. The minimization problem is solved by a gradient
descent method where the shape gradient will be defined in isogeometric terms. This
gradient is obtained following two schemes, optimize first–discretize then and, reversely,
discretize first–optimize then. We show that for isogeometric analysis, the two schemes
yield the same discrete system. Moreover, we also formulate shape optimization with
respect to NURBS in the optimize first ansatz which amounts to finding optimal control
points and weights simultaneously. Numerical tests illustrate the theory.

Keywords: isogeometric analysis, shape optimization, adjoint approach, weight
optimization, NURBS

1. Introduction

Isogeometric analysis (IGA) combines the fundamental idea of the finite element
method (FEM) with spline techniques from computer aided geometric design for a com-
mon description of the domain and the Galerkin projection [1]. IGA aims to overcome
the bottleneck of converting design-suitable descriptions to FEM-suitable models, and5

it holds particularly great promise in the field of shape optimization where the frequent
conversion between geometry description and computational mesh is cumbersome and
error-prone.

In shape optimization, a nodal approach to find the optimal shape, i.e., using a
piecewise linear interpolation of the domain’s boundary, is mostly avoided because of10

regularity issues. One common way out is to parameterize the boundary by B-splines
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[2, 3], and obviously, the approximation or exact representation of a domain by means
of B-splines and NURBS is a better choice than using a space of polygons.

Therefor, the combination of shape optimization with isogeometric analysis seems
very favorable because all occurring approximation spaces can be covered by one common15

description, namely B-splines or NURBS, and there is the benefit of arbitrary regularity
of boundary interpolation. However, in IGA not only the boundary is parameterized in
this way but also the inside, leading to new options in shape optimization methods. The
combination of IGA and shape optimization has already been investigated in a number of
papers such as [4, 5] with application to electromagnetism and [6, 7, 8, 9] with application20

to solid mechanics and also shells [10].
It is the objective of this paper to introduce a general framework that clarifies certain

aspects and sheds new light on the solution of shape optimization problems by means of
IGA. In particular, we discuss the two different approaches discretize first–optimize then
vs. optimize first–discretize then with gradient-based shape optimization and show that25

the order of optimization and discretization commutes for shape optimization in IGA.
Though being a common statement in optimal control theory, this equivalence of the two
approaches has certain restrictions and specific consequences.

Optimization with partial differential equations as state constraints is an active re-
search area with interconnections to functional analysis and various other fields. Reach-
ing out to a broader audience in the engineering community, our exposition here tries to
compromise between a rigorous mathematical treatment and a more informal discussion
of the subject that highlights the main ideas and concepts. Throughout the paper, we
assume a given cost functional

J(u,Ω,Γ) :=

∫
Ω

j1(u, x) dx+

∫
Γ

j2(u, s) ds (1)

for domains Ω ⊂ Rd, d = 2, 3, with moving boundary Γ ⊂ ∂Ω, and a general shape
optimization problem

min J(u,Ω,Γ) s.t. E(u,Ω) = 0 (2)

with a state equation
E(u,Ω) = 0 (3)

representing a second order linear elliptic partial differential equation with solution u :=
u(Ω).30

At an optimal shape Ω∗, formal differentiation of (2) w.r.t. Ω yields the necessary
optimality condition

dΩ J(u∗,Ω∗,Γ∗) = 0. (4)

The crucial point in shape calculus is how to define the shape derivative dΩ. More specifi-
cally, the main problem here is that domains are sets and as such the space of admissible
shapes has no vector space nor topological structure. Hence, adding domains as well
as speaking of distances between them makes no sense - let alone making statements
about convergence and differentiability. Shape calculus methods such as the method of35

perturbation of identity, or speed method, overcome these deficiencies by providing both
structures. As one of the basic references in this field, we refer to [11], and a rigorous
mathematical treatment is provided by [12]. The discretize first point of view is treated
in [2] whereas the optimize first approach in the form of Lagrange multipliers can be
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found in [13], among others. Except for [9, 8], the discretize first ansatz is so far used in40

IGA.
There also are several other angles from which shape gradients can be viewed, for

instance [14] from a Riemannian perspective which might be even more natural to the
isogeometric setting than perturbation of identity. We also want to point to [15, 16] for
more shape optimization problems and in particular for topology optimization, which we45

do not consider in this work.
In the following, we will first introduce IGA in Section 2 and form the space G for

admissible shapes. We claim that shape calculus in IGA is tailored towards these param-
eterizations in G, but even though, it is just a special case of the method of perturbation
of identity. We will review the latter briefly in Section 3.1 before specializing it to50

shape calculus in IGA in Section 3.2. Section 4 utilizes this theory to show that in
IGA discretize first-optimize then is the same as optimize first-discretize then. Results in
Section 5 illustrate the capability of shape optimization with IGA using the optimize
first–discretize then ansatz.

2. Isogeometric Analysis55

In this section, we briefly outline the basics of IGA and provide the necessary notation
and mathematical foundation.

2.1. Preliminaries

We say that u satisfies a linear elliptic equation denoted by E(u,Ω) = 0 if

u ∈ V : a(u, v) = l(v) ∀v ∈ V, (5)

with bilinear form

a(u, v) :=

∫
Ω

 n∑
i,j=1

m∑
k,`=1

aik,j`∂iuk∂jv` +

m∑
k,`=1

bk`ukv` + c

 dΩ (6)

and linear form

l(v) :=

∫
Ω

f · v dΩ +

∫
ΓN

g · v dΓ. (7)

Here, the coefficients aik,j`, bk`, and c are in L∞(Ω), and we consider Neumann boundary
conditions on ΓN while homogeneous Dirichlet boundary conditions hold on ΓD, with60

∂Ω = Γ ∪ ΓD ∪ ΓN . The function space V is the Sobolev space V := H1
ΓD

(Ω)m := {v =
(v1, . . . , vm) ∈ H1(Ω)m : v|ΓD = 0}. Of course, we assume sufficient regularity of the
domain, i.e., Ω is polygonal and convex or a Lipschitz domain or has a C2-boundary.
Finally, let f ∈ L2(Ω)m and g ∈ L2(ΓN )m.

The general definition (6) of the bilinear form includes Poisson’s equation ∆u = f65

where m = 1 and linear elasticity div σ(u) = f where m = 2 or 3 as important special
cases, and we note that the dimension m of the solution field u is, in general, not equal
to the dimension d of the domain Ω.
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Let G denote a diffeomorphism from the unit cube Ω̂ := (0, 1)d to Ω ⊂ Rd with
bounded derivatives, i.e., it is an element of

G := {G ∈ Ck(Rd) such that G : Ω̂→ Ω is diffeomorphic and

∃c, C ∈ R : 0 < c ≤ |det JG| ≤ C}
(8)

with k > 0 and with Jacobian JG := (∂Gi/∂x̂j). Then, u 7→ û◦G−1 transforms W s,p(Ω̂)
boundedly onto W s,p(Ω) and has a bounded inverse, c.f. [17]. This result also holds for70

Sobolev spaces that include boundary conditions.
As a consequence for φ ∈ L1(Ω), the change of variables∫

Ω

φ(x) dx =

∫
Ω̂

(φ ◦G)(x̂)|det JG(x̂)|dΩ̂ (9)

holds, and in particular for û := u◦G ∈ V̂ := H1
Γ̂D

(Ω̂)m a change of basis yields equivalent

formulations for the state equation E(u,Ω) = 0:

u ∈ V : a(u, v) = l(v) ∀v ∈ V (10)

⇔ û ∈ V̂ : âG(û, v̂) = l̂G(v̂) ∀v̂ ∈ V̂. (11)

The notation a(u, v) versus âG(û, v̂) emphasizes that in the variational form (10), the
function spaces depend on Ω and thus on G in contrast to (11) where the dependency is
moved to the operators in the bilinear and linear form that are given by

âG(û, v̂) :=

∫
Ω̂

 n∑
i,j=1

m∑
k,`=1

aik,j` ◦G(DûDG−1)k,i(Dv̂DG
−1)`,j+ (12)

m∑
k,`=1

bk` ◦Gûkv̂` + c ◦G

 |det JG|dΩ, (13)

l̂G(v̂) :=

∫
Ω̂

f ◦G · v̂|det JG|dΩ̂ +

∫
Γ̂N

g ◦G · v̂|J−TG n̂||det JG|dΓ̂ (14)

with outer normal n̂ to the boundary Γ̂N = G−1(ΓN ) in the parameter domain. The
latter is a standard unit vector since Ω̂ is a unit cube by definition.

Indeed, the chain rule yields for any composite function û = u ◦G
Dû =

(
(Du) ◦G

)
DG = ((Du) ◦G)JG. (15)

with differential operator D and Jacobian JG.
We illustrate this in the following example: Let E(u,Ω) = 0 denote Poisson’s equation

with variational form

u ∈ H1
0 (Ω):

∫
Ω

∇u∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω). (16)

Because of a change of variables, the chain rule and bounded derivatives of G equation,
(16) is equivalent to û ∈ H1

0 (Ω̂) :∫
Ω̂

∇ûJ−1
G J−T

G ∇v̂|det JG|dx̂ =

∫
Ω̂

f ◦Gv̂|det JG|dx̂ ∀v̂ ∈ H1
0 (Ω̂). (17)

The next step is to specify the transformation map G.75
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2.2. Domains in Isogeometric Analysis

In IGA, a domain Ω ⊂ Rd is represented by a geometry map

G : Ω̂→ Ω, x̂ 7→
n∑
i=1

d∑
k=1

Ni(x̂)Xi,kek (18)

on the unit cube Ω̂ consisting of n B-splines or NURBS Ni : Ω̂→ R with control points
Xi := (Xi,k)k=1,...,d ∈ Rd and standard unit vectors ekRd

More specifically, G is generated as follows: Let B(Σ, p) := {Ni,p : i = 1, . . . ,mΣ} de-
note a basis of univariate B-splines or NURBS of order p, which are uniquely determined
by a knot vector Σ := (ŝ1, . . . , ŝmΣ+p+1) with ŝi ∈ [0, 1]. Let S(Σ, p) := spanB(Σ, p)
define the spline space generated by this basis. For d knot vectors Σi=1,...,d and corre-
sponding spline spaces Si := S(Σi, pi) we form the tensor-product space [18]

S :=

d⊗
i=1

Si with n basis functions Ni(x̂) = Ni1(x̂1) · · ·Nid(x̂d), (19)

x̂ ∈ [0, 1]d, dimS = n =
∏d
i=1mΣi . We restrict the space of admissible domains to a

subspace Gh := Sd ∩ G of all diffeomorphisms with bounded derivatives, where Sd :=80

span{Niek : Ni ∈ B, k = 1, . . . , d} is a direct sum and where the basis of S is given by

B := {Ni =
∏d
j=1Nij (x̂j) : Nij ∈ B(Σj , pj)}.

The continuity of S determines the smoothness of parameterizations in Gh. Specifi-
cally, it holds G ∈ Ck

(
(0, 1)d,Rd

)
where k ≥ min(pi) ≥ 1 in each component.

In the following, we assume that the moving boundary Γ has a preimage

Γ̂ = {x̂ ∈ ∂Ω̂ : G(x̂) ∈ Γ}. (20)

Furthermore, we require for Γ̂ that either (0, 1)d−1 × {ŝ} ⊂ Γ̂ or (0, 1)d−1 × {ŝ} ∩ Γ̂ = ∅85

for ŝ = 0 or 1. The same must apply to ΓD and ΓN . This means that for each boundary
segment Γ, ΓN and ΓD, there is a B-Spline or NURBS parameterization over a union of
sides of the parameter domain in Sd−1. We illustrate this for a 2-dimensional example
in Figure 1.

Γ̂D Γ̂D

Ω̂

Γ̂N

Γ̂

Ω

ΓDG

ΓN

ΓD

Γ

Figure 1: We assume that all boundary segments Γ, ΓN and ΓD can be mapped by
a geometry function G as images of the union of codimension-1 manifolds of the form
[0, 1]d−1 × {0} and [0, 1]d−1 × {1}.
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Remark 1. For the definition of B-splines we refer to various sources like [18, 19].90

NURBS are treated in the monograph [20], and the above statements are valid for
both. However, for the optimization part we need to be more specific in the NURBS
case. NURBS are in principle weighted B-splines. Given a univariate B-Spline basis
B̃(Σ, p) := {Ni,p : i = 1, . . . ,mΣ} and a fixed weight vector W = (ωi)i=1,...,mΣ

, ωi > 0,

let w(x̂) :=
∑mΣ

i=1Ni,p(x̂)ωi denote a weight function from Ω̂→ R from which we obtain95

a NURBS basis B(W,Σ, p) := {ωiw Ni,p : Ni,p ∈ B̃}. If there is no danger of confusion, we
drop the index W in B(W,Σ, p) = B(Σ, p).

2.3. Galerkin Projection in Isogeometric Analysis

Now, the fundamental idea in IGA is to use a finite dimensional subspace

Vh := {N ◦G−1 : N ∈ S}m ∩ V = Sm ◦G−1 ∩H1
ΓD (Ω)m (21)

for the discrete Galerkin formulation uh ∈ Vh : a(uh, vh) = l(vh) ∀vh ∈ Vh. Practically,
IGA uses equation (11) and solves for ûh ∈ V̂h := Sm ∩ V̂ :

âG(ûh, v̂) = l̂G(v̂) ∀v̂ ∈ V̂h. (22)

As above, the hat notationˆindicates that a function is defined over the parameter space
Ω̂ = (0, 1)d or that a variable is from Ω̂.100

Remark 2. In fact we could use any G ∈ G and are not restricted by theory to use a
parameterization from a spline space, let alone the same one as the test functions. But
particularly, given two different spline spaces S1 and S2, we could choose Gh = Sd1 ∩ G
and V̂h = Sm2 ∩H1

ΓD
(Ω̂)m and (22) still yields a legitimate solution uh = ûh ◦G−1, with

ûh ∈ Vh.105

3. Shape Calculus

To provide a gradient w.r.t. domains in IGA we use the classical results in shape
calculus and just apply integration by substitution. In this way, we can readily draw on
known results from, e.g., [12, 13].

3.1. Shape Sensitivities in General110

In principle, it is not the description of domains that matters but how changes on
them affect the cost functional. Exemplary, the method of perturbation of identity uses
a vector field h ∈ X to change a domain

Ft := id+ th, Ft : Ω→ Rd (23)

to obtain a perturbed domain and boundary segment

Ωt = Ft(Ω), Γt = Ft(Γ). (24)

This method thus assigns the vector space structure of X to the space of admissible
domains. We postpone the choice of X for the moment and remark that it is possible to
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extend the notion of Gateaux- and Fréchet derivatives to sets (domains) by defining the
derivative in direction of h ∈ X as

J ′(u,Ω,Γ;h) := lim
t→0+

1

t

(
J(ut,Ωt,Γt)− J(u,Ω,Γ)

)
(25)

where ut solves E(ut,Ωt) = 0. In [12], the class of admissible perturbations is either
chosen as Lipschitz-continuous functions h ∈ X = C1,1(Rd) or X = W k,∞(Rd) or X =
Ck(Rd). In all cases, the limit in (25) exists and J is Fréchet differentiable.

The limit J ′(u,Ω,Γ;h) is also called Eulerian derivative. We write down the explicit
formulas for boundary and domain integrals, cf. [13].115

Lemma 1. Let the shape functional J := J(Ω,Γ) =
∫

Ω
j1(x) dx+

∫
Γ
j2(s) ds depend on

Ω and Γ only as limits of integration. Then definition (25) gives

J ′(Ω,Γ;h) =

∫
Ω

div(j1h) dx+

∫
Γ

∇j2 · h+ j2(div h− Jhn) · n ds (26)

=

∫
Γ

j1h · nds+

∫
Γ

(
∂j2
∂n

+ j2κ

)
h · nds (27)

with the curvature of Γ denoted by κ. We refer to (26) as the domain and to (27) as the
Hadamard representation of sensitivities.

In general, J ′ : X → L(X,R) denotes the Fréchet-derivative of a linear functional
J : X → R on a Banach space X and J ′(x; δx) = its directional derivative. Moreover,
for multiple variables (x, y) ∈ X, the ”partial derivatives” are defined by J ′x(x, y; δx) =120

lim
t→0

1
t

(
J(x+ tδx, y)− J(x, y)

)
.

3.2. Shape Sensitivities in Isogeometric Analysis

In IGA shape calculus is tailored towards the representation of geometries by NURBS
and B-splines. In particular, the perturbation of identity in (23) is pulled back to the
parameter domain via

Gt := Ft ◦G = G+ th ◦G (28)

with a given parameterization of Ω by the geometry function G ∈ G. Further, we choose
the vector field h due to the isogeometric paradigm as h = θ ◦ G−1 with θ ∈ Sd. Since
G−1 is continuous by definition, Sd ⊂ C1

(
(0, 1)d,Rd

)
, and since Fréchet derivatives are

linear and continuous w.r.t. h, it holds

J ′(u,Ω,Γ; θ) := lim
t→0+

1

t

(
J(ut,Ωt,Γt)− J(u,Ω,Γ)

)
(29)

where Ωt = (G + tθ)(Ω̂), is well-defined. Figure 2 shows the relationship of the pertur-
bation of identity and IGA. We then apply the transformation formula to the equations
in Lemma 1 with the isogeometric variation h = θ ◦G−1.125

We can reformulate this result in a manner that directly applies to IGA.
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Ω̂ Ω

Ωt

G

G+ tθ id+ th

Figure 2: Perturbation of identity with IGA.

Lemma 2. For a shape functional J as in Lemma 1, we obtain the isogeometric shape
sensitivities in direction θ ∈ Sd as

J ′(G, Γ̂; θ) =

∫
Ω̂

(
∇j1 ◦G · θ + j1 ◦G tr(J−1

G Jθ)
)
|det JG|dx̂ (30)

+

∫
Γ̂

(
∇j2 ◦G · θ|J−TG n̂|+ j2 ◦G tr(J−1

G Jθ) (31)

−j2 ◦G
n̂TJ−1

G J−TG JTθ J
−T
G n̂

|J−TG n̂|
)
|det JG|dŝ. (32)

Proof. One considers (26) and applies the transformation rule where we note that

div(j1h) = ∇j1 · h+ j1 div(h), div(h) ◦G = tr(J−1
G Dθ) and n ◦G =

J−T
G n̂

|J−T
G n̂| .

Analogously, we can also transform equation (27) to obtain a Hadamard representa-
tion of shape sensitivities.130

3.3. Shape Sensitivities for Optimal Weights

In [7], shape optimization simultaneously over control points and weights has been
performed for an example in linear elasticity, based on the discretize-first ansatz. To-
gether with the framework of Section 3.2, we now extend weight optimization to general
elliptic PDEs for the optimize-first scheme.135

In Section 2 we introduced B-spline and NURBS spaces. For the latter we assumed a
fixed vector of weights W , see Remark 1. In shape optimization, however, weights might
be another instrument of fine-tuning. But, if W is not fixed, a much larger space than
S of (19) is available in order to search for the best shape. Different to the notation of
Remark 1, we have free weights. We observe that the weight function w :=

∑mΣ

i=1Ni,pωi
is a positive combination of B-splines

w ∈ S+(Σ, p) := posB(Σ, p) ⊂ S(Σ, p), (33)

and a set of NURBS with free weights is given by

N (Σ, p) := S(Σ, p)× S+(Σ, p). (34)

Unfortunately, it is not directly obvious how N (Σ, p) turns into a vector space because
any free weight NURBS function (s, w) := s

w in N (Σ, p) is non-linear w.r.t. the weight
functions w. This also reflects that the rational functions 1

x−a and 1
x−b are linearly
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independent for a 6= b. In order to restore linearity we resort to homogeneous coordinates
and a perspective map, see [20]. A homogeneous coordinate vector X̃ in Rd+1 with
X̃ := (Xw, Xd+1) and Xw ∈ Rd is projected to Rd by

H(X̃) =

{
Xw/Xd+1, Xd+1 6= 0

Xw/|Xd+1|, else.

Given a B-Spline space Sd as in Section 2.2 a rational space N of free weights is obtained
by the direct sum Sd⊕S and the perspective map H. More specifically, the vector valued
function (Gw, w) ∈ Sd+1, with Gw ∈ Sd, is mapped from Sd+1 → Sd, which yields a
rational d-manifold

(Gw, w) 7→
{
G := Gw/w if w 6= 0,

G := Gw/‖Gw‖ if w = 0.
(35)

Finally, Sd ⊕ S has a basis {Niek : Ni ∈ S, i = 1, . . . ,m, k = 1, . . . , d + 1} and is a
linear space which is isomorphic to Rmd ×Rd. Then, the desired space N is obtained as
N = {H(G̃) : G̃ = (Gw, w) ∈ Sd ⊕ S}. We use this in the following sensitivity formula.

Lemma 3. For a shape functional J as in Lemma 1, we obtain the isogeometric shape
sensitivities in direction θ̃ ∈ N for G = H ◦ G̃ and θ = H ◦ θ̃ as

J ′(G, Γ̂; θ)

=

∫
Ω̂

(
∇j1 ◦G ·DH ◦ G̃θ̃ + j1 ◦G tr(J−1

G Ḋ)
)
|det JG|dx̂ (36)

+

∫
Γ̂

(
∇j2 ◦G ·DH ◦ G̃θ̃|J−TG n̂|+ j2 ◦G|J−TG n̂| tr(J−1

G Ḋ)+ (37)

−j2 ◦G
J−TG ḊTJ−TG
|J−TG n̂|

)
|det JG|dx̂ (38)

with Ḋ := dtD(H ◦ G̃t)|t=0.

Proof. Since we use homogeneous coordinates for G̃ and the projective map H, this
implies that in the substitution of variables in the shape functional we have

J(G, Γ̂) =

∫
Ω̂

j1 ◦ (H ◦ G̃)|det(D(H ◦ G̃))|dx̂

+

∫
Γ̂

j2 ◦ (H ◦ G̃)|D(H ◦ G̃)−1n̂||det(D(H ◦ G̃))|dx̂.

For the limit dt J(Gt, Γ̂)|t=0 with Gt = H ◦ (G̃+ tθ̃) we need the transformations

JG = DG = D(H ◦ G̃) = DH ◦ G̃DG̃ and (39)

DH ◦ G̃ =
1

w

(
Id, −G

)
, (40)
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with identity matrix Id ∈ Rd×d and assuming positive weights. Therefor it holds for
G̃t := G̃+ tθ̃

Ḋ = dtD(H ◦ G̃t)|t=0 = D2H ◦ G̃� θ̃DG̃+DH ◦ G̃Dθ̃, (41)

where D2H(x) � v := (dx1
DHv, . . . , dxd+1

DHv) ∈ Rd×d+1 for x and v ∈ Rd+1. With
this notation we get explicitly

D2H ◦ G̃� θ̃ =

=
1

w2

(
(0d,−e1)θ̃, . . . , (0d,−ed)θ̃, (−Id, 2G)θ̃

)
(42)

=


1
w2

(
0d, −θw

)
, if θ̃d+1 = 0

−θ̃d+1

w2

(
Id,

1
θ̃d+1

θw − 2G
)

, if θ̃d+1 6= 0.
(43)

From the implicit function theorem we obtain140

0 = dt Id = dt
(
D(H ◦ G̃t)−1D(H ◦ G̃t)

)
|t=0

= dt
(
D(H ◦ G̃t)−1

)
|t=0D(H ◦ G̃) +D(H ◦ G̃)−1Ḋ.

Hence,
dt
(
D(H ◦ G̃t)−1

)
|t=0 = −J−1

G ḊJ−1
G ,

which completes the proof.

Shape sensitivities allow to check the necessary optimality condition of equation (4),
but moreover are useful to find an optimal shape by means of gradient based optimization
methods, as is studied in the next section.

4. Shape Optimization145

Relying on the information of the shape sensitivities, gradient-based optimization
methods can be employed to find an optimal shape. Basically, a sequence of domains
{Ωk}k=0,1,... is generated by an update rule

Ωk+1 = (id+ tsk)(Ωk) (44)

where sk is a descent direction, typically sk = −∇ΩkJ(Ωk).
To solve a shape optimization problem we can either (i) discretize both control and

state variables, then optimize the resulting finite-dimensional problem. Or (ii) we set
up the necessary optimality conditions for the infinite-dimensional problem and then
discretize control and state. In the gradient descent method, the update rule of equation150

(44) employs a descent direction resp. gradient from a real vector space for scheme (i)
while in case (ii) the descent direction is an element of a function space.

In the following, we formulate first the discretize first–optimize then scheme (i) with
IGA and thereafter the contrary case (ii) optimize first–then discretize. Subsequently, we
show that both methods eventually lead to the same discrete system.155
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In IGA, we discretize state and control, i.e., the admissible domains, by B-splines and
NURBS, respectively by the spaces V̂h and Gh. For IGA again it is therefor better to use
the transported objective

J(u,Ω,Γ) = J(û, G, Γ̂) :=

=

∫
Ω̂

j1(û, G)|det JG|dx̂+

∫
Γ̂

j2(û, G)|J−TG n̂||det JG|dŝ. (45)

Note that in case the functions j1 and j2 contain a differential operator D applied to u,
we additionally have to consider the transformation Du ◦G = D(u ◦G)DG−1, as is the
case for the bilinear and linear forms in equation (12)–(14).

4.1. Discretize First–Optimize Then

Spline spaces are isomorphic to real vector spaces, which means that G ∼= Rnd and160

Vh ∼= Rnm in our setting. So, discretizing the control by B-splines or NURBS means
that any Ω = G(Ω̂) can be expressed as Ω(X) ∈ Gh where X ∈ Rnd. In other words,
any domain is represented by a vector of control points, corresponding to the classically
called ”design variables”.

The Galerkin discretization yields a discrete state uh =
∑
qiNi ◦ G−1 where the

coefficients qi are given by the linear equation Kq = F derived from the projected
weak form (22). In terms of X and q and with the discrete cost function Jh(q,X) :=
J(ûh,Ω(X),Γ(X)) we formulate the discrete isogeometric optimization problem

min Jh(q,X) subject to Kq = F. (46)

For an optimal pair (q,X) the necessary first order optimality conditions are165

1. State equation: Kq = F ,
2. Stationary point: ∇XJh(q,X) = 0.

Because q depends on X implicitly, we have to take the derivative ∂Xq for the stationary
point condition into account. For this purpose we introduce the index pair α = (i, k)
where i = 1, . . . , n runs over the control points and k = 1, . . . , d over their components.
By dα := dXα and ∂α := ∂Xα we denote the derivatives with respect to component k of
control point Xi. Then by the chain rule

dα Jh(q,X) = ∂αJh + ∂qJh · ∂αq (47)

where the shape derivative of q respectively uh is given by

K∂αq = ∂αF − ∂αKq. (48)

We introduce the adjoint p as the solution of KTp = ∂qJh and obtain

dα Jh(q,X) = ∂αJh + pT(∂αF − ∂αKq). (49)

Summing up, we have the necessary optimality conditions for an optimal pair (q,X): For
all tuples α = (i, k)

Kq = F, (50)

Kp = ∂qJh, (51)

dα Jh(q,X) = ∂αJh + pT(∂αF − ∂αKq) = 0. (52)

11



4.2. Optimize First–Discretize Then

In this case, we couple cost functional and state equation in the Lagrangian

L(Ω, y, v) := J(y,Ω,Γ) + l(v)− a(y, v), (53)

or in the isogeometric semi-discrete version, where G ∈ Gh,

L(G, ŷ, v̂) := J(ŷ, G, Γ̂) + lG(v̂)− aG(ŷ, v̂) (54)

where all variables G, ŷ and v̂ are independent.
Under the assumption that the state u and thus û = u◦G, is shape differentiable, the

necessary optimality conditions are given by the Karush-Kuhn-Tucker system ∇L = 0,
i.e., at an optimum (û, ẑ, G) it holds

L′v̂(G, û, ẑ; δ̂v) = 0 ∀δ̂v ∈ V̂, (55)

L′ŷ(Ω, û, ẑ; δû) = 0 ∀δû ∈ V̂, (56)

L′G(G, û, ẑ; θ) = 0 ∀θ ∈ Sd. (57)

Explicitly, the KKT system in IGA is given by the next lemma.170

Lemma 4. The first order necessary optimality system of equations (55)–(57) in isoge-
ometric shape optimization translates to

aG(û, δ̂v) = lG(δ̂v) ∀δ̂v ∈ V̂ state equation, (58)

J ′ŷ(û, G, Γ̂; δû) = aG(δû, ẑ) ∀δû ∈ V̂ adjoint equation, (59)

with J ′ŷ(û, G, Γ̂; δû) = dt J(û+ tδû, G, Γ̂)|t=0. The shape gradient is formed by directional
derivatives

L′G(G, ŷ, v̂; θ) = J ′G(ŷ, G, Γ̂; θ) + l′G(v̂; θ)− a′G(ŷ, v̂; θ) (60)

with J ′G(ŷ, G, Γ̂; θ) given by expression (30) in Lemma 2,

l′G(v̂; θ) = dt lG+tθ(v̂)|t=0 and a′G(ŷ, v̂; θ) = dt aG+tθ(ŷ, v̂)|t=0.

This semi-discrete systems turns fully discrete by projecting V̂ onto V̂h.

4.3. Comparison of the Two Discretization Schemes

The two approaches above are reflected in IGA by the works [8, 9] for the optimize
first and [6, 7, 4, 10] for the discretize first ansatz. Both schemes yield shape sensitivities
also inside the domain, in contrast to a nodal approach in (isoparametric) FEM where175

typically only gradients on the boundary are available.
Since we claim the fully discrete systems are equal for both approaches, what makes

the difference? First of all, from a theoretical point of view to show well-posedness of
(shape) optimization problems answering for existence and uniqueness of and convergence
to optimal solutions we need the continuous case, i.e., the optimize first part. From a180

practical angle, some problems require a different ansatz space for the adjoint in (56)
than V̂, see [21], which is in favor of optimize first.
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Whichever ansatz one prefers, eventually it yields the same discrete optimality system
in IGA. For finite dimensional Banach spaces the directional derivative of ji in direction
hα = Ni ◦ G−1ek is just the partial derivative ∂αji ◦ G−1. That is why for Galerkin185

methods it does not matter if we use a discretize first–optimize then or optimize first–
discretize then ansatz. We summarize this in the following theorem.

Theorem 5. Assume that G ∈ Gh with Ω = G(Ω̂) and that the discretization space for
the adjoint in equation (56) is V̂h. Then, the partial derivatives w.r.t. shape obtained in
the discretize first-optimize then and those from the optimize first–discretize then ansatz190

are equal in IGA.

Proof. Equation (58) yields the discrete state equation Kq = F of (50) and equation
(59) the discrete adjoint KT p = ∂qJh in (51).

Consider a shape functional without implicit dependency on the domain

J(Ω) =

∫
Ω

φ(x) dx, φ : Ω→ R,

=

∫
Ω̂

φ ◦G|detDG|dx̂.
(61)

In IGA we set ∂Xα := ∂α for an arbitrary control pointXα for some α = (i, k), i = 1, . . . , n
and k = 1, . . . ,m. Then,

∂αJh(X) =

∫
Ω̂

(
(∇φ) ◦G · ∂αG+ φ ◦Gtr(J−1

G ∂αJG)

)
|det JG|dx̂ (62)

from the chain rule on the transported shape function in (61). On the other hand, with
h = Nα ◦G−1 and Lemma 2 we have

J ′(G;Nα) =

∫
Ω̂

(
(∇φ) ◦G ·Nα + φ ◦Gtr(J−1

G DNα)
)
|det JG|dx̂. (63)

From direct calculation it can be seen that ∂αG = ∂α
∑
XαiNαi = Nα and ∂αJG = DNα,

hence J ′(G;Nα) = ∂XαJh(X).195

Because in lG(v̂) as well as aG(û, v̂) functions û, v̂ are independent of G, the same
arguments as for equations (62) and (63) apply component wise:

∂αFαi = l′G(Nαi ;Nα)

and
∂αKαi,αj = a′G(Nαi , Nαj ;Nα).

Therefor

dα Jh(X) = ∂αJh + pT(∂αF − ∂αKq),
J ′(Ω;Nα) = ∂αJh +

∑
j

pj∂αFj −
∑
i,j

qi∂αKijpj ,

and the discrete systems are equal.
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4.4. Different Analysis and Optimization Models

Consider Remark 2 where we assumed two spline spaces S1, S2: one for the geometry
representation and one for the projection space. Since optimization is very costly for
each design variable we want to keep the number of design variables low. However, the200

interpolation error of the state equation directly plays a role in evaluating the objective
function J and also in the accuracy of its gradient, which in turn influences the optimiza-
tion. As an intuitive example, suppose we solve the Poisson equation on the unit square
with homogeneous Dirichlet boundary conditions with only two linear basis functions per
direction, then uh = 0, which leaves not much scope for the optimizer. Hence, a good205

approximation of the state is vital. For detailed studies on the influence of the error
u− uh, see for instance [22, 23].

Both schemes, optimize first–discretize then and discretize first–optimize then allow
for this scenario of two spline spaces. In the Karush-Kuhn-Tucker system (58)–(60)
the variations δ̂v and δû are taken from V̂ := Sm2 ∩ H1

0 (Ω̂m, whereas the for domain210

perturbations one selects θ ∈ Sd1 . In the discretize first system (50)–(52) the shape
derivatives ∂Xα refer to control points for G ∈ Sd1 .

4.5. Extending the Shape Gradient to the Interior of the Domain

Depending on the formulation of the directional derivative in Lemma 1 we have either
a domain or a boundary representation. Furthermore in the spirit of saving, the choice
of variations h = θ ◦G−1 can be restricted to the boundary of interest, taking only

θ ∈ {N ∈ Sd : N 6= 0 on Γ̂}

instead of θ ∈ Sd. In the case of boundary representations for the shape gradient or the
restricted space of variations, the extension of the shape sensitivities to the interior of

Γ̂

(a) initial parameterization with mov-
ing boundary Γ̂

Γ̂t

(b) overlapping parameterization after
moving only the boundary

Figure 3: Moving only the boundary can cause irregular parameterizations

215

the domain can be achieved by several methods. The following incomplete list gives an
overview of velocity based measures as have been applied in IGA or FEM:

• minimizing the Winslow functional in electromagnetic shape optimization, which
aims for an evenly spread determinant of the Jacobian of G [5],
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• solving a Poisson problem to distribute the control points in the interior, where220

the displacement of the control points on the boundary serves as inhomogeneous
Dirichlet boundary conditions,

• solving a linear elasticity problem with the displacement of control points on the
boundary as Neumann boundary condition [6, 7, 8],

• Analysis-aware IGA meshes [24], which also optimize the magnitude of the deter-225

minant of the Jacobian of G.

However, be aware of mesh tangling or mesh racing [25], which may happen in the Poisson
and linear elasticity methods above if the step size in an optimization loop is too large
and leads to non-convex domains. For instance in the toy example shown in Figure 4,
the Poisson moving method yields irregular parameterizations for some large step sizes.

(a) t = 0 (b) t = 0.5 (c) t = 0.8

Figure 4: A minimal example to show that moving the inner control points by solving
a Poisson equation may yield irregular parameterizations if changes to a domain are too
large and non-convex. We use the knot vector (0, 0, 0.5, 1, 1) for both directions for B-
splines of degree p = 1 and variable second control point (0.5, t)T with 0 ≤ t < 1. The
initial configuration is given at t = 0. For t = 0.5 we have an admissible step size, t = 0.8
is already too large.

230

Solving an additional optimization problem to obtain a good parameterization can be
quite expensive, too. Furthermore, for analysis-aware meshes a good a posteriori error
estimator is required.

An alternative is to use a relative positioning of inner control points, which is quite
easy to realize due to the tensor product space structure: In d = 2 dimensions, let the235

boundaries of Ω be given by functions γN , γS , γW and γE which are B-spline or NURBS
parameterizations. For instance γS = G(x̂1, 0), γN = G(x̂1, 1), x̂1 ∈ (0, 1), and so forth.

Then

T (x̂1, x̂2) = id+

(
γW (x̂2)(1− x̂1)− x̂1(1− γE(x̂2))
γS(x̂1)(1− x̂2)− x̂2(1− γN (x̂1))

)
(64)

transforms Ω̂ to Ω. In particular, we get equidistantly spaced control points by mapping
the intersecting grid points of Ω̂ by means of T to Ω. An example is shown in Figure 5.
The method works if control points only move up and down as in the minimal example240

in Figure 4. However, it works only to some extent if control points move diagonally as
in Figure 6.

5. Numerical Results

In the following, we study two examples to illustrate the above theoretical framework.
Example 1 is a purely geometric problem with a length constraint instead of a PDE245

constraint and meant as introduction to shape calculus as well as B-Spline and NURBS
15



Γ̂t

(a) overlapping parameteri-
zation after moving only the
boundary

(b) parameterization by rela-
tive positioning of inner con-
trol points

Figure 5: Adjusting inner control points by relative positioning to avoid mesh tangling:
instead of moving only the boundary, use transformation T of (64) to obtain an equidis-
tant parameterization

(a) deformed boundaries (b) inner control points moved by relative
positioning

(c) relative positioning fails for diagonally
non-convex domains

Figure 6: An example where relative positioning of inner control points works in non-
convex domains and one where it does not

based geometry representation. Although simple, it highlights the benefits from using B-
Splines and NURBS but also exposes the pitfalls when it comes to extending the gradient
to the interior of the domain.

As second example, we investigate the classical compliance minimization, which has250

also been treated in [6, 7, 8]. Here, we show the deep correspondence of the models in
design, simulation, and optimization in IGA.

5.1. Example with Geometric Constraint

We want to maximize the area of a domain Ω such that the length of its perimeter stays
invariant. We choose this example to demonstrate the combination of shape optimization255

with NURBS and B-splines. It also serves as simple case for an IGA shape gradient
derivation.
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Example 1 (Area Maximization). For Ω ⊂ R2 we consider the shape optimization
problem

min J(Ω) := −
∫

Ω

dΩ, s.t.

∫
∂Ω

dΓ = P0. (65)

The optimal shape then is a circular domain with radius r = P0

2π .

Suppose we have a geometry function G in a B-Spline or NURBS space with fixed

weights S2 = span{Ni,k = Niek, i = 1, . . . , n, k = 1, 2}. Then G =
n∑
i=1

2∑
k=1

Xi,kNiek =∑
α=(i,k)

XαNα with control points Xi. The transported symmetric problem reads

min J(G) := −
∫

(0,1)2

|det JG|dΩ̂ (66)

for the objective, and for the length constraint C(G) = 0,

C(G) :=

∫ 1

0

|dŝG(ŝ, 0)|+ |dŝG(ŝ, 1)|+ |dŝG(0, ŝ)|+ |dŝG(1, ŝ)|dŝ− P0, (67)

because J−TG n̂ det JG = dŝG(γ(ŝ)), γ(ŝ) ∈ {(0, ŝ), (1, ŝ), (ŝ, 0), (ŝ, 1)}.

Sensitivities. Lemma 2 yields the shape derivatives for θ = Nα ∈ S2

J ′(G;Nα) = −
∫

(0,1)d
tr(J−1

G JNα)|det JG|dΩ̂, (68)

C ′(G;Nα) =

∫ 1

0

dŝG(ŝ, 0) · dŝNα(ŝ, 0)

|dŝG(ŝ, 0)| +
dŝG(ŝ, 1) · dŝNα(ŝ, 1)

|dŝG(ŝ, 1)| +

+
dŝG(0, ŝ) · dŝNα(0, ŝ)

|dŝG(0, ŝ)| +
dŝG(1, ŝ) · dŝNα(1, ŝ)

|dŝG(1, ŝ)| dŝ.

(69)

Results. We performed the optimization with the SQP algorithm of MATLAB’s con-260

strained minimization function fmincon, which uses the shape gradient information to
update a quasi-Newton approximation of the Hessian of the Lagrangian function L of
the cost functional and the constraint on the control. For this example, L(λ,G) =
J(G) + λC(G) with Lagrange multiplier λ. We examined both, the influence of the de-
gree p of our B-spline basis and of the discretization parameter h corresponding to a265

refinement by knot insertion.
From the convergence plot in Figure 7 we learn that a higher degree p of our B-spline

basis speeds up convergence. Intuitively this is what one expects, since the approximation
power of B-spline curves to sufficiently smooth functions f goes like max(Qf−f) ≤ Chp+1

for the B-spline interpolation Qf of f , see [19, Jackson type estimate].270

We also tested the simultaneous optimization of control points and weights in this
example. For p = 2 and knot vectors (0, 0, 0, 1, 1, 1) in both directions, there is a NURBS
representation for a disk. However, we observed that fmincon finds only almost optimal
control points and weights within an absolute error of J(Ω∗)− J(Ω) = 4.6 · 10−6 in the
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Figure 7: convergence plot for Example 1 where h-refinement corresponds to an increasing
number of degrees of freedom n and Ω∗ is the known optimal domain and G∗(Ω̂) the
numerical optimum by the isogeometric method with optimize first scheme. For a better
comparison we scale the error by the starting error which is the area of the optimal disk
minus area of initial square. Moreover, for each p we also norm the degrees of freedom n
by their starting number of degrees of freedom n0.

(a) exact and numerical optimum (b) upper right control point

Figure 8: Optimization of control points and weights of Example 1: Optically, a difference
can be detected between the exact disk and numerical optimal shape after zooming
in, for instance at the upper right control point

objective, and then deteriorates, Figure 8. One reason for this behavior could stem from275

the quadrature errors and the rational terms due to the projective map, which leaves
room for future work.

We have double-checked the shape gradients of J and C for both, optimization with
and without weights, with the MATLAB central finite difference test for gradients where
J ′(G,Niek) ≈ 1

2ε

(
J(G + εNiek) − J(G − εNiek)

)
. These values agree up to the default280
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tolerance in fmincon which means a relative error of less than 10−6 in each component
of the gradient, but typically we even observed a relative error of less than 10−13. From
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Figure 9: error in terms of computational costs for Example 1, where the costs are ex-
pressed as number of function calls by the MATLAB optimization method. The number
of function calls is closely related to the number of iterations of the optimizer.

Figure 9 we see that for a higher polynomial degree p, the SQP optimizer in fmincon

needs significantly less iterations or number of function calls respectively.
Choosing an initial B-spline representation such as in Figure 10a will yield an irregular285

parameterization for some step sizes, as indicated in Figure 10b. Therefor, to use this
configuration for shape optimization, in Example 1 one of the moving mesh algorithms
has to be applied. Applying for instance the relative positioning (64), again convergence
of the optimization algorithm can be observed, Figure 10c.

5.2. Compliance Minimization in Linear Elasticity290

One of the classical shape optimization problems is minimizing the compliance in
linear elasticity. In the planar setting, we select d = m = 2 and seek for u ∈ H1

ΓD
(Ω)2

such that 
−div σ(u) = 0 in Ω,

u = 0 on ΓD,
σ(u) · n = g on ΓN ,
σ(u) · n = 0 on Γ,

(70)

with strain ε(u) = 1
2 (∇u+∇uT ) and stress σ(u) = 2µε(u) + λ(∇ · u)I2.

A specific problem is the plate with circular hole: Given Ω a plate with hole, one
tries to find the shape of the hole such that the deformation through external forces, the
compliance, is minimized, hence the stiffness of the plate increases. This problem has
already been been treated by means of IGA in [7, 6] for the discretize first ansatz and in295

[8] also for the optimize first method.

Example 2. We seek to minimize the compliance minJ(Ω, u) :=
∫

ΓN
g · udΓ where u

solves (70) under an additional volume constraint on the control,
∫

Ω
dΩ = V0 = const.
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(a) Initial parameterization (b) mesh tangling

(c) numerical optimal domain with relative
positioning

Figure 10: Example 1 with an arbitrary initial prameterization leads to mesh tangling
in some iterations of the SQP optimizer, and therefor to no convergence. However,
convergence can be achieved if the moving mesh method (64) is applied.

Because the problem is symmetric, we use only a quarter of the plate with symmetric
boundary conditions on ΓS . Existence of optimal shapes for this example has been300

shown, for instance, in [2]. Typically, one expects a circular hole as optimal solution
from calculations in [26, p. 88 ff]. The problem set-up of [6, 7, 8] is displayed in Figure
11.

The shape gradient is given by directional derivatives

J ′(Ω;h) =

∫
ΓN

[
2µ|ε(u)|2 + λ|div u|2

]
h · ndΓ (71)

since the compliance minimization is self-adjoint. In this example, the mesh movement
of inner control points is realized by means of the linear elasticity operator instead of305

a Laplacian or relative positioning. Since we have calculated the stiffness matrix for
solving the linear elasticity equation anyway, we can recycle it for the mesh movement:
the shape gradient yields the right hand side, and also different boundary conditions
must be applied, but the bulk of expense from assembling the stiffness matrix has been
paid before.310

Results. In 4.4 we argued that it is possible to use two representations, one for solving the
state equation and one for optimization. However, here we claim that it is even necessary:
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Figure 11: Configuration of state equation of Example 2, as well as initial and optimal
shapes

for the compliance, an error in the state u directly influences the cost functional. Suppose
u is the exact solution on a domain Ω and uh its numerical approximation and e = u−uh
the error. Then, setting uh = u− e the influence of the error with respect to the state in
the objective reads

J(Ω, uh) =

∫
ΓN

g · udx−
∫

ΓN

g · edx, (72)

which also has an impact on the shape gradient of J . See Figure 12 for a behavior of the
compliance for the optimal domain under h-refinement. In Figure 13 we show the initial

102 103

1.52

1.522

1.524

1.526

1.528

1.53

·10−3

degrees of freedom n

J
(G

∗ (
Ω̂

))

Figure 12: Influence of the numerical error in the PDE on the objective function for
Example 2: as the error in the state u−uh decreases, the compliance, too, is approximated
better.

parameterization and results for an optimization run, where we use the same mesh for
analysis and optimization. Although the optimizer converges towards a minimum there
still is a certain difference to the circular hole as is illustrated in Figure 13c. As long as315

the mesh for solving the state equation is not fine enough, the optimizer will not be able
to further enhance the optimal shape. On the other hand, starting the optimization with
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an already refined geometry is much too costly. Compare also the successive refinement
strategy in [9].

(a) Initial parameterization and stress analysis for Example 2

(b) Final parameterization and stress analysis for Example 2 after optimization, as well as
deviation from the exact optimal shape–a circular hole
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(c) Convergence history of optimizer

Figure 13: Optimization run for Example 2

6. Conclusion320

We have provided a theoretical framework for shape optimization with isogeometric
analysis on an optimize first basis, in particular for NURBS geometries, which comes
down to finding optimal control points and weights. To do so, one has to work with
a representation by homogeneous coordinates. To obtain these derivatives we basically
applied the change of variables formula to the existing shape calculus since this quickly325

enabled us to reuse the main statements. However, from an IGA point of view defining
the shape derivatives as Frechét derivatives in the Banach space G without perturbations
of identity but variations of G ∈ G might be more elegant. From our perspective, this
seems attractive but also more elaborate: basic results, for instance the right metric such
that a sequence of domains Ωk → Ω∗ converges to a domain Ω∗ if Gk → G∗, have to330

be re-checked. Such an approach would offer also new options like estimating the error
Ω∗h − Ω∗ in a suitable norm with the whole approximation theory of B-splines at hand.

From the geometry representation in IGA sensitivity information is also available in-
side the domain and not on the boundary only, which makes one expect that through this
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information a re-meshing of the domain in each iteration step can be avoided. However,335

we have seen that for large deformations of a shape on the boundary, irregular param-
eterizations can occur independent of the sensitivity information of the interior basis
functions resp. inner control points. This has to be treated by extending the gradient of
the boundary to the interior. Although we sketched some possibilities, there appears to
be only the choice between expensive methods or risk of failure, i.e., tangled meshes.340

Another discussion of trade offs is lead by the observation that the geometry repre-
sentation for the analysis and for the optimization can be separated, though stemming
from the same initial B-spline or NURBS model. For instance it then is possible to use
NURBS for domain representation (and optimization) and B-splines for the analysis. On
the one hand, in case of two parameterizations we loose some of the tight connections345

of design and analysis in IGA. On the other hand, to get good results from simulation
we need a fine mesh which in IGA implies a fine parameterization. Typically such fine
representations of domains are not necessary for shape optimization and only drive the
costs of evaluating shape sensitivities and finding an optimal shape. This indicates that
two parameterizations are favorable, one for analysis and one for optimization. Of course,350

this immediately calls for an error estimator that directs the refinement for the state as
for the control discretization, combined in a goal-oriented error estimator like [27].

To conclude, there are of course open questions but most of all there is a huge potential
of isogeometric analysis for shape optimization.
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