
Ph. Süss, K.-H. Küfer

Balancing control and simplicity: a va-
riable aggregation method in intensity 
modulated radiation therapy planning

Berichte des Fraunhofer ITWM, Nr. 103 (2006)



© Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2006

ISSN 1434-9973

Bericht 103 (2006)

Alle Rechte vorbehalten. Ohne ausdrückliche schriftliche Genehmigung des 
Herausgebers ist es nicht gestattet, das Buch oder Teile daraus in irgendeiner 
Form durch Fotokopie, Mikrofilm oder andere Verfahren zu reproduzieren 
oder in eine für Maschinen, insbesondere Datenverarbeitungsanlagen, ver-
wendbare Sprache zu übertragen. Dasselbe gilt für das Recht der öffentlichen 
Wiedergabe.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.

Die Veröffentlichungen in der Berichtsreihe des Fraunhofer ITWM können  
bezogen werden über:

Fraunhofer-Institut für Techno- und 
Wirtschaftsmathematik ITWM 
Fraunhofer-Platz 1

67663 Kaiserslautern 
Germany

Telefon:  +49 (0) 6 31/3 16 00-0 
Telefax:  +49 (0) 6 31/3 16 00-10 99 
E-Mail:  info@itwm.fraunhofer.de 
Internet: www.itwm.fraunhofer.de



Vorwort

Das Tätigkeitsfeld des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik 
ITWM umfasst anwendungsnahe Grundlagenforschung, angewandte Forschung 
sowie Beratung und kundenspezifische Lösungen auf allen Gebieten, die für Tech-
no- und Wirtschaftsmathematik bedeutsam sind.

In der Reihe »Berichte des Fraunhofer ITWM« soll die Arbeit des Instituts konti-
nuierlich einer interessierten Öffentlichkeit in Industrie, Wirtschaft und Wissen-
schaft vorgestellt werden. Durch die enge Verzahnung mit dem Fachbereich Ma-
thematik der Universität Kaiserslautern sowie durch zahlreiche Kooperationen mit 
internationalen Institutionen und Hochschulen in den Bereichen Ausbildung und 
Forschung ist ein großes Potenzial für Forschungsberichte vorhanden. In die Be-
richtreihe sollen sowohl hervorragende Diplom- und Projektarbeiten und Disser-
tationen als auch Forschungsberichte der Institutsmitarbeiter und Institutsgäste zu 
aktuellen Fragen der Techno- und Wirtschaftsmathematik aufgenommen werden.

Darüber hinaus bietet die Reihe ein Forum für die Berichterstattung über die zahl-
reichen Kooperationsprojekte des Instituts mit Partnern aus Industrie und Wirt-
schaft.

Berichterstattung heißt hier Dokumentation des Transfers aktueller Ergebnisse aus 
mathematischer Forschungs- und Entwicklungsarbeit in industrielle Anwendungen 
und Softwareprodukte – und umgekehrt, denn Probleme der Praxis generieren 
neue interessante mathematische Fragestellungen.

Prof. Dr. Dieter Prätzel-Wolters 
Institutsleiter

Kaiserslautern, im Juni 2001





Balancing control and simplicity:
a variable aggregation method in intensity

modulated radiation therapy planning

Philipp Süss∗, Karl-Heinz Küfer
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Abstract

It is commonly believed that not all degrees of freedom are needed to produce
good solutions for the treatment planning problem in intensity modulated ra-
diotherapy treatment (IMRT). However, typical methods to exploit this fact
have either increased the complexity of the optimization problem or were
heuristic in nature. In this work we introduce a technique based on adap-
tively refining variable clusters to successively attain better treatment plans.
The approach creates approximate solutions based on smaller models that
may get arbitrarily close to the optimal solution. Although the method is
illustrated using a specific treatment planning model, the components consti-
tuting the variable clustering and the adaptive refinement are independent of
the particular optimization problem.
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1 Introduction

Radiotherapy is, besides surgery, the most important treatment option in clinical
oncology. It is used with both curative and palliative intention, either solely or in
combination with surgery and chemotherapy. The majority of radiotherapy patients
is treated with high energetic photon beams. The radiation is produced by a linear
accelerator and delivered to the patient by several beams coming from different di-
rections (see figure 1). The goal of conformal radiation therapy is to deliver a high

Figure 1: The gantry moves around the couch on which the patient lies. The couch
position may also be changed to alter the beam directions.

and homogeneous dose to the tumor volumes while limiting the side-effects of this
treatment. Aside from the risk of damaging critical healthy organs, there is also
the risk of secondary cancer [3]. To better control the radiation received by the pa-
tient, several different methods have evolved to modulate the beam intensities from
the gantry. First there was the open field technique where only the shape of each
beam is adapted to the target volume. The intensity of the radiation throughout
the beam’s cross section is uniform or only modified by the use of pre-fabricated
wedge filters. Over time the hardware improved and it was possible to fully mod-
ulate the intensity of each beam. Intensity modulated radiation therapy (IMRT) is
realized by multi-leaf collimators (MLCs) (see figure 2). Parts of the beam surface
are uncovered for individually chosen opening times while the rest of the area is
covered by the leaves. The intensities emitted from these beams are described by
intensity maps such as the one depicted on the left side of figure 1. One method
to apply these intensity maps is to turn off the beam energy while the leaves of the
MLC move. This is called static delivery. The alternative where the beam stays
on during the application of one intensity map is the dynamic delivery. While both
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Figure 2: A Multileaf Collimator (MLC). The square opening is partially covered
by leafs, each of which can be individually moved. Picture taken from [9].

are used in practice, the considerations in this paper are only relevant for the static
method.

Finding suitable intensity maps given a set of beam directions and corresponding
couch angles is the treatment planning problem in IMRT. We demand that the di-
rections and couch angles are fixed because to find optimal directions is a global
optimization problem. The variables of the treatment planning problem are there-
fore the intensity maps. Usually, the cross section of the beam is discretized on
a regular grid with a resolution determined by the width of the collimator leaves.
This corresponds to a discretization to fields of size typically less than or equal
to 10 x 10 mm. Each small field is called a beamlet. The number of variables
in a typical treatment planning problem with five to seven beam directions cor-
responds to several hundred beamlets. The aim to destroy cancerous cells while
sparing healthy structures naturally lends itself to the formulation of a multicriteria
optimization problem in which the dose in each tumor and each healthy structure
is assessed with separate objective functions [15]. A decision-support system to
select a treatment plan from the Pareto frontier of such a multicriteria approach is
described in detail in [6].

This multicriteria approach provides control over the trade-off between overdosing
healthy structures and destroying cancerous cells. However, it does not consider
the time needed to deliver the intensity maps using an MLC. The risks of treatment
errors due to patient movement and too much exposure to radiation increase with
treatment time. An objective function that provides some control over this aspect
was introduced in [2]. However, adding an objective function to the treatment plan-
ning problem also increases its complexity. When faced with a complicated case
with many healthy structures close to the tumor volumes, significant computation
time might be saved by disregarding the treatment time during optimization. In-
stead, the intensity maps are transformed before they are translated into MLC leaf
configurations and delivered to the patient.
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One such transformation is to reduce the number of different intensity levels in an
intensity map. Experiments show that if the number of intensity levels decreases,
the number of apertures can be expected to decrease also [5, 14]. This stratifica-
tion can, for example, be performed for a given intensity map as shown in figure 3.
However, this requires a solution to the planning problem. A reduction of the num-

(a) Original intensity map (b) Stratified intensity map

Figure 3: The original intensity map was stratified to 5 distinct intensity values.
The map in 3(a) needs 27 apertures, whereas the map in 3(b) needs only 5 apertures.

ber of variables in the treatment planning problem by requiring that some beamlets
have the same intensity value is the a priori counterpart to stratification. The bene-
fit of a priori stratification are simpler calculations by a reduction in the number of
variables and a reduction in the number of apertures and a shorter treatment time
because the plans are simpler. The cost is a limited control over the dose in the
patient’s body. The trade-off between the consequences of stratification must be
carefully evaluated when planning a therapy.

Some attempts have been made to modify optimization algorithms for the treat-
ment planning problem to reduce the number of apertures resulting from sequenc-
ing. Most notably, Alber and Nüsslin [1] have proposed an operator that modifies
the solution at every fixed iterations during the optimization. This operator sets
neighboring beamlets to equal intensities, which are then grouped to apertures.
The intensity corresponding to all created apertures are then additional variables
in the optimization. A different approach was taken by Keller-Reichenbecher et al
[5]. Here, the solution is stratified to a small number of intensity levels every fixed
number of iterations. Although the results presented in the latter approach indicate
that the methods performs quite well, it remains a heuristic approach and does not
in general converge to an optimal solution.
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To address the goal of a short treatment time, the new objective function in [2]
and the approach in [1] increased the complexity of the problem. The method in
[5] retained the complexity of the original planning problem, but it is a heuristic.
In this paper, we describe a method to first reduce the number of variables of the
planning problem to a very small number. During the solver iterations, we adap-
tively add more degrees of freedom to refine the solution until it is acceptable. The
planner may set a limit to the number of variables that are used and can control
the resulting complexity of the intensity maps. By setting this limit equal to the
number of variables in the treatment planning problem, this approach produces op-
timal solutions. Moreover, it is numerically verified that the adaptive refinement of
the problem formulation based on clinically meaningful guidelines has a positive
effect on the convergence of a solution mechanism.

In chapter 2 we motivate the idea of aggregating the variables by the dose compu-
tation necessary in IMRT planning. We also justify the use of a heuristic clustering
procedure. In chapter 3 we introduce the clustering technique and demonstrate
its applicability on an artificial example and on a clinical prostate case. We also
specify a treatment planning problem formulation for the prostate case which will
serve as an illustration for the techniques later. In chapter 4, the refinement strat-
egy is proposed and carried out for the prostate case. Numerical results about the
solver progress and the comparison of the solutions obtained by the aggregation
and refinement and the original formulation are made. Chapter 5 concludes this
paper.

2 Dose computation and variable aggregation

As it was mentioned, the intensity maps are discretized on a regular grid to a set of
beamlets. The patient’s body is also discretized into small volume elements called
voxels to simplify the computation of the dose received by each small volume part.
The slices of the CT scan imply a natural dissection in the z-direction. Together
with a further sectioning of the x-y plane, the voxels typically are of dimensions of
a few millimeters. As a consequences of these discretizations and the superposition
principle of dose deposits in photon therapy, the dose distribution over the voxels
can be calculated by the matrix multiplication

d = P · x, (1)

where d is the m-dimensional vector of dose values for all voxels, the matrix P

is the dose information matrix, and the n-dimensional vector x are the intensities
of the beamlets over all beams, written as one column vector. The entry pji of
the dose information matrix represents the contribution of the ith beamlet to the
absorbed dose in the jth voxel under unit intensity. There are several methods to
estimate these values. They might be calculated using the pencil beam approach,
a superposition algorithm, or some Monte Carlo method. In this paper we do not
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discuss this important issue - the interested reader is referred to the books by Webb
[12, 13]. We assume that P is given in some satisfactory way. Note that the rows of
P correspond to the voxels and the columns to the beamlets. Therefore, P typically
has a little over one million rows and several hundred columns. Moreover, the
matrix is sparse - often only 10% of the entries are positive. The reason is that
one beamlet only hits a small portion of voxels compared to the entire volume.
The dose calculation takes significant time in an iterative optimization algorithm
to determine the intensity maps - even when techniques to exploit the sparsity of P

are used. Further, as MLC hardware becomes even more sophisticated, the leaves
will become thinner, and the number of columns of P will increase in the future.

A numeric technique to reduce the number of rows of P using an adaptive cluster-
ing method was presented in [8]. Neighboring voxels belonging to the same organs
or tumors are treated as groups if their dose deposits are “similar”. The optimiza-
tion is carried out on these clusters of voxels with a dose information matrix that
has relatively few rows. The largest errors due to the clustering are identified and
the clusters broken up to attain a refined description of the body. This iteration
between optimization and refinement continues until the clustering error is below
a threshold. In this paper, we focus on the aggregation of variables, so we are
interested in reducing the number of columns of P.

To reduce the degrees of freedom of the treatment planning problem means to
constrain some of the beamlets to have equal intensity values. Imagine that the
beamlets are partitioned into L groups B1, . . . ,BL, and each group of beamlets has
their own intensity `b. Thus, xi = `b for all beamlets i belonging to group Bb. This
means, the dose calculation (1) can be written as

dj =
n

∑

i=1

pji · xi =
L

∑

b=1

∑

i∈Bb

pji · xi =
L

∑

b=1

`b

∑

i∈Bb

pji, ∀j = 1, . . . ,m. (2)

Aggregating the variables in the treatment planning problem effectively reduces the
size of P by summing up all columns that correspond to beamlets with identical
intensity values. To code the allocation of beamlets to same groups, we introduce
the n × L matrix A with entries

aib =

{

1 if beamlet i is allocated to group b

0 else

The dose calculation (2) can then be written as d = P ·A · `, with ` as the vector
of all group intensities. The “small dose information matrix” P · A makes the
computation of d much faster if L � n.

If the number of different intensity levels L is fixed, we can formulate the allocation
problem to find A as an optimization problem to minimize a metric that describes
the error due to the aggregation. In other words, right-multiplying A to P should
keep the norm ‖d−P ·A · `‖q for q ≥ 1 and any given dose d and intensities `

small.
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Problem 2.1 (Allocation problem)
Given a dose distribution d, a dose information matrix P and a set of group in-
tensities `, find an allocation A that approximates the resulting evaluation of dose
distribution as close as possible under the norm ‖ · ‖q for q ≥ 1:

min
A

‖d −P · A · `‖q

L
∑

b=1

aib = 1 ∀ i = 1, . . . , n

aib ∈ {0, 1} ∀ i = 1, . . . , n, b = 1, . . . , L

Note that the constraints in Problem 2.1 produce a partition of the beamlets. Un-
fortunately, the Allocation problem is NP-hard.

To see that the Allocation problem is hard, we reduce PARTITION to an instance
of Problem 2.1. Let k1, . . . , kn be a set of positive integers and g = 1

2

∑n
i=1 ki.

PARTITION asks if there is a partition of the integers into subsets S1 and S2 such
that

∑

i∈Sj
ki = g for j = 1, 2. Now consider the following Allocation problem:

min
A

∥

∥

∥

∥

∥

∥

∥

∥

∥

[

g

g

]

−

[

k1 k2 . . . kn

k1 k2 . . . kn

]











a11 a12

a21 a22
...

...
an1 an2











[

1
1

]

∥

∥

∥

∥

∥

∥

∥

∥

∥

q

(3)

ai1 + ai2 = 1 i = 1, . . . , n

aib ∈ {0, 1} i = 1, . . . , n, b = 1, 2

If the optimal objective function value (3) is 0 for any q ≥ 1, then PARTITION
is answered with yes, and no otherwise. This is the Allocation problem with
d =

[

g g
]T , P with the set of integers k1, . . . , kn as row vectors, and the group

intensities ` given by 1, the vector of all 1s. This result discourages a search for the
optimal aggregation. The alternative is to develop a method that produces solutions
of acceptable quality.

Note that if two columns of P are “similar”, meaning the positive entries hit voxels
belonging to the same structures with similar contributions, it may be expected that
the optimal intensities corresponding to the two beamlets are similar as well. That
is, we would like to group together those beamlets with similar impact on the dose
distribution d. Grouping similar objects is achieved by clustering methods [4]. In
the following chapter, we derive a clustering algorithm to group similar beamlets.

3 Beamlet clustering and implications

The ingredients for a clustering method are a measure of similarity between objects
and between objects and clusters, and an algorithm to group the objects based on
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these similarities. Instead of maximizing the similarity between objects inside a
cluster, the dissimilarity could be minimized. A simple measure of dissimilarity of
objects that are characterized by a vector of real numbers are the distance metrics

distq (x,y) := q

√

∑

i

|xi − yi|
q
, (4)

for q ≥ 1. For q = 1, (4) is the rectilinear or Manhattan metric, and for q = 2, (4)
becomes the Euclidean metric. We will use q = 2 and take “dist” without the sub-
script q to mean the Euclidean metric from here on. A cluster will be represented
by an average over all columns that are grouped to it. This representative is given
by

µk =
1

|Bk|

∑

i∈Bk

Pi,

where Pi is the ith column of P.

A first attempt to characterize the beamlets might be to use the columns of P.
There are, however, two disadvantages associated with taking the entire “informa-
tion” of each beamlet. First, evaluating the distance (4) between two beamlets takes
a long time because potentially many entries have to be compared. This calculation
becomes even more tedious as clusters grow in size because a vector of averages
over sparse columns is in general less sparse. The other disadvantage is that the
distance measure does not “discriminate” enough if the original columns are used.
The positive entries in P range from the orders 10−5 to 102, and large values will
have a dominating effect on the distance. As a result, only large deviations between
two objects determine their dissimilarity and small entries are largely ignored. In
IMRT, however, it is especially the many small contributions that add up to sig-
nificant doses that can be exploited to shape the dose distribution. Therefore, a
different characteristic for beamlets and cluster representatives must be found.

Better clusters can be expected when the information contained in the columns of P
are condensed on an organ level. The contribution of a beamlet to a specific organ is
given by the entries in the rows corresponding to voxels of that organ. From a statis-
tics viewpoint, if these entries are seen as random variables, their moments suffice
to characterize the beamlets. The kth moment of a random variable Y is given by
the expected value of the kth power of Y , E

(

Y k
)

. We will characterize the beam-
lets and cluster representations by a vector of moments for each organ in the patient
body. We limit the number of moments to at most 3, since higher moments are typ-
ically only of theoretical value [11, Chapter 3.9]. Thus, the vectors characterizing
our objects only contain (number of organs × number of moments ≈ 10 to 20) en-
tries and could look like the following if 2 moments are used:

ci =
[

cs1 1(i) cs1 2(i) cs2 1(i) cs2 2(i) cs3 1(i) . . .
]T

,
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where the entry cs1 h(i) denotes the hth moment of the contributions of beamlet i

to the organ s1 given by

cs1 h(i) =
1

|s1|

∑

j∈s1

ph
ji. (5)

The entries of the other organs are similar to (5).

Now that we have decided on the dissimilarity measure for beamlets and cluster
representatives, we need a method to group the beamlets into clusters. Because we
fixed the number of clusters in Problem 2.1, we use the K-means algorithm 3.1 to
aggregate the variables.

Algorithm 3.1 K-means algorithm adapted from [4]
Procedure: KMeans

Input: Characteristic vectors ci, i = 1, . . . , n, number of clusters K , distance
measure “dist”
Output: allocation A

Step 1: Produce initial clusters 1, 2, . . . ,K and allocation A and compute
the cluster means µ1, . . . ,µK .

Step 2: For beamlet i = 1, compute for every cluster k the increase in error in
transferring this beamlet from cluster a(1) to cluster k given by

|k| ·
dist(ci,µk)

(|k|+1) − |a(i)| ·
dist(ci,µa(i))

(|a(i)|−1) ,
where |k| denotes the cluster size of cluster k, and
a(i) = {b : aib = 1} denotes the cluster to which beamlet i is
assigned to. If the minimum of this quantity over all k 6= a(i) is
negative, transfer the beamlet i from cluster a(i) to this minimal k,
adjust the cluster means of a(i) and k, and set a(i) := k.

Step 3: Repeat Step 2 for i = 2, . . . , n.
Step 4: If no movement of a beamlet from one cluster to another occurs, stop.

Otherwise, return to Step 2.

The characteristic vectors are the collections of moments of organ contributions,
and the distance measure is the Euclidean. The cluster means are determined by
adding the dose contributions of newly added or removed beamlets and is the most
time-consuming operation of KMeans. Algorithm 3.1 is performed separately
for each beam to ensure that exactly L clusters represent the beamlets of each
direction. One method to obtain an initial clustering for Step 1 is to randomly
assign beamlets to the K clusters. This also has the advantage that it produces
different starting points for KMeans, each leading to a different locally optimal
allocation. Typically the method runs fast enough so that the clustering can be
performed several times with different starting points. The clustering with the
smallest error is taken as the final aggregation.
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3.1 Case 1: Artificial example

To demonstrate the basic effects of this type of variable aggregation, a simple,
artificial case was created. Figure 4 shows one of the transversal slices of this
case. The “body” is a large cube, and there are only three relevant structures. The
cuboid at the bottom inside the body represents the tumor volume, and the other
two structures resemble healthy organs. Five beam directions were chosen and
the beamlets clustered to only 2 or 3 groups to illustrate the effect of this type of
variable aggregation technique.

Figure 4: This shows the view of a transversal cut of the artificial example in the
planning software KonRad (developed by the DKFZ in Heidelberg). The tumor is
the cuboid where the beam directions intersect.

The tumor and the organs have size 20 x 4 x 16 cm. The voxel sizes were set to 1
x 1 x 3 mm. This corresponds to a total of 363,825 voxels for this case. Over all
5 beams, a total of 441 beamlets actually hit the tumor volume and constitute the
degrees of freedom in the treatment planning problem for this artificial case. The
number of positive entries in P is about 14% of all entries in the matrix. We refer
to the beam directions by their angles. Starting from the beam entering from the
top of figure 4 with angle 0, the directions are separated by 72 degrees.

The beamlets of the directions 0 and 288 degrees were grouped in 3 clusters, and
the rest of the directions were clustered in 2 groups. As a result, the matrix P · A
has only 12 columns, and about 36% of its entries are positive. Calculating the
characteristic vectors for all beamlets and the clustering procedure took a total of
about 2.4 seconds per beam on a 2.2 GHz processor. Figure 5(a) shows the cluster
number of each beamlet in the intensity map corresponding to beam 0. It was
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natural to choose 3 clusters because the back-projection of the structures on the

(a) Beam 0

(b) Beam 72 (c) Beam 144

(d) Beam 216 (e) Beam 288

Figure 5: Cluster numbers of the beamlets in each beam for the artificial exam-
ple. The beams are of different size because the planning software automatically
eliminates those beamlets that do not hit the tumor.

surface of the beam can be parted in three: one area in the middle where both
organs are in front of the tumor, and two areas where only one is in the way of
the beam. Note that the clustering algorithm has no information about the location
of the beamlets on the beam surface - they were clustered solely based on the
information about their contributions to the structures. The other beam directions
showed similar geometric back-projections. The clusters in beam 216 (figure 5(d)),
for example, also resemble the projection of the structures on the beam: the area
on the beam where only the farthest structure is hit constitutes a separate cluster of
beamlets.

3.2 Case 2: Clinical prostate example

While the first artificial example demonstrates that the clustering method based on
organ information is in principle capable of identifying different critical regions on
the surface of the beam, this does not yet warrant a successful application to real
cases. In this section, a prostate case is studied and the variables are aggregated. We
will additionally formulate a treatment planning problem and compare the results
from the original formulation with the solution to the aggregated problem. We
delay the discussion of improving the aggregated solution until chapter 4.
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Figure 6: This view is taken from VIRTUOS (developed by the DKFZ in Heidel-
berg) and shows the three-dimensional representation of the patient’s body. The
left window shows the view from the direction of beam 0.

In this case, the prostate and the seminal vesicles are the target volumes. They
compose the structure marked with the crosshairs in the left window of figure 6.
The structure in front of the prostate is the bladder, and behind the prostate, the
rectal walls (anterior and posterior) are segmented separately. Finally, the femoral
heads are also included as critical structures in this case to limit the dose absorbed
by lateral beam directions.

The dose information matrix consists of 799,200 rows and 173 columns. Again,
5 equiangular beam directions were chosen. There are 13,414,539 positive entries
in P, which is 9.7% of all entries. The number of clusters was set to 4 for beam 0
and 5 for the rest. Determining the characteristics of all beamlets and aggregating
them took a total of only 2 seconds per beam on a 2.2 GHz processor. The clusters
are depicted in figure 7. Again, the clusters closely resemble projections of the
structures on the beam. In beam 0, for example, the beamlets corresponding to
cluster 1 hit the prostate and both the anterior rectal wall and the posterior rectal
wall. Cluster 2 are those beamlets where either only one or no rectal wall is hit.
The beamlets in clusters 0 and 3, finally, have to shoot through the bladder and also
hit both rectal walls behind the target. Cluster 0 hits the prostate and the beamlets
in cluster 3 hit the seminal vesicles. Similar observations can be made for the other
beam directions. As a result of the variable aggregation, P · A contains only 24
columns, and the percentage of positive entries increased to 17.6%.

To illustrate the loss in control we imposed, we now compare the original and
aggregated solution to the following planning problem. The objective functions
for the healthy structures are based on the equivalent uniform dose (EUD) concept
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(a) Beam 0 (b) Beam 72

(c) Beam 144 (d) Beam 216

(e) Beam 288

Figure 7: Cluster numbers of the beamlets in each beam. Some beamlets are
“switched off” because the planning software automatically eliminates those beam-
lets that do not hit the tumor.

[7]. They are of the form

fEUD,s(d) = αs · d
−1
ref,s · ( |s|

−1 ·
∑

j∈s

d
ps

j )p
−1
s + (6)

(1 − αs) · d
−1
ref,s · ( |s|

−1 ·
∑

j∈s

d
qs

j )q
−1
s ,

where s denotes the corresponding organ, |s| is the number of voxels in that organ,
αs a weight between 0 and 1, dref,s a reference dose value for organ s, and ps and qs

are organ-specific modeling parameters (≥ 1). If ps and qs are relatively small, the
smaller dose values dj in s are emphasized more. By combining two EUD-type
functions, it is possible to model the objective function according to the flexible
max-and-mean EUD concept introduced in [10]. The reference dose values dref,s
are included to ensure comparability between the objective functions for different
organs. The planner must choose the reference doses according to the statement
“a dose of dref,s1 in structure s1 is of same importance to me as a dose of dref,s2 in
structure s2”. Note that the scale of these reference values does not matter - only
the relative magnitudes to each other.
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The objective functions for the tumor volumes are given by

fcur(d) = d−1
cur · ( |t|

−1 ·
∑

j∈t

max {0, dcur − dj}
qcur )q

−1
cur (7)

to evaluate a lower bound for the target dose, and

fhom(d) = d−1
hom · ( |t|−1 ·

∑

j∈t

max {0, dj − dhom}
qhom )q

−1
hom (8)

with dhom slightly larger than dcur to ensure that the dose is homogeneous in the
tumor volume.

The values for each parameter of the functions (6)-(8) are given in the following
table.

Structure s dref,s ps qs αs

tissue 45 2 2 -
right femoral head 50 3 8 0.3
left femoral head 50 3 8 0.3
anterior rectal wall 40 3 8 0.75
posterior rectal wall 25 3 8 0.25
bladder 30 3 8 0.35

The values for the tumor volumes are dcur = 76 and dhom = 80. The values for qcur

and qhom are both 4.

The scalarized multicriteria optimization formulation to solve the treatment plan-
ning problem can now be stated:

Problem 3.1 (Scalarized treatment planning problem)

min
x

z

d = P · x

fEUD,s(d) ≤ z ∀critical structures s

fcur(d) − 0.5 ≤ 0

fhom(d) − 0.5 ≤ 0

x ≥ 0

The constraints fcur(d), fhom(d) ≤ 0.5 on the tumor volumes largely prevent
under-shooting dcur and exceeding dhom. There is no method to test a priori if
these constraints can be met. In addition, we would like to use the solution to one
aggregated problem as a starting solution for the next refined problem as described
in the next chapter. That is, the solver used must be able to cope with infeasible
as well as feasible iterates. For this reason, problem 3.1 is solved by a penalty
sequential linear programming solver.
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One graphical output of the quality of a plan is the dose-volume histogram (DVH).
These histograms display the percentage of a structure that receives at least a cer-
tain dose over the relevant dose interval. The DVH for the original problem is given
in figure 8. All calculations were done on the same 2.2 GHz processor to ensure

Figure 8: DVH for the original solution.

comparability. The solver needed 23 minutes to obtain this solution. The DVH of
the solution on the aggregated variables is depicted in 9 and the solver only needed
3 and a halve minutes. At first glance, it is obvious that the solution to the aggre-
gated problem is not feasible. This may be expected as the degrees of freedom in
the planning problem were severely reduced. However, there is a striking similarity
in the DVH curves for the organs at risk in both histograms. The following table
containing the EUD values (not normalized by their reference dose) also shows
this.

Structure s original fEUD,s aggregated fEUD,s % deterioration
right femoral head 31.14 29.90 -4.00
left femoral head 32.92 32.97 0.15
anterior rectal wall 49.92 47.46 -4.93
posterior rectal wall 30.65 32.31 5.42
bladder 37.80 38.42 1.64

The following comparison of the true minimum dose in the tumor volumes indicate
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Figure 9: DVH for the aggregated solution.

that the solution to the aggregated problem is not feasible. In fact, both demands
on the curative doses for the prostate and the seminal vesicles are not satisfied.

Target original min dose aggregated min dose
Prostate 73.41 57.18
Seminal vesicles 74.41 49.47

The constraints pertaining to the maximum doses in the targets, however, can be
met as the maxima of each volume for both solutions indicate:

Target original max dose aggregated max dose
Prostate 81.73 81.79
Seminal vesicles 81.42 81.52

It is, of course, not surprising that reducing the number of variables from 173 to
only 24 may not produce feasible solutions. Some more variables in the planning
problem are definitely needed. An iterative procedure to decide which variables to
“free” for a subsequent optimization problem is the topic of the next chapter.

4 Adaptive control and refinement of clusters

In chapter 3, a method to aggregate the variables of the treatment planning problem
was presented. In this section, we cover the refinement of variable clusters. It
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is expected that the quality of a solution can deteriorate rather strongly or may
not even be feasible when the number of clusters is small. Hence, a mechanism
to break up existing clusters at stages in the algorithm must be implemented to
improve the solution of an aggregated problem. Similar to the voxel clustering
technique in [8], we call such a method an adaptive refinement. In principle, the
adaptive refinement creates a series of aggregated optimization problems starting
from the first variable cluster, and successively breaks existing clusters in two child
clusters. The treatment planning problem with the increased number of beamlet
clusters is solved again and the objective function values are checked. An upper
limit of how many variables can be freed this way serves as a stopping criterion.
Of course, if the solution is still infeasible or the planner is not satisfied with this
result, the procedure may be continued.

We will first introduce an idea to identify child clusters of existing aggregations
based on the reference doses for each organ. Then we elaborate on how to control
the iterations in the refinement. The prostate case of the previous chapter serves as
a continuing illustration of the methods proposed in this chapter.

The critical question in a disaggregation procedure is which variables to free from
existing clusters. We will make this decision based on the characteristics of the
beamlets. In every iteration we identify one organ S that has an unfavorable dose
distribution. Then all the clusters are searched and those beamlets with significant
influence on the selected organ are separated into a new cluster. A limit on how
many clusters are broken up this way is one of the control parameters of the re-
finement. To prevent moving too many beamlets into a single new cluster, the new
clusters are constrained to contain only as many entries as the average cluster size
of the old clusters. The procedure Refinement Iteration is given in detail in
algorithm 4.1.

In Step 1 of each refinement iteration, the cluster errors regarding the target organ
are evaluated and the worst clusters identified. These worst clusters all contain
beamlets that could be used to better control the dose distribution in S. Those
beamlets are identified in Step 2 of Refinement Iteration and separated into
new clusters. Since problem 3.1 demands to minimize the maximum EUD normal-
ized by the reference doses, it is natural to pick that organ for which the maximum
is attained as S.

The last choice that remains is how to choose the parameters of the refinement
iteration. How many clusters should be formed in each iteration, and how many
iterations should be done? One refinement iteration does not take much time be-
cause only the characteristic vectors of beamlets and clusters are compared. Each
refined formulation of the treatment planning problem has to be resolved. The so-
lution to the previous formulation should be an excellent starting point for the new
problem and the refined solution should be found in a few solver iterations. Since
this can all be achieved in little time, the number of clusters to be broken up in
algorithm 4.1 can be set rather low - say 20 clusters over all beams.
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Algorithm 4.1 Adaptive refinement iteration
Procedure: Refinement Iteration

Input: Characteristic vectors ci, i = 1, . . . , n of all beamlets, allocation
A ∈ B

n×K of beamlets to clusters, cluster means µ(1), . . . ,µ(K), average cluster
size tave, target organ S, number of clusters d to break up
Output: new allocation AN , new cluster means µ(1),µ(2), . . .

Step 1: For each cluster k that hits S, compute the clustering error of target

organ S given by
∑

h

(
∑

i∈k(cS h(i) − µS h(k))2
)h−1

, where h

denotes the degree of the moment and rank the clusters in descending
order of these errors.

Step 2: For the worst d clusters found, allocate all beamlets in those
clusters that have a higher contribution to S than its cluster mean to a
new cluster:
n := 1 // counter for newly created clusters
for k := 1 to d // consider the worst clusters

for all beamlets i ∈ k

if cS h(i) > µS h(k) then
aN (i) := K + n // separate this beamlet from k

else
aN (i) := a(i)

end if
if cluster K + n contains more than tave beamlets

n := n + 1
end if

next beamlet i

next cluster k

As there exists a lot of empirical evidence that not many degrees of freedom are
necessary to produce treatment plans of good quality, the limit of how many vari-
ables to end the refinement procedure can be set rather low initially. A simple
refinement strategy is then to choose a low threshold for the number of variables
(say 60% of the number of beamlets). Once the number of variables is above this
threshold, the refinement is only continued if the solution is not yet feasible.

We now illustrate the refinement strategy using the prostate case we began in the
previous chapter. Starting from the solution in chapter 3, the refinement is carried
out using the following rules:

1. The organ to refine is the one for which the maximum (normalized) EUD is
realized.

2. If an organ is refined for two consecutive iterations, it can’t be refined in the
next iteration.

3. In every iteration, 20 clusters are broken up.
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4. Stop with the first feasible solution after the number of variables is above
60% of all beamlets.

Rule 2 is included to avoid that on organ is refined too aggressively. The following
table indicates the progress of the refinement. The first row is the solution from the
previous chapter. The third column indicates the time the solver has taken up to
that point.

Ref. organ acc. solver time number of variables feasible?
0 3 m 38 s 24 (14%) NO
1 post. rectal wall 6 m 23 s 45 (26%) NO
2 bladder 9 m 13 s 65 (38%) NO
3 ant. rectal wall 12 m 10 s 84 (49%) NO
4 ant. rectal wall 15 m 14 s 108 (62%) NO
5 bladder 18 m 26 s 133 (77%) YES

The process stopped after about 18 and a halve minutes, and it took over 4 minutes
less time than the original problem formulation. The DVH of the last refinement are
shown in figure 10. Perhaps the most striking difference is in the curves pertaining

Figure 10: The DVH of the last refinement.

to the femoral heads and the anterior rectal wall. It is evident that the solution using
the refinement strategy spared large parts of the anterior rectal wall at the cost of
increasing the dose in the femoral heads. As the reference dose for these two organs
is rather high compared to the realized dose, this has no effect on the objective
function value. To compare, figure 11 displays the normalized EUD values for
both, the original solution and the solution obtained from the last refinement.
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Figure 11: The objective function values (EUDs normalized by their reference
doses) for the optimal solution found by the original problem formulation and by
the last refinement. The maximum of the values for the optimal solution is ob-
tained by the bladder, and the maximum of the objective function values for the
last refinement is given by the value of the anterior rectal wall.

The objective function value for refinement 5 is even slightly better than the solu-
tion to the original formulation. This is because the solver stops if no significant
improvement can be made for a long time. In the original formulation, the solver
may have stopped too early. This shows that the clustering approach may also
improve the convergence to the optimal solution.

As may be expected from the quality of the objective function values after the
first clustered solution, the normalized EUD values did not change much over the
solution process. However, the graphs in figure 12 shows that especially in the
first two refinements the biggest improvement of the objective function values was
attained by the organ which was refined in that step.

While the original solution took (25+20+20+22+22=) 109 apertures to be deliv-
ered, the solution to the last refinement problem took only (25+15+19+19+17=)
95. The number of monitor units, however, was the same at 216.

5 Discussion

In this work we introduced a variable aggregation technique for the treatment plan-
ning problem. The aggregation was motivated by a faster dose calculation that
would speed up the solver iterations. A disaggregation method motivated by clin-
ically meaningful indicators (i.e. the maximum EUD normalized by the reference
dose) was developed to pose adaptively refined versions of the treatment planning
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Figure 12: The improvements in the objective functions remained small over the
solution process. However, larger improvements were realized for those organs
which were chosen for the refinement.

problem. An example calculation on a clinical prostate case demonstrated the po-
tentials of this method. The method introduced found a superior solution in less
time. Due to the fact that some beamlets were still in clusters, the solution attained
after clustering and refindement also needed significantly fewer shapes after se-
quencing. The success of this method supports the hypothesis that not all degrees
of freedom have to be used to produced treatment plans of high quality.
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