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Abstract. In financial mathematics stock prices are usually modelled directly as
a result of supply and demand and under the assumption that dividends are paid
continuously. In contrast economic theory gives us the dividend discount model
assuming that the stock price equals the present value of its future dividends.
These two models need not to contradict each other - in their paper Korn and
Rogers (2005) introduce a general dividend model preserving the stock price to
follow a stochastic process and to be equal to the sum of all its discounted divi-
dends. In this paper we specify the model of Korn and Rogers in a Black-Scholes
framework in order to derive a closed-form solution for the pricing of American
Call options under the assumption of a known next dividend followed by several
stochastic dividend payments during the option’s time to maturity.
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Introduction

In finance stock prices are typically modeled directly and are assumed to follow a
geometric Brownian motion – or more generally a semi-martingale – without refer-
ring to the economic value of the payments obtained by possessing the stock. Even
more, sometimes the existence of dividend payments is simply ignored and, in par-
ticular, in option pricing the validity of certain key results depend in a crucial way
on the absence of dividends – a prominent example is the price equality between
European and American calls on a non-dividend paying stock in the presence of a
non-negative interest rate. On the one hand, ignoring the dividend payments can
lead to serious pricing errors for derivatives. On the other hand, we could interpret
this as modeling the stock price evolution only as a result of supply and demand.
From an economic point of view, however, the price of a share of a company should
be equal to the present value of the future dividend payments. In general the two
modeling approaches need not to contradict each other. But there are situations,
where an explicit consideration of dividend payments is necessary, since otherwise
the price evolution of the share is not modeled in an adequate way. The typical sit-
uation is the time span between the announcement of the next dividend payment
and its actual payment date. Then the share price dynamics contains a certain
component which is deducted from the share price at the dividend payment time.
Thus, the dynamics of the share price has to differ from that during times of no
explicit dividend announcement.

The case of known dividends and the valuation of European options as well
as American call options has been widely discussed in the literature. Roll, Geske
and Whaley – see [8], [9], [10], [15], [17] and [18] – have solved the pricing problem
of an American call on a stock with one known dividend payment during its time
to maturity. Sterk [16] has verified the fit of the Roll-Geske-Whaley formula to
American call prices. In mathematical finance Geske [7] was the first to consider
uncertain dividends leading to a closed-form solution for European option prices in
an adjusted Black-Scholes framework. Following this introduction of an unknown
dividend Broadie et al. [3] as well as Chance et al. [4] examined the influence of
stochastic dividend payments on the price of an European option. Besides there are
a number of publications that are concerned with dividends and the derivation of
a market opinion such as for example [5]. Professionals in finance, see for example
[1], [2], [6] or [12], still take great interest in the question which model reflects
reality the best and offers consistent option pricing – especially with American
options. Zhu [19] has tackled the problem of giving a closed-form solution for the
price of an American put option.

In order to include both approaches the following facts should be taken into
account when constructing a dividend model for stocks:
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• The stock price is the present value of all future dividend payments.

• The actual value of the next dividend payment and the stock price are closely
related.

• There is no clear relation between the height of interest rates and the div-
idend payments unless the fact that an investor expects the dividend yield
to be higher than the yield of a risk-less bond.

• The closer one gets to the time of the dividend payment, randomness of the
dividend reduces.

Based on these facts Korn and Rogers [14] have chosen to model all dividends by
a stochastic process and thereby derive the price of a stock S(t) paying dividends
D(ti) at future times ti > t as

S(t) = E

[ ∞∑
i=1

e−r(ti−t)D(ti)

]
. (1)

We note that this case also includes that the earlier dividend payments can be
known and therefore constant.

In this paper we use the basic idea of Korn and Rogers [14] in a Black-Scholes
framework which allows us to price American options on a dividend paying stock
in closed-form. The main contributions of our paper are the following:

(i) We transfer the model of Korn and Rogers into a Black-Scholes framework.

(ii) To illustrate the key idea of the proof we give closed-form solutions for just
one known respectively stochastic dividend during the option’s time to ma-
turity.

(iii) We derive a recursive algorithm for our valuation based on transferring back
the n-dimensional case to the (n− 1)-dimensional case.

(iv) We achieve a closed-form solution to the pricing problem of American Call
options with several dividend payments during the time to maturity.

The remainder of the paper is structured as follows:

We use the dividend model in a lognormal framework, which is described in
detail in Section 1. To illustrate the idea, we discuss closed-form solutions to
American option pricing in Section 2 under the assumption that there is only
one dividend payment during the time to maturity of the corresponding option.
Furthermore, we distinguish between a stochastic and a known dividend payment.
In Section 3 we give closed-form solutions to the pricing of American Call options
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under the assumption of several dividends, where we distinguish two situations:
(1) strictly stochastic dividends, and (2) one known dividend followed by stochastic
dividend payments. Of course it is possible to combine these results to one, but
for the sake of a better understanding of the situation we present these cases
seperately.

1 Stochastic Dividends in the Korn-Rogers

Model

From now on we assume that the stock pays its dividends at equidistant times
of which the first l dividends D1, · · · , Dl with payment dates 0 < t1, t1 +
h · · · , t1 + h(l − 1) are known and therefore deterministic and the later dividends
Dl+1, Dl+2, · · · with payment dates t1 +hl, t1 +h(l+1), · · · are stochastic. In their
paper [14] Korn and Rogers assume that the stochastic dividends are of the form

Dl+1 = X(t1 + hl), · · · , Dn = X(t1 + h(n− 1)) (2)

where X is an exponential Lévy process scaled by some positive constant. Fur-
thermore they assume that holds

E
[
X(s)

∣∣∣∣ Ft] = eµ(t−s) ·X(t) (3)

for some µ < r and any 0 ≤ s ≤ t where r is the risk-free interest rate. Note that
the representation of the stock price as the sum of the present values of its future
dividend payments

S(t) = E

[ ∞∑
i=1

e−r(ti−t)Di

]
(4)

leads to the fact that we can write the stock price as

S(t) =



∑l
m=1 e

−r(t1+(m−1)h−t)Dm +X(t) e
−(r−µ)(t1+lh−t)

1−e−(r−µ)h

for t ∈ [0, t1)∑l
m=k+1 e

−r(t1+(m−1)h−t)Dm +X(t) e
−(r−µ)(t1+lh−t)

1−e−(r−µ)h

for t ∈ [t1 + h(k − 1), t1 + hk),

1 ≤ k < l

X(t) e
−(r−µ)(t1+kh−t)

1−e−(r−µ)h for t ∈ [t1 + h(k − 1), t1 + hk),

l ≤ k

(5)

since by Equation (3) holds

E

[ ∞∑
i>l

e−r(t1+(i−1)h−t)X(t1 + (i− 1)h)
∣∣∣∣Ft
]

= X(t)
e−(r−µ)(t1+lh−t)

1− e−(r−µ)h
(6)

4



for some t < t1 + hl as well as

E

[ ∞∑
i>k

e−r(t1+(i−1)h−t)X(t1 + (i− 1)h)
∣∣∣∣Ft
]

= X(t)
e−(r−µ)(t1+kh−t)

1− e−(r−µ)h
(7)

for t = t1 + hk ≥ t1 + hl.

So far we did not specify the dynamics of the dividend process. From now on
we assume that the dividend process X(t) follows a geometric Brownian motion

dX(t) = µX(t)dt+ σX(t)dW (t), µ < r (8)

where r is the risk-free interest rate and σ the volatility of the dividend process X
and thereby of the stock price process S.

If we denote by S0 today’s market price of the stock, this is leading to the
following representation of the stock price for t ∈ [0, t1)

S(t) =

(
S0 −

l∑
m=1

Dme
−r(t1+h(m−1))

)
e(r−

1
2σ

2)t+σW (t) +
l∑

m=1

Dme
−r(t1+h(m−1)−t)

(9)

while for t ∈ [t1 + h(k − 1), t1 + hk) and 1 ≤ k < l the ex-dividend stock price
equals

S(t) =

(
S0 −

l∑
m=1

Dme
−r(t1+h(m−1))

)
e(r−

1
2σ

2)t+σW (t) +
l∑

m=k+1

Dme
−r(t1+h(m−1)−t)

(10)

while for t ∈ [t1 + h(k − 1), t1 + hk), l ≤ k holds

S(t) =

(
S0 −

l∑
m=1

Dme
−r(t1+h(m−1))

)
e−(r−µ)(k−l)he(r−

1
2σ

2)t+σW (t). (11)

We note that this representation relies on the fact that announcement and payment
dates for the dividends coincide. It is possible to include a time difference between
the announcement and the payment of dividends, which would lead to higher
dimensional distribution functions. Nevertheless due to the fact that the dividend
payment date is the important date at which we distinguish between exercising
and holding the option we neglect this difference. Our representation contains the
case of strictly stochastic dividends (l = 0) as well as the case of n known dividends
(l = n) in some time interval [0, T ] with 0 < t1 < · · · < tn = t1 + (n − 1)h <

T < tn+1 = t1 + nh. Furthermore it is consistent with the Black-Scholes formula
if we reduce today’s stock price with regard to the total as well as proportional
dividend payments paid out before the expiry of the option:
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Theorem 1.1 Consider an European call option with strike K and maturity T on
a dividend paying stock with market price S0 and n dividend payments D1, · · ·Dn

during the time to maturity, of which the first l payments at times t1, · · · , t1 +
h(l − 1) are deterministic and the later dividends Dl+1 = X(t1 + hl), · · · , Dn =
X(t1 + h(n− 1)) follow a geometric Brownian motion. The price of this option is
given by

S̃0N(d̃1)−Ke−rTN(d̃2) (12)

where N(·) is the standard normal cumulative distribution function (cdf),

d̃1 =
ln
(
S̃0
K

)
+ (r + 1

2σ
2)T

σ
√
T

and d̃2 = d̃1 − σ
√
T (13)

as well as

S̃0 =

(
S0 −

l∑
m=1

Dme
−r(t1+h(m−1))

)
e−(r−µ)(n−l)h. (14)

Proof: Using the representation of the stock price as in (11) we see that the stock
price at time to maturity T can written as

S(T ) =

(
S0 −

l∑
m=1

Dme
−r(t1+h(m−1))

)
e−(r−µ)(n−l)he(r−

1
2σ

2)T+σW (T ). (15)

Hence the rest of the proof goes along the lines of the proof of the Black-Scholes
formula. �

2 American Options in the One-Dividend Case

In order to show the basic idea of the proof for the higher dimensional problem
we first consider the case of only one dividend during the time to maturity such
that 0 < t1 < T < t1 + h.

2.1 The Case of a Stochastic Dividend

In this subsection we focus on the case of American Call options in the presence
of completely stochastic dividends with only one dividend payment during the
option’s time to maturity:

Theorem 2.1 Assume that the stock pays an unknown dividend D1 = X(t1) at
time t1. The price C0,1

D of an American Call with strike K and maturity T > t1

is given by

C0,1
D (S0, 0, T,K) =S0Π0,1

1 (S0, 0)−Ke−rTΠ0,1
2 (S0, 0) (16)
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where

Π0,1
1 (S0, 0) = N(d1

1) + e−(r−µ)hN

(
d1
2,−d1

1,−
√
t1
T

)
(17)

Π0,1
2 (S0, 0) = er(T−t1)N(d2

1) +N

(
d2
2,−d2

1,−
√
t1
T

)
(18)

with

d1
1 =

ln
(
S0e

−(r−µ)h

S∗

)
+
(
r + 1

2σ
2
)
t1

σ
√
t1

and d2
1 = d1

1 − σ
√
t1, (19)

d1
2 =

ln
(
S0e

−(r−µ)h

K

)
+
(
r + 1

2σ
2
)
T

σ
√
T

and d2
2 = d1

2 − σ
√
T . (20)

N(·) is the standard normal cdf, N(·, ·, ρ) is the bivariate normal cdf with correla-
tion ρ and S∗ is the unique stock price such that holds

CBlack Scholes(S∗, t1, T,K) = S∗ +D∗ −K (21)

with

D∗ = S∗
1− e−(r−µ)h

e−(r−µ)h
. (22)

Proof: We note that the only time sensible for an early exercise of the American
call is the time t1 of the dividend payment. Analogously to the Roll-Geske-Whaley
formula (as in [13], see also [9], [15] and [17]) we find a ”critical” stock price S∗

at time t1 such that the call should be exercised for S(t1) > S∗ or should be hold
for S(t1) ≤ S∗. S∗ is the stock price such that (21) holds. Hence we can write
today’s option price as

E[e−rt1 · C0,0
D (S(t1), t1, T,K) · 1{S(t1)≤S∗}|F0]

+ E[e−rt1 · (S(t1) +D(t1)−K) · 1{S(t1)>S∗}|F0] (23)

where

C0,0
D (S(t1), t1, T,K) = S(t1)N(d1(t1))−Ke−r(T−t1)N(d2(t1)) (24)

with

d1(t1) =
ln
(
S(t1)
K

)
+ (r + 1

2σ
2)(T − t1)

σ
√
T − t1

(25)

d2(t1) = d1(t1)− σ
√
T − t1 (26)
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is the Black-Scholes price of an European option with no dividend payment during
the time interval (t1, T ) and

D(t1) = S(t1)
1− e−(r−µ)h

e−(r−µ)h
(27)

is the dividend payment at time t1. If we split up the above expectation, we first
get by using Equation (27)

E[e−rt1 · (S(t1) +D(t1)−K) · 1{S(t1)>S∗}|F0] = S0N(d1
1)−Ke−rt1N(d2

1) (28)

with

d1
1 =

ln
(
S0e

−(r−µ)h

S∗

)
+
(
r + 1

2σ
2
)
t1

σ
√
t1

and d2
1 = d1

1 − σ
√
t1. (29)

Secondly we derive that

E[e−rt1 · C(S(t1), t1, T,K) · 1{S(t1)≤S∗}|F0] (30)

equals by plugging in the exact option price (24) at time t1

e−(r−µ)hS0N

(
d1
2,−d1

1,−
√
t1
T

)
−Ke−rTN

(
d2
2,−d2

1,−
√
t1
T

)
(31)

with

d1
1 =

ln
(
S0e

−(r−µ)h

S∗

)
+
(
r + 1

2σ
2
)
t1

σ
√
t1

and d2
1 = d1

1 − σ
√
t1 (32)

d1
2 =

ln
(
S0e

−(r−µ)h

K

)
+
(
r + 1

2σ
2
)
T

σ
√
T

and d2
2 = d1

2 − σ
√
T (33)

using Lemma A.4, Corollary A.5 and Corollary A.8 for n = 1 and taking into
account, that we can rewrite d1(t1) and d2(t1) as

d1(t1) =
ln
(
S(t1)
K

)
+ (r + 1

2σ
2)(T − t1)

σ
√
T − t1

(34)

=
ln
(
S0e

−(r−µ)h

K

)
+ (r + 1

2σ
2)T − σ2t1

σ
√
T − t1

+
1√

T − t1
Wt1 (35)

= β1
1 + α1

1

Wt1√
t1

(36)

d2(t1) =
ln
(
S(t1)
K

)
+ (r − 1

2σ
2)(T − t1)

σ
√
T − t1

(37)

=
ln
(
S0e

−(r−µ)h

K

)
+ (r − 1

2σ
2)T

σ
√
T − t1

+
1√

T − t1
Wt1 (38)

= β2
1 + α2

1

Wt1√
t1
. (39)

�
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2.2 The Case of a Known Dividend

In this subsection we assume that there is one known constant dividend during
the option’s time to maturity. These assumptions are the same as for the Roll-
Geske-Whaley formula. In the following we show, that our approach is consistent
with this well-known result:

Theorem 2.2 Roll-Geske-Whaley Formula. Assume that the stock pays a
known dividend D1 at time t1. The price C1,0

D of an American Call with strike K
and maturity T > t1 is given by

C1,0
D (S0, 0, T,K)

=
(
S0 −D1e

−rt1
)

Π1,0
1 (S0, 0)−Ke−rTΠ1,0

2 (S0, 0) +D1e
−rt1N(d2

1) (40)

where Π1,0
1 (S0, 0) and Π1,0

2 (S0, 0) are given by

Π1,0
1 (S0, 0) = N(d1

1) +N

(
d1
2,−d1

1,−
√
t1
T

)
(41)

Π1,0
2 (S0, 0) = er(T−t1)N(d2

1) +N

(
d2
2,−d2

1,−
√
t1
T

)
(42)

with

d1
1 =

ln
(
S0−D1e

−rt1

S∗

)
+
(
r + 1

2σ
2
)
t1

σ
√
t1

and d2
1 = d1

1 − σ
√
t1, (43)

d1
2 =

ln
(
S0−D1e

−rt1

K

)
+
(
r + 1

2σ
2
)
T

σ
√
T

and d2
2 = d1

2 − σ
√
T (44)

where S∗ is the unique stock price such that holds

CBlack Scholes(S∗, t1, T,K) = S∗ +D1 −K. (45)

Proof: The proof goes along the lines of the proof to the previous theorem taking
into account that under the assumption of a first known dividend the stock price
at time t1 is an ex-dividend stock price such that holds by Equation (11)

S(t1) =
(
S0 −D1e

−rt1
)
e(r−

1
2σ

2)t+σW (t). (46)

�

3 American Options in the Multi-Dividend Case

We finally focus on American call options on a stock with n dividend payments,
such that we have dividend payments at t1, t1 +h,...,t1 +h(n−1) until the option’s
maturity at time T .
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3.1 The Case of n Stochastic Dividends

In the previous section we illustrated the structure of deriving a closed-form so-
lution under the assumption of a single dividend during the time to maturity. In
the case of n dividends this leads to the recursive calculation of n− 1 multivariate
normal distributions. We note that the number of steps in the calculation process
of the option price is of order O(n4). However, in practice, this remains com-
putationally feasible since the number of dividend payments up to maturity T is
usually quite small.

Theorem 3.1 The price of an American call option with strike K and maturity
T on a dividend paying stock with market price S0 and n stochastic dividends at
times t1 < t1 + h < · · · < t1 + (n− 1)h < T during maturity is given by

C0,n
D (S0, 0, T,K) = S0Π0,n

1 (S0, 0)−Ke−rTΠ0,n
2 (S0, 0) (47)

where

Π0,n
1 (S0, 0) = N(d1

1) +
n∑
i=1

e−(r−µ)ihNi+1

(
d1

i+1;C(i+1)
)

(48)

Π0,n
2 (S0, 0) = er(T−t1)N(d2

1) +
n−1∑
i=1

er(T−(t1+ih))Ni+1

(
d2

i+1;C(i+1)
)

+Nn+1

(
d2

n+1;C(n+1)
)

(49)

and where for i = 1, · · · , n and a = 1, 2 we define

da
i+1 = (dai+1,−dai , · · · ,−da2 ,−da1) (50)

with

d1
i =

ln
(
S0e

−(r−µ)ih

S∗i

)
+ (r + 1

2σ
2)(t1 + (i− 1)h)

σ
√
t1 + (i− 1)h

(51)

d2
i = d1

i − σ
√
t1 + (i− 1)h (52)

as well as

d1
n+1 =

ln
(
S0e

−(r−µ)nh

K

)
+ (r + 1

2σ
2)T

σ
√
T

(53)

d2
n+1 = d1

n+1 − σ
√
T (54)

and with S∗1 , S∗2 , · · · , S∗n such that for i = 1, · · · , n

C0,n−i
D (S∗i , t1 + (i− 1)h, T,K) = S∗i +D∗i −K (55)
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where D∗i is the unknown dividend paid at time t1 + (i− 1)h which equals

D∗i = S∗i
1− e−(r−µ)h

e−(r−µ)h
. (56)

Furthermore N(·) is the standard normal cdf and Ni+1

(
·;C(i+1)

)
is the (i+1)-

dimensional standard normal cdf with correlation matrix C(i+1) =
(
c
(i+1)
kj

)
, for

c
(i+1)
jk =



ĉ
(i)
jk ·
√

(i−j+1)h
√

(i−k+1)h+t1√
t1+(i−j+1)h

√
t1+(i−k+1)h

for i = 2, . . . , n− 1; j = 1, . . . , i

and k = j + 1, . . . , i

−
√

t1
t1+(i−j+1)h for i = 1, . . . , n− 1; j = 1, . . . , i

and k = i+ 1

ĉ
(n)
1k ·
√
T−t1
√

(n−k+1)h+t1√
T
√
t1+(n−k+1)h

for i = n; j = 1 and k = 2, . . . , n

ĉ
(i)
jk ·
√

(n−j+1)h
√

(n−k+1)h+t1√
t1+(n−j+1)h

√
t1+(n−k+1)h

for i = n; j = 2, . . . , n

and k = j + 1, . . . , n

−
√

t1
T for i = n; j = 1 and k = n+ 1

−
√

t1
t1+(n−j+1)h for i = n; j = 2, . . . , n and k = n+ 1

(57)

with Ĉ(i+1) =
(
ĉ
(i+1)
kj

)
for i = 1, . . . , n− 1 being the correlation matrices from the

calculation of the American call price in the case of n− 1 dividends paid at times
t1 + h < . . . < t1 + (n− 1)h < T .

Proof: Obviously the only times sensible for an early exercise of the American call
are the times t1 < t1 +h < · · · < t1 +(n−1)h of the dividend payments during the
option’s time to maturity. By Theorem 2.1 we know that above statement holds
for n = 1. Suppose that the above holds for n− 1. Hence we know that the price
of the American option at time t1 equals

C0,n−1
D (S(t1), t1, T,K) = S(t1)Π0,n−1

1 (S(t1), t1)−Ke−rTΠ0,n−1
2 (S(t1), t1) (58)

with Π0,n−1
1 (S(t1), t1) and Π0,n−1

2 (S(t1), t1) as defined above for n − 1 dividends
paid at times t1 + h < . . . < t1 + (n − 1)h such that the multivariate standard
normal cdfs are calculated on behalf of the the corresponding correlation matrices
Ĉ(i+1) and at

da
i+1(ti) = (dai+1(ti),−dai (ti), · · · ,−da2(ti),−da1(ti)) (59)
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for a = 1, 2 with

d1
j (ti) =

ln
(
S(t1)e

−(r−µ)jh

S∗j+1

)
+ (r + 1

2σ
2)jh

σ
√
jh

(60)

d2
j (ti) = d1

j (ti)− σ
√
jh (61)

for j = 1, . . . , n− 1 as well as

d1
n(ti) =

ln
(
S(t1)e

−(r−µ)(n−1)h

K

)
+ (r + 1

2σ
2)(T − t1)

σ
√
T − t1

(62)

d2
n(ti) = d1

n(ti)− σ
√
T − t1. (63)

Furthermore we can find critical stock prices S∗2 , · · · , S∗n such that for i = 2, · · · , n
holds

C0,n−i
D (S∗i , t1 + (i− 1)h, T,K) = S∗i +D∗i −K. (64)

Analogously to the argumentation in Theorem 2.1 we can now find a ”critical”
stock price S∗1 at time t1 such that the call should be exercised for S(t1) > S∗1 or
should be hold for S(t1) ≤ S∗1 . S∗1 is the stock price such that holds

C0,n−1
D (S∗1 , t1, T,K) = S∗1 +D∗1 −K (65)

where D∗1 is the unknown dividend to be paid at time t1. Hence we can write the
option price at time t = 0 as

C0,n
D (S0, 0, T,K) = E

[
e−rt1 ·

[ (
(S(t1) +D(t1)−K) · 1{S(t1)>S∗1}

) ∣∣∣F0

]

+ E

[
e−rt1 ·

(
C0,n−1
D (S(t1), t1, T,K) · 1{S(t1)≤S∗1}

) ]∣∣∣F0

]
(66)

where C0,n−1
D (S(t1), t1, T,K) is given by Equation (58) and

D(t1) = S(t1)
1− e−(r−µ)h

e−(r−µ)h
(67)

is the dividend payment at time t1. It is straightforward that the first term in
Equation (66) equals

e−rt1 ·E

[ (
(S(t1) +D(t1)−K)·1{S(t1)>S∗1}

) ]∣∣∣F0

]
= S0N(d1

1)−Ke−rt1N(d2
1) (68)

with

d1
1 =

ln
(
S0e

−(r−µ)h

S∗1

)
+ (r + 1

2σ
2)t1

σ
√
t1

and d2
1 = d1

1 − σ
√
t1. (69)
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For the calculation of the second term we use the representation of the stock price
as in Equation (11) with l = 0 and rewrite

d1
i (t1) =

ln
(
S(t1)e

−(r−µ)ih

S∗i+1

)
+
(
r + 1

2σ
2
)
ih

σ
√
ih

(70)

=
ln
(
S0e

−(r−µ)(i+1)h

S∗i+1

)
+ (r + 1

2σ
2)(t1 + ih)− σ2t1

σ
√
ih

+
1√
ih
W (t1) (71)

= β1
n−i + α1

n−i
W (t1)√

t1
(72)

for i = 1, ..., n− 1 as well as

d1
n(t1) =

ln
(
S(t1)e

−(r−µ)(n−1)h

K

)
+ (r + 1

2σ
2)(T − t1)

σ
√
T − t1

(73)

=
ln
(
S0e

−(r−µ)nh

K

)
+ (r + 1

2σ
2)T − σ2t1

σ
√
T − t1

+
1√

T − t1
W (t1) (74)

= β1
1 + α1

1

W (t1)√
t1

. (75)

We note that the terms d2
i (t1) and d2

n(t1) can be rewritten in a similar way. Finally
we apply Lemma A.4 and Corollary A.5 in combination with Corollary A.7 and
Corollary A.8 to derive the required probabilities and recursively calculate the
correlation matrices C(i) from Ĉ(i−1) for i = 2, . . . , n + 1. Hence we get that the
price at time t = 0 is given by (47).

�

3.2 The Case of a Known Dividend followed by Stochastic

Dividends

In the following theorem we modify the results of Section 3.1 to the realistic case
that the first coming dividend payment at t1 is known and the remaining n − 1
dividends are stochastic.

Theorem 3.2 The price of an American call option with strike K and maturity
T on a dividend paying stock with market price S0 and a deterministic dividend D1

at time t1 and n− 1 stochastic dividends at times t1 +h < · · · < t1 + (n− 1)h < T

during maturity is given by

C1,n−1
D (S0, 0, T,K)

=
(
S0 −D1e

−rt1
)

Π1,n−1
1 (S0, 0)−Ke−rTΠ1,n−1

2 (S0, 0) +D1e
−rt1N(d2

1) (76)
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where

Π1,n−1
1 (S0, 0) = N(d1

1) +
n∑
i=1

e−(r−µ)(i−1)hNi+1

(
d1

i+1;C(i+1)
)

(77)

Π1,n−1
2 (S0, 0) = er(T−t1)N(d2

1) +
n−1∑
i=1

er(T−(t1+ih))Ni+1

(
d2

i+1;C(i+1)
)

+Nn+1

(
d2

n+1;C(n+1)
)

(78)

and where for i = 1, · · · , n and a = 1, 2 we define

da
i+1 = (dai+1,−dai , · · · ,−da2 ,−da1) (79)

with

d1
i =

ln
(

(S0−D1e
−rt1)e−(r−µ)(i−1)h

S∗i

)
+ (r + 1

2σ
2)(t1 + (i− 1)h)

σ
√
t1 + (i− 1)h

(80)

d2
i = d1

i − σ
√
t1 + (i− 1)h (81)

as well as

d1
n+1 =

ln
(

(S0−D1e
−rt1)e−(r−µ)(n−1)h

K

)
+ (r + 1

2σ
2)T

σ
√
T

(82)

d2
n+1 = d1

n+1 − σ
√
T (83)

and with S∗1 , S∗2 , · · · , S∗n such that for i = 1, · · · , n

C0,n−i
D (S∗i , t1 + (i− 1)h, T,K) = S∗i +D∗i −K (84)

where D∗1 = D1 is the fixed dividend at time t1 and D∗i , i ≥ 2, are the unknown
dividends paid at times t1 + (i− 1)h which equal

D∗i = S∗i
1− e−(r−µ)h

e−(r−µ)h
. (85)

Proof: By Theorem 3.1 we know that the price of the American option at time t1
equals

C0,n−1
D (S(t1), t1, T,K) = S(t1)Π0,n−1

1 (S(t1), t1)−Ke−rTΠ0,n−1
2 (S(t1), t1) (86)

with Π0,n−1
1 (S(t1), t1) and Π0,n−1

2 (S(t1), t1) as defined by Equation (48) up to
Equation (79). Analogously to the argumentation in Theorem 3.1 we can now find
a ”critical” stock price S∗1 at time t1 such that the call should be exercised for
S(t1) > S∗1 or should be hold for S(t1) ≤ S∗1 . S∗1 is the stock price such that holds

C0,n−1
D (S∗1 , t1, T,K) = S∗1 +D1 −K (87)
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where D1 is the now known dividend to be paid at time t1. As before we can write
the option price at time t = 0 as

C1,n−1
D (S0, 0, T,K) = E

[
e−rt1 ·

[ (
(S(t1) +D1)−K) · 1{S(t1)>S∗1}

) ∣∣∣F0

]

+ E

[
e−rt1 ·

(
C0,n−1
D (S(t1), t1, T,K) · 1{S(t1)≤S∗1}

) ]∣∣∣F0

]
(88)

where C0,n−1
D (S(t1), t1, T,K) is given by Equation (86). We note that by using

the representation of the ex-dividend stock price at time t1 as in Equation (11)

S(t1) =
(
S0 −D1e

−rt1
)
e(r−

1
2σ

2)t+σW (t). (89)

the proof is an analogue to the proof of Theorem 3.1. �

Remark. We note that if we allow several known dividend payments during
time to maturity, the option price can not be computed in this iterative way.
Alternatively one could use the argument as in [13], that only the last known
dividend payment is relevant and use its payment date as time t1 in the above
recursion. Of course one would still have to take all the previous payments to this
date into account as in representation (9) to (11).

Conclusion

Since the introduction of the Black-Scholes formula in 1973 the pricing of European
options under the assumption that the stock price follows a geometric Brownian
motion is quite well understood. Not only has this formula been established as a
market standard for these types of options but is also a model most professional
market participants are quite familiar with. In this paper we used the general
dividend model of Korn and Rogers in a Black-Scholes framework in order to price
American Call options in closed-form. We derived closed-form solutions in the case
of multiple stochastic dividends during time to maturity of the option which might
be following a constant first dividend payment. We also showed that the model
is consistent not only with the Black-Scholes price but also with the well-known
Roll-Geske-Whaley formula for the price of an American Call in the presence of a
known dividend payment.
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A Appendix

We denote by > the transpose symbol, by 0n the n-dimensional null vector, by
In the n × n identity matrix and by Nn(z1, . . . , zn; Ĉ) the n-variate (standard)
normal cumulative distribution function (cdf) with correlation matrix Ĉ at values
z1, . . . , zn.

A.1 Results on the Multivariate Normal Distribution

We first give some useful results on block matrices and multivariate normal distri-
butions:

Lemma A.1 Let X ∼ N(µ, σ2) be a random variable and let Y =
(Y1, . . . , Yn)> ∼ N(0, Ĉ) be a random vector where Ĉ is a correlation matrix.
Assume that X and Y are independent. Further, denote by fX the probability
density function (pdf) of X and consider a vector of constants α = (α1, . . . , αn)>.
Then holds ∫ γ

−∞
Nn(α1x+ β1, . . . , αnx+ βn, Ĉ) fX(x) dx

= P (Y1 ≤ α1X + β1, . . . , Yn ≤ αnX + βn, X ≤ γ)

= P (Z1 ≤ β1, . . . , Zn ≤ βn, X ≤ γ)

where Zj = Yj − αjX. Here, the vector Z = (Z1, . . . , Zn)> and X are jointly
normal with

(
Z

X

)
∼ N

(−µα
µ

)
,

 Ĉ + σ2 αα> −σ2 α

−σ2 α> σ2


 .

Proof: Since X and Y are independent they follow a joint normal distribution

(
Y

X

)
∼ N

(0n
µ

)
,

 Ĉ 0n

0>n σ2


 =: N(ν,Σ) .
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Furthermore we have

(
Z

X

)
= H

(
Y

X

)
with H =

 In −α

0>n 1

 .

Thus, the vector consisting of Z and X has expection and variance–covariance
matrix

Hµ =
(
−µα
µ

)
and HΣH> =

 Ĉ + σ2 αα> −σ2 α

−σ2 α> σ2

 .

With the help of some well-known properties for block matrices (see for example
[11], pp. 417–419) we can now derive

det(HΣH>) = σ2det(Ĉ) ,

(HΣH>)−1 =

 Ĉ−1 Ĉ−1α

α>Ĉ−1 σ−2 + α>Ĉ−1α

 .

Let z denote the vector (z1, . . . , zn)>. The joint density of Z and X is given by

fZ,X(z, x) =
1√

det(2πHΣH>)
· exp

{
−1

2

(
z + µα

x− µ

)>
(HΣH>)−1

(
z + µα

x− µ

)}

Since we have that(
z + µα

x− µ

)>
(HΣH>)−1

(
z + µα

x− µ

)
= (z + xα)>Ĉ−1(z + xα) +

(x− µ)2

σ2
.

it follows

P (Z1 ≤ β1, . . . , Zn ≤ βn, X ≤ γ)

=
∫ γ

−∞

∫ β1

−∞
. . .

∫ βn

−∞
fZ,X(z, x) dz dx

=
∫ γ

−∞
fX(x)

∫ β1

−∞
. . .

∫ βn

−∞

1√
det(2πC)

exp
{
−1

2
(z + xα)>Ĉ−1(z + xα)

}
dz dx

=
∫ γ

−∞
fX(x)N(α1x+ β1, . . . , αnx+ βn, Ĉ) dx .

�

Corollary A.2 Under the same assumptions as in Lemma A.1 it follows that∫ γ

−∞
Nn(α1x+ β1, . . . , αnx+ βn, Ĉ) eδ+ηx fX(x) dx

= eδ+µη+
1
2η

2σ2
P (Z1 ≤ β1, . . . , Zn ≤ βn, X̃ ≤ γ)
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where the vector Z = (Z1, . . . , Zn)> and X̃ are jointly normal with

(
Z

X̃

)
∼ N

(−(µ+ ησ2)α
µ+ ησ2

)
,

 Ĉ + σ2 αα> −σ2 α

−σ2 α> σ2


 .

�

Lemma A.3 Let again X ∼ N(µ, σ2) be a random variable and let Y =
(Y1, . . . , Yn)> ∼ N(0, Ĉ) be a random vector where Ĉ is a correlation matrix with
elements ĉjk. Assume and X and Y are independent and let further U be the
vector consisting of

Y1 − α1X, . . . , Yn − αnX, and X .

Then the correlation matrix of U is given by the (n+ 1)× (n+ 1) matrix C which
has off-diagonal elements

cjk =



ĉjk+αjαkσ
2

√
1+α2

jσ
2
√

1+α2
kσ

2
for j 6= k and j, k = 1, . . . , n,

−αjσ√
1+α2

jσ
2

for k = n+ 1 and j = 1, . . . , n,

−αkσ√
1+α2

kσ
2

for j = n+ 1 and k = 1, . . . , n,

(90)

Proof: Consider again α = (α1, . . . , αn)>. From the proof of Lemma A.1 we know
that

Z = (Y1 − α1X, . . . , Yn − αnX)> ∼ N
(
−µα, Ĉ + σ2 αα>

)
and

U =
(
Z

X

)
∼ N

(−µα
µ

)
,

 Ĉ + σ2 αα> −σ2 α

−σ2 α> σ2


 =: N(µu,Σu) .

Denoting by Du the diagonal matrix having the elements of Σu on the diagonal,
we calculate the correlation matrix C by multiplying out D−1/2

u ΣuD
−1/2
u . �

Lemma A.4 Let fX be the standard normal pdf and let Ĉ be a correlation matrix.
Then holds ∫ γ

−∞
Nn(α1x+ β1, . . . , αnx+ βn, Ĉ) fX(x) dx

= Nn+1

(
β1√

1 + α2
1

, . . . ,
βn√

1 + α2
n

, γ, C

)

where C is the correlation matrix given in Equation (90).
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Proof: The proof follows immediately by standardizing the Zj and X from
Lemma A.1, their correlation matrix C is given in Lemma A.3. �

Corollary A.5 Under the same assumptions as in Lemma A.4 it follows that∫ γ

−∞
Nn(α1x+ β1, . . . , αnx+ βn, Ĉ) eδ+ηx fX(x) dx

= eδ+
1
2η

2
Nn+1

(
β1 + ηα1√

1 + α2
1

, . . . ,
βn + ηαn√

1 + α2
n

, γ − η, C

)

where C is the correlation matrix given in Equation (90).

Proof: The proof follows immediately by standardizing the Zj and X̃ from Corol-
lary A.2, the correlation matrix C is still that given in Lemma A.3. �

A.2 Recursive Calculation of the Distribution

From Lemma A.3 we see that the (n+ 1)× (n+ 1) correlation matrix C of U is a
function of the n×n correlation matrix Ĉ and the parameters σ, α1, . . . , αn. To im-
plement the n-dividend case, we consider a sequence of time points t1, t2, . . . , tn+1

and let the parameters σ = σn, αj = αnj depend on these time points. The
following lemma shows how to calculate

C(n+1) =



1 c
(n+1)
12 . . . c

(n+1)
1,d+1

c
(n+1)
12 1 . . . c

(n+1)
2,n+1

...
...

. . .
...

c
(n+1)
1,n+1 c

(n+1)
2,n+1 . . . 1


in dependence of Ĉ(n) which can then be used to compute the sequence
{C(n+1)}n=1,2,... recursively.

Lemma A.6 For a sequence of time points t1 < t2 < . . . < tm+1 define

σj =
√
tm−j+1 for j = 1, . . . ,m,

and

αjk =
1

√
tm−k+2 − tm−j+1

for all j = 1, . . . ,m ; k = 1, . . . , j and j ≥ k ,

and consider the recursion to obtain C(m+1) from Ĉ(m) according to the Ĉ → C

mapping from Lemma A.3 starting at Ĉ(1) = 1. Then the off-diagonal elements of
the (m+ 1)× (m+ 1) correlation matrix C(m+1) are obtained by:
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(a) case m = 1

c
(2)
12 =

−α11σ1√
1 + α2

11σ
2
1

= −
√
t1
t2

(b) case m > 1

c
(m+1)
j,m+1 =

−αmjσm√
1 + α2

mjσ
2
m

= −

√
t1

tm−j+2
for j = 1, . . . ,m

c
(m+1)
jk =

ĉ
(m)
jk + αmjαmkσ

2
m√

1 + α2
mjσ

2
m

√
1 + α2

mkσ
2
m

for j = 1, . . . ,m; k = j + 1, . . . ,m

=
ĉ
(m)
jk

√
tm−j+2 − t1

√
tm−k+2 − t1 + t1

√
tm−j+2

√
tm−k+2

.

The following two corollaries define the recursive algorithm to calculate the cor-
relation matrices for the n-dividend cases in Theorems 3.1 and 3.2. We here use
dividends paid at equidistant time points starting at t1. Corollary A.7 explains
how to compute the matrices C(i+1), i < n, whereas Corollary A.8 considers the
calculation of C(n+1).

Corollary A.7 Consider the sequence {t1, t2 = t1 + h, . . . , ti+1 = t1 + ih}, i < n.
We then obtain

σj =
√
t1 + (i− j)h for j = 1, . . . , i,

αjk =
1√

(j − k + 1)h
for all j = 1, . . . , i ; k = 1, . . . , j and j ≥ k ,

and the off-diagonal elements of C(i+1) are given by

(a) case i = 1

c
(2)
12 =

−α11σ1√
1 + α2

11σ
2
1

= −
√

t1
t1 + h

,

(b) case i > 1

c
(i+1)
j,i+1 =

−αijσi√
1 + α2

ijσ
2
i

= −

√
t1

t1 + (i− j + 1)h
for j = 1, . . . , i,

c
(i+1)
jk =

ĉ
(i)
jk + αijαikσ

2
i√

1 + α2
ijσ

2
i

√
1 + α2

ikσ
2
i

for j = 1, . . . , i; k = j + 1, . . . , i .

=
ĉ
(i)
jk

√
(i− j + 1)h

√
(i− k + 1)h+ t1√

t1 + (i− j + 1)h
√
t1 + (i− k + 1)h

.
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Corollary A.8 Consider the sequence {t1, t2 = t1 + h, . . . , tn = t1 + (n − 1)h,
tn+1 = T}. We now have

σj =
√
t1 + (n− j)h for j = 1, . . . , n,

αj1 =
1√

T − t1 − (n− j)h
,

αjk =
1√

(j − k + 1)h
for all j = 2, . . . , n ; k = 2, . . . , j and j ≥ k ,

and the off-diagonal elements of C(n+1) are given by

(a) case n = 1

c
(2)
12 =

−α11σ1√
1 + α2

11σ
2
1

= −
√
t1
T
,

(b) case n > 1

c
(n+1)
1,n+1 =

−αn1σn√
1 + α2

n1σ
2
n

= −
√
t1
T
,

c
(n+1)
1k =

ĉ
(n)
1k + αn1αnkσ

2
n√

1 + α2
n1σ

2
n

√
1 + α2

nkσ
2
n

for k = 2, . . . , n .

=
ĉ
(n)
jk

√
T − t1

√
(n− k + 1)h+ t1√

T
√
t1 + (n− k + 1)h

c
(n+1)
j,n+1 =

−αnjσn√
1 + α2

njσ
2
n

= −

√
t1

t1 + (n− j + 1)h
for j = 2, . . . , n,

c
(n+1)
jk =

ĉ
(n)
jk + αnjαnkσ

2
n√

1 + α2
njσ

2
n

√
1 + α2

nkσ
2
n

for j = 2, . . . , n; k = j + 1, . . . , n .

=
ĉ
(n)
jk

√
(n− j + 1)h

√
(n− k + 1)h+ t1√

t1 + (n− j + 1)h
√
t1 + (n− k + 1)h

.
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