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Preface

The main objective of textile industries has been the production of long,
thin polymer fibres. Fibre spinning is an important industrial process used
in the manufacture of synthetic fibres such as Nylon. The problem of fibre
spinning has been an area of interest for engineers, physicists, chemists and
mathematicians alike since the past 50 years. Search for faster and more
reliable manufacturing techniques, the demand for better quality and low
cost-products and enormous progress in the field of rheology of polymeric
fluids has initiated interest in the theoretical study of various manufacturing
processes like the fibre spinning process. In this thesis, we study a particular
kind of fibre spinning called Melt spinning. From now onwards we shall be
always dealing with the melt spinning process.

What is melt spinning?

Melt spinning is one type of fibre spinning. In this process molten polymer is
extruded from a pressurised reservoir through a small circular orifice called
the spinneret. The liquid jet undergoes stretching, cooling and solidification.
The solidified filament is wound up via a take-up device at a higher speed
than the extrusion velocity to ensure that the fibre is stretched. The fibre is
then subjected to other processing steps.

High speed, non-isothermal spinning is associated with a concentrated neck
like deformation process (where the diameter of the fibre shows a sudden,
sharp decrease forming a neck-like region) and the development of high tensile
stresses which result in the so called flow-induced crystallization. As a result,
the spun fibres can be vastly superior in quality, possessing better mechanical
and transport properties.

To take into account effects of crystallization and to understand the necking
phenomena better, it has been inevitable for engineers to come up with mod-
els that couple the continuum equations with the microstructure. Typically,

xiii
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the coupling takes place through the stress tensor which has an equivalent
description in terms of the microstructural variables that describe the con-
formation of polymer molecules. There have been several attempts in this
regard. One outstanding work is that of Doufas, McHugh and Miller (in
sequel abbreviated as DMM model), [12] wherein the Giesekus constitutive
model has been used to model the nonlinear viscoelastic effects. The DMM
model consists of two ordinary differential equation (ODE) systems which
are coupled by boundary conditions at the interface which is the point of
onset of crystallization. This gives rise to a free boundary value problem
where the point of onset of crystallization is unknown and a part of the so-
lution. One ODE system describes the melt spinning equations before the
onset of crystallization and we abbreviate this system as BOC. The other sys-
tem describing the phase after the onset of crystallization will be called AOC.

Objective and outline of the thesis

The purpose of this PhD thesis is to apply the model of Doufas ,McHugh and
Miller to a specific industrial application (data from the company Freudenberg
¢ Co.) and to perform a mathematical analysis. The outline and summary
of the work is given as follows:

e In Chapter 1, we start with a brief overview of polymeric fluids, their
viscoelastic (non-Newtonian) behaviour and kinetic theory of polymeric
fluids. Then we describe the basic equations of melt spinning.

e In the Chapter 2, we give a brief description of the model which we
have chosen for our analysis, the DMM model.

However when applied to the empirical data, the DMM model has
to be modified with respect to the air drag term and with respect
to the interface condition at the free boundary. In the original work
of Doufas et al [12], a linear air drag term with Bingham number is
employed. For our purposes, the employment of Bingham number is
not appropriate. Bingham plastics require a yield stress to deform. The
fibres under consideration exhibit viscoelastic behaviour without yield
stress. Thus, an alternative air drag term with a quadratic dependence
on axial velocity is used.

Concerning the interface condition at the boundary proposed by Do-
ufas et al, discontinuity in the tensile stress is encountered. In the
DMM model, the boundary condition for the strain rate at the inter-
face (point of onset of crystallization) is taken from the calculations
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from the previous stage. This assumes continuity of the strain rate
at the point of onset of crystallization. There seems to be no valid
explanation for such an assumption. Such an assumption implies the
discontinuity of tensile stress at that point which is dubious from the
physical point of view. On the other hand, we observe that from the
simple physical law of force balance, the tensile forces on one side of the
point of onset of crystallization should balance those on the other side.
This force balance provides us with the correct boundary condition at
the point of onset of crystallization.

e In Chapter 3, a mathematical analysis of the DMM model is performed.
For the analysis, we treat the two sets of ODE systems in their respec-
tive domains separately. Through a local analysis of a simplified model,
we show that even for the simplified model, the existence of a global
solution for ODE system BOC is not guaranteed. In fact it even pre-
dicts the breakdown of the model in some cases. Thus, only a maximal
solution for the initial value problem (IVP) BOC can exist. We define
what we call a physically acceptable solution for both phases BOC and
AOC and show that by choosing a restricted set of initial conditions for
IVP BOC, a physically acceptable solution for the phase AOC exists
under certain conditions. For this we prove the positive definiteness of
the conformation tensor.

e In Chapter 4, we use Hamiltonian mechanics to analyse the basic equa-
tions of melt spinning excluding crystallization. The Hamiltonian for
the 1-d viscoelastic fibre is found and it is shown that the cross section-
ally averaged equations of melt spinning (excluding the temperature
equation) along with the constitutive microstructural equations can be
derived from the Hamiltonian. For this we derive the correct expression
of the Poisson brackets for the 1-d, compressible, uniaxial extensional
flow of a viscoelastic fluid.

e In Chapter 5, we present the numerical algorithm used to carry out the
simulations. A shooting method is used to solve DMM numerically.
Starting with a set of boundary conditions at the spinneret, the point
of onset of crystallization is determined by solving the ODE system
BOC. Afterwards the ODE system AOC is solved. The final velocity
of the fibre is determined. Shooting method relies on the interpolation
of this final velocity and the prescribed final velocity. At least two
aspects make the numerical simulations challenging. First of all the
set of initial conditions yielding physically acceptable solutions is quite
limited (This topic is discussed in more details in Chapter 3). Second,
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even for a physically acceptable solution the orders of magnitude of the
ODE system coefficients vary a lot. This makes it necessary to employ
efficient implicit methods for solving the ODEs. Matlab routines are
used with appropriate choices of the control parameters. We show
the results of the simulations for different take-up velocities. In this
chapter we also demonstrate with the help of numerical experiments
the sensitivity of the equations with respect to the initial conditions
and order of magnitudes of the parameters.

In Chapter 6, we show the simulation results done on four sets of data
provided by the company Freudenberg & Co. Experimental profiles are
used to do comparisons.

We conclude the thesis with some final remarks.



Chapter 1

Introduction to Polymer Fibres

This chapter is intended to give a brief overview of the basic notions of poly-
mers, viscoelastic fluids, various constitutive models, kinetics of polymers and
finally the basic equations of melt spinning. The material for this chapter has
been taken mainly from [4],[10] and [27].

1.1 Polymer fluids

A polymer is a macromolecule. Macromolecules are large molecules made
up of many small structural units. Polymer fluids are macromolecular flu-
ids. There are many differences between macromolecular fluids like concen-
trated polymer melts and fluids composed of small molecules, like water.
The molecular weight of macromolecules is very high and usually all the
molecules of a polymer do not have the same weight. Polymer molecules
assume a tremendous number of configurations even at equilibrium. In flow,
the distribution of the configurations is significantly altered with the result
that stretching and alignment of the molecules can cause the flow proper-
ties to change. For example, in the process of melt spinning, such stretching
and alignment enhances crystallization and is responsible for the tremendous
change in the material properties of the fibre. Due to the special structure of
polymer fluids, Newtonian fluid dynamics fails to describe these fluids which
are abundantly found in nature and are of great importance in our everyday
life. Therefore, in the next section we discuss non-Newtonian fluids.
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1.1.1 Non-Newtonian fluids

In order to understand what Non-Newtonian fluids are, we first define New-
tonian fluids.

Newtonian fluids are defined as isotropic fluids with the shear stress
proportional to the deformation rate D:

T =uD

where p denotes the viscosity of the fluid [15]. For Newtonian fluids viscosity
is constant. This class of fluids includes many ”simple” liquids and gases
(low molecular weight), e.g. water, air.

Non-Newtonian fluids are those fluids for which the relation between the
shear stress and the deformation rate is not linear. Therefore, the viscosity is
not a constant. It could depend on the shear stress or the deformation rate
or other variables like temperature 7" and other material properties. One
could express the relation between the shear stress and deformation rate as:

T =u(D,T,..)D

[10]. The viscosity could increase (shear thickening) or decrease (shear thin-
ning) respectively with increase in shear rate (deformation rate). Often in
engineering literature, deformation rate is referred to as the shear rate or
rate of strain. We will sometimes use the expression shear rate where we find
that the meaning is better conveyed by this term.

1.1.2 Viscoelasticity

Viscoelastic fluids are one class of non-Newtonian fluids. As implied by the
name, viscoelastic materials exhibit both viscous and elastic properties in
varying degrees. For a purely viscous material the internal stresses are a
function only of the instantaneous deformation rate. For a purely elastic
material the stresses are a function only of the instantaneous deformation.
But for a viscoelastic material, internal stresses are a function not only of
the instantaneous deformation but also the entire history of deformation.
Therefore, viscoelastic fluids are often called fluids with memory since the
previous deformations influence the present state of stress. This influence of
time on the relation between stress and strain can be described either by a
differential equation involving derivatives of stress and/or strain with respect
to time or by an integral equation with time as the variable.
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Properties of viscoelastic fluids

The properties of viscoelastic fluids are quite different from those of Newto-
nian fluids and give rise to very interesting phenomena. Some of the main
properties are described below, [19].

e Shear rate dependent viscosity
The viscosity of a non-Newtonian fluid is not constant as stated before,
but depends on the flow state of the liquid, that is the local shear
rate. In most cases, the viscosity of a polymer solution decreases with
increasing shear rate exhibiting the shear thinning behaviour.

e Normal stress differences
Viscoelastic fluids exhibit normal stresses in contrast to Newtonian
fluids. Normal stress differences play a very important role in the mod-
elling of many industrial processes like melt spinning, film blowing etc.
They are responsible for effects such as the Die-swell behaviour in fibre
spinning.

e Memory and stress relaxation

Viscoelastic fluids display memory. This can be seen when a viscoelastic
material is subjected to sudden deformation and then kept fixed in that
state. One observes that the stresses relax or decay to zero with a
characteristic relazation time (time taken for the stresses to relax). An
elastic body would hold the tension once developed where as a viscous
fluid would exert the stress only during the short time in which it is
deformed. Therefore the relaxation time of a purely elastic solid is
infinity and that of a purely viscous liquid is zero. For a viscoelastic
fluid it lies in between 0 and oc.

1.1.3 Examples of constitutive models

There are several rheological models that relate the stress in a viscoelastic
material to its deformation rate. The models are either differential or integral
equations. We explain below some of the differential viscoelastic models.

Linear viscoelastic models

e Maxwell model
Maxwell model is the simplest and the oldest model describing vis-
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coelastic effects. It is usually seen as the mechanical analog of a spring-
dashpot model connected in series, [10]. The spring represents the
elastic element and the dashpot represents the viscous element. Let
F represent the force acting on the spring and z; the resulting dis-
placement. Then, we have F' = Kux,, where K is the Hookean spring
constant. Similarly, let x4 represent the extension of the dashpot in
response to applied force F. Then we have, F = Ldz4/dt for some
constant of proportionality L. The total displacement is given by the
sum of the two displacements as :

T =5+ Tq

Differentiating the above with respect to time we have,

de. _1dF F

@ Kd L
This can be written as:

dF dx
F+ A i L 7
where A = L/K. If we assume the spring force to be analogous to the
shear stress in an elastic material and the displacement analogous to
the resulting shear strain and similarly, the force acting on the dashpot
analogous to the shear stress and the resulting extension analogous to
the deformation rate for a Newtonian fluid in shear, then the above
derived equation results in the Maxwell model for viscoelastic fluids.
In particular, the 3-d Maxwell model is given by:

T+ )\%—; = —p(Vu+ Vu')

where T represents the shear stress, u is the shear strain and the re-
laxation time has been defined as A = u/G with p being the viscosity
and G the shear modulus. In the limiting case of A - 0 (G — ),
the model reduces to that of a Newtonian fluid. In the limiting case
A — 0o, the model reduces to that of an elastic solid.

By using convected coordinates, one can get the so called Upper Con-
vected Mazwell model which is given by:

T+ A7 =2uD
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where the convected derivative is denoted by the inverted hat on top
of the tensor 7 and is in general defined as:

A:%—?+V-VA—(VV-A+A-VVT). (1.1)

for any second order tensor A. There exist several other linear vis-
coelastic models like the Oldroyd model and the Voigt model. Details
of these models can be found in any book about viscoelastic fluids
[10], [27] and [4]. But linear viscoelastic models cannot describe the
nonlinear effects of viscoelasticity. In melt spinning, one example of a
nonlinear effect is the so called strain hardening behaviour where there
is a sudden increase in the tensile stress of the fibre with increase in
deformation rate. This is closely related to the necking phenomena
observed in melt spinning. The extrudate die swell is also attributed to
nonlinear viscoelastic behaviour. Hence we investigate some nonlinear
viscoelastic models.

Nonlinear viscoelastic models

Among the several nonlinear viscoelastic models, we mention the one which
we will be using.

e Giesekus model [2]
Giesekus model has been derived from molecular theory. It is a non-
linear model which can describe a large number of material properties
of polymer fluids in both shear and elongational flows. In terms of
macroscopic variables of shear stress and deformation rate it takes the
following form.

T+ M +ar-7=2uD (1.2)

where 0 < a < 1 is a model parameter.
e Other models Among other nonlinear models we mention the Phan-
Thien-Tanner (PTT) model which is derived from molecular theory

of networks of entangled polymers. More information about this and
other models can be found in literature, [2],[23].
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qi+5

Figure 1.1: Left: Polymer molecule with end-to-end vector R. Right: Seg-
ment of a polymer chain showing atoms and bonds.

1.2 Micro-structure of polymer fluids

The polymer is assumed to be a flexible single chain molecule. In equilibrium,
the polymer molecules are coiled into a small spherical shape where the
conformational entropy is maximal. In flow conditions, this shape may get
deformed, stretched. The forces trying to bring it back to equilibrium exert
an extra force which is called the extra stress. Non-equilibrium statistical
mechanics of polymer chains leads to constitutive equations which relate this
extra stress to the flow field.

The coordinates of the atoms (say n) of the molecule and the corresponding
momenta are denoted by (qj, pi), ¢ = 1,...,n respectively, see Fig.1.1. The
conformation of a single chain is given by the coordinates and momenta of all
atoms (Q,P) = {(qj, pi),i = 1, ...,n}. The distance between the two ends of
the polymer chain is given by the vector R which is also called the end-to-end
vector. The set of all possible conformations constitutes the phase space of
the polymer. From statistical mechanics, one gets the distribution function
¥(Q,P) over this phase space. Then one can define any averaged quantity
over the phase space as

< B>= /B(Q,P)\IJ(Q,P) d(Q,P).

The end-to-end distance R =< R - R >'/? is a measure of the average elon-
gation of the polymer chain, caused by the flow field.

The conformation tensor c defined as c =< R ® R > is a symmetric positive
definite tensor. From here we also see that

tr c =< X, R? >= R?
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where tr represents the trace of tensor c.

Remark 1.1 At the macroscopic level, the conformation tensor can be un-
derstood to be equivalent to the strain tensor, [27], [2].

1.2.1 Linear elastic dumbbell model

o " NNANANAN_g
q1 0

Figure 1.2: Elastic dumbbell model

The simplest model that gives a qualitative idea of the polymer chain dynam-
ics is the linear elastic dumbbell model, [14]. The polymer chain is represented
by two beads connected by a Hookean spring. When the beads move relative
to the fluid, they experience a frictional force called the hydrodynamic drag
(. For concentrated polymer melts, the hydrodynamic drag has to take into
account the frictional force due to the neighbouring beads (molecules).

1.3 Constitutive models in terms of
micro-structure

The constitutive models mentioned in the previous section can also be derived
from molecular theory using Hamiltonian mechanics, [2]. There are some
models which have been in fact originally derived from network theory of
polymer chains. One of these models is the Giesekus model. But these
models have an equivalent macroscopic (continuum) description too.

1.3.1 Giesekus model

The Giesekus model at the molecular level takes into account the hydrody-
namic interaction between neighbouring molecules in a concentrated solution.
This is done by modifying the hydrodynamic drag parameter ¢ suitably [2].
This introduces a nonlinearity in the model. But for this reason Giesekus
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model is appropriate to model concentrated polymer melts. In terms of the
conformation tensor c, the constitutive equation is written as

= —4ka ((1 —a)I+ a%c) : (ic - I) (1.3)

where « is a mobility parameter (also mentioned in the macroscopic version)
with the constraint 0 < o < 1, K denotes the Hookean spring constant, kg
is the Boltzmanns constant and 7" denotes the absolute temperature. For
a = 0, the equation reduces to the Maxwell model, [2].

1.3.2 FENE models

Most constitutive equations suffer from the drawback that having been de-
rived from the elastic dumbbell model for polymer molecule, these equations
cannot describe a strong flow such as uniaxial elongational flow. The class of
Finitely Extensible Nonlinear Elastic (FENE) models take into account the
finite extension of the polymer chains. In the linear elastic dumbbell model,
the spring force is given by

3kpT
F=("",|R 1.4
(NOP) 44

Here N, denotes the number of links of length [ in a polymer chain. R is
the end-to-end vector between the two ends of the chain. But this is valid
only for small deformations of R/Nyl where R denotes the magnitude of R
and R/Nyl represents the extension of the polymer chain with respect to its
length. For R/Nyl a1, the force should increase infinitely since the molecule
is stretched to its maximum. This can be taken into account by using a
modified spring law:

ksT . ( R
Fl=F l L (Nol) (15)

[27], where the Langevin function L, is

L(z) = coth(z) — é (1.6)

Let e = R/Nyl. Then, Eq.(1.5) can be re-written as

L7(e)
3e

F= KR.




1.4. Fundamental equations of melt spinning 9

Denote E := L7'(e)/(3¢). Then F = FKR where K = 3kgT/(Nyl?). This
modified spring force law can be used in other constitutive equations like the
Giesekus model (Eq.1.3) in order to take into account the finite extensibility
of chains. This has been done in the model of Doufas, McHugh and Miller
which will be explained in details in the next chapter.

Relation between macroscopic stress and microscopic conformation
tensor

There is a relation between the macroscopic stress 7 and the microscopic
variable c. To determine the stress in a polymeric fluid at the microscopic
level, one has to take into account the flux of n number of dumbbells across a
fixed element and the tension exerted by these dumbbells straddling a plane
[27]. Then, the expression for the stress is:

T=n<FQR > —nkgTl

where F is the spring force and nkgT is the melt shear modulus. After
substituting Eq.(1.4), the following relation is obtained for stress in terms of
the conformation tensor

T =nKc—nkgTl.

Having given a brief overview of polymers, we move on to describe the basic
equations of melt spinning.

1.4 Fundamental equations of melt spinning

The basic governing equations of melt spinning are typically 1-d differential
equations accompanied by the appropriate boundary and/or initial condi-
tions. Usually one is not interested in the time dependence and therefore
steady state equations are used more often. In this section, we present a
brief outline of the derivation of the fundamental equations of melt spinning
as done by Hans Peter Langtangen in [20]. A schematic diagram of the pro-
cess of melt spinning is shown in Fig.1.3. In the figure, the take-up velocity
is denoted by vy, at the take-up roll, T, denotes the temperature of the cool-
ing air. The term Freeze point denotes the point where the fibre completely
solidifies. When crystallization is taken into account then this point also
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represents the point where crystallization is complete. Just before the freeze
point one sees the contraction of the fibre diameter. It is in the form of a
neck and therefore this phenomena is also called the necking phenomena.
However, in this section effects like necking or crystallization have not been
taken into account. This section is meant only to give an idea of the simple,
basic equations of melt spinning.

The molten polymer that comes out of the spinneret is assumed to be a
continuum fluid. The motion of any fluid is described by the equations of
conservation of mass, momentum and energy.

Let p be the density of the polymer, v the velocity, o the stress tensor, g
gravity, U the internal energy, q the heat flux and () the heat source.
Then the balance laws are given by:

e Equation of mass :

D
—p=0 1.7
i (1.7)
e Equation of momentum:
Dv
—=V- 1.8
5y o+ pg (1.8)
e Equation of energy:
DU
— =0:D-V_. 1.9
P oy = V-q+@Q (1.9)

where D is the deformation rate tensor defined as D = (Vv + (Vv)T)/2.
The material derivative D/Dt is given by:

D 0

E:aﬁ‘v-v.

Later, we shall assume only steady state equations.

According to Fourier’s law, heat flux is proportional to the temperature gra-
dient
a=—kVT k>0 (1.10)

where k is the heat conduction coefficient.
Density p is assumed to be constant. The internal energy U can be approx-
imated by C,T where C, is the specific heat capacity at constant pressure.



1.4. Fundamental equations of melt spinning 11

Spinneret Mass throughput W

Freeze point ———

Figure 1.3: Sketch of melt spinning process

The enthalpy change due to phase transition from an amorphous phase to
semi-crystalline phase is denoted by c. A phenomenological model for ¢ is
D¢

where AH is the specific heat of fusion of a perfect crystal and ¢ is the degree
of crystallinity.
Using the above relations, (1.9) can be written as

DT

C.=Z

where the shear stress 7 denotes the deviatoric part of the stress tensor, i.e
o=—-pl+T.

=7:D-V-(kVT) +c (1.11)
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1.4.1 Coordinate system

For further work, an appropriate coordinate system is chosen. Due to the
elongational nature of polymer flow, there is axisymmetry, which can be
exploited by employing cylindrical coordinate system. Introducing the cylin-
drical coordinates (r,0, z), the velocity can be written as

vV = vl + Vglg + UziZa
where i, ig,1, are the unit vectors in the r, # and z directions respectively.

From rotational symmetry, v, = v,.(r,2), vg = 0, and v, = v,(r, z). Since
the radial variations in the z component of the velocity are assumed to be
negligible as compared to the axial variations, v, is a function only of z.
Then,

v(r, z) = vp(r, 2)ip + v,(2)i,.

1.4.2 Uniaxial elongational flow

Consider the mass balance equation in the differential form:

10(rpvr) | Opv.

= 1.12
r  or 0z 0 ( )

The flow field in the melt spinning process can be considered to be a uniaxial,
elongational flow, with axial position dependent elongation rate. Integrating
(1.12) with respect to r one gets a relation between the radial component of
velocity and the axial component, [20]

(r, 2) 1 dv,
(1, 2) = —=—T.
T 2 dz
Then deformation rate tensor D has the following diagonal components:
dv
ov, 1dwv,
D = = ——
" or 2 dz
Uy 1dv,
Dy = —=—-—-".
o r 2 dz

Vanishing of other components can be concluded from dimensional analysis.
Scaling the radial variable r by radius at the spinneret Ry and z by the
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typical length of the fibre L, one observes that the typical scale of dv,/0z is
Ry/L. Since from slender body approximation Ry/L < 1, one can assume
that 0v,/0z = 0. Then D takes the following form:

D= (Vv + (Vv)T)
5 00
= 0 —i% 0 (1.13)
0 0 &=

Stress tensor in cylindrical coordinates is

Opr Ogr Opp
g = Org Og9 Oz
Orz 09z Oz

It is symmetric and since o = pI + 2uD, it has a diagonal form. For non
Newtonian fluids, the viscosity u depends on D. In general, the viscosity will
depend on the temperature and other material properties of the polymer.

Consider a particular volume V', representing a fibre section of infinitesimal
thickness dz. Using the steady state and incompressibility assumptions to
Eqgs.(1.7), (1.8) and (1.11), the resulting equations are integrated over V' with
boundary dV. After applying the divergence theorem the following equations
are obtained.

/pv-ndF: 0 (1.14)
v
/p(v®v) -ndF:/a-ndF—/png (1.15)
av av 14
/pCpT(V -n)dl’ = /kVT -ndl" + /T : DAV + /ch (1.16)
av v v v

The outward unit normal n of the free surface » = R(z) is given as
V(r — R(z)) ir — R'(2)i,

NGB /1 pp

n

Radius of the fibre at z is denoted by R(z) and its derivative with respect to
z by R'(z).
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1.4.3 Boundary conditions on the surface

The boundary conditions on the surface » = R(z) are the following:

v-n=20.

Stress conditions
Let 7, = (7 +n) - n denote the normal stress component of the fluid
at the boundary r = R(z) and 7; the corresponding tangential stress
component. Then,

Tt = —O0T.

where or is the surface shear stress due to the friction between the
polymer and the surrounding air.

Tn = —Pa — as(/ﬁr + K:z)

where p, denotes the atmospheric pressure, o, denotes the surface ten-
sion and k, and k, are radii of curvature in the r and z directions
respectively. Here, k., = 1/R(z) and k, ~ R". Again from scaling
arguments one concludes that «, is small and hence can be neglected.

Temperature conditions
—kVTn=3(T -T,)

where T, is the temperature of the surrounding air and (3 is the heat
transfer coefficient.

After integrating over the volume and applying the boundary conditions at
the free surface, one performs averaging over the cross section of the fibre
to obtain the final equations of melt spinning. Let D = 2R be the diameter
of the fibre and A = 7R2?, the corresponding cross-sectional area. Then the
final equations of melt spinning can be written as:

W = 0 (1.17)
dv, o, dD d
w g, =" mDor 5 4y + aA(Tzz — Tmr) + Apg (1.18)
drT 4 dv

pvaz—Z =_—k(T —To) + (Toy — Tor)—— + pAHv,— (1.19)
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Here W denotes the mass throughput per unit time. Therefore the first equa-
tion simply states that the mass throughput is constant along the spinline.
In the second equation, the first term on the right hand side represents the
force due to shear stress at the fibre surface (air drag for example), the second
term represents the force due to surface tension, the third term represents
the average tensile force and the last term, the force due to gravity. In the
third equation, the first term represents the exchange of heat between the air
and fibre surface, the second term describes the heat released due to viscous
dissipation and third term denotes the latent heat of crystallization.

To close the system a viscoelastic constitutive model is needed that relates
the shear stress to the deformation rate. One can choose any viscoelastic
model from the many existing ones. e.g Maxwell model, Giesekus etc.

The unknown variables are v,,T',7,, and 7,, where evolution equations of 7,,
and 7, are given by the viscoelastic model. This system has to be closed
by appropriate boundary conditions. Typically the velocity and temperature
are prescribed at the spinneret exit and a take up velocity is prescribed at
the end of the fibre. One usually has to guess the initial condition for the
stress variables. Therefore, shooting technique has to be applied to solve the
boundary value problem.
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Chapter 2

The Two-phase Model

In this chapter we give a brief description of the two phase model of Do-
ufas, McHugh and Miller, [11]. Later we present some modifications of the
macroscopic model.

The model of Doufas, McHugh and Miller (DMM), couples the balance laws
for fluids with the microstructural equations of the polymer. It is a steady
state model. The balance laws of mass, momentum and energy take into
account effects such as air drag, inertia, surface tension, gravity, exchange of
heat with surrounding air and viscous dissipation. The microstructural equa-
tions are the constitutive viscoelastic equations that describe the evolution
of the microstructure, (see Section 1.3). In the process of melt spinning at
high speeds, the polymer molecules are stretched and aligned, giving rise to
the process of crystallization. Therefore, the microstructure has two compo-
nents, the amorphous phase and the semi-crystalline phase. The amorphous
phase is described by a modified Giesekus model. The Giesekus model is
suitably modified by introducing finite extensibility of polymer chains, as de-
scribed in Section 1.3.2. In the semi-crystalline phase the polymer molecules
are modelled as rigid rods that grow and orient in the flow field. The reason
for having two separate phases is that in high speed spinning, with increase
in strain rate, tensile stresses shoot up indicating rigid behaviour of poly-
mer molecules. By modelling the molecules as rigid rods in this phase, the
necking phenomenon can be captured. The model can be divided into two
parts: The part before the onset of crystallization (BOC) and the part after
the onset of crystallization (AOC).

17
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2.1 Before the onset of crystallization

Before the onset of crystallization the polymer is amorphous. The polymer
in its molten state can be thought of as consisting of n nonlinear elastic
dumbbell molecules. Each of the molecule chains is assumed to consist of
Ny structural units or statistical links of length /. Let R denote the end-
to-end distance vector between the two end points of a chain. The tensor
c =< R® R > represents the configuration of the melt.

2.1.1 Amorphous phase

The rheological behaviour of the melt is modelled by a modification of the
single-mode Giesekus model, Eq.(1.3):

_4’2{’T ((1 o a%c) - (lﬁ%c — I) 2.1)

with the definition of the convected derivative as given by Eq.(1.1). Here, ¢
denotes the hydrodynamic drag between the beads of the molecules. To take
into account the finite extensibility of chains, a modified spring law (FENE)
is used as explained in Section 1.3.2. By defining )\, = (/4K the following
final evolution equation for the conformation tensor is obtained:

1 kgT

K K
) 7((1 —a)I+ osz—TEc) . (k‘B—TEC —TI) (2.2)

c

e=—

where kp is the Boltzmann constant, K is the Hookean spring constant,
Mg 1s the characteristic relaxation time of the melt and E is the non-linear
spring force factor given by E = L~!(e)/3e where L' is the inverse Langevin
function and e = (trc)!/2/Nyl. Expanding the convected derivative term and
considering only the steady state so that partial derivatives with respect to
time vanish, the following evolution equations for the components of the
conformation tensor c,, and ¢, are obtained:
de,, dv, 1 kgT

z = 4Chy—— — — (11—
Vg e T K LT ete

K K
Ec,, Ec.,—1) (2.
o Do) (o bes =1) (23)

dcpy dv, 1 kgT K K

= e, e Bel g E
R e D WD e el

Eeyp — 1) (24)

Remark 2.1 c is a diagonal tensor with ¢, = cyy.
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2.1.2 Extra stress

The extra stress tensor for the melt in terms of the microstructural variables
is according to [4]:

T =nKFEc—nkgTI (2.5)

The melt shear modulus G is given in terms of microstructure as G = nkgT
and is assumed to be constant along the spinline. The calculation of the
stress from the kinetic theory of concentrated polymer fluids can be found in

[27].

2.2 Onset of crystallization

As explained before, each polymer chain is assumed to be made up Ny struc-
tural units called statistical links. During flow, due to the influence of cooling
air and increasing stress, some of these links (say N) break away and align
themselves. This starts the process of crystallization. It is observed exper-
imentally that crytallization starts approximately when the temperature of
the polymer melt reaches its melting temperature. It should be noted that
the temperature at the exit of the spinneret is much higher than the melting
temperature.

The degree of crystallization is given as x = N/N,. The absolute degree of
crystallinity, defined as the ratio of the mass of pure crystalline material over
the total mass of the system is given as ¢ = x¢,,, where ¢, is the degree
of crystallinity within the semi-crystalline phase. That is, mass of the pure
crystalline material over mass of semi-crystalline phase.

2.3 After the onset of crystallization

After the onset of crystallization, the polymer melt has two phases: Amor-
phous phase and Semi-crystalline phase.
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2.3.1 Amorphous phase

The untransformed melt phase is simulated as a single-mode Giesekus fluid as
before but with corrections to the Hookean spring constant and e as follows

3kpT
K = B
N()(l — x)l2
1 Czz + 201"1‘
= 2.6
€ 1—=x 3N0 ( )

The crystallinity dependent relaxation time is modelled by
Aa(@,T) = Xao(T)(1 — 2)?

where A, is the temperature dependent relaxation time in the absence of
crystallization, see Appendix A.

2.3.2 Semi-crystalline phase

The semi-crystalline phase is modelled as a collection of rigid rods that grow
and orient in the flow field. The structural variable representing the orienta-
tion of the rigid rods is given by the orientation tensor S =< u®u > —1/3 I,
where u is the unit vector along the rod axis and I is the identity tensor.
It is a second order trace-less tensor with S,, = Sgg. The bracket in the
definition of S denotes an average with respect to the distribution function
of the semi-crystalline phase. The evolution equation for S reads as follows:

o

S=-_——-
Ase(z, T)

S + %(Vv +(Vv)T) —2(vv)T: U (2.7)

where U is a fourth order tensor, U ;=< u@u®u®u >. We refer to
[11] and [14] for details. Here o is the anisotropic drag parameter such that
0 < o < 1. The relaxation time is modelled as

Ase(2,T) = Ase0o(T) exp(Fz) =~ cAao(T) exp(Fx). (2.8)

The model parameters ¢ and F' are determined experimentally.
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2.3.3 Extra stress

The extra stress contributed by the semi-crystalline phase is
Tse = 3nkpT (S + 2X.(VV)T : U). (2.9)

The first term on the RHS of Eq.(2.9) represents the elastic contribution to
the stress and the second term is the so called viscous contribution to the
stress.

A closure approximation by Advani and Tucker is used to evaluate the ex-
pression (Vv)? : U in equations (2.7) and (2.9).

V)T U= (1—w) (%(Vv (VY)Y + ; [((VV)T .§) T

+S- (Vv + (VV)) + (Vv + (Vv))- S})

+w((VV)T:S) (S + %1) (2.10)

where w =1 — 27det(S + 1/3 I), see [1], [11] for details.

2.3.4 Rate of crystallization

The rate of crystallization is modelled using the Avrami equation and fol-
lowing the Hamiltonian bracket formalism, [11]. It reads as:

D t

d_f = MK 4 (T)[~ log(1 — 2)]™ /™ (1 — ) exp <¢g> (2.11)
where ¢ and m are dimensionless constant model parameters and K, is also
a parameter depending on the temperature, see Eq.(5) in Appendix A. The
total stress tensor is given by 7 = 74 + Tse-

We have described the microstructural models very briefly. For further details
we request the reader to refer to the corresponding cited literature.
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2.4 Modifications in the macroscopic model

We introduce our modifications in the macroscopic model.
Force due to air drag

In the DMM model a linear relationship has been used to model the air
drag. We make a modification by using the air drag force with a quadratic
dependence on velocity. The force due to air drag is expressed as

1
F = —EpaCd(vz — vg)?

where p, is the density of the air, C, is the air drag coefficient and v, the
downward component of the air velocity. The air drag coefficient Cy depends
on the Reynolds number Re: Cy = 0.37Re % where Re = (v,Dp,)/ta With
e being the viscosity of the air, [20], [29].

Introducing the new air drag force into the momentum equation the following
modified momentum equation is obtained:

wsdD d

1
=——7mD a z 2 - 9 -
27r PaCa(v, — vg)” + 5 +dz

dv,

Wdz

ATy — Tpr) + Apg.  (2.12)

Force balance at the point of onset of crystallization

The differential equation system arising from the model is a nonlinear, cou-
pled system of differential equations with boundary conditions at the spin-
neret, at the end of the spinline and at the point of onset of crystallization
&. In the phase BOC, the ODE system consists of variables v,, T', ¢,, and
¢ and in the phase AOC, variables v,, dv,/dz, ¢,,, ¢;r, S,, and z. In the
model, the boundary condition for the variable dv,/dz at £ is taken from the
calculations from the previous phase (BOC). This assumes the continuity of
dv,/dz at the point of onset of crystallization. There seems to be no valid
explanation for such an assumption. Such an assumption implies the discon-
tinuity of tensile stress at & which is questionable from the physical point of
view. On the other hand, we observe that from the simple physical law of
force balance, the tensile forces on one side of the point of onset of crystal-
lization should balance those on the other side. In the momentum equation,
A(1,, — 7rr) denotes the tensile force at any arbitrary position z. Since the
cross sectional area A is continuous at £, this means that the tensile stresses
themselves should also be continuous:
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Let [0,€) denote the domain before the onset of crystallization and (&, 1],
the domain after the onset of crystallization. Introduce non-dimensionalised
variables 7* = 7/G, ¢* = cK/kgT, v} = v, /vy, 2* = z/L and Dey. = v/ L
where De,, represents the Weisenberg number of the semi-crystalline phase.
The stress difference before the onset of crystallization, i.e for z € [0,&), is
given by
T:z - T:r = E(C:z - C:r)'

The stress difference after the onset of crystallization, i.e for z € (£,1] is
given by

9
T, — 1. =E(c, —c).) + §Szz

3 dv* 6 dv* 9 dv*
Deg[(1 —w)(—=—2 + ——285,,)+ “w—=252].
+ 6Dese|( w)(15 dz* " 14 dz* )+ 1" dz =

where w = 1 — 27det(S — 1/3I).
From the continuity of the stress difference at the point &, for € > 0, we have

li(72, (€ = ©) = 75, (6 = ) = (L (€ + ) — 7 (€ + )

Substituitng the boundary values of S,, and x which are S,,(§) = 0 z(£) = 0,
we get,

6 dv;,

E(€)(c2.(6) = 6 () = E(§)(e2.(8) = 6,(6)) + cDesc(§) 2 (6)- (2:13)

Continuity of F which is a function of c,,, ¢, and z is easy to see from
its definition in Sections 2.1.1 and 2.3.1. Moreover, De,.(§) # 0 for ¢ # 0.
Parameter c is always chosen to be non-zero since a zero relaxation time would
indicate a totally viscous or rigid behaviour of the melt. Hence, Eq.(2.13) is
satisfied if and only if dv}/dz*(§) = 0. This gives us the correct boundary
condition for the strain rate at & which is

dv*

e =0.

2.5 Non-dimensionalised evolution equations

The final system consists of Eqgs.(1.17), (1.18), (1.19) and the steady state
microstructural evolutions equations for ¢,,, ¢, S,, and z given by Eqs.(2.2),
(2.7) and (2.11) with the appropriate changes for the semi crystalline phase
as mentioned in Section 2.3.1. Dimensionless variables are introduced as
follows, [11]:
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e Axial distance z* = . gradient operator V* = %
e Axial velocity v; = t, Temperature 7" = TZO
: K - B
e Conformation tensor c* = oK Extra stress tensor 7% = To =T
2 3
e Inertia D; = 22 Air drag D, = CavgLpa [ pm_.

G 2G Wug?

Remark 2.2 The air drag term is different from the one originally used by

Doufas et al. The original Dy is given as Dy =

npaBvag
GW

2
. . 2
Gravity Dy = 222, Surface tension D, = <”"S”“°)

AWG?
0 ion D arr2k? )2 ; dissipation D = —&_—
eat convection Ds = (pcguow> , Viscous dissipation Dg = 2CyTo
. AH
Latent heat of crystallization D; = Cf;% =
P

Relative velocity of air v, = Z—ﬁ where v, is the downward component
of the air velocity

. . . Ta
Relative temperature of air 7, = T
Weisenberg number of amorphous phase De, = %

Weisenberg number of semi-crystalline phase Deg. = %

Crystallization number K* = Kﬁ_gL

Heat capacity C, depends on temperature and crystallinity and the heat
diffusion coefficient £ depends on velocity. The formulae for calculating them
are given in Appendix A. Models for other quantities like AH; and p, are
also given in Appendix A. The system of ODEs for the phase BOC can be
written in terms of the dimensionless variables as follows:

Momentum balance

dv: d [1}, -7 (v —v,)> Ds 300V}
Di—2 — — |22 rr| _p Nz T 3 py (p¥)3/2222 (914
Ydz dz [ } 2 + (V) * ( )
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e Energy balance

dr* T, — T dvl
_ _Dy(0t) VAT — T) + Dy T 4 2.1
G = D) T L)+ DI (2

e Evolution equations for the conformation tensor

dct ct, dv? 1

22 __ 2z z 1 Ec* B —1 91
dZ* ’U: dZ* ’U:Dea(( O!) +a czz)( czz ) ( 6)
dc; ct dvt 1
dZ /U: dZ* U;‘Dea(( Ck) + o cr'r)( C'rr ) ( 7)

These equations are supplemented by the relation

™ =FEc* — L (2.18)

The ODE system for phase AOC is the following:

e Momentum balance is given by Eq.(2.14) but with the stress relation

as given in Eq.(2.24).
e Energy balance

dT* T — 7 dvt dz
= —Ds(v})"VA(T* = T,) + Dg-22—"2 =
dz* 5(v7) ( ) 6 vk

dz* + Tdz

z

e Evolution equations for the conformation tensor

dc;, c,dv, 11—z E E
—22 =222 _ 1-— . *—1) (2.2
dz* vl dz* ijea(( o)+ - xczz)(l e ) (2.20)
dct codvi: 11—z E E
e T 772 1— * —1) (2.21
dz vl dz* ijea(( o)+ - xcr’")(l — ) (2:21)
e Evolution equation for the orientation tensor
ds,, S, dv} o 21 dv; 1—w [ 2 11
=2 T e T Mzz P— -2 — + = 2z
dz* vi dz* viDeg, 3vidz* v} 15 14
w 1\ dv!
—3—=5,, 5.+ = 2.22
vl ( 3) d; (222

where w = 1 — 27det(S + 3I). By definition S, is dimensionless.

Di——  (2.19)
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e Evolution equation for the rate of crystallization

dzx
dz*

1
= —mK*[log(1 — z)|™ /™1 — z) exp(ytrr*) (2.23)
vz
where tr represents the trace of tensor 7*. By definition x is also
dimensionless.

Remark 2.3 Parameter m is always taken to be 1 in this model, [11], [12]
which simplifies the equation. In future we use the simplified equation for all
our analysis and simulations.

These equations are supplemented by the relation

E
™ = : c* —I1+3S+6De, (Vv : U. (2.24)
-

2.6 Boundary conditions

Boundary conditions at the spinneret exit, i.e. at z* = 0 are,

vi(0) =1, T*(0)=1, h(c,(0),c,(0)=0.

ZZ »rr

More about the form of A will be found in Chapters 3 and 5.

e Condition for finding &,
() =Tn
where T, = melting temperature of the polymer/initial temperature.

e Boundary condition at z* = &,
v (6—) =v;(€+), TH(¢-) =T (&+),
C:z(é-_) :C:z(g'i_)’ C:T(f—) = C:,«(§+),

dvy . B B
Ao (€) =0, S..(&)=0, =z(§)=0.

e Boundary condition at z* =1
vi(1) =y
where v, is the draw ratio which is defined as v; = vy, /vy. Here, vy, and

vo denote the prescribed final and initial velocities respectively.

Remark 2.4 The correlations for material properties of polymer and models
for physical properties of the quench air are given in Appendiz A.



Chapter 3

Mathematical Analysis Part I

In this chapter we perform a mathematical analysis of the model equations
given by Eqs.(2.14)-(2.24).

Thomas Hagen has done a thorough mathematical analysis of non-stationary
equations of melt spinning with a viscous constitutive law, [17]. He shows
the extensions of his results to the viscoelastic case also. However, he does
not take into account microstructural equations and crystallization. Effects
like surface tension, air drag, gravity and inertia in the momentum equation
have been neglected. Neglecting inertia in the momentum equation is an im-
portant assumption since then, the momentum equation can be integrated
and the result can be inserted in the mass balance and heat equations. He
assumes that the temperature is monotonically decreasing such that the sys-
tem can be written with T as the independent variable. In our problem, the
numerics show that the temperature is not always monotonically decreasing
throughout the spinline. For high speed spinning, there is an increase in the
temperature owing to the release of latent heat of crystallization. Therefore
in our case this assumption is not realistic. Moreover, the model that we
are treating takes into account all the mentioned effects in the momentum
equation and has many parameters which depend on the solution. These
parameters induce singularities in the ODE system. Our model has a com-
plex coupling with microstructure. There are two different systems of ODEs
in different domains which are coupled through boundary conditions at the
interface. Hence, the techniques of Hagen cannot be applied to our prob-
lem. We find enough hints from the numerics and the physics of the problem
about the sensitivity of the model equations with respect to the parameters,
initial conditions and even the differential equation coefficients.

27
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In the following section we write down the ODE systems in explicit form.

3.1 Mathematical formulation of the problem

3.1.1 ODE system BOC

ODE system BOC is represented by Egs.(2.14), (2.15), (2.16) and (2.17)
along with (2.18). We write this system in the form
A(x)x' = f(x)
where x = [v,, T, ¢,,, ¢r]. Coefficient matrix A(x) is given by
A 0 Az Ay
Ay A 0 0

Asr 0 Az 0
An 0 0 Au

A(x) =

Ay = Dw? + E(333 - $4) + D4$1/2, Az = —(33117(1‘3 - 334) + E$1),
Ay = —(2z1p(x3 — 214) — Ex1), A9 = —DgE(x3 — 14)

Ago =11, Az = 213,

Az =1x1, Ap=m4

A =m
The right hand side function vector f reads as follows:

D3z — Do(z1 — vr)Qa:i’/z
— D2\ (z5 — T})
1
B D
Deg 4 4

1
|

where,

3E?sinh?(3eE) — Ee ?%(sinh?(3eE) — (3eE)?)
6Ny (sinh?(3eE) — (3eE)?) '

The factor E is as defined in Chapter 2.

E= % (3.1)
Y Bk (3.2)

3Ny
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with L™! being the inverse Langevin function, see Eq.(1.6).

For detA(x) # 0,we get the differential equation system in the following
explicit form:

x' = A(x)"'(x) = f(x). (3.3)

3.1.2 ODE system AOC

ODE system AOC is given by Eq.(2.14), (2.19), 2.20), (2.21), (2.22) and
(2.23) along with Eq.(2.24). By substituting Eq.(2.24) in (2.14) we get a sec-
ond order differential equation for the variable v,. By introducing w = dv,/dz
we reduce this equation to a system of first order differential equations. Fi-
nally, the complete system of ODEs can be written in the form

B(u)u' = §(u)

where u := (x, y) with x as defined in Section 3.1.1 and y = [w = dv,/dz, S.., x].
Coefficient matrix B(u) reads as follows:

(1 0 0 0 0 0 0
01 0 0 0 0 By
o0 1 0 0 0 0
Bu=[0 0o 0o 1 0 0 o0
0 BS2 B53 B54 BSS B56 BS7
o0 0 0 0 1 0
\o 0 0 0 0 0 1 )
where
3 o7
By =—Ds, By =—60Dew(l — )7y2 — G mDese 4 45
27
Bs3 = —6(1 — q)% dTlam z; — 7x1qy§y1%dTlam,

T
1 —ys

(p1(xs — z4) + E),
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x
Bss = 1 L (2p1(z3 —x4) — E),
— Y3

Bss = —a; + 243z, Dey, (= + 2 %
56 2$1+ z1De <5+7y2)y1< 9 +3)?J2
18

— 7$1y1Desc(1 —q) — 27z1y19Descyo
Do E(zs — x4) Vo 1 3
By = — Cgy) = BTN 6 P S4 2
57 z1 (1 . (z3 — 74) (=) > 1 7 dxlamy, (5 + 22
27

v
— Exlqygyldxlamfo.

where,

=1-27 +1 L +1 2
q= Y2 3 2y2 3

e
dTlam = oz,
_ 3E?sinh*(3eE) — Ee%(sinh*(3eE) — (3eE)?)
PL= 6 NG (1 — ya)2(sinh?(3¢E) — (3¢E)?)
_ 3e?E?sinh®(3¢E) — E(sinh’(3eE) — (3eE)?)
b2 = (1 — y3)(sinh?*(3eE) — (3eE)?2)
dxlam = OAse

Oys '

The RHS vector function g is given by:

( n
-1/2

—Dsxy ' (xg — T,) + DgTe=Trryy

1
25—:1)’3/1 — 11;:{13 ((1 — a) -+ a%iﬂg) (1_Ey3£173 — 1)

g = —fagyy - i ((1 —a)+ a%u) (133154 - 1)

—h (Tzz - TTT) - Dlylm% _1D2(x1 - Ur)2xi’/2 + D35E1 - D4.1‘1/2y1
28— e+ 5 — 250 (f + T 1 — 38w (1 + ) w
\ o K7 (1 — y3) exp(ytr)

where, tr = (E/(1 — y3)) (3 + 2x4) — 3 + 9Dey. y2 y1.

For detB(u) # 0, the following system is obtained:

u' =B (u)g(u) = g(u) (3.4)
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Combining Egs.(3.3) and (3.4) we can describe the DMM model as a Free
boundary value problem. Let & denote the point of onset of crystallization.
Then,

x' = f(x) for z €0,£(x0)) (3.5)
x = g(x,y) forze (£(xo),1] (3.6)
yl = h(Xa Y)

where f : R* - R*, g: R" — R*, h:R’ — R? and x¢ denotes the boundary
condition of x at z = 0.

The boundary conditions can be described as in Section 2.6:

At z=0, z1(0)=1, z9(0)=1, h(x3(0),24(0)) =0, where

h := coth (eoi]))V()) — 6();\70 — € (3.7)
and ey = 4/ %ﬁf‘*(m. More details about this boundary condition
can be found in Chapter5.

o 238 =T,
o Atz=¢, =z(f+) ==z(6-), (&) =0

e At z=1, z1(1)=v, v €R.

We give below vector functions f, g and h explicitly:

1
fi =% ((D33€1 — Dy(x1 — v.)*1?) + 21 (ps — prs + E)term,+

Den
z1(2prs — 2pxy — E)termsy) (3.8)
—DgFE(x3 —x 3
fg = 6$1(]:)Zn 4) (D3$1 — Dg(il?l — UT)Ql‘lZ) — D5\/IE_1
DgFE(z3 — x
+ M(terml(pxg —prys+ E)

Den
+ termy(2prs — 2pxy — E)) (3.9)
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—2x 3 term
f3 ::mlDeil (D3I1 — DQ(CL'l - ’U»,«)z.Tf) —+ Den2 (23)3(2]).%3 — 2p$4 — E))
term; 9 9
Den (D127 + Exg — 2Ex4 + Dyr/x1 + 223pT4 — 2pT7) (3.10)
Ty 9 3 termy
= Dsxy — D —v)xd) — — E
Ja xlDen( 371 2(T1 — vr)°27) Den (pz3 — prs + E)
termsy 9 9
~ Den (=D7x{ + Exs + Exy — Dyr/z1 + 2pxs — 223pxs)  (3.11)
where,

Den :(—Dll‘% + Fxs+2FEx, — D4\/-T_1 + 2]7(373 - $4)2)$%
(1 - a+ aFz3)(Fzs —1)

term; =
xlDea
1-— FE Fzs—1
term, :( a+ aFzy)(Exy —1)
$1Dea

The vector function g is defined by:
g1 ‘= (3.12)

—D5 E(.’Eg — .’1'4) 1

= - T, Dg—— 2 D —K*(1 — t 3.13

92 7o (72 )+ Ds o 1+ " (1 —y3) exp(ytr) (3.13)
I3 1-— Y3 E E

=2y — 1-— -1 .14

93 xlyl z1De, (( a) * al - Z/3x3) (1 - @/33;3 ) (3 )
X4 1—1ys FE E

=— 1 — 1-— -1 Nl

94 T h z1De, <( a) * al - y3a:4) (1 - y3x4 ) (3 5)

where tr = (E/(1 — y3)) (z3 + 224) — 3+ 9Dese Y2 1.

Vector function h is:
nums

hy = 1
! den2 (3 6)
Yo o 21 1—q [ 2 11 q 1
hy =222y, — Sy o224 — 3L -
2 xlyl $1Descy2 + 3x1y1 o 15 + a2 n x1y2 Y2 + 3|0
(3.17)
1
hs :=$—K*(1 — y3) exp(¢tr) (3.18)
1
where ¢ = 1 — 27(y2 + 1/3)(—y2/2 + 1/3)? and
1 3 3 27
deny =—(6De,e(1 — q) (77 + = —Dese q 43
eny Uz( ese(l = a) (35 + 242) + 5 Desc ¢ 1)
1 1 v,—v)? D _
nums :U_gq(Tzz - Trr) + U_ZQ?» + qu + D2% - U_j + D4Uz 3/ZQ-
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Here Q)3 is given by,

Q 1 OF ( ) E ( )8y3 E  Ozxs 8$4)
=— — (13 —x4) — ——= (T3 — T4) = — —
’ 1—ys 02 ° (1 —1ys3)? B0, 1—ys 02 0z
9 0ys 0N ge Vo 3 3 dog,3 3
_272 G IO O e De. 22(2 . 2
202 8, U5+ gelun 4 6Des (35 + 7u2)un
18 (92/2 27 8/\56 Vo o 27 3q 9
— T Dego(1— g) Ly — 725 g2y — ZiDeyo
7 e %) 0z 4 2 0z L 1929 2 ¢ 0z V2

0
—27Dey, q% Yo Yi1-

In the above expressions the derivatives with respect to z can be written
explicitly in terms of (x,y). In order to avoid longer formulae we have not
shown them here.

The stress difference 7,, — 7, is given by:

E

9 3 3 27
2z Trp — 7 - 5 6 D sc 1- =TS —D sc > .
Tez =T 1_y3(x3 24)+5y2+6 Dese(1-a) (o +292)y1+ 5 Dese ¢ 12 1

Remark 3.1 The problem can be formulated in other ways. For example, as
a first order system of differential equations with a discontinuous right hand
side or a system of DAFEs with a changing index. But it was found that there
does not exist any theory that could be applied to such systems.

Remark 3.2 From now onwards we shall be using the ODE systems with
variables in their original notation (i.e v,, T, C,,,...) in order to be able to
relate to their physical behaviour easily.

3.2 Discussion of parameter sizes

Parameter sizes play an important role in the numerics. Some of the typical
parameters of the melt spinning process are given in Tables 3.1, 3.2, 3.3
and 3.4. The values of the parameters in Table 3.2 are got after doing the
simulations. In Table 3.2, “const” and “var” represent constant and variable
parameters respectively and their dependence on the variables is indicated
in the bracket. Range of the variable parameters is specified as they vary
across the spinline.
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Parameter | Description Value Unit
D, Initial spinneret diameter 0.02 cm
T Polymer temperature at spinneret exit 300 °C
1% Mass throughput 1.5-3.6 | g/min
vy, Take up velocity 1000-6500 | m/min
L Spin length 135 cm
T, Quench air temperature 24 °C
Ve Cross velocity of quench air 1 ft/s
Table 3.1: Typical processing conditions
Parameter | Description Type Value
D, Force due to inertia const 4.9-1073
D, Force due to air drag var (v,,T) 1074
Ds Force due to gravity const 1.7 -1071
D, Force due to surface tension const 1.3 -10°3
Dsy Exchange of energy between air and fibre | var (T, z,v,) 4.3
Dg Viscous dissipation var (T, x) 1074
D, Latent heat of crystallization var (T, x) 0.18
De, Weisenberg no. in amorphous phase var (T, x) 103 —10"7
Deg, Weisenberg no. in semi-crystalline phase var(T, x) 1—10%
E Nonlinear force factor var(c,y, Crr, T) 1— 108

Table 3.2: Typical model parameters

Parameter | Equation value
F (2.8) 60
c (2.8) 0.001
o (2.22)
oo (2.23) 0.45
o (2.16), (2.17) | 0.4
P (2.23) 0.06

Table 3.3: Typical values of model parameters for Nylon-66

A general description of the factor £ has been given in Section 1.3.2.
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Parameter | Description Value Unit
p Density 0.98 g/cm?
Mo Zero-shear viscosity at 280°C 163 pa s
G Melt shear modulus 1.1-10° pa
Ny Number of statistical links per chain 200 —
T, Melting temperature 265 °C
Thermal conductivity 5-1074 °C
s Surface tension 36 dyn/cm

Table 3.4: Physical and rheological properties of Nylon-66 melt used in sim-
ulations

Refer to Egs.(3.1) and (3.2).

L (e) _ 9., 207 .
ll_I)%E(e) = lim e = lim —e(3e+ =€+ e ) =1 (3.19)
_ . L7'(e) .11
SEO= e = M) = (3:20)

Therefore 1 < E < o0. [2].

3.3 Properties of system BOC

In this section we investigate the system BOC in detail. We first study
the possible singularities in the system and then investigate the existence of
solution to the initial value problem associated with it.

3.3.1 Singularities in system BOC

For a solution to exist for system of equations (3.5), it is necessary to in-
vestigate the singularities in the system. For equations (3.8) to (3.11), the
following could be the possible singularities or parameters which could blow
up the solution:

o v, =0

e De, = 0 From section Section 2.3.1 and Appendix A, we see that for
the phase BOC, De, # 0. But it could be very small (O(10~°) for very
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high temperatures making the system very stiff. Refer to Table 3.2 for
typical values of De,.

e ec—1
As seen from the previous section, as e — 1 parameter E tends to
infinity.

e Den = 0.

We observe that it is very difficult to prove the existence of a global solution to
the IVP BOC because of the potential singularities in the system. Therefore,
we make some remarks about the expected behaviour of the solution and
restrict our class of solutions to that which shows the expected behaviour of
the fibre. We expect that:

e axial velocity increases monotonically along the spinline.

e starting from the initial temperature greater than the melting tempera-
ture, the temperature decreases monotonically along the spinline. This
is crucial in order to determine the point of onset of crystallization &
since T'(§) = Tpy,-

e variables c,, and ¢, are positive along the spinline.
Now, we make some definitions:

Definition 3.1 The set of all initial conditions (c,,(0),c.(0)) such that
dv,/dz > 0,dT/dz < 0,dc,,/dz > 0,dc,/dz < 0 at z = 0 is called the
set of plausible initial conditions.

Let such a set be denoted by J. It can be easily proved that J is non-empty.
The set of all plausible conditions guarantees that at least in the neigh-
bourhood of the point z = 0, the solution behaves as expected. Any initial
conditions not in .J yield solutions that are unrealistic and hence of no use.

Any pair of (c,,(0), ¢ (0)) ¢ J is called aphysical initial condition.

Definition 3.2 The set of solutions (v,,T,c,,, ) of IVP BOC such that
Coz >0, Cp >0, T>T, and v, > 0 Vz € [0,2%],2* < 00 is called the set of
physically acceptable solutions in the interval [0, z*].
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Let us denote this set by P. Any solution not belonging to set P will be
called an aphysical solution. It can be easily proved that P is non-empty.
Positivity of ¢,, and ¢, is an important property of the solution. More about
this will be discussed later.

3.3.2 Local analysis of a simplified model

Motivation of this section is to show that even with a plausible set of ini-
tial conditions as given by Def.(3.1), it is possible that a singularity occurs.
Therefore, even a restricted set of initial conditions cannot guarantee the
global existence of the solution of IVP BOC. To show this, we do a local
analysis of the model equations in the neighbourhood of z = 0 and show
with the help of numerics how the solution blows up.

Let us simplify the model by letting Dy = D3 =D, =0, E =1, =0 and
De, = 1 in Eq.(3.8), where D, represents the force due to air drag, Dj is the
force due to gravity, D, denotes the surface tension and De, is the Weisen-
berg number of the amorphous melt. See Section 2.5 for the corresponding
formulae. By doing this we get the simplest form of the momentum equation
consisting of only inertia force denoted by D; and the tensile stress. Then
the momentum equation, (3.8) takes the following form:

Csf = f;zc; ?rDlug' (3.21)

Let us denote the denominator of the equation by Den = —Dyv? + ¢, + 2¢,,.
Now, consider the simplified evolution equations of c,, and c,,.

% — 2%‘2?: — vi (s — 1) (3.22)

d;; = —%‘Z‘ . Ui (e —1). (3.23)

Remark 3.3 In the numerics, we first solve the IVP BOC using the guessed
witial condition for c,, at z = 0. We determine the point of onset of crystal-
lization & and switch to system AOC. Using the boundary conditions specified
at z = & we calculate the solution to this system and match the final velocity
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got numerically to the prescribed final velocity. We determine the next ap-
proximation to the correct initial condition and keep following the procedure
till the numerical final velocity matches the prescribed one.

Since we are working with non-dimensionalised variables as explained in
Chapter 2, we have v,(0) =1, T(0) = 1. Let ¢,,(0) > 1 and 0 < ¢,.(0) < 1.
A typical value of D; is 0.004, see Table3.2. Then, from Eq.(3.21) we get
dv,/dz > 0 at z = 0. We assume the initial conditions are chosen such that
at z = 0, dc,,/dz > 0 and dc,./dz < 0. Therefore, (c,,(0),c.(0)) € J are
plausible initial conditions.

For ¢,, > 1 and ‘% > 0, from Eq.(3.22) we get the differential inequality

dc,, C,z AU,
— < 2= .
dz v, dz

Solving the above differential inequality we get

C..(2) < Kv,(2)?, K > 1. (3.24)

This shows that under the mentioned conditions c,, has a quadratic profile
with respect to velocity. Now, consider the denominator of the Eq.(3.21)
given by Den = —D;v? + ¢,, + 2¢,,. Since we have chosen plausible initial
conditions we know that in the neighbourhood of z = 0, v, and ¢,, grow and
¢, becomes small. From numerics we observe that c,, + 2¢,, — ¢,,. See
Fig.3.1. Hence in Den we approximate the term c,, + 2¢,, with c,,.

N ! . . .
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Figure 3.1: Comparison of c,, and c,, + 2¢,,

Moreover, since c,, also has a quadratic profile as seen from Eq.(3.24), we
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make a comparison of Dyv? and ¢,, in Den. From numerics we observe that
Dv? — ¢, as velocity v, becomes high. Fig.3.2 shows the plots of D;v?
and c,, against v,. In the first plot, distinct curves of the two terms can be
seen for velocity not in very high regime. In the second plot one sees that
as velocity becomes very high the two curves almost overlap making dv,/dz
singular.

400 ; ; ; ; ; 10
— %, o
350 DV
sl
3000
71
250 ol
200F 4 5t
150+ A
3t
100+
ol
501 — 1t
0)‘/" = L L L L L 0 L L L L L L L
0 50 100 150 200 250 300 0 500 1000 1500 2000 2500 3000 3500 4000 4500
V. V.

z z

Figure 3.2: Left: Comparison of c,, and Div? in low velocity regime. Right:
Comparison of c,, and D1v? in high velocity regime.

Remark 3.4 The example given in this section is a very specific example
with a special set of initial conditions. One could choose such a set of initial
conditions for which a global solution to the problem exists. But from our
numerical simulations with realistic data we found that in most cases a global
solution to the system BOC does not exist. That is, even for the plausible set
of initial conditions with which the melting temperature can also be reached,
a global solution to the system BOC does not necessarily exist.

From the above example, we conclude that global existence of the solution
even for the phase BOC cannot be proved. However, we do not require a
global solution for the phase BOC. We need the solution only till the point of
onset of crystallization &, where we switch over to the system AOC. Therefore,
we try to find the maximal interval in which the solution of IVP BOC exists.
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3.3.3 Existence of a maximal solution for the IVP BOC.

Consider again the system:

x = f(x)
x(0) = xo

From well known basic theorems in ordinary differential equations, we con-
clude that on every interval I = [0,2*],2* < 1, which does not contain
singularities, a unique global solution to the above problem exists. More-
over, if f has a singularity at z; € (0, 1], then |x(z)| — 0o as z — z;. The
interval [0, z5) is the maximal interval in which the solution exists and the
corresponding solution is called the maximal solution.

3.4 Temperature estimate

Existence of £ depends on the temperature since £ = T-(T},). Since the
initial temperature 7} is always assumed to be greater than or equal to the
melting temperature 7;, we need to investigate under what conditions T is
monotonically decreasing. Let us consider the temperature equation:

T T—Tr E zz — Lrr F1
ar _ _p, 4 p PGz = ) v

dz VU v, dz

Physical interpretation:

The first term on the right hand side describes the exchange of heat between
the fibre and the surrounding air where as the second term describes the
heat released due to the friction or viscous dissipation. The model for the
zero-shear viscosity is given by, Eq.(1) in Appendix A:

(3.25)

13500(280 — T)
1099.2(T +273.2) |

M = Tjo €Xp

Assuming that initially the temperature decreases, from the above relation we
see that the viscosity increases, making the fibre solid. But if there are very
high velocity gradients (which is expected in high speed melt spinning and
which induces the strain hardening of the melt) then the force due to friction
starts dominating the first term in the temperature equation. This results
in the increase of temperature. Now, as the temperature starts increasing
the viscosity starts decreasing becoming very small. In other words, the
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relaxation time of the fluid given by A = /G tends to zero. This reduces
the viscoelastic model, which is given by the evolution equations of c,, and
¢rr, t0 @ model for a viscous fluid as explained in Section 1.1.3, thereby
inducing a singularity in the equations for c,, and c¢,,. Hence we see that
the temperature can not only increase but this increase could even induce
singularities in the model. For this we try to find bounds for the mechanical
energy released due to friction as represented by the second term in the
temperature equation. Therefore, we first get estimates for c,, and ¢, in
terms of the axial velocity v,.

3.4.1 Estimate for conformation tensor variables
c,, and ¢,
Lemma 3.1 Assume: ‘ZL; >0 ,v, >0 Vz. Ifin addition, c,, > % Vz then
C,, < K 11}2
for some constant K| € Rt depending on the BC at z = 0.

Proof: Consider the evolution equation of c,,

de,,  Capdu, 1

= — 1-— E Fe,, —1
dz v, dz  v,De, ( o+ ake.,) (Be.. )

Assuming that ¢,, > %, we have the following differential inequality

de,, <9z dv,

dz v, dz

Solving the above differential inequality we get
C,, < K 1v§

where K is some constant depending on the BC at z = 0.

Theorem 3.1 Ifddi; >0 ,v,>0 Vz, then

1

Cor < max{K v, E}

2 1

Proof : Suppose ¢,, > max{Kv;,

Then,
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e Casel. If K;v? > £
= Czz > —
“~F
Then, from lemma 3.1 we get
Cop < sz

which is a contradiction to our assumption.

e Case2. If K;v? < 4, then

S 1
c JE—
zZ E
From lemma 3.1 we get
2
C: < Kyv;
1
= Cyy < E

which is a again a contradiction

Lemma 3.2 Assume: %= > 0 ,v, > 0 Vz. If in addition, c¢,, < & Vz,

dz E
then
K,
Cpp > —
z

for some constant Ky depending on the BC at z = 0.

Proof: Consider the evolution equation of ¢,,

derr  Cpdu, 1

= 1— E Ec., — 1
dz v, dz  v,De, (1= a+akey) (Ber —1)

Assuming that ¢, < &, we have the following inequality

de,, _Crr dv,

dz v, dz
Solving the above differential inequality we get,

Ko
Crp > —
Uy

for some K5 depending on the BC at z = 0.
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Theorem 3.2 IfddL; >0 ,v,>0 Vz, then
1

Cry 2 min{’l)_j’ E}
Proof : Suppose ¢, < min I:—f, %}
Then,
K 1
e Casel. If v—f <z
K, 1
= o <2< (3.26)

z

But from lemma 3.2, ¢,, < % = Cpp > % which is a contradiction to

our assumption.

o Case2. If % < f—:, then from our assumption,

1
Crp < E
But from lemma 3.2, we have c¢,, > I:—f This implies that c,, < %

which is a contradiction.

We want to get estimates for the second term in the temperature equation.
Consider once more Eq.(3.25). Now following cases arise:

®C,, < % and Crr 2

L
E
® Cp S Klvz and Crr Z %

o ;. < pand ¢y > 2

® Cy S Kﬂ)z and Crr Z ?

In the first case we get c,, — ¢, < 0, in which case have % < 0 which shows
that the temperature is monotonically decreasing.

We study the fourth case here since second and third cases are similar. That

means now we have K
Czz — Cpr S Kﬂif - _2 (327)

Uy
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Theorem 3.3 Let I = [0,2") C [0,1] be such that T(z) > T,, Vz €1 and
E(z) < E < 00. In addition assume that v, > 0 and dv,/dz > 0 Vz. Then,

T(z) < T(0) + [E (K;vz + %)] . DG/ \/U_z )dz. (3.28)

where Dg = max(Dg(T)), g is some function depending on v, and K, and
K5 are constants depending on the boundary conditions at z = 0.

Proof: Consider once more the temperature equation:

dT T_Tr E zz_rrdz
aTr _ _p, 4 p Elees — er) dv:

dz VU v, dz

This can be re-rewritten as:

T’ _D;T-T, N E(c,, — ¢vp) dv,
dz | D¢ /v v, dz
7

From the form of the parameters D5 and Dg, as in Section(2.5), we see that
D5/ Dg is independent of T. (For parameter dependencies refer to Table 3.2).
Let g := 25 Then g is a function of v,. Moreover, 0 < Dg < Dg < 0. Also,
assume that |f| > 0.

Using Theorems 3.1 and 3.5 we estimate the second term in the temperature
equation in terms of the axial velocity using inequality (3.27):

E(sz - Crr) < E(Klvz - I;_zz)

Hence we have,

dT — (—9(Tn—T,) B K dv,
dz

Integrating the above inequality with respect to z we get,

T(27) < T(0) + Dg [E(K;U§+K2)] /\/_T _T)d

The above theorem gives us an estimate for the temperature in terms of the
boundary conditions and the axial velocity. In order to get a more precise
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estimate for the temperature one would have to get an estimate for the axial
velocity which is very difficult because of coupling between all variables and
the complicated form of the equations.

Further we show some properties of the solution which will help us in proving
the existence of a physically acceptable solution.

3.5 Positive definiteness of conformation
tensor

In this section we will show the positive definiteness of the conformation
tensor variables.

Lemma 3.3 For the IVP

du_

pri f(u), u(0)=1ug

Assume, u:[0,7Z) = R, 0 < Z < 400, is a solution.
Then:
e if 3 m € R such that f(m) < 0 Vz € [0,Z) and if ug < m then
u(z) <m V0<z<Z
e if 3 N € R such that f(N) > 0 Vz € [0,Z) and if ugp > N, then
u(z) >NV 0<z<Z.

We do not prove the above lemma, since the proof is obvious. A geometrical
interpretation of the lemma is given in Fig.3.3.

Theorem 3.4 Assume that ‘ZL; <A<o0,v,>0Vze[0,2*) and 1 < E <
oo then

e, (00)>0=c,,>0 Vze€]0,z2%)

e ¢, (0)>0=1¢, >0 Vze]0,2%)
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Ug

m N S A SIS

Ug

Figure 3.3: Left:Geometric description of first statement of lemma 3.3.
Right: Geometric description of second statement of lemma 3.3.

Proof: For convenience we put w = dv,/dz. Consider the evolution equation
of c,,
dCsz _ oCaz
= 2—w —
dz U, v,De,

(1 —a)+ aEc,,) (Ec,, — 1)

This can be re-written as:

2z 1
dg — 5 (_aEQCiz -+ (2wDea + (20! — 1)E)sz + (1 - a))
Z UV, D€q g

-~

f

Roots of f are

~ ~ v N———
d

b

(2uwDe, + (20. — 1)E) i\/(QwDea + (2a — 1)E)? + 4a(1 — o) E?

c12(2) = —2aF?

Since 0 < o < 1, we have d > 0. Hence, it implies that ¢;(2) < 0 < ¢o(2) V2.
That is, f always has one positive and one negative root for all points z.

At any point z, f has an ”inverted” parabolic profile. Therefore for ¢; <
.z < C2, we have f(c,,) > 0. In particular, let N = 0. Then, f(N) > 0 Vz.
From Lemma 3.3, it follows that if we choose ¢,,(0) > N then ¢,, > 0 Vz.
Applying similar arguments to the evolution equation for c,., we find that if
we choose the initial condition of ¢,, such that ¢,,.(0) > 0 then it follows that
crr > 0 V2.

Moreover, let m = max(cy(2)) +€, € > 0. It is easy to see that ¢y is bounded
and a maximum exists. Then we see that f(m) < 0Vz. Again applying
Lemma 3.3, we get that for ¢,,(0) < m, it follows that c¢,, < m, Vz. A
maximum bound can also be found for ¢, in a similar way.



3.6. Properties of system AOC 47

From the above theorem we see that the conformation tensor c¢ is bounded.
This also proves that if we start with an initial condition for ¢ such that
¢(0) > 0, then ¢ remains positive definite in the whole domain. Viewing c as
representing the conformation of a dumbbell, the negative-definiteness of c is
not only hard to imagine but also unrealistic,[2]. According to Beris and Ed-
wards, ” in the numerical simulations, loss of positive- definiteness of ¢ could
be due to numerical error”. Hence it a property of the solution which should
be checked during the course of computations. In case of non-stationary
equations, the positive definiteness of c is associated with the evolutionarity
(well-posedness) of the governing equations. According to Hulsen’s theorem,
[2] “the steady state solutions of the models which correspond to a nega-
tive definite conformation tensor need to be dismissed as aphysical.” In this
context we prove the following lemma.

Lemma 3.4 If 3 a unique mazimal solution for IVP BOC in I = |0, 2*),
with the initial conditions c,,(0) > 0, ¢.(0) > 0 and if £ € I, then the solu-
tion restricted to I* = [0,&] C I is a physically acceptable solution.

Proof: Since a unique maximal solution exists for the IVP BOC, v, > 0
and dv,/dz < coVz € I. (If v,(2) = 0 for some z € (0,z*), then right
hand side of system BOC (Egs.(3.8- 3.11) would become singular at Z and a
solution would not exist). Moreover, since ¢,,(0) > 0, ¢,-(0) > 0, applying
Thm.3.4 we get c,, > 0 ¢, > 0Vz € I. Hence in I*, the conditions for the
solution to be physically acceptable are satisfied.

3.6 Properties of system AOC

We write down the system AOC once more:

u'(z) =g(u) u(f) =ug vz € (& 1]

Here u = [v,,T, ¢,y Cop,w = dv,/dz,S,,,z] and the boundary conditions
are ug = [v,(€),T(§), c22(§), crr(€),0,0,0] where continuity of solution gives
the boundary values for v,,7T,c,, and ¢, and the BCs for w, S,, and z are
prescribed and as explained in the previous chapter.

Lemma 3.3 of the previous section can be applied to the variables c,, and
¢ once again in phase AOC to show that under the same conditions they
remain bounded. More precisely, under the assumptions v, > 0, dv,/dz <
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oo Vz € [€,1],if ¢,,(§) > 0, ¢ (§) > 0 then c,, >0, ¢, >0Vz € [£,1]. The
evolution equations of ¢,, and ¢, (Eq.(2.20), (2.21)), are coupled with the
rate of crystallinity . However, the term 1 — x which could possibly induce
a singularity while calculating the roots of f as in Lemma3.3, appears only
in the numerator. Therefore, it is straightforward to carry over the same
techniques as in Thm3.4 to ¢,, and ¢,, in phase AOC.

3.6.1 Singularities in system AOC

After a careful examination of the system of equations AOC given by Egs.(3.12)
to (3.18), the following were found to be the possible singularities:

o v, =0.

e Weisenberg number De;,
From the form of Dey. one sees that for parameter ¢ # 0, De,, # 0
because of its exponential form. But for large values of F, it could
become arbitrarily high. (Check out the numerical value of De,,. in
Table3.2).

e =1
From the form of De,, one observes that for x — 1, De, goes to zero
thus inducing a singularity in the equations of c,, and ¢,.. Apart from
that, the term 1/(1 — x) appears in many terms on the right hand side
of system AOC, (Egs.(3.12) to (3.18)).

e c=1.

The above are so to say the “potential” singularities. Below we investigate
the singularity z = 1.

Proposition 1 Assume that %= < co,v, > 0,e < 1Vz € [¢,1]. If c,.(§) >
0,cr(&) >0,2(6) <1, thenz <1 Vz €[, 1].
Proof: From the assumption e < 1 we have,

1 Coz + 2Cpr
1—=z 3N0
= C+ 26, < 3No(1— 1) (3.30)

1 (3.29)
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Assume that x = 1 for some z* € (£, 1] then from above we have,
C2(2") + 26 (27) <0

But we know that for c,,(§),¢,-(§) > 0 we have c,,,c., > 0Vz € [£,1] (By
applying Lemma.3.3 as explained earlier in this section). Therefore we have
a contradiction. Hence z < 1 Vz € [, 1].

As long as we have a bound on c,, + 2¢,, in terms of the parameter N, we
can avoid the singularities. In the absence of singularities, applying standard
basic theorems of ordinary differential equations one can prove the existence
of a unique global solution to the IVP AOC. We now show that with the
appropriate choice of the initial conditions for IVP BOC, it is possible to
prove the existence of a unique physically acceptable solution for IVP AOC.
For this, we first define a physically acceptable solution for AOC.

3.6.2 Existence of a physically acceptable solution

Definition 3.3 The set of solutions (v,,T, C,y, Crry W, Sy, x) of IVP AOC,
such that v, >0, ¢,, >0, ¢, >0, < 1Vz €[, 2%],2* <1 is called the set
of physically acceptable solutions in £, 2*¥].

Theorem 3.5 If 3 a unique physically acceptable solution of IVP BOC in
[0,£] and dv,/dz < 0o, v, >0, e < 1Vz € (§,1], then 3 a unique physically
acceptable solution for IVP AOC.

Proof: Let (v,,T,c,,, c) be the physically acceptable solution of IVP BOC.
Then we have v,(§) > 0, T(§) = T, ¢.2(&) > 0,¢+(§) > 0. From the as-
sumptions in the theorem, we can apply Lemma 3.3 to variables c,, and
Crr t0 get ¢, > 0, ¢ > 0Vz € [€,1]. Moreover, from Prop.l we get
z(z) < 1Vz € [£,1]. Since v, > 0 by assumption and z < 1, therefore
the right hand side of system AOC (Egs.(3.12) to (3.18)) is Lipschitz contin-
uous. Therefore, a unique solution exists for IVP AOC in [£,1]. Moreover,
the solutions satisfy the properties of a physically acceptable solution as de-
scribed by Defn3.3.

We can go further to say that if a unique maximal solution exists for IVP
BOC with the initial conditions ¢,,(0) > 0, ¢,,(0) > 0, such that £ can be
determined then under the conditions v, > 0,dv,/dz < co and e < 1, there
exists a unique physically acceptable solution for IVP AOC. This gives a
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connection between the existence of solution of IVP AOC and the choice of
initial conditions for IVP BOC. We will see more about the choice of initial
conditions in Chapter 5.

However, analysis of the complete boundary value problem is far too difficult
at the moment because of lack of techniques even to analyse simpler nonlinear
differential equations.



Chapter 4

Mathematical Analysis Part 11:
Hamiltonian Mechanics

This chapter is intended to give a deeper understanding of the mechanics of
1-d, elongational flow of a wviscoelastic fluid. Appropriate Poisson brackets
are derived for the 1-d, elongational flow and using these Poisson and Dis-
sipative brackets, cross-sectionally averaged mass and momentum equations
of melt spinning along with the constitutive microstructural equations are de-
rived.

In the last few years interest in Poisson bracket formalism has increased be-
cause of application of Hamiltonian mechanics to continuous systems. In the
1980s a lot of work was done in developing non-canonical Poisson brackets
for ideal fluid flow [22], [21]. However these studies were limited to conserva-
tive phenomena. But during the last few decades with progress in theory of
irreversible thermodynamics and extension of Hamiltonian methods to dissi-
pative media, there has been progress in the development of a so called Dis-
sipative bracket. Beris and Edwards first introduced the generalised bracket
consisting of the Poisson and dissipative brackets in order to express the
dynamics in nonlinear elastic media and viscoelastic media in Hamiltonian
form,[14]. Marsden et al(1984) have also determined the non-canonical Pois-
son brackets for elasticity. In this chapter we show the application of Hamil-
tonian mechanics aided with Poisson and Dissipative brackets to the specific
case of a 1-d, uniaxial flow of a viscoelastic fluid in a cylindrical domain with
a free boundary. We first derive the appropriate Poisson bracket for this
special flow and then show that cross-sectionally averaged mass,momentum

ol
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and constitutive stress equations of melt spinning can be derived using this
technique.

The Hamiltonian finds it’s usefulness in analysis of differential equations and
proving existence and uniqueness of solutions. By proving that the action
integral has an extremum it is possible to prove that a solution exists for the
corresponding system. Although, such an approach is a difficult one for com-
plicated systems like the one we have seen in the last chapter, it is worthwhile
to find the Hamiltonian for our system. From the previous chapter is was
seen that to prove existence of solution is not only a highly complicated task,
but under certain conditions even impossible. In this chapter we try to un-
derstand the underlying thermodynamics and transport phenomena within
this highly structured media. Our work is based on the derivation of Poisson
brackets for the 3-d viscoelastic flow as done by Beris and Edwards in [2],
[14]. We apply the same techniques to our special case of a 1-d elongational
viscoelastic flow.

4.1 Introduction to Hamiltonian-Poisson
bracket theory

From classical mechanics we know that for a discreet particle system, the
phase space P is defined to be the space of all pairs (p,q) of positions q
and momenta p of the particles. By writing down the action integral for this
system of particles it is possible to find the Hamiltonian of the system. From
the Hamiltonian it is then possible to write down the equations of motion of
the system.

Definition 4.1 The canonical Poisson bracket {.,.} is a map
{,.}: CHP,R) x C*(P,R) — C*(P,R) defined as follows:
oF oG OF oG
{F,G} ' = —— — ——
0q Op  Op Oq
The dynamical equation for any arbitrary functional F can be expressed as

following.

dF
=[P Y]

where H is the Hamiltonian of the system and {[.,.]} is the generalised
bracket. The generalised bracket describes both conservative and non-conservative
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effects. It is decomposed into two sub-brackets as follows
{(F,H]} ={F,H} + [F,H]

where {.,.} is the Poisson bracket describing the conservative effects and [., .]
is the Dissipative bracket describing the non-conservative effects.

4.1.1 Properties of Poisson bracket

For any arbitrary functions f(p,q) and ¢(p,q), the following properties
should be satisfied by the Poisson bracket:

e Antisymmetry
{f,9} = —{g, f} In the special case where f = h, where h denotes the

Hamiltonian, for conservative systems it is required that
dh

— ={h,h} =0

o =\ hy

This shows that the total energy is conserved.

e Bilinearity
{af + Bg,h} = off, b} + B{g,h}, o,fER or C

e Jacobi identity
{f A9 1} +{9.{n f}} +{h{f,9}} =0

4.1.2 Poisson brackets in continuous media

As the number of discreet particles increase to infinity, instead of determining
the individual trajectories z;(t),7 = 1.., N N — oo, of discreet particles, one
determines a single continuous vector function Y'(x,¢) which indicates the
position of a fluid particle at time t with reference position x at time ¢ = 0,

2].

4.2 Derivation of Poisson brackets for
1-d elongational viscoelastic flow

In this section we determine the Poisson bracket for a cross sectionally av-
eraged 1-d viscoelastic fibre. We start with the canonical, material Poisson
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bracket and derive from it the equivalent spatial Poisson bracket. Subse-
quently the spatial equations of melt spinning can be derived.

4.2.1 Canonical brackets (Lagrangian description)

Let us consider our fibre (domain) to be cylindrical with coordinates (r, 6, z).
In the 1-d Lagrangian description we follow a certain fluid particle labelled
by the position variable z, along it’s trajectory given by Y(z,t) € R. At
time ¢ = 0, the fluid occupies a region 2 with boundary 02 and the initial
condition on the fluid particle under observation is Y (z,0) = z. At time ¢ it
occupies a region Q' with boundary 02'. But we assume that 092 = 9§’ for
all times, i.e length of the fibre is fixed.

Since we want to work in 1-d, we take all the quantities of interest to be
cross-sectionally integrated. If p is the mass density then we define a new
variable p as follows.

2 R(Z,t)
p= / prdr = pnR*(2,t) = pA(z,t) (4.1)
0 0

where R(z,t) is the radius of the fibre at point z and time ¢ and A(z,t) =
mR(z,t)? denotes the corresponding cross sectional area. Later on we will
drop the dependencies while writing A. Note that since the free surface
r = R(z,t) is unknown, the new density p is not constant.

The distribution of mass at ¢ = 0 can be described by the density function
po = p(z,0). Since the mass of the fluid is conserved, the mass density at
any Y (z,t) must satisfy the conservation equation.

pdY = podz
HY,HAY = folz0)dz
dz
o(Y.t) = pp———
p( ’ ) pOdy(z’t)
_ /(z)
J

where J = dY (z,t)/dz
The Lagrangian for this system can be expressed in terms of the dynamical
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variables Y (z) and Y (z) as follows:
2
L =t/ﬁG%—UM%0dY
(Y
- [ (7 - uls 50]) d:

Q

where U depends on the initial entropy density 5o = pps. With this La-
grangian, the action integral for this system can be written as follows.

t2

I:/Ldt

t1

Before we go further, we introduce the notation for the functional derivative.
The functional derivative of a functional F[Y'(z)] is always represented by
means of the L, pairing on the appropriate space of functions:

§F oF
5—Y(5Y = / 5—Y[Y](z)(5Y(z)dz
Q
Thus, §—$ denotes the associated function representing the derivative g—g with
respect to the Ly pairing.
Conjugate momentum is defined as
5L :
m(2) = — = po(2)Y (2
() = 52 = MY ()

The Hamiltonian is the sum of the kinetic and potential energies:

v = [ [;; T o UV, 0(2)]| d2

The equation of motion for the 1-d fluid in the Lagrangian description can
be written as follows

V() = (5H5[l7:,7r] :Wléj)
_OH[Y, 7]

") = Ty



56 4. Mathematical Analysis Part II: Hamiltonian Mechanics

Definition 4.2 The phase space P for the infinite dimensional case is de-
fined as :
P:={(Y,7) € C'(I,R) x C'(I,R)}

where I 1s an appropriate set of Lagrange parameters.
The canonical Poisson bracket is defined as follows:

repv = [ (j—im rl(2) S 1Y, ml(z) = O [V, () eI w](z>> -

Q

Remark 4.1 When F and G are function valued, the formula has to be
modified. However, for each function value of F' and G, the above formula
applies:

{F,G}[Y,](z,2') := {F(2), Ga)}[Y, 7] =

(5”@ 1)) Gy )2y - Py ) 2Oy w1<z>> d:

(4.2)

4.2.2 Non-canonical brackets (Spatial description)

In the spatial description, we consider a fixed coordinate in space z, for which
the length element is given by dzx.

z =Y (R(x,1),1)
R(z,1) is a material label for the fluid particle which has position x at time

t.
We first define the following quatities: Momentum density:

27 R(zat)

M= / / pvrdr = pvrR*(2,t) = pvA = pv

0 0
Although the conformation tensor is a microstructural variable, on the macro-
scopic scale it can be interpreted as the Cauchy strain tensor. i.e ¢ = FTF
where F is the displacement gradient tensor,[27]. For elongational flow, the
tensor F has the following form [4]. Let € = dv,/dz denote the elongation
rate of the fibre.

ef edt 0 0
F= 0 e J3% (4.3)
0 0 e~ 5dt
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From above, we have c,, = F2, ¢, = F2 = FL” = cgp, where F,,, F,., Fpy
denote the diagonal components of the strain matrix.

Because we deal with a uniaxial stretching of the fibre along the axial direc-
tion, c is a diagonal tensor. But in 1-d we treat c,, € R, ¢, € R and ¢cgg € R
as separate scalar quantities.

Analogous to the density and momentum, we define the following:

Cr. = ,OszA; érr = pc’r'rAa é«%’ = ,069914

We observe that C’w = égg and they can be expressed as functions of F,.
We take into account the internal energy density of the fibre:

21 R(z7t)

Uz/ / pUrdr = pUA = pU

0 0

where U is the internal energy per unit mass. Thus the phase space Pg
consists of the following variables.

plz) € O([0,L],R)
M,(z) € C([0,L,R) M,=0forx=0,z=1L
C..(z) € C([0,L],R)
C..(z) € C([0,L],R)

s(z) € C([0,L],R)

The Hamiltonian can be written as follows.

M? - -~ =
£ U 0 CZZJ 7"!'7~
Qﬁ + (p7 C 8)

H[p,M,,C,,,C,,] = / dz (4.4)

QI

with U = @ + T§ where @ is the elastic potential energy density of the
viscoelastic fluid and 5 is the entropy density. The viscoelastic model under
consideration is the Giesekus model. The elastic potential energy for this
model is given as follows: [2]

1 R . 1 ek
i =-nkK 2 E+ 35\ sin@en)
G=gn (Caz +2C) ( + 3e2 in <sinh(3€E))>

1 K\® - -
- —nﬁ/{BTln ((T) sz03r>
2 p
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where
K — spring constant
kp — Boltzmann constant
n — number of chains per unit length
e — extension of chain with respect to it’s length (see section (1.3.2))
E — nonlinear force factor.
T — absolute temperature

Consider an arbitrary functional F, of the dynamical variables p, M,, C,,, C,,
and s:

Fip, M., Crs, Cony 5] = / (5, M., G, G, 8)d2
Q

Then the dynamical equation for this functional can be written as

W=/
dt

Q

0F9p , OF oM,  OF oC,,  OF oG,  OFO3| (45)
5Ot sA, Ot 50, Ot ' oC, ot ' ssot|T VT

We need to derive the Poisson bracket in the spatial description. For this, the
spatial variables are written in terms of the material variables. The trans-
formation of a material variable g; to its corresponding spatial description
gg is given by :

/ g1 (2)01Y (2) — aldz = gu(a) (4.6)
Q
Thus we define the following variables from their material counterparts:

Y.l = [ (ol (z) - aldz (4.7)
MY, 7](z) = / TT(2)8[Y (2) — a]dz (4.8)
Cltrl(@) = [ s (Foa(2), 051V (2) — ol (4.9)
Colt @) = [ e Fel0)001Y () —aldz (4.10)

SVorl() = / Po(2)s6[Y (2) — 2]d2 (4.11)
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where F,, is the strain component as explained in Section 4.2.1. To evaluate
the Poisson bracket in the Eulerian description, we need to define the func-

tional derivatives using the chain rule for differentiation. For an arbitrary
functional F[p(z), M,(z), C,.(x), Crr(z), 5(z)], we have

_ OF o, L , ! P ’ 2z
—6y[Y,7r](:E) /(5/3 [l ﬂT]](ﬂS)(SY[ ;7] (z, 2") + SM, Y + 5C,, oY

Q

5F 0C,, L OF 5F 63 J
5C,. oY  ssev )

SF SF6p  6F §M, _ OF §C.,
g /(

55 01l 5aL, oLl T 8¢, oIl
Q

i 3, Gris
5C,, oI ' 65 om

where the functional dependence has been shown only in the first term in
the RHS of the first equation. The same dependencies follow for the rest of
the terms. Now, suppose F' = F 0 X, 1.e Fg is the spatial counterpart of F
and X is the vector of spatial variables then:

uum:/(%mﬂw§Mﬂw—%MﬂU§Wﬂu)

5(Fpo X) (Gg o X)
z/(—77—W]U—7f—ﬂ%K) )w
-/ (/z P LY, all ) S A, 2)a

5GE " AXi " "
/ ]5X (XY, 7](= )  7|(2", 2)d2" — m) dz

/ ‘//5% IS
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~ ~

Xi ! 5Xj " 1y
(S_Y[Y’ 7|(2, 2) o [V, 7| (2", 2)dz'dz m) dz

F 5X; 5X;
5 E 5GE //) (iy (21,2)%(2”,2)

5XZ- , 5X Vo
5 (7, 2 )(5Y( ))dzdzdz

(5FE 5GE w  OFg, , 0Gg
= S //( e - 5X(z>5x()
)X

{X:(#, (2", ) pdZ d2" (4.12)

Substituting the above in the Poisson brackets, for two arbitrary functionals
F and G of our spatial variables we get:

{F,G}g o
// x’)_52(G)5]\/([5( )

{B(x), M. (2")}rda'dz

| F 3G 3G oF
5]\7.fz(x) SM,(z')  OM,(x)6M,(z')

{M,(z), M, (")} pdz' dz:

+
D\D

0F 3G §G  4F
5C’zz(3§) SM,(z)  6C,.(x) 6M,(z')

+

0F  0G  5G  GF
6C,p(x) M, (') 6Cyp () SM,(2)

SF G G OF
05(x) 6 M, (") HE S M, (z!)

The factor 2 in the second last term appears to take into account Cyy which
we know is equal to C,,.

In order to evaluate the canonical poisson brackets appearing in the above
equation, we need to evaluate the corresponding functional derivatives. Using
the definition of functional derivative as given in Section 4.2.1, we get:

-~ A

op L 00Y(2)—x] 6
SV T(2) = po(2) =, Sh Y, ml(2) = (4.14)
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oM, - 90V (2) —ax] OM, _

5V I1(2) 5y SO OY(z) — ] (4.15)

0C,, . Y —x] 8 (. 9.\ 0C.,

5y Ty T oz <p°5[y ~1] an2> o -0 (416)

6Crr . BY —az] D (. Ocr\ 0C,

I A = (WS[Y 3 apzz) o =0 (41D
05 . 90V —a] 85

sy~ P =55 =0 (4.18)

with the functional dependence for all the equations as in (4.14).
We now show the derivation only of {C,,(x), M,(z')}r which appears in
Eq.(4.13).

~ ~ / _ gézz S\M z ZS\CN'ZZ gMz
{C..(z,1), z(a:,t)}L—/((SY ST 6l (5Y)dx

Q

Substituting the functional derivatives given by Eqgs.(4.14) to (4.18), we get

o - 85[Y - 33] 0 ~ aczz /
= [poczzT % (poé[Y x] anzﬂ OlY — 2'|dx

Y —z] 10 ,
<pczzT - j&(,&]&[Y — .’E]QFZZ)) (S[Y — T ]dY
. WY —z] 19Y 0 B o
= (pczziay 79, 97 (pJOY x]2Fzz)> oY —2'ldY
A ! aé[x, - ,Z‘] _ 0 o ~ !
=C,.(2',1) 0 ar (0[z" — z]2C,, (2, 1)) (4.19)

It is here that one takes into account that the flow we are dealing with is
an elongational flow. For such a flow the deformation gradient tensor and
consequently the strain tensor has the diagonal form. Also, ¢,, and ¢,, depend
on F,,. This is the main step in all the calculations which gives us the correct
Poisson bracket for the 1-d viscoelastic fibre.
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Similarly, the other Poisson brackets can be evaluated and shown to be

~ [z —xz] 0

{On@) W)} = O @) P2 2T Dt 1)) (420)
(3(0), 31"} = ) 27 (4.21)
(01.(2), 1. (a)} = 3@ P20 g @@ )
{3(a), M. ()1 = s(a) 2] (4.29

After substituting the above expressions in Eq.(4.13) and after a few ma-
nipulations the following Poisson bracket in the Eulerian description can be

derived.
6F 9 (3G \ 3G o [ 3F
0502 \air.” )~ op 0z \ on1.”
Gr o (56, 6o (5 ],
5M dz \ 6 MM, OM, 0z \ 6M,
5F

(5F a 5—?ézz - 6~G' 2 ~ ézz dZ
60223»2 M, 6C,, 02 \ 6M,

{F7G}E:_

2C,,

oM,

OF 0 [0G 5 ) 0G 9 [OF 5 V1,
6C,, 0z \ 6 M, 6C,,. 0z \ 6 M,

6G 0 [ 6F
6C,, 0z

|
)

Q
5F 0 [ oG 5G 0 [ oF
oo, | =22 ) - R
/ |56, 02 ((5Mz) 6Cy, 0z <6MZ> *
Q
5F8 5G \ 3G 0 [ 6F _
Q

Since in future we will derive evolution equations with z as the independent
variable therefore for convenience of notation, x has been replaced by z in
the above Poisson bracket.

The above Poisson bracket can be shown to satisfy the properties of a Poisson
bracket mentioned in Section 4.1.1.
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4.3 Dissipation bracket

In the last few years significant progress has taken place in the study of
irreversible phenomena leading to the development of the dissipation bracket.
This bracket describes the non-conservative processes. Beris and Edward
were the first ones to develop this bracket and to use it to derive dynamical
equations for non-linear elasticity and viscoelastic flow [14]. The dissipative
bracket is phenomenological in nature and there seems to be no rigorous
theory behind it as yet. But still, it is now being used extensively in the
study of dissipative phenomena. We will not go into the details of the theory
and development of this bracket but will use the relevant dissipation bracket
to derive our equations.

Starting from the 3-d dissipation bracket for viscoelastic flow given in [2],
using our integrated variables and the considering the special flow (elonga-
tional) in consideration, we get the following form of dissipation bracket.

[FG]__/ | OF G A 5F 6G
a °6C,.0C,, " 6C,, 6C,,

Q
19F, 3G 3G 18F, 3G 5G)dz

s A\ = e AT = = 4'2
T &3 5czzczz+T5§ 6Cyr Cyy 2

where A, and A, are the relaxation parameters. For the particular model in
consideration (Giesekus model) A, has the following form :

p
A, =
F o 2A.nK

~ KE -
(1—a)4C,, + 4akB—TC§z] : (4.26)

A, is defined analogously. For the form of the relaxation matrix for a 3-d
flow refer to [2]. The dissipation bracket has to satisfy certain properties. In
the special case of F' = H, we have

dH

which shows conservation of the total energy. From antisymmetry of the
Poisson we have {H, H} = 0 and therefore it follows that:

[H,H] = 0.
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4.4 Derivation of Evolution equations

Using the derived Poisson brackets given by Eq.(4.24) and the dissipative
brackets given by Eq.(4.25), we can derive the evolution equations of the
fibre. The dynamical equation for the functional F' can be written as follows

dF

— ={F,H} + [F, H].

dt
From the Hamiltonian as given by Eq.(4.4) the functional derivatives can be
evaluated to be:

-~

H M,

~— =— = U,
oM, p

0H _ M da
5p 202 dp
§H oU
=" =T

0§ 0§

0H da  EnK  pnkgT

6C,, 0C,, 2 2C,,

H  0a snkyT
OH _ %4 _ o _ Prks (4.27)
5C,,  OC,, Crr

Substituting these derivatives in Eqs.(4.5), (4.24) and (4.25), we get the
following equations:

op 0 (O0H _
o~ 0 (mf)
03§ 0 O0H _ 1A5H5H 1A5H5H
ot~ "o (a—m) TT5E, 8¢, T 5C,, 60,

OM, _ 0 (OH\ 0 (OH -\ - 0 (o0H\ 0 (oH
ot~ Pa:\'sp) 0z \oar, ¢ 0z \ot,) 02\ 35

6, 22 L, O () Ogp O 50 (6 OF
0z \s6C,, 0z \6C,, 0z ac,, 0z 6C,,
oC 0 [~ OH 0 0H - 6H
ed = —_—— — 2——~ zz AZT
ot 0z (CZZ(SMZ> T, (5Mzc 6C,,
oC,, o (-~ O6H o 0H - 6H
- — Q= Crr ~ — a_ ~ rr T & X
ot 0z M, 0z §M, 6C,,
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After substituting the corresponding functional derivatives in the above equa-
tions and performing calculations (see Appendix B), one finally gets the fol-
lowing 1-d system of equations:

e Equation of continuity

%(pA) = —%(PUzA)- (4.28)

e Momentum equation
ov, ov, n 0
= — ’UZ— -
ot~ " 6r "oz

where 7,, = Ec,, — 1 and 7, = Ec¢,, — 1, [2].

pA

(A(Tzz - 7_7"7"))- (429)

e Equations of c,, and c¢,,

dc dc ov 1 KEc
ot e e 0z /\anK< x kT )(c " nksT)
(4.30)
dcyr dcyr v, Crr KEec,,
__ g, 0o OV 1— A EnK — nkgT
ot o T o )\anK< ot kgT )(C " nkpT)

(4.31)

At present, the temperature equation cannot be obtained directly from the
Hamiltonian. From the entropy equation one can get the equation for internal
energy and subsequently the temperature equation.

4.4.1 Energy Dissipation

In the last section we saw the derivation of the equations of melt spinning
from the Poisson-Dissipation bracket formalism. We could derive the 1-d,
cross sectionally averaged equations from the 1-d Hamiltonian. The dynam-
ical equation of Hamiltonian written as:

CZl—lj={H,H}—|—[H,H]=O

shows the conservation of total energy. In case we consider force due to shear
stress at the fibre surface (air drag), then we would have:

dH 1 ,
Pt / §DCD1)Z(UZ —vg)7dz.
Q
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In such a case the total energy would dissipate with time.

From the analysis done in this chapter we conclude that the problem of fibre
spinning can be expressed in the general framework of classical mechanics.



Chapter 5

Numerics

In this chapter we discuss the numerical procedure used to solve the boundary
value problem. Some case studies are also presented to show the sensitivity
of the equations with respect to parameters. Finally results of the numerical
simulations are presented.

5.1 Numerical scheme: Shooting method

Numerical simulations of the free boundary value problem have been done
using a shooting method. Two initial value problems have to be solved.
Both of these problems are coupled through boundary values. We consider
the domain to be Q = [0,1]. One of the boundary conditions at the point
z = 0 is not specified. Instead the final velocity is prescribed at z = 1.
Therefore, a shooting technique is used to match the velocity got from the
simulation with the prescribed final velocity. For convenience we write down
the systems BOC and AOC once more.

The system BOC (Before the onset of crystallisation) reads

w(z) = f(uz)) Vze[0,8)
u(0) = u

where u € R*.
The system AOC (After the onset of crystallization) reads

vi(z) = g(v(2)) Vze (1]
v(§) = v¢

67
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where v € R”.

Remark 5.1 We work with the dimensionless equations as given in Section
2.5.

We give below the main steps of the shooting algotrithm and discuss the
steps in detail in the following subsection.

Algorithm

e Step 1.
Let the vector of initial conditions for the system BOC be denoted by
s where s = [u1(0),u2(0), ;20 Crro]- Here ., is guessed and ¢, is
obtained by solving h(c,,.0, ¢;rp) = 0 as given by Eq(3.7). Let s®) and

zz o denote the ™ iteration values of s and c,, ¢ respectively.

— initialise the index variable 7 to 2.

(i-1)
) and sz 0-

— guess two initial values c,,

e Step 2.
Solve the system BOC using the two IC vectors s and 5. Denote
the solutions of the two systems by u(s®1) and u(s®) respectively.

(i-1)

e Step 3.
Determine the points of onset of crystallization &;_; and &; for the two
systems using the condition uy(s®), &) = Tp,, k=1 — 1,i.

e Step 4.
Solve the system AOC using the interface conditions given by the vector

vor = [vi(s®), &) = ui(sW, &), va(sP, &) =0,
v3(s®), &) = ua(s®, &),  va(s®, &) = us(s®, &),
7)5(8(’c fk) = U4( (k),fk), Us(s(k),fk) =0,

(s®, &) = 0]

V7 S

for k=1i—1,i.
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e Step 5.
Determine the error
€= v — v7(L, sD)]

where v; is the draw ratio (prescribed final velocity/initial velocity).

e Step 6.
Let Tol denote a prescribed tolerance.
If € > Tol then

— Determine the new value of c,, using the secant method

: - , - v — (st 1)
Zzt,l() = Ci’z,l() + (szz,O - szz,l()) U(Si, 1) — U(S;_l, 1)

C

— Update 1 =7+ 1.
— Go to Step 2 and follow the procedure only for the latest value of
i.

Else
Stop

5.1.1 Guessing the initial condition

The initial value of ¢,, at z = 0 needs to be guessed. According to the DMM
model, at the spinneret exit, the melt exhibits a Newtonian behaviour [12]
which is modelled as:

TTT,O _ EOCTT,O —1 - —05

T22,0 B EOsz,O -1
Solving the above equation we get the following expression for Ej:

3

=% (5.1)
2Crr,0 + czz,O

Ey

where Ey, c,, 0, crro Tepresent the values of F,c,, and ¢, at z = 0. From

Chapter3 we know that,
Cz22,0 + 2crr 0
=/ . 5.2
R VAEY A (5:2)
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Substituting the above in Eq.(5.1), we get Ej in terms of ey:

1

Ey = .
0 €8N0

(5.3)

Once the value of c,,o is guessed, then ¢, can be computed using the
definition of E as given by:
L (e)

Ey, =
0 360

Substituting the Langevin function, we have

1
th(3egFy) — — ey =0. 5.4
coth(3eoEp) SeaBy (5.4)
Substituting Eq.(5.3) in Eq.(5.4), we get
3 €0N0
Ny) = coth — —eg=0. .
f(eg, Ny) = co <€0N0> 3 e =0 (5.5)

Let us fix the value of the parameter Ny = 200 which we shall be using
for all our future simulations. (Each polymer molecule is composed of 200
links). Now, we can determine the roots of the function f using the Newton
Raphson method. The root of f(e) is e = 0.0706. From Eq.(5.2) we have

Cozo+ 260 = 3Npe? = 2.9906
sz,o + 2CTT,0 ~ 3
3 — Cz2z,0

2

Negative values of c¢,, and c,, are not realistic as discussed in Chapter3.
Moreover, according to Def 3.1, ¢,,(0) < 0, ¢(0) < 0 are aphysical initial
conditions. Therefore, we put the restriction that c,,o > 0 and c¢..o > 0.
From Eq.(5.6), we see that

Case 1.: for c,,0 <1, ¢po>1 = Cppo—Crro <0

Case 2.: forc;,0 > 1, €0 <1 = Cpp0—Crro >0

(5.6)

CTT,O

We know that 7,, — 7+ = E(c,, — ¢r). Since E is always positive (Section
3.2), a negative value of ¢,, g—c,, o implies a negative normal stress difference.
In general, for a unaxial stretching the normal stress difference is expected
to be positive. For a uniaxial extensional flow the normal stress difference is
written as

Tzz — Trr = NITE
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where 77 is the elongational viscosity and € denotes the elongation rate which
in our case is dv,/dz. A negative stress difference would imply a negative
elongation rate and a decreasing velocity. From the physical point of view,
this seems to be an unrealistic behaviour. Moreover, from Defn 3.1 an initial
condition for which dv,/dz < 0 at z = 0 is an “aphysical initial condition”.
Hence, we restrict the value of c,, o to be greater than or equal to 1.

The condition ¢,y > 0 gives us an upper bound for c,,o namely, c,,o S 3
The bounds for c,, o can be written as

1 S Czz2,0 é 3

Remark 5.2 Although the given bound is a very rough estimate, in the ab-
sence of any other information about the choice of the initial condition, this
actually proves to be useful. Numerically it is seen that for any choice of the
numerous parameters that this model has, the value of ¢, < 1 is a disaster
as the numerics break down completely. From the numerics it is also seen
that 1 < ¢, < 1.02 is the observed bound for c,,o. In all our simulations it
has never exceeded this range.

Remark 5.3 From a physical point of view, a value of ¢,,(0) &~ 1 shows that
the melt is in equilibrium near the spinneret. The polymer chains are coiled
in the equilibrium configuration, [27].

5.1.2 Calculation of ¢,,(0) and E

Once, we choose the value of c,, ¢, the value of ¢, can be calculated in the
following way.

In Eq.(5.5), replace eg by ¢,,0 + 2¢,+0 and solve the equation using Newton
Raphsons method for ¢,..

The value of Fj is determined by solving Eq.(5.4) by again using the Newton
Raphson method. But at each point z down the spinline, for each value of
¢,, and ¢, a new value of F has to be computed and this is done by solving
the same Eq.(5.4) for current values of ¢,, and ¢;,.

Remark 5.4 For c,,(0) > 1, we get ¢,+(0) such that these are plausible
initial conditions.
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5.1.3 Nature of the ODE systems

5.1.4 Note on implementation

The system BOC was solved using the Matlab routine ode23tb. This routine
uses the implicit method with backward differentiation to solve stiff differen-
tial equations. It is an implementation of TR-BDF2 [24], an implicit 2 stage
Runge-Kutta formula where the first stage is a trapezoidal rule step and the
second stage is a backward differentiation formula of order two.

The system AOC was solved using the MATLAB routine odelbs which is
again an implicit method for solving stiff ODEs. It is a quasi-constant step
size implementation of the numerical differentiation formulas in terms of
backward differences, [25].

Observations

The orders of magnitude of some of the parameters in system BOC are:
De, ~ O(1071%) E ~ O(10%) and it was seen that e — 1. The condition
number of the Jacobian of the system was observed to be of the order 107.
From this, we see that system BOC is very stiff. Even though efficient implicit
methods have been applied, the solution exists only in a certain range.

The order of magnitude of some of the parameters in system AOC are: D, ~
O(10%), Dey ~ O(107°). The variable representing the rate of crystallization
z tends to 1. The Jacobian of the ODE system is of order of magnitude 10%°
showing again a highly stiff system. The routine odelbs solves DAE systems
also. Due to the observed orders of magnitudes of parameters, one can guess
that the ODE system could become a DAE system. In both the routines
ode23tb and odelbs the control parameters had to be changed suitably in
order to get the desired results since the ODE systems were exceptionally
stiff.

5.1.5 Calculation of the point of onset of
crystallization &

The criteria for determination of the point £ is T'(£) = T;,,. Since we assume
that the temperature at the spinneret exit, i.e at (z = 0), denoted by Tj is



5.2. Some numerical case studies 73

always greater than or equal to the melting temperature 7,,, the determina-
tion of £ depends on the monotonicity of T. Two questions arise which are
of importance for determining &.

e Does T always decrease monotonically?

e Is it possible that the solution explodes before reaching the point &7

The answer to the first question is "no” and to the second question is
"maybe”! The details about the analysis of the temperature equation have
already been treated in Chapter 3. Here, we just show some numerical ex-
amples which support the analysis done there.

Determination of £ depends on the existence of solution of the system BOC.
As explained in the previous section, solution of the system BOC may not
necessarily exist globally. But we require the solution only in the interval
(0,€). This means that as soon as we determine £ we can terminate the
simulation for BOC.

Fig.5.1 shows the relation between the initial condition and the minimum
and maximum temperatures reached by the system BOC during the course of
simulations. In particular Fig.5.1(top) shows the relation between the initial
guess for ¢,,(0) and the minimum temperature. One sees how in a short range
of the initial guess the minimum temperature reached changes. Since the
determination of the point ¢ depends on whether the melting temperature
is reached or not, it is important to observe the values of the minimum
temperature. Suppose the melting temperature of the fibre happens to be
below the minimum temperature, then the point £ will never be reached.
Moreover, from Fig.5.1(bottom) one can see that the temperature certainly
does not always decrease monotonically with the maximum temperature far
exceeding the initial temperature 7.

5.2 Some numerical case studies

Difficulties in simulations owing to stiffness of the system motivated us to do
some numerical case studies.
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Figure 5.1: Top: Minimum temperature versus initial guess, Bottom: Mazi-
mum temperature versus initial quess
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Figure 5.2: Draw ratio versus initial guess

5.2.1 Relation between initial guess and draw ratio

Fig.5.2 visualises the sensitivity of the ODE system with respect to a change
in the initial guess for c,,. In a small range of initial guess one sees that
the draw ratio changes from around 20 to around 140. This not only em-
phasises the need for a good initial guess but also an efficient algorithm for
the shooting method. Stiffness of the problem can also be measured by the
magnitudes of parameters in the system. The Weisenberg number for the
semi-crystalline phase was found to be 2.3 - 10%* and for the amorphous part
in the semi-crystalline phase was found to be 2.2 - 107% in one particular
simulation.

5.2.2 Dependence on parameters

Some numerical experiments are performed to study the sensitivity of system
BOC with respect to parameters.
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Consider the momentum equation
dv, d [Ty — Ty
dz dz U,

D,

e Let Dy=Dy=D3=D;=0
We neglect all the parameters representing force due to inertia (D),
air drag (D), gravity (Ds) and surface tension (Dy), in the momentum
equation so that we are left with the simplest form of the momentum
equation. The shooting method converges and we see that the solution
of IVP BOC exists continuously even in [0, 1].

e Let Dy #0,Dy=D3=Ds=0
Now we consider the momentum equation with just one parameter rep-
resenting inertial force. Solution of IVP BOC explodes after reaching
&. But since € is reached, shooting method converges.

o Let D1 :O,DQ #O,Dg 7é 0,D4 7é 0
Now, we consider the momentum equation with all the parameters
except the inertial term. Shooting method converges and the solution
for BOC exists over the whole domain [0, 1].

Remark 5.5 In Section 3.1.1, we showed how D, could lead to a possible
singularity making the RHS of the momentum equation singular.

According to the above numerical experiments it seems that D; = pvy/L
representing the force acting on the fibre due to inertia is the parameter
which is quite sensitive to the simulations for the phase BOC. In Fig.5.3 one
can see the relation between D; and the draw ratio which is obtained by
solving first BOC and then AOC. Keeping all other parameters the same
and using the same initial condition for different values of D; ranging from
D; = 0.0040 to D; = 0.0050, the value of the final velocity reached at z =1
is plotted.

Dependence on ODE coefficients

It is seen that just by changing the order of magnitude of some ODE coef-
ficients, the solution either explodes or exists continuously over the domain.
We consider for example, the evolution equation of c,,

dc,, Cyp dU, 1
i av—z i v.De. (1= «a)+aFEc,,) (Ec,, — 1)
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Figure 5.3: Draw ratio versus D;.

where a = 2 is the actual coefficient in the differential equation. By putting
a = 1.9871, we perform numerical simulations to study the effect of this
change on the system. The results with the different coefficients, calculated
with the same initial conditions are shown in the Fig.5.4. The plots reveal
to us the lack of any structure in the system. Just by perturbing the ODE
coefficient slightly we get very different results. This example throws light
on the complexity of the ODE system and infact shows us that the problem
is ill-posed.

5.3 Results

Figs.5.5 to 5.9 show the numerical results obtained on the basis of data
given in Chapter 3 . Results are plotted for take-up velocities ranging from
1000m/min to 7500 m/min.

The results are in good agreement with the expected behaviour of the fibre.
We make the following observations from the results.

e Axial velocity and diameter profiles (Figs 5.5, 5.6)
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Figure 5.4: Axial velocity versus spinlength Left: a=1.9871 Right: a=2

For high take-up velocities the velocity increases at a higher rate. This
sudden increase in the axial velocity results in a sharp decrease in the
diameter of the fibre. The region showing this decrease of diameter
is the so called “ neck” region. As the take up velocity increase this
region becomes thinner as seen in Fig.5.6. At low speeds necking is not
so visible. The point on the spinline where the axial velocity reaches the
take up velocity is called the “freeze point”. With increasing take-up
velocity the freeze point moves towards the spinneret.

Temperature profile

In the temperature plot Fig.5.7 one sees a jump in the temperature
owing to the heat released due to crystallization. This increase in
temperature takes place just near the freeze point when crystallization
is complete.

¢,, and ¢, profiles

Figs.5.8 and 5.9 show the behaviour of the microstructural variables
¢, and c¢... As crystallization proceeds, due to the transformation
from amorphous to semi-crystalline phase, the variables c,, and c,,
representing the conformation of the amorphous melt go to zero. At
the macroscopic level, these variables can be understood as the cor-
responding strain tensor components. As crystallization proceeds and
the fibre becomes rigid, the strain tends to zero.

Rate of crystallization
Fig.5.10 shows the profile of crystallization. One can observe that rate
of crystallization is very slow near the point of onset of crystallization
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which was measured to be approximately 14cm for all take up velocities.
It increases suddenly to reach the freeze point exhibiting the “necking
phenomena”.

e Stress difference
Fig.5.11 shows the profile of stress difference against distance from the
spinneret. This plot has a logarithmic scale. In these profiles necking
is indicated by a strong increase of tensile stress just before the freeze
point.

e Strain rate
Fig.5.12 shows the profile of the strain rate dv,/dz. One observes that
for high take up velocities the strain rate shoots up near the freeze
point and then decays gradually to zero.

In all the plots, one observes that the sudden increase or decrease in variables
takes place just near the freeze point. At the point of onset of crystallization
which is about 14cm from the spinneret exit, there is no noticeable change
in any of the variables.

The advantage of this model seems to lie firstly in the fact that it has taken
into account effects like crystallization and necking along with forces like air
drag, inertia, gravity and surface tension. In this sense the model is complete.
From the numerics, it has been shown that the model is valid for medium
to high speed spinning conditions. The results, as will be seen in the next
chapter are in good agreement with experimental data. Moreover the freeze
point arises naturally here as opposed to other models where it has to be
artificially induced. The disadvantage is the highly stiff system of equations
that arise from the model. Choosing the initial guess in the first challenge.
To apply efficient numerical solvers to the stiff system of ODEs is the next
challenge. The third challenge lies in fitting the model parameters to the
experimental profiles. However, we have done the simulations for take-up
velocities as high as 7500m/min which have not been done earlier using this
model to our knowledge. Usually, the higher is the take-up velocity, more
difficult are the numerical simulations. In this context, this model has proved
to be very robust.
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Remark 5.6 The change induced in the original DMM model in terms of
the interface condition at the point of onset of crystallization was not found
to influence the result significantly.

Remark 5.7 All the simulations in this chapter have been done with con-
stant model parameters as given in chapter3



Chapter 6

Industrial Application

In this chapter we present a comparison of our simulation results based on
gwen industrial data by Freudenberg & Co with the experimental profiles
provided by them. In particular, we compare the axial velocity profile of
the fibre with the experimentally measured profile under different spinning
conditions.

6.1 Simulations and comparisons with
experimental data

Simulations have been performed for four sets of data and the material used
is PET. The material properties of PET are tabulated below.

Property | Value Units
Density | 0.98 g/cm?
Zero shear viscosity 163 Pa s
Thermal conductivity | 20900 | calories /cm s °C
Melt shear modulus | 952000 Pa

Table 6.1: Material properties of PET
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Process parameter (units) | Datal | Data2 | Data3 | Data4
Diameter (mm) | 0.5 0.5 0.5 0.5
Melting temperature (°C) | 300 290 290 290
Velocity of quench air (m/s) | 0.5 0.4 0.4 0.4
Temperature of quench air (°C) | 70 27 27 27

Take up velocity (m/s) | 83.2 | 51.04 | 58.65 | 64.82

Length of the fibre (mm) | 2000 750 750 750

Mass throughput (gr/min) | 1.16 0.63 0.86 0.86

Distance for quench air (mm) | 300 | 50-400 | 50-400 | 50-400

Table 6.2: Table of data

We observe that for various processing conditions, the numerical results are
in very good agreement with the experimental profiles. We must remember
the sensitivity of the numerics to the process parameters. These simulations
have been done for spinlength ranging from 750mm to 2000mm, quench air
temperatures as different as 70°C and 27°C and take-up velocities ranging
from 51.04 m/s to 83.2 m/s. In Fig.6.4 we see a slight disparity of the
numerical profile from the experimental one. This could also be attributed
to error is measurements as will be described in the next section. However,
it should be observed that the freeze point has been predicted to be fairly
close to its experimental value in all the cases.

6.2 Note on experimental measurements

The experimental profiles that have been shown here are only the mean values
of the various sets of measurements taken at different points down the spin
line. Therefore, they can by no means be regarded as the most accurate
measurement, of velocity down the spinline. Also since the measurement
takes place in the presence of hundreds of other fibres, error in measurement
cannot be excluded. This could account for the disparity in the experimental
and numerical profiles at some places.

Remark 6.1 For these simulations we had to change some of the model
parameter values which we took from [11]. The correct choice of parameters
s a matter of fitting the parameters to experimental profiles. Due to the lack
of such data we did not perform such a fitting. Much work has been done by
Doufas et al, [11], [13], in this regard.
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Conclusion

We did an investigation of the DMM model of melt spinning which takes
into account effects of inertia, air drag, gravity and surface tension in the
momentum equation, heat exchange between air and fibre surface and viscous
dissipation in the temperature equation and crystallization. Moreover, the
model has a complicated coupling with microstructural equations in the two
phases BOC and AOC. We made two changes in DMM model concerning the
air drag and an interface condition. However these changes did not influence
the results in a big way. The mathematical problem associated with the
model is a non-linear, coupled, free boundary value problem. The analysis
showed that the solution depended heavily on the parameters and initial
conditions. We showed that a global solution of IVP BOC in general does
not exist. Therefore we were led to look for a maximal solution. By defining
a physically acceptable solution, it was shown that for a more restricted set
of initial conditions, if a unique solution exists for IVP BOC then it is a
physically acceptable solution. For this we proved the important property of
positivity of the conformation tensor. Further, we showed that if a physically
acceptable solution exists for IVP BOC, then under certain conditions it also
exists for IVP AOC. This gives an important connection between the initial
conditions of IVP BOC and the existence of solution of IVP AOC.

A new investigation was done for the melt spinning problem in the frame-
work of classical mechanics. We derived appropriate Poisson brackets for the
1-d flow of viscoelastic fluid. From the 1-d Hamiltonian, we derived cross-
sectionally averaged mass, momentum equations of melt spinning along with
the microstructural equations. These studies show that the complicated
problem of melt spinning coupled with microstructure can also be studied
under the framework of classical mechanics. This work provides the basic
ground work on which more investigations on the dynamics of a fibre could
be done.

Numerical simulations were done in MATLAB using inbuilt routines to solve
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the IVPs arising in the problem and applying a shooting method to solve
the boundary value problem. We did some numerical case studies to study
the sensitivity of the ODE systems with respect to the initial guess and
parameters. These experiments support the analysis done and throw more
light on the stiff nature and ill-posedness of the ODE systems which show
that both numerics and analysis of such a system of equations is a very
challenging task. However, to validate the model, simulations were performed
on sets of data provided by the company Freudenberg Nonwovens group and
comparison of the numerical result (axial velocity profile) was done with the
experimental profiles provided by them. The numerical results were in very
good agreement with the experimental profiles.



Appendix A

Polymer physical properties

In this appendix we give a summary of the models of material properties of
polymer as taken from [12].

e Zero-shear viscosity of the melt

E4(280 — T) O
1099.2(T + 273.2)
where E 4 is the activation energy typically taken as 13,500 cal/mol for
Nylon. The relaxation time A, is calculated from Eq.(1) using the
relation A\, o = 10/G.

no = 10(280°C') exp (

e Heat capacity
The heat capacity C, is a function of temperature and crystallinity

Cp = CsZdoo + C1(1 — T¢oo)

where Cj is the heat capacity of the crystalline region and C' is that
of the amorphous region.

Cs (T) :Csl + CSQT + 053(T)2 (2)
C1(T) =Cy1 + C1oT + C13(T)? (3)
e Heat of fusion
T2 T3

AHy(T) = AHf(O)+(Cn—Csl)T+(012—052)7‘1‘(013—053)? (4)

where AH{(0) is a reference heat of fusion taken to be equal to 50cal/g
for Nylon.
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e Crystallization parameter
The Avrami constant K, used in the evolution equation of rate of
crystallization is described by:

4xN, \ /3 T —141\2
_ . -3 u _ -
K. (T)=147-10 <3¢oo,is> exp ( ( 1733 ) (5)

where N, represents the number density of nuclei initially present
within the melt spinneret. A typical value of N, is taken to be 10!° per
cm?®. The ultimate isotropic crystallinity ¢ ;s is taken as 0.5.

e Physical properties of quench air
— Density : p, = %(g/cm%

Vi . 1.446-10~°T} 5 .
— Viscosity : fla = —7 37735 — (poise)

— Thermal conductivity: &k, = 4.49 - 107777 (cal/cm s°C)
where T;(K) is the temperature defined as the arithmetic mean
of the filament temperature and the quench air temperature.

The heat transfer coefficient is modelled as:

0.167

2
5 _ 0.42[€aReO.334 [1 + ( SUC ) ] (6)

D VU, — Vg

where v, is the horizontal component of the velocity and v, the down-
ward component of velocity.



Appendix B

Derivation of fibre spinning equations from hamil-
tonian

The functional derivatives with repect to the Hamiltonian Eq.(4.4) are as
given in Section (4.4). To understand the steps of the calculations better we
repeat those equations got by susbtituting the derivatives in the dynamical
equation for F' :

0 0 (6H _
= 5 f) 7)
@__3(5118) 1. 6H (5H+1A §H 6H )
ot 0z \6M T ?6C,6C, T '6C,6C,
aM o (6H o ( 6H -~ - 0 (6H o (6H
o =) o (=M ) — Mo (=) =55 ( ==
o~ oz (5p> 9 <5MZ ) E (aMz) "oz (5)
6.2 ( ) (5_H) L P95 0H 0 <c5_H)
8 5sz 507‘1‘ 82 aczz 8z 507‘7‘
9)
oC 0 ([~ OH 0 6H oH
2z — 22— —Cy— Ay—— 1
ot 0z ( “ 6, ) T8z S M, Ces °5C,, (10
oC 0 [~ O6H 0 0H - SH
mo_ Y r—— | — ———C, — Ar—~ 11

Now, let us consider the above equations one by one. First consider Eq.(7).
Substituting for the functional derivatives, one obtains

L= ()
at 9,0
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Substituting p = pA in the above equation one gets the continuity equation.

2 (pA) = =2 (p0.) (12)

Now consider Eq.(8). Substituting the functional derivatives in the equation
one gets

dM, _ 0 (_ M\ .0 (oU\ o (M\ ., 0 (M
at ~ Paz\"22) Paz\ap) 0z \ 5 292\ 5
o (oU .0 ([ oU -0 ([ oU ) - U
A a~ - 22~ =~ - S = a 2 zZ ~
°92 (ag) Carg, (acz) O (aCW>+82 ( ¢ ac”)

i (mé;f)
6,2 601"7“
(13)

The second, fifth, sixth and seventh terms in the above equation can be
written as follows:

0 (oU) o (oU) 5 00U
Po:\op | 0z \ 03 92 \ 9C.n

—_2 _Ng_{g@_ S 80 +@@+@%+ aU 8éaa

“ o\ Pop a5 .. ) Tep0: " 950z oc,, 02
0 ou U . U -

== | —p== — s - 14
2 ( Pa; ~*as  Cea 9Can U) (14)

In the above equation the term with C,,,, represents the sum of corresponding
terms with oo = z,r. After expanding Eq.(14) one can verify that:

0 (oU) o faU) 5 00U\ _
Poz\op ) "02\ 03 oz \ac.. |~

After doing some more manipulations we get the following momentum equa-

tion: ~ ~ ~
oM, 8, , .8 (- U o (- oU
o = 0.2, (C“aé ) *52 (C"aar)

zZ

Substituting 7aa = 2Caa -2~ we get

(6767 6C~’ao¢

GMZ _ 0 ~ 92 a%zz _ 87~_r7‘

i LR e vl
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Using the continuity equation one can get the momentum equation as follows:

ov ov 0

AL = —pAv,—Z + p=—

P o P05, * P2

The evolution equations for ¢,, and c,., after substituting for the relaxation

parameters in Eqgs.(9) and (10) and using the continuity equation are the
following:

(A(T2z — Tor)) (15)

0c,, 0c,, ov, Caz KFEe,,
5 = Vg, + Cor g~ ~ Nk (1 —a+ T ) (c..EnK — nkgT)
(16)
0Cpr 0c,r ov, Crr KEec,,
= —, — Cpp—— — 1-— TT'E K — T
ot o T o, )\anK< “ kT )(c " nksT)
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Notations

As general conventions, scalar-valued quantities are denoted by normal-sized
letters (x), vectors and tensors by bold face letters (n).

Furthermore, we have used the following notations:

Variables
z  z-coordinate o stress tensor
r  r-coordinate T  shear stress tensor
@  O-coordinate D deformation rate tensor
vg velocity in f-direction ¢  conformation tensor
v, velocity in r-direction S  orientation tensor
v, velocity in z-direction n  normal vector to the free surface of the fibre.
D diameter of the fibre Kk, curvature of the fibre in r direction
o, surface tension kK, curvature of the fibre in z direction

Physical and rheological parameters

Ty
T
Vg
Ve
p
Pa

o
No

temperature of air

melting temperature of polymer

downward component of quench air velocity
horizontal component of quench air velocity
density of polymer

density of air

zero shear viscosity of polymer

number is statistical links
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TTErTE o

melt shear modulus

heat capacity of the polymer
acceleration due to gravity
thermal conductivity of air
heat conduction coefficient
heat transfer coefficient
viscosity of polymer
viscosity of air



98

Notations

Processing conditions

UL
U;
w
Ty
D,
L

take-up velocity

draw ratio

mass throughput

temperature at exit of spinneret
diameter at spinneret exit
length of the fibre

Mathematical symbols

Dot product u-v=2u;v;
Dyadic product u® v = [uv,];ij=1.3
Tensor product 7 :7 =X}, _ 77

Numbers and constants

relaxation time of amorphous phase
relaxation time of semi-crystalline phase
Weisenberg number of amorphous phase
Weisenberg number of semi-crystalline phase
air drag coefficient

Boltzmann constant

Hookean spring constant

length of a statistical link
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