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Abstract

Spin transport and spin dynamics after femtosecond laser pulse irradiation of iron (Fe) are studied
using a kinetic Monte Carlo model. This model simulates spin dependent dynamics by taking into
account two interaction processes during nonequilibrium: elastic electron—lattice scattering, where
only the direction of the excited electrons changes, and inelastic electron—electron scattering
processes, where secondary electrons are generated. An analysis of the spin dependent particle kinetics
inside the material shows that a smaller elastic scattering time leads to a larger spatial spread of
electrons in the material, whereas generation of secondary electrons extends the time span for
superdiffusive transport and increases the spin current density.

1. Introduction

Following the discovery of ultrafast demagnetization in metallic ferromagnets and its connection to hot electron
spin transport, the interplay of optical excitation, magnetization dynamics and transport has been under active
investigation. During and after the optical excitation of ferromagnets, the electronic system is driven out of
equilibrium, and later thermalizes via different processes [1-5].

The dynamics of spin transport were first studied by Battiato et al [ 6] identifying an intermediate regime of
the spin transport, labeled as superdiffusive transport. The contribution to demagnetization dynamics was later
supported by experiments [7, 8]. Another recent study of this effect introduced a particle in cell simulation [9] to
solve the Boltzmann equation for spin dependent hot-electron transport.

In order to understand the influence of the different scattering interactions in spin transport we analyze
the spatio-temporal dynamics by tracing spin and charge in dependence of depth by considering free
electron states for energies above the Fermi energy. We propose for this type of system an application of the
kinetic Monte Carlo technique. Figure 1 shows a sketch of a trajectory of an excited electron undergoing
several collision processes. Within the applied Monte Carlo method such trajectories are traced and
statistically evaluated.

Monte Carlo simulations have been widely used in studies of hot carriers dynamics, such as radiation biology
[10-12], nuclear physics [13] and particle transport [ 14] among many others. In this paper we presenta Monte
Carlo approach and its capabilities in analyzing the influence of secondary electrons generation in spin dynamics
and spin transport.

The outline of the paper is as follows: we will first present a model of excitation process, thereby briefly
introduce how the kinetic Monte Carlo technique works. We explain how an electron is treated during laser
excitation and discuss the role of the spin dependent density of states. The next section will focus on the
possible scattering processes that are taken into account in our simulation. Finally we present the results in
depth-dependence for different scattering times in ferromagnetic iron after ultrafast laser excitation with
6 eV photon energy, as well as some results showing the influence of secondary electrons generation in the
particle kinetics.

© 2022 The Author(s). Published by IOP Publishing Ltd
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depth = 25 nm

Figure 1. Sketch of a ferromagnetic iron system where an ultrafast laser pulse optically excites the system. Nonequilibrium electrons
then will undergo different collision processes inside the material. The work presented here gives a 1-Dimensional analysis of the
nonequilibrium dynamics along the depth of the material.

2. Excitation process

In this section we discuss the algorithm used for the simulations applied in this paper, and present an analysis of
the energy density of excited electrons when only photoexcitation is considered.

2.1. Monte Carlo algorithm

The asymptotic Monte Carlo trajectory method [15] is a statistical technique that models binary collision
interactions by random sampling a very large number of trajectories until a result converges. The algorithm used
for random sampling of a variable x is done using probability theory. In probability theory one integrates the
probabilities of all possible events p(x), where Xmyin < % < Xppay, into a variable called cumulative distribution
function (CDF) F(x) [16]. One can map the CDF onto the range of random variables R, where R € [0, 1]and Ris
distributed uniformly:

P — Flom) e PO .
Fomas) = FGsmin) [ p()d’

Xmin

The variable x is then uniquely determined in dependence on R. Now we use this general idea to perform
random-sampling of any required variable for the different types of interactions.

Random sampling is also used to decide whether certain interaction or excitation processes happen. In these
cases we make use of the discrete form of equation (1). Examples of random sampling are shown in figures 2 and
4 for the excitation of electrons. The treatment of interactions in this simulation is discussed in section 3 of
this work.

2.2. Laser and material parameters

We simulate the excitation of a ferromagnetic iron (Fe) layer with a 25 nm depth with a temporally Gaussian
laser pulse with full width half maximum (FWHM) of 25 fs and 6 eV photon energy. The simulation works for
any spin dependent density of states. Here, we take the data for iron from [17].

The excitation of an electron from an occupied band is modeled by choosing for equation (1) a probability of
excitation according to the material’s density of states below E. Figure 2 shows the calculated energy dependent
cumulative distribution function (solid line) for the density of states for spin up electrons (dash-dotted line).
States above Ep, will be considered as free electron states with a constant effective mass.

As a first test we study only photoexcitation, without any scattering processes for the excited electrons.
Figure 3 shows the color-coded electron density of excited spin up (or majority) and spin down (or minority)
electrons after photoexcitation in dependence on time and kinetic energy above Er. The laser pulse with 25 fs
duration is centered around ¢ = 0. The results show that a larger density of electrons is excited from 3d' states in
comparison to the 3d!, i.e., predominantly majority electrons are excited. The spin-dependent density of states,
which is sketched in the background of figure 3, shows that the excited energy-resolved electron density reflects
the spin dependent density of states of the occupied bands in ferromagnetic iron.
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Figure 2. Energy dependent cumulative distribution function (solid line—right axis) behavior when it is weighted according to the
spin up density of states (doted line—left axis) of ferromagnetic.
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Figure 3. Density of excited electrons versus time for photoexcitation with a 25 fs Gaussian laser pulse, but no scattering. left: Spin up
excited electrons. Right: Spin down excited electrons. Middle Panel: sketch of the occupied part of the spin-dependent density of states
for iron, shifted by the excitation photon energy. The red line marks the Fermi level in each part of the figure and the connecting lines
illustrate the energy shift.

3. Different scattering processes

We trace the dynamics of particles after laser excitation by pure jump processes [12, 18, 19]. In our approach, we
consider free electron states above Ep as essentially free and focus on the influence of high energy electrons in
spin transport. During the simulation any electron interaction process is treated by random sampling. For the
excitation process already discussed above, the initial direction of the excited electrons will be taken as random
direction.

We consider the probability that an electron has not suffered any collision between # = 0 and tas

p(t) = exp [—j: V(E(f))df]. @)

Here, vis the total scattering rate defined as the sum of all possible scattering transitions. Itis dependent on the
energy E of the considered electrons, which may vary in time. In fact, this equation should be solved for each
scattering event. However, we simplify the calculation as proposed in [20] by assuming a constant scattering rate
V. Then, the time of free flight 7 can be sampled with the random variable R € [0, 1] as

7= —v; "' log(R). )

However, assuming a constant total scattering rate, independent of energy, is a statistical overestimation. To
compensate, we introduce a further ‘collision’ with an energy-dependent probability, which allows the particle
to continue its trajectory unperturbed.
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We randomly sample which collision takes place by using the individual collision frequencies and form the
cumulative distribution function in order to solve equation (1). We take two interactions into account, namely
the electron-nucleus interaction, considered here as an elastic scattering process, and the electron-electron
impact ionization, where energy is transferred in an inelastic process to a secondary electron. In the following
subsections we analyze these interactions in detail and provide the equations or parameters used.

3.1. Elastic scattering: electron—nucleus interaction

High-energy electrons are scattered nearly elastically by nuclei, i.e., they change their direction of motion. Here,
we parametrize this interaction by two important quantities: the angle of deflection (6) and the elastic scattering
rate (,;'). We will follow a procedure which has been applied to different materials, see [21-23]. In order to
obtain the angle of deflection 6 for solving equation (1) we choose as probability function the differential cross

section (:—g), described here by the Mott cross section [24]:

do

— =\fOF + 18O, 4

10 [FOF + 18O “)
where 0 is the scattering angle, f(0) and g(0) are the scattering amplitudes which can be obtained from the

following expressions:

f) = Z%Ki{(l + D[e@® — 1] + I[e®®-) — 1]} P(cos b)), ©)
1=0
80 = S+ DI + 0]} hcos ), ®)
I=1

Here, K> = W? — 1, where Wis the total energy of the incident electron in atomic units, ¢, is the phase shift for
the [-th partial wave and P;and P; are the ordinary and associated Legendre Polynomials, respectively.

We have now a set of equations that will allow us to obtain values of the angle of deflection by using
equation (1). The next step is to obtain an expression for the elastic scattering rate. In principle, it can be deduced
from the total scattering cross section, accessible by the integration of equation (4), together with the density of
collision partners. It depends on energy, material and temperature [25—-28]. In our kinetic MC approach we have
no access to heat flow and energy relaxation between the subsystems. Here, we focus on momentum changes and
the net effect of the scattering between electrons and nuclei by assuming a constant characteristic time 7. We
will analyse the dynamics for two values: 7,; = 25 fs taken from [29], which was used to study spin transport and
spin dynamicsin [9, 30], and 7,; = 12 fs from [31, 32]. We will not take into account the loss of energy due to
recoil for this simulation but focus solely on the change of the direction of flight.

3.2. Inelastic scattering: impact ionization

When a high-energy electron interacts with electrons below and close to Er in the occupied band and generates
secondary electrons (SE), we will regard this as an inelastic collision. A high-energy primary electron with energy
E canlose the energy AE to a second electron, thereby ionizing the latter. The SE produced in this process can
ionize further secondary electrons in a cascade process. The generation of SE by cascade process is believed to
have an important influence on ultrafast spin transport [33]. The process of secondary electrons generation has
been studied in different materials, going back to [34, 35].

Our numerical treatment of the SE generation process is as follows. In order to select the newly excited
electron we follow the same procedure as explained in section 2.2, where the probability of excitation depends
on the material’s density of states, with the constraint that two particles cannot be in the same state and thus we
avoid selecting two electrons from the same occupied state twice. We distinguish the spin of the newly excited
electrons by selecting them from the spin-resolved density of states and weight the probabilities accordingly.

The energy lost by the primary electron AE is used to ionize a secondary electron from the occupied band.
Here we define a binding energy I, which is the amount of energy necessary to reach the Fermi level from an
occupied state. Taking this into account, the final energy of the newly ionized electron E; above Fermi level is
then E; = AE — I. The amount of transferred energy AE is assumed to be half of the energy of the incident
electron (E/2) as it was done in [36].

For the inelastic scattering rate (7,,") we will use the energy-dependent collision rate [37] of an excited
electron at temperature T,

1 w3 Wy (ks Te)® + (B — Eyp)?

= - , (7)
T L) 128 Ef  (-5F) L

where Eg is the Fermi energy and w, is the plasma frequency. For the derivation of equation (7) it is assumed that
the band electrons have a Fermi—Dirac distribution.
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Figure 4. Probability density and cumulative distribution function for electron excitation from penetration depth of the laser pulse
according to the Beer—Lambert equation. Red lines represent how the sampling of the initial position of the particles is taken from the
values of the cumulative distribution.

For the angle of deflection after an inelastic scattering, we use the classical binary collision model which can
be derived from momentum and energy conservation. In collisions between two identical particles with
identical masses, the angles of deflection for the primary electron (f,) and for the secondary electron (6,) are

given by
0, = arcsin( L) , (8)
VE + AE
#, = arcsin _E sin 0 9)
: VAE—1 )"

Since electrons are not distinguishable, we also include a probability that an electron effectively flips its spin.
This is an exchange scattering process, due to the Coulomb interaction with electrons in the occupied part of the
spin-split band structure, which has been analyzed in terms of the spin-flip self energy by Hong and Mills [38].
While magnons and Stoner excitations can contribute, this scattering processes is called Stoner excitation in
[39]. We follow that paper and employ the energy-dependent spin-flip probability in our simulation, see figure 2
in[39].

4. Space dependence

The simulated nonequilibrium system focuses on a one dimensional analysis of the nonequilibrium dynamics
alonga depth of 25 nm, as sketched in figure 1, but with open boundaries. The absorption profile of the optical
excitation imprints a spatial dependence on the initial electron distribution. We take this into account by an
excitation probability derived from the Beer—Lambert law. We select the initial position of the excited electrons
in the material by randomly sampling the position of excitation from the profile shown in figure 4. The initial
direction of movement is sampled randomly as well. The kinetic energies are between Fermi energy Erand
Er+ 6 eV, according to the excitation of each individual electron. Then, each electron is traced individually in
time and we can monitor its displacement throughout the material.

The motion of electrons can be characterized by the mean square displacement (MSD) [40]. The MSD is
defined as the spatial spread of the distribution, which occurs in the transport direction z. As the electrons move,
the MSD of their distribution becomes time dependent ((Az)?) o< <, where « is known as the generalized
diffusion exponent.

The diffusion exponent characterizes the electronic motion under the influence of the excitation and
scattering processes. In the ballistic regime, essentially no collisions occur, leading to o = 2. Superdiffusive
behavior occurs in the intermediate regime with 2 > o > 1. On longer timescales, the motion of particles is
randomized by multiple scattering processes, leading to a diffusive behavior described by av = 1.
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Figure 5. Evolution of particle density in the material for a simulation including all scatterings processes with different scattering times
of elastic scatterings: 7. = 12 fs (top figure) and 7,; = 25 fs (lower figure) and different spins: Spin up (lhs) and Spin down (rhs).

5.Results

The different scattering mechanisms that may occur after fs-laser excitation in ferromagnets affect the
nonequilibrium dynamics. The results presented in this work are a consequence of many iterations which are
averaged in order to obtain a statistically adequate result. Here were used 10 iterations running in parallel
through 16 cores and took in average 6 h of computational time. We will focus first on the influence of different
scattering rates for elastic scatterings and then discuss the effects of secondary electrons generation. We will
analyse the following physical quantities: displacement of the particles, particle velocities, diffusion and spin
current.

5.1.Influence of different elastic scattering times

Figure 5 shows the time evolution of the particle density in iron with an open boundary at 25 nm for a simulation
where all the scattering processes are included for two different elastic scattering times. The spatio-temporal
dynamics of the density of excited electrons is shown in colour code. The surface is at depth zero and the laser is
centered at time zero. The upper subplots are for an elastic scattering time of 7,; = 12 fs, the lower ones for

T = 25 fs. One first observes that for the smaller elastic scattering time (upper subplots) the particles remain
close to the surface longer. For the smaller elastic scattering time the excited particle density is observable inside
the material for larger times. This is because elastic scattering processes occur more often and change the
direction of the particles, contributing to the spreading in the material. The red areas in the spin-up channel
indicate a higher density of excited spin-up electrons, which is due to the band structure features discussed in the
previous section 2 on the photoexcitation process. After about 75 fs the signature of the spatial laser penetration
profile has been washed out by scattering processes and transport. The transport characteristics of the dynamics
shown here will be analyzed in more detail using the mean square displacement (MSD) in the following
subsection.

Figure 6 shows the mean velocity in z direction at a depth of 12 nm. Both kinds of spin show only statistical
differences, here we show the results for spin up electrons. The mean velocity is calculated as the average velocity
in 4z direction of all excited particles at the given depth. Apart from the scattering times discussed in section 3.1
we also show results for a third, shorter one (7,; = 2 fs) as a way to study how the system is influenced by lower
values of 7. During the first femtoseconds one can observe higher average velocities with direction into the
depth of the material (velocity)? > 0), but decreasing in magnitude for lower elastic scattering times. In all three
cases, the different scattering times keep the velocity of particles on average pointing into the material. After 60 fs
the average velocity for all three cases approaches the same value and continues decreasing at the same rate but
without reaching zero, which means that a large number of particles travel in +z direction. During the first
femtoseconds a smaller magnitude of average velocities towards the depth can be observed for lower elastic
scattering time. This is due to a larger number of scatterings that occur influencing the dynamics of electrons
traveling through the solid.
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Figure 6. Mean velocity of particles with spin up in z-direction at 12 nm for different elastic scattering times (7,;). The graph for spin
down electrons (not shown) exhibits a similar tendency.
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Figure 7. Evolution of particle density of spin up (lhs) and spin down (rhs) particles in the material. Lower figure: particles travel
through the material and they change their direction of flight only (Elastic scattering). Top figure: particles travel experiencing two
scatterings, elastic scattering and impact ionization which generates secondary electrons. Simulation for 7,; = 12 fs.

5.2. Influence of secondary-electron generation

For the analysis of the influence of secondary electrons (SE) we compare calculations with and without SE. In
figure 7 the displacement of particle density in the material for spin up (left hand side) and spin down (right hand
side) is presented. The lower subplots shows calculations without including secondary electron generation,
labeled ‘only elastic scattering’, whereas the upper subplots show simulations including also impact ionization,
labeled ‘including secondary electron generation’ (same as the upper panel of figure 5, repeated here for
convenience). During the first femtoseconds, whether secondary electrons are generated or not, one observes a
larger concentration of particles near the surface. Later particles spread fast from the surface into the material
because more scatterings take place. This indicates that the generation of SEs increases the spread of the particles
into the material. The increase in displacement throughout the material can be examined better with the analysis
of the motion regimes using the mean square displacement (MSD).

Figure 8 shows a comparison in the evolution of the transport exponent « for two different elastic scattering
times 7,; with and without the inclusion of secondary electron generation. Only the analysis for spin up electrons
is shown because the spin down electrons present on average a similar behavior with only slightly different
magnitudes. The data from figures 5 and 7 are analyzed now as described in section 4 using the MSD with the
transport exponent c.. One can observe for 7,; = 12 fs and 7,; = 25 fs distinctively all three motion regimes,
starting from ballistic, going through superdiffusive and finally becoming diffusive. Since the particles can in
principle be initially excited with an arbitrary initial direction pointing into the material, in figure 8 during the
first femtoseconds the motion is not entirely ballistic.

7



10P Publishing

J. Phys. Commun. 6 (2022) 035001 ] Briones et al

T
Only elastic scattering = =
2.0 Tel = 25 fg Including secondary electron generation B

Transport exponent o

Time [fs]

Figure 8. Analysis of the transport exponent a when using different elastic scattering times and the influence of secondary electrons
for spin up electrons. When the system has a lower elastic scattering time 7, it relaxes faster into the diffusive regime whereas
secondary electrons make this transition longer.

30 T
dnly elastic scattering = = =
Including secondary electron generation

25
> 20
‘@
ohy
E = 15
c S
£g
35 10
£
Q.
* 5

0
depth = 12 nm
5 L . . . L
-25 0 25 50 75 100

Time [fs]

Figure 9. Spin current density at a depth of 12 nm for different 7,; for a simulation where it is compared two modeling assumptions:
including generation of secondary electrons (solid line) and not including them (dotted line).

The onset of the diffusive regime occurs at different times, it is faster for smaller scattering time. When the
secondary electrons come into play, the transition from superdiffusive into diffusive regime is delayed. The
generation of secondary electrons effectively increases the duration of electron excitation, influencing the system
and keeping it in the superdiffusive regime (e > 1) for alonger time in comparison with the other calculations.
These results are in agreement with those in [9, 41].

In the study of spin transport, the spin current density j; is one of the main features to be analyzed. It is
defined as

Ji(z ) o ql(nivy) — ()], (10)

where g s the charge of the electron, 7 (") and v; (v|) are the particle density and the velocity for spin up (spin
down), respectively. With this definition the spin current is positive if effectively more spin up electrons move
into positive z direction. The spin current density at a fixed depth of 12 nm with (solid line) and without (dashed
line) secondary electron generation is shown in figure 9. One can observe that the spin current density changes
quantitatively due to the continuous generation of secondary electrons, which feeds excited electrons into the
dynamics. Figure 9 shows also a change in the time of maximum intensity in the spin current density when
secondary electrons are generated. As a result, the propagation time is longer. In the bulk of the ferromagnet, the
spin current does not change sign during the whole simulation. We note that this is different from spin-polarized
transport in normal metals where the excitation conditions together with the transport characteristics can lead
to a bipolar spin-current signal [9].
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6. Summary

In conclusion, we developed a kinetic Monte Carlo method to study the influence of different electron-nucleus
collision rates and generation of secondary electrons in the ultrafast nonequilibrium spin and charge transport
in Iron. This method simulates kinetics of individual particles based on random sampling, making it a powerful
tool for tracing electrons throughout the material. In this simulation we used the probability of excitation
according to the material’s density of state to excite an electron from an occupied band. Using the displacement
and velocity distribution we analyzed the dynamics of excited electrons for different elastic scattering times. We
found that lower scattering times increase the average velocity of carriers moving in the material. To assess the
influence of secondary electron generation, we focused on its impact in different regimes of motion and for
different spin current densities. Generation of secondary electrons effectively delays the excitation of free
electrons and thus delays the transition from the ballistic to the diffusive regime. Secondary electrons also affect
the intensity of the spin current density and peak. We quantified how the spin dynamics is determined by the
elastic scattering time as well as by the generation of secondary electrons which affects experimental
observations.
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