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Abstract
Since the advent of experiments with photon Bose–Einstein condensates (phBECs) in dye-filled
microcavities in 2010, many investigations have focussed upon the emerging effective
photon–photon interaction. Despite its smallness, it can be identified to stem from two physically
distinct mechanisms. On the one hand, a Kerr nonlinearity of the dye medium yields a
photon–photon contact interaction. On the other hand, a heating of the dye medium leads to an
additional thermo-optic interaction, which is both delayed and non-local. The latter turns out to
represent the leading contribution to the effective interaction for the current 2D experiments. Here
we analyse theoretically how the effective photon–photon interaction increases when the system
dimension is reduced from 2D to 1D. To this end, we consider an anisotropic harmonic trapping
potential and determine via a variational approach how the properties of the phBEC in general,
and both aforementioned interaction mechanisms in particular, change with increasing
anisotropy. We find that the thermo-optic interaction strength increases at first linearly with the
trap aspect ratio and later on saturates at a certain value of the trap aspect ratio. Furthermore, in
the strong 1D limit the roles of both interactions get reversed as the thermo-optic interaction
remains saturated and the contact Kerr interaction becomes the leading interaction mechanism.
Finally, we discuss how the predicted effects can be measured experimentally.

1. Introduction

Ultracold atomic quantum systems in dimensions lower than three bear interesting physics [1, 2]. In 2D an

interacting Bose gas can undergo a crossover from a Bose–Einstein condensate to a
Berezinskii–Kosterlitz–Thouless phase [3–5], where vortex and anti-vortex pairs are produced and can

move through the gas. In one-dimensional systems large phase fluctuations are detected [6], which induce

an algebraic decay of the correlation function, in contrast to an exponential decay in higher dimensions.

Moreover, it is also known that the effective interaction strength increases by reducing the dimension of the
system [7]. For systems of bosonic atoms the dimensional crossover has already been investigated broadly

from 3D to 2D [8] and even down to 1D [9, 10]. The question of the effective system dimension can be

reduced to a discussion of the relevant length scales [11]. Provided that the healing length of a
three-dimensional condensate confined by an axially symmetrical trap is larger than the axial width, the

system is effectively two-dimensional. In case that the in-plane radius is smaller than the healing length, the

system is quasi-1D.

For photon Bose–Einstein condensates (phBEC) [12], however, such a dimensional crossover has so far
not been realised. As these kinds of experiments are conducted in a microcavity, they turn out to be already

two-dimensional. It is expected that the crossover to 1D can be achieved experimentally by writing an

anisotropic harmonic confining potential directly on the mirror [13–15]. This should yield a simple control

of the trap anisotropy, which then allows to freeze out the higher dimension as has already been shown in
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Figure 1. Sketch of the interaction mechanisms mediated by the dye solution. The change Δn of the refractive index n of the
dye solution stems from both a Kerr nonlinearity χ(3) and thermo-optics described by the coefficient β. Reproduced from [22].
CC BY 4.0.

the theoretical study [16]. Thus, such photonic systems constitute a useful platform to investigate the
crossover from higher to lower dimensions.

Following this line of reasoning necessitates a glimpse into whether a true Bose–Einstein condensate in
the one-dimensional harmonic trap exists at all. Although in an early work [17] it was shown via a
semiclassical ansatz, that an ideal gas cannot Bose–Einstein condense in such a trap, a full quantum
mechanical investigation has, indeed, shown the existence of such a condensate [18]. In the later work [19]
these two former results have been brought together by generalising the semiclassical ansatz from [17], see
also [16] for a detailed discussion. However, in this paper we focus on the T = 0 situation for a weakly
interacting Bose gas. In the realm of quantum degenerate Bose gases in 1D it has been pointed out in [20],
that for T = 0 one always deals with a true Bose–Einstein condensate. Therefore, we will always use the
term BEC throughout this paper.

In the corresponding experimental set-up, photons are trapped in a dye-filled cavity and, due to the
contact with the dye, the photon gas is allowed to thermalise [21] and finally to Bose–Einstein condense
[12]. Moreover, the dye solution leads also to an effective photon–photon interaction via two mechanisms,
as is depicted in figure 1. One is the Kerr effect, which is due to a nonlinearity χ(3) of the solvent molecules,
where a change of the refractive index Δn ∝ |ψ|2 leads to an effective contact interaction. The second
mechanism for the effective photon–photon interaction is the thermo-optic effect. Since the quantum
efficiency of the dye lies below one, some electronic excitations of the dye molecules are converted into
phononic excitations due to the electron–phonon coupling in the molecule. Since these are also distributed
through the solvent, this leads to a net heating of the dye solution. This changes the refractive index of the
dye solution according to the thermo-optic coefficient β and, thus, contributes to the effective
photon–photon interaction.

It turns out that the thermo-optic interaction is the leading contribution in the current 2D experiments,
whereas the Kerr interaction is completely negligible in this situation. However, the total interaction
strength is still quite small as the dimensionless interaction strength amounts to about g̃ = mg/�2 ∼ 10−4

[12, 23]. Therefore, effects of stronger interaction like superfluidity are not yet observable and even the
thermodynamics turns out to be not affected by the interaction [24]. This finding motivated our previous
study [16], where we investigated as a first step the dimensional crossover of a non-interacting photon BEC
from 2D to 1D by determining its thermodynamic properties and by extracting from them the effective
system dimension for a given temperature and trap aspect ratio. In a second step, it is now crucial to search
for mechanisms to increase the effective photon–photon interaction. In this respect we already found in the
former theoretical study [22] the intriguing result that the strength of the thermo-optic interaction
increases quadratically with the lateral extension of the cavity mirrors. However, as this would be quite
laborious to achieve experimentally, we explore here an alternative mechanism, which relies on increasing
the effective photon–photon interaction strength by reducing the system dimension from 2D to 1D. As it is
already known that this increases effectively the contact interaction [25], our main focus lies hereby on the
question how the dimensional crossover modifies the thermo-optic interaction.

To this end, we start by introducing in section 2 a coupled system of mean-field equations describing the
steady state of both the phBEC ground state and the temperature, which is produced by the phBEC and
which conversely affects the photon–photon interaction. Instead of straight-forwardly solving this coupled
system of equations by numerical means, we construct an approximate solution within a semi-analytic
procedure as follows. At first, we eliminate the temperature degrees of freedom by using the corresponding
Green’s function and determine with this the resulting energy functional for the condensate. As the profile

2
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of the photon condensate wave function is a Gaussian in the non-interacting case, it is reasonable to assume
that this profile remains to be valid also in the mutual presence of both Kerr and thermo-optic interaction.
Therefore, within a variational approach, we minimise the condensate energy function with respect to the
widths of the used Gaussian trial function in section 3. Solving the corresponding self-consistency
conditions for these widths, it turns out that the dimensional crossover can physically be divided into three
different regimes. The first one corresponds to small trap aspect ratios λ and shows, as expected, an increase
of the thermo-optic interaction strength. In the second regime for intermediate λ, the thermo-optic
interaction turns out to saturate, as here the condensate width in the squeezed direction is smaller than the
characteristic length scale of the temperature diffusion. Finally, in the third regime for large λ the contact
Kerr interaction turns out to take over the leading role in the effective photon–photon interaction. At the
end, we discuss that the respective strengths of Kerr and thermo-optic interaction can not only be extracted
from the condensate widths but also from analysing the energy in the quasi 1D regime. To conclude this
work, we also apply this method in section 4 to the crossover in a potential, where in addition to the
tightening of the confinement in a single direction the potential in the second direction is loosened. This
potential bears the advantage of a constant particle density in the trap centre, since by only tightening a
single direction the photon density in the trap centre steadily increases, which yields in the experimental
situation to mirror loss processes and, consequently, to multimode condensates. Here we find, that both the
thermo-optic and the Kerr interaction increase linearly with the trap-aspect ration, such that a much larger
effective photon–photon interaction strength might be achieved. With this we demonstrate how the
dimensional crossover depends on the details of the chosen potential.

2. General equations

Our starting point for describing the photon BEC ground state is the mean-field theory worked out in
reference [22], see figure 1. There we used a set of two coupled equations in order to describe both the
photon BEC wave function in the microcavity and the heat diffusion in the dye solution inducing the
thermo optics. However, for the current purpose, we consider two modifications of this mean-field theory.
On the one hand, we neglect the imaginary part of the equation for the condensate wave function, as this
simply determines the photon number N. On the other hand, we also need to take the Kerr effect into
account, which gives rise to an additional contact interaction term in the equation for the photon BEC wave
function. In total, the steady state of the condensate is, thus, described by

μψ =

(
−�

2∇2

2m
+ V + gK|ψ|2 + γΔT

)
ψ, (1)

where m represents the effective photon mass and V describes the external potential. The strength of the
Kerr interaction is given by gK and the energy shift due to the temperature difference ΔT between the actual
intracavity temperature and the room temperature is intermediated by the parameter γ, which is
proportional to the thermo-optic coefficient β from figure 1 [22]. Furthermore, the photon BEC wave
function is normalised according to

∫
d2x|ψ|2 = N.

The steady state of the temperature difference ΔT, which is produced by the photon condensate due to
non-perfect absorption–reemission cycles and which diffuses through the cavity, is described by the
diffusion equation

ΔT = τD∇2 ΔT + στB|ψ|2. (2)

Here τ denotes the longitudinal relaxation time stemming from the diffusion along the optical axis, see
reference [22] and the appendix therein, D stands for the diffusion coefficient of the temperature, and the
heating of the dye solution is modelled via the heating rate B. Furthermore, the duty cycle σ describes that
the experiment operates with a pulsed pump laser, whereas our theoretical description works with a
continuous pump for reaching the steady state. This modification is needed here, as the temperature
necessitates several experimental cycles to achieve its steady state [22].

2.1. Elimination of temperature difference
As a first step, we eliminate the temperature difference as a degree of freedom from our description. To this
end, we formally solve the diffusion equation (2) according to

ΔT(x) = στB

∫
d2x′ G(x − x′)|ψ(x′)|2, (3)

3
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where we have introduced the Green’s function G(x). Its Fourier transform G̃(k) reads

G̃(k) =
1

τDk2 + 1
, (4)

so we conclude for the real space

G(x) =

∫
d2k

4π2

eik·x

τDk2 + 1
. (5)

In order to evaluate the integral we use the Schwinger parametrisation [26]∫ ∞

0
dt e−at =

1

a
, (6)

and have then

G(x) =

∫ ∞

0
dt

∫
d2k

4π2
e−(1+τDk2)t+ik·x. (7)

As the integral over k represents now a Gaussian, we can calculate it and find

G(x) =

∫ ∞

0
dt G(x, t), (8)

with the integrand

G(x, t) =
e−x2/(4l2difft)−t

4πl2difft
. (9)

Here ldiff =
√
τD represents the diffusion length and the Schwinger parameter t corresponds physically to

the time in units of the longitudinal relaxation time τ . We recognise expression (9) to be the Green’s
function of the time-dependent diffusion equation. Whereas at initial time the Green’s function (9) reduces
to the delta function, i.e.

G(x, 0) = δ(x), (10)

summing (9) over all times finally yields the steady-state Green’s function (8). Evaluating the remaining
Schwinger integral in equation (8) leads to a modified Bessel function of the second kind K0 [27, (3.471.9)]:

G(x) =
‖x‖

4πl2diff

K0

⎛
⎝
√

‖x‖
ldiff

⎞
⎠ . (11)

Whereas the initial Green’s function (10) has its maximum at the origin x = 0, the steady-state Green’s
function (11) is maximal at a circle, whose radius is given by ‖x‖ ∼ ldiff . Although we have an explicit
expression (11) for the Green’s function (8), the Schwinger integral representation (9) turns out to be more
advantageous for the following analytic calculation, such that we prefer to use it instead throughout the
remainder of this paper. Taking this into account, equation (3) can be written as

ΔT(x) = στB

∫ ∞

0
dt

∫
d2x′ G(x − x′, t)|ψ(x′)|2. (12)

With this the steady-state profile of the temperature difference is given due to diffusion by the photon
density.

2.2. Photon functional
Using the formal solution of the diffusion equation (2) in the form (12), the photon BEC wave function
equation (1) goes over into

μψ =

[
−�

2∇2

2m
+ V + gK|ψ|2 + gT

∫ ∞

0
dt

∫
d2x′ G(x − x′, t)|ψ(x′)|2

]
ψ. (13)

Here the resulting thermo-optic interaction strength is defined as [22]

gT = σγτB, (14)

and is, thus, determined by various material properties of the dye solution. As a next step, we determine the
energy functional corresponding to equation (13), which turns out to consist of three parts:

E[ψ∗,ψ] = E0[ψ∗,ψ] + EK[ψ∗,ψ] + ET[ψ∗,ψ]. (15)

4
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The first one describes both the kinetic and the potential energy of the photon BEC and reads

E0[ψ∗,ψ] =

∫
d2x

[
�

2

2m
|∇ψ|2 + V|ψ|2

]
, (16)

whereas the second one,

EK[ψ∗,ψ] =
gK

2

∫
d2x|ψ|4, (17)

represents the contact Kerr interaction. The last term comprises the thermo-optic effects via

ET[ψ∗,ψ] =
gT

2

∫ ∞

0
dt

∫
d2x

∫
d2x′ G(x − x′, t)|ψ(x′)|2|ψ(x)|2. (18)

In the following we aim at minimising the energy functional (15) for a harmonic confinement along the
dimensional crossover within a variational approach, similar to our preceding work [22].

3. Variational approach

We express the harmonic potential in the form

V =
mΩ2

2
(x2 + λ4y2), (19)

where the trap aspect ratio λ = lx/ly determines the ratio of the oscillator length li =
√
�/(mΩi) with

i = x, y in the respective dimensions and Ω = Ωx is the trapping frequency in x-direction. As the photon
condensate wave function is a Gaussian in the non-interacting case, it is reasonable to assume that this
profile remains to be valid also in the mutual presence of both Kerr and thermo-optic interaction.
Therefore, the variational ansatz for the phBEC ground-state wave function reads

ψ =

√
λN

αxαyπl2x
exp

[
− 1

2l2x

(
x2

α2
x

+ λ2 y2

α2
y

)]
, (20)

where we treat αx,αy as the corresponding variational parameters. Note that due to this choice, these
parameters are dimensionless and αx = αy = 1 describes the non-interacting case. Inserting the ansatz (20)
into the functional (15) yields the energy as a function of the two variational parameters and the ratio
λdiff = lx/ldiff of the oscillator length lx and the diffusion length ldiff :

E(αx,αy) = N�Ω

[
1

4

(
1

α2
x

+
λ2

α2
y

)
+

1

4

(
α2

x + λ2α2
y

)
+

g̃KλN

4παxαy

+
g̃TλN

4παxαy

∫ ∞

0
dt

e−t√
[1 + 2t/(λ2

diffα
2
x)][1 + 2tλ2/(λ2

diffα
2
y)]

⎤
⎦ . (21)

Note that we have defined here the dimensionless interaction strength g̃• = mg•/�2. Thus, by performing
the derivative of the function (21) either with respect to αx or with respect to αy we can calculate the
corresponding equations for the variational parameters and obtain

αx =
1

α3
x

+
g̃KλN

2πα2
xαy

+
g̃TλN

2πα2
xαy

∫ ∞

0
dt

e−t√
[1 + 2t/(λ2

diffα
2
x)]3[1 + 2tλ2/(λ2

diffα
2
y)]

, (22)

for the x direction and in the squeezed y direction we have

λ2αy =
λ2

α3
y

+
g̃KλN

2παxα2
y

+
g̃TλN

2παxα2
y

∫ ∞

0
dt

e−t√
[1 + 2t/(λ2

diffα
2
x)][1 + 2tλ2/(λ2

diffα
2
y)]3

. (23)

3.1. General solution
At first, we discuss the general solution of the self-consistency equations (22) and (23) as depicted in
figure 2(a). We see that, as the trap aspect ratio λ increases, the variational parameter αy approaches the
value 1. This indicates that in this direction the broadening due to the interaction gets negligible, which

5
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Figure 2. Condensate widths for experimental parameters N = 104, g̃K = 10−8, g̃T = 10−4, and λdiff = 32 for varying trap
aspect ratio λ. (a) Variational parameters αx (blue, solid) and αy (red, solid) from equations (22) and (23). The dashed lines take
merely the thermo-optic (orange) and the Kerr (green) influence upon αx into account. The crosses show the results from a
corresponding numerical treatment of equations (1) and (2). (b) Schematic representation of length scales of the condensate l
and l/λ in different directions in comparison with the diffusion length scale ldiff for different values of the trap aspect ratio λ.

means that the system behaves effectively one-dimensional. On the other hand, we observe a much more
complex behaviour for the variational parameter αx, where we discern in total three regions. For small trap
aspect ratios λ the parameter αx starts to grow, which is a characteristic sign of increasing interaction. Then,
for intermediate λ ∼ λdiff , we find that the variational parameter αx saturates, which signals a saturation of
the interaction. And finally, for large trap aspect ratio λ, the variational parameter αx increases again. We
can understand this behaviour in more detail by separating the different interaction mechanisms
numerically. The green and the red dashed line show the width by only taking the thermo-optic interaction
and the Kerr interaction into account, respectively. We note, that, indeed, the thermo-optic interaction is
the dominant interaction effect for small λ and saturates at λ ∼ λdiff . The Kerr interaction, on the other
hand, behaves differently. Its contribution for small trap aspect ratio λ is negligible, but becomes stronger
than the thermo-optic interaction at λ � λKerr = λdiff gT/gK. This threefold behaviour is schematically
shown in figure 2(b) by depicting the length scales of the condensate l and l/λ in different directions in
comparison with the diffusion length scale ldiff for different values of the trap aspect ratio λ. Note that the
particular role of the diffusion length scale ldiff can be traced back to the steady-state Green function (11),
which is maximal at the circle with radius proportional to ldiff .

In order to support these findings, a numerical evaluation of equations (1) and (2) has been performed.
Our numerics is based on an imaginary time split-step Fourier method, where the propagation with respect
to the Laplacian appearing in (1) is done in the Fourier space and the remaining propagation takes place in
the real space. Furthermore, the actual temperature distribution defined via the convolution integral (3) is
also calculated in Fourier space using the Green’s function (4). The used space–time discretisation is chosen
such that for a given trap aspect ratio λ the phBEC wavefunction can also be resolved in the squeezed
direction. Thus, after a sufficiently long propagation in imaginary time we can calculate the widths
qx =

√
2〈x2〉 and qy =

√
2〈y2〉 from the resulting steady-state photon distribution. From the variational

ansatz (20) we see, that the variational parameter αx can directly be identified with the width qx, whereas
for the y direction we have αy = λqy. As we see in figure 2 our numerical results agree well with the results
obtained from the variational equations (22) and (23). However, due to the increasing numerical effort, we
have only compare the results for trap aspect ratios up to λ = 5λdiff . In the following we discuss our
findings in more detail from an analytical point of view.

6
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3.2. Isotropic case
In the isotropic case we have λ = 1 and αx = αy = :α, so equations (22) and (23) reduce to the single
equation

α =
1

α3
+

g̃KN

2πα3
+

g̃TN

2πα3

∫ ∞

0
dt

e−t

(1 + 2t/λ2
diffα

2)2
. (24)

For the parameters of the Bonn experiment [12, 23] we estimate that λ2
diff ∼ 103 � 1. Furthermore, the

exponential in the integral leads to an effective cutoff of the integral for t ∼ 1. Then the term 2t/λ2
diffα

2 in
the denominator can be neglected, since it only contributes to the integral at times t ∼ α2λ2

diff/2 � 1. With
this we can calculate approximately the integral and conclude that α is determined by the algebraic equation

α ≈ 1

α3
+

g̃KN

2πα3
+

g̃TN

2πα3
. (25)

Here the thermo-optic interaction behaves exactly as the Kerr interaction, as the influence of the diffusion
dropped out. Furthermore, we can solve equation (25) for the variational parameter and obtain

α =
4

√
1 +

(g̃K + g̃T)N

2π
, (26)

which we already obtained in the former work [22].

3.3. Quasi 1D case
Now we deal with the opposite situation, where the system is quasi-one-dimensional and determine at first
for which trap aspect ratios λ this regime starts. To this end we read off from figure 2(a) that already for
λ � λdiff we have αy ≈ 1, which is a sign that in the squeezed direction the influence of the interaction is
negligible. In this case the sum of kinetic and potential energy Ey ≈ N�Ωλ2/2 stored in the squeezed spatial
degree of freedom is proportional to the square of the trap aspect ratio, whereas the interaction energy
Eint = EK + ET increases linearly with λ according to expression (21). Indeed, in this regime the
contribution of the Kerr interaction can be neglected in comparison to the thermo-optic interaction
according to figure 2(a). For the remaining integral we can apply the same approximation as in section 3.2,
resulting finally in Eint ≈ �Ωg̃TλN/(4παx). A further inspection of figure 2 reveals that we can roughly
approximate αx ≈ 1 in this regime as well. Thus, as the quasi-1D region amounts to the inequality
Ey � Eint, we obtain the criterion

λ � λ1D =
g̃TN

2π
. (27)

As current photon BEC experiments are characterized by g̃T = 10−4 and a maximal photon number
N = 105, the 1D criterion (27) is basically fulfiled slightly above the 2D case λ = 1.

We proceed now to larger values of the trap aspect ratio λ, where we can still assume αy ≈ 1, according
to figure 2(a). We can now determine αx self-consistently from equation (22), yielding

αx ≈
1

α3
x

+
g̃KλN

2πα2
x

+
g̃TλN

2πα2
x

∫ ∞

0
dt

e−t√
(1 + 2t/λ2

diffα
2
x)3(1 + 2tλ2/λ2

diff)
. (28)

This integral is simplified along similar lines as in section 3.2, and it reduces to

α4
x ≈ 1 +

g̃1D(λ)N√
2π

αx, (29)

where we have introduced the effective 1D interaction strength inspired by a comparison with
equation (A.4):

g̃1D(λ) =
1√
2π

[
g̃Kλ+ g̃Tλdiff

√
π

2
eλ

2
diff/(2λ2)erfc

(
λdiff√

2λ

)]
. (30)

We note that the contribution of the thermo-optic interaction is determined by the ratio λ/λdiff = λldiff/lx,
i.e. the ratio of the diffusion length ldiff and the oscillator length in the squeezed y direction lx/λ. Figure 3
depicts the total effective 1D interaction strength g̃1D(λ) from equation (30) as a function of λ. Also here we
note the aforementioned three different regions of the crossover. For small trap aspect ratio λ the
thermo-optic interaction, which gives here the leading contribution, increases and then indeed, as stated
above, saturates. But for λ > λKerr = λdiff g̃T/g̃K the Kerr interaction takes over and the total interaction
grows again.

7
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Figure 3. Effective one-dimensional interaction strength g̃1D(λ) from definition (30) normalised to the isotropic 2D interaction
constant g̃ = g̃K + g̃T in blue for the experimental parameters g̃T = 10−4, g̃K = 10−8, and λdiff = 32. The dashed orange line
shows the thermo-optic contribution, whereas the dashed green line depicts the contribution of the Kerr interaction.

Let us now discuss these findings in more detail. For small trap aspect ratio, i.e. λ � λdiff , we can
approximate equation (30) by

g̃1D,0(λ) ≈ 1√
2π

(
g̃K + g̃T

)
λ, (31)

and in this case the thermo-optic interaction behaves like the Kerr interaction showing a linear increase in
λ. The reason for this is that here the diffusion length is negligible compared to the condensate width in
both x and y direction. Thus, the heat produced by the condensate only diffuses within a region where the
condensate wave function does not vary, such that the thermo-optic interaction behaves approximately as a
local contact interaction. On the other hand, once we have entered deeply the quasi-1D regime, i.e.
λ � λdiff , the effective 1D interaction strength (30) is given by

g̃1D,∞(λ) ≈ 1√
2π

(
g̃Kλ+ g̃T,∞

)
. (32)

Thus, in this limit the thermo-optic part of the interaction strength no longer depends on the trap aspect
ratio λ and saturates at the value

g̃T,∞ = g̃Tλdiff, (33)

which is fixed by the geometry of the experiment and by the used solvent. This is due to the fact that here
the width of the condensate in the squeezed direction lx/λ is much smaller than the diffusion length ldiff

and, thus, the heat being produced by the condensate diffuses through the dye medium to regions where no
condensate exists, cf figure 2. This heat, therefore, cannot contribute to the interaction, such that the
thermo-optic interaction saturates. For the Kerr contribution, however, the situation does not change and
the total interaction strength still shows according to equation (32) a linear dependency in the trap aspect
ratio λ.

Note that it is currently reasonably to expect achieving experimentally a trap anisotropy of at most
λ ∼ 102λdiff [28]. From figure 1 we read off that in this case the Kerr interaction is still negligible and that
the total effective 1D interaction is due to the thermo-optic effect. Thus, the maximally achievable effective
1D interaction strength g̃exp

1D,∞ reads, with the help of expressions (32) and (33)

g̃exp
1D,∞ =

λdiff√
2π

g̃T. (34)

Therefore, we can, indeed, expect an increase of the effective photon–photon interaction strength via a
dimensional crossover. Taking into account that λdiff ∼ 32, the expected increase of the interaction strength
amounts to more than one order of magnitude.

3.4. Energy
From analysing the behaviour of the variational parameters, which are basically the widths of the phBEC
wave function, at the dimensional crossover it is obvious that the effective photon–photon interaction
strength can be measured quite directly. However, we emphasise that this measurement relies on evaluating
real space images of the light leaking out the cavity. More precise results are expected from spectroscopic
measurements of this light, which directly reveals the phBEC energy. Thus, we discuss now the resulting
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Figure 4. Interaction energy Eint,1D given by equation (37) for the experimental parameters N = 104, g̃K = 10−8, g̃T = 10−4, and
λdiff = 32. The orange dashed line shows the contribution of the thermo-optic effect, whereas the green dashed line indicates the
contribution of the Kerr effect. The inset shows the interaction energy relative to the non-interacting energy E0 from (36).

energy of the condensate in more detail. In the effective 1D case by using αy ≈ 1 and the definition (30) of
the effective 1D interaction strength from the energy function (21), we find for the energy

E1D ≈ N�Ω

2

[
1

2

(
1

α2
x

+ α2
x

)
+ λ2 +

g̃1D(λ)N√
2παx

]
. (35)

This formally coincides with (A.4) from appendix A apart from the λ2 dependency, which represents the
shift of the ground state due to the energy of the squeezed direction. Introducing the non-interacting
energy

E0 =
N�Ω

2

(
1 + λ2

)
, (36)

we can define the interaction contribution to the energy by

Eint, 1D = E1D − E0, (37)

which is plotted in figure 4 as a function of the trap aspect ratio λ.
Again, we find the same threefold behaviour we have already observed for the widths and the interaction

strength, which stems from a saturation of the thermo-optic interaction for intermediate λ. Moreover, we
see from the inset in figure 4 that the interaction energy Eint,1D is quite small compared to the unperturbed
energy (36), so that our variational approach is a good approximation of the true ground state.

Finally, we remark that our findings can be measured by utilising the fact that the thermo-optic
interaction builds up steadily during the experimental run. At the beginning of the experiment the
dye-filled solution in the cavity does not have any temperature difference with respect to the environment,
so the thermo-optic interaction does not yet occur, whereas the instantaneous Kerr interaction is already
fully present. As a single experiment lasts only about 500 ns, the temperature difference saturates only after
several pump pulses, such that then the thermo-optic interaction is in its steady state and yields its full
contribution. Consequently, the resulting strength of the thermo-optic interaction can be measured by
determining the energy of the condensate at the beginning of the experiment and by comparing it with the
energy at the end. In principle this would involve subtracting the Kerr contribution from the interaction
energy (37),

Eth, 1D = Eint, 1D − �Ωg̃KλN2

2
√

2παx
. (38)

However, as already mentioned above, in the experiment only the thermo-optic saturation region is
expected to be accessible. According to figure 4 the energy contribution due to the Kerr effect is negligible in
the whole experimental regime. According to equation (38) the total interaction energy (37) coincides with
the thermo-optic energy contribution. Therefore, one can directly use expression (37) to determine the
strength of the effective photon–photon interaction. We remark that for sufficiently small particle number
N one can enter the regime where it is valid to determine the variational parameters perturbatively in first
order with respect to the smallness parameter g̃1D(λ)N/

√
2π. In this case the interaction energy (37) is

directly given by

Eint, 1D ≈ �Ωg̃1D(λ)N2

2
√

2π
. (39)

allowing to directly determine the effective interaction strength from the measured value of Eint,1D.
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4. Dimensional crossover with constant particle density

So far we have studied the crossover for a constant particle number only. However, increasing the trap
aspect ratio implies a corresponding increase of the photon density, so it is unavoidable from an
experimental point of view for intrinsic mirror losses to lead the condensate turning multimode [29].
Therefore, we study now a complementary approach to the dimensional crossover, where we fix the
geometric mean Ω̄ = λΩx, which yields the potential in the form

V =
mΩ̄2

2

(
x2

λ2
+ λ2y2

)
. (40)

Thus, increasing the trap-aspect ratio λ tightens the trap in the y-direction while loosening the trapping
potential in the x-direction. Due to this, the photon density in the trap centre stays the same throughout the
whole crossover. However, note that the exact 1D limit, i.e. λ→∞ corresponds to a free particle in
x-direction. In this situation a suitable ansatz function for a minimisation procedure is given by

ψ =

√
N

ᾱxᾱyπl̄ 2
exp

[
− 1

2l̄

(
x2

λᾱ2
x

+
λy2

ᾱ2
y

)]
, (41)

where l̄ = lx/
√
λ denotes the geometric mean of the oscillator lengths and ᾱx, ᾱy are the new variational

constants. Inserting ansatz (41) into the energy functional (15) with the potential (40) yields for the energy
the expression

Ē =
N�Ω̄

4

(
1

λᾱ2
x

+
ᾱ2

x

λ
+

λ

ᾱ2
y

+ λᾱ2
y +

g̃KN

πᾱxᾱy
+

g̃TN

πᾱxᾱy
I

)
, (42)

where I abbreviates the integral

I =

∫ ∞

0
dt

e−t√[
1 + 2t/(ᾱ2

yλ
2
diff)

] [
1 + 2t/(ᾱ2

xλ
2
diffλ

2)
] . (43)

Here we can approximate I ≈ 1 since both factors in the root can be treated as explained below
equation (24). This implies, that in this situation the Kerr interaction and the thermo-optic interaction
behave identically and only the total interaction strength g̃ = g̃K + g̃T appears. On the other hand this also
implies, that a saturation effect of the thermo-optic interaction, as found in the proceeding section, does
not exist here and, therefore, a larger effective photon–photon interaction is achievable. We derive from the
energy (42) the following equations for the variational parameters

ᾱx =
1

ᾱ3
x

+
g̃λN

2πᾱ2
xᾱy

, (44)

in the x-direction and for the y-direction we have

ᾱy =
1

ᾱ3
y

+
g̃N

2πλᾱxᾱ2
y

. (45)

Figure 5(a) shows a numerical solution of the coupled equations (44) and (45) for the experimentally
relevant parameters N = 104, g̃K = 10−8 and g̃T = 10−4. We see also here, that for increasing trap-aspect
ratio the variational parameter ᾱy in the squeezed direction attends the value 1, implying the interaction in
this direction to be less relevant. Secondly, we note the monotonous increase of the variational parameter in
the x direction in contrast to the previous results indicating the absence of a saturation effect. Therefore,
larger condensate widths and, thus, larger effective photon–photon interactions are reachable. Moreover,
also here we perform a numerical evaluation of the original equations (1) and (2) as above, which perfectly
agrees with the evaluation of the variational equations (44) and (45).

For increasing trap-aspect ratio λ we note in (45) that the interaction term vanishes. Taking
approximately ᾱx ≈ 1 and ᾱy ≈ 1 again reveals the 1D criterion (27). For evaluating the effective 1D
behaviour we stay as above with the approximation ᾱy ≈ 1 and insert this into equation (44). We end up
with

ᾱ4
x ≈ 1 +

g̃λN

2π
ᾱx. (46)
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Figure 5. (a) Variational parameters from the coupled equations (44) and (45) for experimentally relevant parameters N = 104,
g̃K = 10−8 and g̃T = 10−4. The green (red) line shows the variational parameter ᾱx (ᾱy), whereas the crosses indicate the
corresponding numerical evaluation of equations (1) and (2). The dashed line depicts the variational parameter αx using the
potential (19). (b) Effective 1D interaction strength (47) for the potential (40) (orange) compared to the effective 1D interaction
strength (30) for the potential (19) (blue).

Thus, comparing (A.6) with (46) yields for the effective 1D interaction strength in the current crossover
setting governed by the potential (40) a linear increase with the trap-aspect ratio

¯̃g1D(λ) =
g̃λ√
2π

. (47)

As already mentioned in the beginning of this section, indeed, no saturation regime for the thermo-optic
interaction is observed in this setting and, consequently, even larger effective interaction constants can be
achieved. A comparison of the interaction strength (47) with the previously derived interaction strength
(30) is shown in figure 5(b). Whereas the interaction strength (30) saturates for larger anisotropies the new
interaction strength (47) grows linearly for all values of the trap-aspect ratio.

5. Summary

In this paper we have shown how the ground state of a phBEC changes during the dimensional crossover
from 2D to 1D. Our main focus in this investigation was the behaviour the effective photon–photon
interaction strength in the crossover in order to make effects like superfluidity accessible in experiments. We
have found that the effective photon–photon interaction strength increases through the crossover. However,
we have shown that the thermo-optic interaction can only be increased up to a factor λdiff/

√
2π, cf

section 3.3. The deeper physical reason behind this finding is that for large enough trap aspect ratio a large
amount of energy is carried away by the heat diffusion from the region occupied by the condensate and
cannot contribute to the interaction anymore. Contrarily to that, the Kerr interaction increases linearly with
the trap aspect ratio such that for a large trap anisotropy, which is presumably not achievable in current
experiments, the Kerr interaction gives the leading interaction effect. Therefore, we have shown that the
effective photon–photon interaction may be increased by more than an order of magnitude compared to
the currently available experiments in 2D. We also work out a complementary dimensional crossover
scenario, where an additional loosing of the confinement of the second dimension results in a linear growth
of the effective 1D interaction constant by more than an order of magnitude. In conclusion, we show that
the behaviour of the condensate in the effective 1D limit depends on the details of how the dimensional
crossover is performed concretely.
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Appendix A. 1D Gross–Pitaevskii equation

In order to compare the results from the dimensional crossover to the exact 1D scenario, we review in this
section the steady state of a one-dimensional Gross–Pitaevskii equation with harmonic trapping potential.
Thus, we have to solve

μψ =

(
−�

2∇2

2m
+

mΩ2

2
x2 + g1D|ψ|2

)
ψ, (A.1)

with the corresponding functional

E1D[ψ,ψ∗] =
�

2

2m

∫
dx |∂xψ|2 +

mΩ2

2

∫
dx x2|ψ|2 + g1D

2

∫
dx|ψ|4. (A.2)

In order to obtain an approximate solution, we use a Gaussian ansatz function

ψ =

√
N√
πlα

e−x2/(2l2α2), (A.3)

where l =
√
�/(mΩ) stands for the oscillator length and α represents the dimensionless variational

parameter. Inserting ansatz (A.3) in the energy functional (A.2) yields for the energy

E1D =
�Ω

2

(
1

2α2
+

α2

2
+

g̃1DN√
2πα

)
, (A.4)

where we define the dimensionless 1D interaction strength [30, section 15.3.2]

g̃1D =
g1Dml

�2
. (A.5)

Extremising (A.4) with respect to the dimensionless width α, we obtain the algebraic equation

α4 = 1 +
Ng̃1D√

2π
α. (A.6)
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