ON SIMPSON MODULI SPACES OF STABLE SHEAVES ON \mathbb{P}_2 WITH LINEAR HILBERT POLYNOMIAL

HANS GEORG FREIERMUTH

Preprint – Universität Kaiserslautern

Abstract. In this short note we prove some general results on semi-stable sheaves on \mathbb{P}_2 and \mathbb{P}_3 with arbitrary linear Hilbert polynomial. Using Beilinson’s spectral sequence, we compute free resolutions for this class of semi-stable sheaves and deduce that if μ and χ are coprime the smooth moduli spaces $M_{\mu m+\chi}(\mathbb{P}_2)$ and $M_{\mu m+(\mu-\chi)}(\mathbb{P}_2)$ are birationally equivalent.

1. Introduction

Moduli of torsionfree semi-stable sheaves on \mathbb{P}_2 and \mathbb{P}_3 with fixed Hilbert polynomial were introduced by Maruyama and others. They have been intensively studied during the last decades. In 1994, Simpson [9] showed that the family of arbitrary semi-stable sheaves with fixed Hilbert Polynomial P on a smooth projective variety X is bounded. Using this, he proved the existence of a projective scheme $M_P(X)$ corepresenting the moduli functor $M_P(X)(S)$ of S-flat coherent sheaves over $X \times S$ with semi-stable fibers \mathcal{F}_s and $P_{\mathcal{F}_s} = P$. For $\dim(X) \geq 2$ and linear Hilbert polynomial $P(m) = \mu m + \chi$, id est if all the sheaves in $M_P(X)$ have torsion and are supported on degree μ curves, there is not much known about these spaces.

LePotier [7] proved that the coarse moduli spaces $M_{\mu m+\chi}(\mathbb{P}_2)$ are irreducible, locally factorial projective varieties of dimension $\mu^2 + 1$. They are rational at least if $\chi \equiv \pm 1 \pmod{\mu}$, $\chi \equiv \pm 2 \pmod{\mu}$ and for small multiplicities $\mu \leq 4$.

Furthermore, he described for $\mu \leq 4$ the geometrical properties of $M_{\mu m+\chi}(\mathbb{P}_2)$ and the birational map [6] to the Maruyama scheme $\mathcal{M}_{\mathbb{P}^2}(\mu; 0, \mu)$ of semi-stable, torsionfree rank μ sheaves with second Chern class μ on the dual projective plane \mathbb{P}^2_Y.

We investigated in [1], [2] the geometry of $M_{3m+1}(\mathbb{P}_3)$ which has two smooth, rational components of dimension 12 and 13 intersecting each other transversally along an 11-dimensional smooth subvariety. It is in some sense the “smallest” example for a reducible Simpson space and plays a role similar to Hilb$_{3m+1}(\mathbb{P}_3)$ in the case of Hilbert schemes.

Doing this, we noted as in [7] that in the planar case $M_{3m+1}(\mathbb{P}_2)$ and $M_{3m+2}(\mathbb{P}_2)$ are both isomorphic to the universal cubic $\mathcal{C} \longrightarrow \mathbb{P}_2$. This is not an accident and turned out to be part of a more general “symmetry” result which is the subject of this short note.

Date: 10/21/2001.
Figure 1. Schematic Picture. Each box corresponds to an $M_{\mu m+\chi}(\mathbb{P}_2)$.

<table>
<thead>
<tr>
<th>μ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

: The moduli space is fine.

: These two spaces in each row are isomorphic.

Symmetry Axis

Theorem 1. Let $P(m) = \mu m + \chi$, $0 < \chi \leq \mu$, μ and χ coprime, be a linear polynomial, and define its “dual” by $P^\nabla(m) := \mu m + \mu - \chi$. Denote by $N \subset M_P(\mathbb{P}_2)$ and $N^\nabla \subset M_{P^\nabla}(\mathbb{P}_2)$ respectively the closed subvarieties of isomorphism classes of sheaves with non-vanishing first cohomology. Then there is a natural isomorphism

$$\Phi : M_P(\mathbb{P}_2) \setminus N \cong M_{P^\nabla}(\mathbb{P}_2) \setminus N^\nabla.$$

Thus, the moduli spaces $M_P(\mathbb{P}_2)$ and $M_{P^\nabla}(\mathbb{P}_2)$ are birationally equivalent. Moreover, the spaces $M_{\mu m+1}(\mathbb{P}_2)$ and $M_{\mu m+\mu-1}(\mathbb{P}_2)$ are isomorphic.

Finally, we can extend LePotier's result cited above in a way certainly known to him:

Theorem 2. If μ and χ are coprime, the fine Simpson moduli spaces $M_{\mu m+\chi}(\mathbb{P}_2)$ are smooth projective varieties of dimension $\mu^2 + 1$.

The author would like to thank Günther Trautmann for useful discussions.

2. Preliminaries

We call the a projective scheme over an algebraically closed field k a variety. One can equip the support of a coherent sheaf \mathcal{F} on a smooth variety X in several ways with the structure

\[^1\text{Note that } M_{\mu m+\tau}(\mathbb{P}_2) \cong M_{\mu m+\chi}(\mathbb{P}_2) \text{ if } \tau \equiv \chi \pmod{\mu} \text{ since the Hilbert polynomial involved is linear.}\]
of a (not necessarily reduced) variety. One is using the annihilator ideal sheaf $\text{Ann}(\mathcal{F}) \subset \mathcal{O}_X$. We write $Z_a(\mathcal{F}) := (\text{Supp}(\mathcal{F}), \mathcal{O}_X/\text{Ann}(\mathcal{F}))$. Another way is the following: Let

$$
\bigoplus_{\mu=1}^{r} \mathcal{O}_X(-b_{\mu}) \xrightarrow{A} \bigoplus_{\nu=1}^{s} \mathcal{O}_X(-a_{\nu}) \to \mathcal{F} \to 0
$$

be an arbitrary presentation of \mathcal{F} and denote by $\text{Fitt}_i(\mathcal{F}) \subset \mathcal{O}_X$ the ideal sheaf generated by the $(s - i) \times (s - i)$-minors of the homogeneous matrix A. Due to Fitting’s lemma, the sheaf $\text{Fitt}_i(\mathcal{F})$ does not depend on the choice of the presentation. Furthermore, one has

$$\text{Fitt}_0(\mathcal{F}) \subset \text{Ann} \mathcal{F} \quad \text{and} \quad (\text{Ann} \mathcal{F}) \text{Fitt}_i(\mathcal{F}) \subset \text{Fitt}_{i-1}(\mathcal{F}) \quad \forall \ i > 0$$

Now define

$$Z_f(\mathcal{F}) := (\text{Supp}(\mathcal{F}), \mathcal{O}_X/\text{Fitt}_0(\mathcal{F})) \hookrightarrow (X, \mathcal{O}_X)$$

$Z_a(\mathcal{F})$ is obviously a subvariety of $Z_f(\mathcal{F})$ and $Z_a(\mathcal{F})_{\text{red}} = Z_f(\mathcal{F})_{\text{red}} = \text{Supp}(\mathcal{F})$.

Let X be a variety and S be a Noetherian (base-)scheme of finite type over k and call the projections from $X \times_k S$ to the first and second factor by q and p respectively. If $\mathcal{F} \in \text{Coh}(X)$, $\mathcal{G} \in \text{Coh}(S)$ and $\mathcal{H} \in \text{Coh}(X \times S)$ are coherent sheaves, we will write $\mathcal{F} \boxtimes \mathcal{G} := q^* \mathcal{F} \otimes p^* \mathcal{G}$, $\mathcal{F}(m) \boxtimes \mathcal{O}_S := q^* \mathcal{F}(m)$, $\mathcal{H}(m) := \mathcal{H} \otimes q^* \mathcal{O}_X(m)$. A purely 1-dimensional coherent sheaf \mathcal{F} with linear Hilbert polynomial $P(m) = \mu m + \chi$ on a smooth variety X is called semi-stable resp. stable if for all proper coherent submodules $0 \neq \mathcal{F}' \subset \mathcal{F}$

$$\frac{\chi(\mathcal{F}')}{\mu(\mathcal{F}')} \leq \frac{\chi}{\mu} \quad \text{resp.} \quad \frac{\chi(\mathcal{F}')}{\mu(\mathcal{F}')} < \frac{\chi}{\mu}$$

$\mu(\mathcal{F})$ is called the multiplicity and $p(\mathcal{F}) := \frac{\chi}{\mu}$ the slope of the sheaf \mathcal{F}.

We collect now some properties of (semi-)stable sheaves supported on curves in the projective plane or projective space in the following theorem:

Theorem 3. Let \mathcal{F} be a semi-stable sheaf on \mathbb{P}_n, $n = 2, 3$, with linear Hilbert polynomial $P_\mathcal{F}(m) = \mu m + \chi$, $0 \leq \chi < \mu$ and $C := Z_a(\mathcal{F})$ be its support.

1. \mathcal{F} is Cohen-Macaulay, or equivalently: \mathcal{F} has no zero-dimensional torsion.
2. If C is smooth then \mathcal{F} is locally free. If C is integral \mathcal{F} is still locally free on an open dense subset $U = C \setminus \{p_1, \ldots, p_r\}$.
3. Let $n = 2$. Then $(r; c_1, c_2) = (0; \mu, \frac{n(\mu+3)}{2} - \chi)$. If $n = 3$, we have $(r; c_1, c_2, c_3) = (0; 0, -\mu, 2\chi - 4\mu)$ In both cases, $r = rk_{\mathbb{P}_n}(\mathcal{F})$ denotes the rank and $c_i = c_i(\mathcal{F})$ are the Chern classes w.r.t. \mathbb{P}_n.
4. The not necessarily reduced curve $C \subset \mathbb{P}_n$ has no zero-dimensional components and no embedded points.
5. $\mu = \chi(\mathcal{F}|_H)$ where $H = Z(l) \in |\mathcal{O}_{\mathbb{P}_n}(1)|$ is \mathcal{F}-regular. Thus,

$$\mu = h^0(\mathcal{F}|_H) = \sum_{p \in \text{Ch}_H} \dim_k(\mathcal{F}_p)$$
6. \(\mu(O_{C_{\text{red}}}) \leq \mu(O_C) \leq \mu \) and \(\mu(F \otimes O_{C_{\text{red}}}) \leq \mu \)
7. If \(\chi > 0 \) and \((\chi, \mu) = Z \) then \(F \) is stable.
8. There are the following bounds for the cohomology and the Castelnuovo-Mumford regularity of the sheaf \(F \):
 - \(\chi \leq h^0F \leq \mu - 1 \).
 - \(0 \leq h^1F \leq \mu - \chi - 1 \).
 - \(\text{reg}(F) \leq \mu - \chi \), in particular \(H^1F(i) = 0 \) for all \(i \geq \mu - \chi - 1 \).

Proof. Cf. [1]. The only part which is not obvious is 8.: Let \(H \) be a \(F \)-regular hyperplane. Then \(0 \to F(-1) \to F \to F|_H \to 0 \) induces an exact sequence

\[
0 \to H^0F(n-1) \to H^0F(n) \xrightarrow{f_n} k^\mu \to H^1F(n-1) \to H^1F(n) \to 0 \quad \forall n \in \mathbb{Z}
\]

This implies that \(n \mapsto h^1F(n) \) is decreasing and \(\chi \leq h^0F \leq h^0F(-1) + \mu \). But \(\text{Hom}(O_C(1), F) \) vanishes because of the semi-stability, and thus \(\chi \leq h^0F \leq \mu \).

Now assume that \(f_n \) is surjective. The commutative diagram

\[
\begin{array}{ccc}
H^0F(n) \otimes H^0O(1) & \xrightarrow{f_n \otimes \text{id}} & k^\mu \otimes H^0O(1) \to 0 \\
\downarrow & & \downarrow \\
H^0F(n+1) & \xrightarrow{f_{n+1}} & k^\mu \\
\downarrow & & \downarrow \\
0 & & 0
\end{array}
\]

implies that \(f_{n+1} \) is also a surjection. Therefore we get

\[
H^1F(n-1) \cong H^1F(n) \cong H^1F(n+1) \cong \cdots \cong 0
\]

by Serre’s theorem B. If \(f_n \) is not surjective, then we see from the sequence (1) that \(h^1F(n-1) > h^1F(n) \). Thus, the function \(n \mapsto h^1F(n) \) is strictly decreasing until it reaches 0.

Next, we show that \(h^0F \leq \mu - 1 \). Suppose \(h^0(F) = \mu \). Then the injective (!) map \(f_0 \) is an isomorphism and \(\mu - \chi = h^1F(-1) = 0 \). Contradiction.

Since \(h^0F < \mu \) the homomorphism \(f_0 \) cannot be surjective. The situation is then the following:
\begin{align*}
 h^1 \mathcal{F}(n) \\
 3\mu - \chi \\
 2\mu - \chi \\
 \mu - \chi \\
 \text{worst case...}
\end{align*}

\[-5 -2-1 \quad \mu - \chi - 1 \quad n\]

This implies that $\text{reg}(\mathcal{F}) \leq \mu - \chi$. \qed

3. The Resolutions

The key idea in the proof of theorem 1 is to find a common free resolution for all sheaves in an open subset of the moduli space $M_{\mu,m+\chi}(\mathbb{P}_2)$ and then to dualize this resolution. An appropriate tool for this are the Beilinson complexes:

Given a coherent sheaf \mathcal{F} on \mathbb{P}_n, one has the following two complexes

\[
0 \rightarrow B_{-n} \rightarrow \cdots \rightarrow B_{-1} \rightarrow B_0 \rightarrow B_1 \rightarrow \cdots \rightarrow B_n \rightarrow 0
\]

where

\[
B_p = \bigoplus_{q=0}^{n} H^q(\mathbb{P}_n, \mathcal{F}(p-q)) \otimes_k \Omega^{q-p}_{\mathbb{P}_n}(q-p), \quad p \in \mathbb{Z}
\]

and

\[
0 \rightarrow C_{-n} \rightarrow \cdots \rightarrow C_{-1} \rightarrow C_0 \rightarrow C_1 \rightarrow \cdots \rightarrow C_n \rightarrow 0
\]

with

\[
C_p = \bigoplus_{q=0}^{n} H^{q+p}(\mathbb{P}_n, \mathcal{F} \otimes \Omega^q_{\mathbb{P}_n}(q)) \otimes_k \mathcal{O}_{\mathbb{P}_n}(-q), \quad p \in \mathbb{Z}
\]

They are exact except at B_0 resp. C_0, where the homology is \mathcal{F}, and can be obtained from the Beilinson I/II spectral sequences. For example the second complex comes from the sequence with E_1-term

\[
E_1^{rs} := H^r(\mathbb{P}_n, \mathcal{F} \otimes \Omega^{s}_{\mathbb{P}_n}(-s)) \otimes_k \mathcal{O}_{\mathbb{P}_n}(s)
\]
which converges to $E^i_\infty = \{ \mathcal{F}, \text{ for } i=0 \} \oplus \{ 0, \text{ otherwise} \}$. More detailed: $E^r_\infty = 0$ for $r = -s$ and $\bigoplus_{r=0}^{n} E^{-r,r}_\infty$ is the associated graded sheaf of a filtration of \mathcal{F}. For more details on the Beilinson sequence we refer for example to [8].

Applying this technique to semi-stable sheaves in \mathbb{P}_2, we get:

Theorem 4. Let \mathcal{F} be a semi-stable sheaf on \mathbb{P}_2 with linear Hilbert polynomial $P(m) = m^2 + \chi$, $0 \leq \chi < \mu$. Furthermore, let $a := h^0(\mathbb{P}_2, \mathcal{F} \otimes \Omega^1_{\mathbb{P}_2}(1))$.

(i) There are complexes

$$0 \rightarrow (2\mu - \chi) \mathcal{O}_{\mathbb{P}_2}(-1) \rightarrow H^0 \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_2} \oplus (\mu - \chi) \Omega^1_{\mathbb{P}_2}(1) \rightarrow H^1 \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_2} \rightarrow 0$$

and

$$0 \rightarrow a \mathcal{O}_{\mathbb{P}_2}(-1) \oplus (\mu - \chi) \mathcal{O}_{\mathbb{P}_2}(-2) \rightarrow H^0 \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_2} \oplus (a + \mu - 2\chi) \mathcal{O}_{\mathbb{P}_2}(-1) \rightarrow H^1 \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_2} \rightarrow 0$$

which are exact with exception of the homology sheaf in the middle which is isomorphic to \mathcal{F}. In particular, if $H^1(\mathcal{F}) \cong 0$ we have free resolutions

$$(2) \quad 0 \rightarrow (2\mu - \chi) \mathcal{O}_{\mathbb{P}_2}(-1) \rightarrow \chi \mathcal{O}_{\mathbb{P}_2} \oplus (\mu - \chi) \Omega^1_{\mathbb{P}_2}(1) \rightarrow \mathcal{F} \rightarrow 0$$

and

$$(3) \quad 0 \rightarrow a \mathcal{O}_{\mathbb{P}_2}(-1) \oplus (\mu - \chi) \mathcal{O}_{\mathbb{P}_2}(-2) \rightarrow \chi \mathcal{O}_{\mathbb{P}_2} \oplus (a + \mu - 2\chi) \mathcal{O}_{\mathbb{P}_2}(-1) \rightarrow \mathcal{F} \rightarrow 0.$$

(ii) If $\mu(\mathcal{O}_C) < 4 - \frac{2\chi}{\mu}$ then $h^1 \mathcal{F} = 0$.

Proof. In our case, all the \mathcal{B}_p resp. \mathcal{C}_p vanish if $p \neq -2, -1, 0, 1$. Using the facts that $h^0 \mathcal{F}(-j) = 0$ for all $j > 0$ because of the semi-stability and $\Omega^2(2) = \mathcal{O}_{\mathbb{P}_2}(-1)$, we obtain

$$\mathcal{B}_1 = H^1 \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_2}$$

$$\mathcal{B}_0 = H^0 \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_2} \oplus H^1 \mathcal{F}(-1) \otimes \Omega^1(1) = H^0 \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_2} \oplus (\mu - \chi) \Omega^1(1)$$

$$\mathcal{B}_{-1} = H^0 \mathcal{F}(-1) \otimes \Omega^1(1) \oplus H^1 \mathcal{F}(-2) \otimes \Omega^2(2) = (2\mu - \chi) \mathcal{O}_{\mathbb{P}_2}(-1)$$

$$\mathcal{B}_{-2} = H^0 \mathcal{F}(-2) \otimes \Omega^2(2) = 0$$

and

$$\mathcal{C}_1 = H^1 \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_2}$$

$$\mathcal{C}_0 = H^0 \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_2} \oplus H^1(\mathcal{F} \otimes \Omega^1(1)) \otimes \mathcal{O}_{\mathbb{P}_2}(-1)$$

$$\mathcal{C}_{-1} = H^0(\mathcal{F} \otimes \Omega^1(1)) \otimes \mathcal{O}_{\mathbb{P}_2}(-1) \oplus H^1(\mathcal{F} \otimes \Omega^2(2)) \otimes \mathcal{O}_{\mathbb{P}_2}(-2) = a \mathcal{O}_{\mathbb{P}_2}(-1) \oplus (\mu - \chi) \mathcal{O}_{\mathbb{P}_2}(-2)$$

$$\mathcal{C}_{-2} = H^0(\mathcal{F} \otimes \Omega^2(2)) \otimes \mathcal{O}_{\mathbb{P}_2}(-2) = 0.$$

Now consider the Euler sequence tensored with \mathcal{F}

$$0 \longrightarrow \Omega^1(1) \otimes \mathcal{F} \longrightarrow 3 \mathcal{F} \longrightarrow \mathcal{F}(1) \longrightarrow 0$$

in order to see that $h^1(\mathcal{F} \otimes \Omega^1(1)) = a + \chi(\mathcal{F}(1)) - 3\chi(\mathcal{F}) = a + \mu - 2\chi$.

To show (ii), let $C := Z_a(\mathcal{F})$. Then $H^0(C, \mathcal{F} \otimes \Omega^1_{\mathbb{P}_2}(1)) \cong \text{Hom}(\mathcal{O}_C(-1) \otimes (\Omega^1)^\vee, \mathcal{F}) \cong \text{Hom}(\mathcal{O}_C(2) \otimes \Omega^1, \mathcal{F})$. \mathcal{O}_C is stable and thus p-stable. Ω^1 is p-stable, too. The stability of
\(\mathcal{O}_C(2) \otimes \Omega^1 \) implies the vanishing of \(H^0(\mathcal{F} \otimes \Omega^1(1)) \) if \(p(\Omega^1 \otimes \mathcal{O}_C(2)) > p(\mathcal{F}) \). But a straightforward computation using the exact sequence

\[
0 \longrightarrow \Omega^1 \otimes \mathcal{O}_C(2) \longrightarrow 3\mathcal{O}_C(1) \longrightarrow \mathcal{O}_C(2) \longrightarrow 0
\]

and \(p_\text{a}(C) = \frac{1}{2}(\text{deg}(C) - 1)(\text{deg}(C) - 2) \) gives \(p(\Omega^1 \otimes \mathcal{O}_C(2)) = 2 - \frac{\mu(\mathcal{O}_C)}{2} \) and consequently the result. \(\square \)

Remark: The inequality \(\mu(\mathcal{O}_C) < 4 - \frac{2\chi}{\mu} \) or \(H^1(\mathcal{F}) = 0 \) is for example fullfilled in the following cases:

<table>
<thead>
<tr>
<th>(P(m))</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(0 \rightarrow \mathcal{O}{\mathbb{P}^2}(-2) \rightarrow \mathcal{O}{\mathbb{P}^2}(-1) \rightarrow \mathcal{F} \rightarrow 0)</td>
</tr>
<tr>
<td>(2m)</td>
<td>(0 \rightarrow \mathcal{O}{\mathbb{P}^2}(-2) \rightarrow 2\mathcal{O}{\mathbb{P}^2}(-1) \rightarrow \mathcal{F} \rightarrow 0)</td>
</tr>
<tr>
<td>(2m + 1)</td>
<td>(0 \rightarrow \mathcal{O}{\mathbb{P}^2}(-2) \rightarrow \mathcal{O}{\mathbb{P}^2} \rightarrow \mathcal{F} \rightarrow 0)</td>
</tr>
<tr>
<td>(3m)</td>
<td>(0 \rightarrow 3\mathcal{O}{\mathbb{P}^2}(-2) \rightarrow 3\mathcal{O}{\mathbb{P}^2}(-1) \rightarrow \mathcal{F} \rightarrow 0)</td>
</tr>
<tr>
<td>(3m + 1)</td>
<td>(0 \rightarrow \mathcal{O}{\mathbb{P}^2}(-2) \rightarrow \mathcal{O}{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(-1) \rightarrow \mathcal{F} \rightarrow 0)</td>
</tr>
<tr>
<td>(3m + 2)</td>
<td>(0 \rightarrow \mathcal{O}{\mathbb{P}^2}(-2) \oplus \mathcal{O}{\mathbb{P}^2}(-1) \rightarrow 2\mathcal{O}_{\mathbb{P}^2} \rightarrow \mathcal{F} \rightarrow 0)</td>
</tr>
</tbody>
</table>

For these resolutions, one can verify that the space of matrices occuring in the resolutions modulo automorphisms is isomorphic to the corresponding moduli space \(M_P(\mathbb{P}^2) \). This helps getting a more explicit description of the spaces: \(M_m(\mathbb{P}^2) \) is clearly isomorphic to \(\mathbb{P}^2 \) since \(\mathcal{F} \cong \mathcal{O}_L(-1) \) for some line \(L \). Leopold [5] showed that \(M_{2m}(\mathbb{P}^2) \cong M_{2m+1}(\mathbb{P}^2) \cong \mathbb{P}^5 \). In [1] or [7] one can find a proof for \(M_{3m+1}(\mathbb{P}^2) \cong M_{3m+2}(\mathbb{P}^2) \cong \mathcal{C} \), where \(\mathcal{C} \longrightarrow \mathbb{P}^2 \) denotes the universal cubic on the projective plane. One problem occuring here is that the groups \(\text{Aut}(2\mathcal{O}_{\mathbb{P}^2}(-2) \times \text{Aut}([\mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(-1)]) \) and \(\text{Aut}([\mathcal{O}_{\mathbb{P}^2}(-2) \oplus \mathcal{O}_{\mathbb{P}^2}(-1)]) \times \text{Aut}(2\mathcal{O}_{\mathbb{P}^2}) \) divided out are not reductive. \(\square \)

Now we assume for the moment \(H^1(\mathcal{F}) = 0 \). One would like to determine \(a = h^0(\mathcal{F} \otimes \Omega^1(1)) \) in the theorem above in terms of the integers \(\mu \) and \(\chi \). For this, we consider the following diagram where the second column is induced by the Koszul resolution

\[
0 \longrightarrow \mathcal{O}_{\mathbb{P}^2}(-2) \overset{\alpha}{\longrightarrow} 3\mathcal{O}_{\mathbb{P}^2}(-1) \overset{\beta}{\longrightarrow} \Omega^1_{\mathbb{P}^2}(1) \longrightarrow 0
\]
of the twisted cotangent bundle $\Omega^1_{\mathbb{P}^2}(1)$:

\[
\begin{array}{ccccccc}
0 & \longrightarrow & (2\mu - \chi) \mathcal{O}_{\mathbb{P}^2}(-1) & \longrightarrow & \chi \mathcal{O}_{\mathbb{P}^2} \oplus (\mu - \chi) \Omega^1_{\mathbb{P}^2}(1) & \longrightarrow & \mathcal{F} \longrightarrow 0 \\
\downarrow & & \downarrow & id \times \beta & & \downarrow & \\
(2\mu - \chi) \mathcal{O}_{\mathbb{P}^2}(-1) & \longrightarrow & \chi \mathcal{O}_{\mathbb{P}^2} \oplus 3(\mu - \chi) \mathcal{O}_{\mathbb{P}^2}(-1) & \longrightarrow & (\mu - \chi) \mathcal{O}_{\mathbb{P}^2}(-2) & \longrightarrow & 0
\end{array}
\]

An application of the mapping cone lemma yields the exact sequence

(4) \quad 0 \to (2\mu - \chi) \mathcal{O}_{\mathbb{P}^2}(-1) \oplus (\mu - \chi) \mathcal{O}_{\mathbb{P}^2}(-2) \xrightarrow{B} \chi \mathcal{O}_{\mathbb{P}^2} \oplus 3(\mu - \chi) \mathcal{O}_{\mathbb{P}^2}(-1) \to \mathcal{F} \to 0

where the blockmatrix B has the shape

\[
B = \begin{pmatrix} L_1 & C \\ Q & L_2 \end{pmatrix}.
\]

$Q \in \text{Mat}(\mu - \chi, \chi, k[Z_0, Z_1, Z_2])$ is a matrix of quadratic forms, L_1 and L_2 are matrices of linear forms and $C \in \text{Mat}(2\mu - \chi, 3\mu - 3\chi, k)$.

This resolution is in fact not minimal. Using the semi-stability of the sheaf \mathcal{F} we can prove the following lemma:

Lemma 1. $\text{rk}(C) = r' := \min\{2\mu - \chi, 3\mu - 3\chi\}$.

Proof. By contradiction. Suppose $r := \text{rk}(C) < r'$. After deleting the appropriate rows and columns of the matrix B with the Gauß algorithm, we get

\[
0 \to (2\mu - \chi - r) \mathcal{O}_{\mathbb{P}^2}(-1) \oplus (\mu - \chi) \mathcal{O}_{\mathbb{P}^2}(-2) \xrightarrow{B'} \chi \mathcal{O}_{\mathbb{P}^2} \oplus (3\mu - 3\chi - r) \mathcal{O}_{\mathbb{P}^2}(-1) \to \mathcal{F} \to 0
\]

with

\[
B' = \begin{pmatrix} L'_1 & 0 \\ Q' & L'_2 \end{pmatrix}.
\]
where we identify the isomorphic cokernels \(\mathcal{F} \) and \(\text{Coker}(B') \) by abuse of notation. Thus, let us investigate the diagram

\[
\begin{array}{ccccccccc}
0 & \rightarrow & (2\mu - \chi - r) \mathcal{O}_{\mathbb{P}^2}(-1) & \rightarrow & \mathcal{L}_1 & \rightarrow & (\mu - \chi) \mathcal{O}_{\mathbb{P}^2}(-2) & \rightarrow & 0 \\
& & \downarrow L'_1 & & \downarrow \mu' & & \downarrow L'_2 & & \\
0 & \rightarrow & \chi \mathcal{O}_{\mathbb{P}^2} & \rightarrow & \mathcal{L}_0 & \rightarrow & (3\mu - 3\chi - r) \mathcal{O}_{\mathbb{P}^2}(-1) & \rightarrow & 0 \\
& & \downarrow C_1 & \rightarrow & \mathcal{F} & \rightarrow & \mathcal{C}_2 & \rightarrow & 0 \\
& & 0 & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0 \\
\end{array}
\]

Here we write \(\mathcal{L}_1 := (2\mu - \chi - r) \mathcal{O}_{\mathbb{P}^2}(-1) \oplus (\mu - \chi) \mathcal{O}_{\mathbb{P}^2}(-2) \), \(\mathcal{L}_0 := \chi \mathcal{O}_{\mathbb{P}^2} \oplus (3\mu - 3\chi - r) \mathcal{O}_{\mathbb{P}^2}(-1) \) and \(\mathcal{C}_1, \mathcal{C}_2, \mathcal{K}_2 \) for the cokernels respectively kernels of \(L'_1 \) and \(L'_2 \). The snake lemma implies \(\text{Ker}(f) \cong \mathcal{K}_2 \) and the injectivity of the map \(L'_1 \). The latter also implies forces \(2\mu - r + \chi \leq \chi \) and consequently we obtain the following bounds for \(r \):

\[
2 (\mu - \chi) \leq r < \min\{ 2\mu - \chi, 3 (\mu - \chi) \}
\]

If \(\chi = 0 \), we get the contradiction. Suppose now \(0 < \chi < \mu \). After taking \(\Lambda^{2\mu - \chi - r}(\bullet) \) of the map \(L'_1 \) in the first column and after dualizing and twisting, we obtain an exact sequence:

\[
\begin{array}{ccccccccc}
0 & \rightarrow & \left(\frac{\chi}{2\mu - \chi - r} \right) \mathcal{O}_{\mathbb{P}^2}(r + \chi - 2\mu) & \rightarrow & \mathcal{O}_{\mathbb{P}^2} & \rightarrow & \mathcal{O}_{Z_f(C_1)} & \rightarrow & 0 \\
\end{array}
\]

where \(Z_f(C_1) \subset \mathbb{P}^2 \) denotes the Fitting support of \(C_1 \). Thus

\[
P_{Z_f(C_1)}(m) = \frac{1}{2} \left[1 - \left(\frac{\chi}{2\mu - \chi - r} \right) \right] m^2 + \cdots
\]
This forces the binomial coefficient \(\binom{\mu - \chi - r}{2} \) to be 0 or 1. Using the inequalities in (5), we deduce that \(r = 2(\mu - \chi) \). The diagram above simplifies now to

Since \(Z_a(C_2) \subset Z_a(F) \) is zero- or one-dimensional, it follows from

\[
1 = \exp \text{codim}_{P_2} Z_f(C_2) \geq \text{codim}_{P_2} Z_f(C_2) = \text{codim}_{P_2} Z_a(C_2) \geq 1
\]

that \(C_2 \) is supported on a curve and that the morphism \(L'_2 \) is regular. Therefore the kernel sheaf \(K_2 \) vanishes. An easy computation shows that the subsheaf \(C_1 \subset F \) has Hilbert polynomial \(P_{C_1}(m) = \chi m + \chi \). Thus we have found a 1-dimensional subsheaf of the semi-stable sheaf \(F \) with

\[
1 = \frac{\chi}{\chi} = \frac{\chi(C_1)}{\mu(C_1)} \leq \frac{\chi}{\mu} < 1.
\]

Contradiction. Thus, \(r = \text{rk}(C) = \min\{2\mu - \chi, 3\mu - 3\chi\} \).

Corollary 1. Let \([F] \in M_{\mu - \chi}(\mathbb{P}_2), 0 \leq \chi < \mu \) with \(H^1F = 0 \). Then \(F \) has one of the following two minimal free resolutions:

(6) \[
0 \longrightarrow (\mu - \chi)O_{P_2}(-2) \overset{(Q|L_2)}{\longrightarrow} \chi O_{P_2} \oplus (\mu - 2\chi)O_{P_2}(-1) \longrightarrow F \longrightarrow 0,
\]

if \(\chi \leq \frac{\mu}{2} \).

(7) \[
0 \longrightarrow (2\chi - \mu)O_{P_2}(-1) \oplus (\mu - \chi)O_{P_2}(-2) \overset{(L_1)}{\longrightarrow} \chi O_{P_2} \longrightarrow F \longrightarrow 0,
\]

if \(\chi \geq \frac{\mu}{2} \).

Furthermore,

\[
a = h^0(\mathbb{P}_2, F \otimes \Omega^1_{\mathbb{P}_2}(1)) = \begin{cases}
0 & \chi \leq \frac{\mu}{2}, \\
2\chi - \mu & \chi > \frac{\mu}{2}
\end{cases}
\]
Proof. Consider the blockmatrix $B = \left(\begin{array}{c} L_1 \\ Q L_2 \end{array} \right)$ in the exact sequence (4). Lemma 1 says that $\text{rk}(C) = \min\{2\mu - \chi, 3\mu - 3\chi\}$. Therefore, the resolution (6) can be obtained by deleting the last $3\mu - 3\chi$ columns of B if $\text{rk}(C) = 2\mu - \chi$. Similarly, one gets (7) by killing the first $2\mu - \chi$ rows of B with Gauß’ algorithm in case of $\text{rk}(C) = 3\mu - 3\chi$. Comparing (6) and (7) with the resolution (3) in theorem 4.(i), we also obtain the value for $a = h^0(\mathcal{F} \otimes \Omega_{\mathbb{P}^2}^1(1))$.

Remark: In the case $\chi = \mu - 1$ one has $H^1\mathcal{F} = 0$ for all $[\mathcal{F}] \in M_{\mu m + \mu - 1}(\mathbb{P}^2)$ since $\text{reg}(\mathcal{F}) \leq 1$ according to theorem 3.(8). The resolution is therefore in this case:

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^2}(-2) \oplus (\mu - 2) \mathcal{O}_{\mathbb{P}^2}(-1) \xrightarrow{A} (\mu - 1) \mathcal{O}_{\mathbb{P}^2} \longrightarrow \mathcal{F} \longrightarrow 0$$

M. Maican used this free resolution in order to prove that the moduli spaces $M_{\mu m + \mu - 1}(\mathbb{P}^2)$ can be described as geometric quotients of maps A by the non-reductive group

$$G := \text{Aut}((\mu - 2) \mathcal{O}_{\mathbb{P}^2}(-2) \oplus \mathcal{O}_{\mathbb{P}^2}(-1)) \times \text{Aut}((\mu - 1) \mathcal{O}_{\mathbb{P}^2})$$

using a suitable polarization.

□

We also need a “relative version” of corollary 1 for families. As in the absolute case, there exists for any $\mathcal{F} \in \text{Coh}(\mathbb{P}_n \times S)$ a Beilinson-type spectral sequence with E_1-term

$$E_1^{rs} = \mathcal{O}_{\mathbb{P}_2}(r) \boxtimes R^sp_*(\mathcal{F} \otimes \Omega_{\mathbb{P}_n \times S}^{-s}(-s))$$

which converges to $E_\infty^r = \{ \mathcal{F}_i \text{ for } i = 0 \}
\cup \{ 0, \text{ otherwise} \}$, i.e. $E_\infty^{rs} = 0$ for $r + s \neq 0$ and $\bigoplus_{r=0}^n E_\infty^{-r,r}$ is the associated graded sheaf of a filtration of \mathcal{F} (cf. [8], p.306). Again, the spectral sequence gives rise to a complex

$$0 \longrightarrow \mathcal{C}_{-n} \longrightarrow \cdots \longrightarrow \mathcal{C}_{-1} \longrightarrow \mathcal{C}_0 \longrightarrow \mathcal{C}_1 \longrightarrow \cdots \longrightarrow \mathcal{C}_n \longrightarrow 0$$

with

$$\mathcal{C}_p = \bigoplus_{q=0}^n \mathcal{O}_{\mathbb{P}^n}(-q) \boxtimes R^{q+p}p_*(\mathcal{F} \otimes \Omega_{\mathbb{P}_n \times S}^q(q))$$

which is exact everywhere with exception of \mathcal{C}_0, where the homology is \mathcal{F}.

Now let $\mathcal{F} \in \text{Coh}(\mathbb{P}_2 \times S)$ be a family of semi-stable sheaves \mathcal{F}_s with Hilbert polynomial $P_{\mathcal{F}_s}(m) = \mu m + \chi$ and $H^1(\mathbb{P}_2, \mathcal{F}_s) = 0$ for all $s \in S$. Using the base change theorem and exactly the same arguments as in the proof of theorem 4.(i), we obtain a non-minimal (!) exact sequence

$$0 \longrightarrow [\mathcal{O}_{\mathbb{P}_2}(-1) \boxtimes p_*(\mathcal{F} \otimes \Omega^1(1))] \oplus [\mathcal{O}_{\mathbb{P}_2}(-2) \boxtimes R^1p_*\mathcal{F}(-1)] \xrightarrow{B_s}$$

$$\bigoplus_{B_s} [\mathcal{O}_{\mathbb{P}_2} \boxtimes p_*\mathcal{F}] \oplus [\mathcal{O}_{\mathbb{P}_2}(-1) \boxtimes R^1p_*\mathcal{F} \otimes \Omega^1(1)] \longrightarrow \mathcal{F} \longrightarrow 0$$
Proof. To give a flavour of how to proceed, we show for example why $p_\ast(F \otimes \Omega^2_{\mathbb{P}_2 \times S/S}(2)) = 0$
(and consequently $C_{-2} = 0$):
Since all the sheaves F_s are supported on curves one has $H^2(\mathbb{P}_2, F_s(-1)) = 0$. The base
change theorem implies that $R^1 p_\ast F(-1)(s) \cong H^1(\mathbb{P}_2, F_s(-1))$ for all $s \in S$. Therefore
$R^1 p_\ast F(-1)$ is locally free. Another application of the base change theorem yields $p_\ast F(-1)(s) \cong
H^0(\mathbb{P}_2, F_s(-1))$. But then
\[
0 = \text{Hom}(O_{\mathbb{P}_2}, F_s(-1)) \cong H^0(\mathbb{P}_2, F_s(-1)) \quad \forall s \in S,
\]
due to the semi-stability of F_s. Thus, $p_\ast(F \otimes \Omega^2_{\mathbb{P}_2 \times S/S}(2)) \cong p_\ast F(-1) = 0$.

\hspace{12cm} \square

By looking at the rank of the constant block in the family of matrices $(B_s)_{s \in S}$ as we did it
for the absolute case in lemma 1, we can simplify the resolution and obtain the analogon to
corollary 1:

Theorem 5. Let $[F] \in M_{\mu, \mu + \chi}(\mathbb{P}_2(S), 0 \leq \chi < \mu$ with $H^1(\mathbb{P}_2, F_s) = 0$ for all $s \in S$. Then F
has one of the following two minimal free resolutions:

\begin{align}
(8) & \quad 0 \to O_{\mathbb{P}_2}(-2) \bigotimes R^1 p_\ast F(-1) \to O_{\mathbb{P}_2} \otimes p_\ast F \otimes O_{\mathbb{P}_2}(-1) \bigotimes R^1 p_\ast(F \otimes \Omega^1_{\mathbb{P}_2 \times S/S}(1)) \to F \to 0, \\
(9) & \quad 0 \to O_{\mathbb{P}_2}(-1) \bigotimes p_\ast(F \otimes \Omega^1_{\mathbb{P}_2 \times S/S}(1)) \otimes O_{\mathbb{P}_2}(-2) \bigotimes R^1 p_\ast F(-1) \to O_{\mathbb{P}_2} \otimes p_\ast F \to F \to 0,
\end{align}

if $\chi \leq \frac{\mu}{2}$.

Moreover,

- $p_\ast F$ and $R^1 p_\ast F(-1)$ are locally free of rank χ and $\mu - \chi$ respectively.
- $p_\ast(F \otimes \Omega^1_{\mathbb{P}_2 \times S/S}(1))$ and $R^1 p_\ast(F \otimes \Omega^1_{\mathbb{P}_2 \times S/S}(1))$ are locally free.

- If $\chi \leq \frac{\mu}{2}$ then $p_\ast(F \otimes \Omega^1_{\mathbb{P}_2 \times S/S}(1)) = 0$ and $\text{rk} \left[R^1 p_\ast(F \otimes \Omega^1_{\mathbb{P}_2 \times S/S}(1)) \right] = \mu - 2 \chi$.

- If $\chi > \frac{\mu}{2}$ then $\text{rk} \left[p_\ast(F \otimes \Omega^1_{\mathbb{P}_2 \times S/S}(1)) \right] = 2 \chi - \mu$ and $R^1 p_\ast(F \otimes \Omega^1_{\mathbb{P}_2 \times S/S}(1)) = 0$.

\hspace{12cm} \square

Proof. Left to the reader.

\section{4. Dual Sheaves}

We define for a (semi-)stable sheaf F on \mathbb{P}_2 with linear Hilbert polynomial $P(m) = \mu m + \chi$ its
dual sheaf by
\[
F^\vee := \text{Ext}^1_{\mathbb{O}_{\mathbb{P}_2}}(F, \omega_{\mathbb{P}_2})(1)
\]
$\text{Hom}_{\mathbb{O}_{\mathbb{P}_2}}(F, \omega_{\mathbb{P}_2}) = 0$ since F is pure with one-dimensional support. Thus, dualizing the
minimal free resolution (6) or (7) of F from the corollary above and twisting by $\otimes \mathbb{O}_{\mathbb{P}_2}(-2)$
implies that $\mathcal{F}^\triangledown$ is (semi-)stable with Hilbert-polynomial $P^\triangledown(m) := \mu m + (\mu - \chi)$. For example, if $\chi \leq \frac{\mu}{2}$ we obtain

$$
\begin{array}{c}
0 \longrightarrow \chi \mathcal{O}_{\mathbb{P}^2}(-2) \oplus (\mu - 2 \chi) \mathcal{O}_{\mathbb{P}^2}(-1) \longrightarrow (\mu - \chi) \mathcal{O}_{\mathbb{P}^2} \longrightarrow \mathcal{F}^\triangledown \longrightarrow 0
\end{array}
$$

by this procedure.

Moreover, one can verify immediately that:

- $\mathcal{F}^\triangledown \cong \mathcal{F}$
- $H^1 \mathcal{F} = 0 \iff H^1 \mathcal{F}^\triangledown = 0$

Thus, we get our main result:

Theorem 6. Let $P(m) = \mu m + \chi$ be a linear polynomial with $0 \leq \chi < \mu$ and $(\mu, \chi) = \mathbb{Z}$. Denote by $N \subset M_P(\mathbb{P}^2)$ respectively $N^\triangledown \subset M_{P^\triangledown}(\mathbb{P}^2)$ the closed subvarieties of isomorphism classes of sheaves with non-vanishing first cohomology. Then there is a natural isomorphism $[\mathcal{F}] \mapsto [\mathcal{F}^\triangledown]$.

Thus, the moduli spaces $M_P(\mathbb{P}^2)$ and $M_{P^\triangledown}(\mathbb{P}^2)$ are birationally equivalent.

Proof. Clearly, the remarks above show that ϕ is set-theoretically a bijection. In order to show that ϕ is actually a morphism, note that $M := M_P(\mathbb{P}^2)$ is a fine moduli space with universal family $\mathcal{U} \in \mathcal{M}_P(\mathbb{P}^2)(M)$ since μ and χ are coprime. Without loss of generality, we can assume that $\chi \leq \frac{\mu}{2}$. Now consider the minimal free resolution (8) of $\mathcal{C} := \mathcal{U}|_{\mathbb{P}^2 \times M \setminus N}$ from theorem 5:

$$
\begin{array}{c}
0 \longrightarrow \mathcal{O}_{\mathbb{P}^2}(-2) \boxtimes R^1 p_* \mathcal{C}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}^2} \boxtimes p_* \mathcal{C} \boxplus \mathcal{O}_{\mathbb{P}^2}(-1) \boxtimes R^1 p_* (\mathcal{C} \boxtimes \Omega^1_{\mathbb{P}^2 \times S/\mathbb{P}^2}(1)) \longrightarrow \mathcal{C} \longrightarrow 0.
\end{array}
$$

An application of $\mathcal{H}om_{\mathcal{O}_{\mathbb{P}^2 \times M \setminus N}}(\bullet, \mathcal{O}_{\mathbb{P}^2}(-2) \boxtimes \mathcal{O}_{M \setminus N})$ yields:

$$
\begin{array}{c}
0 \longrightarrow \mathcal{O}_{\mathbb{P}^2}(-2) \boxtimes [p_* \mathcal{C}]^* \boxplus \mathcal{O}_{\mathbb{P}^2}(-1) \boxtimes [R^1 p_* (\mathcal{C} \boxtimes \Omega^1_{\mathbb{P}^2 \times S/\mathbb{P}^2}(1))]^* \longrightarrow \mathcal{O}_{\mathbb{P}^2} \boxtimes [R^1 p_* \mathcal{C}(-1)]^* \longrightarrow \mathcal{G} \longrightarrow 0,
\end{array}
$$

where $\mathcal{G} = \mathcal{E}xt^1_{\mathcal{O}_{\mathbb{P}^2 \times M \setminus N}}(\mathcal{C}, \mathcal{O}_{\mathbb{P}^2}(-2) \boxtimes \mathcal{O}_{M \setminus N})$.

According to theorem 5, the bundles $[p_* \mathcal{C}]^*$, $[R^1 p_* (\mathcal{C} \boxtimes \Omega^1_{\mathbb{P}^2 \times S/\mathbb{P}^2}(1))]^*$ and $[R^1 p_* \mathcal{C}(-1)]^*$ have rank χ, $\mu - 2 \chi$ and $\mu - \chi$ respectively. Thus, the restriction of the resolution to a fiber $\mathcal{G}_{[\mathcal{F}]}$ is

$$
\begin{array}{c}
0 \longrightarrow \chi \mathcal{O}_{\mathbb{P}^2}(-2) \oplus (\mu - 2 \chi) \mathcal{O}_{\mathbb{P}^2}(-1) \longrightarrow (\mu - \chi) \mathcal{O}_{\mathbb{P}^2} \longrightarrow \mathcal{G}_{[\mathcal{F}]} \longrightarrow 0
\end{array}
$$

which is exactly the resolution of $\mathcal{F}^\triangledown$ obtained above. Therefore $\mathcal{G}_{[\mathcal{F}]} \cong \mathcal{F}^\triangledown$. Obviously, the sheaves $\mathcal{G}_{[\mathcal{F}]}$ are stable with Hilbert polynomial $P^\triangledown(m) = \mu m + (\mu - \chi)$ and $H^1 \mathcal{G}_{[\mathcal{F}]} = 0$ for all $[\mathcal{F}] \in M \setminus N$. In other words, $\mathcal{G} \in \mathcal{M}_{P^\triangledown}(\mathbb{P}^2)(M \setminus N)$. Per construction, the morphism $\Phi_{\mathcal{G}} : M \setminus N \longrightarrow M_{P^\triangledown}(\mathbb{P}^2)$ induced by the family \mathcal{G} maps to $M_{P^\triangledown}(\mathbb{P}^2) \setminus N^\triangledown$ and is indeed equal to the set-theoretical map ϕ. Similarly, one proves that ϕ^{-1} is a morphism. \qed
5. Smoothness

In this section we want to reprove LePotier’s result that $M_{\mu_m}(\mathbb{P}_2)$ for coprime coefficients and show that the irreducible moduli space [7] is then indeed smooth.

Theorem 7. Let $P(m) := \mu m + \chi$ with $(\mu, \chi) = (1)$. Then

1. $M := M_P(\mathbb{P}_2)$ is a smooth projective variety of dimension $\mu^2 + 1$.
2. The moduli space M is fine with universal family $\mathcal{U} \in \mathcal{M}_P(\mathbb{P}_2)(M)$.

Proof. Without loss of generality we can assume that $0 \leq \chi < \mu$. By theorem 3.(7), we have that all semi-stable sheaves \mathcal{F} with polynomial P are stable.

1. Serre duality gives $\text{Ext}^2(\mathcal{F}, \mathcal{F}) = \text{Hom}(\mathcal{F}, \mathcal{F} \otimes \omega_{\mathbb{P}_2})^\vee = \text{Hom}(\mathcal{F}, \mathcal{F}(-3))^\vee = 0$ for every $[\mathcal{F}] \in M$. The last equality is due to the stability of \mathcal{F}. Id est, there are no obstructions and M is smooth in neighbourhood of $[\mathcal{F}]$. Consequently, M is a smooth projective variety.

We are left to compute $\dim M$. Every sheaf in the open, dense subset $\tilde{M} \setminus N = \{ [\mathcal{F}] \in M_P(\mathbb{P}_2) : H^1(\mathcal{F}) = 0 \}$ has a resolution (2). If we apply $\text{Hom}(\cdot, \mathcal{F})$ to that sequence, we end up with

$$0 \longrightarrow \text{End}(\mathcal{F}) \longrightarrow \chi H^0(\mathcal{F} \oplus (\mu - \chi) \text{Hom}(\Omega^1_{\mathbb{P}_2}(1), \mathcal{F})) \longrightarrow (2\mu - \chi) H^0(\mathcal{F}(1)) \longrightarrow \text{Ext}^1(\mathcal{F}, \mathcal{F}) \longrightarrow \cdots \longrightarrow \chi H^1(\mathcal{F} \oplus (\mu - \chi) \text{Ext}^1(\Omega^1_{\mathbb{P}_2}(1), \mathcal{F})) \longrightarrow (2\mu - \chi) H^1(\mathcal{F}(1)) \longrightarrow \text{Ext}^2(\mathcal{F}, \mathcal{F}) \longrightarrow 0$$

The stable sheaf \mathcal{F} is simple and therefore $\text{End}(\mathcal{F}) \cong k$. We also have $\text{Hom}(\Omega^1_{\mathbb{P}_2}(1), \mathcal{F}) \cong H^0(\mathcal{F}(-1) \otimes (\Omega^1_{\mathbb{P}_2})^\vee) \cong H^0(\mathcal{F}(2) \otimes \Omega^1_{\mathbb{P}_2})$ and $\text{Ext}^1(\Omega^1_{\mathbb{P}_2}(1), \mathcal{F}) \cong H^1(\mathcal{F}(2) \otimes \Omega^1_{\mathbb{P}_2})$. Using the Euler sequence

$$0 \longrightarrow \mathcal{F}(2) \otimes \Omega^1_{\mathbb{P}_2} \longrightarrow 3\mathcal{F}(1) \longrightarrow \mathcal{F}(2) \longrightarrow 0,$$

we get $\chi(\mathcal{F}(2) \otimes \Omega^1_{\mathbb{P}_2}) = 3\chi(\mathcal{F}(1)) - \chi(\mathcal{F}(2)) = \mu + 2\chi$. But then:

$$\text{ext}^1(\mathcal{F}, \mathcal{F}) = 1 - \chi h^0(\mathcal{F} \oplus (\mu - \chi) \mathcal{H}^0(\mathcal{F}(2) \otimes \Omega^1) + (2\mu - \chi) H^0(\mathcal{F}(1))$$

$$\chi h^1(\mathcal{F} \oplus (\mu - \chi) h^1(\mathcal{F}(2) \otimes \Omega^1) - (2\mu - \chi) h^1(\mathcal{F}(1))$$

$$= 1 - \chi^2 - (\mu - \chi) \chi(\mathcal{F}(2) \otimes \Omega^1) + (2\mu - \chi) \chi(\mathcal{F}(1))$$

$$= 1 - \chi^2 - (\mu - \chi) (\mu + 2\chi) + (2\mu - \chi) (\mu + \chi)$$

$$= \mu^2 + 1.$$

Thus $\dim M = \mu^2 + 1$ because $\dim_k T_{[\mathcal{F}]} M = \mu^2 + 1$ for all $[\mathcal{F}] \in \tilde{M} \setminus N$.

2. The existence and construction of the universal family in this case is standard and can be found for example in [3].

\[\square\]

Remark 1: Let again $\chi = \mu - 1, \mu > 1$. In this case we have $N = \emptyset$. Thus, there is an isomorphism between the smooth, $(\mu^2 + 1)$-dimensional, fine moduli spaces $M_{\mu m}(\mathbb{P}_2)$ and $M_{\mu m+\mu-1}(\mathbb{P}_2)$.
Remark 2: [7]. If μ and χ are not coprime and $\mu \geq 2$ then the complement of the open subset of stable stable sheaves in $M_{\mu\mu+\chi}(\mathbb{P}_2)$ has codimension at least $2\mu - 3$, and no matter what open set U in $M_{\mu\mu+\chi}(\mathbb{P}_2)$ one chooses, there does not exist a universal sheaf over $\mathbb{P}_2 \times U$.

References

Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027

E-mail address: freiermuth@math.columbia.edu