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Abstract
Photon Bose–Einstein condensates are characterised by a quite weak interaction, so they behave
nearly as an ideal Bose gas. Moreover, since the current experiments are conducted in a
microcavity, the longitudinal motion is frozen out and the photon gas represents effectively a
two-dimensional trapped gas of massive bosons. In this paper we focus on a harmonically
confined ideal Bose gas in two dimensions, where the anisotropy of the confinement allows for a
dimensional crossover. If the confinement in one direction is strong enough so that this squeezed
direction is frozen out, then only one degree of freedom survives and the system can be considered
to be quasi-one dimensional. In view of an experimental set-up we work out analytically the
thermodynamic properties for such a system with a finite number of photons. In particular, we
focus on examining the dimensional information which is contained in the respective
thermodynamic quantities.

1. Introduction

The question of Bose–Einstein condensation in lower dimensions got already tackled quite early in the
post-war era of physics. Soon it was found out that in the case of lower dimensional systems without
trapping potential no long-range order can emerge [1, 2] and, thus, no Bose–Einstein condensation in such
systems is possible. Later on in the early 1990s but prior to the experimental realisation of Bose–Einstein
condensates (BECs), the authors of reference [3] worked out that, with the aid of an external trapping
potential, the excited states of lower-dimensional ideal Bose gases can saturate, meaning that Bose–Einstein
condensation is possible, whereas in three spatial dimensions this is also possible for the non-trapped case.
In the thermodynamic limit they showed for a trapping potential, which is stronger confining than a box in
the sense of a monomial spatial dependence ∼xα, that a condensation in 2D can occur, whilst in a 1D
setting a potential more confining than a quadratic potential is necessary. Soon after this a full quantum
mechanical follow-up study [4] revealed that for the harmonically trapped 1D-Bose gas with a finite
number of particles BEC is possible. Furthermore, reference [5] generalised the semiclassical ansatz from
reference [3] and showed, that these improved results agree with the corresponding finite-size results from
[4]. After the experimental realisation of BECs [6, 7] naturally the question came up, how to achieve
systems with an effective dimension lower than three.

In the experimental work of reference [8] the question of the effective dimensionality of the system is
reduced to a comparison of different length scales, which are in a 3D axially symmetrically trapped Bose gas
the in-plane radius, the axial width, the scattering length, and the healing length. A system is effectively 2D,
if the healing length is larger than the axial width, and effectively 1D, if the healing length is larger than the
in-plane radius with the axial width being still larger than the healing length. As the healing length is
inversely proportional to the square root of both the density and the scattering length, one can control the
effective dimension either by changing the density, as is done in reference [8], or by changing the
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interaction strength itself via a Feshbach resonance [9]. Nowadays, harmonically trapped 1D and 2D
condensates can not only be found in atomic systems [10] but also in condensates of light created in
1D-fiber cavities [11].

Another possibility of tuning the effective dimension of a system is to modify the kinetic energy in a
certain direction. This can be achieved in lattice systems by changing the hopping matrix amplitude, e.g. by
changing the lattice depth in a certain direction. One possible experimental realisation is to use coupled 2D
BECs in order to perform a crossover from 2D to 3D [12]. A more recent experiment [13], which is
described by the theoretical works [14, 15], consists of 2D arrays of coupled 1D Bose gases. Decreasing the
2D lattice depth yields an increase of the hopping amplitude and thus gives rise to a dimensional crossover
to higher dimensions.

In the following, however, we dedicate our discussion for the sake of concreteness on photon BECs as
realised in reference [16–18]. As these kinds of experiments are conducted in a microcavity, the direction
along the optical axis is already frozen out, since it corresponds to a standing wave along this very direction.
Therefore, these systems are intrinsically two-dimensional. On the one hand experiments have found an
effective photon–photon interaction [16, 19], which is explained by a thermo-optic effect, and also
theoretical investigations [20–22] have revealed the influence of this kind of interactions on the photon
BEC. Contrarily to that experimental measurements have also figured out that the thermodynamical
behaviour of this system is not affected by this kind of interaction [23]. In this respect the photon BEC can
be seen as a realisation of an ideal Bose gas. Thus, the question remains how to define and how to
determine the effective dimension of the gas when changing from an isotropic harmonic confinement to a
highly anisotropic confinement giving rise for a dimensional crossover from a two-dimensional gas to a
quasi-1D gas. To this end, we work out how the thermodynamic quantities change as a function of the
trap-aspect ratio. In particular, we carefully analyse not only the thermodynamic limit but also the
respective finite-size corrections similarly to a corresponding seminal study in 3D [24], whose predictions
where experimentally confirmed despite of systematic measurement errors for thermodynamic quantities in
[25]. As we find in this work that these finite-size corrections increase by lowering the dimension of the
system, we expect that they can also be confirmed in the dimensional crossover of photon BECs.
Furthermore, in this setting the detection of finite-size effects is even more straight-forward than for atomic
BECs, as these effects are not masked by interaction effects. As so far photon BEC experiments have only
been performed in an isotropic setup, this theoretical paper paves the way towards future experiments with
strongly anisotropic harmonic trapping potentials. Such potentials can be achieved, for instance, by
ellipsoidally grinding the mirrors or by heat induced mirror surface delamination [26, 27] which allows,
however, only for traps with small anisotropies due to the limited resolution. Thus, in view of achieving
stronger anisotropies it is more promising to use direct laser writing [28–30] or focused ion beam milling
[31] as a microstructuring technique, as it is then possible to create potential landscapes with spatial
variations of the order of the wavelength of the photons.

This paper is organised as follows. Section 2 introduces the setting and provides an analytical expression
for the thermodynamic potential of an ideal Bose gas at the dimensional crossover from 2D to 1D.
Equipped with this, section 3 specialises to the photon gas and derives expressions for the critical particle
number as well as for the condensate fraction. Afterwards, the specific heat of the photon gas is discussed in
section 4, which is finally used to define the effective dimension of the system in section 5.

2. Grand-canonical potential

At first we analyse the thermodynamic properties of an ideal Bose gas at the dimensional crossover between
2D and 1D. To this end we consider a two-dimensional harmonic trap for bosons, where the trapping
frequency in y-direction can be altered. Thus, with the quantum numbers j, n in the respective dimensions
the energy levels are given by:

Ejn(λ) = �Ω

(
j + λn +

1 + λ

2

)
, (1)

where Ω stands for the trapping frequency in x-direction and λ = Ωy/Ω denotes the trap-aspect ratio. We
remark, that for a isotropic 2D oscillator, which we will call the 2D case in the following, we have λ = 1,
whereas the one-dimensional case is approached in the limit λ→∞. In this paper we always fix the
trapping frequency Ω in x-direction and increase the trap-aspect ratio λ, corresponding to a squeezing in
the y-direction. Intuitively, the gas can already be considered to be effectively one dimensional, if the energy
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spacing λ�Ω in y-direction is larger than the thermal energy kBT, which leads for the trap-aspect ratio to
the condition

λ > λ1D. (2)

Here we define the effective one-dimensional trap-aspect ratio λ1D, which depends on the temperature T of
the system and comprises the Boltzmann constant kB as well as the reduced Planck constant �:

λ1D =
kBT

�Ω
. (3)

Again we point out that regarding the experimental findings in [23] it is a very good approximation to
neglect the effective photon–photon interaction for discussing the thermodynamic properties of the photon
BECs.

Taking into account the energy levels (1), we have with the chemical potential μ, the inverse temperature
β = 1/(kBT), and the degeneracy g, which takes for photons the two polarisation degrees of freedom into
account, the grand-canonical potential [32]

Π = − g

β

∞∑
j,n=0

∞∑
k=1

e−β[Ejn(λ)−μ]k

k
, (4)

where we have used the series representation of the logarithm ln(1 + x) = −
∑∞

k=1(−x)k/k. Performing the
sum over the energy levels in the non-squeezed direction, which are labelled by j, allows us to write the
potential Π in the form of a dimensional expansion

Π = Π1D +ΔΠ(λ). (5)

Here the one-dimensional grand-canonical potential reads

Π1D = −g
�Ω

b
I (μ̃, b,−1) , (6)

where we introduced the dimensionless variables b = β�Ω and μ̃ = (1 + λ)/2 − μ/(�Ω) as well as the
auxiliary function

I(a, b, l) =
∞∑

k=1

kl e−abk

1 − e−bk
, (7)

cf reference [33]. The correction ΔΠ(λ) to the 1D potential, which takes the second dimension into
account, depends on the trap-aspect ratio λ via

ΔΠ(λ) = −g
�Ω

b

∞∑
n=1

I (μ̃+ λn, b,−1) . (8)

The auxiliary function I(a, b,−1) appearing in (6) and (8) is determined in appendix A in the form (A.16)
and (A.20), respectively. Therefore, we find for the total grand-canonical potential analytically:

Π = −g
�Ω

b

{
f (μ̃) +

1

b
ζ2

(
e−μ̃b

)
+

1

2
ζ1

(
e−μ̃b

)
+

b

12
ζ0

(
e−μ̃b

)}

− g
�Ω

b

{
1

λb2
ζ3

(
e−(μ̃+λ)b

)
+

1

2λb
ζ2

(
e−(μ̃+λ)b

)
+

1

12λ
ζ1

(
e−(μ̃+λ)b

)
+

1

λ

∫ ∞

μ̃+λ

dy f (y)

+
1

2

[
f (μ̃+ λ) +

1

b
ζ2

(
e−(μ̃+λ)b

)
+

1

2
ζ1

(
e−(μ̃+λ)b

)
+

b

12
ζ0

(
e−(μ̃+λ)b

)]}
+ · · · . (9)

Here, ζl(x) =
∑∞

k=1xk/kl denotes the polylogarithm [34] and f (μ̃) is defined in equation (A.17). The dots
indicate here and in the following terms of order b2 and higher. We remark, that the one-dimensional limit
is given by λ→∞, which corresponds to the vanishing of the last two lines in equation (9).

In the following we discuss the thermodynamic consequences of the grand-canonical potential (9) for a
general ideal Bose gas, but for illustrating the functional dependencies of the thermodynamic quantities we
specialise these general results to the photon BEC experiments in Bonn [16, 23]. There, we have to take into
account the two polarisational degrees of freedom of the photons resulting in the degeneracy g = 2. For
typical values, i.e. T0 = 300 K and Ω = 2π × 40 GHz, the system can be considered to be effectively one
dimensional, if the trap-aspect ratio fulfills condition (2) with λ1D ≈ 156. Moreover, since the photon BEC
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experiment is performed at room temperature T0 [16, 23], the approximation of small b is well fulfilled, as
we have then b0 ≡ �Ω/kBT0 ≈ 6 × 10−3. Note, that the same order of magnitude is also obtained for the
atomic BEC case, when taking the experimental parameters from [7].

3. Particle number

By calculating the derivative N = −∂Π/∂μ, we find from the potential (9) for the total particle number

N = g

{
−1

b
f ′(μ̃) +

1

b
ζ1

(
e−μ̃b

)
+

1

2
ζ0

(
e−μ̃b

)
+

b

12
ζ−1

(
e−μ̃b

)

+
1

λb2
ζ2

(
e−(μ̃+λ)b

)
+

1

2λb
ζ1

(
e−(μ̃+λ)b

)
+

1

12λ
ζ0

(
e−(μ̃+λ)b

)
+

1

λb
f (μ̃+ λ)

+
1

2

[
−1

b
f ′(μ̃+ λ) +

1

b
ζ1

(
e−(μ̃+λ)b

)
+

1

2
ζ0

(
e−(μ̃+λ)b

)
+

b

12
ζ−1

(
e−(μ̃+λ)b

)]}
+ · · · . (10)

This explicit expression allows to determine the critical particle number, the critical temperature and,
likewise, the condensate fraction as will be derived in sections 3.1–3.3, respectively. Already here, we
mention that we will indeed find a critical particle number and critical temperature in the 1D case in
accordance with references [4, 5, 33, 35]. For further detail, we refer to the discussion at the beginning of
section 3.2.

3.1. Critical particle number
In order to calculate the critical particle number, we consider the deep condensate limit μ̃→ 0. We remark,
that this limit corresponds to the order parameter approach, as worked out in reference [33], where the
ground-state particle number is used as an order parameter for the BEC phase transition and only the
excited states are treated in a thermodynamic way. This approach corresponds to describing the Bose gas in
the thermodynamic limit. In the present work, however, we treat all states, including the ground state,
thermodynamically as this description is closer to the experimental situation, where the system is finite.
With this the particle number (10) can be written in the form

N ≈ N0 + Nc, (11)

with the ground-state particle number

N0 =
g

eμ̃b − 1
, (12)

which acquires in the limit μ̃→ 0 the form N0 ≈ g/(μ̃b), and the critical particle number

Nc = g
γ − ln(b)

b
+ g

{
1

λb2
ζ2

(
e−λb

)
+

1

2λb
ζ1

(
e−λb

)
+

1

12λ
ζ0

(
e−λb

)
+

1

λb
f (λ)

+
1

2

[
−1

b
f ′(λ) +

1

b
ζ1

(
e−λb

)
+

1

2
ζ0

(
e−λb

)
+

b

12
ζ−1

(
e−λb

)]}
+O

(
(μ̃b)0

)
, (13)

with the Euler–Mascheroni constant γ ≈ 0.577. Note that, due to the limit process involved, this result is
only accurate up to order O

(
(μ̃b)0

)
, but it is still accurate to all orders of λb. Moreover, we note the same

structure as for the grand-canonical potential in equation (5), namely the bare one-dimensional quantity in
the first line gets modified by the terms in the other two lines, which depend on the trap-aspect ratio and
describe the influence of the second dimension, see figure 1(a). Note that the first line in (13) follows from
the first line in equation (10) by applying the Robinson formula [36],

ζl

(
e−a

)
=

(−a)l−1

(l − 1)!

{
l−1∑
k=1

1

k
− ln a

}
+

∞∑
k=0

k	=l−1

(−a)k

k!
ζ(l − k), (14)

where ζ(l) denotes the Riemann-ζ function and a > 0, in order to expand the occurring polylogarithms
with positive integer index l and by using for the corresponding polylogarithms with negative index the
representation

ζ−l

(
e−a

)
=

1

(1 − e−a)l+1

l−1∑
k=0

〈
l

k

〉
e−(l−k)a (15)

with the Eulerian numbers
〈

l
k

〉
[37].
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Figure 1. (a) Critical particle number (13) at room temperature T0 for varying trap-aspect ratio (blue/solid line). The green
(dashed dotted) line illustrates the 1D limit (16). (b) Critical particle number (13) for different trap-aspect ratios λ as a function
of the temperature T normalised to the room temperature T0. The blue (solid) line represents the isotropic 2D case, i.e. λ = 1,
the orange (dashed) line is for λ = kBT0/�Ω ≡ λ1D, and the green (dash–dotted) depicts the 1D limit, i.e. λ→∞.

From (13) we find for the 1D critical particle number

Nc,1D = g
kBT

�Ω

[
γ − ln

(
�Ω

kBT

)]
. (16)

Near two dimensions, meaning small anisotropy λ 
 1/b, the critical particle number (13) reads

Nc,≈2D = Nc,1D + g

{
ζ(2)

λ(�Ωβ)2
+

1

2�Ωβ

[
ln(�Ωβ) +

lnΓ(λ) − ln(2π�Ωβ)

λ
− ψ0(λ)

]}
, (17)

where Γ(x) =
∫∞

0 dt tx−1 e−t denotes the Γ-function and ψ0(x) = ∂x lnΓ(x) is the digamma function. In
two dimensions, i.e. λ = 1, this reduces to

Nc,2D = Nc,1D + g

{
ζ(2)

(
kBT

�Ω

)2

+
kBT

2�Ω
[γ − ln(2π)]

}
. (18)

At first, a comparison with reference [33] shows that equation (16) is exact, whereas the corresponding
expression for the two-dimensional critical particle number (18) contains the last term in addition. This
difference is solely due to our approach, where we calculate at first the one-dimensional quantities and
approximate afterwards the corresponding two-dimensional ones. As the leading order of the relative
deviation of our result (18) compared to the corresponding one in references [33, 38] is of the order of the
magnitude of b itself, the difference for the experimental parameter regime, i.e. room temperature
T0 = 300 K and Ω = 2π × 40 GHz, is of the order b0 ≈ 6 × 10−3 and, thus, negligible for all practical
purposes.

Already here, we also encounter a qualitative difference between the two special cases of dimensions. In
1D the critical particle number (16) depends linearly on the temperature, apart from the logarithmic term,
whereas in 2D the leading order in equation (18) is quadratic in the temperature. In figure 1(b) we plot the
critical particle number (13) as a function of the temperature for different trap-aspect ratios λ. Neither in
the 2D case, λ = 1, nor in the 1D case, which amounts to the limit λ→∞, the functional dependence of
the critical particle number on the temperature changes. However, we note the different exponents one and
two in accordance with (16) and (18), which can be interpreted as a sign for the corresponding dimension.
For an intermediate trap-aspect ratio of λ = kBT0/(�Ω) ≡ λ1D the temperature dependence changes
qualitatively for T ≈ T0. For smaller temperatures the curve coincides with the 1D curve, while for larger
temperatures the orange curve gets parallel to the 2D curve. This means, that in the former case the system
behaves effectively one dimensional, whereas in the latter case the system reveals a two-dimensional
behaviour. This observation completely agrees with the criterion (2) for quasi one-dimensionality.

3.2. Critical temperature
Finally, we also solve the critical particle number N(Tc) for the critical temperature Tc in the respective
dimension. In 1D, we obtain from directly inverting equation (16) the implicit equation

Tc,1D =
�Ω

gkB

N

γ − ln(�Ω/kBTc,1D)
. (19)
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In [3] it is derived, that no Bose–Einstein condensation is possible for a harmonic confining potential in
one spatial dimension, as the critical temperature tends to zero in this limit. In contrast to that, we find in
(19) a finite critical temperature and, thus, the possibility for a BEC. The difference between the approach
in [3] and our approach is, that the former work is performed entirely in the thermodynamic limit, whereas
we always assume a finite system size. A further difference is that the approach in [3] relies on the density of
states, whereas we directly evaluate the appearing sum in (4). Therefore, on a mathematical basis the
divergent value ζ(1), which is obtained by [3] in the limit of a harmonic trapping potential, is in our
calculation resolved by the logarithm appearing in (19) due to our finite-size ansatz. Furthermore, we
emphasise that our result is also obtained in [33], where an order-parameter approach has been used, and
similar results, which are also based on a full thermodynamic approach, but with a less systematic
application of the Euler–Maclaurin formula, are found in [35]. Finally, we remark that due to this finite-size
behaviour, we will refer to the one-dimensional condensed phase still as BEC in accordance with references
[4, 5, 8].

In order to figure out an approximate solution to the transcendental equation (19) we iterate (19) once
and neglect the further logarithmic dependencies. For large photon numbers N we have then a leading term
of the critical temperature in 1D, which is already determined by an inverse logarithmic dependence

TL.T.
c,1D ≈ �Ω

gkB

N

ln(N/g)
. (20)

We remark, that this critical temperature in 1D can be derived by a generalisation of the semiclassical
approach used in [3] as has been shown in [5] and is backed up experimentally, e.g. [10, 11]. However, we
emphasise here, that the thermodynamic limit relies on a finite Tc. Thus, according to the numerator of
(20) this implies ΩN = const. Therefore, from the denominator of (20) we have then Tc → 0 in the limit
N →∞. With this we rederive the results of [3] from our finite-size considerations in accordance with [5].
Consequently, in the thermodynamic limit, indeed, no Bose–Einstein condensation is possible at any finite
temperature. However, in the realistic experimental settings, where the particle number N may be large but
finite, Bose–Einstein condensation can always be observed in a one-dimensional harmonic trap.

The finite-size corrections we define by

ΔTF.S.
c,• =

Tc,• − TL.T.
c,•

TL.T.
c,•

, (21)

where the bullet stands for the corresponding dimension. In 1D we have for the finite-size corrections (21)

ΔTF.S.
c,1D =

ln(γ) − γ

ln(N/g)
, (22)

which is also determined by a logarithm.
In nearly two dimensions we find by iterating equation (17) once for bλ 
 1 as leading term

TL.T.
c,≈2D =

�Ω

kB

√
λN

gζ(2)
, (23)

which reduces in 2D to

TL.T.
c,2D =

�Ω

kB

√
N

gζ(2)
. (24)

The finite-size corrections (21) near 2D are given by

ΔTF.S.
c,≈2D = − λ

4ζ(2)

√
gζ(2)

λN

⎡
⎣2γ − ψ0(λ) +

lnΓ(λ) − ln
(

2π
√

gζ(2)/(λN)
)

λ
− 1

2
ln

(
gζ(2)

λN

)⎤⎦ (25)

simplifying in 2D to the form

ΔTF.S.
c,2D = − 1

4ζ(2)

√
gζ(2)

N

[
3γ − ln

(
2π

gζ(2)

N

)]
. (26)
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Figure 2. Finite-size corrections (21) to the critical temperature in 2D (blue), for finite trap-aspect ratio λ = 10 (orange,
dashed) and in the 1D case λ→∞ (green, dashed–dotted) according to (22), (25) and (26), respectively.

Comparing equations (20) and (24) we note the following two differences between the two limiting cases of
the dimension. At first, in 1D the total particle number contributes with the exponent one to the critical
temperature, whereas in 2D it appears with a square root. A second difference between 1D and 2D is the
occurrence of the logarithm. In 1D the logarithm shows up already in the leading term (20) of the critical
temperature, while in 2D the logarithm determines the first finite-size correction (26).

In figure 2 we compare the contribution of the finite-size corrections of the critical temperature in 1D
(22) with the corrections for the near 2D and 2D critical temperature (25) and (26), respectively. We see
directly, that in two dimensions the finite-size corrections are one order of magnitude smaller than in the
1D case. Thus, we deduce that when performing the crossover from 2D to 1D the importance of the
finiteness of the system increases, as the finite-size corrections increase.

3.3. Condensate fraction
In this section we calculate the condensate fraction N0/N, where N0 is the ground-state particle number, in
the deep condensate limit, i.e. for N � Nc. Thus, using equation (11) we have

N0

N
≈ 1 − Nc

N
. (27)

In 1D we find for the fraction Nc/N by using the critical particle number (16)

(
Nc

N

)
1D

=
T

Tc

[
1 − ln

(
T/Tc

)
γ − ln(�Ω/kBTc)

]
, (28)

so we have in leading order a linear temperature dependence. In contrast to this, when we approach two
spatial dimensions, using the corresponding expression (17), we find in the leading order a quadratic
dependence on the temperature

(
Nc

N

)
≈2D

=

(
T

Tc

)2

+
1

2ζ(2)

√
gζ(2)

N

⎧⎨
⎩
[

T

Tc
−
(

T

Tc

)2
]

×

⎡
⎣−1

2
ln

gζ(2)

N
+

ln Γ(λ) − ln
(

2π
√

gζ(2)/N
)

λ
− ψ0(λ) + 2γ

⎤
⎦+

T

Tc

(
1 +

1

λ

)
ln

T

Tc

⎫⎬
⎭ .

(29)

In the two-dimensional limit equation (29) reduces to

(
Nc

N

)
2D

=

(
T

Tc

)2

+

√
gζ(2)

N

{[
T

Tc
−
(

T

Tc

)2
]

3γ − ln(2πgζ(2)/N)

2ζ(2)
− T ln(T/Tc)

Tcζ(2)

}
. (30)

Figure 3 shows a numerical calculation of the temperature dependence of the condensate fraction for an
experimentally realistic number of N = 100 000 photons for different values of the trap-aspect ratio λ.
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Figure 3. Condensate fraction N0/N for fixed particle number N = 100 000. The blue (solid) line represents the isotropic 2D
case, i.e. λ = 1, the orange (dashed) line is for λ = 500, and the green (dash–dotted) line shows the 1D limit λ→∞. The red
crosses are experimental values with the corresponding errors for the 2D case [39].

The numerical calculation of the condensate fraction is done as follows. At first, we invert the particle
number equation (10) in order to extract the dimensionless chemical potential μ̃. We then use this value to
calculate the ground-state population N0 and, thus, the condensate fraction. We note that the isotropic 2D
curve is in good agreement with the experiment of reference [39]. The discrepancy in the thermal phase is
attributed to the finite resolution of the experimental apparatus. Moreover, we observe the inverted
parabolic temperature dependence (30). Also in the 1D case the curve agrees with the linear temperature
dependence predicted in (28). For the curve with an intermediate trap-aspect ratio of λ = 500 the curve
shows characteristics of both the 1D curve and as the temperature increases also of the 2D curve, meaning
that here the effective dimension of the system changes from 1D to 2D.

To conclude this discussion, we remark that in the experimental situation of photon BECs the
temperature is always fixed to the room temperature T0, but the usual way for measuring thermodynamic
quantities is to change the temperature T. So far this problem has been experimentally circumvented by
varying the particle number and using that for integer dimensions D = 1, 2 an analytic correspondence is
available in the form T/Tc = (Nc/N)1/D [23]. Thus, we see already here, that this procedure is not well
suited for a dimensional crossover, where one deals with non-integer dimensions. The second problem is
that due to the finite system size also the thermodynamic quantities change with the particle number N.
Instead of this, we propose to change the parameter b via the trapping frequency Ω. This is possible, since
from its very definition we have bc/b = T/Tc and also bc/b = Ωc/Ω.

Finally, we estimate the experimentally achievable regions of T/Tc in photon BECs for realistic total
particle numbers of Nmin ∼ 102 up to Nmax ∼ 105 in both 2D and 1D. We find in 2D that the order of
magnitude of the fraction T/Tc ranges from 0.1 up to 10, whereas in 1D we have the range from 0.1 to 1. As
all calculated quantities depend smoothly on the trap-aspect ratio, we expect that for a certain value of the
trap-aspect ratio the reachable values of T/Tc lie in between the corresponding 2D and 1D ratio, such that
the phase transition is always observable.

4. Specific heat

In the following we calculate the specific heat CN for a constant particle number N from the internal energy
U = Π+ TS + μN [32], where S denotes the entropy, according to

CN =
∂U

∂T
+

∂U

∂μ

(
∂μ

∂T

)
N

, (31)

where the second term takes the condition of a fixed particle number into account. However, due to the
complexity of the resulting formula, we restrict the discussion to the deeply condensed case at first. In this
approximation we find for the internal energy

U ≈ E0(N0 + Nc) + �ΩλΔN + g
�Ω

b

[
f ′(λ)

2
− f (λ)

λ

]

+g�Ω

[
ζ(2)

b2
− 1

2b
+

2

λb3
ζ3

(
e−λb

)
+

λ+ 1

2λb2
ζ2

(
e−λb

)
+

1

24
ζ0

(
e−λb

)]
,

(32)
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Figure 4. Temperature dependence of specific heat CN for the particle number N = 100 000. The blue (solid) line covers the
isotropic 2D case, i.e. λ = 1, the orange (dashed) line is for λ = 2000, the pink (dotted) line represents λ = 500 000, and the
green (dash–dotted) line is for λ→∞. The red crosses are experimental values with the corresponding errors for the 2D case
from reference [23].

where ΔN = N − N1D. We note, that in this limit we have ∂μ/∂T ≈ 0, so the specific heat in the leading
order of 1/b reads

CN ≈ gkB

[
2ζ(2)

b
+

6

λb2
ζ3

(
e−λb

)
+

3λ+ 1

b
ζ2

(
e−λb

)]
. (33)

Therefore, taking into account equation (19), in the one-dimensional limit the specific heat is given by

CN ,1D = NkB
2ζ(2)

γ − ln(�Ω/kBTc)

T

Tc
, (34)

and in leading order in b near 2D we obtain from equation (23) together with equation (25)

CN ,≈2D ≈ 6λNkB

(
T

Tc

)2
ζ(3)

ζ(2)

⎧⎨
⎩1 − 1

2ζ(2)

√
gζ(2)

λN

×

⎡
⎣2γ − ψ0(λ) −

ln Γ(λ) − ln
(

2π
√

gζ(2)/λN
)

λ
− 1

2
ln

gζ(2)

λN

⎤
⎦
⎫⎬
⎭ . (35)

In two dimensions equation (35) reduces to

CN ,2D ≈ 6NkB

(
T

Tc

)2
ζ(3)

ζ(2)

{
1 − 1

2ζ(2)

√
gζ(2)

N

[
3γ − ln

(
2π

gζ(2)

N

)]}
. (36)

After deriving these analytic formulas in the deeply condensed case, we discuss now the obtained results and
compare them with the experimental results of reference [23]. In figure 4 we plot the full specific heat for
different values of the trap-aspect ratio λ as a function of the temperature T. In the two-dimensional case
we find the expected λ-like transition with the high-temperature limit of CN = 2NkB, where the latter is in
accordance with the Dulong–Petit law. Note, that in our case of a finite system the specific heat does not
undergo a jump at the critical point as it occurs in the thermodynamic limit [33]. Instead, it remains a
continuous function. Furthermore, we point out that in 1D the specific heat is always a continuous function
at the phase transition which explicitly includes the thermodynamic limit, cf [33]. However, as we increase
the trap-aspect ratio, we see that this characteristic λ-shaped behaviour near the critical temperature Tc

gradually washes out and a plateau emerges just above the critical temperature. This plateau has the value
CN = NkB and, thus, resembles the one-dimensional Dulong–Petit law, meaning that here the system,
indeed, behaves as one-dimensional. By further increasing the temperature the system approaches again the
2D Dulong–Petit law. However, the dotted line in figure 4 is slightly above CN = NkB since here the system
undergoes the crossover from 2D to 1D producing the corresponding λ-like form near the crossover
temperature. The reason for the described behaviour is as follows. The temperature can be seen as
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Figure 5. (a) Phase diagram of the ideal Bose gas at the dimensional crossover by plotting colour coded the specific heat (33) as a
function of both the temperature and the trap-aspect ratio. (b) Effective dimension of the BEC phase according to the definition
(37). In both plots the solid white line shows the critical temperature following from inverting (13), whereas the dashed white
curve depicts the criterion (2) of being quasi 1D. Both calculations have been performed for N = 1000 particles.

a measure for which states can be occupied, namely as the temperature raises also states with higher
energies are populated. Therefore, we can invert the 1D condition (2) and define for a fixed trap-aspect
ratio λ the effective 1D temperature T1D = λ�Ω/kB. We note, that the system is in the 1D regime if
T < T1D, as here the occupation in the excited states in the squeezed direction is exponentially suppressed,
and otherwise in the 2D regime, since then the thermal energy is large enough to have also states in the
squeezed direction populated.

A similar behaviour is well known in the literature, e.g. for the thermodynamics of molecular gases [32].
At low temperatures only the translational degrees of freedom of the molecules can be thermally excited
and, thus, only those can contribute to the specific heat. Increasing the temperature above a certain
threshold allows the molecules to rotate such that these degrees of freedom additionally contribute to the
specific heat. Increasing the temperature even further allows also the vibrational modes of the molecules to
be thermally excited.

We note the different behaviour of the specific heat in the low-temperature limit, which is worked out in
equations (34) and (36). Thus, in contrast to the condensate fraction and the critical particle number, using
the specific heat can be instrumental to define and to determine the effective dimension of the system both
in the low and the high temperature limit.

5. Phase diagram and effective dimension

Finally, we analyse how the phase diagram of the system changes as a function of the trap aspect ratio λ and
the temperature T by plotting the specific heat CN in figure 5(a). However, due to numerical reasons we are
forced to use a small particle number of N = 1000 photons, as otherwise we are not able to cover such a
large range of parameters λ and kBT/�Ω. At first we note that the phase transition from the BEC to the
thermal phase happens at the critical temperature Tc, which is calculated by inverting the critical photon
number (13) with the limiting cases (19) and (24). Moreover, in the thermal phase, we can directly read off
the effective dimension of the system according to the respective Dulong–Petit law, as is explained at the
end of section 4. The dashed white line depicting the lower bound λ1D = kBT/�Ω of criterion (2),
discriminates between the different dimensional behaviour. However, therefrom we can only learn about the
effective dimension in the thermal phase. From equations (34) and (36), though, we read off, that in the
condensed regime the effective dimension follows from the polynomial dependency of the specific heat on
the temperature. Therefore, we suggest to define as the effective dimension in the BEC phase the
double-logarithmic derivative

dBEC = − 1

NkB

∂ ln CN

∂ ln b
. (37)

Figure 5(b) shows the corresponding results as a function of both the temperature T and the trap aspect
ratio λ. We note that in the thermal phase this definition yields a constant value of 0 due to the
Dulong–Petit law except right at the crossover from 2D to 1D. Thus, this definition cannot be used in the
thermal case to determine the effective system dimension. In the BEC phase, however, we find values
between 1 and 2 according to the limiting cases deduced from equations (34) and (36). Near the phase
transition, however, this definition fails as here the quantitative behaviour of the specific heat changes
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Figure 6. Effective dimension d of the ideal Bose gas at the dimensional crossover as defined by (38) as a function of both the
temperature and the trap-aspect ratio. The solid white curve shows the critical temperature obtained by inverting (13), whereas
the dashed white line indicates the quasi-1D criterion (2). The calculation has been performed for N = 1000 particles.

yielding e.g. negative values of dBEC. The precise value of the BEC dimension is determined by the
temperature and trap-aspect ratio. We see that, for an increasing trap-aspect ratio, the system behaves,
indeed, quasi one-dimensional.

Summarising the two observations from figure 5, we suggest to define the effective dimension of the
system by

d =

{
CN/(NkB), in the thermal phase,

dBEC, in the BEC phase,
(38)

where dBEC is defined in (37). With this we are able to describe the effective dimension of the system in both
the Bose-condensed and the thermal regime. In figure 6 we plot the definition (38) in dependence of both
the temperature and the trap aspect ratio. However, as figure 6 shows, the definition (37) yields a
non-continuous effective dimension at the phase boundaries as here the slopes of the specific heat change.
This can be read off from the reddish area in the plot. Nevertheless, we also note, that the effective
dimension of the system changes from 2D to effective 1D in agreement with the criterion (2). We remark,
that in the crossover region both the temperature and the trap-aspect ratio determine the effective
dimension of the system. Finally, we point out that trap-aspect ratios up to λ ∼ 103 are experimentally
realisable, which is due to the expected resolution of the mirror fabrication method [40]. Consequently,
according to figure 6 the onset of the effective 1D region is reachable at room temperature, where we have
kBT0/�Ω ≈ 160.

6. Conclusions

In this paper we present an analytical description of the dimensional crossover from 1D to 2D for an ideal
Bose gas in terms of a dimensional expansion, see equation (5). We find the same structure for all
investigated thermodynamic quantities, such as the critical particle number, the condensate fraction, and
the specific heat, namely that the 1D expression gets corrected by terms yielding the 2D result. Furthermore,
from the specific heat we are able to define an effective dimension d, given by equation (38), in both the
BEC and the thermal phase. This definition shows a change of the effective dimension, which is consistent
with the criterion (2). But we also note, that this definition has a minor drawback as it produces a
non-continuous behaviour of the effective dimension near the phase boundary, as can be seen in figure 6.
However, our results allow to determine the effective dimension of the system for a given temperature and
trap-aspect ratio. We especially focus on how to determine the effective dimension by examining the
polynomial dependency of the specific heat in the BEC case and by observing the Dulong–Petit law in the
thermal regime. We remark, that our calculational approach, which is based on an expansion in the
smallness parameter �Ω/(kBT), is especially suitable for photon gases, where this value is of the order of a
few per mille.

The present work could be extended to also determine the spatio-temporal behaviour of the correlation
function of the ideal Bose gas at the dimensional crossover, which has already been measured for an
isotropic two-dimensional photon gas [41]. Concerning the fact, that in the 2D photon BEC experiments a
retarded thermo-optic interaction is dominant, despite of an additional negligible contact interaction [16,
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22, 42], it is an interesting question, whether this is still true in the quasi-1D case. Moreover, for a more
realistic modelling of the experiments, one needs to include also the pump and the decay processes, as a
photon gas in a dye-filled microcavity is intrinsically an open system. A recent study [43] indeed shows that
due to the open-dissipative character of the system the higher correlation function shows a phase transition,
which does not exist in closed systems. In a second attempt one should also include the effective
photon–photon interaction, as it is known, that e.g. contact interactions increase along a dimensional
crossover. Another research direction would be to investigate in view of the dimensional crossover different
potential landscapes, such as potentials with arbitrary exponents, cf [3], or even anharmonic
potentials [44].
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Appendix A. Cutoff regularisation

The aim of this appendix is to work out the behaviour of the auxiliary functions I(a, b, l) defined in
equation (7) for integer l and a, b > 0 and also to provide a procedure allowing to approximate these
functions analytically. First we start with two recursion relations obeyed by the auxiliary functions. For
increasing the integer l we have

I(a, b, l + 1) = −1

b

∂

∂a
I(a, b, l), (A.1)

whereas decreasing l yields correspondingly

I(a, b, l − 1) = b

∫ ∞

a
dx I(x, b, l). (A.2)

Thus, from the analytical knowledge of one particular I(a, b, l∗) all other functions I(a, b, l) can be calculated
analytically.

A.1. Special case l∗ = 0
It turns out, that the case l∗ = 0 can be calculated analytically for small values of b. According to the
definition (7) we start with

I(a, b, 0) =
∞∑

k=1

e−abk

1 − e−bk
. (A.3)

In order to calculate expression (A.3), we follow reference [33] and perform an expansion for small values
of b. However, the first step is to include also the k = 0 term in the summation (A.3). As this is a divergent
term, we add and subtract the first three terms of the corresponding Laurent series. Note, that in reference
[33] only the first term of the Laurent series is introduced yielding an approximation up to O(b0). However,
here we need higher order terms for obtaining a converging result for the two-dimensional case. Thus, we
have

I(a, b, 0) =
∞∑

k=0

e−abk

(
1

1 − e−bk
− 1

bk
− 1

2
− bk

12

)
+

∞∑
k=1

e−abk

(
1

bk
+

1

2
+

bk

12

)
+O(b2). (A.4)
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In the first term we replace the summation by an integral using the Euler–Maclaurin formula for a smooth
function f(n)

∞∑
n=0

f (n) ≈
∫ ∞

0
dn f (n) +

1

2

[
f (0) + f (∞)

]
. (A.5)

Due to the construction of expression (A.4), all higher terms in the Euler–Maclaurin series (A.5) vanish
exactly. In the second term we recognise the polylogarithmic functions ζn(x) with n = −1, 0,+1. Thus, we
have

I(a, b, 0) =

∫ ∞

0
dk e−abk

(
1

1 − e−bk
− 1

bk
− 1

2
− bk

12

)

+
1

b
ζ1

(
e−ab

)
+

1

2
ζ0

(
e−ab

)
+

b

12
ζ−1

(
e−ab

)
+O(b2). (A.6)

Whereas in reference [33] the remaining integrals are solved by using a dimensional regularisation, we
introduce here an infrared cutoff Λ as the integrands are divergent for k → 0:

I(a, b, 0) = lim
Λ→0

∫ ∞

Λ

dk e−abk

(
1

1 − e−bk
− 1

bk
− 1

2
− bk

12

)

+
1

b
ζ1

(
e−ab

)
+

1

2
ζ0

(
e−ab

)
+

b

12
ζ−1

(
e−ab

)
+O(b2). (A.7)

First, we obtain ∫ ∞

Λ

dk (bk)n e−abk =
1

an+1b
Γ(n + 1, abΛ), (A.8)

where Γ(s, x) is the upper incomplete Γ function. For small Λ we find in leading order

Γ(0, abΛ) ≈ −γ − ln(abΛ)

b
, (A.9)

whereas the incomplete Γ functions with indices n � 1 simply reduce to the standard Γ functions:

Γ(n, abΛ) ≈ Γ(n), n � 1. (A.10)

In the remaining first integral of equation (A.7) we substitute x = e−bk and calculate by using the
incomplete beta function,

B(x; a, b) =

∫ x

0
dt ta−1(1 − t)b−1, (A.11)

the integral ∫ ∞

Λ

dk
e−abk

1 − e−bk
=

1

b
B(ebΛ; a, 0). (A.12)

This yields in the limit of small Λ

B(e−bΛ; a, 0) ≈ − ln(bΛ) − γ − ψ0(a). (A.13)

Inserting equations (A.9), (A.10) and (A.13) into equation (A.7) we finally have

I(a, b, 0) =
1

b

[
ln(a) − ψ0(a) − 1

2a
− 1

12a2

]
+

1

b
ζ1

(
e−ab

)
+

1

2
ζ0

(
e−ab

)
+

b

12
ζ−1

(
e−ab

)
+O(b2), (A.14)

which coincides with the result in reference [33], apart from the additional higher order terms. In the
following we calculate I(a, b,−1) from applying the recurrence relation (A.2). To this end we use the Stirling
formula [34],

ln Γ(z) ≈ z(ln z − 1) − 1

2
ln(2πz), (A.15)
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Figure A1. Relative error of analytical approximation of the one-dimensional sum (A.14) with respect to the numerical
evaluation of equation (A.3) (orange line). The blue line shows the relative error by using the approximation performed in
reference [33].

for regularising the upper integration limit in equation (A.2), and obtain

I(a, b,−1) = f (a) +
1

b
ζ2

(
e−ab

)
+

1

2
ζ1

(
e−ab

)
+

b

12
ζ0

(
e−ab

)
+O(b2), (A.16)

where we defined

f (a) =
1

2
ln
( a

2π

)
− a [ln(a) − 1] + ln Γ(a) − 1

12a
. (A.17)

This result is still correct to order O(b2), because the recurrence relation (A.2) preserves the corresponding
order.

A.2. Resummation for second dimension
In (8) we have seen, that we also need to calculate a sum over the auxiliary functions (7). With the result
(A.16) we can also analytically approximate the sum

S =

∞∑
n=1

I(a + λn, b,−1) (A.18)

by using again the Euler–Maclaurin series (A.5). Thus, we obtain the approximation

S ≈
∫ ∞

1
dn I(a + λn, b,−1) +

1

2
I(a + λ, b,−1). (A.19)

Taking equation (A.16) into account, we have

S =
1

λb2
ζ3

(
e−(a+λ)b

)
+

1

2λb
ζ2

(
e−(a+λ)b

)
+

1

12λ
ζ1

(
e−(a+λ)b

)
+

1

λ

∫ ∞

a+λ

dy f (y)

+
1

2
I(a + λ, b,−1) +O(b2). (A.20)

We note that the error, stemming from the Euler–Maclaurin approximation in equation (A.19), cannot be
evaluated in a systematic way. However, we show in the next section, that the performed approximation
yields errors, which are small in the relevant parameter regime of photon gases.

A.3. Analytical vs numerical summation
Finally, we compare the analytical results from the preceding sections with a numerical summation of
equation (A.3) itself. Figure A1 shows the relative error of the numerical approximation (A.14) with respect
to the direct numerical evaluation of the sum (A.3). The orange line shows our result, whereas the blue line
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Figure A2. Relative error of analytical approximation of the correction terms leading to the second dimension (A.20) with
respect to the numerical evaluation in equation (A.21).

shows the accuracy achieved in reference [33]. At first, we note that both results yield a good approximation
as b tends to 0. However, as we use additional terms from the Laurent series in equation (A.4), the accuracy
of our result is increased compared to the result from reference [33].

In order to analyse the error of the 2D result we first note that the sum (A.18) can also be performed by
using the definition (A.3) and interchanging the summation signs, which yields

S2D =
∞∑

k=1

e−abk

k(1 − e−bk)(eλbk − 1)
. (A.21)

Note, that due to the factor 1/k this expression cannot be treated analytically along the philosophy of
reference [33] and this appendix. However, expression (A.21) can be used as a numerical comparison with
the analytical approximation obtained in (A.20). The relative error of the approximation of the
two-dimensional sum (A.18) is shown in figure A2. It reveals, as suspected, the same overall behaviour as
the approximation of the one-dimensional sum, namely that the approximation gets better at small b and
worse at large values of b.
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