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Figure 1: Illustration of the improvements of unconstrained edit distances over constrained edit distances on the TOSCA ensemble:
two embedded mappings of critical points are shown on the left, the same mappings in a typical merge tree layout on the right.
In between, distance matrices for multiple members of the ensemble can be found. The merge trees on the right contain a
saddle swap: the nesting of head- and hand subtrees is changed between the first and the second tree. Such saddle swaps cause
semantically poor mappings (left and right, top row) as well as cluster being overshadowed by noise in the distance matrix(center)
when using constrained edit distances. Such problems do not arise for the unconstrained distance (bottom row). The example
instance shown in the two mappings can also be observed to contribute noise within the “david” cluster in the upper distance
matrix, but not in the lower one.

ABSTRACT

Comparative analysis of scalar fields in scientific visualization often
involves distance functions on topological abstractions. This paper
focuses on the merge tree abstraction (representing the nesting of
sub- or superlevel sets) and proposes the application of the uncon-
strained deformation-based edit distance. Previous approaches on
merge trees often suffer from instability: small perturbations in the
data can lead to large distances of the abstractions. While some
existing methods can handle so-called vertical instability, the uncon-
strained deformation-based edit distance addresses both vertical and
horizontal instabilities, also called saddle swaps. We establish the
computational complexity as NP-complete, and provide an integer
linear program formulation for computation. Experimental results
on the TOSCA shape matching ensemble provide evidence for the
stability of the proposed distance. We thereby showcase the potential
of handling saddle swaps for comparison of scalar fields through
merge trees.
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Edit distance
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1 INTRODUCTION

Comparative analysis of scalar fields is a core subject in the field of
scientific visualization. Over the last years, comparisons performed
on topological abstractions have received increased interest, as it has
two major advantages over direct comparisons between scalar fields:
First, abstract comparisons capture purely topological similarity,
which for example reduces the impact of geometric symmetries.
Second, the abstractions are typically orders of magnitude smaller
than the actual domain. The latter aspect is of utmost interest in
times of quickly increasing complexity of ensemble datasets. One
abstraction that has received particularly high interest is the merge
tree, which represents the nesting of super- or sublevel sets in a
rooted tree structure.

One possible approach is to apply tree edit distances to merge
trees. Tree edit distances are an established framework for measuring
similarity of rooted trees [5,7,31,41]. Typically, these metrics are in-
tuitive, efficiently computable, and correspond to mappings between
substructures. Moreover, the metric property and edit mappings
makes them suitable for tasks beyond simple distance computations,
such as feature tracking, interpolation, or clustering [22, 27, 36].

Specifically for merge trees, there is a rapid development of
specialized tree edit distances [27–30,34,36] and their applications in
various analysis tasks on scalar fields [22,27,28,30]. A major hurdle
for these distances are so-called vertical and horizontal instabilities
(using the notation from Saikia et al. [28]).

Vertical instabilities stem from using an abstract representationWork licensed under Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/

82

2023 Topological Data Analysis and Visualization (TopoInVis)

DOI 10.1109/TopoInVis60193.2023.00015

20
23

 T
op

ol
og

ic
al

 D
at

a 
An

al
ys

is 
an

d 
Vi

su
al

iza
tio

n 
(T

op
oI

nV
is)

 |
 9

79
-8

-3
50

3-
29

64
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

TO
PO

IN
VI

S6
01

93
.2

02
3.

00
01

5



instead of the merge tree itself: the persistence-based branch de-
composition, derived by the so-called elder rule [12] (we will omit
details here). Here, small-scale perturbations in the data can lead
to a change in the hierarchy of branches, which in turn leads to
poor-quality results of distances based on this hierarchy. One of the
most recent works [34] introduced the so-called deformation-based
edit distance, which circumvents the use of branch decompositions.
The paper provided a novel notion of edit operations on merge trees
as well as an algorithm for a constrained variant of this distance:
the path mapping distance. This path mapping distance is signifi-
cantly less susceptible to vertical instabilities than previous methods
working on persistence-based branch decompositions.

While there are existing approaches to tackling vertical instability,
horizontal instabilities (sometimes also referred to as saddle swaps)
remain a core problem and have been identified as such in several
other works [27–29]. Indeed, they have not been addressed by any
of the existing edit distances.

In this paper, we study a merge tree edit distance that ad-
dresses both vertical and horizontal instabilities: the unconstrained
deformation-based edit distance. This distance has been proposed
but not studied in previous work [34].

Our contribution is two-fold: first, we establish the computational
complexity of the unconstrained deformation-based edit distance. It
turns out that it is NP-complete to compute the distance. Secondly,
we provide means to actually compute the distance. We give a for-
mulation of the problem as an integer linear program. A collection of
further optimizations enables feasible running times on merge trees
of up to at least 25 vertices. The source code of our implementation
is provided in supplementary material, and we will release it in an
open source repository [35].

We utilize this method to experimentally demonstrate the vertical
and horizontal stability of this distance on two synthetic datasets
as well as the well-known TOSCA shape matching ensemble (see
Figure 1), though making heavy use of simplification. In addition,
we discuss why the distance should be expected to be more stable
on a conceptual level. A formal study of stability properties is left
for future work.

After introducing required terminology in Section 2, we describe
the IP formulation of the distance in Section 3. The proof of NP-
completeness is given in Section 4. Section 5 discusses how the
proposed distance achieves stability. Our experiments are presented
in Section 6 and Section 7 concludes the paper. In the remainder of
this section, we give an overview on related work.

Related Work

Topological abstractions are ubiquitous in the comparison of scalar
fields as well as in scientific visualization in general. For a general
introduction into topological methods for scalar field analysis, we
refer to the survey by Heine et al. [18]. A quite recent survey on
scalar field comparisons via topological descriptors was given by
Yan et al. [38]. In this paper, we focus specifically on edit distances
between merge trees. A survey on edit distances between rooted
trees can be found in [5]. The unconstrained edit distance studied
in this paper is an adaptation of the general tree edit distances on
unordered trees, which was introduced by Zhang [41].

For our deformation-based distance, we use a reduction to integer
linear programming that is based on the approach by Kondo et
al. [21]. An improved method for the classic tree edit distance can
be found in Hong et al. [20].

In the remainder of this section, we recap the most important
methods for scalar field comparison through topological descriptors
that are closest to our distance.

The first class of methods are other edit distances on merge
trees. Most noteworthy are the merge tree edit distance by Srid-
haramurthy et al. [29], the merge tree Wasserstein distance by Pont
et al. [27], the extended branch decomposition graph method by

Saikia et al. [28], as well as the branch and path mapping dis-
tances by Wetzels et al. [34, 36]. Regarding stability, none of these
distances have been studied formally, which might be due to the
nature of edit distances: they differ significantly from bottleneck
distances which are typically used as the baseline, i.e. in relation
to which stability is usually defined. However, the three branch
decomposition-based methods are known to be susceptible against
vertical instabilities [28, 36]. In contrast, vertical stability was ob-
served experimentally for the branch decomposition-independent
methods by Wetzels et al. [34,36]. There is more work on merge tree
edit distances which focuses rather on certain applications, instead
of the actual distance measure [22, 27, 30].

Most other distances proposed for topological descriptors are
defined in the vein of bottleneck distances. Bottleneck distances
focus on measuring the largest change, instead of summing up all
the changes like edit distances do. Such methods exist for merge
trees [3, 6, 24], persistence diagrams [9, 10, 12], and Reeb graphs [2,
14]. Stability properties of these distances have been studied more
extensively than for edit distances. However, none of these distances
is known to be stable, discriminative, and efficiently computable
at the same time [6]. Moreover, most of them also lack a publicly
available implementation.

Lastly, there are alternative distance measures which focus on
combining topological and geometrical similarity [16, 26, 32, 37, 39].

We should note that the closest work to ours is probably the paper
by Bollen et al. [6]: it aims to define a stable distance for merge trees,
investigates the stability experimentally and derives an exponential
time algorithm. Our work differs in the type of mapping considered:
we study an edit distance, whereas the distance by Bollen et al. is
similar to a bottleneck distance or the works by Morozov et al. [24]
or Beketayev et al. [3]. The mappings considered by such distances
are inherently different from edit mappings. As stated above, edit
mappings are very powerful tools to derive further visualization or
analysis methods. Moreover, we provide complexity results for the
studied edit distance.

Our technique has a similar goal as the application of so-called
ε-preprocessing [29]. This technique simplifies the input merge
trees prior to the distance computation. It collapses short inner edges
and thereby merges close saddles. Thus, it tries to reduce the number
of instabilities that appear in the input, instead of handling them
through the distance. Examples for algorithms which make use of
such a preprocessing step can be found in [27, 29].

While this technique fixes instabilities in some instances, it has
two drawbacks. For small values of ε , the distance still suffers
from instability: due to the fixed threshold value, larger instabilities
remain in the data. For large values, the preprocessing removes pos-
sibly important subtleties in the data, such that the distance applied
afterwards can no longer reflect these details. Clearly, this implies
that the preprocessing is not a general solution to the problem, al-
though it can yield significant improvements on certain datasets.

This stands in contrast to the unconstrained deformation-based
edit distance, which we discuss in Section 5. However, uncon-
strained edit distances introduce a significant increase in complexity
whereas the preprocessing can be done in linear time. We experi-
mentally compare our method to the effect of ε-preprocessing with
different threshold values in Section 6.

2 PRELIMINARIES

In this section, we provide the formal background for this pa-
per. First, we define abstract merge trees, the class of trees stud-
ied throughout the paper. Then, we introduce the unconstrained
deformation-based edit distance, which was first proposed in [34].
Finally, we give a short recap on integer linear programming, since
we use it to compute our edit distance in practice.
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Merge Trees
We begin with a definition of merge trees. In this paper, we only
consider abstract merge trees, which represent exactly those graphs
that can be interpreted as a merge tree for some domain. For a
detailed definition of merge trees, see [13] or [25]. We restate
definitions from [34,36] for the basic graph theoretic and topological
concepts. For an introduction into basic notions from computational
topology and topological data analysis, we refer to [12] or [18].

We consider rooted trees as directed graphs with parent edges. In
particular, a rooted tree T is a directed graph with vertex set V (T ),
edge set E(T )⊆V (T )×V (T ) and a unique root, denoted root(T ).
We call a node c ∈V (T ) a child of node p ∈V (T ), if (c, p) ∈ E(T ),
and, conversely, p the parent of c. For a node p, we denote its
number of children by degT (p) := |{c | (c, p) ∈ E(T )}| and all its
descendants by descT (p). We omit the index T when it is clear from
the context. Furthermore, we denote the empty tree, consisting only
of a single node and no edges, by ⊥.

Merge trees inherit the scalar function from their original domain
and thus are labeled trees. Usually, they are considered as node-
labeled trees, where the nodes are the critical points of the scalar
field and the labels being defined through the original scalar values
at these critical points. Those rooted trees that can be interpreted
as merge trees for some domain of dimension at least 2 are called
abstract merge trees. These objects are the main focus of this paper.

Definition (Abstract Merge Tree). An unordered, rooted tree T of
(in general) arbitrary degree with node labels f : V (T )→ R is an
abstract merge tree if the following properties hold:

• the root node has degree one, deg(root(T )) = 1,

• all inner nodes have a degree of at least two,
deg(v) �= 1 for all v ∈V (T ) with v �= root(T ),

• all nodes have a larger scalar value than their parent node,
f (c)> f (p) for all (c, p) ∈ E(T ).

The deformation-based edit distance, as defined in [34], works on
edge-labeled trees instead. Here, edge labels represent the length of
the scalar range of the edge (we also say its persistence). However,
these two representations are interchangeable: given a node label
function f : V (T )→ R>0, we define the corresponding edge label
function � f : E(T )→ R>0 by � f ((u,v)) = | f (u)− f (v)|. Given an
edge label function, we can again define f� by placing the root
node at a fixed scalar value, e.g. 0. We denote the total persis-
tence (the sum of all edge-lengths) of an abstract merge tree T by
||T || := ∑e∈E(T ) �(e).

As for general graphs, a path of length k in an abstract merge tree

T is a sequence of vertices p = v1...vk ∈ V (T )k with (vi,vi−1) ∈
E(T ) for all 2 ≤ i ≤ k and vi �= v j for all 1 ≤ i, j ≤ k. Note that we
only consider paths in root-to-leaf direction. For a path p = v1...vk,
we denote its first vertex by α(p) := v1, its last vertex by ω(p) := vk
and the set of all paths of a tree T by P(T ).

We lift the label function � of an abstract merge tree T from edges
to paths in the following way: �(v1...vk) = ∑2≤i≤k �((vi,vi−1)).

Edit Operations
We now recap the definition of the deformation-based edit distance
which was introduced in [34]. It is based on the well-established
edit distance on unordered trees by Zhang [41], but uses an adapted
set of edit operations tailored to merge trees. The distance considers
sequences of the following three edit operations which transform
one tree into another: the relabel operation changes the length or
label of an edge, the deletion contracts an edge completely, and the
insertion adds a new edge to the tree.

In contrast to classic tree edit distance, after a deletion, we prune
remaining nodes of degree one by merging its two incident edges

classic delete continuous delete

Figure 2: Intuition behind the deformation-based edit operations: if
a degree-1 node remains after a deletion, we obtain an invalid merge
tree. To fix this problem, we also have to prune the remaining node.

(and their lengths). Figure 2 illustrates the intuition behind this spe-
cific deletion. Insertions are then defined to be the inverse operations
of these deletions.

Formally, we consider the following edit operations that transform
an abstract merge tree T, � into another abstract merge tree T ′, �′:

• Edge relabel: changing the length of an edge (c, p) to a new
value v ∈ R>0, i.e. T ′ = T , �′((c, p)) = v and �′(e) = �(e) for
all e �= (c, p).

• Edge contraction: remove an edge from the tree and merge
the two nodes. Then, remove the parent node if it had only
two children originally. Formally, for a node p with children
c0...ck and parent p′, we define T ′ after contracting (ci, p) as
follows: if k > 1, we have

V (T ′) =V (T )\{ci},E(T ′) = E(T )\{(ci, p)},
and otherwise, if k = 1, we have

V (T ′) =V (T )\{ci, p},
E(T ′) = (E(T )∪{(c1−i, p′)})\{(ci, p),(c1−i, p),(p, p′)}.

Furthermore, �′ = � if k > 1, otherwise

�′((c1−i, p′)) = �((p, p′))+ �((c1−i, p)),

and �′(e) = �(e) for all e �= (c1−i, p′).

• Inverse edge contraction: inverse operation to edge contraction.

We use the terms edge contractions and deletions interchangeably
as well as inverse edge contractions and insertions. If a sequence of
edit operations S transforms an abstract merge tree T1 into T2, we

denote this by T1
S−→ T2.

We define the cost of an edit operation as the euclidean distance
on R>0 ∪{0}: c(l1, l2) = |l1 − l2| for all l1, l2 ∈ R≥0. Here, an edit
operation is represented by the labels of the modified edges: a relabel
of an edge e with (�(e), �′(e)), whereas insertions or deletion of e
are represented by (0, �(e)) or (�(e),0). This means, for a deletion
or insertion we charge the persistence of the edge, and for a relabel
we charge the persistence difference between the old and new edge.

The cost of an edit sequence is then the sum of all edit operation
costs: c(s1 . . .sk) = ∑1≤i≤k |c(si)|. Based on this, the unconstrained
deformation-based edit distance between two trees T1,T2 is defined
as the cost of a cost-minimal sequence that transforms T1 into T2:

δE(T1,T2) = min{c(S) | T1
S−→ T2}.

This differs from its constrained variant: the path mapping distance
is defined as the cost of an optimal sequence only using deletions
and insertions on leafs. In this paper, we focus on the computation
and complexity of the unconstrained variant, in contrast to prior
work [34] only studying the constrained path mapping distance.
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Integer Linear Programming
We use integer linear programming (IP) to compute our edit distance.
An IP instance consists of a number of variables, an objective func-
tion, and a set of (linear) constraints. The goal is to minimize the
objective function, while the constraints must be satisfied.

Formally, we expect an IP instance to be in the following form:

minimize cT x
subject to Ax ≥ b

x ≥ 0
x ∈ Z

n

where x is the vector of n variables, c ∈ R
n the weights used for the

objective function, and A∈R
n×m a matrix used to denote constraints.

Note that the variables are constrained to be integers.
The problem is well-known to be NP-hard. Even still, integer

programming is often used to express and solve other NP-hard op-
timization problems in practice, for example problems stemming
from logistics or combinatorics. There are powerful solvers avail-
able, such as GUROBI [17], CPLEX [11], or SCIP [4].

3 COMPUTATION

Algorithms for tractable variants of edit distances usually compute
the optimal edit mapping (explained later in more detail) between
the two trees by exploiting their recursive structure using dynamic
programming techniques. This holds for edit distances on general
trees (e.g. [40]) as well as merge tree-specific methods (e.g. [34]).
For non-tractable variants such as the general tree edit distance on
unordered trees, it is more common to compute the optimal mapping
through a reduction to integer programming [21] or combinations of
recursive decompositions and linear optimizations, see [20].

Our approach is to adapt the conventional reduction to integer
programming, which we describe in the following.

Edit Mappings
We first recap the concept of edit mappings [5, 41]. Edit mappings
represent edit sequences between two trees in an abstract way. Each
edit mapping corresponds to an edit sequence. In terms of the result-
ing distance, the optimal edit mapping and optimal edit sequence
are guaranteed to be equivalent.

Let T1,T2 be two trees with T1
S−→ T2. If a node v ∈ V (T1) is

not touched by any operation in S or only by relabels, then it has
a clear correspondent v′ ∈ V (T2). Thus, (v,v′) is part of the edit
mapping corresponding to S. If a node is deleted or inserted by
S, it is not present in the mapping. The way edit operations on
trees work induces the following properties of an edit mapping
M ⊆ V (T1)×V (T2) between the nodes of two trees: (a) They are
one-to-one mappings, i.e. for all (v1,v2) ∈ M and (u1,u2) ∈ M we
have v1 = u1 if and only if v2 = u2. (b) They are ancestor preserving,
i.e. for all (v1,v2) ∈ M and (u1,u2) ∈ M we have v1 is an ancestor
of u1 if and only if v2 is an ancestor of u2.

As mentioned above, the cost of an optimal mapping (we omit
the exact definition) is exactly the cost of an optimal edit sequence.
Hence, we may consider edit mappings instead of edit sequences
when computing the edit distance. In fact, practical algorithms
usually iterate over edit mappings instead of edit sequences. In the
following, we also make use of edit mappings.

As discussed earlier, for our deformation-based edit distance, the
edit operations differ from the typical edit distances. Hence, we also
need to adapt the concept of edit mappings accordingly. We extend
the concept of the edit mappings above. More specifically, we use
the conventional edit mappings on nodes (as defined above) as our
foundation, but redefine the cost function for a given edit mapping
to reflect precisely our deformation-based distance.

Given two trees T1,T2 and an ancestor-preserving node mapping
M between them, we now define the costs c(M) of M. We begin by

defining a few variables for each node in order to ease the process.
Given a node v ∈ V (T1), we first define dv = 1 whenever v /∈ M,
and dv = 0 otherwise. Thus, dv denotes if v is deleted in M. Based
on this, we define d̂v =

∧
u∈desc(v) du. Hence, d̂v is 1 whenever the

whole subtree rooted in v is deleted, and 0 otherwise.
Next, we define so-called pruned nodes. Recall the definition of

a continuous deletion on a merge tree: if a node of degree 1 remains
after a deletion, we replace its up- and down-edge with one merged
edge and remove the node. We call this pruning of a node (see
Figure 2). The merged edge in the resulting tree corresponds to a
path in the tree prior to the deletion. Thus, the start and end vertices
of this path are in an imaginary parent-child relation.

We now define variables which express pruned nodes. Indeed, we
observe that a node is pruned if and only if all but one of its subtrees
are completely deleted. Thus, we may define the pruning variable
dv for a node v with children c1,c2, . . .cdeg(v) to be 1 if and only if

∑1≤i≤deg(v)(1− d̂ci) = 1.

Next, we define variables representing the imaginary parent for
each node in the two trees, deriving them from the deleted nodes
and pruned nodes. Intuitively, the imaginary parent of a node is its
least ancestor that is not pruned. An additional constraint is that
we only define an imaginary parent for nodes that are not deleted.
Formally, we define a variable pu,v for each pair of nodes from the

same tree. Then, pu,v = 1 if and only if dv = 0 and dw = 1 for each
node w between v and u.

As a last step, we can derive the relabel operations of the map-
ping M. They are represented by mapped nodes together with their
imaginary parents. All other edges in the trees that are not covered
by these relabels can be assumed to be deleted. The costs of the
mapping M are then defined to be

∑
q1,q2∈P1×P2

pα1,ω1
· pα2,ω2, · (c(q1,q2))

− ∑
�(q1),�(q2)∈P1×P2

pα1,ω1
· pα2,ω2

· (c(�(q1),0)+ c(0, �(q2)))

+ ∑
(u1,v1)∈E(T1)

c(�(u1v1),0)+ ∑
(u2,v2)∈E(T2)

c(0, �(u2v2))

where P1 =P(T1), P2 =P(T2), α1 =α(q1), α2 =α(q2), ω1 =
ω(q1) and ω2 = ω(q2).

IP Definition
For the IP instance, we first define variables for the basic mapping M.
For each pair of nodes u,v ∈V (T1)×V (T2), we introduce a variable
mu,v with mu,v = 1 if and only if (u,v) ∈ M. From the definition
of edit mappings, we derive the same constraints on the mapping
variables as in [21]:

• ∑v∈V (T2) mu,v ≤ 1 for all u ∈V (T1) and ∑u∈V (T1) mu,v ≤ 1 for

all v ∈V (T2),

• mu,v +mx,y ≤ 1 for all tuples u,v,x,y contracting the ancestor
preservation.

Next, we add all the variables and constraints based on the previ-
ous section. This in turn expresses the special cost function for the
deformation-based distance, which is in turn used as the objective
for the integer program. We constrain all variables to {0,1} val-
ues. However, note that our cost function is actually not yet linear:
we are multiplying pα1,ω1

· pα2,ω2
. Fortunately, we only need to

compute pα1,ω1
∧ pα2,ω2

where pα1,ω1
and pα2,ω2

are treated as
boolean variables. This is possible in integer programs using the
introduction of an additional variable for said operation: we set
pmω1,α1,ω2,α2

:= pα1,ω1
∧ pα2,ω2

.
We observe that the total number of variables is dominated by the

pmα1,ω1,α2,ω2
variables. Hence, in the following, where we discuss
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optimizations, we focus on reducing the number of pmα1,ω1,α2,ω2

variables.

Optimizations: Reencoding
The encoding as described above turns out to be quite slow, even for
very small examples. Our main strategy for optimization is to use a
reencoding scheme (loosely inspired by [23]).

Reencoding means we run GUROBI for a while, extract an upper
bound for the edit distance (by using the best solution computed up to
a certain point), and then reencode the problem more concisely using
the newly found upper bound. Generally, we perform the scheme
using an exponential backoff strategy: we start with a time limit of
10s for GUROBI, doubling the time limit in each iteration. After
each iteration, if an improved upper bound is found, we reencode
the problem.

The new encoding can be more compact as a given upper bound
lets us discard potential edit mappings: if a single mapping of nodes
(or paths) already implies costs greater than the current upper bound,
we know that this mapping can not occur in any optimal solution.

This matches precisely a single pmα1,ω1,α2,ω2
variable: if we

can deem the mapping of the path (α1 . . .ω1) to (α2 . . .ω2) too
expensive (above the current upper bound), we can remove the
variable pmα1,ω1,α2,ω2

, all corresponding constraints, as well as
variables which were only used in correspondence to pmα1,ω1,α2,ω2

.
The question that therefore remains is, how can we approximate

the cost implied by a single mapping of paths pmα1,ω1,α2,ω2
? More

specifically, we need to be able to give a lower bound for these costs.
Given two trees T1,T2 and a pmα1,ω1,α2,ω2

variable, we provide a
collection of cost approximations which we can derive:

1. The cost of mapping the paths themselves: the absolute differ-
ence between the persistence of the first path and the second
path, i.e. c(�(α1 . . .ω1), �(α2 . . .ω2)).

2. If (α . . .ω) is a path, all nodes on the path (strictly inbetween
α and ω) must be pruned. This means all subtrees of these
nodes, which are not part of the path must be deleted, and the
cost of these deletions can be assumed.

3. Due to the ancestor relationship, the subtrees rooted in ω1

and ω2 must be matched onto each other. There are several
ways to compute lower bounds for this: let T1(ω1) and T2(ω2)
denote the subtrees rooted in ω1 and ω2, respectively. A valid
lower bound is then δE(T1(ω1),T2(ω2)). We compute this
using our IP strategy recursively (using a time limit). However,
before we do so, we first approximate the cost by computing
the absolute difference between the total persistence of T1(ω1)
and T2(ω2). Only if this crude approximation (in conjunction
with the other cost approximations) does not yet suffice to
exclude the given variable, we fall back to the recursive IP
approach.

4. Due to the ancestor relationship, the overall trees up to α1 and
α2, removing the trees below α1 and α2, must be matched
onto each other. Again, we first use the persistence difference
as a crude approximation first, and then rely on the recursive
IP approach.

Whenever the sum of these costs exceeds the current upper bound
for a variable pmα1,ω1,α2,ω2

, we remove the variable. All in all, for
most instances in our experiments, this substantially reduces the
number of possible mappings.

Optimizations: Symmetry Reduction
We also reduce a number of symmetries in the IP formulation. For a
given variable pmα1,ω1,α2,ω2

, assume ω1 is a leaf while ω2 is not.
In this case, no node below ω2 can be mapped to any node of the

. . .

2

4

2m

GiG

. . .

. . .

2 i

i
1 2m

Gi

Figure 3: The element gadgets G and Gi.

first tree, due to the ancestor relationship. Hence, all nodes below
ω2 need to be deleted.

Instead, let us choose any leaf below ω2, say, ω l . Now since in
the case where we use ω2 we need to remove the entire subtree –
including ω l – anyway, using ω l instead of ω2 can indeed not yield
a more expensive edit mapping. Hence, we only consider those
pmα1,ω1,α2,ω2

where ω1 is a leaf if and only if ω2 is a leaf.
Interestingly, in our testing, this optimization sped up GUROBI

considerably, while it seemed to marginally slow down CPLEX.
We also apply a similar reduction for the roots of the trees. We

observe that the only degree-1 node in a merge tree is its root. Hence,
after deleting it, we have to construct a new degree-1 root again,
since the tree resulting from an edit sequence is a merge tree (after all,
we are only comparing merge trees). Thus, with similar arguments as
in the leaf case, enforcing the roots to be mapped onto each does not
yield a worse edit mapping. We disregard all tuples pmα1,ω1,α2,ω2

where α1 is the root of its tree while α2 is not (or vice versa).

4 NP-COMPLETENESS

We now prove NP-completeness of the decision variant of comput-
ing the unconstrained deformation distance. The decision variant
asks whether the distance δE between two trees is below a given cost
threshold c. Our reduction is an adaptation of the reduction for the
edit distance on unordered trees by Zhang [41].

Theorem 1. Deciding whether δE(T1,T2) of two abstract merge
trees T1,T2 is below a given threshold c is NP-complete.

Proof. We prove the claim by a reduction from exact covering by
3-sets (X3C) to computing the deformation-based edit distance. We
begin by recalling the definition of the X3C problem.

(Definition of X3C.) We define a universe U := {u1,u2, . . . ,um}
of m = 3k elements, and a collection of subsets of these elements
S := {S1,S2, . . . ,Sn}. Each Si ∈ S has precisely 3 elements, i.e.
Si := {ui,1,ui,2,ui,3}. Furthermore, every element u∈U is contained
in at most 3 sets of S. Given a universe U and collection of sets S,
the goal is to check whether there is a C ⊆ S, where C is a disjoint
collection of sets and each element in U occurs in exactly one
member of C. The X3C problem is known to be NP-complete [15].

(Reduction to X3C.) We now reduce X3C to our problem. Given
an X3C instance with universe U and sets S, we construct the trees
T1 and T2 as follows (the construction is illustrated in Figure 5). We
begin by defining an element gadget Gi for each element ui ∈ U ,
which are illustrated in Figure 3. Each gadget is derived from the
base gadget G which consists of m edges e1, . . . ,em attached to its
root r with the length of ei being 2i. Then, in Gi, we add another
edge e0 of length 1 which splits ei exactly in halves. This leads to the
following property: the distance between each Gi and G is exactly 1,
since we simply have to contract the edges e0 in Gi. Furthermore,
for i �= j, the distance between Gi and G j is exactly 2, since we need
to delete e0 in one tree and insert it in the other.

Based on the element gadgets, we next define set gadgets Hi
for each set Si ∈ S and a dummy set gadget H (see Figure 4). Hi
consists of a root node and the three element gadgets corresponding
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Figure 4: The dummy set gadget H and set gadget Hj.
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n− k

. . . . . .

T2

Figure 5: The two trees used in the reduction.

to the elements ui,1,ui,2,ui,3 of Si. The roots of the three element
gadgets are connected to the new root via an edge of length 1. H is
constructed analogously, but uses three instances of G.

Now we construct the final trees T1 and T2. In T1, we encode each
set Si ∈ S by first attaching the tree Hi to the root via an edge of
length 1. In T2, we append for each element ui of the universe U the
tree Gi and n− k gadgets H to the root, again via edges of length 1.
For these two trees it then holds that d(T1,T2) = 3n−2k if there is
a covering of U by S and d(T1,T2)> 3n−2k otherwise, which we
prove in the following.

First, note that the total persistences of the two trees are

||T1||= 1+n+3n(2+m(m+1)) = 1+n+6n+3nm(m+1)

and

||T2||=
1+3k+3k(1+m(m+1))+(n− k)+3(n− k)(1+m(m+1))

= 1+n+2k+3n+3nm(m+1).

Thus,

||T1||− ||T2||= 6n− (3n+2k) = 3n−2k.

If there is a covering C ⊆ S of U , then we can use the following
sequence to convert T1 into T2. For each of the k sets in C, we
contract the edge between the root of T1 and the root of the corre-
sponding gadget Hi. Next, we transform each (n− k) remaining
gadgets Hj into H by contracting the three splitting edges in the ele-
ment trees. The total cost of this sequence are k+3(n−k) = 3n−2k.
Since these costs are exactly the difference in total persistence, the
sequence is optimal.

In the case where no covering exists, we again know that ||T1||−
||T2||= 6n−(3n+2k) = 3n−2k and that d(T1,T2)> 3n−2k. Thus,
a sequence of cost exactly 3n− 2k can only include deletions or
shortening relabel operations. Due to this property, such a sequence
can only construct the G and Gi gadgets in T2 from those in T2.
Hence, it would imply a covering, leading to a contradiction.

A B

C

A B

C

(a) horizontal

x
y

...

...

...

x
y

...

...

...

(b) vertical

Figure 6: The two types of instabilities: In (a) the order of saddle
points changes such that feature C emerges from B instead of A.
Thus, we also call this a saddle swap. In (b) the two features x
and y swap their position in the persistence-based ordering. Thus,
mappings adhering to this hierarchy cannot map y to y and, more
importantly, not map the subtrees on the path to y to each other.

(NP.) The decision variant of our edit distance is clearly in NP:
given an edit sequence, we can check whether its cost is below the
given threshold c.

5 STABILITY

In this section, we discuss how the unconstrained edit distance
overcomes typical instabilities that other methods cannot handle.
We first recap the concepts of vertical and horizontal instability and
identify the horizontal ones as the core problem. We then discuss,
on a conceptual level, why going from constrained to unconstrained
edit distance precisely solves the problem of horizontal instability.
This gives an intuition on why our distance is not impeded by them.

Vertical and Horizontal Instability

The quality of topological descriptors and distances on them is often
measured by formal stability properties: do small perturbations in
the scalar field only induce small distances between the abstractions?
For most descriptors, this property of course primarily depends on
the chosen distance.

It turns out that many distances between merge trees suffer from
instability. Saikia et al. [28] classified two very prominent types of
instability in branch decompositions of merge trees: horizontal and
vertical instability. Indeed, vertical and horizontal instabilities have
been identified as a main problem for edit distances between merge
trees in several other works [28, 29, 36].

Figure 6 illustrates both types. It can be seen that vertical in-
stability is actually introduced by branch decompositions: it only
appears when considering the persistence hierarchy of branches.
Accordingly, vertical instability does neither effect the constrained
nor the unconstrained deformation-based edit distance. This was
also observed previously: vertical instabilities can be handled by
branch decomposition-independent distances [3, 34, 36], although
inducing significant, but still polynomial computational overhead.

Horizontal instability appears not only in branch decompositions,
but in merge trees in general. It stems from the phenomenon de-
scribed in Figure 6a, which is often called a saddle swap. In contrast
to vertical instabilities, saddle-swaps remain a problem in basically
all state-of-the-art approaches with efficient implementations. Here,
the constrained and unconstrained distances differ, which we will
discuss next.
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Figure 7: Saddle swaps in edit distances: deleting the node z and
then re-inserting it with different children makes it possible to move
the feature B horizontally from the subtree of feature A to the subtree
of feature C. If we do not allow the deletion of inner nodes, we need
to delete B completely and insert it again to arrive at the second tree.
Thus, B is not present in the mapping in the latter case.

Figure 8: Distance matrices for the merge tree edit distances, the
path mapping distance and the unconstrained deformation-based edit
distance on the analytical example for vertical instabilities.

Saddle Swaps in Edit Distances
In the case of tree edit distances, saddle swaps as described in
Figure 6a can actually be expressed as edit sequences. Figure 7
illustrates how this can be done. The cost of such a sequence then
describes the difference between the two trees as we would expect
intuitively, while keeping a semantically meaningful matching (not
inhibited by constraints of the distances) between the features. Fig-
ure 7 also shows why constrained edit sequences cannot achieve the
same: to perform saddle swaps in edit sequences, one needs to first
delete an inner node or edge followed by re-inserting it. In fact, there
is no other way to move a subtree horizontally in the tree hierarchy.

Thus, saddle swaps exactly correspond to the type of changes
only handled by edit distances which allow such operations on inner
nodes. If we allow these operations without any restrictions, then
the distance becomes NP-hard. Whenever such operations on inner
nodes are possible, it seems that we can produce a reduction in the
vein of the one given in Section 4.

Nonetheless, the unconstrained deformation-based edit distance
can therefore handle saddle swaps in a general way. That this leads
to very stable behavior. In the next section, we validate this property
experimentally, both on synthetic and real-world datasets.

6 EXPERIMENTS

In this section, we illustrate the stability of the unconstrained
deformation-based edit distance experimentally. We begin with ex-

Figure 9: Distance matrices for the merge tree edit distances, the
path mapping distance and the unconstrained deformation-based edit
distance on the analytical example for horizontal instabilities.

periments on two analytical datasets. One is designed to specifically
provoke vertical instabilities, while the other provokes horizontal in-
stabilities. On these datasets, we showcase that our distance measure
can handle both types of instabilities in an isolated scenario.

Then, we consider the well-known TOSCA shape matching en-
semble. Indeed, these scalar fields contain both vertical and hori-
zontal instabilities. An illustration of horizontal instabilities in this
dataset can be found in Figure 1. The unconstrained deformation-
based edit distance significantly outperforms all other methods and
yields almost perfect clusters, matching the various shapes of the
ensemble onto each other. This demonstrates that the distance can
handle both types of instabilities at the same time, as well as that
its advantages over existing approaches indeed matter in real-world
(though non-scientific) datasets.

All topological preprocessing including simplification and merge
tree computation was done in TTK [33], while the screenshots were
rendered using in ParaView [1] and VTK.

Analytical Example for Vertical Instability
To test for vertical stability, we use the analytical example that was in-
troduced in [36] to illustrate the advantages of branch decomposition-
independent distances for merge trees. It is an ensemble consisting
of 20 two-dimensional scalar fields, which exhibits strong vertical
instability in its split trees. All members consist of four main peaks,
i.e. four main features in their merge tree. One of them has five
smaller maxima emerging from it. Each member was constructed
from the same baseline field with small perturbations applied to po-
sitions and heights of the peaks. A stable distance should therefore
also only express small noise-like distances.

However, this is only true for vertically stable distances. The
persistence hierarchy of the features differs between the members:
sometimes the outlier peak is the highest maximum, sometimes it is
not. Edit mappings that have to adhere to this hierarchy therefore
identify clusters, depending on where the outlier feature is placed in
the branch decomposition. In contrast, a perfect mapping matches
the outlier features onto each other as well as the three others. It
therefore only conveys the original noise.

Figure 8 shows the distance matrices of three different distances
on this dataset. Here, we first computed all distances and then
applied a clustermap to highlight clustered results. It can be ob-
served that the merge tree edit distance yields a clustered distance
matrix while the two deformation-based distances show the “correct”
noise-like distances. These observations concur with the theoretic
properties of the distances. While the merge tree edit distance is
branch decomposition-based and shows false clusters, the path map-
ping distance was designed to overcome exactly this problem. As
expected, the unconstrained deformation based behaves almost iden-
tical to the path mapping distance, since perfect matchings on this
dataset do not require any saddle swaps.

Analytical Example for Horizontal Instability
Our second experiment is performed on another analytical ensemble,
which we designed specifically for this paper to test for horizontal
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Figure 10: Four distance matrices of the TOSCA ensemble visualized as heatmaps. They were computed (from left to right) using the merge
tree edit distance, the merge tree Wasserstein distance, the path mapping distance and the unconstrained deformation-based edit distance. No
ε-preprocessing was applied. From top left to bottom right, the clusters correspond with the following shapes: “cat”, “centaur”, “david”, “dog”,
“gorilla”, “horse”, “lioness”, “michael”, “seahorse”/“shark”, “victoria” and “wolf”. Within all clusters the distances are generally small for
the unconstrained distance (e.g. they range from 0.16 to 0.56 in the “michael” cluster), whereas they contain a lot of outliers/noise for the
constrained distances (e.g. path mapping distances within “michael” range from 0.17 to 1.47). Also, the overall highest unconstrained and
constrained deformation-based distances behave as expected, with the unconstrained one being significantly smaller (1.89 bs 2.34).

stability. The overall idea is similar to the first experiment. The 20
two-dimensional scalar fields consist of three distinct features (again
they differ in the amount of emerging side peaks), and due to small
perturbations the nesting of these varies between the members. The
smallest of the main peaks first branches from one of the two other
peaks. The order differs within the members of the ensemble. This
leads to saddle swaps being necessary to match the three features
correctly. Since we constructed this dataset with a strict ordering in
height of the features, it does not contain any vertical instability.

The test for stability is then analogous to the first example: if
the distance exhibits clusters, it is horizontally unstable. Again,
the results presented in Figure 9 match the expected outcome. The
merge tree edit distance is unstable, as is the path mapping distance,
unlike on the first dataset (which demonstrates that it only solves
the problem of vertical instability). The unconstrained deformation-
based distance again represents the noise in the data correctly.

TOSCA

Our main experiment was performed on the TOSCA non-rigid world
dataset [8]. It is a shape matching ensemble consisting of several
human and animal shapes in varying poses. The surface meshes
have a scalar field attached representing the average geodesic dis-
tance of the vertices [19]. We use the same field that was also used
by Sridharamurthy et al. in [29]. Figure 13 shows four example
members from four different shapes. A good distance should iden-
tify the different shapes correctly as clusters. Furthermore, similar
shapes (e.g. two different human shapes, like “victoria” and “david”
in Figure 13) should also yield small distances.

We applied topological simplification (using TTK [33]) with a
relative threshold of 6% to remove noise and reduce the size of
the trees. Then, we computed the split trees with TTK. As a last
preprocessing step, we removed all merge trees with more than 26
vertices to get feasible computation times. This mainly removed
members from the “lioness” shape, which seems to be an outlier
cluster in terms of size or noise of the split trees.

On this reduced ensemble, we computed the full distance matrix
using four different edit distances: the merge tree edit distance by
Sridharamurthy et al. [29], the merge tree Wasserstein distance by
Pont et al. [27], the path mapping distance by Wetzels et al. [34] and
the new unconstrained deformation-based edit distance. The three
existing distances are all implemented in TTK, which we used to
derive the matrices. The results can be seen in Figure 10. Clearly,
the unconstrained distance yields the cleanest results with perfectly
identified clusters corresponding to the various human or animal
shapes (the entries are ordered by shape first). All other distances

heavily suffer from noise in the distances, which overshadows the
clusters present in the data. Furthermore, it can be observed that
the clusters are also visually more distinct when using the path
mapping distance in comparison to the two branch decomposition-
based approaches. This implies that the ensemble not only exhibits
horizontal instabilities, but also vertical ones, which are both handled
well by the unconstrained edit distance.

Effect of Preprocessing
To compare the new distance with the similar method of ε-
preprocessing, we also computed the distance matrices of the merge
tree edit distance and the merge tree Wasserstein distance for differ-
ent values of ε . As argued in Section 5, both approaches try to fix
the same problem, but unconstrained edit distances do so in a more
general way.

Our experiments show that applying the preprocessing with small
threshold values (under 10% of the scalar range) still leads to clut-
tered distance matrices and noisy clusters. The different matrices
can be seen in Figure 12. Another interesting observation is that
for both distances, the results get worse with a threshold of 10%
in comparison to 5%. Thus, we conclude that the preprocessing
exhibits a less predictable behavior than the more generic solution
of using unconstrained distances.

Runtime Performance
We now discuss the observed runtime of the IP formulation of the
unconstrained deformation-based edit distance. Since IP is known
to be NP-complete, exponential running times are to be expected.
We implemented the reduction to IP in Python and used the Python
binding of GUROBI through PULP.

Up to trees of about 20 vertices, runtimes for single distance
computations are in the range of seconds. Beyond this, they become
infeasible rather quickly. In the setting of computing the full distance
matrix on the TOSCA ensemble, our implementation was able to
handle distances for trees of up to 26 vertices. After removing all
trees with more than 26 vertices, 138 members remained. It took
about 5 days using 100 threads to compute all 9453 distances for
the matrix. In comparison, for all other distances and all values of
ε , computing the matrix took only several seconds, using the C++
implementation in TTK with ParaView.

7 CONCLUSION AND FUTURE WORK

In this paper, we studied the unconstrained deformation-based edit
distance for merge trees. Compared to other edit distances for merge
trees, this distance exhibits significantly improved robustness against
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Figure 11: The two analytical ensembles intuitively only show noise-
like differences. However, the first one exhibits vertical instabilities:
which of the four peaks is the most persistent one differs between
the members. The second one exhibits horizontal instabilities: the
members differ in which of the two peaks on the left first merges
with the peak on the right.

both vertical and horizontal instabilities. We described the concep-
tual background of these advantages and also demonstrated the
stability experimentally: handling saddle swaps is a very effective
way to increase the expressiveness of merge tree edit distances. Al-
though we established its NP-completeness, we were able to derive
an integer programming implementation to showcase the distance
on reasonably sized (meaning small enough for our approach to
terminate in reasonable time) instances.

Our results validate the quality of the deformation-based edit
distance which was proposed by Wetzels et al. [34] previously, but
only implemented in a constrained variant. In future work, we want
to study theoretical stability properties to complement the presented
experimental insights. Furthermore, our findings give rise to several
strategies for designing improved tractable distances in the future.

Possible Strategies for Future Methods
In our experiments, unconstrained edit distances expressed high
potential in terms of comparison quality and stability. They clearly
outperform simpler constrained edit distances, independent of the
preprocessing threshold used. Nonetheless, ε-preprocessing has
proven to be effective on practical datasets as well [27, 29] and has
significant advantages in terms of running time. Thus, we believe
that future methods for comparing merge trees through edit distances
should focus on utilizing/allowing some form of actual saddle swaps
(e.g. allow for a small or constant number of inner deletions), as
well as combining such approaches with ε-preprocessing with small
threshold values.

(a) Distance matrices for the merge tree edit distance with preprocessing.

(b) Distance matrices for the merge tree Wasserstein distance with preprocessing.

Figure 12: Distance matrices for the merge tree edit distance (a) and
the merge tree Wasserstein distance (b) with ε-preprocessing. The ε
values were (left to right) 2%, 5% and 10% of the scalar range.

Figure 13: Four different shapes from the TOSCA ensemble: “victo-
ria”, “cat”, “centaur” and “david” (left to right).

In addition, further optimization of the proposed integer linear
program should be considered. There could be a lot of potential
in improved reencoding or other strategies to reduce the size of
the linear program. An interesting question to study could be from
which time bound on the more expensive encoding techniques should
be applied. Furthermore, optimizations similar to those by Hong et
al. [20] for classic tree edit distances could be considered.

During our experiments, we observed a significant impact of
the IP solver used, depending on the applied reencoding strategies.
Thus, apart from further optimizing the presented strategies, properly
studying the effects of different solvers should be considered.

Overall, the distance studied in this paper has potential of being
applied directly on small instances and leading to very effective
heuristic distances with more practical running times.

Supplementary Material
This manuscript is accompanied by supplementary material: We
provide the source code of our Python implementation as well as the
synthetic dataset for horizontal stability. We will release the code in
an open source repository [35].
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