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1 Introduction

The portfolio and consumption problem is a well-studied problem in mathematical finance
(see e.g. Karatzas and Shreve (1998), Korn (1997), Merton (1969, 1971, 1990)) and typically
consists of maximising the expected utility from terminal wealth and/or consumption until
the time horizon of an investor who is endowed with a fixed initial capital. As a non-
standard feature we here include the presence of either a fixed pay in scheme or an a priori
given deterministic consumption plan of the investor. The first feature can be interpreted
as an investor having an investment plan into a fund and the resulting problem then is
to determine his best suited investment fund. The second feature simply means that the
investor has to finance (parts of) his living expenses from his stock holdings. This problem
and also our findings are similar to the results of El Karoui and Jeanblanc-Picqué (1998),
but differ in both the methods used and in some aspects of the model. In particular, we will
rely on the stochastic control approach via solving the HJIB equation explicitly.

We will recall some basic definitions and formulate the problem in section 2. Section 3 will
contain explicit results in the case of constant continuous consumption streams. Discrete
consumptions will be dealt with in section 4. Section 5 will present a generalization including
both cases for income and section 6 will illustrate the behaviour of the portfolio processes.

2 The Model and Some Basic Definitions

We consider a securities market where we have continuous and discrete monetary streams.
The continuous streams are modelled by a deterministic, right-continuous and bounded
function ¢(t). The discrete monetary streams takes place at fixed time instants tq,...,t,
with 0 < t; < ... < t, < T and are given by amounts D, at times ¢;. The continuous
streams are introduced for modelling continuous consumption or income streams which are
invested at the stock market. So they are rates of consumption and/or income. The discrete
streams model lump sum consumption or income. As both are deterministic they can be
seen as already fixed future demands or investment schemes of the investor. Further, we
assume that the investor can trade in a bond and a stock with prices given by

dPo(t) = Po(t)rdt, Py(0) =1,

dPi(t) = Pi(t)[bdt +odW(t)], P1(0) =p1,

with 7,b, o real constants, o > 0 and {W (), F; },e[0,7] @ one-dimensional Brownian motion.
In the presence of a continuous monetary stream c(t) and a discrete monetary stream D;
as above, the wealth process X™(¢) of an investor who follows a portfolio process 7(t) is
generated in the following way: On (¢;,¢;41) it is given by

AX™(t) = [X™(t)r + X7 ()(b — r)7(t) + c(t)]dt + X" (t)on(t)dW; (1)

for i = 0,...,n, with tg = 0,t,41 = T. At time instants t1,...,t, we have the following
jump condition

X7™(t;)=X"(ti—)+ D; . (2)
Our goal is to maximise the power utililty of the final wealth, i.e.
1
o(tr)= sup BV {wa] , 3)
TEA(t,x) 0
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where A(t, ) is the set of admissible portfolio processes, i.e. for all progressively measurable
processes ™ € A(t, z) the wealth process (1,2) with initial condition X™(¢) = z has a solution
{X™(s) }+epe, 7], and meets the conditions

E (/T |w<s>|’“ds) < oo,

E< sup |X”(s)|kd5> < o0

s€t,T]

for all k € IN, and X™(s) > 0 for all s € [t,T] (For a detailed derivation of the wealth
equation see Korn and Korn (2001)).

3 Constant Consumption Stream
As a first task we consider the case of a constant consumption process, i.e. we assume
c(t)=—-c (4)

for all t € [0,T] and some ¢ > 0. The HJB-equation corresponding to our problem (3) then
has the form

max {1om%0° 2% vy, (t,2) + (re+ m(b— 1)z — ¢) v, (t,2) + vy (t,2)} =0 (5)
with the obvious final condition
v(T,x) =Yy (6)

and an appropriate boundary condition derived below. Ignoring this condition for the mo-
ment we note that a naive separation approach of the form

v (t, ) = tha' f (1)

(see e.g.Korn (1997)) will not yield the explicit solution of (5-6). In fact, the constant term
¢ in the HJB-equation is the reason for this approach not going through. The basic simple
trick to solve our problem however, relies on the idea to devide the investor’s initial capital
x into a part needed to cover the payout stream for consumption and a remaining part
which can be used for investing in the financial market. We first determine the minimal
initial capital x1 needed to finance the consumption stream via pure bond investment. The
corresponding wealth process Y (¢) of future obligations obeys the following integral

T
Y ()= / exp(—r(t — s))(—c)ds,
t
which equals
Y ()= (1 —exp(—r(T—1)))
and determines z; via

r1 ==Y (0) =<£(1—exp(—rT)) .
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Subtracting this value from our initial capital z and investing the remaining amount ac-
cording to the optimal portfolio process of the pure optimal terminal wealth problem which
equals

_ b—r

C ot (1-7)

(see Korn (1997)) leads to the following guess for the optimal wealth process

7 ()

X)) = (o= -ep(=rD))exp (W(T)le—1/2(;’1_2))2)15 (7)
b—r .
+mw(t) +¢(1—exp(—r(T—1)))

with an expected final utility of
E (%X (T)”) =2 (z— (1 —exp (=rT)))" exp (’y (r + 1/ (%)2 ﬁ) T) :

Note in particular that for a given initial wealth smaller than z; the constant consumption
rate process ¢ cannot be financed at all. This is also true as a boundary in time. The
investor’s wealth is never allowed to drop below —Y (¢) to ensure that all the necessary
future consumption payments can be covered. Thus, starting from an initial capital bigger
than = the investor has to stop all his risky activites at time t if his wealth reaches

< (1—exp(—r (T —1))) .
This fact adds the additional boundary condition
v(t, ¢ (1—exp(—r (T —1))) =0 (8)

for all ¢ € [0,7] to the HIB-equation. Observe, that the boundary condition (8) ensures,
that the wealth is always greater or equal to zero. Verifying the HJB-equation (5-6) together
with this boundary condition proves optimality of the above described strategy:

Theorem 1 Optimal control with continuous consumption
Let our initial capital x satisfy

1 —exp (—rT)
c————=.
r

xr >

(9)

Then, the value function v(t, z) of our optimisation problem (1-3) with a given consumption
rate of ¢ > 0 is given by

o(t,z) = Eb (%X (T)W)

(z— <1 —exp(—r (T 1)) exp (7 (7“ + 15 (%)2 ﬁ) (T - t)) (10)

for all pairs (t,z) with t € [0,T] and x € [< (1 —exp (—r (T —1))), 0).
The corresponding optimal portfolio process has the form

=2~

b—r [

T

1 %(1—exp(—r(T—t)))}. (11)
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Remark
Note the following limiting behaviour of the portfolio process

0,ifx | £(1—exp(—r(T—1)))
™ (t) - b—r "

m, lfx — Q0
Le. the influence of the consumption vanishes if the wealth process approaches infinity while
the consumption requirements do not permit stock investment if all the capital is needed
for consumption. In particular, the boundary condition (8) is met.

Proof of Theorem 1

Standard verification theorems (see e.g. Fleming and Soner (1993) or Korn and Korn
(2001)) yield that a smooth and polynomially bounded solution v(¢, z) of the HJB-equation
(5-6) is indeed the value function of our optimisation problem. In doing the first step to
arrive at this solution, we perform the optimisation in (5-6) which results in the candidate

7T(t):_b—r Vg

02 TULy

for the optimal portfolio process and hence leads to the equation

b—r\> v
vt—|—(m:—c)vx—1/2< . ) = =0,
which has to hold for all pairs (¢, 2) with ¢ € [0,7] and x € [£ (1 — exp (-7 (T —t))),0) as
points outside this set cannot guarantee to satisfy the consumption requirements for sure.
We now verify that v(¢,x) as given in (10) solves this equation. To make this easier we
introduce

A (x_cl—exp(—r(T—t))>7 B:exp('y(r—kl/z(b%)zﬁ) (T_t))

r

and for the moment omit noting their dependence on x and t. Via v = %AVB this leads to

v = Aleexp(—r(T—0)B-AB (r+hrks (42)°)
Uy = A’Y_lB
Vpg = (’y — 1) A 2B

and to

— e\ 2 2
vt+(rx—c)vx—1/2(b T) s

g

= (re—c)AIB 41 (b;T

)2 ﬁAvB + A" cexp (—r (T —t)) B

—_A'B (7’—|— 1/ (b?TT)Q L)

1—~

= A"!'Bl(rz —c) +cexp(—r (T —t)) — Ar] = 0.
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As a further result we obtain the optimal portfolio process as

b—r v, b—r

= — = 1— < (1—exp(—r(T—1))).
w(t)= T = S (- S (e (r (T - 1)
As this process is bounded on the admissible set for (¢, x) the corresponding wealth equation
has a unique solution and also all requirements on an admissible control are met. O
Remark

Note that the form of the optimal portfolio process corresponds exactly to the strategy of
dividing the initial capital into
1—exp(—rT)

q::ajl—i—xg:cf—i—(x—ml)

and then leaving 27 in the bond to pay out all the consumption requirements, taking the re-
maining part x5 and investing it so as to solve a portfolio problem without any consumption
at all. The second term in the brackets of the relation (11) defining = (¢) is thus a conse-
quence of the consumption requirements. It can easily be verified that 7 (¢) satisfies all the
integrability requirements of a portfolio process. The amount

cl —exp(—r (T —1))

has to be withdrawn from stock investment to make sure that the required consumption is
safe.

4 Lump sum consumption

In contrast to the previous section we now assume that consumption takes place at fixed
time instants t1,...,%, with 0 < t; < ... < t, < T and is required to equal amounts
C; > 0 at times t;. This is now a consumption stream with all mass concentrated at isolated
points. However, the idea to put aside at ¢ = 0 the required money to satisfy the needs for
consumption and to invest the remaining capital as if there were no consumption at all, will
stay valid here, too. Note that for paying in a consumption of D; = —C; < 0 at time ¢; (i.e.
to pay out C; > 0 )one needs an amount of money of

Cief'r(tift)

at time t < t; to attain C; via riskless investment on [t,t;]. We therefore get the following
condition for the wealth process to satisfy

X(t)> > Cie "7 te0,7]. (12)

it >t

Note that by the form of this requirement we also indicate that X (¢) is the wealth at time
t after the possible consumption at time t has been made. More precisely, we have

X(t;) = X(ti—) = Ci. (13)

As X (t) is discontinuous at the times of consumption ¢;, we cannot expect the value function

1
v(t,r) = sup E“F {X“(T)q (14)
TEA(t,x) Y
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to be continuous at t;. Instead, we must have
v(t;, x — C;) =v(ti—, x) (15)

for all z satisfying (13) in place of X (¢). However, on intervalls (¢;,t;11) v(¢, x) should satisfy
the usual HJB-Equation as we will prove in the verification theorem below. We summarize
our consideration in

Theorem 2 Optimal control with lump sum consumption

For a given set of consumption requirements C; > 0 at times t;, 1 = 0,...,n with 0 < t; <
oo <tn, <T, let our initial capital satisfy
x> Z Cie =t (16)
it >t

Then the value function of problem (14) is given by

.
1 pal(b=r\2_1 \(p_
v(t,x) = S (x— Z Cie_’"(t"_t)> e'y( +3 (%) 1*7)(T 2 (17)

ity >t

for all pairs (t,z) witht € [0,T] and x € [Y
portfolio process has the form

it,5¢ Cie ™17 00, The corresponding optimal

(t) (18)

202(1—7 x

b—r 1 Diitist Ciemrtt=t)
) - .

Proof of Theorem 2

The verification theorem 3 below indicates that v(¢,z) is the unique (piecewise) smooth
solution of the corresponding HJB equation that also satisfies the jump condition (15).
Similar as in the proof of Theorem 1, we can verify that v(t,z) as given in (17) above
has these properties and hence coincides with the value function. One can also obtain the
optimal portfolio process then directly as

) b—r vy(t,x) b—r ) D it Cie =t
T = — frnd —
02 xvg(t,z)  o2(1—7) x

where at times t; we have taken the right-continuous limit of the derivatives. O

It thus only remains to prove the verification theorem:

Theorem 3 Verification theorem for lump sum consumption
Let g(t,z) be a polynomially bounded solution of

1
sup {5027r2:1729m(t, )+ zfr+w(b—1r)g.(t,x) + g:(t,x)} =0 (19)
TE[—a,a]
forallt € [0,T]\ {t1,....ta}, & >3 o cie”" 47D and some fived a > 0.
g(ti,x—Ci) = g(ti— ) (20)
g <t, > Cie—r“i—f)) =0 (21)
ity >t
1
g(T,z) = —a” (22)
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which is in CY2 on (t;, tiv1),i =0,...,n with tg = 0,t,1 = T. Le further be

b—r g.(t,x)
02 Tgy.(t,x)

T (t,x) = — € (—a,a)

(where in points t; we take the right hand limits of the derivatives). Then, g(t,z) coincides
with the value function v(t,z) , and 7*(t, X™ (t)) is an optimal portfolio process.

Proof of Theorem 3

Let g(t,x) be the asserted solution of (19)-(22). Let w(.) be a portfolio process with corre-
sponding wealth process X™(¢) satisfying the initial condition (12) and 7 (t) € [—«, a]. We
then have:

g XT(0) = gt X (t) + /

5 {gt + g X" (s)(r +7(s)(b—1)) + %U2W(s)2X“(s)29m ds

4 / 4o X™ ()0 (s)dVV (5)

tie

for i¢ = max{i|t; < t}. From (13) and (20) we have
g(tie, Xﬂ—(tie)) = g(tie—, Xﬂ-(tie) + CZ) = g(tie—, Xﬂ'(tie—))

Thus, starting at (¢s,2) we can apply the It6-formula to obtain inductively

g(t, X" (t)) = g(ts,x) + /t . [gt + g X" (s)(r+m(s)(b—1)) + ;JQW(S)QX”(S)QgM] ds

s

> / {‘“ 9 XT(s)(r 4 m(5) (b= 7)) + irf%(s)?Xﬂ(s)?gﬂ} ds

i=ib

1¢—1

+ Z /t i+1g$X”(s)o7r(s)dW(s)

i=ib "

o 4 0 XN +7(6)0 = 1)+ (X (6 |

+ / 9 X" (s)om(s)dW (s)

tie

where i® = min{i : ¢; > t,}. Due to the definition of g(¢,z) in (19), the fact that 7*(t)

attains the supremum in (19) and lies in [—«, o] we have
U (glt, X7(1) < B (g(t, X))

for all t € [0,T] and 7 € A(ts, z) (note the polynomiality of g(¢,z) and the boundedness of
7(.), and 7*(t) ) and in particular

g (L)) = B o xn) < B (o x7 ) = £ (3 (xm @)
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As 7(t) € (—a, ), (t) is an (interior) optimal control, which is still optimal if we make
o arbitrarily large. Hence v(t, z) = E*® (¢(T,X™ (T))), and using (19) we get

o(t,x) = B (g(1.X™ (1)) = g(t.)

5 Generalized consumption and income

In the following we investigate the portolio problem with both consumption and income
simultaneously. In both cases we deal with continuous and discrete monetary streams. More
precisely, we assume that discrete consumption and income takes place at fixed time instants
t1,...,t, with 0 < t; < ... <t, <T and is required to equal values D; at times t;, where
D; > 0 means income and D; < 0 means consumption. We denote the continuous monetary
stream by ¢(t), where again ¢(¢) < 0 stands consumption and ¢(t) > 0 for income. Having
seen both the relevant idea and the solution of the HJB-equation in sections 3 und 4, it is
easy to figure out the necessary ingredients to solve the problem in the generalized case. Of
course, if the value of future obligations is positive, we then do not have to set aside capital
at the beginning. Just the opposite, as we are certain to get more capital in the future we
can already take advantage of it. More precisely, we raise a credit to invest future income
today to get a higher overall-return.

Observe, that the sign of the present value of future consumption and income can be changing
over time. The main idea now is to add this present value - independent of its sign - to our
wealth and to invest this then obtained capital as if there were no consumption or income
at all.

The value of discrete streams D; with t; > t equals

S Dy,

ity >t

The value of the continuous monetary stream ¢(s) at time ¢ equals

T
Y(t) = / exp(—r(s —t))e(s)ds.
t
In total, we get the following condition on the wealth process

X(t)=-Y(t)— > Die""0 - telo,T). (23)

ity >t

We solve this optimisation problem by using u(t), the amount of money invested in the
stocks as control process, instead of 7(t). The wealth process then has the representation

dX(t) = [X(#®)r + (b— r)u(t) + c(t)]dt + u(t)odW; (24)
on (t;,t;+1) and the jump condition equals

X(t;) = X(ti—) + D;. (25)
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Note that by the form of this requirement we also indicate that X (¢) is the wealth at time
t after the discrete payment at time t has been made. We get the following value function

1
v(t,r) = sup E"* [X“(T)'Y} (26)
ue A* () Y
with the obvious jump condition
v(ti, x + D;) = v(t;—, x) (27)

for all x satisfying (23) in place of X(¢) and A*(t,x) the corresponding admissible
set of controls for u(t). However, on intervalls (¢;,t;11) v(t,2) should satisfy the usual
HJB-Equation as we will prove in the verification theorem below.

Remark
The corresponding boundary condition of the value function is

v (t, =Y (t) - Z DiGT(tit)> =0.

it >t

So if the value of future streams is positive at a particular time instant ¢ € [0, 7], the domain
of v(t,r) and the corresponding control includes points (¢, ) with x=0 (in particular (¢,0)).
So looking at the optimal controls (11) and (18) we see that just copying the methods of
section 3 or 4 cannot work, since m would not be defined for x=0. We therefore overcome
this problem by choosing as control u(t), the process of money invested in the stock instead
of the portfolio process 7(t). However, the main ideas will stay valid here.

Theorem 4 Optimisation with consumption and income

For a given set of discrete streams D; at timest;, i =1,...,n ,with0<t; <...<t, <T
and a continuous stream c(s) with present value Y (t) = ftT exp(—r(t — s))e(s)ds , let our
initial capital satisfy

x> =Y(t)— Y Die (28)

ity >t

Then the value function of problem (26) is given by

.
1 prl(B=r)2 1 Y p_
o(tw) = <x+Y(t)+ > Die_r(“_t)> (P (555)" ) (-0 (29)

ity >t

Jfor all pairs (t,z) with t € [0,T] and x € [-Y(t) — Dt D;e~"(t=%) ‘o0). The correspond-
ing process of amounts of money invested in the stock has the form

u'(t) = v [X(t) +Y () + Z Die_r(t"’_t)] .

1ty >t
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Proof of Theorem 4
The HJB-equation corresponding to our problem has the form

Su]II)% {100 vy (t, ) + (rz + (b— 1) u+ c(t)) vy (t,2) + ve (t,2)} =0 (30)

for all pairs (t,2) with ¢ € [0, T]\ {t1,...,tn} and t € (=Y (t) = >, o Die (=% 00) and
boundary conditions

v(T,z) = 1z
v (t, =Y () — Z Die_’“(“_t)> = 0
ity >t
v(ti,x+D;) = v(t;—, x)

The verification theorem 5 below indicates that v(t,z) is the unique (piecewise) smooth
solution of the corresponding HIB equation that also satisfies the jump condition (27).
We will verify that v(¢,z) as given in (29) above has these properties and hence coincides
with the value function. In doing the first step to arrive at this solution we perform the
optimisation in (30) which results in the candidate

b—1 v (t, )
0% wg(t,z)’

u(t) = —

where at times ¢; we have taken the right-continuous limit of the derivatives. For the optimal
portfolio process and as a consequence this leads to the equation

g

vt+(rx+c(t))vm—1/2(b_r)2Ug o,

which has the same domain as the HJB-equation (30). We now verify that v(¢,z) as given
in (29) solves this equation. To make this easier we introduce

A=z+Y()+ Z D;e "t B =exp ('y (r + 1% (bTT’”)Q ﬁ) (T - t)) .

ity >t

This leads to

Ut

AT (Y’(t) +r Yy Die"“m—“) B—A'B (r + b (b;J)Q)

it >t
v, = AYB

Ve = (y—1)A"?B
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and to

v+ (rz +c(t)) vy — 1o <br>2 ;.

g Vex

= (re+c(t) ATIB 41 (1) = AB+ A <Y’(t) +r Y Diemrti

ity >t

g

_A'B <r+ 1/ (b—r)2 L)

= A"'B

(ra + c(t)) + (Y/(t) +r Z Dier(tit)> — Ar

it >t

= A" Ble(t) +Y'(t) - Y(t)] = 0.

As a further result we obtain the optimal portfolio process

wi=-tr e o e (X(t) +Y () + Y Die?”(tit)) .

02 Ver 0% (1=7) itty>t

where at times t; we have taken the right-continuous limit of the derivatives.

It thus only remains to prove the verification theorem.

Theorem 5 Verification theorem
Let g(t,z) be a polynomially bounded solution of

1
sup {iozuzgm(t, x) + [xzr + (b —r)ulg.(t, ) + g:(t,2)} =0
ﬂER

forallt € [0, TI\ {t1,...,tn}, 2 > =Y () =>4 Die~"t=) and

(v )
1ty >t
g(T,.’I} = -2
) Y

which is in C*% on (t;,tiv1),i=0,...,n with to = 0,t,+1 = T. Le further be

b—r g.(t,z)
02 guu(t, )

u*(t,x) = —

11

>B

(where in points t; we take the right hand limits of the derivatives). Then, g(t,z) coincides
with the value function v(t,z), and u*(t, X" (t)) is an optimal control process for problem

(26).
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Proof of Theorem 5

Let g(t, ) be the asserted solution of (31-34). Let u(.) be a portfolio process with correspond-
ing wealth process X*(t) satisfying (23). Again, we apply It6 formula to obtain inductively
for each admissible control process u(.)

s X0 =g(ta) + [ o X+l -1+ ) + G0l

[ gousave)

s

+ i /:H |:gt + g (X“(s)r +u(s)(b—71) +c(s)) + éogu(s)zgm} ds

i=ib

+ Z/tl - gzou(s)dW (s)

i=ib

+ /t {gt + g (X“(s)r +u(s)(b—r) +c(s)) + ;U2u(s)2gm} ds

t
+ / geou(s)dW (s)
tie
where i® = min{i : ¢; > t,} and i® = max{i : t; < t}. Due to the form of u*(t,z) (an affine
linear function of X*(t)), X*(¢) is the unique solution of the corresponding wealth equation
. Furter as g(¢, x) solves (31) and the fact that u*(¢) attains the supremum in (31) we have:

Bt (i (X"(T))V) = B (g(T, X*(T)) < B'* (9(T, X" (T))) = B (i (x+ (T)y)

where the expectations are finite due to the polynomiality of g(¢,x). Hence:

o(t, ) = Bt (g(T, Xﬂ"(T))) = g(t, z).

6 Numerical illustration and conclusions

To illustrate the behaviour of the portfolio process in the different situations presented so
far we give some numerical examples:

Figure 1 corresponds to the continuous consumption case in section 3 with T = 1,
b=12%, r = 5%, o = 20%, v = 0.5 and consumption rate ¢(t) = —500. The optimal control
without consumption would be 7/ = (13#
the optimal control 7 (¢, x) converges to 3.5, since the amount of consumption, which has to
be financed from the wealth is decreasing with time, and so we have more and more money

left over to invest in stocks. For increasing wealth x and constant ¢ the optimal control

= 3.5. We see that for ¢ — 1 and x constant
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converges again to 3.5, since the role of consumption compared with total wealth can then

be neglected. On the other hand, for z — ¢

1—exp(—r(T—t)) 7T(t m)

converges to zero, since if

X(t) = cw, all wealth is needed to finance future consumption.
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Figure 1: Optimal control with continuous consumption

Figure 2 shows the optimal control for the discrete consumption case in section 4 with same
stock parameters as above but lump sum consumption with At = 0.2 and D; = —100. It
is not surprising, that we get jumps at consumption time instants. Besides this effect, the

behaviour coincides with that of Figure 1.
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Figure 2: Optimal control with lump sum consumption

Figure 3 and Figure 4 illustrate the difference between continuous income and consumption,
where we used the same parameters as before, except ¢(t) = +500 for the income rate.
Note, that we changed the control process to be the amount of money invested in the stock
instead of the portfolio process. In the case of income the optimal control decreases over
time, because the amount of future income decreases. In the case for consumption it is just
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the other way around, i.e. the optimal control increases, since the money needed to finance
future consumption decreases.

Y.
I
A

Figure 4: Optimal control with continuous consumption

Conclusions

As private equity plans on one hand are getting more and more into fashion we believe that
the results of this paper have a practical relevance. Further, the case of an a priori fixed
consumption plan seems to be much more realistic than that of a random consumption as
treated in the standard formulation of the portfolio problem. With regard to this argument
and our results one can thus always concentrate on the pure terminal wealth problem.
Even more general problems can be treated with our approach and are subjects of future
research. Two possible candidates are: Optimal portfolios with fixed consumption/income
and a loan depending interest rate (see Krekel (2001) for a related problem) and optimal
portfolios with crash possibilities and fixed consumption/income (see Korn (2001)).
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1. D. Hietel, K. Steiner, J. Struckmeier

A Finite - Volume Particle Method for
Compressible Flows

We derive a new class of particle methods for conserva-
tion laws, which are based on numerical flux functions to
model the interactions between moving particles. The
derivation is similar to that of classical Finite-Volume
methods; except that the fixed grid structure in the Fi-
nite-Volume method is substituted by so-called mass
packets of particles. We give some numerical results on a
shock wave solution for Burgers equation as well as the
well-known one-dimensional shock tube problem.

(19°S., 1998)

2. M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application
of Hilbert Transform and Multi-Hypothesis
Testing

In this paper, a combined approach to damage diagnosis
of rotors is proposed. The intention is to employ signal-
based as well as model-based procedures for an im-
proved detection of size and location of the damage. In a
first step, Hilbert transform signal processing techniques
allow for a computation of the signal envelope and the
instantaneous frequency, so that various types of non-
linearities due to a damage may be identified and classi-
fied based on measured response data. In a second step,
a multi-hypothesis bank of Kalman Filters is employed for
the detection of the size and location of the damage
based on the information of the type of damage provid-
ed by the results of the Hilbert transform.

Keywords:

Hilbert transform, damage diagnosis, Kalman filtering,
non-linear dynamics

(23S., 1998)

3. Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic Multi-
Hypothesis Algorithms: Application to
Rotating Machinery

Damage diagnosis based on a bank of Kalman filters,
each one conditioned on a specific hypothesized system
condition, is a well recognized and powerful diagnostic
tool. This multi-hypothesis approach can be applied to a
wide range of damage conditions. In this paper, we will
focus on the diagnosis of cracks in rotating machinery.
The question we address is: how to optimize the multi-
hypothesis algorithm with respect to the uncertainty of
the spatial form and location of cracks and their resulting
dynamic effects. First, we formulate a measure of the
reliability of the diagnostic algorithm, and then we dis-
cuss modifications of the diagnostic algorithm for the
maximization of the reliability. The reliability of a diagnos-
tic algorithm is measured by the amount of uncertainty
consistent with no-failure of the diagnosis. Uncertainty is
quantitatively represented with convex models.
Keywords:

Robust reliability, convex models, Kalman filtering, multi-
hypothesis diagnosis, rotating machinery, crack diagnosis
(24 °S., 1998)

4. F-Th. Lentes, N. Siedow

Three-dimensional Radiative Heat Transfer
in Glass Cooling Processes

For the numerical simulation of 3D radiative heat transfer
in glasses and glass melts, practically applicable mathe-
matical methods are needed to handle such problems
optimal using workstation class computers. Since the
exact solution would require super-computer capabilities
we concentrate on approximate solutions with a high
degree of accuracy. The following approaches are stud-
ied: 3D diffusion approximations and 3D ray-tracing
methods.

(23S., 1998)

5. A Klar, R. Wegener

A hierarchy of models for multilane
vehicular traffic
Part I: Modeling

In the present paper multilane models for vehicular traffic
are considered. A microscopic multilane model based on
reaction thresholds is developed. Based on this model an
Enskog like kinetic model is developed. In particular, care
is taken to incorporate the correlations between the vehi-
cles. From the kinetic model a fluid dynamic model is
derived. The macroscopic coefficients are deduced from
the underlying kinetic model. Numerical simulations are
presented for all three levels of description in [10]. More-
over, a comparison of the results is given there.

(23°S., 1998)

Part Il: Numerical and stochastic
investigations

In this paper the work presented in [6] is continued. The
present paper contains detailed numerical investigations
of the models developed there. A numerical method to

treat the kinetic equations obtained in [6] are presented
and results of the simulations are shown. Moreover, the
stochastic correlation model used in [6] is described and
investigated in more detail.

(17 S., 1998)

6. A. Klar, N. Siedow

Boundary Layers and Domain Decomposi-
tion for Radiative Heat Transfer and Diffu-
sion Equations: Applications to Glass Manu-
facturing Processes

In this paper domain decomposition methods for radia-
tive transfer problems including conductive heat transfer
are treated. The paper focuses on semi-transparent ma-
terials, like glass, and the associated conditions at the
interface between the materials. Using asymptotic analy-
sis we derive conditions for the coupling of the radiative
transfer equations and a diffusion approximation. Several
test cases are treated and a problem appearing in glass
manufacturing processes is computed. The results clearly
show the advantages of a domain decomposition ap-
proach. Accuracy equivalent to the solution of the global
radiative transfer solution is achieved, whereas computa-
tion time is strongly reduced.

(24 S., 1998)

7. 1. Choquet

Heterogeneous catalysis modelling and
numerical simulation in rarified gas flows
Part I: Coverage locally at equilibrium

A new approach is proposed to model and simulate nu-
merically heterogeneous catalysis in rarefied gas flows. It
is developed to satisfy all together the following points:
1) describe the gas phase at the microscopic scale, as
required in rarefied flows,

2) describe the wall at the macroscopic scale, to avoid
prohibitive computational costs and consider not only
crystalline but also amorphous surfaces,

3) reproduce on average macroscopic laws correlated
with experimental results and

4) derive analytic models in a systematic and exact way.
The problem is stated in the general framework of a non
static flow in the vicinity of a catalytic and non porous
surface (without aging). It is shown that the exact and
systematic resolution method based on the Laplace trans-
form, introduced previously by the author to model colli-
sions in the gas phase, can be extended to the present
problem. The proposed approach is applied to the mod-
elling of the Eley-Rideal and Langmuir-Hinshelwood
recombinations, assuming that the coverage is locally at
equilibrium. The models are developed considering one
atomic species and extended to the general case of sev-
eral atomic species. Numerical calculations show that the
models derived in this way reproduce with accuracy be-
haviors observed experimentally.

(24's., 1998)

8. J. Ohser, B. Steinbach, C. Lang
Efficient Texture Analysis of Binary Images

A new method of determining some characteristics of
binary images is proposed based on a special linear filter-
ing. This technique enables the estimation of the area
fraction, the specific line length, and the specific integral
of curvature. Furthermore, the specific length of the total
projection is obtained, which gives detailed information
about the texture of the image. The influence of lateral
and directional resolution depending on the size of the
applied filter mask is discussed in detail. The technique
includes a method of increasing directional resolution for
texture analysis while keeping lateral resolution as high
as possible.

(17 °S., 1998)

9. J. Orlik

Homogenization for viscoelasticity of the
integral type with aging and shrinkage

A multi-phase composite with periodic distributed inclu-
sions with a smooth boundary is considered in this con-
tribution. The composite component materials are sup-
posed to be linear viscoelastic and aging (of the
non-convolution integral type, for which the Laplace
transform with respect to time is not effectively applica-
ble) and are subjected to isotropic shrinkage. The free
shrinkage deformation can be considered as a fictitious
temperature deformation in the behavior law. The proce-
dure presented in this paper proposes a way to deter-
mine average (effective homogenized) viscoelastic and
shrinkage (temperature) composite properties and the
homogenized stress-field from known properties of the



components. This is done by the extension of the asymp-
totic homogenization technique known for pure elastic
non-homogeneous bodies to the non-homogeneous
thermo-viscoelasticity of the integral non-convolution
type. Up to now, the homogenization theory has not
covered viscoelasticity of the integral type.
Sanchez-Palencia (1980), Francfort & Suquet (1987) (see
[2], [9)) have considered homogenization for viscoelastici-
ty of the differential form and only up to the first deriva-
tive order. The integral-modeled viscoelasticity is more
general then the differential one and includes almost all
known differential models. The homogenization proce-
dure is based on the construction of an asymptotic solu-
tion with respect to a period of the composite structure.
This reduces the original problem to some auxiliary
boundary value problems of elasticity and viscoelasticity
on the unit periodic cell, of the same type as the original
non-homogeneous problem. The existence and unique-
ness results for such problems were obtained for kernels
satisfying some constrain conditions. This is done by the
extension of the Volterra integral operator theory to the
Volterra operators with respect to the time, whose 1 ker-
nels are space linear operators for any fixed time vari-
ables. Some ideas of such approach were proposed in
[11] and [12], where the Volterra operators with kernels
depending additionally on parameter were considered.
This manuscript delivers results of the same nature for
the case of the space-operator kernels.

(20°S., 1998)

10. J. Mohring
Helmholtz Resonators with Large Aperture

The lowest resonant frequency of a cavity resonator is
usually approximated by the classical Helmholtz formula.
However, if the opening is rather large and the front wall
is narrow this formula is no longer valid. Here we present
a correction which is of third order in the ratio of the di-
ameters of aperture and cavity. In addition to the high
accuracy it allows to estimate the damping due to radia-
tion. The result is found by applying the method of
matched asymptotic expansions. The correction contains
form factors describing the shapes of opening and cavity.
They are computed for a number of standard geometries.
Results are compared with numerical computations.
(21S., 1998)

11. H. W. Hamacher, A. Schobel
On Center Cycles in Grid Graphs

Finding "good" cycles in graphs is a problem of great
interest in graph theory as well as in locational analysis.
We show that the center and median problems are NP
hard in general graphs. This result holds both for the vari-
able cardinality case (i.e. all cycles of the graph are con-
sidered) and the fixed cardinality case (i.e. only cycles
with a given cardinality p are feasible). Hence it is of in-
terest to investigate special cases where the problem is
solvable in polynomial time.

In grid graphs, the variable cardinality case is, for in-
stance, trivially solvable if the shape of the cycle can be
chosen freely.

If the shape is fixed to be a rectangle one can analyze
rectangles in grid graphs with, in sequence, fixed dimen-
sion, fixed cardinality, and variable cardinality. In all cases
a complete characterization of the optimal cycles and
closed form expressions of the optimal objective values
are given, yielding polynomial time algorithms for all cas-
es of center rectangle problems.

Finally, it is shown that center cycles can be chosen as

rectangles for small cardinalities such that the center cy-
cle problem in grid graphs is in these cases completely
solved.

(15°S., 1998)

12. H. W. Hamacher, K.-H. Kufer

Inverse radiation therapy planning -
a multiple objective optimisation approach

For some decades radiation therapy has been proved
successful in cancer treatment. It is the major task of clin-
ical radiation treatment planning to realize on the one
hand a high level dose of radiation in the cancer tissue in
order to obtain maximum tumor control. On the other
hand it is obvious that it is absolutely necessary to keep
in the tissue outside the tumor, particularly in organs at
risk, the unavoidable radiation as low as possible.

No doubt, these two objectives of treatment planning -
high level dose in the tumor, low radiation outside the
tumor - have a basically contradictory nature. Therefore,
it is no surprise that inverse mathematical models with
dose distribution bounds tend to be infeasible in most
cases. Thus, there is need for approximations compromis-
ing between overdosing the organs at risk and underdos-
ing the target volume.

Differing from the currently used time consuming itera-
tive approach, which measures deviation from an ideal
(non-achievable) treatment plan using recursively trial-
and-error weights for the organs of interest, we go a
new way trying to avoid a priori weight choices and con-
sider the treatment planning problem as a multiple ob-
jective linear programming problem: with each organ of
interest, target tissue as well as organs at risk, we associ-
ate an objective function measuring the maximal devia-
tion from the prescribed doses.

We build up a data base of relatively few efficient solu-
tions representing and approximating the variety of Pare-
to solutions of the multiple objective linear programming
problem. This data base can be easily scanned by physi-
cians looking for an adequate treatment plan with the
aid of an appropriate online tool.

(14 °S., 1999)

13. C. Lang, J. Ohser, R. Hilfer
On the Analysis of Spatial Binary Images

This paper deals with the characterization of microscopi-
cally heterogeneous, but macroscopically homogeneous
spatial structures. A new method is presented which is
strictly based on integral-geometric formulae such as
Crofton’s intersection formulae and Hadwiger’s recursive
definition of the Euler number. The corresponding algo-
rithms have clear advantages over other techniques. As
an example of application we consider the analysis of
spatial digital images produced by means of Computer
Assisted Tomography.

(20°S., 1999)

14. M. Junk

On the Construction of Discrete Equilibrium
Distributions for Kinetic Schemes

A general approach to the construction of discrete equi-
librium distributions is presented. Such distribution func-
tions can be used to set up Kinetic Schemes as well as
Lattice Boltzmann methods. The general principles are
also applied to the construction of Chapman Enskog dis-
tributions which are used in Kinetic Schemes for com-

pressible Navier-Stokes equations.
(24's.,1999)

15. M. Junk, S. V. Raghurame Rao

A new discrete velocity method for Navier-
Stokes equations

The relation between the Lattice Boltzmann Method,
which has recently become popular, and the Kinetic
Schemes, which are routinely used in Computational Flu-
id Dynamics, is explored. A new discrete velocity model
for the numerical solution of Navier-Stokes equations for
incompressible fluid flow is presented by combining both
the approaches. The new scheme can be interpreted as a
pseudo-compressibility method and, for a particular
choice of parameters, this interpretation carries over to
the Lattice Boltzmann Method.

(20°S., 1999)

16. H. Neunzert
Mathematics as a Key to Key Technologies

The main part of this paper will consist of examples, how
mathematics really helps to solve industrial problems;
these examples are taken from our Institute for Industrial
Mathematics, from research in the Technomathematics
group at my university, but also from ECMI groups and a
company called TecMath, which originated 10 years ago
from my university group and has already a very success-
ful history.

(39 S. (vier PDF-Files), 1999)

17. J. Ohser, K. Sandau

Considerations about the Estimation of the
Size Distribution in Wicksell’s Corpuscle
Problem

Wicksell's corpuscle problem deals with the estimation of
the size distribution of a population of particles, all hav-
ing the same shape, using a lower dimensional sampling
probe. This problem was originary formulated for particle
systems occurring in life sciences but its solution is of
actual and increasing interest in materials science. From a
mathematical point of view, Wicksell's problem is an in-
verse problem where the interesting size distribution is
the unknown part of a Volterra equation. The problem is
often regarded ill-posed, because the structure of the
integrand implies unstable numerical solutions. The accu-
racy of the numerical solutions is considered here using
the condition number, which allows to compare different
numerical methods with different (equidistant) class sizes
and which indicates, as one result, that a finite section
thickness of the probe reduces the numerical problems.
Furthermore, the relative error of estimation is computed
which can be split into two parts. One part consists of
the relative discretization error that increases for increas-
ing class size, and the second part is related to the rela-
tive statistical error which increases with decreasing class
size. For both parts, upper bounds can be given and the
sum of them indicates an optimal class width depending
on some specific constants.

(18'S., 1999)



18. E. Carrizosa, H. W. Hamacher, R. Klein,
S. Nickel

Solving nonconvex planar location problems
by finite dominating sets

It is well-known that some of the classical location prob-
lems with polyhedral gauges can be solved in polynomial
time by finding a finite dominating set, i. e. a finite set of
candidates guaranteed to contain at least one optimal
location.

In this paper it is first established that this result holds for
a much larger class of problems than currently considered
in the literature. The model for which this result can be
proven includes, for instance, location problems with at-
traction and repulsion, and location-allocation problems.
Next, it is shown that the approximation of general gaug-
es by polyhedral ones in the objective function of our
general model can be analyzed with regard to the subse-
quent error in the optimal objective value. For the approx-
imation problem two different approaches are described,
the sandwich procedure and the greedy algorithm. Both
of these approaches lead - for fixed epsilon - to polyno-
mial approximation algorithms with accuracy epsilon for
solving the general model considered in this paper.
Keywords:

Continuous Location, Polyhedral Gauges, Finite Dominat-
ing Sets, Approximation, Sandwich Algorithm, Greedy
Algorithm

(19 °S., 2000)

19. A. Becker
A Review on Image Distortion Measures

Within this paper we review image distortion measures.
A distortion measure is a criterion that assigns a “quality
number” to an image. We distinguish between mathe-
matical distortion measures and those distortion mea-
sures in-cooperating a priori knowledge about the imag-
ing devices ( e. g. satellite images), image processing al-
gorithms or the human physiology. We will consider rep-
resentative examples of different kinds of distortion
measures and are going to discuss them.

Keywords:

Distortion measure, human visual system

(26 S., 2000)

20. H. W. Hamacher, M. Labbé, S. Nickel,
T. Sonneborn

Polyhedral Properties of the Uncapacitated
Multiple Allocation Hub Location Problem

We examine the feasibility polyhedron of the uncapaci-
tated hub location problem (UHL) with multiple alloca-
tion, which has applications in the fields of air passenger
and cargo transportation, telecommunication and postal
delivery services. In particular we determine the dimen-
sion and derive some classes of facets of this polyhedron.
We develop some general rules about lifting facets from
the uncapacitated facility location (UFL) for UHL and pro-
jecting facets from UHL to UFL. By applying these rules
we get a new class of facets for UHL which dominates
the inequalities in the original formulation. Thus we get a
new formulation of UHL whose constraints are all facet—
defining. We show its superior computational perfor-
mance by benchmarking it on a well known data set.
Keywords:

integer programming, hub location, facility location, valid
inequalities, facets, branch and cut

(21°S., 2000)

21. H. W. Hamacher, A. Schobel

Design of Zone Tariff Systems in Public
Transportation

Given a public transportation system represented by its
stops and direct connections between stops, we consider
two problems dealing with the prices for the customers:
The fare problem in which subsets of stops are already
aggregated to zones and “good” tariffs have to be
found in the existing zone system. Closed form solutions
for the fare problem are presented for three objective
functions. In the zone problem the design of the zones is
part of the problem. This problem is NP hard and we
therefore propose three heuristics which prove to be very
successful in the redesign of one of Germany's transpor-
tation systems.

(30S.,2001)

22. D. Hietel, M. Junk, R. Keck, D. Teleaga:

The Finite-Volume-Particle Method for
Conservation Laws

In the Finite-Volume-Particle Method (FVPM), the weak
formulation of a hyperbolic conservation law is dis-
cretized by restricting it to a discrete set of test functions.
In contrast to the usual Finite-Volume approach, the test
functions are not taken as characteristic functions of the
control volumes in a spatial grid, but are chosen from a
partition of unity with smooth and overlapping partition
functions (the particles), which can even move along pre-
scribed velocity fields. The information exchange be-
tween particles is based on standard numerical flux func-
tions. Geometrical information, similar to the surface
area of the cell faces in the Finite-Volume Method and
the corresponding normal directions are given as integral
quantities of the partition functions.

After a brief derivation of the Finite-Volume-Particle
Method, this work focuses on the role of the geometric
coefficients in the scheme.

(16 S.,2001)

23. T. Bender, H. Hennes, J. Kalcsics,
M. T. Melo, S. Nickel

Location Software and Interface with GIS
and Supply Chain Management

The objective of this paper is to bridge the gap between
location theory and practice. To meet this objective focus
is given to the development of software capable of ad-
dressing the different needs of a wide group of users.
There is a very active community on location theory en-
compassing many research fields such as operations re-
search, computer science, mathematics, engineering,
geography, economics and marketing. As a result, people
working on facility location problems have a very diverse
background and also different needs regarding the soft-
ware to solve these problems. For those interested in
non-commercial applications (e. g. students and re-
searchers), the library of location algorithms (LoLA can be
of considerable assistance. LoLA contains a collection of
efficient algorithms for solving planar, network and dis-
crete facility location problems. In this paper, a detailed
description of the functionality of LoLA is presented. In
the fields of geography and marketing, for instance, solv-
ing facility location problems requires using large
amounts of demographic data. Hence, members of these
groups (e. g. urban planners and sales managers) often
work with geographical information too s. To address the
specific needs of these users, LoLA was inked to a geo-

graphical information system (GIS) and the details of the
combined functionality are described in the paper. Finally,
there is a wide group of practitioners who need to solve
large problems and require special purpose software with
a good data interface. Many of such users can be found,
for example, in the area of supply chain management
(SCM). Logistics activities involved in strategic SCM in-
clude, among others, facility location planning. In this
paper, the development of a commercial location soft-
ware tool is also described. The too is embedded in the
Advanced Planner and Optimizer SCM software devel-
oped by SAP AG, Walldorf, Germany. The paper ends
with some conclusions and an outlook to future activi-
ties.

Keywords:

facility location, software development, geographical
information systems, supply chain management.
(48s.,2001)

24. H. W. Hamacher, S. A. Tjandra

Mathematical Modelling of Evacuation
Problems: A State of Art

This paper details models and algorithms which can be
applied to evacuation problems. While it concentrates on
building evacuation many of the results are applicable
also to regional evacuation. All models consider the time
as main parameter, where the travel time between com-
ponents of the building is part of the input and the over-
all evacuation time is the output. The paper distinguishes
between macroscopic and microscopic evacuation mod-
els both of which are able to capture the evacuees’
movement over time.

Macroscopic models are mainly used to produce good
lower bounds for the evacuation time and do not consid-
er any individual behavior during the emergency situa-
tion. These bounds can be used to analyze existing build-
ings or help in the design phase of planning a building.
Macroscopic approaches which are based on dynamic
network flow models (minimum cost dynamic flow, maxi-
mum dynamic flow, universal maximum flow, quickest
path and quickest flow) are described. A special feature
of the presented approach is the fact, that travel times of
evacuees are not restricted to be constant, but may be
density dependent. Using multicriteria optimization prior-
ity regions and blockage due to fire or smoke may be
considered. It is shown how the modelling can be done
using time parameter either as discrete or continuous
parameter.

Microscopic models are able to model the individual
evacuee’s characteristics and the interaction among evac-
uees which influence their movement. Due to the corre-
sponding huge amount of data one uses simulation ap-
proaches. Some probabilistic laws for individual evacuee’s
movement are presented. Moreover ideas to model the
evacuee's movement using cellular automata (CA) and
resulting software are presented.

In this paper we will focus on macroscopic models and
only summarize some of the results of the microscopic
approach. While most of the results are applicable to
general evacuation situations, we concentrate on build-
ing evacuation.

(44s.,2001)



25. J. Kuhnert, S. Tiwari
Grid free method for solving the Poisson
equation

A Grid free method for solving the Poisson equation is
presented. This is an iterative method. The method is
based on the weighted least squares approximation in
which the Poisson equation is enforced to be satisfied in
every iterations. The boundary conditions can also be
enforced in the iteration process. This is a local approxi-
mation procedure. The Dirichlet, Neumann and mixed
boundary value problems on a unit square are presented
and the analytical solutions are compared with the exact
solutions. Both solutions matched perfectly.

Keywords:

Poisson equation, Least squares method,

Grid free method
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26. T. Gotz, H. Rave, D. Reinel-Bitzer,
K. Steiner, H. Tiemeier
Simulation of the fiber spinning process

To simulate the influence of process parameters to the
melt spinning process a fiber model is used and coupled
with CFD calculations of the quench air flow. In the fiber
model energy, momentum and mass balance are solved
for the polymer mass flow. To calculate the quench air
the Lattice Boltzmann method is used. Simulations and
experiments for different process parameters and hole
configurations are compared and show a good agree-
ment.

Keywords:

Melt spinning, fiber model, Lattice Boltzmann, CFD
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27. A. Zemitis
On interaction of a liquid film with an
obstacle

In this paper mathematical models for liquid films gener-
ated by impinging jets are discussed. Attention is stressed
to the interaction of the liquid film with some obstacle.
S. G. Taylor [Proc. R. Soc. London Ser. A 253, 313 (1959)]
found that the liquid film generated by impinging jets is
very sensitive to properties of the wire which was used as
an obstacle. The aim of this presentation is to propose a
modification of the Taylor's model, which allows to simu-
late the film shape in cases, when the angle between jets
is different from 180°. Numerical results obtained by dis-
cussed models give two different shapes of the liquid
film similar as in Taylors experiments. These two shapes
depend on the regime: either droplets are produced close
to the obstacle or not. The difference between two re-
gimes becomes larger if the angle between jets decreas-
es. Existence of such two regimes can be very essential
for some applications of impinging jets, if the generated
liquid film can have a contact with obstacles.

Keywords:

impinging jets, liquid film, models, numerical solution,
shape
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28. . Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to
model the filling of expanding cavities by
Bingham Fluids

The filling process of viscoplastic metal alloys and plastics
in expanding cavities is modelled using the lattice Boltz-
mann method in two and three dimensions. These mod-
els combine the regularized Bingham model for visco-
plastic with a free-interface algorithm. The latter is based
on a modified immiscible lattice Boltzmann model in
which one species is the fluid and the other one is con-
sidered as vacuum. The boundary conditions at the
curved liquid-vacuum interface are met without any geo-
metrical front reconstruction from a first-order Chapman-
Enskog expansion. The numerical results obtained with
these models are found in good agreement with avail-
able theoretical and numerical analysis.

Keywords:

Generalized LBE, free-surface phenomena, interface
boundary conditions, filling processes, Bingham visco-
plastic model, regularized models
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29. H. Neunzert

»Denn nichts ist fiir den Menschen als
Menschen etwas wert, was er nicht mit
Leidenschaft tun kann«

Vortrag anlasslich der Verleihung des Akademie-
preises des Landes Rheinland-Pfalz am 21.11.2001

Was macht einen guten Hochschullehrer aus? Auf diese
Frage gibt es sicher viele verschiedene, fachbezogene
Antworten, aber auch ein paar allgemeine Gesichtspunk-
te: es bedarf der »Leidenschaft« fur die Forschung (Max
Weber), aus der dann auch die Begeisterung fur die Leh-
re erwéchst. Forschung und Lehre gehéren zusammen,
um die Wissenschaft als lebendiges Tun vermitteln zu
koénnen. Der Vortrag gibt Beispiele dafur, wie in ange-
wandter Mathematik Forschungsaufgaben aus prakti-
schen Alltagsproblemstellungen erwachsen, die in die
Lehre auf verschiedenen Stufen (Gymnasium bis Gradu-
iertenkolleg) einflieBen; er leitet damit auch zu einem
aktuellen Forschungsgebiet, der Mehrskalenanalyse mit
ihren vielfaltigen Anwendungen in Bildverarbeitung,
Materialentwicklung und Strémungsmechanik tber, was
aber nur kurz gestreift wird. Mathematik erscheint hier
als eine moderne Schlusseltechnologie, die aber auch
enge Beziehungen zu den Geistes- und Sozialwissen-
schaften hat.

Keywords:

Lehre, Forschung, angewandte Mathematik, Mehrskalen-
analyse, Stromungsmechanik
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30. J. Kuhnert, S. Tiwari

Finite pointset method based on the projec-
tion method for simulations of the incom-
pressible Navier-Stokes equations

A Lagrangian particle scheme is applied to the projection
method for the incompressible Navier-Stokes equations.
The approximation of spatial derivatives is obtained by
the weighted least squares method. The pressure Poisson
equation is solved by a local iterative procedure with the
help of the least squares method. Numerical tests are
performed for two dimensional cases. The Couette flow,
Poiseuelle flow, decaying shear flow and the driven cavity
flow are presented. The numerical solutions are obtained

for stationary as well as instationary cases and are com-
pared with the analytical solutions for channel flows.
Finally, the driven cavity in a unit square is considered
and the stationary solution obtained from this scheme is
compared with that from the finite element method.
Keywords:

Incompressible Navier-Stokes equations, Meshfree
method, Projection method, Particle scheme, Least
squares approximation

AMS subject classification:
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31. R. Korn, M. Krekel
Optimal Portfolios with Fixed Consumption
or Income Streams

We consider some portfolio optimisation problems where
either the investor has a desire for an a priori specified
consumption stream or/and follows a deterministic pay in
scheme while also trying to maximize expected utility
from final wealth. We derive explicit closed form solu-
tions for continuous and discrete monetary streams. The
mathematical method used is classical stochastic control
theory.

Keywords:

Portfolio optimisation, stochastic control, HJB equation,
discretisation of control problems.
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