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1 Introduction

1 Introduction

Autoregressive (AR) processes and autoregressive conditionally heteroscedastic (ARCH)
processes are well established and very popular models. While AR processes can be
used for forecasting, ARCH processes are, e.g., used in the risk estimation. The
combination of both models, the so-called AR-ARCH process, combines both the
forecasting and the risk estimation capability. AR-ARCH models exhibit some other
nice properties like their tail behavior compare, e.g., Borkovec and Klüppelberg (2001)
or Cline (2006) for the special case of AR(1)-ARCH(1). Another variant of this model
class is introduced in Lange et al. (2006). They consider an AR model with ARCH
residuals for which the geometric ergodicity is investigated and the asymptotic be-
havior the Quasi maximum likelihood estimator is derived.

Recently, AR-ARCH models have repeatedly served as building blocks for switching
regimes processes which allow for more flexibility in modeling data which only show
locally a homogeneous behaviour. Wong and Li (2000, 2001) used them in an in-
dependent mixture of AR-ARCH model. Lanne and Saikkonen (2003) considered a
threshold like mixture of AR-ARCH model, and Lee (2006) developed stability results
for a mixture of AR-ARCH model where the switching is controlled in e threshold
like manner by past observations of the time series and by a hidden white noise se-
quence. Franke et al. (2007) provided stability results for mixtures of nonlinear and
nonparametric AR-ARCH models with Markovian switching regimes.

In this paper, we consider a hidden Markov mixture of autoregressive processes with
ARCH component combining the models proposed by Wong and Li (2000, 2001), but
with a general Markov switching regime. We apply general results given for such pro-
cesses by Franke et al. (2007) to derive simple conditions for the geometric ergodicity
of the time series. To illustrate the usefulness of that property, we apply the asymp-
totic theory of Douc et al. (2004) to prove consistency and asymptotic normality
of the maximum likelihood parameter estimates. For sake of simplicity, we restrict
our discussion to processes of order 1 in the autoregressive and ARCH component,
but the arguments can be straightforwardly extended to hidden Markov mixtures of
AR(p)-ARCH(q) models. This paper also serves as a role model how to derive the
asymptotics for other, not only linear, parametric Markov switching autoregressive
processes with ARCH component by combining the results of Franke et al. (2007)
with those of Douc et al. (2004).

In the next two chapters, we first introduce the model under consideration and the
main results. Technical lemmas and proofs are postponed to the appendix.
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2 The Model and the Parameter Estimates

2 The Model and the Parameter Estimates

Let {Qt} be a hidden stationary Markov chain with a finite number K of states
which controls the data generating mechanism of the observed time series {Xt}. Let
A = (aij)i,j=1,...,K denote the corresponding transition matrix and π = (π1, . . . , πK)′

the stationary distribution of the chain. To simplify notation, we consider a hidden
Markov mixture of AR-ARCH processes of first order only, i.e.

Xt =
K∑
k=1

Stk
(
mk(Xt−1, θ) + σk(Xt−1, θ)εt

)
(2.1)

where the current state is indicated by

Stk =

{
1 if Qt = k
0 otherwise

(2.2)

The trend and volatility functions are of the standard parametric autoregressive and
ARCH form

mk(x, θ) = αk x and σ2
k(x, θ) = ωk + βk x

2, k = 1, . . . , K,

and the innovations εt are i.i.d. N (0, 1) variables. θ combines all the free parameters
of the model, i.e. αk ∈ R, βk ≥ 0, ωk > 0, k = 1, . . . , K, as well as aij ≥ 0, i =
1, . . . , K, j = 1, . . . , K − 1, into a vector of dimension K(K + 2). The latter have to
satisfy

∑
j aij = 1, i = 1, . . . , K, additionally. In the following, Θ ⊂ RK(K+2) denotes

the parameter set, and we sometimes write A = Aθ to stress the dependence of the
transition matrix on the parameters.

Below, we shall give conditions on θ which guarantee the existence of a stationary
solution to equation (2.1) as well as its geometric ergodicity. Given those conditions
are satisfied, we consider the observed process to be sampled from a stationarity
and geometrically ergodic mechanism {(Qt, Xt)}, and we assume the starting values
(Q0, X0) to be generated accordingly to the corresponding stationary distribution.
Then, the combined process {(Qt, Xt)}∞t=0 is a stationary Markov process defined on
the product space {1, . . . , K} × R.

We always assume that the evolution of the hidden Markov chain does not directly
depend on the observed time series, which follows from

A. 2.1. {εt}∞t=0 is independent of {Qt}∞t=0.

Then, we have e.g. for t > 0, k = 1, . . . , K,

P
(
Qt = k

∣∣Qs, Xs, s = 0, . . . , t−1
)

= P
(
Qt = k

∣∣Qs, s = 0, . . . , t−1
)

= P
(
Qt = k

∣∣Qt−1

)
by the Markov property.

To define the parameter estimates of interest, we first have to introduce some notation.
Let gθ(·|x, k) denote the conditional density of Xt given Xt−1 = x,Qt = k, which
under model (2.1) is the Gaussian density with mean mk(x, θ) and variance σ2

k(x, θ).
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3 Asymptotic Properties of the Parameter Estimate

Given a sequence {yt}t∈Z of deterministic or random real numbers and m,n ∈ Z, m ≤
n, we set ynm = {ym, . . . , yn}. For q0 ∈ {1, . . . , K}, we then get conditional likelihood
function as the conditional density of Xn

1 given X0 and Q0 = q0

pθ(X
n
1 |X0, Q0 = q0) =

K∑
qn=1

. . .

K∑
q1=1

n∏
t=1

aqt−1,qt gθ(Xt|Xt−1, qt) (2.3)

and the conditional log-likelihood function given X0 and Q0 = q0

ln(θ, q0) = log pθ(X
n
1 |X0, Q0 = q0) (2.4)

=
n∑
t=1

log pθ(Xt|X t−1
0 , Q0 = q0).

with

pθ(Xt|X t−1
0 , Q0 = q0)

=
K∑

qt−1=1

K∑
qt=1

gθ(Xt|Xt−1, qt)aqt−1,qtP (Qt−1 = qt−1|X t−1
0 , Q0 = q0).

Similarly, let us introduce the conditional log-likelihood function given only X0

ln(θ) =
n∑
t=1

log pθ(Xt|X t−1
0 ) (2.5)

with

pθ(Xt|X t−1
0 ) =

K∑
qt−1=1

K∑
qt=1

gθ(Xt|Xt−1, qt)aqt−1,qtP(Qt−1 = qt−1|X t−1
0 ). (2.6)

The maximum likelihood estimates θ̂n = arg maxθ∈Θ ln(θ) is hard to evaluate com-
pared to

θ̂n,q0 = arg max
θ∈Θ

ln(θ, q0) (2.7)

where the function to be maximized has a simple explicit form given by (2.3) and (2.4).
However, Q0 is not known. Nevertheless, we may use θ̂n,q0 with an arbitrary initial
value q0 ∈ {1, . . . , K} which asymptotically will make no difference by Proposition
3.2 below.

3 Asymptotic Properties of the Parameter Estimate

In this section, we state our main results. Under rather weak conditions, we may
conclude that the assumptions of Douc et al. (2004) are fulfilled for our model and,
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3 Asymptotic Properties of the Parameter Estimate

therefore, make use of their results to derive the asymptotic of the parameter es-
timates. We assume that the data X0, . . . , Xn are generated by a hidden Markov
mixture of AR-ARCH processes as in (2.1) with parameter θ∗. Moreover, we assume
that assumption A.2.1 holds.

A. 3.1. The parameter set Θ is a compact subset of RK(K+2), and θ∗ is an interior
point of Θ.

That assumption on the parameter set Θ as well as on the true parameter value
θ∗are quite standard in the literature and will be considered here without any further
justification.

A major condition to apply the results of Douc et al. (2004) is stationarity, irreducibil-
ity and geometric ergodicity of the Markov process {(Qt, Xt)}. Using the results of
Franke et al. (2007), this follows from the subsequent assumptions.

A. 3.2. E|Xt| <∞

A. 3.3. 0 < a− ≤ infθ∈Θ infi,j aij ≤ supθ∈Θ supi,j aij = a+ < 1,

A. 3.4.
K∑
k=1

alk
(
α2
k + βk

)
< 1 for all l = 1, . . . , K.

Mark that A.3.4 allows for mixture components with even explosive behaviour (|αk| >
1) if the corresponding state is visited rarely, i.e. alk is for all l small enough.

Proposition 3.1. Let {Xt} be generated from model (2.1), and let A.2.1 and A.3.1
to A.3.4 hold. It follows

1. {Qt} is a strictly stationary, irreducible and aperiodic Markov chain with finite
state space {1, . . . , K}.

2. {(Qt, Xt)} is geometrically ergodic.

Proof. 1. follows immediately from A3.3 and the properties of Markov chains with
finite state space. 2. follows from Theorem 1 of Franke et al. (2007), where we only
have to check the assumptions A.1 to A.8 of that theorem. In particular, A.1 follows
from A.3.3, A.2, A.3 from A.2.1 and A.8 from A.3.4. A.4, A.6 and A.7 are implied
by the our choice of i.i.d. standard normal innovations εt, and A.5 follows from the
special form of mk, σ

2
k and from ω1, . . . , ωK > 0.

The following result implies that in estimating the model parameter by maximizing
the log likelihood, it makes no difference if assume Q0 = q0 to be given. The proof is
postponed to the appendix.

Proposition 3.2. Consider A.3.1 to A.3.3 hold. It follows

sup
θ

sup
1≤q0≤K

∣∣∣∣ 1nln(θ, q0)− l(θ)
∣∣∣∣ −→ 0 a.s. as n→∞
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4 Technical Appendix

For proving consistency, we need a standard identifiability condition for the true
parameter vector which is essentially a condition on the parameter set Θ.

A. 3.5. For all n ≥ 1, θ∗ is the unique solution in Θ of

E
(

log
pθ∗(X

n
1 |X0)

pθ(Xn
1 |X0)

)
= 0

Theorem 3.1. Let A.2.1 and A.3.1 to A.3.5 hold. Then, for all q0 = 1, . . . , K,

lim
n→∞

θ̂n,q0 = θ∗ a.s.

where
θ̂n,q0 = arg max

θ∈Θ
ln(θ, q0).

To formulate the asymptotic normality of the parameter estimate, we have to intro-
duce the notation

I(θ) = −Eθ∇2
θ log pθ(Xt|X t−1

−∞),

which does not depend on t for stationary processes. I(θ∗) is the Fisher information in
our model, and we can estimate it consistently as described in the following theorem.

Theorem 3.2. Consider A.3.1 to A.3.5 and assume, additionally, that E(ε4
t ) < ∞,

and that I(θ∗) is positive definite. Then, for all q0

1

n
∇2
θln(θ̂n,q0 , q0) −→ I(θ∗) a.s.

and √
n(θ̂n,q0 − θ∗) −→ N (0, (I(θ∗))−1)

Remark 3.1. From our proof, it is clear that we need a 4th moment assumption,
which is quite natural for proving asymptotic normality if parameters of variance like
ωk, βk are involved. For allowing even more heavy-tailed distributions and, therefore,
further weakening the moment condition, one could think of modifying the volatility
function, e.g. defining

σ2
k(θ, x) = ωk + βk|x|γ for some 0 ≤ γ < 2

will allow for weaker moment conditions.

4 Technical Appendix

Throughout the whole appendix, we assume that {Qt, Xt} is a stationary process
generated from model (2.1). We first start with some technical lemmas which are
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4 Technical Appendix

needed for proving consistency and asymptotic normality. Under model (2.1), the
conditional density of Xt given Xt−1 = x is

gθ(x|x) =
K∑
k=1

πkgθ(x|x, k) =
K∑
k=1

πk
σk(x, θ)

ϕ

(
x−mk(x, θ)

σk(x, θ)

)
,

=
K∑
k=1

πk√
ωk + βkx

2
ϕ

(
x− αkx√
ωk + βkx

2

)
, (4.1)

where ϕ denotes the standard normal density.

Lemma 4.1. Consider A.3.1 to A.3.3 hold. Then,

1. For all x, x ∈ R,

inf
θ∈Θ

gθ(x|x) > 0, sup
θ∈Θ

gθ(x|x) <∞ (4.2)

2.

b+ = sup
θ

sup
x,x,k

gθ(x | x, k) <∞ (4.3)

and

E
∣∣∣log inf

θ
gθ(X1 | X0)

∣∣∣ <∞. (4.4)

Proof. 1. Using δ2
σ ≡ min{ω1, . . . , ωK} > 0 and σk(u) ≥ δσ for all k, u, we get for all

x, x ∈ R,
gθ(x|x) ≤ 1

δσ

since ϕ(u) ≤ 1 for all u. On the other hand, by compactness of Θ, we can choose
M > 0 such that α2

k, ωk, βk ≤M2, k = 1, . . . , K. Then,

(x− αkx)2 = (|x+ αkx|)2 ≤ (|x|+M |x|)2,

and
0 < δσ ≤ σk(x, θ) =

√
ωk + βkx

2 ≤M(1 + |x|),

we get for all θ ∈ Θ, as ϕ(u) is decreasing in |u|,

gθ(x|x) ≥ max
k=1,...,K

πk
σk(x, θ)

ϕ

(
x− αkx
σk(x, θ)

)
≥ max

k=1,...,K

πk
M(1 + |x|)

ϕ

(
x− αkx
σk(x, θ)

)
(4.5)

≥ 1

K

1

M(1 + |x|)
ϕ

(
|x|+M |x|

δσ

)
> 0,
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as maxk=1,...,K πk ≥ 1
K

due to π1 + . . . πK = 1.

2. By definition and moving along the same line of arguments as in 1., we see that
b+ is trivially dominated by a positive constant. Hence the first part of our assertion
holds. For the second part, we get from (4.5):

1

δσ
≥ inf

θ
gθ(X1|X0) ≥ 1

KM

1

1 + |X0|
ϕ

(
|X1|+M |X0|

δσ

)
Henceforth,∣∣∣log inf

θ
gθ(X1|X0)

∣∣∣ ≤ | log δσ|+ log
√

2π + | 1

KM
|

+ log(1 + |X0|) +
(|X1|+M |X0|)2

2δ2
σ

Using the moment assumptions and observing that E log(1 + |X0|) ≤ E|X0| <∞, the
assertion follows.

Proof of Proposition 3.2 and Theorem 3.1:

Under our conditions, the proof of Theorem 1 of Franke et al. (2007) implies that
{(Qt, Xt)} is not only geometrically ergodic, but also irreducible and aperiodic, and
every compact set is a petite set. Choosing only the θ for which the drift condition is
fulfilled, the transition kernel of the combined Markov process {(Qt, Xt)} is positive
Harris recurrent. Therefore, assumption (A2) of Douc et al. (2004) is satisfied. Then,
Proposition 3.2 follows from going through the proof of Proposition 2 of Douc et al.
(2004), where we only have to check, if their other assumptions are satisfied too. Our
assumptions A.3.3 represents (A1) of Douc et al., (A3) is implied by our Lemma 4.1
below, and (A4) is immediate from the representation (4.1) of gθ(x|x).

Marking that any stationary process {Zt}t≥0 can be extended to a two-sided process
{Zt}−∞<t<∞, see e.g. Theorem 4.8 of Krengel (1985), our Theorem 3.1 follows from
Theorem 1 of Douc et al. (2004) once we have checked their conditions. (A1)-(A4)
have been discussed already in the previous paragraph. The identifiability condi-
tion(A5) follows immediately from our Assumption 3.5. Finally, the required geo-
metric ergodicity follows from Proposition 3.1.

For sake of reference, we give some details on the line of arguments used by Douc et
al. (2004) using our notation. The consistency proof for the conditional likelihood,
i.e. the proof of Proposition 3.2, follows the classical scheme in the literature, which
consists of proving the existence of a deterministic function l(θ) such that asymptoti-
cally 1

n
ln(θ, q0) −→ l(θ) a.s. uniformly w.r.t θ ∈ Θ. This argument requires a uniform

law of large numbers, and θ∗, the desired optimum of l(θ), has to be identifiable in a
sense to be specified later. We also need to emphasize that l(θ) should not depend on
the initial state value Q0 = q0. To check those requirements Douc et al. (2004) first
show that under some suitable conditions and for any q0 ∈ {1, . . . , K}

sup
θ∈Θ
|ln(θ, q0)− ln(θ)| ≤ 1

(1− ρ)2
, a.s. for some 0 ≤ ρ < 1.
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Therefore asymptotically,

1

n
(ln(θ, q0)− ln(θ)) −→ 0 a.s and in L1 uniformly in θ ∈ Θ

In the next step, they prove that

1

n
ln(θ) =

1

n

n∑
t=1

log pθ(Xt|X t−1
0 )

≈ 1

n

n∑
t=1

log pθ(Xt|X t−1
−∞),

compare (2.5), where 1
n

∑n
t=1 log pθ(Xt|X t−1

−∞) is a sample mean of observations from
a two-sided stationary ergodic sequence of random variables in L1.

To show this result, they introduce

∆t,m,q(θ) = log pθ(Xt|X t−1
−m , Q−m = q)

and

∆t,m(θ) = log pθ(Xt|X t−1
−m)

= log
K∑
q=1

pθ(Xt|X t−1
−m , Q−m = q)P(Q−m = q|X t−1

−m),

in particular ln(θ) =
∑n

t=1 ∆t,0(θ).

They then show that {∆t,m(θ)}m≥0 and {∆t,m,q(θ)}m≥0 are uniform Cauchy sequences
w.r.t. θ ∈ Θ almost surely and derive that they converge uniformly w.r.t. θ almost
surely. Furthermore, they also show that {∆t,m,q(θ)}m≥0 is uniformly bounded in L1,
and for all m,

sup
θ

sup
q
|∆t,m,q(θ)−∆t,m(θ)| ≤ ρk+m−1

1− ρ
.

From the above properties, they derive,

n∑
t=1

sup
θ
|∆t,0(θ)−∆t,∞(θ)| ≤ 2

(1− ρ)2
a.s.

such that, in particular,

1

n
ln(θ) −→ l(θ) = E ∆0,∞(θ) a.s.

Hence, for all q0 and θ ∈ Θ,

1

n
ln(θ, q0) −→ l(θ) a.s.
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Finally, using the regularity implied by their assumptions, they establish the uniform
law of large numbers formulated as Proposition 3.2 above:

sup
θ

sup
q0

∣∣∣∣ 1nln(θ, q0)− l(θ)
∣∣∣∣ −→ 0 as n→∞

which together with their identifiability condition provides the consistency of the
MLE.

In the next lemma, Θ∗ ⊂ Θ denotes an open neighbourhood of θ∗ contained in Θ which
exists by A.3.1. To stress the dependence on the model parameters, we sometimes
write Aθ, akl(θ) for the transition matrix of {Qt} and its elements.

Lemma 4.2. Consider A.3.1 to A.3.3 hold. It follows

(a) for all k, l ∈ {1, . . . , K} and x, x ∈ R, the function θ 7−→ akl(θ) and θ 7−→
gθ(x|x, k) are twice continuously differentiable on Θ∗.

(b) supθ∈Θ∗ supk,l ‖∇θ log akl(θ)‖ <∞ and supθ∈Θ∗ supk,l ‖∇2
θ log akl(θ)‖ <∞

(c) E{supθ∈Θ∗ supk ‖∇θ log gθ(X1|X0, k)‖} <∞ and
E{supθ∈Θ∗ supk ‖∇2

θ log gθ(X1|X0, k)‖} <∞ for all k = 1, . . . , K.

Proof. The first part of (a) and (b) follow immediately from the fact that the tran-
sition probabilities akl(θ) are parameters themselves or, for l = K, linear functions
of the parameters. For the other assertions, let us recall that gθ(·|x, k) is a Gaussian
density, and in particular

Gk(θ) = log gθ(Xt|Xt−1, k)

= −1

2
log(ωk + βkX

2
t−1)− log

√
2π − 1

2

(
Xt − αkXt−1

)2

ωk + βkX2
t−1

. (4.6)

The required differentiability of gθ(·|x, k) follows immediately, recalling that αk, ωk, βk
are bounded and bounded away from 0 on Θ∗. To prove (c), it is enough to investigate
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the first and second order partial derivatives

∂Gk(θ)

∂αk
=

Xt−1(Xt − αkXt−1)

ωk + βkX2
t−1

∂Gk(θ)

∂ωk
= − 1

2(ωk + βkX2
t−1)

+
1

2

(Xt − αkXt−1)2

(ωk + βkX2
t−1)2

,

∂Gk(θ)

∂βk
= −

X2
t−1

2(ωk + βkX2
t−1)

+
1

2

X2
t−1(Xt − αkXt−1)2

(ωk + βkX2
t−1)2

,

∂2Gk(θ)

∂ωk∂αk
= −Xt−1(Xt − αkXt−1)

(ωk + βkX2
t−1)2

,

∂2Gk(θ)

∂βk∂αk
=
−X3

t−1(Xt − αkXt−1)

(ωk + βkX2
t−1)2

,

∂2Gk(θ)

∂ωk∂βk
=

X2
t−1

2(ωk + βkX2
t−1)2

−
X2
t−1(Xt − αkXt−1)2

(ωk + βkX2
t−1)3

∂2Gk(θ)

∂α2
k

=
−X2

t−1

ωk + βkX2
t−1

∂2Gk(θ)

∂ω2
k

=
1

2(ωk + βkX2
t−1)2

− (Xt − αkXt−1)2

(ωk + βkX2
t−1)3

∂2Gk(θ)

∂β2
k

=
X4
t−1

2(ωk + βkX2
t−1)2

−
X4
t−1(Xt − αkXt−1)2

(ωk + βkX2
t−1)3

Under model (2.1) there are constants α̃, β̃ > 0 such that for all and for θ ∈ Θ∗, |Xt| ≤
α̃|Xt−1| + β̃|Xt−1||εt| and additionally we have Xt−1, εt are independent. (c) fol-
lows from observing that εt has finite variance and that, as ω1, . . . ωK are uniformly
bounded away from 0 in Θ∗, functions of the form

zµ

(ωk + βkz2)ν
≤ cµν , (4.7)

are uniformly bounded by a suitable constant cµν in 0 ≤ z <∞, k = 1, . . . , K for all
µ ≤ 2ν.

Remark 4.1. Since |Xt| ≤ α̃|Xt−1|+ β̃|Xt−1||εt| it follows that

|Xt − αkXt−1| ≤ |Xt−1|(|αk|+ α̃ + β̃|εt|)

and

(Xt − αkXt−1)2 ≤ 2X2
t−1({|αk|+ α̃}2 + β̃2ε2

t ). (4.8)

Therefore, using equation (4.7) we can easily observe that the highest moment con-
dition required is Eε2

t <∞. Using the same argument, we also observe from equation
(4.9) that we only need Eε4

t <∞ to conclude the moment assumption for the asymp-
totic normality proof. However, as one can observe from the proof of Lemma 4.1, we
still need to assume E|X0| < ∞, which is granted as the geometric ergodicity proof
implies even EX2

t <∞.
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Lemma 4.3. If A.3.1 to A.3.3 and, additionally, E(X4
t ) <∞ hold then

1. There exists a function f0 : R2 7−→ R+ satisfying Ef0(Xt, Xt−1) <∞, such that

sup
θ∈Θ∗

gθ(x|x, k) ≤ f0(x, x) for all x, x ∈ R

2. There exist functions f1, f2 : R2 7−→ R+ satisfying Efi(Xt, Xt−1) <∞, i = 1, 2,
such that

‖∇θgθ(x|x, k)‖ ≤ f1(x, x) and ‖∇2
θgθ(x|x, k)‖ ≤ f2(x, x) for all x, x ∈ R

Proof. We use the notation

gk(θ) = gθ(x | x, k) = exp(Gk(θ))

1. follows immediately with a constant f0 from 0 < gk(θ) ≤ 1
δσ

which we have shown
above.

For showing 2., let γk, ρk represent an arbitrary selection from αk, βk, ωk with repeti-
tions allowed. We have

∂gk(θ)

∂γk
=
∂Gk(θ)

∂γk
gk(θ),

∂2gk(θ)

∂γk∂ρk
=

(
∂2Gk(θ)

∂γk∂ρk
+
∂Gk(θ)

∂γk

∂Gk(θ)

∂ρk

)
gk(θ), (4.9)

where Gk and its partial derivatives are given in the proof of Lemma 4.2. Using those
relations and, again, (4.7), we get with suitable constants c1, c2 such that all partial
derivatives of gk(θ) of first and second order with respect to αk, βk, ωk are bounded
by

(c2x
4 + c1)gθ(x|x, k) ≤ 1

δσ
(c2x

4 + c1)

for all x, x ∈ R and all k = 1, ..., K. Setting f1, f2 equal to the right-hand side of this
inequality, the assertion follows from the moment condition on Xt.

Proof of Theorem 3.2:

Proof. The assertion follows from Theorems 3 and 4 of Douc et al. (2004). We have
already discussed in the proof of Theorem 3.1 that the majority of their assumptions
are fulfilled. The remaining assumptions (A6)-(A8) follow from Lemma 4.2 and 4.3.

Again, for sake of reference, we give some more details of the asymptotic normality
proof due to Douc et al. (2004). As usual, they rely on

1. a (local) uniform law of large number for the observed Fisher information
1
n
∇2
θln(θ, q0) for θ in the vicinity of θ∗.

2. A CLT for the Fisher score function 1√
n
∇θln(θ∗, q0).

12
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For the CLT, as in Douc et al. (2004), we define

1√
n
∇θln(θ∗, q0) =

1√
n

n∑
t=1

∇θ log pθ∗(Xt|X t−1
0 , Q0 = q0)

=
1√
n

n∑
t=1

∆′t,0,q0(θ
∗), (4.10)

where, using the notation of the proof of Theorem 3.1,

∆′t,0,q0(θ) = ∇θ∆t,0,q0(θ) = Eθ

[
t∑
i=1

φ(θ, Zi
i−1)|X t

0, Q0 = q0

]

−Eθ

[
t−1∑
i=1

φ(θ, Zi
i−1)|X t−1

0 , Q0 = q0

]
(4.11)

with

φ(θ, Zi
i−1) = φ(θ, Zi−1, Zi)

= φ(θ, (Qi−1, Xi−1), (Qi, Xi))

= ∇θ log(aQi−1,Qigθ(Xi|Xi−1, Qi)). (4.12)

Similarly,

∆′t,m(θ) = Eθ

[
t∑
i=1

φ(θ, Zi
i−1)|X t

−m

]
− Eθ

[
t−1∑
i=1

φ(θ, Zi
i−1)|X t−1

−m

]
(4.13)

Under suitable assumptions, we can show {∆′t,∞}∞t=−∞ is an Ft = σ(Xs, s ≤ t)
adapted, stationary, ergodic and square integrable martingale sequence for which
we can apply a CLT, Durett 1996, p 418.

In other words, for
I(θ∗) = Eθ∗

[
∆′0,∞(θ∗)∆′0,∞(θ∗)T

]
we have

1√
n

n∑
t=1

∆′t,∞(θ∗) −→ N (0, I(θ∗))

Additionally,

lim
n→∞

E

∥∥∥∥∥ 1√
n

n∑
t=1

(∆′t,0(θ∗)−∆′t,∞(θ∗))

∥∥∥∥∥
2

= 0

and

lim
n→∞

E

∥∥∥∥∥ 1√
n

n∑
t=1

(∆′t,0,q(θ
∗)−∆′t,0(θ∗))

∥∥∥∥∥
2

= 0.

13
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This proves that ∆′t,0,q can be approximated in L2 by a stationary martingale incre-
ment sequence, for which a CLT for stationary martingale has been applied. There-
fore,

1√
n

n∑
t=1

∆′t,0,q(θ
∗) −→ N (0, I(θ∗)).

Uniform Law of large Number for the observed Fisher Information

Let us define

∇2
θ log pθ(X

n
1 |X0, Q0 = q0) = Eθ

[
t∑
i=1

ψ(θ, Zi
i−1)|X t

0, Q0 = q0

]

+varθ

[
t∑
i=1

φ(θ, Zi
i−1)|X t

0, Q0 = q0

]
(4.14)

where

ψ(θ, Zi
i−1) = ψ(θ, Zi−1, Zi)

= ψ(θ, (Qi−1, Xi−1), (Qi, Xi))

= ∇2
θ log(aQi−1,Qigθ(Xi|Xi−1, Qi)). (4.15)

As previously,

Eθ

[
t∑
i=1

ψ(θ, Zi
i−1)|X t

0, Q0 = q0

]
=

n∑
t=1

(
Eθ

[
t∑
i=1

ψ(θ, Zi
i−1)|X t

0, Q0 = q0

]

− Eθ

[
t−1∑
i=1

ψ(θ, Zi
i−1)|X t−1

0 , Q0 = q0

])

and

varθ

[
t∑
i=1

φ(θ, Zi
i−1)|X t

0, Q0 = q0

]
=

n∑
t=1

(
varθ

[
t∑
i=1

φ(θ, Zi
i−1)|X t

0, Q0 = q0

]

− varθ

[
t−1∑
i=1

φ(θ, Zi
i−1)|X t−1

0 , Q0 = q0

])

Let further define, for t ≥ 1,m ≥ 0

∆′t,m(θ) = Eθ

[
t∑

i=−m+1

ψ(θ, Zi
i−1)|X t

−m

]
− Eθ

[
t−1∑

i=−m+1

ψ(θ, Zi
i−1)|X t−1

−m

]

and

Γt,m(θ) = varθ

[
t∑

i=−m+1

φ(θ, Zi
i−1)|X t

−m

]
− varθ

[
t−1∑

i=−m+1

φ(θ, Zi
i−1)|X t−1

−m

]

14



4 Technical Appendix

∆′t,m and Γt,m converge to ∆′t,∞ and Γt,∞ in L1 as m → ∞. Furthermore, {∆′t,∞}
and {Γt,∞} are stationary and ergodic. Therefore, the observed Fisher information
matrix converges to −Eθ∗ [∆

′
0,∞(θ∗) + Γ0,∞(θ∗)].
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