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A GEODESIC PROOF

In this section, we provide a formal proof that for two input merge trees
the interpolation defined in Sec. 3 indeed forms a geodesic between
the input trees. We now give a formal description of the interpolated
geodesic trees to make formal arguments easier. Let (T0, f0), (T1, f1)
be two merge trees, M ⊆ P(T0) × P(T1) a path mapping between
T0 and T1 and let (Tα, fα)α∈(0,1) as follows. We write ℓ0, ℓ1, ℓα for
ℓf0 , ℓf1 , ℓfα .

Intuitively, for a given α, we interpolate the two trees with coeffi-
cients α and (1−α). We first interpolate all mapped paths and move the
nodes on these paths such that their relative position on the path remains
constant. Then, we interpolate the inserted/deleted edges from/to length
zero. Note that the problem of contradicting paths described before
does not arise here, as only one mapping is considered. Structurally,
the interpolated tree is the supertree induced by the path mapping. To
define scalars, we first interpolate the labels of the matched nodes, i.e.
the start and end vertices of the matched paths. Then, we move the
nodes on these paths such that their relative position stays the same.
Furthermore, we contract all deleted or inserted edges to 1− α or α of
their original lengths. An example is shown in Fig. 1.

For a formal definition, recall that we say a vertex v ∈ V (T0) is
present in M (and write v ∈ M ) if there is a pair of paths (p, p′) ∈ M
such that v is in p (and analogously for vertices of T1). Furthermore,
we assume that V (T0) and V (T1) are disjoint and denote the scalar
function on the union V (T0)∪̇V (T1) of nodes by f . Now we define
V (Tα) to be the set

{(v, v′), (u, u′) | (v, . . . , u, v′, . . . , u′) ∈ M}
∪{vi, uj | (v0, . . . , vk, u0, . . . , uk′) ∈ M, 1 ≤ i < k, 1 ≤ j < k′}

∪{v ∈ V (T0) | v /∈ M} ∪ {v ∈ V (T1) | v /∈ M}.

In the example in Fig. 1, the ellipse nodes form the first set, nodes
C0, C1, F0 form the second set and E0, E1, H0 form the last set.

Next, we define the edge set of Tα. For a pair of mapped paths
(v1 . . . vk, u1 . . . uk′) ∈ M (an example path is highlighted in Fig. 1),
let s1, s2, . . . , sk+k′−4 be the sorted union of the inner nodes of the
two paths, i.e. f(s1) ≤ f(s2) ≤ · · · ≤ f(sk+k′−4) (in the example,
this sequence is C0C1). For each such path in M , we then include
the edges ((v1, u1), s1), (sk+k′−4, (vk, uk′)) and (si, si+1) for each
1 ≤ i < k+k′−4. Furthermore, we include the edge (v, v′) ∈ E(T0)
if v /∈ M and the same way for edges of T1. In the case where
v′ is the start or end vertex of a mapped path, we have to replace it
by its corresponding node in V (Tα) (the resulting path in Tα is also
highlighted in the example).

As a last step, we need to define the scalar function on the new nodes.
For the matched nodes (v, v′) (i.e. v, v′ are the start or end nodes on two
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Fig. 1: Merge trees T0 and T1 with barycenter T0.5. The optimal path
mapping between T0 and T1 is illustrated by the dotted lines. Two
mapped paths and interpolated path in the geodesic tree are highlighted
in cyan. Scalar values and edge lengths can be read from the grid.

mapped paths), we define fα((v, v′)) = (1−α)·f0(v)+α·f1(v′). For
easier notation, we also write fα(v) or fα(v′) instead of fα((v, v′)).
For a node pi on a path p1 . . . pk matched to p′1 . . . pk′ with 1 ̸= i ̸= k,
we define fα(pi) = f0(pi)−f0(p1)

f0(pk)−f0(p1)
·(fα(pk)−fα(p1))+fα((p1, pk)).

For a deleted node v /∈ M with parent p, we define fα(v) = fα(p) +
(1− α) · (f0(v)− f0(p)). For an inserted node v /∈ M with parent p,
we define fα(v) = fα(p)+α · (f0(v)− f0(p)). Note that at least one
pair of paths containing the roots of both trees is in the optimal mapping
and thus the recursive definition above is well-defined. Furthermore,
the described tree is indeed the result of the first iteration barycenter
computation in Sec. 3 when the number of inputs is two.

Based on this definition, we can now show that the merge trees Tα

(0 ≤ α ≤ 1) define a geodesic between T0 and T1. Clearly, the tree
Tα can be created from T0, T1 in linear time.

Recall that, for a metric d, a continuous path P = (Tα)0≤α≤1

between two trees T0, T1 is a geodesic if its length

L(P ) = sup
n;0=t0≤t1≤...≤tn=1

n−1∑
k=0

d(Ttk , Ttk+1)

is exactly the distance d(T1, T2) between T1 and T2.
Now consider two time points s, t ∈ [0, 1]. With the above definition,

we can derive a path mapping Ms,t between Ts and Tt from M . We
have to make a case distinction on whether the one of the two time
points is 0 or 1.

For 0 < s ≤ t < 1, the two trees are structurally the same (only the
labels differ). We define Ms,t to be the identity mapping on the edges,
which is obviously a valid path mapping. Thus, δ(Ts, Tt) ≤ c(Ms,t).
Next, we determine the cost of Ms,t.

Let I and D be the inserted and deleted edges of M . We have
(e, e) ∈ Ms,t for each e ∈ I∪D. Each e ∈ I contributes c(0, ℓ1(e)) =
ℓ1(e) in c(M), whereas they contribute c(ℓs(e), ℓt(e)) in c(Ms,t). By
definition, ℓs(e) = s · ℓ1(e) and ℓt(e) = t · ℓ1(e) and therefore
c(ℓs(e), ℓt(e)) = (t−s) · ℓ1(e). Analogously, each e ∈ D contributes
c(ℓ0(e), 0) = ℓ0(e) in c(M), whereas they contribute c(ℓs(e), ℓt(e))
in c(Ms,t). By definition, ℓs(e) = (1 − s) · ℓ0(e) and ℓt(e) = (1 −
t) · ℓ0(e) and therefore c(ℓs(e), ℓt(e)) = (t− s) · ℓ0(e).

Now consider the rest of the edges in Ts and Tt. They are constructed
from a mapped path as described above. A pair of mapped paths (we
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Fig. 2: All possible barycenter results on the starting vortex ensemble. The top row shows the path mapping barycenters for each of the six initial
candidates. The bottom row shows the corresponding Wasserstein barycenters.

Path mapping distance TP0 TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12
Wasserstein Geodesic 0.0 0.63 0.85 1.2 1.02 0.74 0.0 1.59 2.59 3.54 3.09 1.6 0.0
Path mapping Geodesic 0.0 0.52 0.62 0.86 0.78 0.0 0.68 0.96 0.98 1.04 0.75 0.53 0.0

Wasserstein distance TP0 TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12
Wasserstein Geodesic 0.0 0.06 0.17 0.18 0.11 0.04 0.0 1.34 0.87 0.49 0.22 0.06 0.0
Path mapping Geodesic 0.0 0.26 0.37 0.09 0.06 0.0 0.01 0.03 0.04 0.05 0.03 0.02 0.0

Table 1: Comparison of the temporal reduction results based on path mapping geodesics and Wasserstein geodesics. The first table shows the
path mapping distance between the original and reconstructed merge trees for each time point and both methods. The second table depicts the
Wasserstein distances. Keyframes are again highlighted in bold.

Invalid edge

Fig. 3: Comparison of merge tree barycenters and contour tree align-
ments: The top left image shows the path mapping barycenter, the top
right image the Wasserstein barycenter. The bottom row shows the fuzzy
contour tree on the left and the ParaView rendering of the alignment tree
on the right. The latter illustrates the problem of the fuzzy contour tree
summarization: the ensemble representative is not a valid merge tree.

assume leaf-to-root direction in a split tree) (p1...pk, p′1...p′k′) ∈ M
contributes

||f0(p1)− f0(pk)| − |f1(p′1)− f1(p
′
k′)||

= f0(p1)− f0(pk)− (f1(p
′
1)− f1(p

′
k′))

to c(M). Instead of p1...pk and p′1...p
′
k′ in T0, T1, we have in Tα the

nodes

s0 := (p1, p
′
1), s1, s2, ..., sk+k′−4, sk+k′−3 := (pk, p

′
k′)

as well as the edges (si, si+1) for each 0 ≤ i ≤ k + k′ − 4.
Each mapped edge in Ms,t contributes

||fs(si)− fs(si+1)| − |ft(si)− ft(si+1)||

to c(Ms,t). Thus, the whole path contributes∑
0≤i≤k+k′−4

||fs(si)− fs(si+1)| − |fs(si)− fs(si+1)||.

Note that the whole path and thus each single edge gets either shorter
or longer. So we either have:

• |fs(s0)−fs(sk+k′−3)| > |ft(s0)−ft(sk+k′−3)| and |fs(si)−
fs(si+1)| > |ft(si)− ft(si+1)| for each i or

• |fs(s0)−fs(sk+k′−3)| < |ft(s0)−ft(sk+k′−3)| and |fs(si)−
fs(si+1)| < |ft(si)− ft(si+1)| for each i.

W.l.o.g. we have |fs(si)− fs(si+1)| > |ft(si)− ft(si+1)| for each i.
In total, we get for the cost of mapping the whole path:∑

0≤i≤k+k′−4

||fs(si)− fs(si+1)| − |fs(si)− fs(si+1)||

=
∑

0≤i≤k+k′−4

(fs(si)− fs(si+1))− (ft(si)− ft(si+1))

=
∑

0≤i≤k+k′−4

(fs(si)−fs(si+1))−
∑

0≤i≤k+k′−4

(ft(si)−ft(si+1))

= fs(s0)− fs(sk+k′−3)− (ft(s0)− ft(sk+k′−3))

= fs(p1)− fs(pk)− (ft(p
′
1)− ft(p

′
k′))

= (1− s)f0(p1) + sf1(p
′
1)− ((1− s)f0(pk) + sf1(p

′
k′))

−((1− t)f0(p1) + tf1(p
′
1)− ((1− t)f0(pk) + tf1(p

′
k′)))

= (1− s)(f0(p1)− f0(pk)) + s(f1(p
′
1)− f1(p

′
k′))

−((1− t)(f0(p1)− f0(pk)) + t(f1(p
′
1)− f1(p

′
k′)))

= (t− s)(f0(p1)− f0(pk)) + (s− t)(f1(p
′
1)− f1(p

′
k′))

= (t− s)(f0(p1)− f0(pk))− (t− s)(f1(p
′
1)− f1(p

′
k′)).

In total, we get that for each deleted or inserted edge as well as each
mapped path that contributes x to c(M) contributes (t−s)x to c(Ms,t).
Thus, c(Ms,t) = (t− s)c(M).

Now consider the case where 0 = s < t. Since Tt is structurally a
supertree of T0, we can define the mapping M0,t to be the embedding
from T0 in Tt. Consider some inserted (in M ) edge e ∈ I . Since e /∈
E(T0), it is also inserted in the embedding M0,t. Thus, it contributes
c(0, ℓt(e)) = t · ℓ1(e) = (t− s) · ℓ1(e) to M0,t, whereas it contributes
ℓ1(e) to M . A deleted (in M ) edge e ∈ D is mapped to itself in the
embedding M0,t. Thus, it contributes c(ℓ0(e), ℓt(e)) = ℓ0(e)− (1−
t) · ℓ0(e) = t · ℓ0(e) = (t− s) · ℓ0(e) to M0,t, whereas it contributes
ℓ0(e) to M .

For mapped paths, all arguments are analogous to the previous case.
Thus, in total we again have that for each deleted or inserted edge
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Fig. 4: Exemplary time steps of the temporal reduction and reconstruction. The original time series is shown in the middle row. The top row shows
the result of the path mapping geodesic, the bottom row of the Wasserstein geodesics. The path mapping reconstruction produces merge trees
with a diiferent branch decomposition (to the original series) in the time steps highlighted in yellowm, which is not the case for the Wasserstein
geodesics. In particular, the original trees and their Wasserstein reconstructions have the long fork structure as main branch, whereas the path
mapping reconstruction has a different one. However, this does not change the fact the path mapping reconstructions are very similar to the original
series (when ignoring the branch order).

as well as each mapped path that contributes x to c(M) contributes
(t− s)x to c(Ms,t), and therefore c(Ms,t) = (t− s)c(M). The same
holds for the case where s < t = 1 with analogous arguments.

So we have c(Ms,t) = (t−s)c(M) for any two time points 0 ≤ s <
t ≤ 1. From this, we can conclude that δ(Ts, Tt) ≤ (t− s)δ(T0, T1).
We can now show that for P = (Tα)α∈[0,1], it holds that L(P ) =
δ(T0, T1).

Using the metric property of δ, we know that for any 0 ≤ s < t ≤ 1:

δ(T0, T1) ≤ δ(T0, Ts) + δ(Ts, Tt) + δ(Tt, T1)

≤ ((s− 0) + (t− s) + (1− t))δ(T0, T1) = δ(T0, T1).

We can conclude that δ(Ts, Tt) = (t− s)δ(T0, T1) and for any subdi-
vision 0 = t0 < t1 < · · · < tn = 1 of P , we have:

n−1∑
k=0

δ(Ttk , Ttk+1) = δ(T0, T1).

Thus, for the length of P we get

L(P ) = sup
n,0=t0<t1<···<tn=1

n−1∑
k=0

δ(Ttk , Ttk+1) = δ(T0, T1).

B STARTING VORTEX BARYCENTERS

We now provide further screenshots of the barycenters computed on
the starting vortex ensemble. Fig. 2 shows the barycenter merge trees
for each possible initial candidate and both methods. For five out of
six initial candidates, the Wasserstein barycenter contains two fork
structures of high persistence, which is not the case in the member trees
(see Fig. 4), whereas only one contains a long, non-forking edge. In
contrast, all six path mapping barycenters are a good summary of the
ensemble.

C COMPARISON TO CONTOUR TREE ALIGNMENTS

Next, we quickly illustrate the advantages of path mapping and Wasser-
stein barycenters over contour tree alignments. We computed barycen-
ter merge trees, the contour tree alignment and the fuzzy contour tree
layout for an ensemble consisting of a fixed time steps (in the late phase
of the simulation, see Fig. 10) from different runs of the heated cylinder

dataset. We applied topological simplification with a threshold of 2%
of the scalar range. Fig. 3 shows both barycenters, the fuzzy contour
tree rendering (see [1] for details) as well as a ParaView rendering of
the alignment tree. While the branch decomposition layout of the fuzzy
contour tree summarizes the ensemble well, the ParaView rendering
reveals that the alignment tree is not a valid merge tree. This is due
to a different averaging technique based on the nodes instead of arcs,
branches or paths. It is therefore harder to use for further analysis tasks.

D TEMPORAL REDUCTION

In this section, we provide more detailed results for the temporal re-
duction on the ionization front time series. In Sec. 4, we compared the
reconstructed series of the path mapping geodesics and the Wasserstein
geodesics with three key frames for both methods. The quantitative
comparison in terms of actual distances between the original and recon-
structed trees are given in Table 1.

Furthermore, the path mapping geodesics yield good reconstructions
already for two key frames, since it can compute meaningful mappings
even between the first and last time step. The Wasserstein geodesics
need four key frames to produce a good reconstruction, since it can not
map the first tree to the last one in a meaningful manner. It therefore
needs the time step right before the maximum swap to correctly interpo-
late the first half of the series and the time step right after the maximum
swap to correctly interpolate the second half. We illustrate this behav-
ior on example time steps in Fig. 4. The path mapping reconstruction
with two key frames is of similar quality to the one with three key
frames (rated on a purely visual basis), whereas the Wasserstein recon-
struction is significantly improved with four keyframes (visually bad
interpolation as highlighted in red in in Fig. 11 do no longer happen).
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