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Abstract

The self-duality of chiral p-forms was originally investigated by Pasti, Sorokin and

Tonin in a manifestly Lorentz covariant action with non-polynomial auxiliary �elds. The

investigation was then extended to other chiral p-form actions. In this paper we point

out that the self-duality appears in a wider context of theoretical models that relate to

chiral p-forms. We demonstrate this by considering the interacting model of Floreanini-

Jackiw chiral bosons and gauge �elds, the generalized chiral Schwinger model (GCSM) and

the latter's gauge invariant formulation, and discover that the self-duality of the GCSM

corresponds to the vector and axial vector current duality.
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1 Introduction

Chiral p-forms have attracted much attention because they play an important role in

many theoretical models. In D = 2 dimensional space-time, chiral bosons (p = 0) occur as

basic ingredients and elements in the formulation of heterotic strings [1] and in a number

of statistical systems [2]. In D > 2 dimensional space-time, chiral 2- and 4-forms are

relevant to the M-theory �ve-brane [3,4] and type IIB supergravity [5-7], respectively.

Chiral p-forms are described by an antisymmetric pth order tensor A(p) in the D =

2(p + 1) dimensional space-time, whose external di�erential F (p+1)(A) = dA(p) satis�es

the self-duality condition

F (p+1) � F (p+1)(A)� �F (p+1)(A) = 0; (1)

where �F (p+1)(A) is de�ned as the dual partner of F (p+1)(A). In the space with the

Lorentzian metric signature, the self-duality requires A(p) to be real if p is even, or complex

if p is odd. In the latter case the theory can equivalently be described by a pair of real

antisymmetric tensor �elds related by a duality condition.

Since the equation of motion of a chiral p-form, i.e., the self-duality condition, is �rst

order with respect to the derivatives of space and time, it is a key problem to construct the

corresponding action and then to quantize the theory consistently. To this end, various

formulations of actions have been proposed [8-14]. These actions can be classi�ed by

manifestly Lorentz covariant versions [8-12] and non-manifestly Lorentz covariant versions

[13,14] when one emphasizes their formalism under the Lorentz transformation, or by

polynomial versions [8-11] and non-polynomial version [12] when one focuses on auxiliary

�elds introduced in the actions. Incidentally, there are no auxiliary �elds introduced in

the non-manifestly Lorentz covariant actions [13,14].

It is noticeable that these chiral p-form actions have close relationships among one

another. The recently constructed Pasti-Sorokin-Tonin action [12] reduces to the non-

manifestly covariant Floreanini-Jackiw one [13] provided appropriate gauge �xing condi-

tions are chosen. On the other hand, it turns into the McClain-Wu-Yu formulation [11]
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if one gets rid of the Pasti-Sorokin-Tonin action's non-polynomiality and eliminates its

scalar auxiliary �eld at the price of introducing auxiliary (p+1)-forms, or, vice versa, if

one consistently truncates the McClain-Wu-Yu action's in�nite tail and puts on its end the

auxiliary scalar �eld. Moreover, it has been shown [15] that the Pasti-Sorokin-Tonin ac-

tion follows directly from the Kavalov-Mkrtchyan formulation [9] that is the Siegel action's

generalization with an auxiliary higher (than two) rank tensor �eld.

In our previous work [16], the duality symmetries of four chiral p-form actions are

investigated. We discover that the Siegel, Floreanini-Jackiw and Pasti-Sorokin-Tonin ac-

tions have self-duality with respect to a common anti-dualization of chiral boson (p = 0)

and chiral 2-form �elds, respectively, while the Srivastava action is self-dual with respect

to a generalized dualization of the corresponding chiral �elds. The result can be extended

to the general case, that is, the self-duality remains inD = 2(p+1) space-time dimensions.

In addition, we note here that the Kavalov-Mkrtchyan formulation [9] also has self-duality

with respect to an anti-dualization of chiral 2-form �elds, which can be obtained straight-

forwardly along the line of Ref.[16].

The self-duality of chiral p-forms was �rst investigated [12] in the Pasti-Sorokin-Tonin

action and then extended [16] to others. Here we point out that the self-duality appears

in a wider context of theoretical models that relate to chiral p-forms. As examples, we

choose the interacting model of Floreanini-Jackiw chiral bosons and gauge �elds [17], the

generalized chiral Schwinger model (GCSM) [18] and its gauge invariant formulation [19].

These models are usually dealt with as a `theoretical laboratory' in illustrating new aspects

of �eld theory and have been utilized in a large amount of literature.

The paper is arranged as follows. In Sects. 2, 3 and 4, we discuss the duality symme-

tries of the three models one by one and �nally make a conclusion in Sect.5.

The notation we use throughout this paper is

g00 = �g11 = 1; �01 = ��01 = 1;


0 = �1; 

1 = �i�2; 
5 = �3;
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2 = @
�
@�; _� = @0�; �

0 = @1�; (2)

�
i
being the Pauli matrices.

2 Self-duality of the interacting model of Floreanini-Jackiw

chiral bosons and gauge �elds

We begin with the action of this interacting theory [17]

S =

Z
d2x

h
_��0 � (�0)2 + 2e�0(A0 �A1)

�1

2
e2(A0 �A1)

2 +
1

2
e2aA

�
A� � 1

4
F
��
F ��

�
; (3)

where � is a scalar �eld, A
�
a gauge �eld and F

��
its �eld strength; e is the electric charge

and a a real parameter caused by ambiguity in bosonization. It is a non-manifestly Lorentz

covariant action but indeed has Lorentz invariance, and the spectrum includes one massive

free scalar boson and one free chiral boson [17]. In the following, the �rst three terms in

eq.(3) are important, while the last three that relate only to gauge �elds have nothing to

do with the duality property of the action.

By introducing two auxiliary vector �elds F
�
and G�, we construct a new action to

replace eq.(3)

S =

Z
d2x

�
F0F1 � (F1)

2 + 2eF1(A0 �A1)�
1

2
e2(A0 �A1)

2

+
1

2
e2aA

�
A� � 1

4
F
��
F �� +G�(F

�
� @

�
�)

�
; (4)

where F
�
and G� are treated as independent �elds. Variation of eq.(4) with respect to

the Lagrange multiplier G� gives F
�
= @

�
�, which yields the equivalence between the two

actions eqs.(3) and (4). Furthermore, variation of eq.(4) with respect to F
�
leads to the

expression of G� in terms of F
�

G0 = �F1;

G1 = �F0 + 2F1 � 2e(A0 �A1): (5)
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Solving these for F
�

F0 = �2G0 �G1 � 2e(A0 �A1);

F1 = �G0: (6)

If we de�ne F
�
= F

�
� �

��
F � and G

�
= G

�
� �

��
G� , we �nd that they satisfy the relation

F
�
= �G

�
+ 2e(�

��
� g

��
)A� ; (7)

which is di�erent from that of the free Floreanini-Jackiw case because of interactions. In

other words, if the interaction did not exist, i.e., e = 0, eq.(7) would reduce to the free

theory case F
�
= �G

�
[16]. Substituting eq.(6) into eq.(4), we obtain the dual action in

terms of G�

S
dual

=

Z
d2x

h
�(G0)2 �G0G1 � 2eG0(A0 �A1)

�1

2
e2(A0 �A1)

2 +
1

2
e2aA

�
A� � 1

4
F
��
F �� + �@

�
G�

�
: (8)

Variation of eq.(8) with respect to � gives @
�
G� = 0, whose solution should be

G�(�) = ����@
�
� � ����F

�
(�); (9)

where �(x) is an arbitrary scalar �eld. Substituting eq.(9) into eq.(8), we obtain the dual

action in terms of �

S
dual

=

Z
d2x

h
_��0 � (�0)2 + 2e�0(A0 �A1)

�1

2
e2(A0 �A1)

2 +
1

2
e2aA

�
A� � 1

4
F
��
F ��

�
: (10)

This action has the same formulation as the original action eq.(3) only with the replace-

ment of � by �. Note that because of interactions, �(x) no longer coincides with �(x)

up to a constant on the mass shell, which is di�erent from that of the free theory case

[16]. This means that eq.(9) shows a generalized anti-dualization of F
�
(�) and G

�
(�).

We emphasize that the mass shell, i.e., the self-duality condition, is not necessary for

self-duality of actions because it can not directly be imposed on actions. Therefore, we

5



prove that the interacting model of Floreanini-Jackiw chiral bosons and gauge �elds has

self-duality with respect to the generalized anti-dualization of `�eld strength' expressed by

eq.(9). Incidentally, if we choose the solution G�(�) = ���@
�
� instead of eq.(9), the dual

action has a minus sign in the third term. However, the spectrum is the same whether

the third term of eq.(10) is positive or negative. As a result, the self-duality remains with

respect to the generalized (anti-)dualization of G�(�) and F
�
(�).

3 Self-duality of the generalized chiral Schwinger model

The fermionic action of the GCSM takes the form [18]

S
F
=

Z
d2x

�
� 
�[i@

�
+ e
p
�(1 + r
5)A

�
] � 1

4
F
��
F ��

�
; (11)

where  is a massless spinor, A
�
a gauge �eld and F

��
its �eld strength. The quantity r is a

real parameter interpolating between the vector (r = 0) and the chiral (r = �1) Schwinger
models. Since a bosonic action presents an anomaly at tree level while a fermionic action

does at least at one-loop level, we prefer the bosonic version which can be obtained by the

operatorial [20] or the path-integral bosonization [21]. The bosonic action can be written

as follows [18]

S
B
=

Z
d2x

�
1

2
(@

�
�)(@��) + eA�(�

��
� rg

��
)@��+

1

2
e2aA

�
A� � 1

4
F
��
F ��

�
; (12)

where � is an auxiliary scalar �eld introduced in order to result in a local S
B
, and a is

a real parameter which expresses the ambiguity in the bosonization procedure. From the

derivation of the bosonic action, it is clear that S
B
is equivalent to S

F
in the sense that

both actions lead to the same generating functional

Z[A] =

Z
d d � exp(iS

F
) =

Z
d�exp(iS

B
)

= exp

(
i

Z
d2x

"
1

2
e2A�(�

��
� rg

��
)
@�@�

2
(�
��

+ rg
��
)A�

+
1

2
e2aA

�
A� � 1

4
F
��
F ��

��
; (13)

where a �eld-independent constant has been dropped in the last equality.
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In order to discuss the duality of the GCSM action, we introduce two vector �elds F
�

and G�, and replace eq.(12) by the following action

S =

Z
d2x

�
1

2
F
�
F � + eA�(�

��
� rg

��
)F �

+
1

2
e2aA

�
A� � 1

4
F
��
F �� +G�(F

�
� @

�
�)

�
; (14)

where F
�
and G� act, at present, as independent auxiliary �elds. Variation of eq.(14)

with respect to G� gives F
�
= @

�
�, which yields the classical equivalence between actions

eqs.(12) and (14). On the other hand, variation of eq.(14) with respect to F
�
leads to the

relation of F
�
and G�

F
�
= �G

�
+ e(�

��
+ rg

��
)A� : (15)

Substituting eq.(15) into the action eq.(14), we obtain the dual action of the GCSM

S
dual

=

Z
d2x

�
�1

2
G
�
G� � eA�(�

��
� rg

��
)G�

+
1

2
e2(a+ 1� r2)A

�
A� � 1

4
F
��
F �� + �@

�
G�

�
: (16)

Variation of eq.(16) with respect to � gives @
�
G� = 0, whose solution should be

G�(�) = ����@
�
������F

�
(�); (17)

where �(x) is an arbitrary scalar �eld. When eq.(17) is substituted into eq.(16), we get

the dual action in terms of �

S
dual

=

Z
d2x

�
1

2
(@

�
�)(@��)�eA�(r�

��
� g

��
)@��

+
1

2
e2(a+ 1� r2)A

�
A� � 1

4
F
��
F ��

�
: (18)

In order to make a comparison between the action eq.(12) and its dual partner eq.(18),

we �rst introduce three new parameters r0, e0 and a0 de�ned by

r0 =
1

r
; e0 = �er; a0 = a+ 1� r2

r2
; (19)

where r 6= 0 in general, and rewrite eq.(18) as

S
dual

=

Z
d2x

�
1

2
(@

�
�)(@��) + e0A�(�

��
� r0g

��
)@��+

1

2
e0
2
a0A

�
A� � 1

4
F
��
F ��

�
; (20)
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which has the same form as eq.(12) with the replacements of �, r, e and a by �, r0, e0 and

a0, respectively. Next, we can prove that both actions (eqs.(12) and (20)) have the same

`physical' spectrum because we �nd by using eq.(19) that the two massive scalar bosons

have the equal mass

m2�e
2a(a+ 1� r2)

a� r2 =
e0
2
a0(a0 + 1� r02)
a0 � r02 �m02: (21)

Therefore we have the consequence that the action of the GCSM is self-dual with respect

to the generalized (anti-)dualization of G�(�) and F
�
(�).

The self-duality relates in fact to an interchange symmetry of the vector and axial

vector current coupling constants of the GCSM. From the fermionic action eq.(11), we

introduce g
V
and g

A
de�ned by

g
V
= e; g

A
= er; (22)

which are vector and axial vector current coupling constants, respectively. Instead of the

parameters e, r and a, we choose g
V
, g

A
and m2. The transformation eq.(19) can then be

expressed as

g
V

�! e0 = �g
A
;

g
A
�! e0r0 = �g

V
; (23)

and the square of mass m2 is preserved. In accordance with the electric-magnetic duality

of the Maxwell theory, we may conclude that the self-duality of the GCSM corresponds

to the vector and axial vector current duality.

4 Self-duality of the gauge invariant GCSM

In Ref.[19] two gauge invariant formulations are constructed. One involves a Wess-Zumino

term [22] and the other does not. They are equivalent to each other and to the GCSM as

well, which means that all of them have the same spectrum. Here we adopt the formulation

with the Wess-Zumino term. The complete action reads [19]

S =

Z
d2x

�
1

2
(@

�
�)(@��) + eA�(�

��
� rg

��
)@��+

1

2
e2aA

�
A� � 1

4
F
��
F ��

8



+
1

2
(a� r2)(@

�
�)(@��) + eA�

h
r�

��
+ (a� r2)g

��

i
@��

�
; (24)

where �(x) is known as the Wess-Zumino �eld.

In order to investigate the duality with respect to both � and �, we introduce two

pairs of auxiliary vector �elds F
�
; G� and P

�
; Q�, and replace eq.(24) by the following

action

S =

Z
d2x

�
1

2
F
�
F � + eA�(�

��
� rg

��
)F � +

1

2
e2aA

�
A� � 1

4
F
��
F �� +G�(F

�
� @

�
�)

+
1

2
(a� r2)P

�
P � + eA�

h
r�

��
+ (a� r2)g

��

i
P � +Q�(P

�
� @

�
�)

�
: (25)

Variation of eq.(25) with respect to G� and Q� leads to F
�
= @

�
� and P

�
= @

�
�, which

shows the equivalence between eqs.(24) and (25). In addition, variation of eq.(25) with

respect to F
�
and P

�
gives the relations

F
�

= �G
�
+ e(�

��
+ rg

��
)A� ;

P
�

= � 1

a� r2Q�
+ e

�
r

a� r2 ��� � g��
�
A� : (26)

Substituting eq.(26) into eq.(25), we obtain the dual action of the gauge invariant GCSM

S
dual

=

Z
d2x

"
�1

2
G
�
G� � eA�(�

��
� rg

��
)G� +

e2a

2(a� r2)A�
A� � 1

4
F
��
F ��

� 1

2(a� r2)Q�
Q� � eA�

�
r

a� r2 ��� + g
��

�
Q� + �@

�
G� + �@

�
Q�

�
: (27)

Varying eq.(27) with respect to both � and �, we obtain the equations @
�
G� = 0 and

@
�
Q� = 0, whose solution should be

G�(�) = ����@
�
������F

�
(�);

Q�(�) = ����@
�
������P

�
(�); (28)

where �(x) and �(x) are arbitrary scalar �elds. When eq.(28) is substituted into eq.(27),

the dual action is expressed in terms of � and �

S
dual

=

Z
d2x

"
1

2
(@

�
�)(@��)�eA�(r�

��
� g

��
)@��+

e2a

2(a� r2)A�
A� � 1

4
F
��
F ��

+
1

2(a� r2)(@��)(@
��)�eA�

�
�
��

+
r

a� r2 g��
�
@��

�
: (29)
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In order to compare the action eq.(24) with its dual partner eq.(29), we introduce, as

we did in the previous section, three new parameters r0, e0 and a0 de�ned by

r0 =
1

r
; e0 = �er; a0 = a

(a� r2)r2 ; (30)

where only the third is di�erent from that of eq.(19), and then rewrite eq.(29) as

S
dual

=

Z
d2x

�
1

2
(@

�
�)(@��) + e0A�(�

��
� r0g

��
)@��+

1

2
e0
2
a0A

�
A� � 1

4
F
��
F ��

+
1

2
(a0 � r02)(@

�
�)(@��) + e0A�

h
r0�

��
+ (a0 � r02)g

��

i
@��

�
; (31)

which has the same form as eq.(24) with the replacements of �, �, r, e and a by �,

�, r0, e0 and a0, respectively. Particularly, we discover that eq.(21) is still satis�ed to

the reparameterization (eq.(30)), which shows the equivalence between eqs.(24) and (31).

Consequently, the gauge invariant formulation of the GCSM has self-duality with respect

to the generalized dualization (anti-dualization) of G�(�) and F
�
(�) and anti-dulaization

(dualization) of Q�(�) and P
�
(�).

Note that the transformation eq.(30) can also be expressed as eq.(23) and the square

of mass is preserved if we equivalently utilize g
V
, g

A
and m2. This means, as we stated in

the previous section, that the self-duality relates to an interchange symmetry of the vector

and axial vector current coupling constants.

5 Conclusion

We have shown that the self-duality indeed appears in the interacting model of Floreanini-

Jackiw chiral bosons and gauge �elds, the generalized chiral Schwinger model (GCSM) and

its gauge invariant formulation that relate to chiral 0-forms (chiral bosons). The �rst two

models are self-dual with respect to the generalized (anti-)dualization of F
�
(�) and G�(�),

and the last is self-dual with respect to the generalized dualization (anti-dualization)

of F
�
(�) and G�(�) and anti-dualization (dualization) of P

�
(�) and Q�(�). The word

`generalized' means that �(x) (�(x)) does not coincide with �(x) (�(x)) up to a constant

on the mass shell. This generalization is reasonable because, as we have clari�ed, the
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mass shell is not a necessary condition on duality symmetries of actions. In addition,

we have pointed out that the self-duality of both the gauge non-invariant and invariant

formulations of the GCSM corresponds to the vector and axial vector current coupling

constant duality. Finally, it seems that the self-duality may exist in other models that

relate to chiral p-forms in D > 2 dimensional space-time. This is now under consideration.

Acknowledgments

Y.-G. Miao and R. Manvelyan are indebted to the Alexander von Humboldt Foun-

dation for �nancial support. Y.-G.M is also supported in part by the National Natural

Science Foundation of China under grant No.19705007 and by the Ministry of Education

of China under the special project for scholars returned from abroad.

11



References

[1] D.J. Gross, J.A. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett. 54, 502 (1985).

[2] Quantum Hall E�ect, edited by M. Stone (World Scienti�c, Singapore, 1992).

[3] C.G. Callan, J.A. Harvey and A. Strominger, Nucl. Phys. B 367, 60 (1991);

K. Becker and M. Becker, Nucl. Phys. B 472, 221 (1996).

[4] E. Witten, J. Geom. Phys. 22, 103 (1997).

[5] J.H. Schwarz, Nucl. Phys. B 226, 269 (1983).

[6] J.H. Schwarz and P.C. West, Phys. Lett. B 126, 301 (1983).

[7] P.S. Howe and P.C. West, Nucl. Phys. B 238, 181 (1984).

[8] W. Siegel, Nucl. Phys. B 238, 307 (1984);

C. Imbimbo and A. Schwimmer, Phys. Lett. B 193, 455 (1987);

C.M. Hull, Phys. Lett. B 206, 234 (1988);

J.M.F. Labastida and M. Pernici, Nucl. Phys. B 297, 557 (1988);

L. Mezincescu and R.I. Nepomechie, Phys. Rev. D 37, 3067 (1988).

[9] An.R. Kavalov and R.L. Mkrtchyan, Nucl. Phys. B 321, 682 (1989); Int. J. Mod.

Phys. A 4, 4055 (1989); Nucl. Phys. B 331, 391 (1990).

[10] P.P. Srivastava, Phys. Rev. Lett. 63, 2791 (1989);

P.P. Srivastava, Phys. Lett. B 234, 93 (1990);

Y.-G. Miao, J.-G. Zhou and Y.-Y. Liu, Phys. lett. B 323, 169 (1994).

[11] B. McClain, Y.S. Wu and F. Yu, Nucl. Phys. B 343, 689 (1990);

C. Wotzasek, Phys. Rev. Lett. 66, 129 (1991);

I. Martin and A. Restuccia, Phys. Lett. B 323, 311 (1994);

F.P. Devecchi and M. Henneaux, Phys. Rev. D 54, 1606 (1996).

[12] P. Pasti, D. Sorokin and M. Tonin, Phys. Lett. B 352, 59 (1995);

P. Pasti, D. Sorokin and M. Tonin, Phys. Rev. D 52, R4277 (1995);

12



P. Pasti, D. Sorokin and M. Tonin, Phys. Rev. D 55, 6292 (1997);

A. Maznytsia, C.R. Preitschopf and D. Sorokin, Nucl. Phys. B 539, 438 (1999);

A. Maznytsia, C.R. Preitschopf and D. Sorokin, Dual actions for chiral bosons, hep-

th/9808049.

[13] R. Floreanini and R. Jackiw, Phys. Rev. Lett. 59, 1873 (1987).

[14] M. Henneaux and C. Teitelboim, Phys. Lett. B 206, 650 (1988);

J.H. Schwarz and A. Sen, Nucl. Phys. B 411, 35 (1994).

[15] R. Manvelyan, R. Mkrtchyan and H.J.W. M�uller-Kirsten, Phys. Lett. B 453, 258

(1999).

[16] Y.-G. Miao and H.J.W. M�uller-Kirsten, Self-Duality of Various Chiral Boson Actions,

to appear in Phys. Rev. D, hep-th/9912066.

[17] K. Harada, Phys. Rev. Lett. 64, 139 (1990).

[18] A. Bassetto, L. Griguolo and P. Zanca, Phys. Rev. D 50, 1077 (1994);

A. Bassetto and L. Griguolo, Phys. Rev. D 50, 7638 (1994);

A. Bassetto and L. Griguolo, Nucl. Phys. B 439, 327 (1995).

[19] Y.-G. Miao, H.J.W. M�uller-Kirsten and J.-G. Zhou, Z. Phys. C 71, 525 (1996).

[20] S. Coleman, Phys. Rev. D 11, 2088 (1975).

[21] R. Roskies and F. Schaposnik, Phys. Rev. D 23, 558 (1981);

R. Gamboa-Saravi, F. Schaposnik and J. Solomin, Nucl. Phys. B 185, 239 (1981).

[22] J. Wess and B. Zumino, Phys. Lett. B 37, 95 (1971).

13

http://xxx.lanl.gov/abs/hep-th/9808049
http://xxx.lanl.gov/abs/hep-th/9808049
http://xxx.lanl.gov/abs/hep-th/9912066

