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Abstract
Adiabatic approximations break down classically when a constant-energy contour splits into
separate contours, forcing the system to choose which daughter contour to follow; the choices
often represent qualitatively different behavior, so that slowly changing conditions induce a sudden
and drastic change in dynamics. The Kruskal–Neishtadt–Henrard (KNH) theorem relates the
probability of each choice to the rates at which the phase space areas enclosed by the different
contours are changing. This represents a connection within closed-system mechanics, and without
dynamical chaos, between spontaneous change and increase in phase space measure, as required by
the Second Law of Thermodynamics. Quantum mechanically, in contrast, dynamical tunneling
allows adiabaticity to persist, for very slow parameter change, through a classical splitting of energy
contours; the classical and adiabatic limits fail to commute. Here we show that a quantum form of
the KNH theorem holds nonetheless, due to unitarity.

1. Introduction

When the explicit time dependence of a Hamiltonian is slow compared to the dynamics that the Hamiltonian
itself generates, the evolution is usually adiabatic. Classically, a single adiabatically evolving degree of
freedom follows an energy contour that encloses constant phase space area [1]. Classical adiabaticity fails at
an unstable fixed point, however, where the local dynamical time scale becomes infinite. Unstable fixed
points in phase space occur when an energy contour intersects itself; such a self-intersecting energy contour
is a separatrix dividing phase space into three or more neighboring regions, within which the system
dynamics may be qualitatively different. If adiabatic evolution brings a system to a separatrix, the system
must choose non-adiabatically which region to enter. The Kruskal–Neishtadt–Henrard (KNH) theorem
[2–4] constrains this kind of abrupt change in system evolution due to slow change of the Hamiltonian.

The KNH theorem follows from Liouville’s theorem and thus is quite fundamental in classical mechanics.
It is potentially useful as the basis of dynamical control strategies that do not require monitoring of a system’s
state [5]. As a link within integrable closed-system mechanics between a certain kind of phase space area
increase and the probability of spontaneous qualitative change in dynamics, moreover, the KNH theorem
may represent the most primitive microscopic limit of the Second Law of Thermodynamics. In this regard its
relation to microscopic irreversibility has recently been shown by predicting the probability of small systems
to return to their initial configuration after a cyclic parameter sweep (probabilistic hysteresis)[6, 7]. It is hard
to accept a classical theorem as a true microscopic precursor to thermodynamics, however: microscopic
physics is quantum. Probabilistic hysteresis in quantum systems [8, 9] has been found numerically to
conform to predictions based on the classical KNH theorem, but only when the initial state is a sufficiently
wide ensemble of energy levels and only for sweeps that are not too slow. For infinitely slow cyclic parameter
sweeps, the quantum adiabatic theorem [10–12] forbids hysteresis and breaks correspondence with the
classical KNH theorem. The extension to quantum mechanics of the KNH theorem, with its microscopic
resemblance to thermodynamics, is therefore non-trivial. Since the KNH theorem concerns energy contours
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in phase space, its extension to quantum mechanics must begin in the semi-classical limit where the
Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) approximation relates energy contours in phase space to
quantum energy eigenstates. The quantum KNH theorem cannot be deduced just from quantum-classical
correspondence, however, because this correspondence breaks down at unstable fixed points, and because
the adiabatic and semi-classical limits in quantum mechanics do not commute [13, 14]. Here we show how
the KNH theorem extends to quantum post-adiabatic dynamics, starting fromWKBJ semiclassical theory.

2. Adiabatic change and post-adiabatic choice

The general scenario is illustrated in figure 1. As an example of a Hamiltonian with a separatrix, we consider
a double well potential V (x,λ) which depends on a parameter λ(t) that increases with time t slowly and
monotonically. Phase space orbits inside each lobe of the separatrix, shown in dots and long dashes, have
energies below the height Vb(λ) of the central barrier, and are therefore confined (classically) in one well or
the other. A phase space orbit outside the separatrix, shown in short dashes, has energy above the barrier, so
that the system traverses both wells. If the potential changes slowly, the adiabatic theorem states that the
system’s energy changes so as to hold the phase space area inside its orbit constant.

The adiabatic theorem does not apply to the separatrix; its energy simply equals the instantaneous barrier
height Vb(λ), and its enclosed area may change as the potential changes. Very near the separatrix, moreover,
the adiabatic theorem does not apply to the system, either, because the system moves too slowly near the
unstable fixed point. Evolution under the time-dependent Hamiltonian can thus bring the system across the
separatrix, even though the separatrix is an energy contour.

A separatrix lobe may expand into and absorb adiabatic orbits of the system; conversely it can contract
and squeeze orbits out, as in the case of the dotted orbits in figure 1. A system which crosses a slowly
changing separatrix may therefore have to choose between different kinds of new orbits. If the barrier rises,
for example, a system that is initially orbiting above the barrier may be captured into one well—or the other.
If one well is becoming narrower or shallower, a system which is initially trapped in it may either be tipped
into the other well, or excited above the barrier. An example of this latter scenario, with both outcomes
occurring for different initial states that all have the same energy, is shown in figure 1. Realizations of these
basic dynamical processes range from satellite capture to chemical reactions.

2.1. The KNH theorem
Because the crux of the separatrix is an unstable fixed point of the instantaneous Hamiltonian, the system’s
fate after crossing a separatrix depends sensitively on its initial conditions, as well as on exactly how (and how
slowly) the potential changes. If the rate at which the Hamiltonian changes is much slower than the rate of
exponential approach/departure at the unstable fixed point, however, then there is a simple rule governing
the fractions of initial states which evolve post-adiabatically into each of the three phase space regions that the
separatrix defines (two lobes and the exterior).

The KNH theorem states firstly that orbits can only leave an adiabatic region which is shrinking in phase
space area, and can only move into an adiabatic region which is growing in area. The theorem further states
that if there is more than one growing adiabatic region then the fractions of orbits which enter each growing
region, from a shrinking region, are proportional to the rates at which the growing areas grow. If regionA is
the only shrinking region and region C is growing, for example,

PA→C =−
d
dλSC

(
Vb(λ),λ

)
d
dλSA

(
Vb(λ),λ

) , (1)

where the barrier height Vb is also the classical separatrix energy; the Hamiltonian for a particle of mass µ in
the potential is H(x,p,λ) = p2/(2µ)+V(x,λ);A is the donor region (such as a shrinking lobe of the
separatrix) shown in figures 1(a) and (b); C is one recipient region (such as the growing other lobe in the
figure); and SA,C(E,λ) is the area enclosed in either region by the contour H(x,p,λ) = E.

As soon as it is stated the KNH theorem may seem to be an obvious consequence of the fact that
Hamiltonian evolution is an incompressible flow in phase space, according to Liouville’s theorem. Issues such
as the time at which the area growth rates are to be calculated, and the canonical coordinates which should be
used, are subtle, however, and a rigorous proof has only been provided quite recently [15]. Obvious or not,
the classical KNH theorem provides a direct dynamical connection between phase space area growth and
spontaneous qualitative change, reminiscent of the Second Law of thermodynamics, even though the
enclosed areas to which the KNH theorem refers are not ergodically explored by the system, and no
assumptions about equilibration are made.
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Figure 1. A slowly time-dependent separatrix divides (x, p) phase space into three regionsA, B, and C, shown at t= 0 (a) and at a
later time T (b). This could represent a time-dependent double well potential (c), (d), with the three phase space regions
corresponding to trajectories within either well (A and C) or with enough energy to cross the barrier (B). Panel (e) shows energy
versus continuous time for the orbits shown at the two snapshot times 0,T in (a)–(d); orbits which hit the separatrix are
distributed post-adiabatically among orbits above and below the separatrix in energy. The analogous quantum process for level
probabilities (f) is our subject. The double well potential used for this figure is of the form V(x, t) = αx4 −β(λ(t))x2 + γ
(λ(t))x; we keep α constant and sweep λ linearly in time.

2.2. Non-trivial quantum correspondence
Away from separatrices, where the classical orbit period ∂ES remains finite, a single quantum degree of
freedom in the semi-classical limit obeys Bohr–Sommerfeld energy quantization, which implies that the
spacing between successive energy levels is πℏ/∂ES. The conditions for quantum and classical adiabaticity
therefore typically coincide away from separatrices, both being satisfied when λ(t) changes slowly on the time
scale of ∂ES. Near a separatrix, however, this quantum–classical correspondence of adiabaticity breaks down.

Although classically the orbital period diverges at the separatrix, and so for any finitely slow λ(t)
adiabaticity must fail within a finite neighborhood of the separatrix, quantum mechanical energy levels
generally do not become degenerate at the barrier height E= Vb. Although the partial derivatives
∂ESA,C(E,λ) generically diverge logarithmically as E→ Vb, correctly supplementing the WKBJ semi-classical
theory with connection formulas through the classical turning points and allowing for tunneling [16] leads
to the modified Bohr–Sommerfeld quantization condition for E< Vb:

cos
( S̃A − S̃C

ℏ

)
!
=−

√
1+ e−2Tb/ℏ cos

( S̃A + S̃C
ℏ

)
, (2)

here

Tb(E,λ) =

ˆ x2(E,λ)

x1(E,λ)
dx
√
2µ[V(x,λ)− E], (3)

is the non-classical action associated with tunneling through the potential barrier between classical turning
points x1,2(E,λ), and S̃A,C are quantum-corrected versions of the classical areas SA,C [16] (see appendix A.1).
In the semi-classical limit of action scales much larger than ℏ, the quantum correction term in S̃ is generally
negligible except for energies close to the barrier height, but it is enough to keep ∂ES̃A,C finite at E= Vb, so
WKBJ energy spacings do not all become small near E= Vb and there is no general breakdown of
adiabaticity in the WKBJ limit. This is an example of the general fact that the adiabatic and classical limits do
not commute [13, 14]. An example to show how numerically exact quantum energy levels En(λ) do conform
to this semi-classical picture is shown in figure 2. Since the KNH theorem explicitly concerns phase space
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Figure 2. Numerical eigenspectrum of a λ-dependent quantum double well, in a portion of the (E,λ) plane. The quantum levels
(black curves) exhibit a clear change in character around the classical separatrix (red curve), but they do not become degenerate
there. Instead they have what appears to be a lattice of crossings below the separatrix energy; in fact these crossings are all avoided,
with gaps too small to be visible here. Our analysis concerns these kinds of avoided crossing lattices, in the semi-classical limit.

areas, we can expect that its quantum form is defined in the classical correspondence limit, but can the KNH
theorem emerge from quantum mechanics at all, if quantum adiabaticity does not actually fail at barrier
tops?

3. Avoided crossings in the (E,λ) plane

The KNH theorem does emerge from quantum mechanics, because even though adiabaticity does not fail
near E= Vb for all λ quantum mechanically as it does classically, it does fail at a certain discrete set of special
λ values, for energies less than Vb by some finite amount, whenever e−2Tb/ℏ ≪ 1.

3.1. The lattice of avoided crossings
To see why this is, note that to zeroth order in e−2Tb/ℏ the WKBJ condition (2) is satisfied by either
S̃A = (m̃+ 1/2)πℏ or S̃C = (ñ+ 1/2)πℏ for integers m̃, ñ. To avoid having to use large integers to label the
high m̃, ñ states in which we will be interested in this paper, we define m̃=m+m0 and ñ= n+ n0 for some
integer shiftsm0,n0, and use integersm,n as our quantum numbers, which may be negative. Since S̃A,C are
in general different functions of E and λ, there are two sets of energy levels EAm (λ), E

C
n (λ). Successive levels

within each set are not degenerate, EAm+1 > EAm and ECn+1 > ECn , but only if perfect symmetry of V(x,λ) is
maintained as λ(t) changes will the two sets of levels shift with λ in parallel. To zeroth order in e−2Tb/ℏ there
will generically be a lattice of almost-crossings, EAm (λmn)− ECn (λmn) =O(e−2Tb/ℏ), at a discrete set of
parameter values λmn. In the semi-classical limit, therefore, the discrete quantum energy spectrum in the
range E< Vb forms a lattice withO(ℏ) unit cell size.

The lattice is locally regular in the sense that its curvature and non-uniformity only become
non-negligible overO(ℏ−1)≫ 1 lattice spacings. If (E00,λ00) is the location in the (E,λ) plane of one of
these near-crossings, then the lattice of nearby near-crossings is given (see appendix A.2) by:

Emn− E00 = πℏ
m∂λS̃C − n∂λS̃A

[S̃A, S̃C ]
+O(mℏ,nℏ)2

λmn−λ00 = πℏ
n∂ES̃A −m∂ES̃C

[S̃A, S̃C ]
+O(mℏ,nℏ)2 (4)

when we introduce the Poisson-like bracket:

[F,G] :=
∂F

∂E

∂G

∂λ
− ∂G

∂E

∂F

∂λ
. (5)

In between these near-crossings the semi-classical energy levels follow curves in the (E,λ) plane that can be
well approximated as straight lines over many lattice cells, as illustrated in figures 2 and 3(a).
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Figure 3. (a) Bohr–Sommerfeld energy eigenvalues in the (E,λ) plane form a lattice which in the semi-classical limit is locally
regular, like the exact lattice seen in the lower part of figure 2. In general the parallel EAm lines and the parallel ECn lines may have
arbitrary slopes. The (m, n) Bohr–Sommerfeld crossings are actually narrowly avoided because of tunneling. (b) The (E,λ) plane
may thus be represented with continuous (m, n) as skewed and tilted coordinates. Since the time evolution is adiabatic between
the avoided crossings at the integer (m, n), but may be non-adiabatic through each avoided crossing, the evolution reduces to a
discrete feed-forward network of pairwise unitary transformations Ûmn that each act only in a two-dimensional subspace of
crossing Bohr–Sommerfeld levels.

As we review in appendix A.3, when the tunneling factor e−2Tb/ℏ is not neglected then in fact
EAm (λmn)− ECn (λmn) ̸= 0: the crossings are avoided due to quantum tunneling. The two-state Hamiltonian
for each two nearly-crossing levels, for λ near the zeroth-order crossing point λmn, is actually:

Ĥ(t) = Ē+ ℏν2(t− tmn)
σ̂z
2
+ ℏγ

σ̂x
2

ν2 =
1

ℏ
dλ

dt

∣∣∣∣dEAmdλ − dECn
dλ

∣∣∣∣ γ =
e−Tb/ℏ

√
∂ESA∂ESC

σ̂z = sgn

(
dEAm
dλ

− dECn
dλ

)(
|EAm ⟩⟨EAm | − |ECn ⟩⟨ECn |

)
σ̂x = |EAm ⟩⟨ECn |+ |ECn ⟩⟨EAm | (6)

where Ē= Emn+(λ−λmn)d(EAm + ECn )/dλ and Emn is the energy at which EAm and ECn cross at zeroth order,
and λ(tmn) = λmn defines the time tmn at which this crossing is reached. All functions of λ and E in (6) are to
be evaluated at (E,λ) = (Emn,λmn), and dλ/dt is to be evaluated at tmn. The two instantaneous eigenvalues of
this Ĥ are easily computed as:

E± = Ē± ℏ
2

√
ν4(t− tmn)2 + γ2, (7)

which are separated by a minimum gap of ℏγ, but approach EAm and ECn for large |t− tmn|, with the
continuous eigenvalue E±(t) that coincides with EAm (λ) at large negative t− tmn becoming equal to ECn (λ) at
large positive t− tmn, and vice versa.

Where the energy gap between two instantaneous energy eigenstates becomes small, the quantum
adiabatic approximation may break down, depending on how rapidly the Hamiltonian depends on time. The
breakdown of adiabaticity remains simple, however, inasmuch as it only concerns energy levels that are
becoming nearly degenerate. Quantum time evolution through the intervals around each tmn includes a
non-trivial unitary evolution Ûmn within each two-dimensional subspace of crossing levels, which can be
represented in general as:

Ûmn = e−iae−ibσ̂zŴe−icσ̂z

Ŵ=
(
|EAm ⟩ , |ECn ⟩

)( √
Pmn

√
1− Pmn

−
√
1− Pmn

√
Pmn

)(
⟨EAm |
⟨ECn |

)
,

(8)

where σ̂z is as in (6) and the three angles a,b, c as well as the operator Ŵ can be different for eachm,n
(subscripts mn on a,b, c and Ŵ are left implicit to keep the formulas legible).
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For two-state avoided crossings like (6), the non-perturbative Landau–Zener formula [17] yields (8) with
Pmn = e−2π(γ/2)2/ν2

=: P(Emn,λmn). In our particular case (6), this probability can be expressed (see
appendix A.4) in the form:

P(E,λ) = exp

−πℏ exp(− 2Tb(E,λ)/ℏ
)

λ̇
∣∣∣[S̃A, S̃C]∣∣∣

 . (9)

Pmn in (8) represents the probability for a diabatic evolution through the avoided crossing, in which the
system emerges on the same energy line along which it approached the vertex (|EAm ⟩ → |EAm ⟩ and
|ECn ⟩ → |ECn ⟩), while 1− Pmn is the probability for adiabatic quantum evolution through the avoided crossing,
following the same λ-dependent eigenstate of Ĥ from (6) as it continuously rotates from |EAm ⟩ to |ECn ⟩ or vice
versa.

In fact Ûmn is not simply a classical random choice between two outcomes, but describes evolution into
coherent superpositions of the adiabatic states, with amplitude phases given by a,b, c. Evolution under the Ĥ
of (6) for arbitrarily long times implies particular time-dependent forms of a,b, c, but (6) only holds for each
m,n while λ(t) is close to λmn; after each such interval there is some general adiabatic evolution, for the
particular EAm and ECn levels, in the particular V(x,λ) potential, until the next avoided crossing is approached.
Whatever this general adiabatic evolution is, however, it can be absorbed into the a, b and c phases of each
Ûmn. The entire quantum evolution, adiabatic except possibly at avoided crossings, can thus be represented
without loss of generality as a feed-forward linear network of unitary transformations at (m, n) nodes, as
illustrated in figure 3(b). The quantum KNH theorem concerns this unitary transition network, within
which we can identify a quantum analog to the classical separatrix.

3.2. The quantum separatrix
A classical separatrix is usually considered as a curve in phase space, but in an adiabatic problem with a
time-dependent parameter λ(t), the classical separatrix can also be represented as the curve E= Vb(λ) in the
(E,λ) plane, as marked in figure 1(e). Following the latter concept of a separatrix, we define the quantum
separatrix Es(λ) to be the curve in the (E,λ) plane on which:

P(Es,λ) = 1/e. (10)

The reason for this definition appears if we examine the avoided crossings in the neighborhood of any
point on the quantum separatrix. As the lattice origin point (m,n) = (0,0) we select an arbitrary crossing
which is closer than any of its neighbors to the separatrix. We then use (4) in Pmn = P(Emn,λmn) to conclude
for |m,n| ≪ O(ℏ−1):

Pmn =exp
[
−ZemXenY

]
Z=

2πℏ exp [−2Tb(E00,λ00)/ℏ]

λ̇
∣∣∣[S̃A, S̃C]∣∣∣

X=2

[
Tb, S̃C

][
S̃A, S̃C

] Y= 2

[
Tb, S̃A

][
S̃C , S̃A

] , (11)

up to correction factors×[1+O(ℏ)] in the exponent of Pmn. The formulas for X and Y in (11) are thus to be
evaluated at (E,λ) = (E00,λ00). Importantly, X and Y are of order ℏ0.

Equation (11) is the basis for all the main results of this paper; see appendix A.4 for its detailed
derivation. It holds in the semi-classical limit, where we neglect corrections ofO(ℏ), and it holds with
constant X,Y,Z over the range |m|, |n| ≪ O(ℏ−1) over which the lattice of avoided crossings can be
approximated as regular. Over largerO(ℏ−1) ranges ofm,n, X, Y, and Z can be considered as slowly varying;
they are local characteristics of the avoided crossing lattice. Here we will consider only ensembles of initial
states within a narrow enough energy range for anym,n-dependence of X, Y, and Z to be neglected.

For avoided crossings with Emn < Es(λmn) (below the separatrix), the double-exponential function
Pmn → 1 within a distance from the separatrix in (m, n) lattice units of order ℏ0, while for Emn > Es(λmn),
Pmn → 0 within a similar distance. The energy band between these limits, within which transitions are
neither very adiabatic nor very diabatic (− ln(Pmn) =O(1)), is the quantum separatrix zone. The precise
width (number of energy levels D) of the separatrix zone thus depends on how small a Pmn, or a 1− Pmn, we
are prepared to ignore, but the double-exponential form of Pmn ensures that arbitrarily small Pmn and
1− Pmn are reached within a number of lattice spacings D that is not large unless X and Y are both
anomalously small. Although the width of the separatrix zone is thus not quite precisely defined, its width in
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energy is D×O(ℏ), very narrow in classical terms. Unlike the classical separatrix, the location of the
quantum separatrix in the E,λ plane depends on the sweep rate dλ/dt. For very slow λ(t), Es can fall well
below the classical separatrix energy Vb. And Es(λ) can also change with λ(t) because λ̇ changes, as well as
because V(x,λ) changes.

Wherever the separatrix zone is, and however wide it is, below it the system passes through every avoided
crossing diabatically, in the sense that the Landau–Zener probability of an adiabatic transition is negligible.
Although quantum mechanically these are non-adiabatic transitions, the result is similar to adiabatic
classical evolution, with the system remaining always in either left-well eigenstates with EAm or right-well
eigenstates with ECn . Above the separatrix zone, in contrast, the crossings are all instead adiabatic; the system
zig-zags through the (E,λ) lattice, alternating between left-well and right-well states, by tunneling back and
forth through the barrier at every crossing. The quantum separatrix is thus also, like the classical one, a
division between three qualitatively different kinds of dynamics: localized in either left or right well, below
the separatrix, or passing through both wells, above it. We will therefore retain ourA,B,C labels of the three
classical phase space regions, and use them henceforth to refer to these three dynamically distinct
λ-dependent subspaces of the quantum energy spectrum, along with the separatrix zone S as a fourth
subspace.

The concept of a separatrix between qualitatively different forms of dynamics thus does extend from
classical mechanics into quantum mechanics, along with the breakdown of simple adiabatic behavior within
a narrow zone around the separatrix. This extension of the separatrix concept survives in spite of the fact that
quantum tunneling preserves adiabaticity at the classical separatrix; indeed we might say that the quantum
separatrix exists precisely because of tunneling, since it depends on the narrow avoidance of level crossing
that tunneling creates. Although (11) holds in the limit ℏ→ 0, and in this sense represents behavior as close
to classical as quantum evolution near a separatrix can be, it still consists of probabilities for superpositions
of discrete energy levels that coherently mix due to tunneling. This remarkably non-classical form of classical
limit illustrates the subtlety of combining adiabaticity, instability, and quantum–classical correspondence;
and yet we will see how behavior similar to classical emerges from it.

3.3. Growth conditions
While the dimension D of the separatrix zone subspace S is by definition essentially constant over many
(m, n) lattice cells, the sizes of the threeA,B,C subspaces are generally changing with λ. In the (m, n) plane,
the separatrix runs parallel to the vector (−Y,X), according to (11), while λ is given in terms of (m, n) by (4).
With a bit of two-variable calculus (see appendix B.2 ) we obtain for the average rates of change of the
dimensionalities DA,B,C of the respective subspaces:

dDA

dλ
=−ΓY

dDB

dλ
= Γ(Y−X)

dDC

dλ
= ΓX

for Γ =

[
S̃A, S̃C

]
πℏ(X∂ES̃A +Y∂ES̃C)

. (12)

These change rates necessarily sum to zero since the size D of the separatrix zone, and that of the whole
Hilbert space, are independent of λ. Given Bohr–Sommerfeld quantization, these growth rates in subspace
dimensionality correspond directly (with a factor of πℏ) to the growth rates of (quantum-corrected) phase
space areas. The quantum KNH theorem will therefore express probabilities for transitions between different
subspaces in terms of ratios among the parameters X, Y, and Y −X.

Analogously to the classical case, the first part of the quantum KNH theorem constrains when transitions
between subspaces can be possible at all. Suppose, for example, that subspaceA is growing, dDA/dλ∝−
Y> 0. This means that ES− EAm is growing for any fixedm and new, higher-m |EAm ⟩ are entering theA
subspace because their transitions at crossings are becoming sufficiently diabatic. For all the |EAm ⟩ that were
already in theA subspace (EAm < ES), the crossings are only becoming more perfectly diabatic as λ increases.
So if the system is in any growing subspace, it cannot leave the subspace. And by repeating this same
argument with time reversed we conclude that the system can never enter a subspace which is shrinking. So
the first KNH rule carries over to quantum mechanics in the WKBJ limit simply with S→ S̃.

If a subspace is shrinking, conversely, then the system can be forced to exit that subspace, if it occupies
one of the upper (forA and C) or lower (for B) energy levels in the subspace which is approaching the
separatrix. If dDA/dλ∝−Y< 0, for instance, this means that as λ increases the transitions at crossings are
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steadily becoming less perfectly diabatic, until the amplitude for an adiabatic transition can no longer be
ignored: one after another the uppermost |EAm ⟩ levels enter the separatrix zone.

If X < 0 and Y > 0 so that subspace C is shrinking along withA, or if X> Y> 0 so that B is shrinking,
then only one subspace is growing, and all system state amplitude which leaves the other subspaces must
emerge from the separatrix zone into the single growing subspace, because it cannot enter a shrinking one.

If Y> X> 0, however, thenA is shrinking while both B and C are growing. Both growing regions are
eligible to receive immigrant amplitude—and the question is how the system’s state distributes itself between
them. It will suffice to focus on this case Y> X> 0, withA being divided among B and C: the other two
cases with non-trivial distribution decisions are exactly analogous.

The quantum analog of the KNH theorem, when onlyA is shrinking, would be that the probability for
the system to emerge from the separatrix zone in the C subspace is:

PA→C =
dDA/dλ

dDC/dλ
=

X

Y
. (13)

How well does this prediction apply to actual quantum evolution through the unitary lattice of Ûmn? As
we will see below, the quantum KNH probability (13) is not correct in general for any single initial eigenstate
|EAm ⟩ ∈ A. It does hold exactly as an average probability, however, when the average is correctly (and
realistically) defined.

4. The quantumKNH theorems

Figure 4 shows an example in which an initial ensemble of ten successive EAm < ES states evolves into and
through a quantum separatrix zone. The Ŵ in each Ûmn according to (8) has Pmn given by (11) with Z= 1,
X= 0.5 and Y = 1.25; the three phases in all the Ûmn are independently random. These phases should in fact
all be fixed deterministically by the particular system Hamiltonian and λ(t), but in the adiabatic limit large
phases accumulate over the long times between crossings, and their values modulo 2π depend so sensitively
on the precise form of V(x,λ) and λ(t) that they can easily be anything, and so the independent random
phases used to compute figure 4 represent a generic slowly time-dependent double well system. The curves in
the figure at nc = 80 show the final probabilities p− = PA→C and p+ = PA→B to be in some |ECn ⟩ state with
ECn below the separatrix zone, or in any eigenstate above the separatrix zone, respectively. The results show
small fluctuations, for each realization of all the random phases, around the KNH predictions of
p− = X/Y= 0.4 and p+ = 1− p− = 0.6. The averages over all the phase realizations match p− = 0.4 and
p+ = 0.6 precisely. This figure’s example shows what the KNH theorem can mean, concretely, for a quantum
system. We will now explain this example by proving the general quantum KNH theorem, first in a weak
version, and then in a strong one.

4.1. The weak quantumKNH theorem
Here we show, from unitarity as the quantum analog of Liouville’s theorem, that an initial microcanonical
ensemble ofM |EAm ⟩ eigenstates, initially within an adiabatically shrinking dynamical subspace, evolves
through the separatrix zone into a final mixed state with probabilities to be in the two growing dynamical
subspaces that are given by the KNH predictions, to within discrepancies of order D/M, where D is the width
in levels of the separatrix zone itself. This weak result is already sufficient to establish correspondence with
the classical KNH theorem, since in the classical limit ℏ→ 0, D remains finite while the number of
eigenstatesM within a microcanonical ensemble of any classical energy width∆E becomes infinite. The
weak quantum KNH theorem will then also be used, in combination with one other physical consideration,
to prove our stronger result.

The separatrix zone consists by definition of some fixed, finite number D of instantaneous energy levels.
The exact value of D depends on how small a diabatic or adiabatic Landau–Zener amplitude we are prepared
to neglect, but since these amplitudes decrease as double exponentials with energy away from the quantum
separatrix energy, some finite D can always be found to satisfy any desired degree of precision.

The evolution within the separatrix zone is in general complicated—a quantum weighted random walk
with many interfering paths and many phases—but outside the separatrix zone the evolution is by definition
simple; see figure 5. An initial microcanonical ensemble ofM adjacent instantaneous Bohr–Sommerfeld
levels |EAm ⟩ that are all rising with λ towards the separatrix must therefore move over time entirely into the
separatrix zone, and at the moment (call it λ= λ∗) when it has fully done this, it will have evolved entirely
into a Hilbert subspace of dimension K+N+D, where the K states are in the adiabatic subspace B above the
separatrix zone, the N states are in the subspace C of diabatically crossing ECn levels below the separatrix zone,
and the D states are inside the separatrix zone. No evolution outside this subspace is possible up to the time
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Figure 4. An initial microcanonical ensemble ofM= 10 consecutive EAm eigenstates is evolved through the Ûmn lattice; shown are
the probabilities to end up above (p+) or below the separatrix (p−), versus time, where time is measured as the number of
avoided crossings through which the system has evolved in the Ûmn lattice. The Ûmn are given by (8) with Pmn given by (11), with
X= 0.5, Y = 1.25 and Z= 1. After the ensemble has fully exited the separatrix zone into the energy ranges above and below it, the
probabilities correspond to p+ = PA→B and p− = PA→C . The separatrix zone is interpreted as the set of crossings for which
0.001< Pmn < 0.999, and has width D∼ 10. Every phase a,b, c in each Ûmn is chosen randomly, independently for each crossing
(m, n). Initially the whole ensemble is below the separatrix; as evolution continues the ensemble enters the separatrix zone and
eventually disperses above and below it. The red, yellow, and blue curves appear thick because they are the superposed curves for
100 different random realizations of all the a,b, c phases in the Ûmn lattice. The sharp p̄±,s curves are the averages over the 1000
realizations; they are indistinguishable from the results when the unitary Ûmn are replaced with classical random choices with
probabilities Pmn and 1− Pmn. The averaged p̄± for nc > rsim50 obey the strong quantum KNH theorem and agree exactly with
its X/Y and 1−X/Y predictions; the individual p± runs show fluctuations around p̄± that are well within the±D/M bounds of
the weak quantum KNH theorem.

when λ(t) = λ∗, because of the strong constraints of essentially perfect adiabaticity/diabaticity outside the
separatrix zone. We will refer to the K possibly populated levels in B just above the separatrix zone at λ∗ as
the K-dimensional subspace B∗, to the N possibly populated levels in C just below the separatrix zone at λ∗

as C∗, so that the total subspace that can be populated at λ∗ is B∗ ∪C∗ ∪S∗, where S∗ is the separatrix zone
at λ(t) = λ∗.

Figure 5 illustrates the resulting geometrical relationships between the separatrix parameters X,Y and the
subspace dimensions D,K,N. See appendix B.1 for a detailed explanation; the result is:

N=M
X

Y
+ δN

K= (M− kD)
(
1− X

Y

)
+ δK, (14)

where |δN|< 1/2 and |δK|< 1/2 come from exactly how the discrete lattice of integer (m, n) lines up with
the real-number slope X/Y, to make K and N be integers. The constant k depends on X and Y, and on the
ratio ∂ES̃A/∂ES̃C that determines the slope of a line of constant λ in the (m, n) plane; the−kD term is present
in K because there is some delay between when the first |EAm ⟩ state of the initial ensemble enters the
separatrix zone, and when amplitude from it begins to emerge into the B subspace, having crossed the
separatrix zone at the maximum rate of one level per crossing. The exact value of k is not important for the
weak quantum KNH theorem, which concerns the limit D/M→ 0.

The density operator ρ̂I for the initial microcanonical ensemble is an identity operator of rankM, divided
byM, and the evolution is unitary. The state at λ(t) = λ∗ is therefore:

ρ̂λ∗ =
1

M

M∑
m=1

|Ψm⟩⟨Ψm|, (15)

9
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Figure 5. Evolution of an initial ensemble ofM successive EAm states in the (E,λ) plane, for an illustrative case with 0< X< Y
(regionA shrinking, B and C both growing). The (E,λ) plane is represented with the skewed continuous (m, n) coordinates of
figure 3(b). The parallel thick lines on the left and right sides of the figure, tilted slightly to the left of vertical, are lines of constant
λ, representing the initial time (left line) and the point λ= λ∗ (right line) when the initial ensemble has fully entered the
separatrix zone. The wide black band in the middle of the figure is the separatrix zone. K and N are numbers of adiabatic
eigenstates in B and C subspaces, respectively. At the later time, the density operator of the initial microcanonical ensemble ofM
states has become a normalized projection operator of rankM into a subspace of dimension K+N+D.

for some set of states |Ψm⟩ in the final Hilbert subspace of dimension K+N+D=M+O(D). The
probability to be in any of the three subspaces σ = B∗,C∗,S∗ that are populated at λ∗ is:

P∗σ = Tr
(
ρ̂λ∗Π̂σ

)
, (16)

where Π̂σ are the projection operators onto the subspaces σ = B∗,C∗,S∗, which satisfy
Π̂B∗ +Π̂C∗ +Π̂S∗ = Î∗ when Î∗ is the projector onto the total space B∗ ∪C∗ ∪S∗. Using the triangle-related
inequality:

Tr
(
ρ̂λ∗Π̂σ

)
⩽ D∗

σ

M
, (17)

where D∗
σ = K,N,D is the rank of Π̂σ , and the identity Tr

(
ρ̂λ∗ Î∗

)
≡ 1, we can establish the inequalities:

P∗B = Tr
[
ρ̂λ∗
(̂
I∗ − Π̂C∗ − Π̂S∗

)]
⩾ 1− N+D

M
= 1− X

Y
−O(D/M) (18)

P∗C = Tr
[
ρ̂λ∗
(̂
I∗ − Π̂B∗ − Π̂S∗

)]
⩾ 1− K+D

M
=

X

Y
−O(D/M). (19)

Further evolution to times later than λ(t) = λ∗ can never lower either PB below P∗B or PC below P∗C ,
because the respectively diabatic and adiabatic crossings in B and C only bring adiabatic eigenstates further
into the B and C subspaces. PB and PC can only increase above their values at λ∗, as probability that is still in
S at λ∗ migrates out of S into B and C. In fact, all of the system’s amplitude to be in the separatrix zone
subspace S must eventually leave S , bringing PS → 0, because within the separatrix zone we have both
Pmn < 1 and 1− Pmn < 1. In the final state after all amplitude has emerged from S into B and C, therefore,
we must have PB + PC = 1. This yields the weak quantum KNH theorem for the probabilities PA→B,C when
B and C are both growing:

PA→C ⩾ X

Y
−O(D/M) = 1− PA→B ⩽ X

Y
+O(D/M)

=⇒ PA→C =
X

Y
±O(D/M). (20)

The analogous results can be shown similarly for the other cases in which two of the three energy subspaces
are growing with λ.
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The weak quantum KNH theorem is weak in the sense that (20) allows a margin of errorO(D/M). As we
have explained above, this suffices to establish quantum–classical correspondence of the KNH theorem,
because in the limit ℏ→ 0 we haveM→∞ for any fixed energy width while D remains finite. As in the case
of figure 4, however, equation (20) can easily be much more generous than necessary. Our derivation of (20)
has relied only on unitarity and on the simple forms of evolution outside the separatrix zone; we have not
even attempted to analyze the complicated quantum random walk which occurs inside the separatrix zone S .
Consequently our bounds on PA→C − X

Y have had to allow the most pessimistic scenario, in which all of the
probability which is still in S at λ∗ might finally move into either B or C. Complicated as it may be, the
unitary evolution inside S is clearly not actually going to be so arbitrary; the separatrix zone is defined, after
all, by the fact that it has no simple bias in how it distributes amplitude.

Since the random walk inside S will takeO(D) steps before PS falls to an arbitrarily low level, we might
expect the typical difference PA→C − X

Y to be of order
√
D/M for large D, well below the strict upper limit of

D/M. This scaling does seem to be consistent with numerical experiments for different realizations of the
Ûmn lattice with independent random phases in the Ûmn. Computing a rigorous prefactor for the

√
D/M

correction to PA→C for general Ûmn would seem to be difficult, however; many arbitrarily different unitary
phases must be admitted, and many complicated paths through the lattice of crossings must all be allowed to
interfere quantum mechanically. Even without being able to solve that problem, however, we can show that
the precise KNH result PA→C = X/Y for the average over many random phase realizations in figure 4 was by
no means an accident.

4.2. The strong quantumKNH theorem
In the adiabatic limit for which all KNH results hold, the phases which all quantum amplitudes acquire
during the long periods between avoided crossings are large. Modulo 2π, therefore, they are effectively
random, even though they are strictly determined by V(x,λ(t)), in the sense that arbitrarily small changes to
V(x,λ) or to λ(t) could make these phases arbitrarily different. What this implies for experiments is that the
three phases a,b, c in each Ûmn are not actually reproducible: they will inevitably be independently random in
every run of any series of experiments. An experimental measurement of PA→C will therefore not actually
probe the coherent random walk of Ûmn, but only the classically probabilistic weighted random walk, with
probabilities Pmn and 1− Pmn at each crossing, that results from averaging over all the a,b, c phases at each
(m, n).

With this additional physical insight that only the Pmn are observable in the adiabatic limit, we can prove
a stronger quantum KNH theorem from the weak theorem, by considering the hypothetical case in
which (11) holds not only form,n≲O(ℏ−1), but for arbitrarily largem and n.

Suppose that X/Y is a rational number q/p for some minimal integers q,p; even irrational X/Y can be
approximated arbitrarily closely by such rationals, and so as far as any experiments are concerned the
assumption that X/Y= q/p can be made without loss of generality. The pattern of probabilities (11)
therefore repeats itself exactly for Pm+p,n−q. Consider, then, the purely hypothetical case of a lattice of
Landau–Zener probabilities that extends to infinitem,n with perfect regularity, and has this same periodicity
Pm+p,n−q = Pm,n.

In this purely hypothetical case consider an initial ensemble ofMJ = q× J contiguous EAm levels, where J
is an arbitrarily large integer. Because of the lattice periodicity of Pmn, the total PA→C of this large ensemble
for any J > 1 must be exactly the same as we would find for the narrower ensemble with J= 1 and in the
non-hypothetical case where (11) is only valid over a rangem,n≲ q+O(D). By the weak quantum KNH
theorem (20), however, we have for the hypothetically extendedm,n-range of (11) and theMJ-sized
ensemble:

PA→C = lim
J→∞

PA→C =
X

Y
. (21)

Consequently even for J= 1 we have PA→C = X/Y, with noO(D/M)margin of error. This explains the
perfect agreement of the late-time probabilities in figures 6 and 4, which is a case with (q,p) = (2,5) and
J= 2.

We name (21) the strong quantum KNH theorem for cases 0< X< Y (onlyA is shrinking); other cases
were resolved in section 3.3, above, as either PA→C = 0 or PA→C = 1. As figure 6 shows, the result (21) does
not apply to the final probabilities that evolve from any single initial energy eigenstate; even after eliminating
quantum interference in the random walk through the separatrix zone by averaging over effectively random
phases, the doubly exponential Pmn of (11) provide a formidably complicated set of decision weights, and
many different paths through the lattice still contribute to the final probabilities. The strong quantum KNH
theorem is a kind of sum rule, however, which strictly governs the average probability when the initial energy
cannot be exactly controlled.
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Figure 6. Distribution of final adiabatic states forM= 10 adjacent rising initial states after nc = 80 incoherent Landau–Zener
crossings, with probabilities given by Pmn from equation (11) with Z= 1, X= 0.5, Y = 1.25. The evolution is computed with
probabilities, instead of unitary evolution with independent random phases, since this yields the probability distribution which
would be inferred from any realistic set of experiments, in which the large adiabatic phases between each avoided crossing are not
reproducible modulo 2π from run to run. The final state with the number 1 is the lowest final state that can be reached (nc − 1
levels below the lowest initial state of the ensemble) by following the diabatic path after the first avoided crossing. The initial states
with labels 1 to 10 are the state that is directly below the separatrix zone at the first avoided crossing and the nine adjacent states
below it. The heights of the light gray columns in each horizontal row represent the probability to emerge from the separatrix
zone into various final states, from an initial state with energy eigenvalue below the quantum separatrix EAm < Es, which over time
rises adiabatically into the separatrix zone. Successive horizontal rows refer to different initial EAm , for ten consecutivem. The final
states are ECn below the separatrix, while above the separatrix they alternate, with increasing energy, between EAm and ECn , since
above the separatrix the system switches adiabatically between EAm and ECn at each avoided crossing. Final states within the
separatrix zone are not shown, since their probabilities are all negligible after eighty crossings. The dark gray columns indicate the
total probability to emerge anywhere below the separatrix (left dark column) or anywhere above it (right dark column), averaged
over all 10 initial states. While the light gray columns show a complicated pattern, the heights of the dark gray columns are
nevertheless in exactly the ratio X:Y that is deduced from unitarity by the strong quantum KNH theorem.

For any initial ensemble which is not microcanonical with width in levels equal to an integer multiple J of
the lattice periodicity of Pmn, the probabilities to end up in different dynamical regions of Hilbert space may
not satisfy the strong quantum KNH theorem, but only the weak one, or an intermediate version in which
the correction is determined by the mismatch betweenM and Jq. Another way of expressing the strong
quantum KNH theorem, however, is to say that for randomly selected initial energy eigenstates the average
probability to emerge from the separatrix zone in the different possible subspaces is indeed given exactly by
the quantum KNH result (21).

5. Summary and discussion

In conclusion we summarize our main results. For a slowly time-dependent Hamiltonian similar to that of a
double-well potential, the classical concept of a separatrix does extend smoothly to quantum mechanics, in
the form of a narrow range of energies within which Landau–Zener transitions at each avoided level crossing
are intermediate between diabatic and adiabatic. The quantum separatrix generally has lower energy than the
barrier height, by an amount that depends on the rate at which the potential is changing. In the
semi-classical limit where the time-dependent energy levels form a locally regular lattice, the Landau–Zener
probabilities in the separatrix zone take a universal form defined by three real numbers X, Y and Z, where Z
fine-adjusts the overall position of the discrete lattice relative to the quantum separatrix energy, and X and Y
determine the width of the separatrix zone as well as its slope in the (E,λ) (or (m, n)) plane. Depending on
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this slope, the dynamically distinct subspaces into which the separatrix divides the quantum energy spectrum
may all be growing or shrinking in time.

First of all we found that no amplitude can migrate into a shrinking subspace. Then from unitarity and
geometry we could derive the weak quantum KNH theorem, relating probabilities to emerge from the
separatrix zone in different growing subspaces to their rates of growth in dimensionality as given by X and Y,
within error bounds of order D/M. Finally we could use the periodicity of the Pmn lattice and the weak
theorem to prove the strong quantum KNH theorem, which applies to probabilities averaged over
adiabatically irreproducible phases and has error bounds of zero for initial ensembles which match the
period of the Pmn lattice.

Together these results extend into quantum mechanics the KNH connection between probabilities of
post-adiabatic change and growth rates of phase space areas. This connection may offer a microscopic basis
for the Second Law of Thermodynamics which does not depend on assumptions about equilibration,
inasmuch as the areas which must grow according to KNH theorems do not have to be explored ergodically
by the system.

5.1. The quantumKNH theorem beyond the semi-classical limit
In cases where ℏ is not so small in comparison with the classical action scales in the problem, so that the
range of validity |m|, |n|<O(ℏ−1) of our key equation (11) for the Landau–Zener diabatic probability Pmn is
not very broad, the range ofm,n over which our Pmn is periodic may exceed the range over which it is valid.
In this case the strong quantum KNH theorem will not hold. And if theO(ℏ−1) range ofm and n within
which (11) holds is not even wide enough to cover an initial ensemble widthM≫ D, then even the weak
quantum KNH theorem may set only rather loose unitarity bounds on the probabilities with which the
system emerges on different sides of the separatrix zone.

For the validity as a concept of the quantum separatrix zone, however, the semi-classical limit is only a
sufficient condition, not a necessary one. If a quantum system evolving under slowly time-dependent
conditions features avoided level crossings with avoidance width changing sufficiently quickly with
energy—for whatever reason—then the Landau–Zener transition probabilities at these crossings will have a
correspondingly abrupt crossover from diabatic to adiabatic. An equation similar to our (11) may then be
valid, implying that unitarity will constrain transition probabilities through this narrow separatrix zone in
the energy spectrum, with X/Y-like rules that are directly analogous to the KNH rule for classical separatrix
crossing. For quantum systems outside the WKBJ limit we must simply replace the classical phase space areas
with the numbers of quantum energy levels DA,B,C that are contained within each subspace that is defined
by the quantum separatrix.

Since the two measures of phase space area and energy subspace dimension coincide in the WKBJ limit,
the WKBJ semiclassical theory is once again providing its usual bridge between quantum and classical
dynamics. Even though classical adiabaticity breakdown at the classical separatrix energy (the barrier height)
does not extend to quantum mechanics, our quantum generalization of the separatrix concept preserves this
important qualitative feature of classical mechanics. The quasi-classical KNH behavior then emerges,
ironically, via a quantum random walk through the lattice of quantized energy levels with crossings that are
narrowly avoided because of quantum tunneling.

5.2. The quantumKNH theorem beyond the double well
Both classically and quantum mechanically, more complicated separatrices are possible that will divide phase
space or the energy spectrum into more than three regions. A multi-well system is an obvious example. The
principles of the classical and quantum KNH theorems apply in these cases but their detailed implications
may not be trivial and will require further study.

Even with only three distinct dynamical regions, the two regions that overlap in energy do not necessarily
have to be lower in energy than the third region. It can be the other way around, for example in the case of a
pendulum, where there is only one lower-energy region of back-and-forth oscillation, with two degenerate
high-energy regions of full rotation in clockwise or counter-clockwise directions. As we will report in more
detail in future, the quantum KNH theorem that we have developed here for double-well-like systems applies
to such pendulum-like systems as well, with an inversion of energy. The quantum separatrix lies in general
above the classical separatrix; quantum transitions between the classically separate forms of higher-energy
dynamics are provided here, not by tunneling through a potential barrier, but by non-classical above-barrier
reflection. A precisely similar lattice of Landau–Zener transitions results, with precisely analogous quantum
KNH behavior emerging in a precisely similar way. In the semi-classical limit the double-well tunneling
exponents Tb even have counterparts, for above-barrier reflection in the pendulum system, that are also
action integrals defined with analytically continued phase space variables.
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Appendix A. The semi-classical double well

A.1. Modified Bohr–Sommerfeld quantization
As is well known, the WKBJ semi-classical approximation breaks down at classical turning points V(xn) = E,
where the WKBJ eikonal approximation must be supplemented by a connection formula [18]. Connection
formulas are obtained by exploiting the fact that, when the relevant classical action scales are large compared
to ℏ, WKBJ only fails within a small neighborhood of the turning point. Within this narrow range of x− xn,
and indeed to some distance outside it, the exact potential can be approximated well with a simpler function,
for which the two independent solutions to the time-independent Schrödinger equation can be found
exactly. One then uses the method of matched asymptotics [19] to infer, from these two locally exact
solutions, the modified continuity condition which relates the amplitudes of the two WKBJ solutions that
must appear, on either side of the breakdown region, in any global solution.

The best-known form of connection formula applies when oscillating WKBJ solutions within a single
potential well must be connected to exponentially decaying WKBJ solutions under the potential walls on
either side of the well. One approximates the potential near the turning point with a linear gradient, so that
the locally exact solutions within the linearized breakdown region are Airy functions. When the resulting
conditions on the WKBJ linear combinations are applied on both sides of the well, the two sets of conditions
can only be satisfied simultaneously for certain discrete values of the energy E. This condition is precisely the
Bohr–Sommerfeld quantization condition: the quantum energies Ek are those of classical orbits which
enclose phase space area π(k+ 1/2)ℏ for integer k.

In the more complicated case of a double well, however, there are always two outer turning points, but for
E< Vb there are also two inner turning points, on either side of the central potential barrier ( see figure A1).
To account for tunneling, we must allow both growing and decaying solutions under the central barrier;
sufficiently close to the top of the barrier, moreover, we cannot linearize V(x) but must approximate it
instead as a downward parabola, so that the local solutions in the WKBJ breakdown region are no longer
Airy functions, but parabolic cylinder functions.

In the following, we will briefly review how connection formulas based on Airy- and parabolic cylinder
functions have to be combined in order to get the modified Bohr–Sommerfeld rule (2) as has been shown in
[16]. The WKB solutions in the respective regions are given by:

ψ(x) =
1√
p(x)


AIe

1
ℏ
´ x
x1
dx ′|p(x ′)|+BIe

− 1
ℏ
´ x
x1
dx ′|p(x ′)| x< x1

AIIe
i
ℏ
´ x
x1
dx ′p(x ′)

+BIIe
− i

ℏ
´ x
x1
dx ′p(x ′) x1 < x< x2

AIVe
i
ℏ
´ x
x3
dx ′p(x ′)

+BIVe
− i

ℏ
´ x
x3
dx ′p(x ′) x3 < x< x4

AVe
1
ℏ
´ x
x4
dx ′|p(x ′)|+BVe

− 1
ℏ
´ x
x4
dx|p(x ′)| x> x4

(A.1)

with p(x) =
√
2µ(V(x)− E). The coefficients in the respective regions are related by connection formulas as

will be shown in the following. The coefficients (AI,BI) are related to the coefficients (AII,BII) by a
connection formula for a downwards sloping turning point based on Airy functions [16]:(

AII

BII

)
=

(
e−

iπ
4

1
2 e

iπ
4

e
iπ
4

1
2 e

− iπ
4

)(
AI

BI

)
, (A.2)

and we need to demand BI = 0 to ensure ψ(x→−∞)→ 0. Region III is assumed to be small and we want to
connect the coefficients of region II across the barrier with the coefficients of region IV by using a
connection formula based on parabolic cylinder functions [16]:(

AIV

BIV

)
=

√1+ e
2Tb
ℏ e−iΦ −ie

Tb
ℏ eiθ

ie
Tb
ℏ e−iθ

√
1+ e

2Tb
ℏ eiΦ

(ÃII

B̃II

)
, (A.3)
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Figure A1. A generic double well potential with energy below the top of the inner barrier but close to it. There are four turning
points x1 − x4. The coefficients of the WKB solutions in the regions I, II and IV,V are related by connection formulas based on
Airy-functions while the coefficients of the wave function in the region IV can be connected to the coefficients of the solution in
II across the barrier with a connection formula based on parabolic cylinder functions [16]. Successively applying these connection
formulas and demanding that the wave function vanishes at infinity results in the modified Bohr–Sommerfeld rule (2) in our
main text.

with

Φ(E,λ) =

[
argΓ

[
1

2
− iTb

πℏ

]
+

Tb

πℏ

(
ln

∣∣∣∣ Tb

πℏ

∣∣∣∣− 1

)]
, (A.4)

where Tb is the tunneling integral given by (3) and θ= 0 for the case E< Vb we are considering here. In order
to derive this connection formula, one needs to derive the connection formula for a quadratic barrier based
on parabolic cylinder functions and map the general double well potential near the top of the barrier Vb to a
quadratic barrier by using a turning point correspondence equation (see [18, 20]). The coefficients ÃII, B̃II
are related to the coefficients AII,BII by a factor that changes the phase reference point of the wave function in
region II to the inner left inner turning point x2 as required by the connection formula A.3 [16]:

(
ÃII

B̃II

)
=

(
e

i
ℏ
´ x2
x1

dx ′p(x ′) 0

0 e−
i
ℏ
´ x2
x1

dx ′p(x ′)

)(
AII

BII

)
. (A.5)

The coefficients of the wave function in region V are related to the coefficients in region IV by a connection
formula for an upward sloping turning point based on Airy functions [16]:

(
AV

BV

)
=

(
e
iπ
4 e−

iπ
4

1
2 e

−iπ
4

1
2 e

iπ
4

)(
ÃIV

B̃IV

)
, (A.6)

where the phase reference points of the wave functions in regions IV,Vmust be matched by:

(
ÃIV

B̃IV

)
=

(
e

i
ℏ
´ x4
x3

dx ′p(x ′) 0

0 e−
i
ℏ
´ x4
x3

dx ′p(x ′)

)(
AIV

BIV

)
, (A.7)

in order to apply the connection formula. Applying these connection formulas successively leads to the
coefficient:

AV = 2AI

(√
1+ e

2Tb
ℏ cos

(
SA+ SC

ℏ
−Φ

)
+ e

Tb
ℏ cos

(
SA− SC

ℏ

))
, (A.8)

with SA,C given by:

SA(E,λ) =

ˆ x2(E,λ)

x1(E,λ)
dx
√
2µ[E−V(x,λ)]

SC(E,λ) =

ˆ x4(E,λ)

x3(E,λ)
dx
√
2µ[E−V(x,λ)]. (A.9)
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Demanding AV = 0 to ensure ψ(x→∞)→ 0 results in the modified Bohr–Sommerfeld rule (2). The
modified actions S̃A,C that appear in (2) are:

S̃A,C(E,λ) = SA,C(E,λ)−
ℏ
2
Φ(E,λ), (A.10)

with the phase shift [16] due to the connection with parabolic cylinder functions being (A.4). In addition to
being valid for energies that are only slightly below the top of the barrier Vb, because it is based on parabolic
cylinder functions and a quadratic potential rather than Airy function in a linear potential, for small e−Tb/ℏ

(2) reduces smoothly to the result one obtains for lower energies, by using separate Airy connections at both
inner turning points, with decaying and growing WKBJ solutions inside the barrier. In any semi-classical
regime, therefore, it is safe to use the modified Bohr–Sommerfeld condition (2) for all E< Vb.

A.1.1. Non-perturbative accuracy
A subtle point is that (2) is valid to leading order in e−Tb/ℏ even though, as a WKBJ result, it is also subject to
corrections of order ℏ that may be much larger than e−Tb/ℏ. The reason is that the post-semi-classical order ℏ
corrections aremultiplicative, being of the form×[1+O(ℏ)]. This is important for the Landau–Zener theory
of avoided crossings, because the minimum energy gap at each avoided crossing is really zero to all orders in
ℏ; its actual non-zero width∝ e−Tb/ℏ × [1+O(ℏ)] is non-perturbative in ℏ, and its leading term is really
correctly given by (2) even though (2) hasO(ℏ) corrections and it may well be that e−Tb/ℏ ≪O(ℏ).

A.1.2. Quantum adiabaticity near E= Vb

When the potential takes the form:

V(x,λ)→ Vb(λ)−
κ(λ)

2

(
x− x0(λ)

)2
+O(x− x0)

3, (A.11)

near the top of the barrier, for some constant κ, the classical actions behave as:

lim
E→V−

b

SA,C = SA,C(Vb,λ)−
Vb− E

2
√
κ/µ

ln
V̄A,C

Vb− E
, (A.12)

where V̄A,C are energy scales which depend on V(x,λ) over the left and right wells, respectively. (Recall that
µ is the particle mass.) The orbital period in each well is 2π(∂SA,C/∂E)−1, which diverges logarithmically as
E→ V−

b , implying the breakdown of classical adiabaticity close to the separatrix. Since,

lim
E→V−

b

Tb(E) =

√
µ

κ
(Vb− E), (A.13)

however, the shifted actions S̃A,C which appear in (2) remain smooth through the separatrix, with the
ln(Vb− E) terms canceling, providing quantum level spacing that is genericallyO(ℏ

√
κ/µ). For

λ̇≪
√
κ/µ, therefore, the classically inevitable failure of adiabaticity does not occur quantum mechanically.

Tunneling through the narrow peak of the barrier, at energies just below the barrier height, is easy enough
that the classically singular nature of the barrier top is quantum mechanically regularized.

A.2. The lattice of avoided crossings
From the simple Bohr–Sommerfeld quantization condition (A.19) we can see that:

S̃A(Emn,λmn)
!
= (m+ 1/2)πℏ (A.14)

= S̃A(E00,λ00)+ ∂ES̃A(Emn− E00)

+ ∂λS̃A(λmn−λ00).

up to corrections of higher order than first in (Emn− E00) and (λmn−λ00), when the partial derivatives of
S̃A(E,λ) are evaluated at (E00,λ00). A similar expansion holds for S̃C , withm→ n, so that together we can
infer: (

mπℏ
nπℏ

)
=

(
∂ES̃A ∂λS̃A
∂ES̃C ∂λS̃C

)(
Emn− E00
λmn−λ00

)
, (A.15)

up to corrections that will self-consistently be of order ℏ2 as long asm,n=O(ℏ0). Inverting the 2× 2 matrix
yields (4) from our text.
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A.3. The Hamiltonian in the subspace of two energy levels that nearly cross
To derive equation (6) of our text, we consider e−Tb/ℏ to be small, and expand in it. The Bohr–Sommerfeld
rule (2) can be rewritten as:

cos

(
S̃A
ℏ

)
cos

(
S̃C
ℏ

)
= sin

(
S̃A
ℏ

)
cos

(
S̃C
ℏ

)
√
e−

2Tb
ℏ + 1− 1√

e−
2Tb
ℏ + 1+ 1

 , (A.16)

and in the limit e−Tb/ℏ ≪ 1, the term in the square brackets can be expanded:
√
e−

2Tb
ℏ + 1− 1√

e−
2Tb
ℏ + 1+ 1

−→ e−
2Tb
ℏ

4
+O

(
e−

4Tb
ℏ

)
, (A.17)

so we get,

cos

(
S̃A
ℏ

)
cos

(
S̃C
ℏ

)
=

e−
2Tb
ℏ

4
sin

(
S̃A
ℏ

)
cos

(
S̃C
ℏ

)
, (A.18)

up to order e−2Tb/ℏ. This is the Bohr–Sommerfeld rule one gets by using Airy-type connection formulas at
the inner turning points instead of connecting the solutions to the left and right of the barrier with the
connection formula based on parabolic cylinder functions as previously mentioned since the tunneling
correction Φ in S̃A,C is small for energies far below the top of the barrier. At zeroth order, (A.18) reduces to:

cos
( S̃A

ℏ

)
cos
( S̃C
ℏ

)
!
= 0, (A.19)

implying, as mentioned above, the original Bohr–Sommerfeld quantization rules either

S̃A(E0,λ)
!
= (m+ 1/2)πℏ or S̃C(E0,λ)

!
= (n+ 1/2)πℏ for integerm,n. These conditions define the

zeroth-order semi-classical energy levels E0 → EAm (λ) and E0 → ECn (λ), respectively.
As noted in the text, there is a lattice of points (Emn,λmn) in the (E,λ) plane at which the zeroth-order

semi-classical energy levels cross, EAm (λmn) = ECn (λmn) =: Emn when EAm and ECn are computed from (A.19),
e−Tb/ℏ being neglected.

To see the non-perturbative minimal gap between these nearly crossing levels, then, we use the expansion
of the full modified Bohr–Sommerfeld condition (2) to order e−2Tb(Emn,λmn)/ℏ, which is (A.18). Then, we look
at λ= λmn+ e−Tb(Emn,λmn)/ℏ∆λ and we assume E= Emn+ e−Tb(Emn,λmn)/ℏ∆E. This results in the
approximations:

S̃A,C (Em,n+ ε∆E,λmn+ ε∆λ)≈ S̃A,C (Emn,λmn)

+ ε

{
∆E

∂S̃A,C

∂E
+∆λ

∂S̃A,C

∂λ

}∣∣∣
Emn,λmn

. (A.20)

Using the facts that S̃A(Emn,λmn) = (m+ 1/2)πℏ and S̃C(Emn,λmn) = (n+ 1/2)πℏ and inserting the
expressions (A.20) into (A.18) this yields:(

∆E∂ES̃A +∆λ∂λS̃A
)(

∆E∂ES̃C +∆λ∂λS̃C
)
=

ℏ2

4
, (A.21)

where Tb and ∂E,λS̃A,C are all to be evaluated at (E,λ) = (Emn,λmn), and we omit corrections of higher order
in e−Tb/ℏ. Solving (A.21) as a quadratic equation for∆E, we obtain:

∆E=−∆λ

2

(
∂λS̃A
∂ES̃A

+
∂λS̃C
∂ES̃C

)
±

√
ℏ2∂ES̃A∂ES̃C +∆λ2[S̃A, S̃C ]2

2∂ES̃A∂ES̃C
, (A.22)

where the definition of the Poisson-like bracket (5) from our main text was used. The expressions (A.22) can
be recognized as the energy eigenvalues of the∆λ-dependent two-state Hamiltonian:

ĥ(∆λ) =− ∆λ

2

(
∂λS̃A
∂ES̃A

+
∂λS̃C
∂ES̃C

)
+

∆λ

2

(
∂λS̃A
∂ES̃A

− ∂λS̃C
∂ES̃C

)
σ̂z+

ℏσ̂x
2
√
∂ES̃A∂ES̃C

. (A.23)
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Since theO(e−Tb/ℏ)0 energies EAm and ECn are defined by the simple Bohr–Sommerfeld conditions (A.19), by
differentiating with respect to λ we find:

d

dλ
S̃A =

d

dλ
(m+ 1/2)πℏ= 0=⇒ d

dλ
EAm =−∂λS̃A

∂ES̃A
, (A.24)

and similarly for S̃C and ECn . Using this result (A.24) in (A.23), restoring the factors of e−Tb/ℏ and expressing
λ−λmn as λ̇(t− tmn), we realize the time-dependent two-state Hamiltonian for each avoided crossing as
given by (6) in our text. And at the same time we can use the fact from (A.24) that:

∂ES̃A∂ES̃C
∣∣∣dEAm
dλ

− dECn
dλ

∣∣∣= ∣∣∣[S̃A, S̃C]∣∣∣, (A.25)

to derive e−2πγ2/ν2
= P(E,λ) as stated in (9).

A.4. The probability lattice
We have thus found the probability P(Emn,λmn) of diabatic Landau–Zener transitions at each (m, n) avoided
crossing, in terms of Emn and λmn (including λ̇(tmn), considered as a function of λ evaluated at λmn). To
obtain our text’s centrally important equation (11) for the probabilities Pmn in anO(ℏ−1)-sized portion of
the lattice of crossings, we identify (m,n) = (0,0) with one crossing near the quantum separatrix, and
evaluate P(Emn,λmn) form,n of order ℏ0.

Since (4) tells us that Emn = E00 +O(ℏ) and λmn = λ00 +O(ℏ) form,n=O(ℏ0), we can conclude that in
the expression (9) for Pmn = P(Emn,λmn) we can write:

λ̇(tmn) = λ̇(t00)+O(ℏ) and[
S̃A, S̃C

]∣∣∣
Emn,λmn

=
[
S̃A, S̃C

]∣∣∣
E00,λ00

+O(ℏ). (A.26)

For the factor e−2Tb/ℏ in the exponent of P(Emn,λmn), however, the explicit factor of 1/ℏmeans that we must
write:

e−
2
ℏTb(Emn,λmn) = e−

2
ℏTb(E00,λ00) exp

[
−2

(Emn− E00)∂ETb+(λmn−λ00)∂λTb

ℏ

]
× [1+O(ℏ)]

≡ e−
2
ℏTb(E00,λ00) exp

[
− 2

m
[
Tb, S̃C

]
+ n
[
Tb, S̃A

][
S̃A, S̃C

] ]
× [1+O(ℏ)] . (A.27)

Dropping the explicit+O(ℏ) thus recovers (11) for Pmn.
It is interesting to see how the non-perturbative 1/ℏ factor in the exponent of the quantum tunneling

amplitude e−Tb/ℏ has conspired with energy quantization in steps ofO(ℏ) to make the crucial X and Y
parameters in Pmn independent of ℏ. The result is that although the quantum separatrix is qualitatively
non-classical in nature, being defined by a coherent random walk through quantized energy levels with
non-zero amplitude for tunneling, and although its location in the (E,λ) plane depends non-classically on
the sweep rate λ̇ and ℏ, yet the width and slope of the quantum separatrix are determined in the
semi-classical limit by quantities X and Y that are entirely classical, in the sense that they are composed of
derivatives of action integrals with respect to E and λ, without involving ℏ.

Appendix B. Lattice geometry and rates of change of the subspace dimensionalities

B.1. lattice geometry
When the (E,λ) plane is viewed in continuous (n,m) coordinates as in figure 3(b), (11) tells us that the
separatix (E,λ) = (Es(λ),λ) is parallel to the vector (n,m) = (X,−Y). From (4) it follows, also, that lines of
constant λ in the (n,m) plane are parallel to the vector (∂ES̃C ,∂ES̃A). With the 45◦-rotated axes of
figures 3(b) and 5, these λ-lines must always be closer to vertical than horizontal, because both components
of (∂ES̃C ,∂ES̃A) are positive. Time thus always runs roughly rightwards in any figures like figure 5.

In the (n,m) representation with axes rotated to face up, as in figure 5, the adiabatic Bohr–Sommerfeld
levels are by construction all lines parallel to them and n axes, i.e. at±45◦. The separatrix width in levels D is
thus

√
2 times the width of the separatrix zone in the vertical direction (n,m) = (1,1)/

√
2 as indicated in

figure 5. From similar geometric considerations it follows that the number of |ECn ⟩ levels below the separatrix
zone, into which the initial ensemble might have evolved by the time the entire initial ensemble has entered
the separatrix zone, is:
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Figure B1. Geometry of the lattice of avoided crossings in the (n,m) plane. The coordinate system is rotated by 45◦ compared
to figure 5. The number of adiabatic levels above the separatrix zone K, by the time the entire initial ensemble has entered

the separatrix zone, in equation (14) is given by the sum∆m+∆n of the vector connecting the points e⃗ and d⃗ across the

separatrix zone along the line of constant λ which is
√
2 times the magnitude of the projection of the vector e⃗− d⃗ in the

direction (1,1)/
√
2. The points a to e will be used as an aid to geometrically derive this vector. The thick gray bar is the

separatrix zone which contains D levels.

N=M× X

Y
+ δN, (B.1)

where |δN|< 1 comes from discretization (N must be an integer). So also is the number K of zig-zagging
adiabatic levels above the separatrix zone, into which the initial ensemble might have evolved by this time,
given by:

K= (M− kD)×
(
1− X

Y

)
+ δK,

k=
∂ES̃A

∂ES̃A + ∂ES̃C
, (B.2)

where δK again comes discretization, while the−kD comes from that fact that the lines of constant λ are not
parallel to the n axis. In order to simplify the geometrical considerations, we rotate these axes by 45◦

compared to figure 5 as can be seen in figure B1. In the following, (B.2) will be derived geometrically by
considering the vectors a⃗− e⃗ (see figure B1) and parametrizing the lines connecting them in the (n,m)
coordinates:

a⃗= (N,0) =

(
MX

Y
,0

)
, (B.3)

b⃗= (0,M), (B.4)

ab= (N,0)+ r(X,−Y), (B.5)

bc= (0,M)+ s(1,0), (B.6)

d⃗= (N,0)+
D

∂ES̃C + ∂ES̃A

(
∂ES̃C ,∂ES̃A

)
, (B.7)

cd= (N,0)+ t(X,−Y)+ D

∂ES̃C + ∂ES̃A

(
∂ES̃C ,∂ES̃A

)
, (B.8)

ae= (N,0)+ u
(
∂ES̃C,∂ES̃A

)
, (B.9)

ce= c⃗+ v(1,−1), (B.10)
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here the fact that lines of constant λ in the (n,m) plane are proportional to the vector
(
∂ES̃C,∂ES̃A

)
has been

used again. It may be noted that the width of the separatrix zone in levels D is defined by the sum∆m+∆n
of the vector connecting one side of the separatrix zone with the other along the line of constant λ. This
vector is given by the vector connecting d⃗ and a⃗ in figure B1. The the number of levels D within the separatrix

zone is thus given by D=
(
d⃗− a⃗

)
· (1,1).

The fact that c⃗ is on both of the connecting lines bc and cd (see (B.6), (B.8)) can be used to determine the
parameters t and s and ultimately the point c⃗:

c⃗= (s,M) = (N+ tX,−tY)+D

(
∂ES̃C ,∂ES̃A

)
∂ES̃A + ∂ES̃C

=⇒ t=
1

Y

(
D

∂ES̃A
∂ES̃A + ∂ES̃C

−M

)
=⇒ s= N+

D

∂ES̃A + ∂ES̃C

(
∂ES̃C +

X

Y
∂ES̃A

)
−M

X

Y

=⇒ c⃗=

(
D

Y

X∂ES̃A +Y∂ES̃C
∂ES̃A + ∂ES̃C

,M

)
. (B.11)

Analogously, we can determine the (n,m) coordinates of the point e⃗ by using the fact that it lies on the
connecting lines ce and ae:

e⃗=

(
D

Y

X∂ES̃A +Y∂ES̃C
∂ES̃A + ∂ES̃C

,M

)
+ v(1,−1) = (N,0)+ u

(
∂ES̃C ,∂ES̃A

)
. (B.12)

Adding the two equations for them,n components results in:

M+
D

Y

X∂ES̃A +Y∂ES̃C
∂ES̃A + ∂ES̃C

= N+ u
(
∂ES̃C + ∂ES̃A

)
=⇒ u=

1

∂ES̃A + ∂ES̃C

{
M

(
1− X

Y

)
+

D

Y

X∂ES̃A +Y∂ES̃C
∂ES̃A + ∂ES̃C

}
, (B.13)

which can be inserted into (B.9) to obtain the point e⃗. With this, we can finally compute the number of
adiabatic levels above the separatrix zone K as the sum∆m+∆n of the vector connecting the points e⃗ and d⃗:

K=
(⃗
e− d⃗

)
· (1,1) (B.14)

=

(
u− D

∂ES̃A + ∂ES̃C

)(
∂ES̃A + ∂ES̃C

)
(B.15)

=M

(
1− X

Y

)
+D

(
X
Y − 1

)
∂ES̃A

∂ES̃A + ∂ES̃C
(B.16)

=(M− kD)

(
1− X

Y

)
, (B.17)

with k given by equation (B.2).

B.2. rates of change of the subspace dimensionalities
Since the quantum separatrix runs parallel to the vector (−Y,X) in the (m, n) plane, we can parametrize
(ms,ns) on the separatrix:

ms =m0+µs (B.18)

ns = n0+ νs, (B.19)

with µs =−Ys and νs = Xs. The average rates of change of the dimensionalities DA,B,C of the respective
subspaces are thus given by:

dDA

dλ
=

dµs
dλ

=−Y ds

dλ
(B.20)
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dDC

dλ
=

dνs
dλ

= X
ds

dλ
(B.21)

dDB

dλ
=−

(
dDA

dλ
+

dDC

dλ
.

)
(B.22)

Equation (4) then gives the relation between λ and the separatrix parameter s:

λ(s) = λ00 +πℏ
νs∂ES̃A −µs∂ES̃C

[S̃A, S̃C ]

= λ00 +πℏs
X∂ES̃A +Y∂ES̃C

[S̃A, S̃C ]
. (B.23)

From this, one can easily compute:

1

Γ
=

dλ

ds
= πℏ

(
X∂ES̃A +Y∂ES̃C

)[
S̃A, S̃C

] . (B.24)
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