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Abstract

A new class of locally supported radial basis functions on the (unit) sphere is introduced
by forming an infinite number of convolutions of ”isotropic finite elements”. The resulting
up functions show useful properties: They are locally supported and are infinitely often dif-
ferentiable. The main properties of these kernels are studied in detail. In particular, the
development of a multiresolution analysis within the reference space of square–integrable
functions over the sphere is given. Altogether, the paper presents a mathematically signifi-
cant and numerically efficient introduction to multiscale approximation by locally supported
radial basis functions on the sphere.
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1 Introduction

For future modelling of functions on the sphere a new component of approximation has to come
into play, viz. spherical wavelets, at least when short–scale space phenomena, i.e. fine–scale
details are of interest. The power of spherical wavelets is based on a multiresolution analysis
which enables a balanced amount of both frequency (more accurately, angular momentum)
and space localization. Spherical wavelets are used as mathematical means for breaking up a
complicated structure of a function into many simple pieces at different scales and positions.
Consequently, the representation of data in terms of wavelets is more concentrated on essential
features, i.e. more compact, than the original discrete data representation.

A first (parametric) concept of spherical wavelets was proposed by Dahlke, Dahmen, Schmitt,
and Weinreich [6], [34] based on a tensor product basis, in which one component is a spline
of exponential (E-) type. The so–called E-splines provide not only C (1)–wavelets, but also
guarantee the reproduction of trigonometric functions within the wavelet expansion. Potts and
Tasche [25] form tensor products of interpolatory trigonometric wavelets and polynomial wavelets
in accordance with a usual longitude/lattitude parametrization of the sphere. These wavelets,
however, satisfy the C(1)–assumption described in [34] only in an approximate sense. Starting
with a triangulation of the sphere, Schröder and Sweldens [29] construct spherical Haar–type
wavelets on the triangles yielding smoother wavelets by virtue of the so–called lifting scheme.
A group theoretical approach to a continuous wavelet transform on the sphere is followed by
Antoine and Vandergheynst [1], [2]. The parameter choice of their continuous wavelet transform
is the product of SO(3) (for the motion on the sphere) and R+ (for the dilations).

Our constructions [18], [19], [8], [9], [12], [13] are intrinsically based on the specific properties
concerning the geometry of the sphere and the theory of ”spherical polynomials”, i.e. in the jar-
gon of mathematical (geo–)physics spherical harmonics. Two approaches to spherical wavelets
have been established: On the one hand, a continuous wavelet transform (and its discretizations)
was obtained by taking particular advantage of the conception of spherical singular integrals.
Within this framework the wavelets turn out to be (not–necessarily isotropic) kernel functions
generated by summing up certain clusters of spherical harmonic expressions. The wavelets are
definable either by increasing space localization of the kernels or by decreasing frequency local-
ization of their corresponding symbols (i.e. Fourier transform). Wavelet modelling is provided by
a two–parameter family reflecting the different levels of localization and resolution. On the other
hand the authors [16], [8] presented a scale discrete wavelet transform involving band–limited
as well as non–band–limited kernel representations by forming the so–called P–scale or M–scale
wavelet representations. With the help of approximate or exact (for spherical harmonic or spher-
ical splines) interpolatory formulae all wavelet transforms allow fully discrete approximants via
tree algorithms (i.e. pyramid schemes) [27], [8], [7], [11].

Seen under numerical aspects, i.e. from a the point of computational implementation, spherical
wavelets with local support are of particular significance. Moreover, for reasons of rotational
symmetry and structural simplicity, it is canonical to consider radial basis kernel functions
(i.e. kernels which are isotropic in the sense that their values depend only on the distance of
the argument to a fixed point). In other words, isotropic wavelets with local support seem
to be a proper choice for a variety of applications (e.g. invariant pseudodifferential equations
[7], regularization of inverse problems [14], etc). However, the locally supported isotropic kernel
functions (in brief, isotropic finite elements) on the sphere used so far ([10], [15], [17], [8], [28], [9],
[22], [32]) possess a non–monotone L2(Ω)–symbol, which prevents them to be used for building
up a multiresolution analysis (in the sense that the space of square–integrable functions on the
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sphere can be decomposed by a nested sequence of subspaces including a closure property).
Furthermore, finite elements show only a limited order of differentiability on the sphere, which
may be not appropriate when investigating smooth functions. In conclusion, the problem is
to introduce a multiscale approximation with the following ingredients for the wavelets to be
constructed: isotropy, smoothness, local support, establishment of a multiresolution analysis for
the Hilbert space of square–integrable functions on the sphere.

In this paper we transform the idea of the up function (cf. [26]) to the spherical context. There-
fore, we introduce generalizations of the already known locally supported kernels and build an
infinite convolution with them. This procedure results into a new class of radial basis functions
that are infinitely often differentiable and (when the support of the building functions is chosen
properly) have also a local support. Another appealing property of these new kernels is, that
they show a scale discrete multiresolution analysis of the space of square integrable functions
on the sphere. In other words, the radial basis functions constructed in this way are appropri-
ate means for various fields of constructive approximation, including locally supported, smooth
spherical wavelets.

The outline of this paper is as follows: In the preliminaries we give the basic definitions and
notations. Then, we introduce locally supported kernels on the sphere by an extension of the
previously known functions, including unbounded kernels. It is canonical to take iterations of
these kernels, since the Fourier transform then becomes non–negative. After these considerations
we are able to introduce the spherical up function by infinite convolutions of locally supported
kernels. The basic properties of the up function are described in detail. In particular, we show
how a multiresolution analysis can be developed by use of these new functions.

2 Preliminaries

In what follows we list some basic notions and definitions used in this paper.

If x, y ∈ R3, we write x · y for the Euclidean inner product and |x| = √
x · x for the norm. We

let Ω = {ξ ∈ R3 | |ξ| = 1} denote the unit sphere in R3. The standard surface measure on Ω is
denoted by dω. On the space L2(Ω) of square–integrable functions on Ω we introduce the inner
product (F,G) =

∫

Ω F (η)G(η)dω(η).

The spherical harmonics Yn of order n are defined as the everywhere on the unit sphere Ω
twice continuously differentiable eigenfunctions of the Beltrami operator ∆∗ corresponding to
the eigenvalues −n(n + 1), n = 0, 1, . . .. The linear space Harmn of all spherical harmonics of
order n is of dimension 2n+ 1. As it is well known [24], there exist 2n+ 1 linearly independent
spherical harmonics Yn,1, . . . , Yn,2n+1. Throughout the remainder of this paper we assume this
system to be orthonormalized in the sense of the L2(Ω)-inner product: (Yn,l, Yn,k) = δlk, where
δlk is the Kronecker symbol. The Fourier transform of a function F ∈ L2(Ω) is denoted as
F∧(n,m) = (F, Yn,m), n = 0, 1, . . ., m = 1, . . . , 2n+ 1. Clearly,

lim
N→∞

∥

∥

∥

∥

∥

F −
N
∑

n=0

2n+1
∑

m=1

F∧(n,m)Yn,m

∥

∥

∥

∥

∥

L2(Ω)

= 0

for all F ∈ L2(Ω).
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An outstanding result of the theory of spherical harmonics is the addition theorem

2n+1
∑

m=1

Yn,m(ξ)Yn,m(η) =
2n+ 1

4π
Pn(ξ · η), ξ, η ∈ Ω, (1)

where Pn is the Legendre polynomial of degree n.

For later use we present some properties of the Legendre polynomials. First we mention the
recurrence relation

P0(t) = 1, P1(t) = 1 (2)

(n+ 1)Pn+1(t) + nPn−1(t)− (2n+ 1)tPn(t) = 0. (3)

The Legendre polynomial Pn satisfies the estimate (see for example [23], [8])

|P (k)n (t)| ≤ P (k)n (1), t ∈ [−1, 1] (4)

where P
(k)
n (1) = O(n2k). In particular, we have

P ′n(1) =
n(n+ 1)

2
. (5)

For later use, we mention the estimate (cf. [21])

(1− t2)1/4|Pn(t)| ≤
√

2

π(n+ 1/2)
, t ∈ [−1, 1]. (6)

Let G be of class L2[−1, 1]. Suppose that η ∈ Ω us fixed. The η–zonal function G(η· ) : Ω→ R
given by ξ 7→ G(η · ξ), ξ ∈ Ω, is in L2(Ω) and is axisymmetric with respect to the axis η, i.e. the
value at the point ξ ∈ Ω depends only on the inner product ξ · η. Since |ξ − η| =

√
2− 2ξ · η,

zonal functions can be seen to be the spherical counterpart to radial basis functions in Euclidean
spaces (see e.g. [5].) The Funk–Hecke formula tells us that for any Yn ∈ Harmn and η ∈ Ω,

∫

Ω
G(η · ξ)Yn(ξ)dω(ξ) = G∧(n)Yn(η) . (7)

where the Legendre transform (i.e. the symbol of G) is given by

G∧(n) = 2π

+1
∫

−1

G(t)Pn(t) dt, (8)

n = 0, 1, . . .. For more details the reader is referred for example to [22] or [8]. Applying the
addition theorem it follows that the orthogonal expansion in terms of Legendre polynomials of
the η–zonal function G(η· ) is

G(η· ) ∼
∞
∑

n=0

2n+ 1

4π
G∧(n)Pn(η· ).

Equivalently,

G(t) ∼
∞
∑

n=0

2n+ 1

4π
G∧(n)Pn(t), t ∈ [−1, 1] (9)
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G∧(n) is called the symbol of the Legendre transform of the function G. Due to a result in
[20], the series (9) converges in uniform sense to G on the interval [−1, 1], provided that G is
Lipschitz–continuous on [−1, 1].

Zonal functions lead us to spherical convolutions, see e.g. [4] or [8] in the following way: For
G ∈ L2[−1, 1] and F ∈ L2(Ω)

(G ∗ F )(ξ) =

∫

Ω
G(ξ · η)F (η)dω(η), ξ ∈ Ω. (10)

It easily follows that G ∗ F ∈ L2(Ω). Moreover,

(G ∗ F )∧(n,m) = G∧(n)F∧(n,m). (11)

Of particular importance is the convolution with a second zonal function. Let H ∈ L2[−1, 1].
An easy application of the Funk–Hecke formula shows that

(G ∗H)(ξ, ζ) =

∫

Ω
G(ξ · η)H(η · ζ)dω(η), ξ, ζ ∈ Ω, (12)

depends only on the inner product of ξ and ζ. Thus G∗H is considered as another zonal function
and can be seen to be a continuous function defined on the interval [−1, 1]. It easily follows that
for G, H ∈ L2[−1, 1]

(G ∗H)∧(n) = G∧(n)H∧(n), n = 0, 1, . . . . (13)

The convolution of a functionG ∈ L2[−1, 1] with itself constitutes the so–called iterated function:

G(2) = G ∗G, ,G(k+1) = G ∗G(k), k = 2, 3, . . . (14)

Obviously, (G(2))∧(n) = (G∧(n))2 and G(2) ∈ C[−1, 1].

3 Locally Supported Kernels on the Unit Sphere

Starting point of our considerations are the functions

Bh,λ(t) =

{

0 for −1 ≤ t ≤ h
(t− h)λ for h < t ≤ 1

which we consider for t ∈ [−1, 1], h ∈ (−1, 1) and λ > −1. Note that in contrast to earlier
investigations of these kernels (see e.g. [28]) we let the parameter λ be real, and allow the
functions to be unbounded (for −1 < λ < 0), but with finite integral. Letting η ∈ Ω be fixed,
we get a radial basis function

Ω 3 ξ 7→ Bh,λ(η · ξ)
which in accordance with our construction has the local support

suppBh,λ(η· ) = {ξ ∈ Ω|h ≤ ξ · η ≤ 1}.

Next we are interested in the symbol (or Legendre transform) B ∧
h,λ(n) of the series

Bh,λ ∼
∞
∑

n=0

2n+ 1

4π
B ∧

h,λ(n)Pn.
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By virtue of the Funk–Hecke formula we find

B ∧
h,λ(n) = 2π

∫ 1

h
Bh,λ(t)Pn(t)dt.

Based on the recursion relations (3) we are able to derive recursion formulas for B∧h,λ(n), where
we follow the lines predetermined by [22], [31], [10], [8], [28]. A straightforward integration yields

B ∧
h,λ(0) = 2π

(1− h)λ+1

λ+ 1
, B ∧

h,λ(1) =
λ+ 1 + h

λ+ 2
B ∧

h,λ(0). (15)

In particular, by using the recurrence formula (3), we obtain for n ≥ 1

(n+ 1)B ∧
h,λ(n+ 1) + nB ∧

h,λ(n− 1)− (2n+ 1)B ∧
h,λ+1(n)− (2n+ 1)hB ∧

h,λ(n) = 0.

By partial integration and the recursion formulas for Legendre polynomials we find

(2n+ 1)B ∧
h,λ+1(n) = −(λ+ 1)

[

B ∧
h,λ(n+ 1)−B ∧

h,λ(n− 1)
]

. (16)

Combining these results we arrive at the following recursion formula

(n+ λ+ 2)B ∧
h,λ(n+ 1) = (2n+ 1)hB ∧

h,λ(n)− (n− λ− 1)B ∧
h,λ(n− 1). (17)

For later use we want to scale the kernel Bh,λ so that the Legendre transform of order zero is 1.
Having in mind (15), we define, Lh,λ, λ > −1, h ∈ (−1, 1), t ∈ [−1, 1], by setting

Lh,λ(t) =
1

B ∧
h,λ(0)

Bh,λ(t) =

{

0 for −1 ≤ t ≤ h
λ+1

2π(1−h)λ+1 (t− h)λ for h < t ≤ 1
(18)

The previous results immediately lead us to the following recursion relations.

Lemma 3.1. For λ > −1, and h ∈ (−1, 1) we have for n = 1, 2, . . .

L ∧
h,λ(0) = 1

(λ+ 1)L ∧
h,λ(1) = (λ+ 1 + h)L ∧

h,λ(0)

(n+ λ+ 2)L ∧
h,λ(n+ 1) = (2n+ 1)hL ∧

h,λ(n)− (n− λ− 1)L ∧
h,λ(n− 1)

Lemma 3.1 shows that the symbol L ∧
h,λ(n) is a polynomial with respect to the variable h. More

explicitly, we find

Lemma 3.2. For λ > −1 and h ∈ (−1, 1), we have for all n = 0, 1, . . .

(i) L ∧
h,λ(0) = 1, |L ∧

h,λ(n)| < 1, n ≥ 1

(ii) lim
h→1

L ∧
h,λ(n) = 1

Proof. Part (i) is a consequence of the expression

L ∧
h,λ(n) =

λ+ 1

(1− h)λ+1

∫ 1

h
(t− h)λPn(t)dt (19)
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and
|Pn(t)| ≤ P0(t) = 1, t ∈ [−1, 1],

|Pn(t)| < 1, t ∈ (−1, 1).

The limit in part (ii) for

L ∧
h,λ(n) = 2π

∫ 1

−1
Lh,λ(t)Pn(t)dt

follows from the facts that 2π
∫ 1
−1 Lh,λ(t)dt = 1, Lh,λ(t) ≥ 0, Pn(1) = 1. ¤

Next, our purpose is to understand, for which h the value of L ∧
h,λ(n) becomes zero. The next

theorem tells us that (if h is chosen to be close enough to 1) we can ensure, that the symbols
are not zero. In particular, we have as an immediate consequence of Lemma 3.2

Theorem 3.3. Let λ > −1 be given. For any N ∈ N there exists a real number h0, h0 ∈ (−1, 1),
so that

L ∧
h,λ(n) > 0

for all n ≤ N and h ≥ h0.

For λ ∈ N we are able to establish a closed expression of L ∧
h,λ(n) in terms of Gegenbauer (or

ultraspherical) polynomials:

Theorem 3.4. Assume that n is a positive integer, i.e. n ∈ N.

(i) L ∧
h,λ(n) 6= 0, n = 0, 1, . . . , λ+ 2.

(ii) For n = 0, 1, . . .

L ∧
h,λ(n+ λ+ 1) =

(1 + h)λ+1

2λ+1
1

(

n+2λ+2
n

)Cλ+3/2
n (h),

where C
λ+3/2
n is the Gegenbauer (or ultraspherical) polynomial of order n.

Proof. Part (i) is an easy consequence of the recurrence relation of Lemma 3.1, since for
n = 0, 1, . . . , λ+ 1 it follows that n− λ− 1 ≤ 0.

To show (ii) we use a result of [28]. There it is proved (with a different notation) that

L ∧
h,λ(n+ λ+ 1) =

(1 + h)λ+1

2λ+1





1

n!

n−1
∏

j=0

(2λ+ 3 + j)





−1

Cλ+3/2
n (h),

but
1

n!

n−1
∏

j=0

(2λ+ 3 + j) =
(n+ 2λ+ 1)!

n!(2λ+ 2)!
=

(

n+ 2λ+ 2

n

)

.
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This gives the desired result. ¤

The Gegenbauer polynomials are normalized in the sense (cf. [21])

Cλ+3/2
n (1) =

(

n+ 2λ+ 2

n

)

,

so that the limit relation from Lemma 3.2 follows (for λ ∈ N) from this result.

In order to develop smoothness properties of the iterations of the kernels Lh,λ, it is of importance
to have an estimation for L ∧

h,λ(n) for n→∞ and fixed h.

The following theorem extends an earlier result which was proved in [15] for λ ∈ N (see also [8]).

Theorem 3.5. Suppose that λ > −1, h ∈ (−1, 1). Then

L ∧
h,λ(n) = O(n−3/2−λ), n→∞.

Proof. We start with the following remarks: We know from [33] that

∫ 1

x
Pn−1(t)dt = C−1/2n (x) (20)

with the Gegenbauer polynomial C
−1/2
n . For these polynomials, we find in [21] the estimate

|C−1/2n (t)| ≤ C

n3/2
(21)

for all n ≥ 1 and a positive constant C.

Let h ∈ (−1, 1) be fixed. First we discuss the case −1 < λ ≤ 0. From (19) it is clear that it
suffices to verify

∫ 1

h
(t− h)λPn(t)dt = O(n−3/2−λ). (22)

Given ε such that 0 < ε < (1− h)/2. We split the integral (22) into

∫ 1

h
(t− h)λPn(t)dt =

∫ h+ε

h
(t− h)λPn(t)dt+

∫ 1

h+ε
(t− h)λPn(t)dt. (23)

From (6) we can deduce that

∣

∣

∣

∣

∫ h+ε

h
(t− h)λPn(t)dt

∣

∣

∣

∣

≤
∫ h+ε

h
(t− h)λdt max

t∈[h,h+ε]
|Pn(t)|

≤ (t− h)λ+1

λ+ 1

∣

∣

∣

∣

h+ε

h

· C√
n

=
ελ+1

λ+ 1

C√
n

which holds uniformly with respect to all ε with 0 < ε < (1− h)/2. We choose ε = 1/n and get

∫ h+ε

h
(t− h)λPn(t)dt = O(n−3/2−λ). (24)
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For the second term in (23) we obtain with partial integration and the remark from the beginning
of the proof

∫ 1

h+ε
(t− h)λPn(t)dt = (t− h)λC−1/2n (t)

∣

∣

∣

1

h+ε
−
∫ 1

h+ε
λ(t− h)λ−1C−1/2n (t)dt.

Since the maximum of (t − h)λ for t ∈ [h + ε, 1] is attained for t = h + ε, we can estimate the
first summand in view of (21)

∣

∣

∣

∣

(t− h)λC−1/2n (t)
∣

∣

∣

1

h+ε

∣

∣

∣

∣

≤ ελ
C

n3/2
. (25)

For the second summand it follows from (21) that

∣

∣

∣

∣

∫ 1

h+ε
λ(t− h)λ−1C−1/2n (t)dt

∣

∣

∣

∣

≤ C

n3/2

∫ 1

h+ε
λ(t− h)λ−1dt (26)

≤ C

n3/2
(t− h)λ

∣

∣

∣

1

h+ε
(27)

=
C

n3/2
ελ. (28)

Combining (25) and (28) and taking again ε = 1/n, we obtain

∫ 1

h+ε
(t− h)λPn(t)dt = O(n−3/2−λ), n→∞.

Together with (24), it follows that

∫ 1

h
(t− h)λPn(t)dt = O(n−3/2−λ), n→∞,

which, finally, yields the assertion for all λ with −1 < λ ≤ 0.

To prove the result for λ > 0, we first deduce from (16) and the definition of Lh,λ, that

L ∧
h,λ+1(n) = −

λ+ 1

2n+ 1

[

L ∧
h,λ(n+ 1)− L ∧

h,λ(n− 1)
]

.

Thus, the assertion follows for all λ with 0 < λ ≤ 1, and, recursively, for all λ > −1. ¤

The last theorem shows that, for λ > −1/2,
∞
∑

n=0

2n+ 1

4π

[

L ∧
h,λ(n)

]2
<∞.

In consequence, Lh,λ(η· ) is of class L2(Ω) for every η ∈ Ω. Clearly, Lh,λ(η· ) ∈ L1(Ω) for every
η ∈ Ω and all λ > −1.

Finally, we provide illustrations of some kernels: Figure 1 shows the kernel ϑ 7→ Lh,λ(cosϑ),
ϑ ∈ [−π, π], for λ = 1 and different values of h. Figure 2 illustrates the kernels ϑ 7→ Lh,λ(cosϑ),
ϑ ∈ [−π, π], for different values of λ.
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−0.7
−0.2
0.2
0.7

Figure 1: The kernels ϑ 7→ Lh,λ(cosϑ) for λ = 1, h = −0.7,−0.2, 0.2, 0.7.

4 Iterated Locally Supported Kernels

Next, we will apply the earlier described concept of iterated kernels to the locally supported
radial basis functions of the last section. It turns out, that the iterated kernels have some
appealing properties. To be more concrete, they are still locally supported, their Legendre
transform is non–negative, and they show a certain degree of smoothness.

Let h ∈ (0, 1) and λ > −1. Then it is known (see e.g. [8]) that the iterated kernel

L
(2)
h,λ = Lh,λ ∗ Lh,λ

has the support

suppL
(2)
h,λ(η· ) =

{

ξ ∈ Ω|2h2 − 1 ≤ ξ · η ≤ 1
}

. (29)

Since the support of the aforementioned radial basis functions will become an important issue
when we consider infinite convolutions, the statement (29) should be explained in more detail:
The support of Lh,λ(t) is [h, 1], so that the function ϑ 7→ Lh,λ(cosϑ), ϑ ∈ [0, π], is supported

in [0, arccosh]. The support of the iterated kernel ϑ 7→ L
(2)
h,λ(cosϑ) is then twice as large, i.e.

[0, 2 arccosh], which is obvious when the kernel is considered as a radial basis function over the

sphere Ω. Thus, the support of t 7→ L
(2)
h,λ(t) is [cos(2 arccosh), 1] = [2h2 − 1, 1].

For the Legendre series of the iterated kernels we have formally

L
(2)
h,λ(t) =

∞
∑

n=0

2n+ 1

4π

[

L ∧
h,λ(n)

]2
Pn(t),

so that
L
(2)∧
h,λ (n) =

[

L ∧
h,λ(n)

]2 ≥ 0, n ≥ 0.

A consequence of Theorem 3.5 is the asymptotic relation

L
(2)∧
h,λ (n) = O(n−3−2λ), n→∞. (30)

This leads us to
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Figure 2: The kernels ϑ 7→ Lh,λ(cosϑ) for h = 0.1 and λ = −2/3,−1/3, 0, 1, 2.

Lemma 4.1. Suppose that h ∈ (−1, 1). Then the following statements hold true:

(i) If λ > −1 then L
(2)
h,λ(η· ) ∈ L2(Ω).

(ii) If λ > −1/2 then L
(2)
h,λ(η· ) ∈ C(Ω).

(iii) If λ > k/2− 1/2 then L
(2)
h,λ(η· ) ∈ C(k)(Ω), k ∈ N.

Proof. Part (i) can easily deduced from (30). The second and third statement are consequences
of the the Sobolev Lemma (see [8]). ¤

Note that for λ with −1 < λ ≤ −1/2, the continuity of the kernels cannot be assured. However,
if the parameters h1, h2 ∈ (−1, 1) define two kernels, then it was already pointed out in our

prelimiaries that the convolution L
(2)
h1,λ

∗ L
(2)
h2,λ

is a continuous kernel. To be more specific, let

ξ, η ∈ Ω, and let K : [−1, 1]→ R be an L2–kernel, i.e. K(η· ) ∈ L2(Ω). Then we obtain by aid
of the Cauchy–Schwarz inequality

|K(2)(ξ · η)| = |K ∗K(ξ · η)| =
∣

∣

∣

∣

∫

Ω
K(ξ · ζ)K(ζ · η)dω(ζ)

∣

∣

∣

∣

≤
∫

Ω
|K(ξ · η)|2dω(ζ))

=

∣

∣

∣

∣

∫

Ω
K(ξ · ζ)K(ζ · ξ)dω(ζ)

∣

∣

∣

∣

= K(2)(ξ · ξ) = K(2)(1).

Summarizing our results we therefore obtain

Theorem 4.2. If K : [−1, 1]→ R is an L2–kernel, i.e. K(η· ) ∈ L2(Ω), then the iterated kernel

11



K(2) : [−1, 1]→ R is continuous and satisfies the estimate

|K(2)(t)| ≤ K(2)(1) = ‖K(η· )‖2L2(Ω)

This theorem justifies the use of unbounded kernels for approximation purposes, since the iterates
of L2–kernels attain their maximum at t = 1.

In view of Lemma 4.1 we have

Theorem 4.3. If λ > −1/2, then

0 ≤ L
(2)
h,λ(t) ≤ L

(2)
h,λ(1) =

(λ+ 1)2

2π(2λ+ 1)(1− h)
.

If −1 < λ ≤ −1/2, then Lh,λ is not an L2–kernel, but for any −1 < h1, h2 < 1 the kernel
Lh1,λ ∗ Lh2,λ is of class L2[−1, 1]. Thus,

0 ≤ L
(2)
h1,λ

∗ L(2)h2,λ
(t) ≤ L

(2)
h1,λ

∗ L(2)h2,λ
(1), (31)

which makes these kernels to useful structures for approximation problems an the sphere.

In Figure 3, we show the iterated kernels ϑ 7→ L
(2)
h,λ(cosϑ). Note that, according to (31), L

(2)
h,λ

cannot be guaranteed to be continuous for λ = −2/3. However, L
(2)
h,λ ∗ L

(2)
h,λ is continuous for all

λ > −1.

−3 −2 −1 0 1 2 3
−0.05
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0.4
−2/3
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0
1
2

Figure 3: The kernels ϑ 7→ L
(2)
h,λ(cosϑ) for h = 0.2 and λ = −2/3,−1/3, 0, 1, 2.

5 The Spherical Up Function

Now, we deal with a spherical counterpart of the so–called up function which is, for one di-
mensional problems, described e.g. in [26]. The main idea is to build an infinite convolution of

12



locally supported functions, where the support of each of the building blocks is chosen carefully
to ensure that the resulting convolution is additionally locally supported. Even more, the infi-
nite convolution turns out to be infinitely often differentiable. The reason is that the symbol of
the up function decays for increasing n faster than any rational function (in n).

Definition 5.1 Suppose that h ∈ (−1, 1), and λ > −1. We let ϕ0 = arccosh and introduce

ϕi = 2−iϕ0, , hi = cos
ϕi

2
, i = 1, 2, . . . . (32)

Then Uph,λ defined by

Uph,λ = L
(2)
h1,λ

∗ L(2)h2,λ
∗ . . . =

∞

*i=1 L
(2)
hi,λ

(33)

is called up function (more precisely: (h, λ)–up function).

Each ϑ 7→ Lhi,λ(cosϑ) possesses the support [0, ϕi/2], so that ϑ 7→ L
(2)
hi,λ

(cosϑ) has the support
[0, ϕi]. Thus, the function ϑ 7→ Uph,λ(cosϑ) has the support [0,

∑∞
i=1 ϕi] = [0, ϕ0], so that

suppUph,λ(t) = [h, 1] (what justifies our way of writing).

We know that, for each i, we have

0 ≤ L
(2)∧
hi,λ

(n) ≤ L
(2)∧
hi,λ

(0) = 1, n = 1, 2, . . .

so that the infinite convolution (33) is well–defined, and we have

Up ∧h,λ(n) =
∞
∏

i=1

L
(2)∧
hi,λ

(n). (34)

In particular,
0 ≤ Up ∧h,λ(n) ≤ Up ∧h,λ(0) = 1, n = 1, 2, . . . (35)

From Lemma 3.2 it follows that

lim
h→1

Up ∧h,λ(n) = 1, n = 1, 2, . . .

Furthermore, as a consequence of Theorem 4.2 we have for every k ∈ N

Up ∧h,λ(n) = O(n−k), n→∞. (36)

Hence we are able to deduce from the Sobolev Lemma that Uph,λ(η· ) ∈ C(∞)(Ω) for every η ∈ Ω.

We summarize the properties of the (h, λ)– spherical up function.

Theorem 5.2. Let for h ∈ (−1, 1) and λ > −1 the (h, λ)–up function Uph,λ : [−1, 1] → R be
defined as in (33). Then the following statements are valid:

(i) Uph,λ is locally supported with suppUph,λ = [h, 1].

(ii) For every η ∈ Ω: Uph,λ(η· ) is of class C(∞)(Ω).

13



(iii) Uph,λ : [−1, 1] → R admits the uniformly convergent orthogonal expansion in terms of
Legendre polynomials

Uph,λ =

∞
∑

n=0

2n+ 1

4π
Up ∧h,λ(n)Pn (37)

where Up ∧h,λ(0) = 1 and

0 ≤ Up ∧h,λ(n) =

∞
∏

i=1

(

L ∧
hi,λ

(n)
)2 ≤ 1, n = 0, 1, 2, . . . . (38)

(iv) For n = 1, 2, . . .
lim
h→1

Up ∧h,λ(n) = 1. (39)

(v) For all t ∈ [−1, 1]

0 ≤ Uph,λ(t) ≤ Uph,λ(1) =

∞
∑

n=0

2n+ 1

4π
Up ∧h,λ(n). (40)

(vi) For any k ∈ N,
Up ∧h,λ(n) = O(n−k), n→∞. (41)

Proof. In the light of the previous considerations, we only have to prove the statement (v):
Since Uph,λ is built by a convolution out of positive functions Lhi,λ, it is clear that Uph,λ(t) ≥ 0
for t ∈ [−1, 1]. Since Up ∧h,λ(n) ≥ 0 for all n = 0, 1, . . ., and |Pn(t)| ≤ Pn(1) = 1 for all t ∈ [−1, 1],
the series expansion (37) lead us to the inequality

0 ≤ Uph,λ(t) ≤ Uph,λ(1) =
∞
∑

n=0

2n+ 1

4π
Up ∧h,λ(n),

which completes the proof. ¤

6 Finite Truncations of the Up Function

From a numerical point of view, it is of advantage that the infinite convolution (33) can be
replaced by a finite one with arbitrary accuracy. This result will be developed in the following.
Assume that h ∈ (−1, 1) and λ > −1. We consider, for N ∈ N, the splitting

Uph,λ = Up1,...,Nh,λ ∗UpN+1,...,∞h,λ =
N

*i=1 L
(2)
hi,λ

∗
∞

*i=N+1
L
(2)
hi,λ

Our aim is to estimate the expression |Up1,...,Nh,λ (t)−Uph,λ(t)|, t ∈ [−1, 1]. We start with a series
of lemmata:

Lemma 6.1. Suppose that K ∈ L1[−1, 1], K ≥ 0, K∧(0) = 1, and assume that K is locally
supported: suppK = [h, 1]. Then, for every F ∈ C(Ω),

‖K ∗ F − F‖2C(Ω) ≤ max
ξ·η≥h

|F (η)− F (ξ)|.

14



Proof. For ξ ∈ Ω we have

|K ∗ F (ξ)− F (ξ)| =

∣

∣

∣

∣

∫

Ω
K(ξ · η)F (η)dω(η)− F (ξ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
K(ξ · η)[F (η)− F (ξ)]dω(η)

∣

∣

∣

∣

≤
∫

Ω
K(ξ · η)dω(η) max

ξ·η≥h
|F (η)− F (ξ)|

= max
ξ·η≥h

|F (η)− F (ξ)|.

¤

Lemma 6.2. Assume that K ∈ L1[−1, 1], K ≥ 0, K∧(0) = 1, suppK = [h, 1]. Let H ∈
C(1)[−1, 1]. Then for every t ∈ [−1, 1]

|K ∗H(t)−H(t)| ≤
√
2
√

1− h2 max
τ∈[−1,1]

|H ′(τ)|.

Proof. We deduce from the last lemma, that for every ξ, η ∈ Ω

|K ∗H(ξ · η)−H(ξ · η)| ≤ max
η·ζ≥h

|H(ξ · η)−H(ξ · ζ)|.

For η · ζ ≥ h we have

|ξ · η − ξ · ζ| = |ξ · (η − ζ)| ≤
√

(η − ζ)2

=
√

2− 2η · ζ
≤

√
2
√

1− h2 .

Hence, the result stated in Lemma 6.2 easily follows from the mean value theorem. ¤

Lemma 6.3. Let K : [−1, 1]→ R be of class H2, i.e.
∞
∑

n=0

2n+ 1

4π
|K∧(n)|2

(

n+
1

2

)4

<∞.

Assume further, that K∧(n) ≥ 0 for all n ∈ N. Then K is continuously differentiable and

|K ′(t)| ≤ K ′(1) =
∞
∑

n=0

2n+ 1

4π

n(n+ 1)

2
K∧(n).

Proof. It follows from the Sobolev Lemma that K is continuously differentiable. Furthermore,
we obtain the uniformly convergent series

|K ′(t)| =

∣

∣

∣

∣

∣

∞
∑

n=0

2n+ 1

4π
K∧(n)P ′n(t)

∣

∣

∣

∣

∣

15



≤
∞
∑

n=0

2n+ 1

4π
K∧(n)P ′n(1)

=
∞
∑

n=0

2n+ 1

4π

n(n+ 1)

2
K∧(n)

= C ′(1),

¤

Using these preliminaries we are able to prove

Theorem 6.4. Suppose that h ∈ (−1, 1), λ > −1. For a given ε > 0, choose N ∈ N, N ≥ 5, so
that

sin
arccosh

2N+1
≤ ε√

2 d
dtUp

1,...,N
h,λ (1)

. (42)

Then, for all t ∈ [−1, 1],
|Up1,...,Nh,λ (t)−Uph,λ(t)| < ε. (43)

Proof. The assertion is a consequence of the previous lemmata using the following facts:

• suppUpN+1,...,∞h,λ = [hN , 1] with

hN = cos
ϕN

2
= cos

2−N

2
ϕ0 = cos

ϕ0
2N+1

,

so that
√

1− h2N =
√

1− (cos 2−(N+1)ϕ0)2

= sin
ϕ0

2N+1

= sin
arccosh

2N+1
.

• If N ≥ 5, we deduce from (30) that Up1,...,Nh,λ is of class H2 for λ > −1. Hence, we conclude

from Lemma 6.3 that Up1,...,Nh,λ is continuously differentiable with
∣

∣

∣

∣

d

dt
Up1,...,Nh,λ (t)

∣

∣

∣

∣

≤ d

dt
Up1,...,Nh,λ (1)

so that Lemma 6.2 can be applied.

¤

For a larger λ (i.e. the kernels L
(2)
h,λ are in a higher smoothness class) d

dtUp
1,...,N
h,λ (1) can be

substituted by the same expression with a M < N , as long as the kernel Up1,...,Mh,λ fulfills the
assumptions of Lemma 6.3. This is true because if |L ∧

h,λ(n)| ≤ 1, so that

d

dt
Up1,...,Mh,λ (1) ≥ d

dt
Up1,...,Nh,λ (1),
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for M < N , as long as the terms are well–defined.

We close this section by giving a graphical illustration of some (h, λ)–up functions. Figure 4
shows the kernels ϑ 7→ Uph,λ(cosϑ) for different values of λ.
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Figure 4: The kernels ϑ 7→ Uph,λ(cosϑ) for h = −0.5 and λ = −0.99, 0, 1.

7 Multiresolution Analysis Using the Up Function

Next we come to the characterization of a multiresolution analysis within the space L2(Ω)
involving the spherical up function. We start with

Theorem 7.1. Suppose that λ > −1. For all F ∈ L2(Ω),

lim
h→1

∥

∥Uph,λ ∗ F − F
∥

∥

L2(Ω)
= 0. (44)

Proof. From the completeness of the spherical harmonics in L2(Ω) we know, that convergence
in norm is equivalent to the convergence of the Fourier transform. Therefore, the limit relation
(44) is equivalent to

lim
h→1

∞
∑

n=0

2n+1
∑

m=1

|Up ∧h,λ(n)F∧(n,m)− F∧(n,m)|2 = 0.

Given ε > 0. For F ∈ L2(Ω), there exist a number Nε ∈ N so that

∞
∑

n=Nε

2n+1
∑

m=1

|F∧(n,m)|2 <
ε

4
.

Observing that limh→1Up
∧
h,λ(n) = 1, it follows that there exist an hε so that for all h > hε

Nε−1
∑

n=0

(2n+ 1)|Up ∧h,λ(n)− 1|2 <
ε

2 ‖F‖2L2(Ω)
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Thus, we are led to the following estimate

∞
∑

n=0

2n+1
∑

m=1

|Up ∧h,λ(n)F∧(n,m)− F∧(n,m)|2

=

∞
∑

n=0

2n+1
∑

m=1

|Up ∧h,λ(n)− 1|2|F∧(n,m)|2

=

(

Nε−1
∑

n=0

+
∞
∑

n=Nε

)

2n+1
∑

m=1

|Up ∧h,λ(n)− 1|2|F∧(n,m)|2

≤ ‖F‖2L2(Ω)

Nε−1
∑

n=0

2n+1
∑

m=1

|Up ∧h,λ(n)− 1|2 +
∞
∑

n=Nε

2n+1
∑

m=1

|F∧(n,m)|2

≤ ε

2
+

ε

2
= ε,

where we have used the fact that |Up ∧h,λ(n)− 1| ≤ 1. (Note that 0 ≤ Up ∧h,λ(n) ≤ 1). ¤

Furthermore, from |Up ∧h,λ(n)| ≤ 1 it follows that

∥

∥Uph,λ ∗ F
∥

∥

L2(Ω)
≤ ‖F‖L2(Ω) (45)

which motivates the terminology of a multiresolution analysis L2(Ω). However, when h1 ≥ h2,
we are not able to guarantee that

∥

∥Uph2,λ ∗ F
∥

∥

L2(Ω)
≤
∥

∥Uph1,λ ∗ F
∥

∥

L2(Ω)
(46)

holds for all F ∈ L2(Ω). This is due to the fact that the Legendre transform Up ∧h,λ(n) is not
monotone with respect to h. As an counterexample for (46) take values h1 and h2 so that
Up ∧h1,λ

(n) = 0 for an n ∈ N, but Up ∧h2,λ
(n) 6= 0. Then it can be easily seen that (46) is not true

for a spherical harmonic of order n, F = Yn ∈ Harmn.

We can overcome this calamity by restricting ourselves to discrete values of h, i.e. we are looking
for a scale discrete multiresolution analysis of L2(Ω).

We assume from now on, that h ∈ (−1, 1) and λ > −1 are fixed. For this h, the numbers hi,
i = 1, 2, . . . are defined as in (32). The scaling function Φj

h,λ : [−1, 1]→ R is introduced by

Φj
h,λ = Upj,...,∞h,λ =

∞∗
i=j

L
(2)
hj ,λ

, j = 1, 2, . . . . (47)

By construction, suppΦj
h,λ = [hj−1, 1], and we have the refinement equation

Φj+1
h,λ ∗ L

(2)
hj ,λ

= Φj
h,λ, j ≥ 1. (48)

Using the previous results we, therefore, obtain for every F ∈ L2(Ω)

lim
j→∞

∥

∥

∥
Φj

h,λ ∗ F − F
∥

∥

∥

L2(Ω)
= 0.
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Figure 5: The scaling functions ϑ 7→ Φj
h,λ(cosϑ) for j = 1, 2, 3, λ = −0.9, and h = −1.

Moreover, for every F ∈ L2(Ω)
∥

∥

∥
Φj

h,λ ∗ F
∥

∥

∥

L2(Ω)
≤
∥

∥

∥
Φj+1

h,λ ∗ F
∥

∥

∥

L2(Ω)
≤ ‖F‖L2(Ω) .

These facts give rise to interpret the convolution with Φj
h,λ as low–pass filter. Obviously, we

define for j = 1, 2, . . . the projection operators Pj : L2(Ω)→ C(∞)(Ω) ⊂ L2(Ω) by

Pj(F ) = Φj
h,λ ∗ F =

∫

Ω
Φj

h,λ(η· )F (η)dω(η) (49)

and introduce the scale spaces

Vj = {Pj(F )|F ∈ L2(Ω)}. (50)

Thus, we finally arrive at the following result.

Theorem 7.2. Suppose that h ∈ (−1, 1), λ > −1. The scale spaces

Vj = {Φj
h,λ ∗ F |F ∈ L2(Ω)}.

define a multiresolution of L2(Ω) in the following sense:

(i) Vj ⊂ L2(Ω) is a linear subspace with Vj ⊂ C(∞)(Ω)

(ii) V1 ⊂ V2 ⊂ V3 ⊂ . . .

(iii)
∞
⋂

j=1

Vj = V1

(iv)
∞
⋃

j=1

Vj = L2(Ω)
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Remark 7.3. By setting h = −1 (which was excluded for the previous analysis), we find for
λ = 0

Lh,λ(t) =
1

4π
=

1

4π
P0(t), t ∈ [−1, 1],

hence,

L
(2)
h,λ(t) =

1

4π
P0(t), t ∈ [−1, 1].

In consequence, the property (iii) of the previous theorem specializes to

∞
⋂

j=1

Vj = Harm0.

Based on this multiresolution analysis of L2(Ω), spherical wavelets which are locally supported
can be constructed in a similar way as described in [8].

8 Locally Supported Wavelets

In what follows, we assume that h and λ are fixed, and that the corresponding hi are given as in
(32). In doing so, we obtain with Φj = Φj

h,λ the family
{

Φj | j = 1, 2, . . .
}

which we interpret as
scale discrete scaling function. This scaling function allows us to introduce scale discrete locally
supported wavelets on the sphere. We represent an L2(Ω)–function F by a two parameter
family (j; η), j ∈ N, η ∈ Ω, breaking up the function F into ”pieces” at different locations
and different levels of resolution. The refinement equation corresponding to the scaling function
{Φj |j = 1, 2, . . .} reads as follows:

Ψj = Φj+1 − Φj , j = 1, 2, . . . , (51)

Clearly, Ψj is a locally supported infinitely often differentiable function with support suppΨj =
[hj , 1]. We use Ψj to introduce the spherical wavelet at level j and point η ∈ Ω by Ψj;η(ξ) =
Ψj(η · ξ), (ξ, η) ∈ Ω× Ω.

For the scaling function we analogously write Φj;η(ξ) = Φj(η · ξ). From the definition of the
wavelets it is obvious that (ξ, η) 7→ Ψj;η(ξ) = Ψj(ξ · η) is a radial basis function on the sphere.
It is easily seen that

Ψj∧(n) = Φj+1∧(n)− Φj∧(n) = Φj+1∧(n)
[

1− L
(2)∧
hj ,λ

(n)
]

.

In particular,
Ψj∧(0) = 0 (52)

which is nothing else than the zero–mean property known from Euclidean wavelet theory.

Given a function F ∈ L2(Ω), we define its wavelet transform by

WT(F )(j; η) = (Ψj;η, F ), j = 1, 2, . . . , η ∈ Ω, (53)

which allows to break up F into ”pieces” at different locations and different scales. This state-
ment is made rigorous in the following theorem, which is a reconstruction formula for linear
wavelets:
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Figure 6: The wavelets ϑ 7→ Ψj(cosϑ) for j = 1, 2, λ = −0.9, and h = −1.

Theorem 8.1. Let F ∈ L2(Ω). Then we have in L2(Ω)–sense

F (η) = (Φ1;η, F ) +
∞
∑

j=1

WT(F )(j; η). (54)

Proof. The statement is a reformulation of Theorem 7.1. ¤

In (49) and (50) the projection operators Pj and the corresponding scale spaces Vj are introduced
by

Pj(F ) = (Φj;., F ), Vj =
{

Pj(F ) | F ∈ L2(Ω)
}

.

Analogously we let the operator Rj and the detail spaces to be given by

Rj(F ) = (Ψj;., F ), Wj =
{

Rj(F ) | F ∈ L2(Ω)
}

. (55)

It follows from the zero–mean property (52) that F ∧(0, 0) = 0 for all F ∈Wj . Thus the wavelet
transform can be seen as a band–pass filter. By construction, we have

VJ+1 = VJ +WJ = V1 +
J
∑

j=1

Wj (56)

It is worth mentioning that the decomposition (56) is neither direct nor orthogonal.

The described wavelet analysis, which may be seen as a linear wavelet theory, can be extended to
a bilinear reconstruction scheme. We introduce a second family of wavelets Ψ̃j;η (dual wavelets)
and understand the reconstruction process by a convolution of the wavelet transform against
the dual wavelets.

The dual wavelets are given by

Ψ̃j = Φj+1 +Φj , j = 1, 2, . . . . (57)
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As usual,
Ψ̃j;η(ξ) = Ψ̃j(η · ξ), (ξ, η) ∈ Ω× Ω. (58)

The dual wavelet Ψ̃j has the local support suppΨ̃j = [hj , 1], and its Legendre transform reads
as follows:

Ψ̃j∧(n) = Φj+1∧(n) + Φj∧(n) = Φj+1∧(n)
[

1 + L
(2)∧
hj ,λ

(n)
]

.

A reconstruction scheme involving the dual wavelets can be formulated as follows:

Theorem 8.2. Let F ∈ L2(Ω). Then it holds in L2(Ω)–sense

F (.) =

∫

Ω
(Φ1;η, F )Φ1;η(.)dω(η) +

∞
∑

j=1

∫

Ω
WT(F )(j; η)Ψ̃j;η(.)dω(η). (59)

Proof. From the completeness of the spherical harmonics in L2(Ω) we are able to deduce,
that convergence in L2(Ω) is equivalent to convergence of the Fourier transform. For the first
summand in (59) we get

(∫

Ω
(Φ1;η, F )Φ1;η(.)dω(η)

)∧

(n,m) = F∧(n,m)
[

Φ1∧(n)
]2

.

Furthermore, we have
(∫

Ω
WT(F )(j; η)Ψ̃j;η(.)dω(η)

)∧

(n,m) = F∧(n,m)Ψj∧(n)Ψ̃j∧(n)

= F∧(n,m)
[

Φj+1∧(n)− Φj∧(n)
] [

Φj+1∧(n) + Φj∧(n)
]

= F∧(n,m)
[

(Φj+1∧(n))2 − (Φj∧(n))2
]

.

In conclusion,




∫

Ω
(Φ1;η, F )Φ1;η(.)dω(η) +

J
∑

j=1

∫

Ω
WT(F )(j; η)Ψ̃j;η(.)dω(η)





∧

(n,m) = F∧(n,m)
(

ΦJ+1∧(n)
)2

.

Observing the fact that

lim
J→∞

(

ΦJ∧(n)
)2

= 1,

the proof of Theorem 8.2 follows in a similar way as the proof of Theorem 7.1. ¤

9 Decomposition and Reconstruction Schemes Involving the Up

Functions

For numerical purposes it is important to know, how the wavelet decomposition and reconstruc-
tion can be organized in an efficient way, so that information is transported from level to level,
which characterizes the essence of a tree algorithm or a pyramid scheme. The decompositions
are based an the refinement equation (48)

Φj+1 ∗ L(2)hj ,λ
= Φj , j = 1, 2, . . .. (60)

22



It is remarkable that we can find a similar relation for the wavelets in the form

Ψj+1 ∗Kj = Ψj , j = 1, 2, . . ., (61)

which enables a second variant of the pyramid scheme for the wavelet decomposition.

In the following, we present a series of schemes for the decomposition and reconstruction of a
function F ∈ L2(Ω). We assume, that we start from a finest level J ∈ N.

The first variant for the wavelet decomposition of a signal F ∈ L2(Ω) looks as follows:

Wavelet Decomposition (Variant 1)

F (ΦJ+1;., F ) (ΦJ ;., F ) . . . (Φ1;., F )

WT(F )(J ; .) . . . WT(F )(0; .)

? ?

@
@

@R

@
@

@R

@
@

@R

- - - -

The scheme works because we have from (60) that

(Φj;., F ) = Φj ∗ F = Φj+1 ∗ L(2)hj ,λ
∗ F = L

(2)
hj ,λ

∗ (Φj+1;., F ), j = 1, 2, . . . ,

and since we can deduce from (51) that

WT(F )(j; .) = (Φj+1;., F )L2(Ω) − (Φj;., F )L2(Ω).

The reconstruction in the linear case (Theorem 8.1) can be organized as follows:

Wavelet Reconstruction (Linear Case)

(Φ1;., F ) + P2(F ) + P3(F ) + . . .

WT(F )(1; .) WT(F )(2; .) WT(F )(3; .)

- - -- - -

@
@

@R

@
@

@R

@
@

@R

In order to formulate the reconstruction for the bilinear case, we introduce the following variants
of the projection operators Pj and Rj :

P 2j (F ) =

∫

Ω
(Φj;η, F )Φj;η(.)dω(η) = Φj ∗ Φj ∗ F,

R2j (F ) =

∫

Ω
WT(F )(j, η)Ψ̃j;η(.)dω(η) = Ψ̃j ∗Ψj ∗ F.

Consequently we obtain the following scheme from Theorem 8.2:
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Wavelet Reconstruction (Bilinear Case)

P 21 (F ) + P 22 (F ) + P 23 (F ) + . . .

R21(F ) R22(F ) R33(F )

WT(F )(1; .) WT(F )(2; .) WT(F )(3; .)

- - -- - -

@
@R

@
@R

@
@R

? ? ?

Next, we want to develop a reformulation of the decomposition scheme. The already given first
variant transports information from scale space to scale space. Our aim now is to construct a
second version where information is transported from detail space to detail space. For this pur-
pose, we need a scale relation for the wavelets of the from Ψj+1 ∗Kj = Ψj , j ≥ 1. Remembering
the definition (51) we are able to rewrite (61) as follows:

(Φj+2 − Φj+1) ∗Kj = Φj+1 − Φj .

Using (48) we arrive at

(Φj+2 − Φj+2 ∗ L(2)hj+1,λ
) ∗Kj = Φj+2 ∗ L(2)hj+1,λ

− Φj+2 ∗ L(2)hj+1,λ
∗ L(2)hj ,λ

, (62)

which is satisfied, when the kernel Kj fulfills

Kj − L
(2)
hj+1,λ

∗Kj = L
(2)
hj+1,λ

− L
(2)
hj+1,λ

∗ L(2)hj ,λ
. (63)

This equation can be solved in spectral language using the Legendre transform. More explicitly,

K∧
j (n) =

1− L
(2)∧
hj ,λ

(n)

1− L
(2)∧
hj+1,λ

(n)
L
(2)∧
hj+1,λ

(n), n = 1, 2, . . . (64)

for n ≥ 1. Note that K∧
j (0) is not specified by this relation. But this is clear, because of the

fact that Ψj+1∧(0) = Ψj∧(0) = 0 (zero mean property). For n = 1 equation (64) is well–defined,
since we know that |L ∧

h,λ(n)| < 1 for all n ≥ 1.

Summarizing our results we obtain

Theorem 9.1. For all j = 1, 2, . . . there exists a radial basis function Kj satisfyig the scale
relation

Ψj+1 ∗Kj = Ψj .

Kj is given by

K∧
j (n) =

1− L
(2)∧
hj ,λ

(n)

1− L
(2)∧
hj+1,λ

(n)
L
(2)∧
hj+1,λ

(n), n ≥ 1,

where K∧
j (0) is arbitrary.

Since limn→∞ L ∧
hj ,λ

(n) = limn→∞ L ∧
hj+1,λ

(n) = 0, K∧
j (n) ∼ L

(2)∧
hj+1,λ

(n), n→∞, so that Kj is in

the same Sobolev space as L
(2)
hj+1,λ

. Furthermore, for n ≥ 1, we have K∧
j (n) = 0 if and only if

L
(2)∧
hj+1,λ

(n) = 0.
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From Ψj+1 ∗K = Ψj , it follows that WT(F )(j; .) = Kj ∗WT(F )(j + 1; .) so that we finally end
up with the following modification of the decomposition scheme:

Wavelet Decomposition (Variant 2)

F WT(F )(J ; .) WT(F )(J − 1; .) . . . WT(F )(1; .)

(Φ1;., F )

@
@

@R

- - - -

For the numerical implementation of the convolutions with Kj , K
∧
j (0) should be chosen, so that

the kernel Kj is strongly localized. This can be achieved, when K(−1) = 0, so that the Legendre
coefficient of order zero should be chosen in accordance with

1

4π
K∧

j (0) = −
∞
∑

n=1

2n+ 1

4π
(−1)nK∧

j (n).
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