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Abstract
We discuss the dynamics of the formation of a Bose polaron when an impurity is injected into a
weakly interacting one-dimensional Bose condensate. While for small impurity-boson couplings
this process can be described within the Froehlich model as generation, emission and binding of
Bogoliubov phonons, this is no longer adequate if the coupling becomes strong. To treat this
regime we consider a mean-field approach beyond the Froehlich model which accounts for the
backaction to the condensate, complemented with Truncated Wigner simulations to include
quantum fluctuation. For the stationary polaron we find a periodic energy-momentum relation
and non-monotonous relation between impurity velocity and polaron momentum including
regions of negative impurity velocity. Studying the polaron formation after turning on the
impurity-boson coupling quasi-adiabatically and in a sudden quench, we find a very rich scenario
of dynamical regimes. Due to the build-up of an effective mass, the impurity is slowed down even if
its initial velocity is below the Landau critical value. For larger initial velocities we find deceleration
and even backscattering caused by emission of density waves or grey solitons and subsequent
formation of stationary polaron states in different momentum sectors. In order to analyze the
effect of quantum fluctuations we consider a trapped condensate to avoid 1D infrared divergencies.
Using Truncated Wigner simulations in this case we show under what conditions the influence of
quantum fluctuations is small.

1. Introduction

The dynamics of a quantum impurity coupled to an interacting many-body environment is one of the most
fundamental problems of many-body physics. Of particular interest is the dressing of the impurity with
elementary excitations of the host systems leading to the formation of a quasiparticle. A paradigmatic model
of such a quasiparticle in condensed matter physics is the polaron, introduced by Landau and Pekar [1, 2] to
describe the interaction of an electron with lattice vibrations in a solid, and which is key for understanding
transport, response and induced interactions in many systems. In recent years ultra-cold quantum gases have
become a versatile experimental testing ground for studying polaron physics with high precision and in novel
regimes. For example, employing Feshbach resonances [3] for neutral atoms, the impurity-bath interaction
can be tuned from weak to strong coupling. Furthermore many-body environments of different quantum
statistics and with different interactions can be considered. While impurities in a degenerate Fermi gas, called
Fermi-polarons, have been studied in a number of experiments only a small number of experiments exist on
Bose polarons [4–7]. Here due to the large compressibility of the Bose gas a larger amount of excitations can
be created by the impurity and interactions among the environment particles become increasingly
important.

While much theoretical work exists addressing the ground state properties of Bose polarons [8–16] there
is still little understanding of finite temperature properties [7, 17–19] and even more so of its
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Figure 1. Formation of a polaron when an impurity is injected into a weakly interacting Bose gas (a). (b)–(d) Evolution of the
Bose gas density n(x, t) for different total momenta (p/Mc̃= 0.3,1.0,1.6), whereM is the impurity mass, n the average boson
density, c̃ the speed of sound and ξ̃ the healing length (see text). The impurity emits density waves before converging into on of
two stationary states, marked in red and blue. For large momenta (d) also solitons are created which can lead to a change in the
direction of motion of the impurity. The evolution is shown for an impurity-Bose mass ratioM= 10m, Tonks parameter γ= 0.1
and impurity-Bose coupling constant gIB = gnξ̃.

non-equilibrium dynamics [4, 20–23]. What happens when an impurity is injected into a weakly interacting
Bose condensate? What is the dynamics of the formation of a polaron and under what conditions and on
what time scales can a stable quasiparticle form at all? We will address these questions in the present paper
considering a point impurity interacting with a weakly interacting, one-dimensional Bose condensate in the
full range of impurity-boson coupling strength, see figure 1. The limit of weak impurity-boson interaction
can be well described by the generation and subsequent binding or emission of Bogoliubov phonons from
the impurity [24] in terms of a Hamiltonian similar to that of the Froehlich model used in solid state systems
[25]. Most existing studies of the non-equilibrium dynamics of Bose polarons is based on this model [8,
26–31]. It is however no longer well suited in the limit of strong impurity-boson coupling and thus we here
follow a different approach. Starting from a full quantum description of the interaction of a mobile impurity
with the condensate we employ a mean-field approach that takes the backaction of the impurity onto the
condensate into account as in [32–34], but keeps the entanglement between impurity and BEC by working in
a co-moving frame. This approach was shown to be very accurate for the prediction of ground state
properties of Bose-polarons [35] and bi-polarons [36] even for very strong impurity-boson couplings as long
as the Bose–Bose interaction is weak. Quantum effects are then taken into account by considering
Bogoliubov excitations on top of the deformed condensate, which are here treated within a Truncated
Wigner approximation [37–39]. The advantage of this approach as compared to the Froelich model and its
extensions [12, 14, 28] is the substantially reduced number of deformed Bogoliubov phonons created by the
impurity in such a description. As we will show the effect of these modified phonons can be neglected even
in the non-equilibrium dynamics in many situations allowing for a comprehensive study of the polaron
dynamics in terms of non-linear c-number differential equations.

2. Energy-momentum relation in a homogeneous 1D Bose gas

Before considering the time evolution of an impurity injected into a 1D Bose gas of neutral atoms, let us
discuss the stationary properties of a polaron at finite momentum relative to the Bose gas. A widely used
approach to describe Bose-polarons for weak boson-boson and impurity-boson couplings is to consider the
interaction of the impurity with Bogoliubov excitations of the unperturbed condensate. The resulting model
is reminiscent of the Froehlich model in condensed matter physics. Due to the large compressibility of the
Bose condensate, this model is however no longer adequate if the impurity-boson coupling becomes large. In
the latter case a growing number of phonons is generated at the location of the impurity and boson-boson
interactions become relevant. For this reason we here start from the full quantum model and apply a
different approximation scheme.
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2.1. Model andmodified mean-field approach
A single mobile impurity coupled to a Bose gas in a homogeneous one-dimensional system is described by
the Hamiltonian

Ĥ=
p̂2

2M
+

ˆ
dx ϕ̂†(x)

[
− ∂2

x

2m
+

1

2
gϕ̂†(x)ϕ̂(x)+ gIBδ(x− r̂)

]
ϕ̂(x), (1)

for h̄= 1. Herem (M) is the boson (impurity) mass, gIB (g) the impurity-Bose (Bose–Bose) interaction
constant, ϕ̂(x) the bosonic field operator and r̂ (p̂) the impurity position (momentum) operator. In the
following we consider the case of repulsive coupling between all particles, i.e. g,gIB > 0.

Since the system is homogeneous, its total momentum p̂+ P̂B is conserved, where
P̂B =−i

´
dxϕ̂†(x)∂xϕ̂(x) is the momentum of the Bose gas. The infinite homogeneous system is treated here

as the limit of a finite system of length L with periodic boundary conditions with L→∞. In order to exploit
the translational invariance we apply the Lee–Low–Pines (LLP) transformation [40] ÛLLP = exp(−i r̂P̂B),
leading to the transformed Hamiltonian

ĤLLP = Û†
LLP Ĥ ÛLLP

=
1

2M

(
p− P̂B

)2
+

ˆ
dx ϕ̂†(x)

[
− ∂2

x

2m
+

1

2
gϕ̂†(x)ϕ̂(x)+ gIBδ(x)

]
ϕ̂(x).

(2)

Due to translation invariance, ĤLLP no longer depends on r̂, and p̂= Û†
LLP(p̂+ P̂B)ÛLLP is the conserved

total momentum in this frame and can be replaced by a c-number p. We note that due to the LLP
transformation, ϕ̂(†)(x) describes the creation/annihilation of a boson in a frame co-moving with the
impurity, such that n(x) = ⟨ϕ̂†(x)ϕ̂(x)⟩ is the Bose gas density relative to the position of the impurity, or
rather the relative impurity-boson density-density correlation function, to which we refer from now on for
simplicity as the Bose gas density.

Since ĤLLP is an interacting many-body Hamiltonian, a complete solution of the dynamics is difficult
without further approximations. In [35, 36] we have shown that for a weak boson-boson interaction,
indicated by a small Tonks parameter γ = gm/n, the ground state properties of a single or a pair of Bose
polarons at rest is very well captured by a mean-field approximation that takes the backacktion of the
impurity to the condensate into account and goes beyond the standard Froehlich model, which fails if
gIB ≫ gnξ̃. Here ξ̃ = 1/

√
2gnm̃ is the rescaled healing length with the reduced mass m̃= (1/m+ 1/M)−1.

This motivates us to use this mean-field approximation also for the case of a moving impurity. We will test its
validity by taking into account quantum fluctuations within a Truncated Wigner approach in section 4. The
mean-field approximation amounts to replacing the field operator ϕ̂(x) by a complex order parameter ϕ(x),
whose time evolution is determined by the non-linear Schrödinger equation [32]

i∂t ϕ(x, t) =

[
− ∂2

x

2m̃
+ i v(t)∂x + g|ϕ(x, t)|2 + gIBδ(x)

]
ϕ(x, t). (3)

Here v(t) =
(
p− PB(t)

)
/M is the impurity velocity.

Since we are interested in the formation dynamics of polarons either after a sudden quench or an
adiabatic turn-on of the impurity-Bose coupling constant gIB, the Bose gas is assumed to be initially in its
ground state ϕ(x, t= 0) =

√
n at t= 0, where n is the average density of bosons. As the Bose gas carries no

initial momentum, the conserved total momentum is equal to the initial impurity momentum
p=Mv(t= 0). We simulate the time evolution with periodic boundary conditions numerically using a
Fourier split-step method [41]. If not stated otherwise we choose the system size L large enough such that
signals are not able to reach the boundary for all times t considered, i.e. L≫ c̃t, where c̃=

√
gn/m̃ is the

rescaled speed of sound.

2.2. Stationary state and energy-momentum relation
We proceed by discussing the stationary properties of a polaron moving with non-zero total momentum p by
characterizing the steady-state solutions of equation (3) [23]. Since the solution has a simpler form if the
impurity velocity v is used as a parameter, rather than the conserved momentum p, it is useful to derive the
stationary state as a function of v as in [32], and then calculate the corresponding momentum by
p=Mv+ PB[ϕ]. This is possible since v(t) = v is constant in the stationary state. The analytical expression of
the state for a fixed v was derived in [16, 32, 35, 42], see appendix A. for technical details and analytical
expressions.

As shown in [32], below a critical impurity velocity vc the system has two stationary states for every given
value of v, see figure 2(b) for the corresponding density profiles. Above the critical value no stationary
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Figure 2. (a) The black line shows the critical impurity velocity vc. Only in the blue-shaded area, the system has two stationary
states for each velocity v and none otherwise. (b) Density profile of the stationary states for different parameters, marked by
crosses in (a). At the critical velocity (ii) the two states are equal.

Figure 3. (a) Energy momentum relation of the Bose polaron for different coupling constants gIB/gnξ̃ = 0,0.1, 0.25, 0.5, 1,
2, 3, 5, 10, the direction of the arrow points from weak to strong coupling. The mass ratio isM= 3m and Tonks parameter
γ= 0.1. The phase/density of the Bose gas is shown in (b) and (c) for gIB = gnξ̃ and different total momenta p, below p/n= π

indicated by the blue crosses in (a). Other parameters are as in (a) except a finite system size L= 30ξ̃. For νπ ⩽ p/n ⩽ (ν+ 1)π
and integer ν the condensate picks up a constant phase gradient of νπ over its total length.

solution exists. Exactly at the critical velocity, the two states are equal two each other. vc depends on the
coupling constant and can be found from the solution of [16, 32]

gIB

gnξ̃

!
=

1

2ac

√
1− 20a2c − 8a4c +(1+ 8a2c )

3/2, where ac = vc/c̃ . (4)

It is plotted in figure 2(a). For small interaction gIB ≪ gnξ̃, it agrees with the prediction of the Froehlich
model vc = c̃ [24, 43]. However in the limit of strong interactions gIB ≫ gnξ̃ the condensate is strongly
depleted at the impurity position, resulting in a vanishing critical velocity vc → 0.

The polaron energy is given by the difference in energy of the full system with and without the impurity
Epol = E(gIB,p)− E(gIB = 0,p= 0), where E(gIB,p) is the expectation value of the LLP Hamiltonian
equation (2) in a coherent state with amplitude ϕ(x, t). Epol is shown as a function of the polaron momentum
in figure 3(a), where the two stationary states are distinguished by solid and dashed lines. It becomes clear
that the polaron state is unique for every momentum p and the two different states only refer to different
parts of the energy-momentum relation. For the lower momentum state the energy-momentum relation was
derived in [15].

From the existence of a critical velocity one might conclude that a Bose polaron exists only up to
maximum polaron momentum pmax depending on gIB, and the energy momentum relation Epol(p) would
terminates at some value of momentum. This is not the case. Instead when increasing p further the solution
smoothly crosses over into the second steady state with smaller kinetic velocity and larger condensate
depletion. As can be seen from figure 3(c) the condensate depletion grows with increasing momentum. As a
consequence the kinetic mass of the polaron, defined as the ratio of polaron momentum and velocity
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Figure 4. (a) Kinetic polaron massM∗ = p/v and (b) velocity v as a function of the momentum p/n and for increasing coupling
constants gIB as in figure 3(a). The direction of the arrow indicates increasing gIB in (a) and (b) for the different lines.

M∗ = p/v, increases with p as shown in figure 4(a). When crossing from the momentum regime of the first
solution of equation (3) to the second solution, the increase of the mass with momentum becomes larger
than linear. This leads to a non-monotonous relation between polaron velocity v and momentum p, plotted
in figure 4(b). Note that the polaron velocity always stays below the weak-coupling critical value vc.

When the momentum reaches the value pmax = nπ , the state of the condensate is exactly equal to a dark
soliton, such that the energy is E(pmax) =

4
3nc̃ and the impurity velocity goes to zero v(pmax) = 0. In this case

the condensate phase winds by π over its entire length, which for periodic boundary conditions corresponds
to half a flux quantum piercing through the ring. Since the density is fully depleted the kinetic polaron mass
M∗(pmax) diverges at this point.

We note that the relation between momentum, energy, and velocity of the polaron has already been
found for momenta |p|< nπ [23]. A peculiar behavior of E(p) is however seen when the total momentum is
increased further. The energy starts to decrease with increasing momentum, corresponding to a negative
group velocity ∂E/∂p and consequently a negative impurity velocity. In fact, as can be seen from figure 3(a),
E(p) is a periodic function of p/n with period 2π. This is because the properties of the polaron are
determined by collective excitations of the Bose gas, whose energy-momentum relation in 1D is periodic
with period 2πn due to Luttingers theorem. Here it can be interpreted as follows: If the total momentum is
in the range (ν− 1)π ⩽ p/n⩽ νπ, with ν being an integer, the condensate picks up an integer winding of its
phase over its whole length (period) in the stationary state. If ν is even, the momentum picked up by the
background condensate exceeds the total momentum and the excess must be compensated by a relative
motion of the impurity against the condensate, corresponding to negative values of v.

We will see in the following that the periodic behavior of the energy-momentum relation can give rise to
negative asymptotic impurity velocities after injecting it into the condensate with large positive initial
velocity. We note that the reversal of the impurity velocity has already been seen in experiments with a
strongly interacting Bose gas (γ ≫ 1), where Bloch oscillations of an impurity subject to a constant force
have been observed [20].

3. Mean-field description of polaron formation

We now discuss the dynamics when an impurity is injected into a homogeneous condensate with finite initial
momentum. First we consider a quasi-adiabatic turn-on of the impurity-boson coupling and subsequently
discuss a sudden quench.

3.1. Quasi-adiabatic evolution
Let us first investigate the dynamical properties of the system when the impurity-boson coupling constant
gIB(t) is turned on slowly compared to the other time scales of the system. We will show that even though the
energy spectrum of the full system is gapless in the thermodynamic limit, a local adiabatic following of the
polaron ground state is possible if the initial velocity of the impurity is subsonic.

In order to achieve a smooth turn-on protocol, we choose a time dependence of the coupling
according to:

gIB(t) = gIB tanh(t/T). (5)

gIB is the final coupling constant and T the turn-on timescale, which we chose large compared to the inverse
chemical potential 1/gn. Since the critical velocity vc, below which stationary states exist, depends on gIB it is
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Figure 5. (a) Final impurity velocity v(tf) after the turn-on with timescale T of the impurity-Bose coupling constant. The initial

velocity is v(0) = p/M= 0.1̃c and we choose a mass ratio ofM= 3m, Tonks parameter γ= 0.1 and gIB = gnξ̃. The numerical
result (blue line) agrees very well with the exponential fit (black circle) of α1e−α2/T +α3, where αi are fitting parameters. The
simulation is performed up to tf = 600/gn. (b) Time evolution of the impurity velocity for Tgn= 10,50,150, indicated by the
black arrow. Lines are simulated results and circles are analytically calculated from the instantaneous stationary state. (c) Final
impurity velocity vad in the adiabatic limit T≫ 1/gn for different total momenta p=Mv(0). Simulated result (blue solid) differ
only slightly from the analytical prediction (black dashed). The deviations are caused by the system not being gaped, see
appendix B.

also time-dependent and the time evolution differs qualitatively whether the impurity momentum is below
or above vc at any time. The time evolution of the condensate for the two cases is shown exemplarly in
figure 6, where the blue and red lines indicate the two stationary states corresponding to the final velocity of
the impurity.

First, we focus on the case of a slow impurity v(t)< vc(t) for all t, such that equation (3) has a stationary
solution for all v(t). The evolution of the impurity velocity is exemplary shown for different T in figure 5(b).
Even though the impurity is always subsonic it is decelerated to a finite value v(tf)< v(0), which increases
monotonously with T, see figure 5(a). Notably also in the limit T→∞ the impurity is still slowed down and
v(tf) does not converge to v(0). This is caused by the formation of the polaron. In the instantaneous ground
state, the total conserved momentum p is the polaron momentum and is related to the impurity velocity by
the effective massm∗ off the polaron

v(t) =
p

m∗(t)
. (6)

Since the effective mass increases monotonously with the coupling constant gIB [35], the impurity must
decelerate when the impurity-Bose coupling constant is turned on. For finite turn-on times T, density waves
are created during the formation of the polaron leading to an additional friction force.

To quantify the quasi-adiabatic slow-down we fit an exponential α1e−α2/T +α3 to the simulated
impurity velocity (see figure 5(a)). From the fit the final impurity velocity in the adiabatic limit is determined
by vad = α1 +α3. It is shown as a function of the conserved total momentum p=Mv(0) in figure 5(c), where
it becomes apparent that the deceleration occurs for all p. Due to the gaplessness of the system to collective
excitations the simulated final velocity is always slightly below the quasi-adiabatic value, following from
equation (6) withm∗ replaced by the effective mass of the stationary solution, see figure 4. This is because the
adiabatic theorem [44] strictly does not hold. Assuming strict adiabatic following we can derive the relation
between v(t) and p as a function of the instantaneous coupling constant gIB(t) in the polaron ground state
(see appendix A.). Figure 5(a) shows that the simulated time evolution follows the instantaneous ground
state reasonably well for large T except for the small difference shown in figure 5(c), see appendix B.

We now consider an impurity that is initially faster than the critical momentum v(0)> c̃. In that case,
equation (3) does not have a stationary solution in the initial phase, which leads to the creation of density
waves figure 6(b) and a friction force acting on the impurity. Figure 7(a) shows that the impurity is quickly
decelerated until its velocity is below the critical vc(gIB). Afterward, the system again follows the
instantaneous ground state quasi-adiabatically, resulting in a slower deceleration.

An important difference between these two processes is, that the second slow deceleration, related to the
adiabatic formation of the polaron, is reversible, while the other one is not. This can be seen in figure 7(b),
where the impurity-Bose coupling constant is turned on and off again by gIB(t) = gIB sin

2( 12π t/T). Here
impurities that are initially below the critical momentum are almost brought to a standstill when the
coupling constant is at a maximum but accelerate again to the initial velocity when gIB is turned off again. In

6



New J. Phys. 25 (2023) 083043 MWill and M Fleischhauer

Figure 6. Evolution of the Bose gas density close to the impurity for an (a) initially slow v(0) = 0.1 c̃ and (b) fast v(0) = 1.1 c̃
impurity. The impurity Bose coupling constant of strength gIB = gnξ̃ is turned with the timescale T= 10/gn. The mass ratio is
constant atM= 3m and the Tonks parameter is γ= 0.1. The blue and red lines are the two analytically derived stationary states
evaluated at the final impurity velocity v(t). The system converges locally in either one of the two states, dissipating the energy as
density waves.

Figure 7. (a) Time evolution of the impurity velocity (solid line) for a supersonic impurity v(0) = 1.1̃c and different turn-on
times T. The initial fast deceleration slows down as soon the impurity is below the critical velocity vc(gIB(t)) (dashed lines). The
mass ratio isM= 3m, the Tonks parameter γ= 0.1, and the final impurity coupling is gIB = gnξ̃. (b) Evolution of the impurity
velocity for different initial velocities. The coupling constant is switched on and off again by gIB(t) = gIB sin2(

1
2
π t/T), with

gIB = 10gnξ̃, T= 800 and otherwise parameters as in (a). The black dashed line is the instantaneous critical velocity and the
dotted lines mark the initial velocity. The deceleration of subsonic impurities is reversible, but not for supersonic ones.

contrast, impurities starting above criticality are not reaching their initial momentum again after the sweep.
The small deviation in the final velocity for sub-critical trajectories is again caused by the system not being
gaped in the thermodynamic limit.

3.2. Quench
Here we examine the evolution of the system when the coupling constant is abruptly quenched at t= 0.

The time evolution of the impurity velocity after a sudden turn-on of the interaction with the condensate
is shown in figures 8(a) and (b) for different initial velocities and different ratios of bare impurity massM to
boson massm. The quench leads to radiation of density waves until the system reaches a steady state. For all
initial conditions and parameters, a friction force [23] is exerted on the impurity and slows it down until the
final velocity is reached smaller than the critical vc. This agrees again with the analytic prediction, that the
system has a stationary state only below vc. However, for a large initial momentum, the impurity velocity is
non-monotonic, which cannot be explained by a frictional force alone.

If the impurity is heavy a rather unexpected behavior is found for sufficiently large initial momentum,
see figure 8(b). First, as expected the deceleration is slower in the case of heavier impurities. However for a
sufficiently large mass, the impurity is not only slowed down, but the velocity can change its direction before
converging to a constant velocity. In this case, the background condensate attains an additional momentum

7
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Figure 8. Polaron quench dynamic for (a) different initial impurity velocities and (b) different mass ratios. We choose a coupling
constant of gIB = gnξ̃ and γ= 0.1. The horizontal dashed grey lines are±vc. The impurity velocity always converges to a value
|v(t)|< vc.

Figure 9. (a) Final velocity vf after a quench of the impurity-Bose coupling constant to gIB = gnξ̃ for different total momenta
p=Mv(0). For the mass ratio we chooseM= 10m and the Tonks parameter γ= .1. The final velocity is always in an interval
[−vc,vc], marked by grey vertical lines. The color code indicates the generalized contrast equation (7). The evolution of the Bose
gas densities at the marked positions is shown in figures 1(b)–(d). The colored dashed line shows the velocity-momentum
relation of the stationary state. It agrees well with the simulated result for sub-critical initial velocities v(0)< vc. For higher total
momenta emission of density waves or solitons leads to initial friction forces, causing the deviation.

by building up a finite phase gradient away from the impurity locally approaching a stationary polaron
solution with negative impurity velocity as discussed in the previous section.

This effect is examined in more detail in figure 9(a). It shows the final impurity velocity as a function of
the conserved momentum p=Mv(0) of a heavy impurityM= 10 m. Again the final velocity is for all initial
conditions in the interval [−vc,vc]. However, as mentioned in section 2.2 the system has two stationary states
for each velocity and we examine which of these states are populated. For this we first focus on
figures 1(b)–(d), showing the evolution of the Bose gas density for different total momenta. The red and blue
lines are the analytically calculated stationary states, where we used the final impurity velocity from the
simulation as a parameter, rather than the total momentum. Depending on the initial conditions the system
converges in either of these two states. In order to quantify the overlap of the final polaron state with either of
the two stationary states we determine the generalized contrast

C[ϕ(t)] =
|⟨ϕ(t)|ϕ1⟩|− |⟨ϕ(t)|ϕ2⟩|

|⟨ϕ(t)|ϕ1⟩|+ |⟨ϕ(t)|ϕ2⟩|− 2|⟨ϕ1|ϕ2⟩|

⟨ϕa|ϕb⟩=
ˆ l/2

−l/2
dx ϕa(x)

∗ϕb(x). (7)

Here |ϕ(t)⟩ is the simulated state of the system and |ϕi⟩ the steady states, evaluated at the simulated final
velocity. The contrast is 1 if the system converges into the first state and−1 for the second. This definition
differs from the standard expression of contrast by the term ⟨ϕ1|ϕ2⟩ in the denominator, which we need since
the stationary states are not orthogonal. We evaluate the scalar products over an interval l which we choose
such that the time evolution is properly converged within it. The contrast is depicted in figure 9(a) by the
color code and it becomes apparent that the polaron changes its state when its velocity intersects with the
critical value vc. This is explained by the states being equal at the critical velocity.
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The explanation for the non-monotionic impurity velocity and the change in the movement direction at
larger total momenta can be seen in figure 1(d). At large momenta, the impurity carries enough energy that a
grey soliton is created besides density waves which carry additional momentum. This is visible as the local
depletion moving away from the impurity at a slower speed as the initially created density waves in
figure 1(d). Note, however, that this interpretation is based on numerical evidence only where a non-trivial
behaviour of the impurity velocity always coincided with soliton emission.

4. Truncated-Wigner approximation of a harmonically trapped polaron

The above mean-field analysis has neglected quantum fluctuations. Although it has been shown in [35, 36]
that the ground state properties of Bose polarons and bi-polarons are well described by the modified
mean-field approach even in the limit of strong boson-impurity coupling gIB ≫ gnξ̃, provided the Bose–Bose
interaction is weak, i.e. if γ ≪ 1, it is not clear if this still holds in the non-equilibrium case. For this reason
we now consider the effect of small quantum fluctuations using a truncated Wigner approach [37–39]. This
approach fully captures the influence of (deformed) Bogoliubov phonons on top of the condensate in
quadratic (Bogoliubov) approximation. However, as stated by the Mermin–Wagner–Hohenberg theorem
[45, 46] there is no true Bose condensation in homogeneous 1D gases, which manifests itself by infrared
divergencies when considering lowest-order quantum fluctuations. The latter also holds for finite systems
with periodic boundary conditions. Thus in order to describe quantum fluctuations we can no longer
approximate the one-dimensional gas as being homogeneous and have to take into account the presence of a
harmonic trapping potential. (The different regimes of quantum degeneracy in trapped 1D Bose gases are
discussed e.g. in [47].) This complicates the theoretical description as the LLP transformation, conveniently
used in homogeneous systems, no longer leads to a decoupling of the total momentum of the polaron. We
will show however that the total momentum obeys a simple equation of motion if also the impurity is
trapped.

4.1. LLP Hamiltonian of a trapped 1D Bose gas
We start by adding a harmonic potential with frequency ω for bosons and Ω for the impurity to the
Hamiltonian equation (1) to avoid infrared divergencies in the Bogoliubov theory of boson-boson
interactions. Since these potentials break the translation invariance of the system the total momentum of the
system is no longer conserved. Therefore, the transformation into a relative and a center of mass coordinate
by the LLP transformation does not eliminate the impurity operators. Nevertheless, it is useful to apply the
transformation, since p̂ and r̂ only appear up to quadratic order in the LLP Hamiltonian

ĤLLP =
1

2M

(
p̂− P̂B

)2
+

1

2
MΩ2r̂2 +

ˆ
dx ϕ̂†(x)

[
− ∂2

x

2m
+

1

2
mω2(x+ r̂)2 +

1

2
g ϕ̂†(x)ϕ̂(x)+ gIBδ(x)

]
ϕ̂(x).

(8)

To simulate the time evolution of the system we derive the Heisenberg equation of motion ∂t •= i [ĤLLP , • ]
for p̂(t), r̂(t) and ϕ̂(x, t). The advantage of the LLP transformation even in the case of harmonic trapping
becomes clear here since the equations for p̂(t) and r̂(t) are formally solvable and we get

p̂(t) = p̂(0)cosΩt+
1

Ω
˙̂p(0) sinΩt+

Ω2 −ω2

Ω

ˆ t

0
dt ′ sin

(
Ω(t− t ′)

)
P̂B(t

′), (9)

r̂(t) =−
˙̂p(t)+Nmω2 X̂B(t)

MΩ2 +Nmω2
. (10)

Here N is the particle number of bosons and X̂B(t) =
´
dxx ϕ̂†(x, t) ϕ̂(x, t)/N their center of mass position.

In the case of equal trapping frequencies ω =Ω, the last term in the solution of the total momentum p̂(t),
equation (9), vanishes, and its time evolution corresponds to that of an uncoupled harmonic oscillator

p̂(t) = p̂(0)cosΩt+
1

Ω
˙̂p(0) sinΩt, for Ω= ω. (11)

The remaining equation for the bosonic field ϕ̂(x, t) then reads:

i∂tϕ̂(x, t) =

{
− ∂2

x

2m
+

i

M

[
p̂(t)− P̂B(t)

]
∂x + g ϕ̂†(x, t)ϕ̂(x, t)+ gIBδ(x)+

1

2
mω2

[
x+ r̂(t)

]2}
ϕ̂(x, t). (12)

9
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4.2. TruncatedWigner simulation of the boson field
We now solve the system of equations (9), (10) and (12) in a limit where quantum fluctuation of the
impurity position and momentum are negligible, but include fluctuation of the Bose field using a truncated
Wigner phase space approach (TWA). For reviews on the TWA methods see [38, 39]. To be able to apply a
TWA we have to first treat the quantum evolution of r̂(t) and p̂(t). For this we apply another approximation
and replace the total momentum and position operator of the Bose field in the dynamical equations of the
impurity by expectation values

P̂B → ⟨P̂B⟩ := PB, and X̂B → ⟨X̂B⟩ := XB. (13)

This approximation is reasonable since the number of bosons is large N≫ 1 such that fluctuations of their
center of mass coordinate are small. From equations (9) and (10) then follows, that the fluctuation of p̂ and r̂
do not grow in time. It is possible to prepare the impurity in a state where fluctuation are small as long as its
harmonic oscillator length scale lI = 1/

√
ΩM is small when compared to all other length scales of the system,

especially the healing length of the condensate ξ = 1/
√
2gnm, where n is the peak density of the ground state

of the trapped Bose gas without an impurity. The semiclassical treatment of impurity position and total
momentum is therefore justified only in the regime where gnm

ΩM ≪ 1. Under this condition the operators

r̂→ ⟨r⟩ := r, and p̂→ ⟨p⟩ := p (14)

are replaceable by expectation values.
In order to calculate the time evolution of the Bose field in a Wigner phase space description, an

expression for the initial ground state of the Bose gas including quantum fluctuation is needed. Since we
consider a weakly interacting Bose gas, it suffices to do this by replacing the field operators ϕ̂(x, t= 0) by the
mean-field ground state ϕ0(x) of a trapped Bose gas and add quantum fluctuation within Bogoliubov–de
Gennes (BdG) approximation

ϕ̂(x, t) = ϕ0(x+ r)+
∑
n

[
un(x+ r)b̂n(t)+ vn(x+ r)∗b̂†n(t)

]
. (15)

Here un(x) and vn(x) are the BdG coefficients of the trapped Bose gas and b̂(†)n the phonon operators of the
respective modes, see appendix C. for more details. The position r appears in this expression since the Bose
gas ground state is transformed into the LLP frame, corresponding to the shift by r. In the Wigner

phase-space description, the phonon operators are replaced by stochastic c-numbers b̂(†)n (t)→ β
(∗)
n (t) where

all stochasticity is in the initial state. Since this state is the phonon vacuum they are set to Gaussian random
variables with mean and variance given by ⟨βn(0)⟩= 0 and ⟨βn(0)β∗

m(0)⟩= 1
2δn,m, corresponding to a virtual

occupation of half a phonon per mode on average. By symmetric ordering of the Heisenberg equation (12)
and replacing the operators by c-numbers ϕ̂ → ϕ we get the c-number equation of motion

i∂tϕ(x, t) =

{
− ∂2

x

2m
+

i

M

[
p(t)− PB(t)

]
∂x + g |ϕ(x, t)|2 − 2gnw

(
x+ r(t)

)
+ gIBδ(x)

+
1

2
mω2

[
x+ r(t)

]2}
ϕ(x, t). (16)

Here nw(x) is the virtually occupied particle density due to the Wigner description and is given by

nw(x) =
1

2

nmax∑
n

|un(x)|2 − |vn(x)|2. (17)

Note that we have truncated the number of modes taken into account, which is necessary in TWA, since if all
BdG modes are included nw(x) would diverge nw(x) = 1

2δ(0). The truncation of higher modes is commonly
used in TWA simulations of trapped gases [37, 38] and is physically justified as quantum fluctuations of high
frequency modes can be neglected. We simulate equation (16) multiple times for different initial conditions
and average about the different realization. In order to obtain expectation values all operators need to be
symmetrically ordered first, e.g. the Bose gas density is given by

n(x, t) =
〈∣∣ϕ(x− r(t) , t)

∣∣2 − nw(x)
〉
, (18)

where r(t) appears, such that the expression describes the density in the laboratory and not LLP frame.

10
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Figure 10. TWA simulation of a trapped system for different impurity-Bose coupling constants. Here trapping frequencies for
bosons and impurity are equalΩ= ω = 0.3gn, the Tonks parameter is γ= 0.1, the mass ratio isM/m= 10 and the initial
impurity momentum is p= 0.75Mc. The upper panels show the time evolution up to t= 25/gn= 7.5/ω, where the dashed line
marks the position of the impurity. The lower panels show the final density (blue) and compare it to the stationary state of the
homogeneous system (dashed) modulated by the initial mean-field density of the trapped gas. The TWA simulation is averaged
over 5000 noise realizations.

Figure 11. (a) Impurity velocity and (b) impurity position in a trapped system with equal trapping frequenciesΩ= ω. Solid lines
show the TWA simulation, dashed lines the classical mean-field approximation. The TWA simulation is averaged over 5000 noise
realizations.

The time evolution of the trapped system is illustrated in figure 10. A problem of this approach is that the
system is finite, so that density waves created by the impurity oscillate in the trap and return back to the
impurity. The system does therefore only reach locally a stationary state in very shallow traps with very small
trapping frequency ω ≪ gn. This however conflicts with the condition of a classical impurity gnm

ΩM ≪ 1 for
reasonably heavy impurities and equal trapping potential. However, although the system is not in a
stationary state the stationary solution described in section 2.2 agrees reasonably well with the observed
density distribution, see figure 10 when applying a local density approximation.

Next, in order to test the validity of the mean-field approach used in sections 2 and 3, we compare the
time evolution of the trapped system obtained from TWA calculations to a mean-field simulation. For the
latter, we set the initial virtual particle occupation to zero βn = 0. The impurity velocity
v(t) = (p(t)− PB(t))/M and position r(t) obtained in that way are shown in figure 11. For a small coupling
constant gIB ≪ gnξ the evolution remains sinusoidal, however, at large coupling it deviates strongly from an
harmonic motion. The agreement between TWA and mean-field is reasonably well, given that we consider a
quite strongly interacting gas with γ= 0.1. The impurity position figure 11(b) gets in some cases an overall
shift between TWA and mean-field, the motion is however qualitatively similar. Especially the deviation in
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the impurity velocity is small, see figure 11(a). From this, we conclude that the mean-field simulation is
sufficient to predict the time evolution at least qualitatively.

5. Summary

In the present paper we have discussed the dynamics of the formation of a Bose polaron when an impurity is
injected into a 1D weakly-interacting Bose gas by performing time-dependent simulations of mean-field
equations of the condensate amplitude complemented by truncated Wigner simulations to include quantum
fluctuations. In a homogeneous gas with periodic boundary conditions the total momentum p of the system
is conserved and can be used as independent parameter to characterize different dynamical regimes.
Analyzing steady state solutions of the mean-field equations first, we showed that stationary solutions exist
only for impurity velocities below a critical value, which in the limit of weak impurity-boson couplings gIB
agrees with the Landau critical velocity, as predicted by the Froehlich model, but monotonously decreases
with increasing interaction and eventually approaches zero. This is because with growing values of gIB the
condensate is more and more depleted in the vicinity of the impurity, which leads to a reduced local speed of
sound. While, as first shown in [32] for a given velocity of the impurity below the critical value, there are
always two stationary solutions of the condensate equations, the solution is unique when fixing the total
momentum. For momentum values with a convex energy-momentum relation, ∂2E/∂p2 > 0, one of the two
solutions applies and in regions with ∂2E/∂p2 < 0 the other solution holds. We showed moreover that the
stationary energy-momentum relation is periodic in p as the background condensate away from the impurity
can pick up additional quantized amounts of momentum corresponding to integer windings of the
condensate phase over its length. As a consequence the relation between impurity velocity v and polaron
momentum p is also periodic and includes regions of momentum where the impurity velocity is negative. In
these regions the Bose gas stabilizes only a steady state with momentum exceeding the total momentum
which must then be compensated by an opposite motion of the impurity. While a direct measurement of the
energy-momentum relation of the polaron is challenging, its non-monotonous form can have interesting
experimental consequences. E.g. injecting impurities with finite velocity into a small ring condensate can
induce a finite circular current corresponding to a finite number of enclosed flux quanta.

To study the formation of the polaron we considered two cases, a slow, quasi-adiabatic turning on of the
Bose-impurity coupling and a sudden quench. If in the quasi-adiabatic situation the initial velocity is chosen
small enough such that it stays below the critical value at all times, the impurity is decelerated only due to the
increase in its effective mass, associated with the formation of the polaron. As the system evolves
quasi-adiabatic this reduction in velocity is reversible. We find that the polaron quasiparticle is formed on
the timescale of the inverse chemical potential 1/gn (see figure 8), which for parameters of a recent
experiment in 1D gases [4] is on the order of 60 µs. If in the quasi-adiabatic scheme the initial velocity is
above the critical value the impurity emits density waves irrespective how slowly the interaction is turned on
leading to irreversible friction. Switching on the impurity-boson interaction suddenly a rich scenario of
dynamical regimes is observed. Depending on the mass ratio of particles, the total momentum and the
impurity-boson coupling strength the impurity is slowed down by emission of density waves or grey solitons.
The latter happens for large momenta and large impurity masses and is specific for the regime of strong
impurity-boson coupling. In this case asymptotic states can form where the impurity velocity changes its
sign, i.e. backscattering occurs, which cannot occur in the weak coupling regime dominated by Cherenkov
radiation of phonons. While an in-situ measurement of the impurity motion is difficult in an experiment,
the emission of grey solitons can be directly observed by density measurements of the condensate. We here
considered impurities in one-dimensional condensates. The modified mean-field approach including the
backaction of the impurity to the condensate can however be applied also to higher dimensions. Theories
predicting the polaron dynamics based on the Froehlich model, using e.g. a coherent variational ansatzes
[28–30] or master equation [24, 31] are capable of capturing the evolution as long as the condensate
deformation is not substantial. From a straightforward dimensional analysis of the mean-field equation in D
dimension we estimate that the condensate deformation becomes significant for gIB/g≳ nξ̃D. Some of the
predicted effects are expected to carry over from one to higher dimensions to these cases. E.g. the reversible
slowdown of a sub-sonic impurity due to the formation of a polaron and the friction forces experienced by a
super-sonic impurity due to emission of density waves will be very similar. The emission of grey solitons and
the dragging of the impurity towards the grey solitons, on the other hand, is an effect specific to
one-dimensional gases. In two dimensions a heavy, supersonic impurity might instead emit vortex
anti-vortex pairs.

To justify the validity of the mean-field approximation we performed truncated Wigner simulations of
the full quantum problem in a trapped gas. The TWA accounts for quantum fluctuations due to Bogoliubov
phonons on the deformed condensate background up to quadratic order. To avoid infrared divergencies
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related to the one-dimensional setup, enforced by the Mermin–Wagner–Hohenberg theorem, we considered
a harmonically trapped gas. Although the total momentum is no longer conserved it follows a simple
equation of motion, which we solve in semiclassical approximation. The TWA simulations show that the
mean-field description of the dynamics of polaron formation is well justified as long as the Tonks parameter
of the Bose gas is small, i.e. for a weakly interacting gas. The case of strong boson-boson interactions requires
different analytical and numerical tools and will be discussed elsewhere.
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Appendix A. Stationary mean-field solution

In the following, we briefly summarize the stationary solution of the Gross–Pitaevskii equation (GPE)
equation (3), which are derived in more detail in [32, 35]. Since the equation explicitly depends on the
impurity velocity v and not the conserved momentum p, it is convenient to use v as a parameter and then
calculate the total momentum of the stationary state by

p=Mv+ PB =Mv− i

ˆ
dxϕ∗(x, t)∂xϕ(x, t). (19)

This is possible since v(t) is a constant in the steady state. As shown in [32, 35] the stationary solution of
equation (3) is similar to a grey soliton, except at x= 0, and given by

ϕ(x, t) =
√
nei(φ1x+φ2sgn(x)−gn t)

[
a− ib sgn(x) tanh

(
b√
2ξ̃

|x|+ d

)]
, (20)

as long as the system size L is large compared to the rescaled healing length ξ̃ = 1/
√
2gnm̃. Here a= v/c̃,

b=
√
1− a2 and the parameters φ1 and φ2 are chosen such that the phase of the solution is continuous at

x= 0 and fulfills periodic boundary condition. The parameter d shifts the grey soliton wave function such
that the boundary condition generated by the delta distribution in equation (3)

∂xϕ(x, t)
∣∣∣0+
x=0−

= 2gIBm̃ ϕ(0, t) (21)

is fulfilled. From this, it can be deduced that tanhdmust be the solution of a cubic equation

b3 tanhd
(
1− tanh2 d

)
!
=

gIB√
2gnξ̃

(
1− b2 + b2 tanh2 d

)
. (22)

The three solutions of the equation are shown in figure 12(b). The one which is real for all parameters is
always less than or equal−1, such that d is not a real number corresponding to a nonphysical state. The other
two solutions are real and between 0 and 1, if the impurity velocity v is below the critical velocity vc = ac c̃, see
figure 12(a). Here ac can be determined by solving

gIB

gnξ̃

!
=

1

2ac

√
1− 20a2c − 8a4c +(1+ 8a2c )

3/2, (23)

which is equivalent to a cubic equation in a2c . For a small coupling constant gIB ≪ gnξ̃ the critical velocity is c̃
and agrees with the prediction of the Froehlich model [24, 43]. However for strong repulsion gIB ≫ gnξ̃ the
critical velocity converges to zero. Substituting the two physical solutions of equation (22) into equation (20)
yields the two stationary states mentioned in the main part of this work. The two solutions are equal at the
critical momentum, explaining why the stationary states merge at criticality.
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Figure 12. (a) Critical impurity velocity vc. (b) Solutions of the cubic equation (22). The orange solution (lowest curve) is
tanhd<−1 for all v and therefore nonphysical. The red and blue solutions exist only below the critical velocity vc (dashed green),
yielding the two relevant states.

Next, since p and not v is conserved under time evolution it is important to derive an expression relating
the parameters for the stationary solutions. It follows from equations (19) and (20) and is given by

p=Mv− 2nab
(
1− tanhd

)
+ 2n

[
arctan

(a
b

)
− arctan

(a
b
tanhd

)]
. (24)

In order to compare this analytic expression to the time-dependent simulation we solve it numerically for v.
The polaron energy is given by Epol = E(gIB,p)− E(gIB = 0,v= 0), where E(gIB,p) is the expectation

value of the LLP Hamiltonian equation (2)

Epol =
√
2gn2ξ̃

[
2b
(
1− tanh(d)

)
− 1

3
b3
(
2− 3tanh(d)+ tanh(d)3

)]
+

1

2
Mv2

[
1− 4

√
2
m̃

M
nξ̃

(
1− tanh(d)

)]
.

(25)

In the approach described so far equation (24) results only in momentum values with−πn⩽ p⩽ πn. In
order to reach higher momenta the stationary solution equation (20) must be modified by an additional
phase gradient

ϕ̃(x, t) = ei x
2π
L ν ϕ(x, t) with ν ∈ Z. (26)

Except for the additional phase gradient, the stationary solution, all parameters in equation (20), and the
energy equation (25) are not modified in the thermodynamic limit L≫ ξ̃. Only the total momentum

p̃= p+ 2πnν (27)

picks up an additional term, which explains why the observables in figures 3(a) and 4(b) are periodic in p,
with a period length of 2πn.

Appendix B. Gapless adiabaticity

In section 3.1 we showed that the system evolves quasi-adiabatic if the impurity-Bose coupling constant is
turned on slowly compared to the other timescales. However, there always remains a small but finite
difference to the instantaneous stationary state in figure 5(c). In this section we show, that this difference
originates from the system not being energetically gaped in the thermodynamic limit. To this end, the time
evolution of a large system L≫ c̃T is compared to a small one L≪ c̃T, with otherwise equal parameters. The
small system is gaped due to finite-size effects, such that the adiabatic theorem strictly holds. This is shown in
figures 13(a)–(c), where the impurity momentum as well as the density and phase of the Bose gas agree with
the instantaneous ground state. In contrast in the large system. Here in particular the phase disagrees at a
large distance from the impurity |x| ≫ ξ̃, see figure 13(d), explaining the small discrepancy of the impurity
momentum figure 13(a). In the large system the stationary state is not reached globally, but only locally at
the position of the impurity. This is however sufficient for the system to evolve quasi-adiabatic.
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Figure 13. Comparison of the quasi-adiabatic (large system) to true-adiabatic (small system) evolution for v(0) = p/M= 0.1̃c,
gIB = gnξ̃, γ= 0.1 andM= 3m. (a) Evolution of the impurity velocity for two turn-on timescales T. Dashed lines represent the
instantaneous stationary state. (b)–(d) State at the end of the evolution at t gn= 2 · 104 for Tgn= 3 · 103. For a small system
L= 100ξ̃, both phase (b) and density (c) agree with the instantaneous stationary state (dashed). For a large system L= 5 · 104ξ̃
the phase (d) disagrees at a large distance from the center.

Appendix C. Bogoliubov–de Gennes in a trap

In order to express the initial ground state of the trapped Bose gas, before the interaction with the impurity,
we diagonalize the Bose gas Hamiltonian

ĤB =

ˆ
dx ϕ̂†(x)

(
− ∂2

x

2m
+

1

2
mω2x2 +

1

2
gϕ̂†(x)ϕ̂(x)

)
ϕ̂(x), (28)

approximately using a BdG approach [48]. In the first step, the mean-field ground state is determined by the
GPE (

− ∂2
x

2m
+

1

2
mω2x2 + g|ϕ0(x)|2 −µ

)
ϕ0(x) = 0, (29)

which we solve numerically using imaginary time evolution. Here µ is the mean-field chemical potential. In
case of a weakly interacting Bose gas, it is sufficient to only include small fluctuation on top of the mean-field
solution, which is done by expressing the bosonic field operators by

ϕ̂(x) = ϕ0(x)+
∑
n

(
un(x)b̂n + vn(x)

∗b̂†n

)
, (30)

and only keep terms up to quadratic order in the operators b̂(†)n . Here un(x) and vn(x) are the BdG
coefficients. This Ansatz diagonalizes the Hamiltonian equation (28) if the coefficients fulfill the BdG
equation(

L̂ g|ϕ0(x)|2
−g|ϕ0(x)|2 −L̂

)(
un(x)
vn(x)

)
= ϵn

(
un(x)
vn(x)

)
, where L̂=− ∂2

x

2m
+

1

2
mω2x2 + 2g|ϕ0(x)|2 −µ,

(31)
where ϵn are the eigenenergies of the corresponding BdG modes. To solve this equation, we expand it in a
finite number of eigenfunctions of the free harmonic oscillator and diagonalize the resulting matrix
numerically.
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