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ABSTRACT
The concept of building logically functional networks employing spintronics or magnetic heterostructures is becoming more and more pop-
ular today. Incorporating logical segments into a circuit needs physical bonds between the magnetic molecules or clusters involved. In this
framework, we systematically study ultrafast laser-induced spin-manipulation scenarios on a closed system of three carbon chains to which
three Ni atoms are attached. After the inclusion of spin–orbit coupling and an external magnetic field, different ultrafast spin dynamics sce-
narios involving spin-flip and long-distance spin-transfer processes are achieved by various appropriately well-tailored time-resolved laser
pulses within subpicosecond timescales. We additionally study the various effects of an external magnetic field on spin-flip and spin-transfer
processes. Moreover, we obtain spin-dynamics processes induced by a double laser pulse, rather than a single one. We suggest enhancing
the spatial addressability of spin-flip and spin-transfer processes. The findings presented in this article will improve our knowledge of the
magnetic properties of carbon-based magnetic molecular structures. They also support the relevant experimental realization of spin dynamics
and their potential applications in future molecular spintronics devices.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0158160

I. INTRODUCTION

The need for computer processor downsizing is rising in the
present. Single molecules and nanoparticles are two examples of
nanoscale materials that are gaining greater and greater interest.1–6

These systems, i.e., single molecules and nanoparticles, have a signif-
icant deal of promise as candidates for future spin logic devices7–13

due to their extraordinary physical properties, such as discrete lev-
els and high spin localization, which enable the controllable spin
and magnetic processing. The features of genuine logical devices
can be instantly, accurately achieved and anticipated by quan-
tum chemistry computations.14–19 In this pathway, many works
made one step forward to scrutinize short and long spin-dynamics

(spin-flip, spin-transfer, etc.)20–22 processes. For instance, Hübner
et al. provided nickel (Ni2) dimer-based quantum heat machines
in which they accomplished comprehensive ab initio computations,
incorporating spin–orbit coupling (SOC) and electronic correla-
tion.23 Koopmans et al. presented a microscopic prototype that suc-
cessfully demonstrates the ultrafast equilibration of magnetic order
in ferromagnetic metals.24 Gómez-Abal et al.25 put up a theory that
spin–orbit coupling combined with correctly structured femtosec-
ond (fs) laser pulses leads to ultrafast all-optical magnetic flipping.
Spin dynamics is at the core of spin technology and spin-based
quantum technology. At present, theoretical methods can predict
spin dynamics on molecular systems and clusters with high accu-
racy. Among these methods, we underline quantum optimal control
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theory (QOCT),26 which represents a collection of methods to
design and implement shapes of external electromagnetic fields for
controlling quantum dynamical processes at the atomic or molecu-
lar scale.27 For example, QOCT is employed to create logical qubits
encoded in bosonic modes28 and to implement quantum gates.29–31

Moreover, spin-flip and spin-transfer on double-magnetic-center
graphene nanoflakes are examined with quantum chemical calcu-
lations by Zhang et al.32,33 Recently, Sold et al. have offered an
integrated experimental and theoretical investigation of the ultrafast
transient absorption spectroscopy outcomes of Ni2Dy2, a compound
in dimethylformamide (DMF), which can be considered as a model
molecule for single-molecule magnets.34,35 Ab initio calculations
were employed to achieve quantum control by studying the ultra-
fast spin switching and related strain effect on Co-doped endohedral
fullerenes.36 The spin-transfer scenarios are used to build an all-spin
OR gate.2 Applying highly correlated quantum chemical simula-
tions, Xu et al.37 computationally examined the strain modification
of ultrafast spin-flip processes on Ni@B80 endohedral fullerene.
Fe3GeTe2 has been proposed38 as a promising substance for lay-
ered two-dimensional (2D) heterostructure spintronic devices. In
an effort to measure magnon currents on the magnetic configu-
ration of the object, spin-valve structures depending on a set of
ferromagnets were created.39 Investigations on spin processes in
molecules with three magnetic centers have been extensive.40,41

The diamond-based substance exhibits high interactions between
charge transport, spin, and the magnetic field, making spintronic
applications available.42 Liu et al. described an optically induced
subpicosecond spin-transfer scenario over 4.428 nm, which is sub-
stantially similar to the real Complementary Metal Oxide Semi-
conductor (CMOS) size, employing a high-level ab initio quantum
method.43 In addition, Liu et al. systematically investigated the spin-
dynamics processes on two different carbon cross arrangements
with two Ni atoms attached.44 Recently, Liang et al.45 have studied
the laser-induced ultrafast spin dynamics in four trigonal monopy-
ramidal complexes. They created many reversible spin-crossover
processes and mixed scenarios of charge transfer and spin bifurca-
tion under the usage of various well-tailored laser pulses. Despite
there being many published results44,46–54 on semiconductors and
magnetic molecules to build logic devices, the incorporation of
magnetic molecules in useful device applications is still poor. The
two biggest challenges to building spin-based devices are discov-
ering molecular systems and incorporating those elements into
the building blocks of spintronic heterostructures.55 The quest for
appropriate molecular systems with the preferred functionalities on
ultrafast timescales is an active field. Moreover, alternative ultrafast
and ultrasmall technologies are growing increasingly in demand as
the capacity of conventional semiconductor-based logic elements
approaches saturation. In addition, quantum integrated circuits
(ICs) are based on logical functionalities, which are built using
magnetic elements or spintronics. In this investigation, the cre-
ative idea of spin-based logic functionality is presented. Our main
emphasis is on the ultrafast control of laser-induced spin-dynamics
scenarios on the two-dimensional Ni3@C63H54 magnetic system.
Established on the high-level computation of the ground and excited
states of this many-body system, after the inclusion of spin–orbit
coupling (SOC)56 and an external magnetic field, a variety of ultra-
fast spin dynamics scenarios, involving spin-flip and long-distance
spin-transfer processes has been achieved by various appropri-

ately well-tailored time-resolved laser pulses within subpicosecond
time-scales.

Generally, a molecular system requires magnetic centers to per-
form logical processes. Signal transport is already possible between
two magnetic centers, and interference features could be added
between three centers. Our Ni3@C63H54 realistic molecular sys-
tem is cut out of a graphene monolayer,57–59 with hydrogen atoms
saturating the bonds wherever necessary, and the benzenes are
chosen in order to create a chemically correct flat structure. Further-
more, several ingredients of our envisaged system, such as graphene
monolayers, carbon clusters,60 carbon chain radical anions,61

neutral carbon chains,62 carbon ring chains,63 and other related
systems,64 have been synthesized. Our molecular system is a deriva-
tive of graphene and belongs to these carbon system classes. The
idea of using polyacetylene chains to connect the magnetic cen-
ters over large distances stems from cutting stripes out of graphene
sheets.65–68 The reason is that while intermetallic connectivity
through s orbitals (e.g., metallic Na69) does not allow for the long-
distance spin transfer, the conjugated pz bonds in graphene do.43,44

Much progress has been reported lately in the fabrication of doped
and freestanding or ordered polyacetylene chains.70–79 Thus, guided
by the experimental design, our Ni3@C63H54 molecular system can
be achieved.80–82

The present article is an essential part of our systematic inves-
tigations regarding our vision to realize integrated nanospintronic
circuits and deals with the connectivity of magnetic centers, as well
as the impact of the spin-transfer channels on their possible quan-
tum control. In addition, since magnetic elements are the most
promising adatoms of different carbon-including nano-structures,
for magnetic functionalization, we use nickel (Ni) atoms. This paper
is organized in the following way: In Sec. II, we give a quick outline
of the theory and the methods, which are employed to study spin
dynamics. Then, in Sec. III, we deliver our results regarding spin-
dynamics processes and the influence of the orientation of the laser
pulse on spin-flip and spin-transfer scenarios. Finally, we conclude
in Sec. V.

II. COMPUTATIONAL METHOD AND THEORY
We achieve uncorrelated molecular orbitals (MOs) at the

restricted open-shell Hartree–Fock (ROHF) level83,84 to calculate the
electronic states. In addition, we employ the equation-of-motion
coupled-cluster method with single and double virtual excitations
(EOM-CCSD)85,86 together with the 6-31G basis set, which is imple-
mented in the GAMESS software package.87 Then, we combine the
high-level quantum chemistry theory EOM-CCSD with the Lambda
(Λ) process12,88 to investigate the spin-flip and spin-transfer scenar-
ios in our system. In this way, spin–orbit coupling and an external
magnetic field B are required.89–91 Note that in a spin-flip process,
the initial and target states have opposite spin orientations. The
population must be transferred from the initial state to the final
state via spin-mixed intermediate states because direct excitations
between two states with opposite spin orientations are prohibited.
In our situation, we use 1.0 × 10−8 a.u. as a magnetic field strength,
and SOC yields the spin-mixing of the intermediate state. Spin-flips
require spin-mixed intermediate states, which have to be connected
to both spin-up (α) and spin-down (β) states. It is important to
have significant energy differences in order to appropriately treat
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the initial and target states of a lambda process by an external
laser pulse. Because the spin-up and spin-down states are frequently
degenerate or quasi-degenerate, a Zeeman splitting between them
must be generated by an external magnetic field. That means a
static external magnetic field of 1.0 × 10−8 a.u. is used to distin-
guish between spin-up and spin-down states and create spin-mixed
intermediate states that allow for the indirect transition between
the initial and final states as needed by the process. The magne-
tization direction is also controlled by the external magnetic field.
The many-body wave functions computed with EOM-CCSD and an
external magnetic field are formed perturbatively with the related
Hamiltonian

Ĥ SOC+B
=

n

∑
i=1

Zeff
a

2c2R3
i

L̂ ⋅ Ŝ + μLL̂ ⋅ Bstat + μSŜ ⋅ Bstat. (1)

L̂ and Ŝ are the orbital and spin momentum operators, respec-
tively, μL and μS are their gyromagnetic ratios, and c is the speed
of light. The magnitude of the position vector of the ith electron and
the static external magnetic field are R3

i and Bstat, respectively. Zeff
a

represents the relativistic effective nuclear charges of the ath atom
(effectively accounting for the two-electron contributions) required
for the SOC. Subsequently, the system’s many-body wave function
is reproduced in time under the influence of a laser pulse,

∂cn(t)
∂t

=
−i
h̵ ∑k

⟨Φn∣Ĥ(t)∣Φk⟩ck(t)e
− i

h̵ (Ek−En)t. (2)

The unperturbed eigenstates received from EOM-CCSD calcula-
tions are Φn and Φk. En and Ek are the energies of Φn and Φk, respec-
tively. cn is the complex scalar coefficient of state Φn. Ĥ(t), which is
the Hamiltonian describing the impact of the time-dependent laser
pulse, is given by

Ĥ(t) = D̂ ⋅ Elaser(t). (3)

D̂ and Elaser are the electric dipole transition operator and the elec-
tric field, respectively. Equation (2) is propagated with an embedded
fifth-order Runge–Kutta method associated with the Cash–Karp
adaptive-step size.92 Quantum optimal control theory, quantum
feedback control,93 and machine learning94 are used to study the
quantum processes. In our case, for the laser parameters, we employ
a specially developed genetic algorithm.69,95 As the numerical opti-
mal control algorithms,96 in our genetic algorithm, no experimen-
tal input is necessary. Our genetic algorithm has been success-
fully employed in many systems in the past; it is highly paral-
lelized and incorporates analytical filters, which exclude unsuccess-
ful laser-pulse combinations. In optimization computations, eight
parameters are considered: the angles of incidence in spherical coor-
dinates θ and ϕ (ranging from 0○ to 180○ and 0○–360○), the angle γ
between the polarization of light and the optical plane, the ellipticity
β, the full width at half-maximum (FWHM) of the laser pulse (rang-
ing from 0 to 500 fs), the laser energy Elaser, the amplitude of the laser
pulse, and the chirp (chosen between −5% and +5%). The genetic
algorithm treats each laser pulse as a separate individual, with the
eight parameters working as the individual’s genes. The best genes
(which produce higher fidelity) are selected and passed on to the
next generation by applying suitable genetic operations (such as gene
crossing and mutation). As a result, the parameters are improved

globally, and the best genes evolve. The fidelity is described as the
population of the final state after the impact of the laser pulse. Note
that each generation includes 200 individuals, and the optimization
typically requires 200 generations.

III. RESULTS AND DISCUSSION
We start by representing our geometric configuration of the

Ni3@C63H54 carbon-based material, which is sketched in Fig. 1. Our
system is merely a closed structure formed by three carbon chains
connected by three benzenes and with three Ni atoms attached [as
displayed in Fig. 1(a)]. In this Ni3@C63H54 molecular system, the
C–C bond length is always identical to the length of the C–C bond
of graphene, which is 1.42 Å. The distance between the Ni1 and Ni2
atoms is 27.14 Å. This length is identical to the distance between
Ni1 and Ni3 (or between Ni2 and Ni3). The angle between the two
C–C bonds is designated at 120○. In addition, the C–H bond length
and the angle between C–H and the C–C bond are maintained at
1.090 Å and 120○, respectively. Note that the honeycomb-like edges
of bare finite graphene exhibit spin polarization,97 which already
makes them desirable as components for spintronic devices. In addi-
tion, ideal spin filters with almost 100% spin polarization are created
by connecting carbon atomic chains to graphene electrodes.98 Thus,
since one of our main objectives here is to study the long-distance
ultrafast spin transfer between the spin centers (Ni atoms) for build-
ing and supporting spin-logic units for developing future all-optical
magnetic unit operations, therefore, we use as a backbone structure a
chain carbon system.43,44 Furthermore, the choice of triangular sys-
tems has the advantage, which, besides spin-flip (one center needed)
and spin-transfer (two centers needed), contains enough complex-
ity to also perform spin-bifurcation, spin-merging, and spin-bounce
operations.2,40,41,99 These can give rise to classical-Boolean or even
quantum-logic operations.35,100,101 Ideally, the three magnetic cen-
ters should consist of the same atoms, but with slightly different
local symmetries, so that they become energetically distinguishable
(and thus individually addressable) and exhibit spin-density local-
ization, while still interacting with each other.100,102 In particular,
monodisperse bare Ni3 nanoislands are experimentally feasible103

as adsorbates. Therefore, our triangular prototypic system repre-
sents an ideal minimal structure to study integrated magnetic logic
circuits. Our system has Cs symmetry, which is a subgroup of the
symmetry group C3v since we connect the three Ni atoms asymmet-
rically. The left, right, and top atoms are identified as Ni2, Ni3, and
Ni1, respectively, to make them easy to distinguish. We show some
molecular orbitals (MO257, MO258, MO259, and MO260), including
the highest occupied molecular orbital (HOMO) and lowest unoc-
cupied molecular orbital (LUMO) of Ni3@C63H54 in Figs. 1(b)–1(e).
MO257 (HOMO-1), which serves as an intermediate MO for the
direct Ni1 and Ni2 (Ni1→ Ni3 or Ni2→ Ni3) transfer, is appearing
on the carbon atoms with an energy of −0.125 90 eV and the domi-
nant atomic orbital is pz . In addition, the highest occupied molecular
orbital (MO258, HOMO) is located at the carbon atoms with the
same energy (−0.125 90 eV) and the dominant atomic orbital is pz .
However, the atomic orbitals s, px, dxx, dxy, and dzz of Ni1 make up
the lowest unoccupied molecular orbital (MO259, LUMO). MO260
(LUMO + 1) is located on Ni2 with an energy of −0.071 70 eV,
and the dominant atomic orbitals are s, px, py, dxy, and dyy [see
Fig. 1(e)]. To achieve the spin-flip and spin-transfer (see Sec. IV)
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FIG. 1. (a) A closed system of three carbon chains with three nickel atoms attached (Ni3@C63H54). The number of carbon atoms between two Ni atoms is 21 atoms, and
the total number of atoms used is 120 atoms. (b) Molecular orbital MO258 with energy −0.125 90 eV. (c) Highest occupied molecular orbital (HOMO). (d) Lowest unoccupied
molecular orbital (LUMO). (e) Molecular orbital MO260 with energy −0.071 70 eV. (f) The spin-dynamics processes are achieved under a single (or double) laser pulse using
Λ processes (∣A⟩, ∣C⟩, and ∣B⟩ are the initial, intermediate, and final states, respectively). A Zeeman splitting between the initial and target states must be generated by an
external magnetic field. Note that the yellow, blue, and purple spheres are carbon, hydrogen, and nickel atoms, respectively.

on our system, we employ the Λ process (theory for the three-level
system), which is depicted in Fig. 1(f). We designate the three states
by ∣A⟩ (initial state), ∣B⟩ (target state), and ∣C⟩ (intermediate state).
Our purpose is to transfer the population from state ∣A⟩ to ∣B⟩. If
the population transfer occurs via the third state ∣C⟩, this is named
a Lambda (Λ) process, which has been successfully employed in
previous quantum chemical computations,104 e.g., Jin et al. studied
theoretical and experimental investigation of the optical proper-
ties and dynamics of the two-magnetic-center compound [NiII

2 (L-
N4Me2)(emb)].55 In this kind of process, we have E∣A⟩ ≠ E∣B⟩ < E∣C⟩,
where E∣A⟩, E∣B⟩, and E∣C⟩ are the energies of the initial, target, and
intermediate states, respectively. If the population transfers from the
initial state ∣A⟩ to the desired target state ∣B⟩, then the system is called
controllable. The energy levels of the states before and after involving
SOC and magnetic field are displayed in Fig. 2. We receive various
spin states of a multiplet that are degenerate. In addition, to lift the
degeneracy, we include SOC and a static magnetic field. A notice-
able point that is SOC in transition metals provides a considerable

part in significant observables as zero-field splitting and line con-
tours of electron resonance ranges.105–107 In our case, the many-body
states are eigenstates of the S2 operator when the magnetic field and
SOC are absent (as illustrated in Fig. 2). Any linear combination of
the states is also an eigenstate of the overall Hamiltonian, and α and
β states continue to be degenerate. Consequently, we are unable to
differentiate between spin-up and spin-down states. Even with the
addition of SOC, the situation does not change (Kramers’ theorem).
Thus, to produce states with distinct spin values, a relative magnetic
field of 1.0 × 10−8 a.u. is applied. After SOC + B, the new states are
no longer eigenstates of the spin operator S2. The exact spin val-
ues S2 and Sz of the new states cannot be calculated. Nevertheless,
quantum mechanical expectation values ⟨S⟩ can be obtained and
are very near to the pure S values. In our situation, a magnetic field
of 1.0 × 10−8 a.u. can give spin expectation values between −0.9999
and 0.9999 for the triplet states. Furthermore, our calculations show
that the ground state is a singlet and the first four states also
are singlets.
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FIG. 2. Low-lying energy level of Ni3@C63H54 without and with SOC and a mag-
netic field (B = 1 × 10−8 a.u. = 2.35 mT). Black and red are the singlet and triplet
states, respectively. Blue and green (initial and target states) are the states after
the inclusion of spin–orbit coupling with a static magnetic field.

A. Spin-density distribution
There are several conditions related to the spin density distri-

bution for accomplishing spin-dynamics scenarios on our system. (i)
On the Ni elements, there need to exist states with extremely strong
localized spin. (ii) The spin density must be distributed unevenly
on the Ni atoms. (iii) Then, it must be many states with spin local-
ized on carbon atoms, which can act as intermediate states for the
spin-transfer scenario. In our computations, we employ the Mul-
liken population analysis on the one-electron reduced density matrix
to compute the spin density distribution on the carbon system to
which the Ni atoms are attached. We provide the density distribu-
tion together with expectation values of the spin angular momentum
⟨Sz⟩ for some states in Table I. Our calculations are based on the
CCSD and EOM-CCSD methods, and the basis set for various ele-
ments is 6-31G. We find that Ni3 has the highest spin density with an
expectation value of 1.050 at state ∣5⟩ (the total spin density is 2.0).
In addition, the highest absolute value of the spin density distributed
on Ni1 and Ni2 is 0.987 (∣23⟩) and 1.042 (∣20⟩), respectively. The
remaining spin density, which has a total value of around 1.00 and
is primarily caused by the half-filled conjugated orbitals, is shared
by spin-polarized carbon atoms. The delocalized electronic config-
uration of the states can well explain the spin density distribution.
Indeed, the linear combination of various Slater determinants con-
structed from HF-optimized MOs results in CC many-body wave
functions. The other determinants, except the HF reference deter-
minant, involve virtual excitations from the occupied MOs to the
empty MOs.108,109 Here, we analyze the dominant virtual excitation
in some states to better understand the spin-density distribution.
We take the triplet state ∣8 ↓⟩→ ∣10 ↑⟩ as an example. At the many-
body state ∣8 ↓⟩, the dominant virtual excitation is from MO258 to
MO260 with an amplitude of 0.529. As we mentioned above, the
main atomic orbital contribution to MO258 (HOMO) is pz of carbon
atoms, while the atomic orbitals s, px, py, and dxy of Ni2 con-
tribute to MO260. Therefore, the correlation assisting the transition
from MO258 to MO260 is a p–d excitation. In the state ∣10 ↑⟩, the
dominant virtual excitation is also from MO258 to MO260. MO260
is always located at Ni2. This explains the spin density localiza-
tion on Ni2 of states ∣8 ↓⟩ and ∣10 ↑⟩. Therefore, a spin-flip process
∣8 ↓⟩→ ∣10 ↑⟩ can be accomplished. The dominant virtual excita-

TABLE I. Energies, spin density distribution on Ni atoms, and expectation values
of the spin angular momentum elements for the spin-flip and spin-transfer scenar-
ios on Ni3@C63H54 for the appropriate many-body states with spin–orbit coupling
and a static magnetic field (B = 1.0 × 10−8 a.u.) included. The sign of ⟨Sz⟩ signifies
the spin direction: the positive and negative values are spin-up ↑ and spin-down ↓,
respectively. All the calculations are performed with the EOM-CCSD method.

Spin density

States E (meV) ⟨Sz⟩ Ni1 Ni2 Ni3

∣5⟩ 10.006 −0.996 0.000 0.000 −1.050
∣7⟩ 10.007 0.996 0.000 0.000 1.050
∣8⟩ 11.106 −0.495 0.000 −0.523 0.000
∣10⟩ 11.108 0.495 0.000 0.523 0.000
∣11⟩ 12.814 −0.529 −0.559 0.000 0.000
∣13⟩ 12.816 0.529 0.559 0.000 0.000
∣14⟩ 14.895 −0.893 0.000 0.000 −0.951
∣16⟩ 14.896 0.893 0.000 0.000 0.951
∣18⟩ 779.883 −0.998 0.000 −1.042 0.000
∣21⟩ 782.012 −0.947 −0.987 0.000 0.000
∣23⟩ 782.013 0.947 0.987 0.000 0.000
∣25⟩ 2508.235 −0.999 −0.021 −0.026 −0.091
∣27⟩ 2508.236 0.999 0.021 0.026 0.091
∣31⟩ 2556.113 −0.998 −0.024 −0.033 −0.048
∣33⟩ 2556.114 0.998 0.024 0.033 0.048
∣35⟩ 2887.498 −0.933 −0.275 −0.281 −0.167
∣37⟩ 2887.499 0.933 0.275 0.281 0.167

tion in the states ∣11 ↓⟩ and ∣13 ↑⟩ is from MO257 to MO259, which
is created by the atomic orbitals s, px, py, dxy, and dyy of Ni1.
For this reason, the spin density with an absolute value of 0.559 is
localized on Ni1. Thus, a spin-flip process ∣11 ↓⟩→ ∣13 ↑⟩ can be
achieved.

We currently possess all the essential knowledge of the new
states’ attributes. Under the impact of a laser pulse, we prop-
agate the electronic population from one many-body state to
another. As mentioned above, the propagation of the wave func-
tion is achieved within the interaction picture in the Fock-space
traversed by the time-independent Hamiltonian employing a fifth-
order Runge–Kutta method and Cash–Karp adaptive step size con-
trol. A specially created genetic algorithm is used to optimize the
laser pulse parameter. A variety of spin dynamical processes, includ-
ing spin-flip and spin-transfer, can be designed depending on the
spins and localizations of the initial and final states of propaga-
tion. In Sec. IV, we discuss each of these spin dynamics scenarios
in detail. These scenarios are governed by the interaction of the
spins and the laser pulse as determined by the time-dependent ver-
sion of the celebrated Goodenough–Kanamori rules.20,110 In all the
following scenarios, we include a static magnetic field at θ = 0.0○

and ϕ = 0.0○ and B = 1.0 × 10−8 a.u. with respect to the molecular
axis.

IV. SPIN-FLIP AND SPIN-TRANSFER PROCESSES
Herein, we show that the long-distance spin transfer processes

between the three spin centers (Ni atoms) are accomplished along
with the local spin-flip mechanism, thus guiding to an improved
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functionality. Typically, the initial and target states of the spin-flip
process stemming from the same triplet states are quasi-degenerate.
They cannot be employed for spin transfer since they are localized
on the same atom.

A. Spin-flip scenarios
As aforementioned, in a Λ process, if the initial and final states

have the same spin localization and opposite spin direction, then it
is a spin-flip process. According to the spin density distribution, dif-
ferent spin-flip scenarios can be accomplished, e.g., ∣8 ↓⟩→ ∣10 ↑⟩,
∣11 ↓⟩→ ∣13 ↑⟩, and ∣18 ↓⟩→ ∣20 ↑⟩. The time-resolved expectation
values of the spin components after the effect of the laser pulse on
these spin-flip scenarios are investigated. For instance, we show the
expectation values of the spin angular momentum element ⟨Sz⟩ for
the spin-flip processes ∣8 ↓⟩→ ∣10 ↑⟩ and ∣11 ↓⟩→ ∣13 ↑⟩ in Figs. 3
and 4, respectively. In our calculations, the many-body states are
propagated in time under the impact of a sech2-shaped laser pulse.
Figures 5 and 6 show the laser pulse envelope shape of field E

E0

= sech2
(t) for the local spin-flip scenarios ∣8 ↓⟩→ ∣10 ↑⟩ and ∣11 ↓⟩

→ ∣13 ↑⟩. In the local spin-flip on Ni2, the time-dependent pop-
ulation of each state (initial, target, and intermediate) is depicted
in Fig. 7. We choose state ∣8 ↓⟩ [E∣8↓⟩ = 11.106 meV; spin is local-
ized on Ni2, black dashed line in the upper panel in Fig. 7(a)] and
state ∣10 ↑⟩ [E∣10↑⟩ = 11.108 meV; spin is also localized on Ni2, red
solid line in the upper panel in Fig. 7(a)] as the initial and final
states, respectively. The energy difference is 2.00 × 10−6 eV, which
is sufficient to make the two states distinguishable for a laser pulse,
indicating the subtle sensitivity of our processes in molecular sub-
stances. We note that starting from the state ∣8 ↓⟩ we reach state
∣10 ↑⟩ driven by a single laser pulse with θ = 75.59○, ϕ = 165.87○,
γ = 76.37○, β = 106.95○, FWHM = 342.87 fs, the amplitude of the
electric field 5.10 × 109 V/m (see Fig. 5), and a chirp of 0.990. In addi-
tion, a threshold of 10−3 is established for the electronic density’s
propagation: the amplitude of the electric-dipole transition matrix
elements between the states is constrained by this parameter. The
fidelity of this process ∣8 ↓⟩→ ∣10 ↑⟩ is reaching 95.62%, which is
considered a complete scenario. The intermediate states in this prop-
agation are ∣11⟩, ∣18⟩, ∣20⟩, ∣25⟩, ∣27⟩, ∣28⟩, ∣31⟩, ∣35⟩, ∣27⟩, ∣38⟩, ∣41⟩,
∣43⟩, and ∣45⟩. For the local spin-flip on Ni1, we directly choose the
two sub-states ∣11 ↓⟩ and ∣13 ↑⟩ as initial and final states, respec-
tively. The energy difference between the two states is 2.0 × 10−6 eV
(see Table I). After a global optimization of the laser pulse with
our genetic algorithm and the propagation with the optimized laser
pulse, the spin-flip process from spin-down β to spin-up α on Ni1
atom is achieved with a fidelity of 94.60% [as shown in Fig. 7(b)].
The time-dependent population of the initial, final, and intermedi-
ate states is illustrated in Fig. 7(b). In this process, the intermediate
states are ∣5⟩, ∣7⟩, ∣10⟩, ∣14⟩, ∣16⟩, ∣21⟩, ∣25⟩, ∣27⟩, ∣28⟩, ∣30⟩, ∣31⟩,
∣33⟩, ∣40⟩, ∣41⟩, ∣48⟩, and ∣50⟩. In addition, the optimized parameters
of the laser pulse are θ = 319.50○, ϕ = 353.95○, FWHM = 396.45 fs,
Elaser = 3.407 eV, and chirp = 1.005 (see Table II). The population
between the initial state ∣18 ↓⟩ (spin density is localized on Ni2 with
E∣18↓⟩ = 779.883 meV; see Table I) and the final state ∣20 ↑⟩ (spin
density is localized on Ni2 with E∣20↑⟩ = 779.884 meV) via several
intermediate states is also achieved and displayed in Fig. 7(c). The
energy difference between the initial and final state is 10−6 eV, and
the corresponding optimized laser parameters are shown in Table II.

FIG. 3. Time-dependent expectation values of the spin components (spin-flip pro-
cess ∣8 ↓⟩→ ∣10 ↑⟩). ↑ and ↓ denote the spin direction of the corresponding
states.

The fidelity of this scenario reaches 79.62%, and the whole spin-flip
process is accomplished within 201.24 fs. Herein, many intermedi-
ate states are accomplished, for instance, ∣8⟩, ∣23⟩, ∣26⟩, ∣29⟩, ∣36⟩,
∣39⟩, ∣42⟩, ∣46⟩, and ∣49⟩. Another possible local spin-flip scenario
on Ni1 is achieved by selecting ∣21 ↓⟩ (E∣21↓⟩ = 782.012 meV) and
∣23 ↑⟩ (E∣23↓⟩ = 782.013 meV) as initial and final states, which are two
sub-states stemming from the same triplet state. The energy differ-
ence between the initial and final states is 1.0 × 10−6 eV. We show
the time-dependent population of the initial (black dashed line),
final (red solid line), and intermediate (solid lines in different col-
ors) states in Fig. 7(d). The fidelity of this scenario is 94.78%, and
the intermediate states are ∣4⟩, ∣8⟩, ∣11⟩, ∣18⟩, ∣24⟩, ∣25⟩, ∣28⟩, ∣31⟩,
∣37⟩, ∣38⟩, ∣41⟩, ∣44⟩, ∣45⟩, ∣48⟩, and ∣52⟩. The corresponding opti-
mized laser parameters are shown in Table II. Likewise, the local
spin-flip process on Ni3 is accomplished by choosing ∣5 ↓⟩ and ∣7 ↓⟩
as initial and target states, respectively. E∣5↓⟩ and E∣7↑⟩ are 10.006
and 10.007 meV, respectively. The energy difference between them
is 1.0 × 10−6 eV. The fidelity of this spin-down spin-up process is
reaching 19.28%. Note that the time-dependent population of the
initial, final, and intermediate states is not shown here. However, we
show the optimized parameters of the laser pulse in Table II.

B. Spin-transfer scenarios
Additionally, the spin-transfer processes can also be accom-

plished using the EOM-CCSD method together with the Lambda
process. The study of different spin-transfer processes denotes an
essential topic in the development of spin-logic circuits.111 A spin-
transfer scenario happens when the spin of the initial and target
states has the same direction but is localized on different atoms.
According to the spin density distribution on Ni atoms, Ni1→ Ni2,
Ni1 → Ni3, and Ni2 → Ni3 processes are achieved. Indeed, long-
distance (around 27.14 Å) spin-transfer processes are accomplished
between two magnetic centers through a carbon-based channel sys-
tem [the C chains serve as long spin-transfer channels due to their pz
conjugated bonds; cf. Figs. 1(b) and 1(c)]. For example, in the pro-
cess ∣21 ↓⟩→ ∣18 ↓⟩, we take states ∣21 ↓⟩ (spin is localized on Ni1
with energy E∣21⟩ = 782.012 meV) and ∣18 ↓⟩ (spin is localized on
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FIG. 4. Time-dependent expectation values of the spin components (spin-flip pro-
cess ∣11 ↓⟩→ ∣13 ↑⟩). ↑ and ↓ denote the spin direction of the corresponding
states (cf. Fig. 6).

FIG. 5. Laser pulse envelope of field E
E0
= sech2(t) for the local spin-flip process

∣8 ↓⟩→ ∣10 ↑⟩. E0 = 9.917 × 10−3 a.u. (5.10 × 109 V/m) is the amplitude of the
laser pulse used for this process.

Ni2 with E∣18↓⟩ = 779.8823 meV) as initial and target states, respec-
tively. The corresponding time evolution of the population of each
involved state is shown in Fig. 8(a). The fidelity of this spin-down
spin-transfer process (Ni1 → Ni2) reaches 97.21%. It takes around
314.54 fs to accomplish the whole spin-transfer process. The dom-
inant intermediate states are ∣8⟩ (violet line in the upper panel)
and ∣11⟩ (blue line in the upper panel). We present the optimized
parameters of the laser pulses in Table II. For instance, in this sce-
nario ∣21 ↓⟩→ ∣18 ↓⟩, the optimized parameters of the laser pulse are
θ = 225.71○, ϕ = 279.67○, γ = 311.17○, β = 254.57○, FWHM = 314.54
fs, Elaser = 1.510 eV, and a chirp of 1.002. In addition, by choosing
the states ∣11⟩ (initial) and ∣18⟩ (target), a spin-down spin-transfer
process (Ni1 → Ni2) is accomplished with a fidelity of 70.27% (see
the Appendix). The spin density can also be moved from Ni1 to
Ni2 under a single laser pulse by selecting ∣11 ↓⟩ and ∣8 ↓⟩ as ini-
tial and final states, respectively. The fidelity of this process and the
corresponding optimized parameters of the laser pulse are shown in

FIG. 6. Laser pulse envelope of field E
E0
= sech2(t) for the local spin-flip process

∣11 ↓⟩→ ∣13 ↑⟩. E0 = 3.269 × 10−3 a.u. (1.68 × 109 V/m) is the amplitude of the
laser pulse used for this process (cf. Fig. 4).

FIG. 7. Local spin-flip processes are accomplished on the Ni atoms: (a) ∣8 ↓⟩→
∣10 ↑⟩ (spin is localized on Ni2). (b) ∣11 ↓⟩→ ∣13 ↑⟩ (spin is localized on Ni1). (c)
∣18 ↓⟩→ ∣20 ↑⟩ (spin is localized on Ni2). (d) ∣21 ↓⟩→ ∣23 ↑⟩ (spin is localized
on Ni1). The time-dependent population of the initial, final, and intermediate states
is represented by the black dashed line, red solid line, and solid lines in differ-
ent colors, respectively. The two arrows ↓ and ↑ denote the spin direction of the
corresponding states.

the Appendix (see Table IV). In addition, the spin density can be
transferred from the magnetic center Ni1 to Ni3. Herein, we take
states ∣13 ↓⟩ (E∣13↓⟩ = 12.816 meV) and ∣16 ↓⟩ (E∣16↓⟩ = 14.896 meV).
This scenario is also called a spin-down spin-transfer process. The
energy difference between the above states (∣13 ↓⟩ and ∣16 ↓⟩) is
2.08 meV. The difference is small enough to extend the lifetime of
the energetically higher state by blocking the direct relaxation mech-
anisms while also being adequate to differentiate the two states for
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TABLE II. Spin localized, possible scenarios and the parameters of the laser pulses are optimized with our genetic algorithm program and EOM-CCSD method: ΔE, the energy
difference between the initial and last (target) states; the angles of incidence in spherical coordinates θ (○) and ϕ (○); the angle between the polarization of light and the
optical plane γ (○); β (○), the ellipticity; the full width at half-maximum of the laser pulse (FWHM); the laser energy Elaser; the amplitude of the laser pulse; and the chirp, which
indicates the linear sweep of the frequency with respect to the peak frequency. The ranges of θ (○) and ϕ (○) are from [0○, 180○] to [0○, 360○], respectively. In addition, the
range of γ is [0○, 360○]. All the calculations are performed with the EOM-CCSD method.

Scenario Spin localized Process Fidelity (%) ΔE (eV) θ (○) ϕ (○) γ (○) β (○) FWHM (fs) Elaser (eV) Chirp

Local spin–flip Ni2 ∣8 ↓⟩→ ∣10 ↑⟩ 95.62 2.0 × 10−6 75.59 165.87 76.37 106.95 342.87 3.328 0.990
Local spin–flip Ni1 ∣11 ↓⟩→ ∣13 ↑⟩ 94.60 2.0 × 10−6 319.50 353.95 44.92 221.04 396.45 3.407 1.001
Local spin–flip Ni2 ∣18 ↓⟩→ ∣20 ↑⟩ 79.62 1.0 × 10−6 179.47 56.00 201.24 190.52 361.00 2.129 0.950
Local spin–flip Ni1 ∣21 ↓⟩→ ∣23 ↑⟩ 94.78 1.0 × 10−6 341.48 292.28 350.89 129.10 309.84 2.231 0.997
Local spin–flip Ni3 ∣5 ↓⟩→ ∣7 ↑⟩ 19.28 1.0 × 10−6 162.97 300.98 351.39 130.14 254.59 2.490 1.005
Spin-transfer Ni1→ Ni2 ∣21 ↓⟩→ ∣18 ↓⟩ 97.21 2.129 × 10−3 225.71 279.67 311.17 254.57 314.54 1.510 1.002
Spin-transfer Ni1→ Ni3 ∣13 ↓⟩→ ∣16 ↓⟩ 82.10 2.080 × 10−3 295.26 229.79 21.69 7.07 388.68 2.778 1.002
Spin-transfer Ni2→ Ni3 ∣8 ↓⟩→ ∣14 ↓⟩ 72.15 3.789 × 10−3 136.38 181.65 156.74 185.58 314.24 3.167 1.006
Spin-transfer Ni2→ Ni1 ∣8 ↓⟩→ ∣11 ↓⟩ 84.34 1.708 × 10−3 59.05 113.13 157.12 331.97 69.37 2.238 1.035

an external laser pulse. The corresponding time-dependent popula-
tion of each involved state is shown in Fig. 8(b). We find a fidelity
of 82.10%. The main intermediate states are ∣7⟩ and ∣43⟩, and we
see a few Rabi oscillations (clear-cut) that mean an ultrafast trans-
fer scenario within 388.68 fs. Among the optimized parameters of
the laser pulse are θ = 295.26○, ϕ = 229.79○, γ = 21.69○, and Elaser
= 2.778 eV. Since we have three magnetic centers (Ni1, Ni2, and
Ni3), also spin transfer scenarios can be achieved to move the
spin density from Ni2 to Ni3 along the carbon atoms. Here, we
present the Λ process scenario ∣8 ↓⟩ (initial state) to ∣14 ↓⟩ (target
state), which is one among these scenarios. At the many-body state
∣8 ↓⟩, the spin density is localized on Ni2 with the energy of E∣8↓⟩
= 11.106 meV. In ∣14 ↓⟩, the spin density is localized on Ni3 with
the energy of E∣14↓⟩ = 14.895 meV. We give the corresponding time-
evolution of the population of each involved state in Fig. 8(c) and
the optimized parameters of the laser pulse in Table II. The fidelity
of this process is 72.15%, and the intermediate states are ∣5⟩, ∣7⟩, ∣10⟩,
∣11⟩, ∣13⟩, ∣16⟩, ∣18⟩, ∣20⟩, ∣25⟩, ∣27⟩, ∣28⟩, ∣30⟩, ∣31⟩, ∣33⟩, ∣37⟩, ∣40⟩,
∣41⟩, ∣43⟩, and ∣50⟩. The spin density can be moved from Ni2 to Ni1
(Ni2→ Ni1) with a single laser pulse by choosing ∣8 ↓⟩ and ∣11 ↓⟩ as
initial and target states, respectively. The energy difference between
them is 1.708 meV (see Table II), which is large enough to render
the two states distinguishable for an external laser pulse and small
enough to suppress the direct relaxation processes. Figure 8(d) illus-
trates the time evolution of the population of each involved state
(initial, final, and intermediate states). The fidelity of this reversed
spin-down spin-transfer process (∣8 ↓⟩→ ∣11 ↓⟩) with a different
laser pulse and the corresponding optimized parameters of the laser
pulse is shown in Table II as well. Moreover, another spin-down
spin-transfer process ∣18 ↓⟩→ ∣5 ↓⟩ (Ni2 → Ni1) is achieved with a
fidelity of 69.02% (see the Appendix). Furthermore, the spin density
can be moved from Ni3 to Ni1 or from Ni3 to Ni2 under a single
laser pulse. In this way, several spin-down spin-transfer processes
are accomplished. We show the optimized parameters of the laser
pulse together with the time-dependent population of each involved
state in the Appendix.

FIG. 8. Global spin-down spin-transfer processes are accomplished between the
magnetic centers along the carbon atoms: (a) ∣21 ↓⟩→ ∣18 ↓⟩ (Ni1 → Ni2).
(b) ∣11 ↓⟩→ ∣13 ↓⟩ (Ni1 → Ni3). (c) ∣18 ↓⟩→ ∣20 ↓⟩ (Ni2 → Ni3). (d) ∣21 ↓⟩
→ ∣23 ↓⟩ (Ni2 → Ni1). The time-dependent population of the initial, final, and
intermediate states is represented by the black dashed line, red solid line, and
solid lines in different colors, respectively. The two arrows ↓ and ↑ denote the spin
direction of the corresponding states.

C. Effect of an inhomogeneous magnetic field
and impact of the direction of the single laser
on the spin-dynamics processes

Since the fidelity of the laser-driven ultrafast spin dynamics can
be affected by the magnetic field strength, in this subsection, we
study the influence of the magnetic field112–116 on the spin-dynamic
processes (we take as an example three spin-flip and one spin-
transfer scenario). We maintain the magnetic field angles (θ = 0.00○
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and ϕ = 0.00○) and vary the strength of the magnetic field from 0
to 1.0 × 10−8 a.u. Figures 9(a)–9(c) show the effect of an inhomo-
geneous magnetic field on the local spin-flip processes on Ni2 and
Ni1, respectively. In the case of the local spin-flip process on Ni2
∣8 ↓⟩→ ∣10 ↑⟩ (where the spin is localized on Ni2 on both states),
the fidelity increases within a small magnetic field ranging from 0
to 1.0 × 10−8 a.u. [as displayed in Fig. 9(a)]. At the same range of
the magnetic field, the fidelity of the local spin-down spin-up flip
process on Ni1 ∣11 ↓⟩→ ∣13 ↑⟩ (spin is localized on Ni1 for both
states) is gradually increasing to reach its limit [see Fig. 9(b)]. This
is explained by the fact that when the magnetic field increases, the
Zeeman splitting tends to get stronger, making each state more indi-
vidually addressable. Moreover, this increase is also corroborated by
the effect of the magnetic field on the local spin-flip scenario on Ni1
∣21 ↓⟩→ ∣23 ↑⟩. Again, we see that the fidelity increases and reaches
its limit at 1.0 × 10−8 a.u. [as shown in Fig. 9(c)]. Note that the para-
meters of the laser pulse are optimized at this magnetic field strength.
When B = 0.00 a.u., the fidelity is 0.00%, which means that the α and
β states are indistinguishable. For the three local spin-flip processes,
when the magnetic field strength exceeds 1.0 × 10−8 a.u., the fidelity
begins to slowly decrease. This is attributed to the modification in
the spin-mixed intermediate states included in the spin-flip process.
The spin-mixed intermediate states tend to become spin pure as the
magnetic field is stronger, which in turn blocks the channels and
inhibits the spin-flip process. As the magnetic field gets stronger,
the SOC becomes comparably weak (Paschen–Back effect). In those
processes, we keep all the intermediate states, which play the most
significant role and can be strongly affected by the power of the
magnetic field. Note also that the level crossing, which is caused by
a stronger magnetic field, can modify the state ordering and phase
elements of the excited intermediate states.44 For the spin-down
spin-transfer process ∣21 ↓⟩→ ∣18 ↓⟩ (Ni1 → Ni2), the fidelity also
increases rapidly with the magnetic field strength ranging from 0
to 1.98 × 10−9 a.u. and reaches 95.93% [as illustrated in Fig. 9(d)].
Then, the fidelity begins to decrease sharply (because there is an
avoided level crossing between the intermediate states) until reach-
ing 77.23% with a magnetic field value of 2.39 × 10−9 a.u. However,
when B > 2.39 × 10−9 a.u., the fidelity returns to increase until it
reaches its limit with B = 1 × 10−8 a.u. The reason for this scenario
is the same as in the case of the spin-flip process: The spin-mixed
states become spin-pure states. When B ≥ 1.0 × 10−8 a.u., the spin-
down spin-transfer process ∣21 ↓⟩→ ∣18 ↓⟩ is preserved because the
intermediate states are predominantly pure spin states, which can be
barely changed by increasing the magnetic field strength. This offers
the addressability of the local logic-circuit on a magnetic center (Ni1,
Ni2, and Ni3) and the high precision of information interchange
between these magnetic centers along the carbon atoms. Next, we
investigate the effect of the direction of the single laser pulse by vary-
ing their angles on the spin-dynamics processes. Here, the impact
of θ and ϕ, which are described as the polar and azimuthal angles
in spherical coordinates, respectively, on the local spin-flip process
on Ni2 ∣8 ↓⟩→ ∣10 ↑⟩ and spin-down spin-transfer ∣21 ↓⟩→ ∣18 ↓⟩ is
studied here. It should be noted that the range of θ is from 0○ to 180○

(180○–360○ is the reflection of the original panel) and ϕ from 0○ to
360○. Furthermore, the magnetic field value is selected to 1.0 × 10−8

a.u., and the parameters of the optimized laser pulses are also listed
(excluding θ and ϕ). We plot the effect of θ and ϕ of the laser
pulse on the spin-flip process fidelity in Fig. 10. We see four small

FIG. 9. The effect of an inhomogeneous magnetic field on the spin-dynamics pro-
cesses: (a) Local spin-flip on Ni2 (∣8 ↓⟩→ ∣10 ↑⟩). (b) Local spin-flip on Ni1
(∣11 ↓⟩→ ∣13 ↑⟩). (c) Local spin-flip on Ni1 (∣21 ↓⟩→ ∣23 ↑⟩). (d) Spin-down
spin-transfer process (∣21 ↓⟩→ ∣18 ↓⟩) (Ni1 → Ni2). The 0% fidelity at around
B = 0 a.u. is simply due to the fact that α and β states are indistinguishable at this
magnetic field.

regions with higher fidelity (94.50%). We find that a little change of
θ and ϕ can decrease this fidelity. Figure 11 shows the effect of those
angles on the spin-transfer process ∣21 ↓⟩→ ∣18 ↓⟩. We obtain some
areas that include higher fidelity (more than 92.30%). For instance,
a higher fidelity value is appearing when θ1

○
∈ [0○, 18○] and θ2

○

∈ [0○, 18○] together with ϕ1 ∈ [104○, 105○] and ϕ2 ∈ [104○, 109○].
When θ = 163.03○ and ϕ = 252.48○, we see a higher fidelity, indicat-
ing a spin-transfer between Ni1 and Ni2. A noticeable point is due
to the laser pulses being elliptically polarized. Thus, when θ is equiv-
alent to 0○, the fidelity has a twofold symmetry with respect to the
azimuthal angle ϕ (ranging from 0.756 to 0.947), in particular for
the spin-flip process ∣21 ↓⟩→ ∣18 ↓⟩.

D. Impact of the double laser pulse
on the spin-flip scenarios

Additionally, we investigate the double-laser117–119 pulse-
induced spin dynamic processes. We apply a second pulse, which is
specified by the following formula, to control the process efficiency:

∂cn(t)
∂t

=
−i
h̵ ∑k

⟨Φn∣Ĥint1(t) + Ĥint2(t + δt)∣Φk⟩ck(t)

× exp (−i(Ek − En)t/h̵). (4)

Ĥint1(t) and Ĥint2(t) describe the interaction Hamiltonians of the
initial and final laser pulses. δt is the time delay between two suc-
cessive laser pulses (2× FWHM is used here, i.e., the time delay
between the two pulse maxima is set to double the full width at half
maximum). The spin-flip process on Ni2 ∣8 ↓⟩→ ∣10 ↑⟩ and the spin-
down spin-transfer process ∣21 ↓⟩→ ∣18 ↓⟩ (spin density is moved
from Ni1 → Ni2) are performed under double laser-pulses. In this

J. Chem. Phys. 159, 084304 (2023); doi: 10.1063/5.0158160 159, 084304-9

© Author(s) 2023

 29 April 2024 13:08:03

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 10. The influence of the polar angle θ○ and the azimuthal angle ϕ○ of the laser
pulse on the ∣8 ↓⟩→ ∣10 ↑⟩ ultrafast local spin-flip process on Ni2 by varying them
within a full angle range [0○, 360○]. Note that the laser pulse is elliptically polarized.
Thus, the extended part of θ ∈ [180○, 360○] is the reflection of the original panel.

FIG. 11. The influence of the polar angle θ○ and the azimuthal angle ϕ○ of the laser
pulse on the ∣21 ↓⟩→ ∣18 ↓⟩ ultrafast spin-transfer process on the Ni3@C63H54
molecule.

situation, the magnetic field is still applied with B = 1.0 × 10−8 a.u.,
θ = 0.00○, and ϕ = 0.00○. As done with a single laser pulse, in the
local spin-flip process ∣8 ↓⟩→ ∣10 ↑⟩ on Ni2, we take ∣8 ↓⟩ and ∣10 ↑⟩
as initial and final states, respectively. We show their corresponding
time evolution of the population of each active state in Fig. 12. By
using the modified genetic algorithm and after several generations,
the double laser pulses successfully induce the fidelity of this process
(95.65%). Herein, the optimized parameters of the laser pulse are
θ = 334.27○, ϕ = 23.82○, γ = 345.46○, β = 120.77○, FWHM = 383.52,
and chirp = 1.010. In addition, under successive double laser pulses,

FIG. 12. The double laser-pulse-induced spin-flip (∣8 ↓⟩ to ∣10 ↑⟩) processes
on Ni3 and Ni2, respectively. Time evolution of the population of the initial,
intermediate, and final states with a delay between the two pulses of 2 × FWHM.

FIG. 13. The double laser-pulse-induced spin-transfer (∣21 ↓⟩ to ∣18 ↓⟩) pro-
cesses on Ni3 and Ni2, respectively. Time evolution of the population of the initial,
intermediate, and final states with a delay between the two pulses of 2 × FWHM.

the spin density can be moved between the magnetic centers Ni1
and Ni2. For example, we take the states ∣21 ↓⟩ (initial) and ∣18 ↓⟩
(target) to transfer the spin from Ni1 → Ni2. The fidelity of this
process is reaching 96.63%. Therefore, we can say that the double
laser pulses successfully induce the spin-down spin-transfer pro-
cess ∣21⟩ ↓→ ∣18 ↓⟩. The time evolution of the population of each
involved state is illustrated in Fig. 13. Among the main intermedi-
ate states in this scenario, we predominately find ∣5⟩, ∣7⟩, ∣8⟩, ∣10⟩,
∣14⟩, ∣30⟩, ∣31⟩, and ∣50⟩. In addition, the optimized parameters of
the laser pulse are θ = 254.13○, ϕ = 34.71○, γ = 45.75○, β = 331.02○,
FWHM = 235.12 fs, and chirp = 0.989.

V. CONCLUSION
In summary, EOM-CCSD calculations, Mulliken population

analysis, under a spin–orbital coupling, and a static magnetic field
reveal that the spin density is unequally distributed on the Ni atoms.
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TABLE III. Spin density, energies, and expectation values of the spin angular momentum components for the spin-flip and spin-transfer scenarios on Ni3@C63H54 for the
appropriate many-body states (some states) before and after the inclusion of spin–orbit coupling and the magnetic field. The sign of ⟨Sx⟩, ⟨Sy⟩, and ⟨Sz⟩ signifies the spin
direction: the positive and negative values are spin-up α ↑ and spin-down β ↓, respectively.

Spin density before SOC and B Energy, spin directions, and spin density after SOC and B

Method States Ni1 Ni2 Ni3 E (meV) ⟨Sx⟩ ⟨Sy⟩ ⟨Sz⟩ Ni1 Ni2 Ni3

EOM-CCSD ∣52⟩ 0.000 1.044 0.000 3564.072 0.0000 0.0000 0.0000 0.000 0.000 0.000
∣51⟩ 0.000 0.000 0.000 3558.288 0.0000 0.0000 0.0000 0.000 0.000 0.000
∣50⟩ 0.000 −1.044 0.000 3486.300 −0.0001 0.0000 0.9938 0.014 0.029 0.021
∣49⟩ 1.041 0.000 0.000 3486.295 0.0001 0.0001 0.0000 0.000 0.000 0.000
∣48⟩ 0.000 0.000 0.000 3486.294 −0.0001 0.0000 −0.9938 −0.014 −0.029 −0.021
∣47⟩ −1.041 0.000 0.000 3475.897 0.0000 0.0000 0.9999 0.011 0.019 0.042
∣46⟩ 0.000 0.000 0.000 3475.897 0.0000 −0.0001 0.0000 0.000 0.000 0.000
∣45⟩ 0.000 0.000 0.000 3475.896 0.0000 0.0000 −0.9999 −0.011 −0.019 −0.042
∣44⟩ 0.000 0.000 1.054 2996.546 0.0000 0.0000 0.0000 0.000 0.000 0.000
∣43⟩ 0.000 0.000 0.000 2913.604 0.0000 0.0000 0.8691 0.213 0.126 0.295
∣41⟩ 0.000 0.000 0.000 2913.603 0.0000 0.0001 −0.8691 −0.213 −0.126 −0.295
∣40⟩ 0.000 0.000 0.000 2906.161 0.0001 0.0001 0.9572 0.264 0.383 0.068
∣39⟩ 0.000 0.000 0.000 2906.160 −0.0001 −0.0001 0.0000 0.000 0.000 0.000
∣38⟩ 0.000 0.000 1.064 2906.159 0.0000 0.0000 −0.9572 −0.264 −0.383 −0.068
∣36⟩ 0.000 0.000 −1.064 2887.498 −0.0001 −0.0001 0.0000 0.000 0.000 0.000
∣34⟩ 0.000 0.000 0.000 2753.049 0.0000 0.0000 0.0000 0.000 0.000 0.000
∣32⟩ 1.055 0.000 0.000 2556.113 0.0000 0.0000 0.0000 0.000 0.000 0.000
∣30⟩ −1.055 0.000 0.000 2509.923 0.0000 0.0000 0.9921 0.047 0.063 0.015
∣26⟩ −0.245 −0.144 −0.339 2508.236 0.0000 0.0000 0.0000 0.000 0.000 0.000
∣24⟩ 0.000 0.000 0.000 1239.732 0.0000 0.0000 0.0000 0.000 0.000 0.000
∣22⟩ 0.000 0.000 0.000 782.013 0.0000 0.0000 0.0000 0.000 0.000 0.000
∣20⟩ 0.294 0.301 0.179 779.884 0.0000 0.0000 0.9985 0.000 1.042 0.000
∣19⟩ 0.000 0.000 0.000 779.883 −0.0001 0.0000 0.0000 0.000 0.000 0.000
∣17⟩ 0.014 0.030 0.021 19.174 0.0000 0.0000 0.0000 0.000 0.000 0.000
∣15⟩ −0.014 −0.030 −0.021 14.895 −0.0003 0.0001 0.0000 0.000 0.000 0.000
∣12⟩ −0.011 −0.019 −0.042 12.814 0.0000 −0.0002 0.0000 0.000 0.000 0.000
∣9⟩ 0.000 0.000 0.000 11.106 0.0005 0.0005 0.0000 0.000 0.000 0.000
∣1⟩ 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.000 0.000 0.000

Therefore, local spin-flip scenarios on Ni1 (Ni2 or Ni3) are accom-
plished on a closed system of three carbon chains to which three
nickel atoms are attached (Ni3@C63H54) via Λ processes. Further-
more, according to the spin density distribution, three possible
long-distance spin-transfer processes Ni1 → Ni2 (Ni2 → Ni1), Ni1
→ Ni3 (Ni3 → Ni1), and Ni2 → Ni3 (Ni3 → Ni1) are achieved.
The best fidelity of 97.21% is reached for the ∣21 ↓⟩ (spin density is
localized on Ni1) → ∣18 ↓⟩ (spin density is localized on Ni2) spin-
transfer scenario. The effect of the magnetic field on three local
spin-flip scenarios and one spin-down spin-transfer scenario is cal-
culated. Herein, we find that the spin-transfer process is preserved,
while the local spin-flip processes on Ni atoms can be suppressed
under different magnetic field strengths. We show that with a
small re-orientation of the laser pulse, the fidelity is dramatically
changed. The double laser pulse successfully induces the spin-flip
and spin-transfer processes. We believe that our system is a favorable
candidate for devices for next-generation spin logic applications due

to the advanced spin density localization that enables coherent spin
manipulation.
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→ ∣16⟩); a simultaneous spin-flip on Ni1, Ni2, and Ni3 (35⟩→ ∣37⟩; a simulta-
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(black dashed line), final or target (red solid line), and intermediate (solid lines in
different colors) states.
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APPENDIX: THEORY, SPIN-DENSITY DISTRIBUTION,
AND SPIN DYNAMICS PROCESSES
1. Quantum-theory method

Before EOM-CCSD, we use the coupled-cluster (CC)85,86

method, which is among the most precise ab initio quantum chem-
ical computation techniques for determining the correlation energy
of many-electron systems.120–126 It uses the exponential cluster oper-
ator to build the many-body wave functions from the molecular
orbitals received by employing the Hartree–Fock approach. The next
ansatz describes the wave function of the CC concept,

∣Ψ⟩ = eT̂
∣Φ0⟩. (A1)

∣Φ0⟩ is the ground state wave function acquired from the
Hartree–Fock method, which is the reference state of the CC cal-
culations. T̂ is the cluster operator. When T̂ acts on the reference
determinant ∣Φ0⟩, a complete set of excited Slater determinants can
be produced. The operator T̂ form can be represented as

T̂ = T̂1 + T̂2 + T̂3 + ⋅ ⋅ ⋅ T̂N. (A2)

T̂1, T̂2, and T̂3 collectively designate single, double, and triple exci-
tation operators, respectively. These operators can be written in
second quantization, e.g., T̂1 and T̂2 are

T̂1 =∑
a
∑

r
tr
aâ+r âa, (A3)

T̂2 =
1
4∑a,b

∑
r,s

trs
abâ+r â+s âbâa. (A4)

tr
a and trs

ab are the expansion coefficients of the corresponding
operators and are called amplitudes. The subscripts a, b and the
superscripts r and s denote the index of occupied and unoccu-
pied orbitals, respectively. â+ and â are creation and annihilation
operators, respectively. In the second quantization, the creation
operator is defined as â+a ∣1, 2, . . . , N⟩ = ∣a, 1, 2; . . . , N⟩, while its
adjoint is the corresponding annihilation operator âa∣a, 1, 2, . . . , N⟩
= ∣1, 2, . . . , N⟩. Expanding the exponential eT̂ function as a Taylor
series, we get an infinite series

eT̂
= 1 + T̂1 + T̂2 +

1
2

T̂2
1 +

1
2

T̂1T̂2 +
1
2

T̂2T̂1 +
1
2

T̂2
2 + ⋅ ⋅ ⋅ . (A5)

Unfortunately, the CC equations can only be used to compute the
ground wave function of a molecular system. We employ the EOM-
CCSD method to compute the excited state wave functions. An
excited EOM-CCSD state can be provided by

∣ΦEOM−CCSD
⟩ = R̂∣ΦCCSD

⟩. (A6)

R̂ = R̂1 + R̂2 is the excitation operator, which is cut behind single and
double excitations.

2. Spin density distribution and spin
dynamics processes

Here, we give the spin density distribution, energies, and expec-
tation values of the spin angular momentum elements for the spin-
flip and spin-transfer scenarios on our structure for the appropriate
many-body states (some states) before and after the inclusion of
spin–orbit coupling and the magnetic field in Table III. In addition,
other spin-flip scenarios are accomplished. We present some of them
in Fig. 14. For instance, a simultaneous spin-flip process on the Ni1
and Ni2 atoms is also achieved. Herein, the states ∣38 ↓⟩ and ∣40 ↑⟩
are selected as initial and final states, respectively. The fidelity of this
process reaches 67.93%, which indicates that a successful scenario is
accomplished. The time evolution of the population of each involved
state is shown in Fig. 14. The optimized parameters of the laser pulse
are θ = 240.28○, ϕ = 300.68○, γ = 67.53○, FWHM = 404.75 fs, and
chirp = 0.999 (see Table IV for more details). Two other possible
Λ spin-flip processes simultaneously on the Ni1, Ni2, and Ni3 atoms
are accomplished. They are ∣35⟩→ ∣37⟩ and ∣41⟩→ ∣43⟩. The time
evolution of the population of each involved state is shown in Fig. 14.
We find that the fidelity of the process ∣35⟩→ ∣37⟩ reaches 92.71%,
which is considered a complete process, while it is 17.79% for the
process ∣41⟩→ ∣43⟩. The optimized parameters of the laser pulses are
depicted in Table IV. In addition, we take ∣14⟩ and ∣16⟩ as initial and
target states, respectively. The spin density is localized on Ni3 for
both states. It is a local spin-flip on the Ni3 atom. The fidelity of this
process is reaching 26.60%. The optimized parameters of the laser
pulse are shown in Table IV. Note that the lower fidelity obtained
for the processes ∣14⟩→ ∣16⟩ and ∣41⟩→ ∣43⟩ can be improved
when a small magnetic field (<1 × 10−8 a.u.) is used. However, the
spin-density localization becomes very weak, and therefore, it does
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TABLE IV. Spin localized, possible scenarios where the parameters of the laser pulses are optimized with our genetic algorithm program and EOM-CCSD method: ΔE, the
energy difference between the initial and final states; the angles of incidence in spherical coordinates θ (○) and ϕ (○); the angle between the polarization of light and the
optical plane, γ (○); β (○), the ellipticity; the full width at half-maximum of the laser pulse (FWHM); the laser energy Elaser; the amplitude of the laser pulse; and the chirp, which
indicates the linear sweep of the frequency with respect to the peak frequency. The ranges of θ (○) and ϕ (○) are from [0○, 180○] to [0○, 360○], respectively. In addition, the
range of γ is [0○, 360○]. All the calculations are performed with the EOM-CCSD method.

Scenario Spin localized Process
Fidelity

(%) ΔE (eV) θ (○) ϕ (○) γ (○) β (○)
FWHM

(fs)
Elaser
(eV) Chirp

Local spin–flip Ni3 ∣14 ↓⟩→ ∣16 ↑⟩ 26.60 1.00 × 10−6 296.66 297.46 230.36 161.31 103.34 2.360 0.992
Spin–flip Ni1 and Ni2 and Ni3 ∣35 ↓⟩→ ∣37 ↑⟩ 92.71 1.00 × 10−6 235.25 155.10 165.02 292.46 461.56 2.699 1.000
Spin–flip Ni1 and Ni2 ∣38 ↓⟩→ ∣40 ↑⟩ 67.93 2.00 × 10−6 240.28 300.68 67.53 229.46 404.75 0.891 0.999
Spin–flip Ni1 and Ni2 and Ni3 ∣41 ↓⟩→ ∣43 ↑⟩ 17.79 1.00 × 10−6 171.30 240.83 186.74 35.83 270.57 3.236 0.977
Spin-transfer Ni3→ Ni2 ∣5 ↓⟩→ ∣8 ↓⟩ 63.29 1.10 × 10−3 63.34 271.25 355.81 135.20 494.31 2.524 0.992
Spin-transfer Ni3→ Ni1 ∣5 ↓⟩→ ∣11 ↓⟩ 60.21 2.808 × 10−3 234.95 334.21 283.72 255.71 476.98 2.866 0.987
Spin-transfer Ni3→ Ni2 ∣5 ↓⟩→ ∣18 ↓⟩ 54.23 769.877 × 10−3 55.67 197.22 114.70 8.79 474.26 0.037 0.985
Spin-transfer Ni3→ Ni1 ∣5 ↓⟩→ ∣21 ↓⟩ 57.46 772.006 × 10−3 263.53 308.25 325.94 193.26 335.08 0.899 0.954
Spin-transfer Ni3→ Ni1 ∣7 ↑⟩→ ∣13 ↑⟩ 62.21 2.809 × 10−3 65.55 81.09 22.21 116.93 433.04 2.776 0.994
Spin-transfer Ni1→ Ni2 ∣11 ↓⟩→ ∣8 ↓⟩ 75.68 1.708 × 10−3 46.87 31.78 344.70 145.11 488.15 1.558 1.000
Spin-transfer Ni1→ Ni3 ∣11 ↓⟩→ ∣14 ↓⟩ 75.52 2.081 × 10−3 97.55 103.16 262.51 103.23 494.31 2.524 0.981
Spin-transfer Ni1→ Ni2 ∣11 ↓⟩→ ∣18 ↓⟩ 70.27 767.069 × 10−3 225.94 79.95 225.58 284.52 426.11 0.907 1.035
Spin-transfer Ni2→ Ni1 ∣18 ↓⟩→ ∣5 ↓⟩ 69.02 769.877 × 10−3 87.08 94.79 18.00 267.72 460.21 0.822 1.039
Spin-transfer Ni2→ Ni3 ∣18 ↓⟩→ ∣14 ↓⟩ 77.83 764.988 × 10−3 271.90 204.19 234.73 357.80 456.62 0.986 0.957
Spin-transfer Ni1→ Ni3 ∣21 ↓⟩→ ∣5 ↓⟩ 50.60 772.006 × 10−3 285.71 57.23 19.29 118.63 313.60 0.464 0.999

FIG. 15. Spin-down spin-transfer process ∣11⟩→ ∣14⟩ (Ni3 to Ni1), spin-down
spin-transfer process ∣11⟩→ ∣8⟩ (Ni1 to Ni2), spin-down spin-transfer process
∣18⟩→ ∣14⟩ (Ni2 to Ni3), and spin-down spin-transfer process ∣8⟩→ ∣5⟩ (Ni3 to
Ni3). The time-dependent population of the initial (black dashed line), final or target
(red solid line), and intermediate (solid lines in different colors) states.

not fulfill the requirements (see Sec. III A) to achieve a spin-flip
process.

Moreover, different spin-up and spin-down spin-transfer pro-
cesses are accomplished. We present the fidelity of each process
and the optimized parameters of the laser pulses in Table IV. We
plot some of those spin-down spin-transfer processes in Fig. 15. For
instance, we take ∣11 ↓⟩ and ∣14 ↓⟩ as initial and final states, respec-
tively. At the many-body state ∣11 ↓⟩, the spin density is localized on

Ni1, while at ∣14 ↓⟩, the spin density is localized on Ni3. The time-
dependent population of each involved state is shown in Fig. 15. The
fidelity of this process is 75.52%. By selecting the states ∣18⟩ and ∣14⟩
as initial and target states, respectively, we demonstrate that the spin
density can be moved from Ni2 to Ni3 under a single laser pulse.
The fidelity of this process reaches 77.83%. The optimized para-
meters of the laser pulse are θ = 271.90○, ϕ = 204.19○, γ = 234.73○,
β = 357.80○, FWHM = 456.62 fs, and chirp = 0.957.
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