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Abstract. We analyze the regular oblique boundary problem for the Poisson equa-
tion on a C1,1-domain with stochastic inhomogeneities. At first we investigate the
deterministic problem. Since our assumptions on the inhomogeneities and coefficients
are very weak, already in order to formulate the problem we have to work out proper-
ties of functions from Sobolev spaces on submanifolds. An further analysis of Sobolev
spaces on submanifolds together with the Lax–Milgram lemma enables us to prove an
existence and uniqueness result for the weak solution to the oblique boundary problem
under very weak assumptions on coefficients and inhomogeneities. Then we define the
spaces of stochastic functions with help of the tensor product. These spaces enable
us to extend the deterministic formulation to the stochastic setting. Under as weak
assumptions as in the deterministic case we are able to prove the existence and unique-
ness of a stochastic weak solution to the regular oblique boundary problem for the
Poisson equation. Our studies are motivated by problems from geodesy and through
concrete examples we show the applicability of our results. Finally a Ritz–Galerkin
approximation is provided. This can be used to compute the stochastic weak solution
numerically.

1. Introduction

In this paper we treat the regular oblique boundary problem for the Poisson equation

∆u = f in Γ, (1.1)
(a · ∇u) + bu = g̃ on ∂Γ, (1.2)
|(a · ν)| ≥ γ > 0 on ∂Γ (1.3)

on a bounded C1,1-domain Γ ⊂ Rn, where ν is the outward unit normal vector on ∂Γ.
The coefficients a, b and the inhomogeneities f, g̃ are elements of Sobolev spaces defined
on Γ or ∂Γ, respectively. Assuming smooth enough coefficients and inhomogeneities it
can be transformed into the equivalent form:

∆u = f in Γ,

∂u

∂ν
+ (α · ∇∂Γu) + βu = g on ∂Γ,
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(α · ν) = 0 on ∂Γ.

Now we are able to derive a weak formulation. Under the assumptions

α ∈ H1,∞(∂Γ;T (∂Γ)),
β ∈ L∞(∂Γ),

ess inf∂Γ

(
β − 1

2
div∂Γ(α)

)
> 0,

f ∈
(
H1,2(Γ)

)′
,

g ∈ H− 1
2
,2(∂Γ)

we can ensure the existence and uniqueness of a weak solution in H1,2(Γ). It is well
known that one can ensure the existence of a classical solution u ∈ C2,h(Γ) (h ∈ [0, 1])
of (1.1) - (1.3) for all

f ∈ C0,h(Γ),

g̃ ∈ C1,h(∂Γ)

under the following conditions, see [GiTr01, Theorem 6.31]:

a ∈ C1,h(∂Γ; Rn),

b ∈ C1,h(∂Γ),

Γ a C2,h − domain,

(a · ν)b > 0 on ∂Γ.

We generalize our weak concept in such a way that the inhomogeneities and consequently
the solution additionally are stochastic:

∆u(x, ω) = f(x, ω) for all x ∈ Γ, P-a.a. ω ∈ Ω, (1.4)
(a · ∇u(x, ω)) + bu(x, ω) = g(x, ω) for all x ∈ ∂Γ, P-a.a. ω ∈ Ω, (1.5)

|(a · ν)| ≥ γ > 0 on ∂Γ. (1.6)

Since we are using tensor products and the Lax–Milgram lemma in our approach to
include stochastic inhomogeneities we need a Hilbert space. Hence C2,h(Γ) is as a Banach
space not suitable for us. We use the tensor product to define the function spaces:(

H1,2(Γ)
)′
Ω

:= L2(Ω, P )⊗
(
H1,2(Γ)

)′
,

H
− 1

2
,2

Ω (∂Γ) := L2(Ω, P )⊗H− 1
2
,2(∂Γ),

H1,2
Ω (Γ) := L2(Ω, P )⊗H1,2(Γ).

These enable us to derive a weak formulation for the stochastic regular oblique boundary
problem for the Poisson equation. Now one can adapt the techniques from the determin-
istic case to the probabilistic one to get existence and uniqueness of a stochastic weak
solution in H1,2

Ω (Γ) for:

f ∈
(
H1,2(Γ)

)′
Ω

,

g ∈ H
− 1

2
,2

Ω (∂Γ).
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One also can translate the main theorems of this paper to the Neumann and Dirichlet
boundary problems where one also has a weak formulation and a corresponding weak
solution in the Hilbert spaces H1,2(Γ) for the Neumann problem and H1,2

0 (Γ) for the
Dirichlet problem respectively, see [Alt02, Chapter 4]. The Neumann problem can be
considered as a special case of the oblique boundary problem. For the Dirichlet problem
the technique of the stochastic extension and the main theorems can be translated easily
with slight modifications of the proofs. Finally we show how to apply the developed
theory in praxis. For example we can treat Gaussian inhomogeneities as used in [FBa04]
and [FrMa02]. Additionally we provide the Ritz–Galerkin method to approximate the
stochastic weak solution by a sequence (un)n∈N, where un is the stochastic weak solution
in a finite dimensional subspace Un ⊂ H1,2

Ω (Γ) with Un ⊂ Un+1 such that
⋃

n∈N Un =
H1,2

Ω (Γ). This offers a possibility to compute the solution by numerical simulations.
The analysis of our problem is motivated by models from geodesy. Here the problem is
defined in terms of an outer problem, i.e.

∆u∗ = f∗ in Rn\Γ,

(a∗ · ∇u∗) + b∗u∗ = g∗ on ∂Γ,

|(a∗ · ν)| ≥ γ∗ > 0 on ∂Γ,

where Γ is at least a C2-domain, see [FrMi04]. But by a Kelvin transformation it can be
transformed into an inner problem, see e.g. [RoSa03], which is investigated in our paper.
The stochastic inhomogeneities can be used to implement a random source of error
occurring in measurements. Moreover our contribution generalizes the result obtained
in [RoSa02].
This paper is organized as follows: First we work out some properties of functions from
Sobolev spaces, see Section 2. Then after we have developed the formulation in Section
3.1, we prove the existence and uniqueness of a weak solution in Section 3.2, see Theorem
3.7. This result is basic for the stochastic one, see Theorem 4.4. An important ingredient
is the Lax–Milgram lemma. Then we extend the spaces as well as the formulation of the
problem to the stochastic case in Section 4.1. Main tool here is the tensor product. In
Section 4.2 the existence and uniqueness result from the deterministic case is translated
to the probabilistic setting. In Section 5.1 - Section 5.3 we give examples to show that
the results are really applicable, see [FBa04] or [FrMa02]. Like already announced above
we also derive a Ritz–Galerkin approximation for our stochastic weak solution of (1.4) -
(1.6) in the last section, see Section 6.
The main progress achieved in this paper can be summarized by the following:

• The existence and uniqueness of a weak solution of the deterministic oblique
boundary problem for the Poisson equation for C1,1-domains under very weak
assumptions on coefficients and inhomogeneities is proved, see Theorem 3.7.

• These results are translated into the stochastic case and existence and uniqueness
of a stochastic weak solution is proved, see Theorem 4.4.

• Examples for applications to concrete stochastic inhomogeneities as used in
[FBa04] and [FrMa02] are given.

• A Ritz–Galerkin approximation of the solution is provided. This is of interest for
numerical simulations.



4 THOMAS RASKOP AND MARTIN GROTHAUS

Thomas Raskop, Mathematics Department, University of Kaiserslautern, P.O.Box 3049,
67653 Kaiserslautern, Germany.
Email: thomasraskop@gmx.de

Martin Grothaus, Mathematics Department, University of Kaiserslautern, P.O.Box 3049,
67653 Kaiserslautern, Germany; BiboS, Bielefeld University, 33615 Bielefeld, Germany
and SFB 611, IAM, University of Bonn, 53115 Bonn, Germany.
Email: grothaus@mathematik.uni-kl.de, URL: http://www.mathematik.uni-kl.de/∼grothaus/


