GPU Stereo Vision

Sebastian Prehn

December 6, 2007
Project Thesis

GPU Stereo Vision

Robotics Research Lab
Department of Computer Sciences
UNIVERSITY OF KAIERSLAUTERN

Sebastian Prehn

Day of issue : 23. April 2007
Day of release : December 6, 2007

Professor : Prof. Dr. Karsten Berns
Tutor : Dipl.-Inf. B. H. Schäfer
Hereby I declare that I have self-dependently composed the Project Thesis at hand. The sources and additives used have been marked in the text and are exhaustively given in the bibliography.

December 6, 2007 – Kaiserslautern

(Sebastian Prehn)
Preface

I would like to thank everyone at the robotics research lab of AG Berns for providing such a friendly and comfortable working environment.

I thank Tim Braun for supporting me with the integration of Scons and low-level CUDA optimization.

Special thanks go to my tutor Bernd Helge Schäfer for the manifold advice and for helping me out with MCA and C/C++ specific problems.

Both Tim and Helge have guided and mayorly influenced the approaches taken in this work.
Contents

1 Introduction .. 7
1.1 Motivation .. 7
1.2 Objectives .. 7
1.3 Structure ... 8

2 Stereo Vision .. 11
2.1 Binocular Stereo Vision 11
2.1.1 3D Reconstruction 13
2.2 Stereovision Algorithms 15
2.2.1 Dense vs. Sparse 16
2.2.2 Global Optimization vs. Window-Based 16

3 Concept ... 19
3.1 GPU Computation Technology 19
3.2 Algorithm Selection 19

4 CUDA .. 21
4.1 GPU .. 22
4.1.1 Execution Model 22
4.2 Memory ... 24

5 Implementation ... 27
5.1 Getting started 27
5.2 Window Based Approach 28
5.2.1 Window Based Kernel 29
5.3 Pyramid Based Approach 33
5.3.1 Scale Down Kernel 35
5.3.2 Pyramid Stereo Kernel 37
5.3.2.1 Region of Interest 41
5.3.2.2 Confidence 41
5.3.3 Post Processing Kernel 43

6 Integration .. 45
6.1 MCA Stereo Vision 45
7 Performance / Results 49
 7.1 Quality .. 49
 7.1.1 Window Based Stereo Kernel Results 51
 7.1.2 Pyramid Based Stereo Kernel Results 54
 7.1.3 Quality ... 58
 7.1.4 GPU Comparison 59
 7.2 Timings and Optimization Techniques 61

8 Conclusion 65

Bibliography 67
1. Introduction

1.1 Motivation

The Robotics Research Lab at the University of Kaiserslautern investigates mobile service robots in various environments. In order to navigate through unknown terrain the on site detection of obstacles is a crucial feature. To analyse a scenery obstacles depth information is very valuable. Stereo vision is a powerful way to extract dense range information of a complete area of the environment [Schäfer 04]. On the other hand stereo reconstruction comprises computationally expensive steps which results in high CPU load. The inherent complexity leaves only one logical consequence. The computation has to be moved off the CPU and towards a second processing unit. One solution can be tailor-made stereo vision hardware (see [Kuhn 03]). However, in recent years Graphic Processing Units (GPU) on consumer-level graphics boards have become programmable and increasingly powerful. Furthermore the trend in performance gain is even better than with standard CPUs. Today’s off-the-shelf GPUs provide extreme parallel processing capabilities at far less cost than custom made stereo vision hardware. Furthermore this hardware integrates easily with every reasonably modern standard PC. At the same time the PC and the graphics board communicate over a super fast bus beating any network solution by far.

For these reasons GPU implementations of stereo algorithms are a very attractive way to speed up the reconstruction and to unload the main processor freeing resources for further processing.

1.2 Objectives

Goal of this work is to development a fast stereo vision algorithm designed to run on a standard NVIDIA GPU of the 8800 and above series. The stereo algorithm needs to be integrated in the MCA framework\(^1\), which is commonly used for robotics applications at the Robotics Research Lab at the University of Kaiserslautern. One exemplary target application is the lab’s research platform RAVON (see figure 1.1).

\(^1\)MCA = Modular Controller Architecture (see [Scholl 02, Koch 07] and http://www.mca2.org)
Stereo vision has been a research topic for years and is quite well understood. ([Schnabl 03] and chapter 2). The first challenge is therefore to select an approach that works well in the field of outdoor robotics, at the mean time being suitable for a fast GPU implementation.

General purpose computation on the GPU requires a new thinking about algorithm design. Programming strategies that result in a fast CPU implementation do not necessarily produce fast GPU code. Especially control structures, misaligned memory access and any kind of serialization slow down GPU programs. In this work it is investigated how the latest GPU general purpose technology can be applied to the stereo vision problem.

Finally the algorithms need to be benchmarked and optimized for high framerates. Additionally simple and fast forms of post-processing and confidence computation are presented as add-on to the core stereo algorithm.

1.3 Structure

This rest of this document is organized into the following chapters

- Chapter 2 explains general stereo vision principles.
- Chapter 3 outlines major design decisions.
- Chapter 4 describes the NVIDIA CUDA framework.

Schnabl 03
• Chapter 5 gives an insight on how the presented stereo vision algorithm evolved.

• Chapter 6 describes the integration of the new algorithm into the MCA framework.

• Chapter 7 illustrates the quality and performance results and concludes the work.

• Chapter 8 concludes this Project Thesis.
1. Introduction
2. Stereo Vision

This chapter provides a brief overview on stereo vision.

2.1 Binocular Stereo Vision

Figure 2.1: General stereo vision geometry (pin-whole camera model). E_{left}, E_{right}: epipolar points; F_{left}, F_{right}: focal points; P: point in 3D space; P_{left}, P_{right}: projections on image planes
Humans are able to perceive depth information with their two eyes. A distant object is projected onto the retina of the left and right eye. The object’s projections differ in their position. The human brain is able to come up with a depth judgment for that object by analyzing the two images.

Computer stereo vision copies this concept. The goal is to reconstruct a depth map from at least two 2D camera images showing a 3D scene from different observation points. The depth information can be inferred by matching a point in both images and looking at the displacement between the matched pair.

Figure 2.1 visualizes the general case of stereo vision geometry with two input images. A 3D scene is projected onto two 2D virtual image planes. The plane defined by point \(P \) and both focal points \(F_{\text{left}} \) and \(F_{\text{right}} \) is called the epipolar plane. The projected line from focal point \(F_{\text{left}} \) to \(P \) in the right image is called an epipolar line. The right image projection \(P_{\text{right}} \) of point \(P \) can always be found on this epipolar line. This is called the epipolar constraint and simplifies the correspondence problem. This constraint only holds for the perfectly rectified images of a pin-hole camera. In reality, raw camera images are usually distorted. The images have to be rectified prior to stereo vision processing.

![Figure 2.2: Binocular stereo vision setup](image)

A binocular stereo vision system with a canonical stereo geometry consists of two identical, parallelly mounted cameras. The cameras are setup such that their virtual
2.1. Binocular Stereo Vision

image planes and both epipolar lines fall together. The epipolar lines are aligned parallel to the x-axis of the image planes.

A point in the observed scene will be projected to pixels on the very same row in the left and right image (see figure 2.2). Obviously no further calculation for finding the epipolar line is needed. The displacement between left and right projection is called disparity \(d \).

2.1.1 3D Reconstruction

In order to reconstruct the 3D scene from disparity values the fixed distance between the cameras called baseline \(b \) and the focal length \(f \) of the cameras has to be known.

The stereo vision head coordinate system lies between both cameras on the baseline. Its orientation is defined according to common decisions in robotics as a right-hand coordinate system. The x axis pierces perpendicular through the image plane. (see figure 2.2).

In computer vision image origins usually lie at the top left corner of an image. Here, the image coordinate systems have their origins translated to the very middle of each picture, the closest point to the focal point (see figure 2.2). This is not a restriction. It only simplifies the following derivation and is a common assumption in physics for the pin-whole camera model.

The exact 3D coordinates \(x, y \) and \(z \) for two matching pixel \((x_l, y_l)\) and \((x_r, y_r)\) can be calculated using triangulation as shown in figure 2.3.

\[
\tan(\alpha_l) = \frac{x_l}{f} = \frac{b - y}{x} \quad (2.1)
\]

\[
\tan(\alpha_r) = \frac{-x_r}{f} = \frac{b + y}{x} \quad (2.2)
\]

Solving 2.1 and 2.2 for \(y \) yields:

\[
y = \frac{-x_l \cdot x}{f} + \frac{b}{2} \quad (2.3)
\]

\[
y = \frac{-x_r \cdot x}{f} - \frac{b}{2} \quad (2.4)
\]

Equating 2.3 and 2.4 and solving for \(x \) results in:

\[
x = \frac{b \cdot f}{x_l - x_r} \quad (2.5)
\]

Solving for \(z \) is even simpler. Since both pixels lie on the same image row \(y_r = y_l \) holds.
\[
\tan(\beta) = \frac{y_l}{f} = \frac{z}{x} \quad (2.6)
\]
\[
z = \frac{x \cdot y_l}{f} \quad (2.7)
\]

Substitution of equation 2.5 into 2.7 and 2.3 yields the following formulae for straight forward computation of \(y\) and \(z\).

\[
y = -\frac{b}{2} \cdot \frac{(x_l + x_r)}{x_l - x_r} \quad (2.8)
\]
\[
z = \frac{y_l \cdot b}{x_l - x_r} \quad (2.9)
\]
The disparity value d calculated by a stereo vision algorithm already equals $x_l - x_r$. Note that the translation of the image origin along the x axis has no effect on the disparity. Let the left image be the reference image. Then x_l and d are known. x_r can easily be calculated as $x_r = x_l - d$.

2.2 Stereovision Algorithms

The challenge for a stereo vision algorithm is to solve the correspondence problem, i.e. finding the right match in the left and right image for a given point in the real world. The common approach is to declare one input image as the reference image. For a pixel in the reference image the corresponding match is then searched for in the second input image.

However, finding the correct match is ambiguous. Due to occlusion some points may not have a match in both projections (see figure 2.5). Furthermore repetitive textures may produce multiple matches. Detecting occlusion and finding the right match determines the quality of a stereo vision algorithm.
2. Stereo Vision

2.2.1 Dense vs. Sparse

Stereo vision strategies can be dense or sparse. Sparse stereo vision concentrates on selected feature points only. A feature point can be a point of special interest. Alternatively a feature point may be a point with high likelihood for a good match. This approach can potentially result in a fast stereo vision algorithm due to the reduced amount of analyzed points. Dense stereo vision algorithms find matches for all points in the reference image. (In this work a dense approach was chosen since distance information for the whole image is required for further processing steps.) In a complete run of a dense stereo vision algorithm a disparity value is calculated for each pixel in the reference image. Typically this result is visualized as a gray scale image, also known as disparity map. In this image each pixel’s brightness corresponds to a disparity level. High disparity values result in lighter pixels.

2.2.2 Global Optimization vs. Window-Based

Recently high quality results have been achieved in CPU stereo vision applying global optimization techniques to the stereo vision problem (see [Scharstein 02]). Such algorithms rank top at the Middlebury evaluation page\(^1\). However, these approaches tend to be slow and thus are not suitable for our near-real-time task. Yang and Pollefeys [Yang 05] claim that only correlation-based stereo algorithms are able to provide a dense depth map in real time on standard computer hardware. However, a fast optimizing stereo vision algorithm for the GPU could be an interesting future research topic.

Window-based stereo algorithms take two parameters: window width and window height. The window describes a rectangle areas around the reference pixel. Around a match candidate in the second image a rectangle of equal size is compared to the reference window. It is assumed that the areas are most similar for the correct match.

![Window based stereo vision](image)

Figure 2.6: Window based stereo vision

For each disparity step a window based strategy therefore shifts the window along the epipolar line in the second image. The region in both images is then compared

\(^1\)http://vision.middlebury.edu/stereo/
by a similarity function. The disparity step with the highest similarity provides most likely the correct match. Common similarity functions are cross correlation, sum of squared differences (SSD) or sum of absolute differences (SAD).

The performance and quality of a window based algorithm depends on the window size. Large support regions provide a higher certainty for a correct match even for low textured input images. Small window sizes speed up the computation and produce finer grained results. Window based stereo vision requires good textures in the input images. Luckily in the application field of outdoor robotics such textures prevail.
3. Concept

3.1 GPU Computation Technology

A CPU is optimized for general purpose computation. In contrast, GPUs are specially designed to perform a set of rather simple operations on a large amount of data. A GPU obtains speed via parallelization. This is achieved by multiple parallel rendering pipelines. From a general purpose computing point of view a GPU is a dedicated parallel processor.

Traditionally the rendering pipelines are programmable with vertex- and fragment programs via a shader language. In this fashion stereo vision systems already have been implemented [Yang 05]. The Robotics Research Lab has used the CG framework on NVIDIA graphics hardware for various general purpose computation [Zolynski 07, Seidler 08] on the GPU.

In all these approaches the application engineers have to reformulate their general purpose problem in terms of these shader languages. Recently, NVIDIA has come up with a new approach to general purpose computation on the GPU: the CUDA\(^1\) framework. In CUDA there is no need to reformulate the application problem (see chapter 4). Therefore this new technology will be used in this work to support the stereo vision implementation.

3.2 Algorithm Selection

As explained in chapter 2 a window-based approach is most promising for near real-time implementations. Since the technology is brand new, two algorithms are to be implemented. The first and simple window-based stereo vision algorithm serves as a test and study object. In the second implementation quality improvements are targeted. In order to achieve better results a pyramid approach and simple post-processing are to be incorporated to the implementation.

\(^1\)CUDA = Compute Unified Device Architecture
3. Concept
4. CUDA

CUDA stands for *Compute Unified Device Architecture*. It is a new hardware and software architecture for computation on the GPU. CUDA is available for NVIDIA’s GeForce 8 Series, Quadro FX 5600/4600, and Tesla solutions [NVIDIA 07].

Programmable graphics hardware has been around for quite a while. Traditionally this hardware had to be programmed through shader languages and graphics APIs like CG\(^1\). This imposed a high learning curve on developers who were trying to utilize GPU computation devices for non-graphic tasks. Additionally values could be read

\(^1\)C for graphics http://developer.nvidia.com/page/cg_main.html
from but not written to arbitrary memory locations. In CUDA these problems are overcome.

CUDA provides a standard C programming interface. Inter-thread communication and general DRAM read and write access is possible with CUDA hardware.

This chapter will briefly introduce the main CUDA capabilities and constraints. For more detailed information on the CUDA framework please refer to the *CUDA Programming Guide* [NVIDIA 07].

4.1 GPU

![CUDA Hardware Model](image)

Figure 4.2: CUDA Hardware Model: A set of SIMD multiprocessors with on-chip shared memory [NVIDIA 07].

The GPU is a computation device capable of executing a very high number of threads in parallel. GPUs consist of a set of SIMD ² multiprocessors (see figure 4.2). Each Multiprocessor consists of a number of processors, each executing one thread. All processors within the multiprocessor execute the same instruction. This means that threads with an identical control flow operating on isolated data can be effectively computed in parallel on one multiprocessor.

4.1.1 Execution Model

A C function to be executed in parallel on the device is called a *kernel*. All threads are split up into a grid of blocks. This is called the kernel’s execution configuration. Blocks are executed in parallel on the multiprocessors (see figure 4.3). A block is

²SIMD = Single Instruction Multiple Data
Figure 4.3: CUDA Thread Batching: Each kernel executes as a batch of threads organized as a grid of thread blocks [NVIDIA 07].

processed only on one multiprocessor, but more than one block can be assigned to the same multiprocessor concurrently. Each block is automatically split up into SIMD groups of threads called warps which are then scheduled to the multiprocessor.

Threads within the same block can share data and synchronize with each other. This is why it is most convenient to have large blocks. However the block size is limited by the hardware capabilities of the device. Threads in one block have to share limited resources, for example shared memory.

The execution configuration of a kernel call is declared in the code by a special CUDA syntax extension to C.

The configuration parameters are:

- **grid**
 is of type dim3 and specifies the dimension of the grid, i.e. the number of blocks equals grid.x * grid.y. The third dimension grid.z stays unused.

- **block**
 is of type dim3 and specifies the dimension of a block. The number of threads in the block is block.x * block.y * block.z.

- **memsize**
 is of type size_t and specifies the number of bytes that are dynamically allocated per block in addition to the statically allocated memory.
Take a look at example 4.4.

```c
// kernel declaration
__global__ void Func(float* parameter);
...
// kernel call
Func<<<grid, block, memsize>>>(parameter);
```

Figure 4.4: Cuda kernel declaration and call

Note the __global__ CUDA keyword. It declares the function to be executed on the cuda device, making it a kernel.

The configuration parameters listed above can be accessed from within each thread through built-in Variables: gridDim and blockDim.

Through the variables blockIdx and threadIdx a thread can also access its grid and thread coordinates.

To make all this work CUDA code has to be compiled with the special nvcc compiler, which comes with the CUDA Toolkit.

4.2 Memory

![CUDA Memory Model](image)

Figure 4.5: CUDA Memory Model: Memory spaces of various scopes [NVIDIA 07].

A kernel thread can access different memory spaces according to table 4.1.

Global, constant and texture memory can be read from and written to by the host and are persistent across kernel launches.
4.2. Memory

Shared memory is extremely fast and enables inter-process communication between the threads in one block.

Due to the latencies shown in table 4.1 it has become a common pattern in CUDA programming to have all threads read data from global, constant or texture memory to shared memory prior to any computation. Once all needed data is loaded into the shared memory read and write access is extremely fast. Once the computation is done the results are written back to the global memory.

For more information please see the CUDA Programming Guide [NVIDIA 07].

<table>
<thead>
<tr>
<th>Memory</th>
<th>Access</th>
<th>Scope</th>
<th>Persistence</th>
<th>Cached</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>register</td>
<td>read-write</td>
<td>thread</td>
<td>no</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>local memory</td>
<td>read-write</td>
<td>thread</td>
<td>no</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>shared memory</td>
<td>read-write</td>
<td>block</td>
<td>no</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>global memory</td>
<td>read-write</td>
<td>grid</td>
<td>yes</td>
<td>no</td>
<td>400-600</td>
</tr>
<tr>
<td>constant memory</td>
<td>read</td>
<td>grid</td>
<td>yes</td>
<td>yes</td>
<td>400-600</td>
</tr>
<tr>
<td>texture memory</td>
<td>read</td>
<td>grid</td>
<td>yes</td>
<td>yes</td>
<td>400-600</td>
</tr>
</tbody>
</table>

Table 4.1: CUDA Memory Scopes
5. Implementation

Prior to implementation it was necessary to become acquainted with NVIDIA’s new CUDA technology. In [Yang 05] a stereo vision implementation on commodity graphics is presented using OpenGL. CUDA enables a completely new approach. The CUDA framework explicitly targets non-graphical computation on consumer graphics boards. At the time of writing this novel framework is still under heavy development and experimental. During the course of this work CUDA releases changed three times from version 0.8.2 to 1.0.

5.1 Getting started

Prior to any stereo vision specific solution the CUDA Toolkit had to be setup on a Linux system. CUDA comes with a set of example applications. Once the toolkit is installed correctly these examples compile. There are two modes, emulation and production mode. In the emulation mode no CUDA supported hardware is needed. The execution is simulated on the CPU. This is quite slow, but useful for debugging. In production mode the CUDA programs are executed on the graphics hardware. At the time of writing this only works with a special NVIDIA graphics driver designed for the CUDA Toolkit available on the CUDA home page1.

In addition up to June 2007 the CUDA framework was only available in version 0.8.2. This version did not yet support the graphic card in our development system, a NVIDIA GeForce 8600 GT. Kindly, the department of computer graphics2 gave us permission to run tests on their GeForce 8800 GTX card. Support for the NVIDIA 8600 card was finally available in the 0.9 and 1.0 releases, which were obtained through the NVIDIA developer early access program.

In order to develop the stereo vision solution IDE, build system, and versioning system had to be setup. As development platform Eclipse CDT and Emacs was used. The stereo vision software had to be integrated into the MCA framework3. For that reason the example make files could not be used. MCA uses the Scons4.

1\url{http://developer.nvidia.com/object/cuda.html}
2\url{http://www-hagen.informatik.uni-kl.de/}
3MCA = Modular Controller Architecture (see [Scholl 02, Koch 07] and \url{http://www.mca2.org})
4\url{http://www.scons.org}
build system. This required some Python coding to create a CUDA specific Scons builder that would integrate nvcc into the exiting Scons framework. As a versioning system stereovision cuda was setup as a sub project within the MCA subversion system.

As a first guide to a stereo vision solution the NVIDIA convolution example provided most useful information to understand the basic concepts in order to solve the stereo vision problem on CUDA hardware. It describes a convolution filter that analyses the surrounding rectangle area for each pixel. A similar approach was then used to obtain the first window based CUDA stereo vision solution.

After three weeks of documentation studies and implementation of prototypes the first runnable stereo vision system was completed. The here presented version of the window based stereo algorithm is the optimized and final version of the simple window based approach. It demonstrates the most important CUDA programming principles to gain most out of the graphics hardware.

5.2 Window Based Approach

usage: stereovision_cuda_simplewindow left_image right_image result_image thread_width thread_height

optional arguments are:
- `dmin` disparity minimum (default: 0)
- `dmax` disparity maximum (default: 32)
- `width` window_width (default: 5)
- `height` window_height (default: 5)
- `weight_x` weight of channel x (default: 0.3), weight sum should be 1
- `weight_y` weight of channel y (default: 0.3), weight sum should be 1
- `weight_z` weight of channel z (default: 0.3), weight sum should be 1
- `scale` scale of output image (disparity value * scale) (default: 1), a power of 2
- `showResult` default: 0 (off)
- `showInput` default: 0 (off)

The window based algorithm takes two input images of equal size as input and computes a disparity map in terms of a gray scale image as output.

The input images can be color images. Internally they are converted to HSV (Hue, Saturation, Value) format. The user can provide weights \((w_x,w_y,w_z)\) for all three channels. Depending on the image quality it can make a difference of using different weights. If for example the colors of both images are not well calibrated it can make sense to concentrate on saturation or value only.

In addition the user should specify the minimum and maximum disparity values and the window width and height as command line parameters.
5.2. Window Based Approach

The minimum and maximum disparity depend on the camera setup. With increasing distance the disparity values converge towards 0. This is why the disparity minimum is usually assumed to be 0. The maximum disparity value can be identified during camera calibration, by manually calculating the disparity for a point in 3D space with minimal distance to the stereo head system. For benchmark images, such as the Middlebury stereo pairs, the maximum disparity is known.

Depending on the image resolution, the window width \(w_w \) and window height \(w_h \) are usually: 3x3, 5x5 or 7x7. Larger values result in smooth but blurry disparity maps. Small window sizes produce grainy images, with potentially more outliers.

5.2.1 Window Based Kernel

For each pixel \((p_x, p_y) \) and disparity step \(d \) the algorithm has to compare the window in the reference image to the window along the epipolar line in the second image. For a comparison function the sum of absolute differences (SAD) is used.

\[
sad(p_x, p_y) = \sum_{p_y=p_y-\left\lfloor \frac{w_y}{2} \right\rfloor}^{p_y+\left\lfloor \frac{w_y}{2} \right\rfloor} \sum_{p_x=p_x-\left\lfloor \frac{w_x}{2} \right\rfloor}^{p_x+\left\lfloor \frac{w_x}{2} \right\rfloor} \left(\begin{array}{c} w_x \\
 w_y \\
 w_z \end{array} \right) \cdot \left(\begin{array}{c} \text{abs}(I_l(p_x, p_y).x - I_r((p_x - d, p_y)).x)) \\
 \text{abs}(I_l(p_x, p_y).y - I_r((p_x - d, p_y)).y)) \\
 \text{abs}(I_l(p_x, p_y).z - I_r((p_x - d, p_y)).z)) \end{array} \right)
\]

(5.1)

Note that not the whole image can be processed. On the left and right side there are borders of half the window width. On top and bottom there is a border of half the window height. The pixel in this rim are not sufficiently padded. Therefore they are left out in the computation.

The rest of the image is split up into tiles, i.e. rectangular sections of the image (see figure 5.1). In order to process the image in parallel each kernel block is responsible for computing the disparity values for one tile. In order to compute the SAD values for each pixel in the tile a slightly larger rectangular area needs to analyzed by each kernel. More precisely the area the kernel has to process is the area of the tile plus half window size towards left and right side and half window with towards top and bottom. This extra area is called the apron.

The aprons of two adjacent tiles overlap. This means pixels in the apron will be accessed by multiple kernels. Since interprocess communication is restricted to one block, it is inevitable that blocks of adjacent tiles will perform multiple read accesses to the memory to fetch the same pixel.

Access to the texture memory is 100 times slower than accessing a shared memory location. In order to get the maximum throughput all reference pixels of a block are loaded in parallel. Each thread loads one pixel into shared memory. From then on the apron threads are shut down. In CUDA development it is always important to keep the ration of idle threads to active threads as low as possible. For this reason it is best to have large tiles. In the presented algorithm the number of threads and therefore the tile size is maxed out to 512 thread per block\(^5\), the current maximum possible. \(^6\) This translates into a constant block width of \(b_w = 32 \) threads and a

\(^5\) blockIdx.x * blockIdx.y * blockIdx.z <= 512

\(^6\) To make this possible the kernel was optimizing to use only 16 registers.
constant block height of \(bh = 16 \) threads. The tile height \(th \) and tile width \(tw \) can be computed as follows:

\[
\begin{align*}
 tw &= bw - 2 \cdot \floor{\frac{ww}{2}} \\
 th &= bh - 2 \cdot \floor{\frac{wh}{2}}
\end{align*}
\]

(5.2)

(5.3)

Obviously the ration of idle to non idle threads depends only on the window size (see table 5.1). The kernel does not scale with window size. As shown in table 5.1 it has to becomes unefficient with larger windows. At a 7x7 window almost as many threads are put into idle mode as there are active threads calculating disparities. The usage of a 9x9 window does not make any sense at all. However, 7x7, 9x9 or larger window sizes produce blurry images. It is therefore justified to concentrate of 3x3 and 5x5 window sizes.

The tiles are all of equal size, except the ones in the last row and last column. They may be smaller, since a whole tile might not fit into the image. For this reason the kernel has guard access to pixel coordinates outside of the image. The algorithm
5.2. Window Based Approach

<table>
<thead>
<tr>
<th>window size</th>
<th>3x3</th>
<th>5x5</th>
<th>7x7</th>
<th>9x9</th>
</tr>
</thead>
<tbody>
<tr>
<td>block size</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>active (tw * th)</td>
<td>420</td>
<td>336</td>
<td>260</td>
<td>192</td>
</tr>
<tr>
<td>idle</td>
<td>92</td>
<td>176</td>
<td>252</td>
<td>320</td>
</tr>
<tr>
<td>idle to active ratio</td>
<td>0.22</td>
<td>0.52</td>
<td>0.97</td>
<td>1.67</td>
</tr>
<tr>
<td>idle [%]</td>
<td>18.0</td>
<td>34.4</td>
<td>49.2</td>
<td>62.5</td>
</tr>
</tbody>
</table>

Table 5.1: Idle to active threads ratio

does not prevent access to negative x coordinates in the texture. This happens when
the algorithm analyses pixels on the left side of the reference image. It tries to read
the corresponding pixels that is shifted to the left by the current disparity step. This
pixel may have a negative x coordinate. The texture unit however is adjusted to
return the left-most valid texture value in this case. This special behavior makes
sense. In this area not the whole disparity range can be analyzed. Results here can
not be reliable, yet some pixels may match.
5.3 Pyramid Based Approach

The straightforward approach presented in the last chapter has two major disadvantages. First of all is the execution time directly dependent on the disparity range processed. In an outdoor setting larger disparity ranges are common. To keep the resulting disparity image crisp and to obtain good performance results it is good to have small window sizes. This however increases the likelihood of matching the wrong minimum, since the support region is small. The effect can be observed best on repetitive textures (see figure 5.3).

In order to cope with these problems a pyramid based approach can be applied. In a pyramid approach the both input images are scaled down several times. Figure 5.4 illustrates one original input image I_0 and the scaled down copies $I_{[1..n]}$ as a pyramid. A stereo algorithm with a fixed window size is then applied on each of the scaled copies for a reduced disparity range, starting at I_n. From that result a rough estimate for $D_{(n-1)}$ can be calculated. For all $i \in \{n, ..., 1\}$ the disparity map
D_i serves as a hint for $D_{(i-1)}$ in the corresponding region in the next larger pyramid level $I_{(i-1)}$ (see figure 5.5).

![Figure 5.5: Propagation of disparity estimates](image)

During disparity propagation from D_i to $D_{(i-1)}$ the disparity values have to be adjusted to the larger image resolution. The resolution of I_i is exactly double the resolution of $I_{(i-1)}$. Therefore the disparity estimates for $D_{(i-1)}$ are computed by multiplying D_i times two. The estimates are all even. In order to close the “gaps” the stereo algorithm on level $I_{(i-1)}$ has to decide between the even and uneven disparity step. In order to make the algorithm more robust against initial errors a slightly larger disparity range around the estimate may be selected. In this fashion the disparity estimates are refined from coarse to finer grained matches with every pyramid level. Finally, the procedure yields the result D_0.

This algorithm produces finer grained disparity maps at a lesser likelihood of false disparity matches. This is because the disparity estimates on a small copy are based on a virtually larger window than the actual window used, since each pixel in a scaled down copy was obtained by interpolation. Thus, each pixel represents a whole region of the larger copy.

When the image data is loaded from host memory to GPU texture memory a conversion must take place. The pixel data has to be converted from a 3 times 8 bit format to a Float4 CUDA type. This type takes care of the correct memory alignment. As a comparison function this algorithm also uses SAD. The distributive law allows the weights for all three color channels to be applied already during this conversion. This way the weight factors are also applied to all scaled down copies.

The factor by which each level is scaled is one forth. This factor translate into half window width and half window height. This enables very efficient computation of down scaling as described in chapter 5.3.1.
5.3. Pyramid Based Approach

5.3.1 Scale Down Kernel

For input image I_i, a scaled down copy $I_{(i+1)}$ with half width and half height has to be produced. This means each pixel in the result image is assigned the average value out of 4 pixels in the input image. For an efficient implementation it makes sense to put the scale down function on the graphics hardware as well. On graphics hardware the computation of average values is extremely simple and can be done in parallel. The algorithm (see listing 5.7) takes advantage of the built-in texture unit. By requesting the value of the texture coordinate right between all four input images the texture unit returns the linear interpolation of all 4 pixels values in all three color channels (see figure 5.6 and test results 5.3.1).

Furthermore there is no need to copy each scaled copy to the graphics board memory for each stereo vision kernel invocation. The scale down kernel’s result stays in GPU memory and can later be accessed by the stereo vision kernel.

```c
__global__ void ScaleDownKernel ( unsigned int width , unsigned int height , float4 * data , unsigned int pitch ) {
    int px = threadIdx.x + blockDim.x * blockIdx.x;
    int py = threadIdx.y + blockDim.y * blockIdx.y;
    if(px < width && py < height) { // check px,py within boundaries
        float4* row = (float4*)((char*)data + py * pitch);
        row[px] = tex2D(tex_image ,
           2.0f*(float)px + 1.0f ,
           2.0f*(float)py + 1.0f);
    }
}
```

Figure 5.7: Scale Down kernel
<table>
<thead>
<tr>
<th>Test</th>
<th>Input Image</th>
<th>Output Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black and white checker board and interpolated result. Note the gray line resulting from interpolation on the black and white transition.</td>
<td> </td>
<td></td>
</tr>
<tr>
<td>Black and white checker board shifted by one pixel horizontally. No gray line visible in interpolated result.</td>
<td> </td>
<td></td>
</tr>
<tr>
<td>Alternating black and white pixel columns. Resulting image is a solid gray rgb(127,127,127).</td>
<td> </td>
<td></td>
</tr>
<tr>
<td>Alternating black and white pixel rows. Resulting image is a solid gray rgb(127,127,127).</td>
<td> </td>
<td></td>
</tr>
</tbody>
</table>

Table 5.2: Scale and interpolation test images and results

This kernel is quite simple. It uses only 8 multiprocessor registers and and 32 bytes of shared memory. Using the [CUDA GPU Occupancy Calculator](https://docs.nvidia.com/cuda/occupancy-calculator/index.html), the optimal configuration parameters of 256 threads per block were determined. An occupation of hundred percent for each multiprocessor was hereby achieved. On bandwidth bound kernels a high occupation is the only way to let the CUDA framework hide memory latency by computation.

\footnote{Spreadsheet in CUDA Toolkit to calculate GPU occupancy}
5.3.2 Pyramid Stereo Kernel

The pyramid stereo algorithm is also window based. However it uses a different approach in mapping the images pixels to threads and blocks. In this approach one block of threads is used to calculate the whole disparity match for one pixel. This means that the maximum disparity range that can be processed by the algorithm is limited by the maximum number of threads in one block (currently 512). This number however is far larger than needed in the pyramid approach. Should there ever be a need for a larger disparity range an additional pyramid level can be introduced. The theoretical maximum disparity range equals \(512 \cdot 2^n\) where \(n\) is the number of pyramid levels above the original level \(I_0\).

To take a closer look at how each thread block can handle the computation of the whole disparity spectrum it has to be recalled which regions in both input images are relevant for the calculation of a pixel’s disparity value. Let \((p_x, p_y)\) be the pixel’s coordinates.

In the left window this is an area of window width times window height around the examined pixel. In the right image all possible match candidates have y-coordinate \(p_y\). Their x-coordinates range from \(p_x - d_{\text{min}}\) to \(p_x - d_{\text{max}}\). Around each match candidate a rectangular area of window width times window height needs to be examined. These areas overlap and form a strip (see figure 5.8).

A block of threads is configured to load all needed image data in parallel. The configuration is set to be one-dimensional. In sum: \(ww + (d_{\text{max}} - d_{\text{min}}) + 2 \cdot \left\lfloor \frac{ww}{2} \right\rfloor\) threads are started on the x component of the block configuration. The first \(ww\) threads load the reference data from the left image. Threads with id \(\geq ww\) load the strip of pixels in the right image. Each thread loads a whole column of window height pixels into shared memory. During the computation of the best disparity match threads with id \(< ww\) are set to idle. All others are active in the computation of the SAD for their disparity candidate. This way a bad idle to active ratio is avoided which can be computed as: \(\frac{ww + 2 \cdot \left\lfloor \frac{ww}{2} \right\rfloor}{d_{\text{max}} - d_{\text{min}}}\). In the end a distributed minimum algorithm is used to find the correct match (see figure 5.9). This algorithm is very fast, but it relies on disparity ranges to be a power of two.

For each pyramid level the stereo kernel is invoked once. The disparity map is read from and written to global memory, which stays persistent in between kernel calls.

Figure 5.8: Example: Pyramid stereo kernel thread configuration for window size: 5x5 and disparity range 16.
After the first run the rough estimates for the disparity values is present in memory. In order to refine the estimates for each following kernel invocation the disparity range can be redefined. Theoretically the minimum disparity range would be 2, since the width is doubled between two pyramid images. This however gave poor results. The optimum would probably be a value of 5 leaving 2 options to either side of the current value. However 5 is not a power of two. This is why 4 was chosen as the disparity range for refinement calls.

```c
__global__ void PyramidStereoKernel(
    const float roi_offset_x,
    const float roi_offset_y,
    const int window_width,
    const int window_height,
    int* disparity_array, // guess and result
    const int roi_width,
    const unsigned int stride, //>=1.0
    const float right_image_offset
)
{
    float4* sm_image = (float4*) sm_array;
    int disparity_range = (int)blockDim.x - 2 * window_width + 1;
    int disparity_min = disparity_array[ stride*blockIdx.y * roi_width
        + stride*blockIdx.x ]
        - (int)stride*(disparity_range / 2);
    /* load all columns **/
    const int window_width_h = (window_width / 2);
    const int window_width_15 = window_width + window_width_h;
    const int tx = threadIdx.x; // type conversion
    float px = roi_offset_x+(float)(blockIdx.x + threadIdx.x);
    float py = roi_offset_y+(float)(blockIdx.y)-(float)(window_height/2);
    if(tx < window_width) {
        /* threads < window_width load reference region in left image */
        px += (float) (- window_width_h ) ;
    } else {
```
/* threads >= window_width load disparity region in right image */
px += right_image_offset - (float)disparity_min / (float)stride
+ (float)(-disparity_range - window_width_15);

// load column into shared memory
for (int i = 0; i < window_height; i++) {
 sm_image[window_height*tx+i] = tex2D(tex_image0, px, py + i);
}

// make sure all pixels are loaded into shared memory
__syncthreads();

// create shared memory arrays
// (thread configuration reserves device shared memory space)
float* sm_sad = (float*) & sm_image[blockDim.x * window_height];
int* sm_disparity = (int*) & sm_sad[disparity_range];

int column_index = tx - window_width_15;

/** calc sad **/
if(tx >= window_width_15 && tx < window_width_15 + disparity_range) {
 // init sad sum
 float sum = 0;
 for(int w = 0; w < window_width; w++) {
 int index0 = window_height * (tx + w - window_width_h);
 int index1 = window_height * (w);
 for(int h = 0; h < window_height; h++) {
 // sad
 sum += abs(sm_image[index0].x - sm_image[index1].x)
 + abs(sm_image[index0].y - sm_image[index1].y)
 + abs(sm_image[index0].z - sm_image[index1].z);
 index0++;
 index1++;
 }
 }
 // write result to shared memory
 // no * 0.3333 f, weights add up to 1
 sm_sad[column_index] = sum;

 // initialize disparity array with reverse index * stride
 sm_disparity[column_index] = disparity_min
 + (int)stride
 * (disparity_range - column_index);
}

__syncthreads();

/* distributed min */
for(int range = 1; range < disparity_range; range += range) {
 if(tx >= window_width_15 && tx < window_width_15 + disparity_range

&& column_index % (2*range) == 0) {
 int column2 = column_index + range;
 if(sm_sad[column_index] > sm_sad[column2]) {
 // set winner
 sm_sad[column_index] = sm_sad[column2];
 sm_disparity[column_index] = sm_disparity[column2];
 }

 __syncthreads();
}

/* write disparity: */
if(tx == window_width_15) {
 int stride_h = stride / 2;
 int result_index = stride * blockIdx.y * roi_width
 + stride * blockIdx.x;
 // (+0,+0)
 disparity_array[result_index] = sm_disparity[0];
 //(+0,+ stride/2)
 disparity_array[result_index + stride_h] = sm_disparity[0];
 result_index += stride_h*roi_width;
 //(+ stride/2,+0)
 disparity_array[result_index] = sm_disparity[0];
 //(+stride/2,+ stride/2)
 disparity_array[result_index + stride_h] = sm_disparity[0];
}
}
5.3.2.1 Region of Interest

In the field of application certain image regions may be of special interest, while others are not interesting at all. Therefore the algorithm was adjusted to allow for a definition of a rectangle area, which represents the region of interest. The disparity values are only computed for this region. If no region of interest is set the largest possible region is set by default. The algorithm can quite easily be adapted for this feature. This is because each result pixel has its own kernel thread instance. Excluding pixel outside of the region of interest is therefore only a matter of starting the kernel with an altered configuration. The kernel configuration parameters width and height had to be adjusted and additional two kernel parameters offset_x and offset_y had to be incorporated to consider the shift in input coordinates.

5.3.2.2 Confidence

The window based approaches presented here run very fast. As a trade-off they do not produce state of the art quality results. For real-time robotic applications speed is more important than quality. However it is still important to have some measure to judge whether the generated disparity map is reliable or not, since further decisions might map on the map. For that reason a confidence map is generated as well. A confidence measure can be calculated using different approaches, of which none is perfect. (cite). In this algorithm a combination of three metrics is used:

- Peak Ratio metric (PKR)
 During the calculation of the minimum the difference between SAD values of winner and runner up can be put in relation to the distance between both disparity steps. If this slope (see figure 5.10) is very low it indicates that the match is not reliable. This is not very useful to find overall confidence, since only the last pyramid level is examined, yet it is very well suited to determine whether the current distribution is good enough to change the guessed disparity or not.
Figure 5.11: Tsukuba example: Confidence Maps

- Feature Density (FD)
 Feature density is a measure of diversity of the texture around each given point in the texture. It is calculated by first determining the average of each color channel in the window. In a second step the absolute difference between average and each point is summed up. A window based approach can not work on featureless textures.

- Matching Score Metric (MSM)
 The SAD value of the winning disparity step directly tells how good the best match actually was. A SAD of zero would indicate a perfect match. The only problem is that this value can not be easily normalized. It is a very straightforward method for overall confidence. Yet on low-textured surfaces this method would give false positives. Therefore it needs to be combined with feature density multiplicatively.
5.3.3 Post Processing Kernel

With the confidence values at hand it is possible to do some quick post processing without too much performance overhead. Once a suspicious disparity value is identified by a low confidence value the question is: How can it be repaired?

Given that for a low confidence pixel most neighboring pixels agree on the same disparity level and have a higher confidence, chances are good that an outlier was found and that its true disparity value should be on the very same level.

The GPU algorithm takes advantage of the confidence and disparity values still being in the GPU memory. For each pixel in parallel three passes are run. First horizontally, then vertically, and horizontally again. Each time the algorithm searches 10 pixels to either side for confidence values 10 percent higher than the pixel’s own confidence value. Should there be 2 pixels on opposite sides of the current position with high enough confidence values and matching disparity levels the disparity value of the current pixel is corrected and its confidence is increased by ten percent.

On the Tsukuba example (see 5.12) this procedure corrected about two percent of the erroneous pixels. In the example the post processing algorithm closes some of the gaps in the background. Figure 7.11 in chapter 7 shows that the post processing step is very cheap compared to the pyramid kernel execution time.

![Figure 5.12: Tsukuba example: Post processing](a) without post processing (b) with post processing
6. Integration

6.1 MCA Stereo Vision

The stereo vision algorithm under development was built and tested using a stand-alone command line program. Both, stand-alone version and MCA version of the code share the same algorithm core in class `tPyramidStereoVisionCuda` (see figure 6.2).

In the MCA Stereo Vision project there are already several stereo algorithm implementations. These implementations are all exchangeable. The is realized through the strategy design pattern; any stereo algorithm has to extend `tDisparityGenerationStrategy`. Via the factory `sDisparityMapGenerationStrategyFactory` a concrete strategy instance can be created.
According to these patterns, \textit{tPyramidStereoVisionCudaStrat} was created. The new strategy receives no command line parameters but is configured via the MCA configuration tree and the MCA Browser (see figure 6.3).

In order to keep the coupling between stereo algorithm and MCA framework loose, the actual core algorithm, \textit{tPyramidStereoVisionCuda}, was hidden via adapter pattern. This way it was possible to continue testing the implementation separately.

![Figure 6.2: Screenshot of MCA GUI: showing input images and disparity map.](image)

With the MCA Stereo Vision project a configured MCA GUI comes along (see figure 6.2). The two camera input images, C_l and C_r, are rectified (I_l, I_r) and fed into the stereo algorithm, which yields the disparity map displayed as D.

The MCA Browser (see B in figure 6.3) lets the user choose the input source and configuration parameters on the fly. In the browser the disparity generator implementation can be selected and configured as well. In figure 6.3 a region of interest configuration is shown.

Finally, the Birchfield post processor, which was already present in the MCA stereo vision project, was integrated. Figure 6.4 shows the post processor being applied to the pyramid algorithm output.
6.1. MCA Stereo Vision

Figure 6.3: Screenshot of MCA Gui: Region of Interest Feature. B: MCA Browser, C: MCA Browser Configuration Window, R: disparity map reduced to region of interest

Figure 6.4: Screenshot of MCA Gui: Birchfield Post Processor activated. P: post processed output
7. Performance / Results

7.1 Quality

In order to evaluate the quality of the two stereo vision algorithms the Middlebury stereo datasets were used (see figure 7.1 and table 7.1). These are image pairs with known ground truth. They serve as a common benchmark for stereo algorithms. The error rates were obtained from the Middlebury evaluation page\(^1\).

<table>
<thead>
<tr>
<th>Image Pair</th>
<th>image width</th>
<th>image height</th>
<th>disparity min</th>
<th>disparity max</th>
<th>scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsukuba</td>
<td>450px</td>
<td>375px</td>
<td>0</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Venus</td>
<td>450px</td>
<td>375px</td>
<td>0</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Teddy</td>
<td>384px</td>
<td>288px</td>
<td>0</td>
<td>59</td>
<td>4</td>
</tr>
<tr>
<td>Cones</td>
<td>434px</td>
<td>383px</td>
<td>0</td>
<td>59</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 7.1: Characteristics of Middlebury stereo data set.

All tests were run on the color input images with HSV color channel weights 0.2, 0.3, and 0.5. The pyramid version was run with three pyramid levels on top of the original image. These parameters are slightly optimized towards the Tsukuba image pair, since this was the image pair mostly used during the development phase. The Middlebury evaluation page requires that the algorithm is run with unmodified parameters for all four image pairs.

\(^1\)http://vision.middlebury.edu/stereo/eval/
Figure 7.1: Input stereo pairs: Cones, Teddy, Tsukuba, Venus with groundtruth
7.1. Quality

7.1.1 Window Based Stereo Kernel Results

<table>
<thead>
<tr>
<th>Window Size</th>
<th>Cones</th>
<th>Teddy</th>
<th>Tsukuba</th>
<th>Venus</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x3</td>
<td>36.5%</td>
<td>45.2%</td>
<td>22.5%</td>
<td>43.0%</td>
</tr>
<tr>
<td>5x5</td>
<td>23.0%</td>
<td>33.4%</td>
<td>14.9%</td>
<td>31.9%</td>
</tr>
<tr>
<td>7x7</td>
<td>18.2%</td>
<td>27.8%</td>
<td>11.8%</td>
<td>25.3%</td>
</tr>
</tbody>
</table>

Table 7.2: Window Based Kernel: Erroneous pixels in non occluded areas depending on window size

As explained in the previous section. The input parameters were slightly optimized for the Tsukuba image pair. For this reason the Tsukuba error rates are slightly better than in the other input images. Figure 7.2 shows the disparity generated for all three window sizes. In Figure 7.3 the absolute and signed errors are visualized\(^2\).

Table 7.2 clearly shows how error rates drop with increasing window size. The algorithm simply has a larger area to back its decision on the correspondence problem. The same effect can be observed when looking at the disparity maps generated. In figure 7.2 from left to right along with the direction of increasing window size the images become smoother.

On the other hand low-textured and featureless areas produce many outliers (see figure 7.8 Teddy and Venus example). Subjectively only the 7x7 window examples produces reasonably sufficient disparity maps.

\(^2\)Absolute and signed error images are generated by the Middlebury evaluation page.
Figure 7.2: Window Based Kernel: Disparity Maps 3x3, 5x5, 7x7
Figure 7.3: Window Based Kernel: disparity map 7x7, absolute error, signed error
7. Performance / Results

7.1.2 Pyramid Based Stereo Kernel Results

For the stereo image dataset in use a “stride max” parameter of eight was determined by experiments to yield the best quality results. This corresponds to three levels of scaled down copies on top of the original image.

<table>
<thead>
<tr>
<th>Window Size</th>
<th>Cones</th>
<th>Teddy</th>
<th>Tsukuba</th>
<th>Venus</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x3</td>
<td>27.6%</td>
<td>36.0%</td>
<td>14.3%</td>
<td>32.7%</td>
</tr>
<tr>
<td>5x5</td>
<td>21.3%</td>
<td>29.2%</td>
<td>10.7%</td>
<td>24.3%</td>
</tr>
<tr>
<td>7x7</td>
<td>19.3%</td>
<td>26.5%</td>
<td>9.67%</td>
<td>20.3%</td>
</tr>
</tbody>
</table>

Table 7.3: Pyramid Based Kernel: Erroneous pixels in non occluded areas depending on window size

Due to the post-processor the resulting disparity maps appear to be smoother. Meanwhile, errors in disparity maps are quite well predicted in the confidence maps. Subjectively a 5x5 window already seems sufficient.
Figure 7.5: Pyramid Based Kernel: Teddy - disparity and confidence maps 3x3, 5x5, 7x7

Figure 7.6: Pyramid Based Kernel: Tsukuba - disparity and confidence maps 3x3, 5x5, 7x7
Figure 7.7: Pyramid Based Kernel: Venus - disparity and confidence maps 3x3, 5x5, 7x7
Figure 7.8: Pyramid Based Kernel: disparity map 7x7, absolute error, signed error
7.1.3 Quality

The Pyramid based stereo algorithm was expected to produce better quality results, which could be confirmed by the data gathered (see figure 7.9). Especially errors due to repetitive textures and featureless areas are reduced.

The magnitude of how the error rate decreases with window size is higher in the window based version. Due to the virtually larger window sizes on the scaled down copies the pyramid version is less dependent on the window size parameter.

![Figure 7.9: Quality of Window and Pyramid Based Algorithm](image-url)
7.1.4 GPU Comparison

In order to find out how performance scales with the graphics hardware used the GPU software was tested with two systems.

The scale down performance was tested with a large 1600x1200 Pixel image. It was found that the computation speed is not directly proportional to the number of multiprocessor (see table 7.4). The scale down kernel is memory bound. Therefore the number of multiprocessors has no large impact.

<table>
<thead>
<tr>
<th>Graphics Board</th>
<th>Multiprocessors</th>
<th>CPU</th>
<th>Scale Down Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>8600 GT</td>
<td>2</td>
<td>Intel(R)Pentium(R) D 3.40GHz</td>
<td>4.42ms</td>
</tr>
<tr>
<td>8800 GTS</td>
<td>12</td>
<td>AMD Athlon(tm) 64 3200+</td>
<td>3.31ms</td>
</tr>
</tbody>
</table>

Table 7.4: Scale Down Kernel: GPU Comparison (timings: average of three runs)

In comparison of window based and pyramid based kernels (see figure 7.10) the advantage of a higher multiprocessor count has more impact. With increasing window size the computation becomes more calculation intensive. This results in the kernel being computationally bound. A higher number of multiprocessors results in more concurrency and enables CUDA to hide the memory latency better.
Figure 7.10: GPU Comparison
7.2 Timings and Optimization Techniques

Figure 7.11 shows the distribution of execution time for a disparity map calculation. The time for scaling, memory copies, and post processing are not dependent on window size but constant. Besides that the steps taken in these phases are extremely fast. Obviously the pyramid kernel itself is most promising as a subject to optimization.

During the course of implementation it was found that a lot of time was wasted due to casts between data types (unsigned int, int, float). On a GPU floating point operations are fairly cheap. A floating point multiplication (4 clock cycles) is even faster than a regular 32bit integer multiplication (16 clock cycles). This resulted in two optimization patterns:

- Avoiding unnecessary casts in favor of more general data types or floating point data types (use of int instead of unsigned int, use of float whenever possible). This resulted in smaller kernels.

- Instead of 32bit integer multiplication CUDA offers a 24bit variant of unsigned and signed integer multiplication that computes within 4 clock cycles. 24bit precision was sufficient in all cases of the presented CUDA code.

During the implementation of the pyramid kernel two textures were used at first, similar to the first window kernel implementation. One shortcoming of the current CUDA framework is that no texture reference variables are supported in the kernel. For that reason the reads from the two textures could not be performed in parallel but needed to be serialized. This being a crucial bottleneck was avoided by putting both input images next to each other into one texture.

Considering the findings of chapter 5.2 it really only makes sense to run the algorithms with window sizes 3x3, 5x5, or 7x7. This also means that the kernels can be optimized for these exact window sizes. Computation on the GPU is only efficient if the control flow of the programs is quite simple. Constant loop variables help the CUDA compiler to predict the execution better and to unroll the loops as required. Therefore three new CUDA kernels were written. Each calling the old kernel, which was marked _device_ instead of _global_ with constant window size parameters. This has the effect that the old kernel gets inlined into the three new kernels. For each new kernel the compiler produces an optimized kernel.

The same trick was applied to the disparity range parameter. While the disparity range of the first pyramid kernel run on the smallest pyramid level can not be predicted, the disparity range of all following pyramid steps is already known (constant 4). In total there are now six kernels, three for dynamic disparity ranges and three for the constant disparity range four.

The optimization results are depicted in figure 7.12. Timing measurements on window and pyramid based runs are compared in figure 7.13 which is based on data tables 7.5, 7.6, 7.7, 7.8.
Figure 7.11: Distribution of execution time on algorithm phases. (run on GeForce 8800 GTS)
Figure 7.12: Optimization (run on GeForce 8800 GTS)

Table 7.5: Averaged execution timings (run on GeForce 8800 GTS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3x3</td>
<td>19.54ms</td>
<td>43.64ms</td>
<td>55.50ms</td>
</tr>
<tr>
<td>5x5</td>
<td>32.93ms</td>
<td>76.65ms</td>
<td>89.23ms</td>
</tr>
<tr>
<td>7x7</td>
<td>56.94ms</td>
<td>149.28ms</td>
<td>161.48ms</td>
</tr>
</tbody>
</table>

Table 7.6: Averaged execution timings (run on GeForce 8800 GTS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Teddy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3x3</td>
<td>19.48ms</td>
<td>43.64ms</td>
<td>55.59ms</td>
</tr>
<tr>
<td>5x5</td>
<td>32.98ms</td>
<td>77.09ms</td>
<td>93.55ms</td>
</tr>
<tr>
<td>7x7</td>
<td>55.54ms</td>
<td>149.42ms</td>
<td>162.52ms</td>
</tr>
</tbody>
</table>
Figure 7.13: Execution speed (run on GeForce 8800 GTS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3x3</td>
<td>5.22ms</td>
<td>28.44ms</td>
<td>37.00ms</td>
</tr>
<tr>
<td>5x5</td>
<td>7.56ms</td>
<td>49.84ms</td>
<td>58.52ms</td>
</tr>
<tr>
<td>7x7</td>
<td>11.48ms</td>
<td>96.81ms</td>
<td>105.62ms</td>
</tr>
</tbody>
</table>

Table 7.7: Averaged execution timings (run on GeForce 8800 GTS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3x3</td>
<td>9.11ms</td>
<td>42.94ms</td>
<td>54.99ms</td>
</tr>
<tr>
<td>5x5</td>
<td>13.68ms</td>
<td>75.12ms</td>
<td>87.98ms</td>
</tr>
<tr>
<td>7x7</td>
<td>20.98ms</td>
<td>146.53ms</td>
<td>159.34ms</td>
</tr>
</tbody>
</table>

Table 7.8: Averaged execution timings (run on GeForce 8800 GTS)
8. Conclusion

Besides the implementation of a stereo vision algorithm on the GPU, goal of this work was to evaluate CUDA. It was found that once everything was installed it was quite easy to get started with the CUDA example programs (especially the convolution example [Howes 07]). Leveraging the tools right, e.g. using the nvcc compiler and the debugging and simulation features were much more complicated. Debugging and simulation modes must be used carefully. Without debugging mode kernels will fail silently. A kernel succeeding in simulation mode is not guaranteed to work on the card. Most often the failure on the real hardware was due to concurrency issues, which were impossible to discover in simulation. Most issues however could be resolved by reading the CUDA Programming Guide ([NVIDIA 07]) thoroughly or by seeking help at the NVIDIA developer forums. Once everything was setup and ported from make to Scons, development in CUDA worked like a charm, because of the seamless transition between CPU and GPU C-programming.

The new technology enables near real-time performance. The stereo kernels have been proven to run fast and scalable. However it is not easy to predict performance ahead of time. Many unknown variables are in play: memory access, kernel configuration parameters, kernel register count, etc. Optimal results had to be found by empirical testing.

Looking at the results it was found that the new CUDA framework is very promising for the stereo vision field of application.

Due to the window-based principle, the stereo-vision algorithms presented here can not compete against the state of the art stereo algorithms presented at the Middlebury evaluation page in terms of error rates. However, these algorithms do not have to fulfill the same speed requirements.

In a near real-time approach it is more important to generate disparity map fast, than to elaborate on a perfect match to long. Via the confidence map it is then possible to decide whether the match was sufficiently good or the result is to be thrown away.
The window-based implementation is fast, but produces low quality results. The pyramid version is slower, but scales better with window size. It also produces better results and generates the confidence map.

Depending on speed and quality requirements it may be advisable to choose the simple window-based approach over the pyramid approach. The experiments showed that on larger window sizes the difference in quality results becomes smaller. However it is not fair to compare both algorithms, since the loss in speed is due to the generation of the confidence map.

Since all top ranking stereo algorithms at the Middlebury evaluation page use color segmentation and optimization approaches, further work in this field should be conducted porting a global optimization approach to the CUDA hardware.
Bibliography

