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An INTRODUCTION TO THE NONLINEAR BoLTzMANN-VLASOV EoUATION

H. Neunzert, Universitdt Kaiserslautern, W.-Germany

1. The derivation of the modified Vlasov equation

The Vlasov ecuation in its simplest form describes the behaviour of
a gas consisting of a large number of identical particles moving
according to the laws of classical mechanics and interacting by a
potential, which is proportional to the mass (or charge respectively)
of the particles and which is - that is the main point - only weakly
singular.

"Weakly singular" means precisely: The force, exerted by a particle
x on a particle at y, both of mass m, has the form m2G(X,y), where

G might become singular for x=y only in a way, that at

[ G(x,y)e(y)dy
R
. 3 1,3
exists for all x¢ R™, o C L (IR7).

The most typical examples are

1 -
(‘I) G(X;Y) = _"YV —_—_— = =Y .
v eyl 1=y I
with v> 0, if m2G is the gravitational force and with v <O, 1if

sz is the Coulomb force.

The Vlasov equation has the form

(2) %%1—<v,vxf>+-<f6 G(x,y) £ (t,y,v)dydv,v_£>=0
R

and is assumed to describe for G given in (1) the behaviour of a
stellar gas, if v > O or the behaviour of an electron gas, if vy < O.
For the stellardynamic case (2) was already considered by Jeans in
1915, while Vlasov introduced that ecguation for the plasmaphysical
case in 1938.
Our aim is to investigate, in which sense the Vlasov ecuation des-
cribes the behaviour of a system of N identical particles, which
move under the influence of their mutual interaction forces.

If we normalize the total mass (or charge) to 1, each particle has



mass (charge) % and the state is described just by giving the posi-

tions and velocities of the particles, i.e. by

6 .
Pi F:(xi,vi}EiR , i=1,...,N.

The motion is then governed by Newton's law

X; T vy
(3) N
. 1
v, = = ¥ G(x.,x.)
1 N =1 1 3]
. o o] o]
So, given the state mN=:{P1,...,PN} at time O, we get the state
wN(t):= {P1(t),...,PN(t)} at time t by solving the initial value
8]
problem for (3) with Pi(0)=:Pi, i=1,...,N. Such a solution might
exist only for finite time - for sz being the gravitational force

(3) represents the N-body-problem of celestial mechanics and has
therefore only local solutions. Even more, the time interval of existence
certainly depends on N and its length might tend to O if N tends
to infinity.
In order to get rid of these difficulties we assume here, that G
is not singular, but bounded and continuous. That can be achieved
by a smooth cut-off of the potential or another mollifying proce-
dure, for example by substituting the original G (which is weakly
singular) by

G, (x,y) := / G(x,z)ma(z—y)&§>

R3

with the "mollifier" w defined by

0 for ||x]|| =8

5 | 02 =1
c4 exp(~1+ib%}w} for ||x|| < ¢
§

where Cs is such that | W dx =1,
IR3
Or by substituting the special G(x,y) = _jEij§ by
%=yl
= X-Y

G (X:Y) -
: Cllx-y )% +6) 72

Gﬁ is certainly bounded and continuous; we will write again G for
G, in that lecture. Equation (2) with G, instead of G is called
the "modified Vlasov equation". For bounded and continuous G the
initial value problem for (3) has a global solution; wN(t) is

defined for all tz 0.



We want to compare now wN(t) with a function f(t,-) : m6-—9:m,

which is a solution of the Vlasov equation.

a
N with £(0,-) = £,

Let us begin with t=0: We have to compare wN(O)==$
0
where { is the initial value for the Vlasov equation (2). In order
0

to be able to compare ﬁN:={g1,...,EN} and f, we have to
interprete both as mathematical objects of the same kind. Both
describe mass (or charge) distributions. Mass distributions can be
described by measures. Therefore interprete both - SN and % as Borel
measures.

(a) BN is substituted by the discrete measure

N
§ 1= = .T 8o 4
O =1 Pj
where ﬁp is the usual Dirac measure concentrated on P.
§ has total mass 1; therefore it is called a probability

UL';N
measure.

(b) £ ois supposed to be a positive function on Iﬁi with

| faxav = 1.
m§
Thenﬁbrei%wdmﬁ:beinterpreted as the density (with respect
to the normal 6-dimensional Lebesqgue measure) of a
probability measure P
B(M):= f.%dxdv for every Borel set M.
M
So instead of using &N to describe the state of the N-particle
system and % to describe the initial condition for (2), we usc the
probability measures GU and §. We want to mention, that in spite of
“N
having probability measures there is no stochastic element in the
description - we only have normalized the total mass.
We write M for the set of all probability measures on Eﬁi The best
method to compare 60 and 1 will be provided by a metric in M.

iy

N

S0 we have to look for a metric in M. But there is one condition
such a metrie should fulfill. There is a natural topology in M,
.x. . .

the weak -topology, which I describe by the corresponding weak

convergence in M:



(v ) converges weakly to w, u_—> u,if and only if
n’ n
N& IN
lim [ eodu = [ odu for all bounded continuous ¢.
-+ 1R6 IR6

Now it is imvortant, that a metric p generates the weak convergence:

lim p(un,u) =0 if and only if un-—9 M.
-
We have several choices for p, but not every choice is convenient

for our purposes.

(1) There is the so-called "bounded Lipschitz distance" 0

defined by

(4) plu,v) :=sup Efu;du— f (pd\)|

peD
where D=1{ o |R® — (0,11, |o(P)=0(Q)]| - ||P-0]]
for all P,QtJR6}
(I1) Dobrushin and Braun-Hepp used the Wasserstein-metric 5,
defined as follows:
Consider the class © of measures ¢ on 3212, such that
oM x ®RY) = (M), o (R®xN) =v(N). Then
(5) o(i,v) = inf [ min { |[|P-0]| ,1} dc(P,Q) .
VIS ]R12
(ITT) The most simple possible choice is the "discrepancy",
defined by
(6) D(u,v) :=sup|u(R)=-v(R) |
RE®,
where W 1is the class of all subsets of R6 of the form
H)U;R6 | P~ 0} with arbitrary but given O and the usual

. , 6
scmiorder in IR™.

But whilce p generate the weak convergence, this is nol

truce for D.
Only for absolutely continuous measure u is it true, that

un—}“ P D(un,u) — 0



Therefore we have to be careful in using the discrepancy and we pre-

fer P4 to work with.

Now suppose we have a sequence of N-particle systems BN with N
increasing and an initial distribution i, so that
60 —%ﬁ with N— =, or, which is the same
‘N
lim o, (s ,u) = O.
1 0
N> )
We solve, for each N, the initial value problem for (3) with
ON 0 _ ON ON .
Pi(O} = Pi , Wwhere Wy = {P1,...,PN}
N N : )
and get w,_(t) ={P (t),...,P (t)} or correspondingly ¢ .
N 1 N wN(t)

On the other hand, let us assume, that f£(t,*) is a solution of the

o] (o]
initial value problem for (2) with £(0,-) =f, where f is the
density of . (We return to the question of existence and unique-

ness of the solution of that problem later.)

It follows immediately from that

(2),

[ f(t,p)dp =

6
R

Q
[ £(p)dp =1
s

and f(t,P) -0 for all t > 0. So f(t,-) is again the density of a

probability measure Ve

We are now able to formulate the notion "derivation of the Vlasov

equation”.
Definition 1: We call the Vlasov equation (2)
lo,T]",

"strictly derivable

of the initial

in if for every solution Mg

value problem for (2) with initial condition 0

lim p, (& ,u,) = O holds, if

Novco 1 mN(t) t

lim 04 (& ,8) =0

N-;-nu {‘UN
Remark: Tt is clear that the definition depends on what we call a
solution. If we allow a solution to be a weak solution, the dofi-
nition is c¢ven stronger. On the other hand, the strong derivability



of the Vlasov equation with respect to a certain class of solutions
gives you also a hint what kind of solutions are physically meaning-
ful.

Now the question is: What conditions should be fullfilled by G,

so that (2) is strictly derivable? The answer is

Theorem 1: If G is bounded, globally Lipschitz continuous, then (2)
is strongly derivable (with respect to a class of very
weak "measure solutions", which will be defined in the
following sketch of the proof).

Sketeh of the ptoog @ We put things in a more general setting. Let

b, t—> ptem, t=10,T7]

be a weakly continuous measure valued function (weakly continuous
means that t — f cgdut is continuous for any bounded, continuous
0) . Rr®

We denote the set of these functions by CM' Let us assume, that for
any u ¢ Cy there is defined a six-dimensional time depending vector-
field

6

(t,p) — Vg J(t,P) c R, tel[O,T], PE R .

In case of (2), this vectorfield is given by

v
(7) V[U.](t;va)
[ Glx,y)au ty,v)
RG
(remember, that f G(x,y)dpt(y,v) = f G(x,y)f(t,y,v)dydv.
:R6 :R6

viw, ] has to satisfy two conditions, the first of which reads

(1) Vvip,_l(t,P) should be continuous in t and globally Lipschitz
continuous in P (with Lipschitz constant L).
This is true for V given by (7), since u_,6 is weakly continuous,
G(x,+) is continuous for each x and G(-,y) is aloballv Lipschitz

continuous.

If (I) is true, the initial value problem for the characteristic

equations



(8) P =

0
= P

V[U. -E (t;P) ’ P(S}

has a unique globally existing solution, which we denote by

ll'!

t,s is bijecti

Now we consider

(9)

e <
which is to int

8]

i(

is a measur

(9)
(7) as the foll

Lemma: If i is
solution
£(t,-),
by Lax f

af
T
c

Remarks:

1. If V is give

2. A weak solut

(1) £(t,")
(ii) for al

the equation

rll

J

(
)lR

()
(

holds. [ is a c

cicntly smooth,

0
[
P(t) =T _ _[u P

r
_‘| _
t,s

ve and T id, T
s, 1c, s,t

the "fix point equation"

s}
nwo T

O,t ]

tc[o,T]

r

[w,

crpret as
T [, °.

o, 1M

for cvery Borel set Mc R

e theoretic formulation of (2), when V is given by

owing lemma shows:

0
absolutely continuous with density f, then any

¢ of

which is a weak solution (in the sense defined

u (9) is absolutely continuous with density

or conservation laws) of the initial value problem
{. 3 - —

dlvp(f V) 0
(0,") = ¢

n by (7), equation (10) is the Vlasov equation (2).

ion of (10) is defined to be a function f with

is weakly continuous in [0O,T]

1 test functions wEEC1({O,T}XIm6) with
. 6
supp w ¢ [0,T) x K, K compact in R,
rlﬁf+ ”V,qradpwvldeL1~ [ w(o,-)idpr - O
) ' 6
112
lassical solution of (10), if f and VvV is sufli-



Remarnks on the proof of the Lemma: The main point is to prove that u

t
absolutely continuous, if I is. But that follows by a rather un-

_‘I .
known statement of Rademacher from 1916, that poT is absolutely
continuous together with w, if T is a bijective measurable
mapping and ’I‘_'I is locally Lipschitz continuous. So putting
. O
lll — III

t
is essentially done by direct calculation.

The lemma shows, that (9) is a reasonable generalization of (2).
But (10) includes also the N-body problem given by (3):

. 1 N
If we put p, =46 (£) " then % G(x,y)dﬁmN(t)=:ﬁ jZ1G(X,Xj(t))

N R

and Pi(t) is given as the solution of

I):?V[Gw
‘N

where V has the form (7). It follows by (8), that

O
T (¢t = i=
()1 (£,P), P(O) =P, i=1,...,N

(12) Pi{t) =T L6

Therefore a solution of the N-body problem (3) is a solution of

cquation (12) and (12) now is equivalent to

(13) S = § o T [ & ]
{ [

N 8 N

which 1is just (9) with ﬂ::G . To verify the last equivalence

of (12) and (13), just calculate for an arbitrary Borel set M

§ (M) = &, - (M)
P, (t) 1t!0[8m (,)JPi
N
( ; 1 D c i b -7 [&
11 if lt O[éw (,)in._M 1 if PiL.TO’t o (%)
_ ' N _ N
10 elsc 0 else
=5, (T [-IM) = § oT [§ | (M)
i o, gi o,t mN( )
i

Summing upoalloioand dividing by N ogives (13).

is

o t?“-j’ =1, the absolute continuity of p_ follows. The rest
£



Conclusion: Both, the discrete N-body problem as well as the initial
value problem for the Vlasov equation are special cases of equation
(9), which correspond to different initial distributions I and GU

“N
respectively. Our aim is to compare the solutions of these two
special cases: We have to prove, that the solution of (9) is conti-

nuously depending on the initial data y, i.e. that
S —> if § — 3 for N-w
uw (t) = t 1 ¢ o = U O

N N

Now we need the second condition on V.

(IT) The mapping V:u — VIU.] for “-(:CM is Lipschitz conti-

nuous in the following sense:

(14) ﬂ}lvtu,](t,P)-v[v,](t,P)H Au, (P) = K oy (i svy)
R)
for fixed K and all U_,v.(fCM-
That condition (II) is fulfilled by V given in (7):
Hviuw Te,p)=-viv 1e, )|l = || | G(x,y)(dut(y,v)-dvt(y,v))H
6
R
- LB G(x,y)+B -
= 2L"B|| 2 s (duy (y,v)=adv (y,v)) ||,
R
where B is the bound for |[|G(x,y)]|| and L the Lipschitz constant of
G (and V) (remember, that f (dut—dvt)::o, since Vi and v, are
6
R

probability measures).

G(Xé%%ig is for each x in class D used in definition (4) if

L 1; therefore we gect

Now

Hvln, J(e,P)=viv T(t,P)[| = 2LB p G sy ).

Since the right hand side is independent of P and nois again a pro-

bability measure, we get (14) with K= 2LB.

The rest of the proof of theorem 1 is as follows, where we write

Ll
v for § , v, for ¢
i t o]

[l]N N

(t):



- 10 -

01(“t'“t):rﬁ(ﬁ‘JTo,thU]’S"To,t[“-“

o 9] r r o r o
[)1(11()I' BT ],UOFO t[\J.])+O1(UOTO

o, M. ) ) (v, D

Q
tlv-]'v()To,t

The first term on the right hand side might be estimated by using

definition (4).

u m ] m i 1 — o N - o
p1(ULJlO’t!U.]ka3lO’tLU.J) sup | wd(H()TO’t[d.]) nd(chTO't[v,}”
i;}C‘D ,IR6
= 1_|..
sup | f (w{)Tt,o{”-‘ “()Tt,o[v-l)d“o
@eD m§
(since ¢t D)
- | f - ’ —
< sup % ]|Tt101u.j Tt'ofv.ludpo 2 (L)
IR
Now Tt OEH‘JP, Tt O[v.}P are solutions of the initial valuc
problems

ﬁ:=VLU.]{t,P} and §=:V[v.](t,P), P(0) =P respectively.

Using that and condition (II) for V we get an cstimate of A(t):

(L) Svoaellan

r

iJth,ol“-1P‘Tt
R

t t
= £||éviu,](T,TTFOLU_]P)dT-£V[v,](T,TT'Olv,]P)dTH du g

t
fUviw T, T, O[U.IP)"V[v.](T,TT'O[U.]P)ldTﬁduo +

]RG O ’
t
b %l%é[V[U_1(T,TTroiu.]P)—V[v.](T,TT'O[U.]P)ldT” du,
R
N v
[ (1 aalfanau + [ Il ... llanyde = (Fubini)
R © =6 ©
t
= [ &w%V|U.5(T,TT’O[U.]P)—Vlv.](T,TT’O[U‘]P)H duO(P)dT +
O RP
t _ .
+ ﬂ)(é[!VIu_](T,TT'O]u.JP)—Viu.](T,TT'O[v_1P)|[dmduo
IR
L
[ [ Jlvin, tee,0=viv Tee,0) [ de (@))de +
O lRG 1

t
+L[ ]|TT OIU.IP—TT
OﬁRG

O[v_]PH du_(P)dt - (11)

r



t t
s Kfp1(u ;v )d1+-Lfk(T)dT .
0 Tt 0

So we have

t t
A(t) = Kfp1(u PRV )dT%—Lfl(T)dT and
0 T 0

the wellknown lemma of Gronwall provides

t
K et [o. (u v e LT4q

ol T

[17a%

A(t)

The second term in the estimation for p1(ut,ut) is more simple:

o 10 ' _ 0_ 10
01(u(aTo't[v.l,chﬁo’tLu.]) sup | f@()TO't[v.](du dv) |
@wED
Since T t[v-] is Lipschitz continuous with constant eLt,
’
e-Lt(m<>T [v.]) is in D and we therefore get as a bound for the

o,t Lt
second term e 01(u0,vo}.

Putting things together we have

t
Lt Lt LT
01(u0,vo)-FKe fp1(uT,vT)e dr .

palu, v, ) se
1 t' 't 0

Applying Gronwalls lemma again, we get

) K+L) t
01(u PRy )'rC( ) p (8

9]
A 1 (Hev)

. 0 _ ] 0 _
So, if v-ao tends to u, vy aw (t)
mN N

statement of the theorem.

tends to Wy s which is the

Remarks:
1. One reccognizes, that the solution of (9) depends even in a Lip-
. . . . +
schitz continuous way with Lipschitz constant e(K L)t on the

initial data ﬁ. But one also can realize that the boundedness
and the Lipschitz continuity of G is essential: Since K= 2LB,

both properties expressed by B and L are used.

2. Theorem 1 covers by far more than the special situation given
by the Vlasov equation. Especially V may depend in a rather

general way on Mo whereas in the Vlasov case it depends



linearly on f(t,-).

The crucial assumption is condition (II). There the integration

with respect to W, may be substituted by the integration with

respect to & (t)*



2. Existence and uniqgueness for the modified Boltzmann equation

So far, we have assumed the existence of at least a measure theore-
tic solution of the modified Vlasov equation (2). It is now easy to

establish existence and uniqueness in using the theory we have de-

veloped in lecture 1.

Theorem 2: Tf G is bounded and globally Lipschitz, then for any
%»:.iL1 the modified Vlasov equation (2) has a global
unique solution, which is a weak solution in the sense
defined in (11). The solution is classical, if % and G

arc in addition continuously differentiable.

Again we prove a more deneral statement: If V fullfills conditions
(I) and (II), given in lecture 1, then the measure theoretic
equation (9) has a unique weakly continuous solution u_ in any
interval [0O,T].

Theorem 2 follows from that statement, since V given by (7) full-
fills conditions (I) and (II) and, due to the lemma, a solution of

(9) with absclutely continuocus N gives a weak solution of (2).

Proof: In M we defined the metric 047 it induces a metric in Cumr

the set of all weakly continuous functions t — u M, t€lo,T],

¢
£
where 1 is arbitrary, but fixed:

_ —at
da(u_,v.).— sup p1(ut;vt)e

tclo,T]

Here « > O may be chosen freely. Since (M,p1) is a complete metric

space (Kellerer), the same is true for (CM’dq)'

We want to solve the equation (9)
“t: UOOTO,t[U']

To this end, we introduce the operator

(15) A:CM_> CM with (Au.)(t} :=|100’lo't[1|.], tc [0,T]

licre we have to prove, that AU.ijM, i.e. that

t — A]l'(t), teo |o,T]

is weakly continuous. But this is an immediate conscquence ol a



well known theorem, which says, that uo()To t[p_] is weakly conti-
nuous, if
®|

UO({P=ZR 'f0,°

is continuous at (t,P)})=1.

Since TO ., considered as a function of (t,P) is everywhere conti-

r

nuous (it is a solution of an ordinary differential equation
system), uw_oT lu | is weakly continuous for each

o] o,t . o]
Now we simply have to show, that A is for suitable &« a contractive

mapping in (C,d ).

M’

I"irst we get for arbitrary U.,v‘{ZCM
o,

pq(ﬁu.(t),hv.(t)) = 01(urJTO

t ,
KeLt f DT(“T'UT)Q L[dT

0

as we already saw in the proof of theorem 1.

t -
Therefore dl(Ap_,Av_)~ K sup e(L W)t f p1(ﬁ ;v e le:
- tclo,T) 0
(L-a)t © ~(L-a) 1
K sup e f dﬂ(u yV_Je d
telO,T] 0
- K d (p ,v ) for u>L
a-L Ta !

Choosing w=K+L+& for § >0 yields
1

v . . I & Vs . .
1+ 2
K

so A is a contractive operator and from the Banach fixpoint theorem

the statcement of the theorem follows.

Remark: The proof of theorem 2 is of Picard-Lindeldf type. One may

also make a proof of Pcano Lype: For = the solution ﬁ” (L) of
-.fall 1 I\! .
"N
(9) exists. Onc can show by using Prohorovs thcorem on compactness
in M, that {3
UJN
Therefore for each t a sequence (nj(t))

(t),n{:IH is relatively compact in M for each t.

i N exists, such that
& (t) converges to a measure y Now one has to show, Lthat

t.
]
.t
n()



nj can be chosen independently of t, so that

§ — for all te [O,T].
w t
n. (t)
That e gives a solution of (9). The advantage of that procedure
is not very big; one can weaken a little bit condition (I ). But
we need that kind of arguments in order to prove the existence of

a weak solution for the non-modified Vlasov equation.

Historical remarks: The first existence proof for the modified

Vlasov equation was given by Batt in 1963, who also introduced the
modification. He had stricter assumptions concerning %. The theo-
rems 1 and 2 given herc were proved by me in 1975. Braun and llepp
in 1977 as well as Dobrushin in 1978 were not aware of these re-

sults and proved some slightly weaker results using the metric Poe



3. Existence and uniqueness for the unmodified Vlasov equation

The research concerning existence and uniqueness for the unmodified

Vlasov equation proceeded in two different directions:

(a) One looks for weak solutions, gets existence for dimension 3,
but uniqueness is not proved up till now. Existence theorems

for weak solutions have been shown by Arseneev and Illner and

myself.

(b) One looks for classical solutions, for which uniqueness is
easy to show. But one has to make some assumption on the
initial data, which are restricting. So for % depending only
on two space and two velocity variables or for f being in a
certain way symmetric, one gets existence. These results are
mainly due to E. Horst (1980), but Batt did the first step in
that direction; also Ukai, Okabe and Wollmann showed the
existence of classical solutions for the "two-dimensional”

casc.

Since all the proofs of these theorems are rather long and tech-
nical, I just try to give the results and some impressions of the

ideas lying behind.

In both cases the idea is initially the same: In order to solve (2)
)]
with initial condition f(O,')==% and G given (1) one first solves

the Vlasov ecuation with a modified G, - we call that equation now

§

6]
(2R) - and the same initial value f; the solution of that problem,
L 0

which for any éﬁ.L1 exists as theorem 2 shows, is denoted by fa.
Letting § tend to O, one hopes to get a solution of (2).
The difference of both cases lies in the kind of convergence one

U .
has to prove: Whereas in (a), where f may be chosen arbitrarily in

1 : .
L, one only has to prove weak convergence of fa, in case (b),
8]

where f has to be continuously differentiable one has to show

uniform convergence.

Pul there is another thing in common for both cases: One has Lo

show, that, il

0
o= [ |lv]|® f(x,v)dxdv <«
© 6
R



then there exists a constant C, not depending on t and ¢, so that

the kinetic energy of the gas fullfills the estimate

(16) E (t) := [ :|v||2f6(t,x,v)dxdvs_éc i
m§
(16) is proved by showing that energy conservation holds:

Let U (x,y) be the potential of G i.e.

6 r
GG(X,Y) = +VXU6(x-y)

(for example Ud(x—y):==—y-f —“m—fﬂ—wﬁ(z—y)dz for one kind of

- -
(|x-y]| % +68)

mollifying or Us(x—y)

L

75 for the other)

and define the potential energy of the solution f6 by

(17) vo(t) := [ ([ U (x-y)f (t,y,v)dydv)f (t,x,v)dxdv;
5 6 3 8 8 §
R R
then
(18) E (L) +Vo(t) = E_+V,(0)

holds for all t @ O.

(18) is rather easy to prove by using (9).

(16) follows immediately from (18) in the plasmaphysical case,
where vy < O: Uﬁ(x—y) is then nonnegative, so this is true for Vﬁ(t)
and

Eé(t) = 130+v{S (O)_Va{t) < EO+V6 (o),

where V&(O) may be bounded uniformlv with resmect to §.
(16) 1s harder to prove in the stellardynamic case, where v > O.
But nevertheless it is true as was shown by Horst in using some

Sobolev inequalities.

Lel us now present the existence thceorems:



(9]
Theorem 3: Lf f L1 has the following properties:

1

(i) There exists a M such that O £(P) - M a.e¢. in Hﬂ

(i) [ lPll2£(P)ap < =

IR6
(iii) 8; x — f(x,v)dv is essentially hounded.
then a weak solution f(t,-) of the initial value
problem for (2) exists.

Sketch of the proof :
1. step: Let u?: t-—>ui, tc[0,T] the solution of (9) with molli-
fied Gﬁ' Then one shows, that the set

")
{utite [o,T], ¢>0}

is uniformly tight in M; that means: to every = >0 there

exists a R>» 0, such that
ui(Iﬁ \}HQ < g for all te |O,T], &> 0O;

here K :={pc R® | [|P||" RI.
This is shown by considering
ho(t) := | []XH2 £, (t,x,v)dxdv;
ZR6 -
using, that fa is a solution of (9) and using (16) one
gets
O--hs(t)f;c' independent on § >0 and tC [O,T].

Now, for any R>O0

Rzuji(m6\ Kpg) - r? i f(t,P)AP * i ]|r>|l2 £, (t,P)ap
6 6 '
R \KR R \KR
/ [[p[|2 fﬁ(t,P)dPZhG(t)+E5(t) < Cc+C'
r®

again using (16); therefore ui(ﬂéi\ KR) can be made

smaller than an arbitrary ¢ > O by choosing R large enough.

Now Prohorovs theorem shows, that for any countabledense

subset T' € [0,T] there is a monotone sequence (Gn) SN0,
such that neEN
u2:=ptn—-—> utEM for n»>«, teT'.

We have next to show, that the convergence holds also for
tgT'.



2. step: We show, that for any continuously differentiable ¢ with
compact support, the set of functions
t— ¢ (t) := f6wdu2, tc(o,T]
R
is equicontinuous. This is a technical proof, using mainly
the bopndedness of % and therefore also of fﬁ.

Now, since converges pointwise on T' and forms an equi-

i
N
continuous set, it converges uniformly on [0,T]. The limit

has to be

rllign $,(t) = f6wdpt
R
with utf_M defined for all te¢ [O,T]. It follows immediately,
that
p:-—% ut for te¢ [0O,T]
and that u_ : t— i is weakly continuous.

It is also easy to show, that My is absolutely continuous

with a density f(t,-) essentialiy bounded by M.

3. step: What stays is a long but straightforward proof, that
f(t,-), constructed in step 2 is a weak solution of the

initial value problem for (2). We will not go into details.

Remark: The existence proof sketched here is not constructive, since
it uses a compactness argument and we are ngt able to show, that for
any sequence (¢ ) ’ Gntuo the measures utn converge to ey This
ntcN
has two consequences:
(i) We are not able to prove uniqueness - we will even not make

any conjecture on that problem.

3 .
1(“t’“t) is small

for small §, we cannot prove, that the unmodified Vlasov

(ii) Since it is not possible to show, that p

equation is strictly derivable - even for the plasmaphysical
case, where the discrete problem has a global solution. 1t
might be true, that the equation is only stochastically
derivable - a notion, which we will not deiine here, since

it is morce conncected with the Boltzmann cquation.



We now turn to the question of existence of classical solu-

tions, i.e. to Horst's work. Here we will always assume,that f is con-

tinuously differentiable and has compact support.

As already mentioned there is up till now no existence theorem for

the full 3-dimensional problem. Therefore we have to consider the

following lower dimensional cases:

(A) The function f in equation (2) depends only on 2 space and

(C)

2 velocity variables. Then equation (1) has to be changed

into

Glx,y) = y7 In |lx=y || = -y —X2X

2
I x-y|
Let H be the group of all orthogonal transformations S ofIR3
with det s=1. A function g: (x,y) — R, (X,V)EZRG is
called to be spherically symmetric if g(Sx,Sv) =g(x,v) for

all s H, (X,V)CZRG.

Now it is easy to show, that if % is spherically symmetric, a
solution of the corresponding initial value problem for (2)
is also spherically symmetric. So the question occurs,

whether such a solution for a spherically symmetric initial

condition exists.

Let 72 be the group of orthogonal transformations Zé of m3,
which are represented by matrices of the form
cos © sin 6 O]
Z% 1= l—sine cos 6 Of , 0= 0= 2u
t O 0 1
A function g is called rotationally symmetric, if
&}
G(ZRX’ZR) = g(x,v) for all (x,v)E'RG, ZHE.Z. Again for f
rotationally symmetric the corresponding solution f(t,-) of

(2) 1is alsorotationally symmetric and one may ask for the
existence of such solutions. This problem may be considered
as a b-dimensional version of the original 6-dimensional
problem. The special pmart of the z-axis given by the form of

ZS is not essential.
8

Theorem 4: In each case (A), (B) or (C) there exists a global

classical solution, which is unique.



Sketch of the procf : One again starts with the solutions f, of the

modified problem. The main tool is the following lemma, which was

in a similar form first proved by Batt.

Lemma: There exists a unique classical solution of the initial

value problem for (2) in [0,T], if and only if

(19) sup{ | fé(t,x,v)dv[tﬂ—? [Oo,T], xE]R3 ;6> 0} <

R3

The proof of that lemma is rather long but purely technical. One

gets an estimate of the form

. J_ 1
| _ t\i% ~ 4
|‘1L,'T| |P t’L[U.JPL 3 Clﬁ -3 | P
C depending only on the length T of the time interval.
Therefore T, 1[u5]P converges uniformly with respect to t,Tt¢ [0,T],
PEZR6 for § tendlnq to zero to a mapping T T(P).
Defining f(t,P) rzf(T tP) one gets a solutlon of (2).

Since we have now full convergence for & tending to zero (in con-
trast to the situation with weak solutions, where we only know the

6.
existence of a sequence (§.) for which u J and T [u 7]
jE]N - t'o -
converges), uniqueness also follows immediately.

For the rest one needs again (16), i.e. the fact, that the kinetic
enerqgy of fﬁ is bounded uniformly with respect to §. Applying

Holder's incquality, one gets for

pglt,x) = i fo(t,x,v)dv
R3
2 ﬁ
) 5
that ogte, )l g = K R By < C
3
But in order to use the lemma, we nced a uniform bound for Hn5|[0.

Therefore one proceceds as follows: We estimate

(20) X, (t,x) := f G, (x-y)f (t,y,v)dydv = f Gy (x=y)p (t,y)dy
H{ jR

by Sobolev's inequality to get



4

. , 9
) Ixge s ey e, 1P

But if we are aware of the symmetry of fa’ for example the spheri-

cal symmetry, one gets better estimates:

o=

]
(22) K. (t,x) |

5 ¢y o llo
§ 3 5. .2 17 ele
Vopre

There the svrmetrv comes in! Mow recall, that

T, o{pf!P is a solution of the system
!
X = v
v o= Ko(t,x).
8

. . , . ! . .
Therefore estimates for E_ give estimates for T lu,]. Consideriny

8
only the last three components of T

t,O

& O[H?], which correspond to the
r

velocities and estimating
§

§ ) . - _ .

Gj := sup{ | (lt,o[“-JP)%j P3+j| lpe R, tec [0,T]})
one gets, that if |Kﬁ(t,x)§:ig(xj) for some j€ {1,2,3} and g{-Lp,
then

S +1
gt < ¢ | P71,
3 4 |lg|l p
C4 only depending on p and T.
Now using (21) for Gg gives 4
s 9
G3 = C5[|OGH o
Using (22) for G? and G; gives
11
8 & 45
G1‘,G2 S C6Hp§]|m .

The exponents look strange but are important. Since

(t,x) = [ £r_  [uwdiprav
p(s r 3 O,t U‘.I

R
. ) . . . i
these estimates for Gj can be used again to give estimates for ¢ .
Once qgels

o dh, v (G (G )

(¢, independent of &) and therefore
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| 415 . .
(23) ||D3hm 1O(J|p6H ) uniformly in §.
14 4 11 11 .
Note, that 59 st aE T and note that without symmetry we would
have instead of %ﬁ a number larger than one: 3 %==%
You see, that (23) cannot be true, if H05|Ln is not bounded. This

proves (19) and therefore theorem 4.

Remark: I gave some of the most important estimates in Horst's work
in order to show you how tough the stuff 1is. The methods end up

with an estimate of the type
| - k
oIl = ol ll)

and if k © 1, then we are through. In the twodimensional case we
have just k::2'g 1 without symmetries. But for three dimensions
this method faiis.

It is hard to guess whether there is a unique classical solution of
(2) in 3 dimensions. The situation is similar to the situation in

the field of Navier-Stokes equations:

In 3 dimensions one has existence but not uniqueness for weak solu-
tions, uniqueness but not existence for classical solutions; 1in

lower dimensions existence and uniqueness of classical solutions.

What about higher dimensions? Nothing is known for Navier-Stokes
and nothing is known for Vlasov in the plasmaphysical case. But -
here is the only essential difference between y=+1 and v=-1 -
HHlorst has shown, that there is no global solution in 4 dimensions
for the stellardynamic case. Since that result is at least mathe-
matically surprising and since the proof is simple, 1 state it as
0
Theorem 5: In 4 dimensions for y >0 there are initial values f
(positive, continuously differentiable with compact
support), such that the corresponding initial valuc

problem for (L) has no global solution.



Remark: 4 dimensions mean 4 space and 4 velocity variables. G has to
be then

G(x,y) = -y hijLjr: X,y C m&_
| x=vy ||

Proof: We consider the moment of inertia for a solution of (2)

(for times t, when it exists).

(24)  mi(t) := [|x]|% £(t,x,v)dxdv

With V defined like in (17) and with f instead of fﬁ and
1

I T
[ %=yl

instead of Uﬁ (V is the potential energy) one gets by straight-

forward calculation, that mi is twice continuously differentiable

and

mi"(t) = 2(E(t) +V(t)) = 2(E(0) +V(0))

(here the 3 dimension comes in; in 3 dimensicns it would just

be mi"(t) = 2E(t) +V(t) and we could not use the energy conserva-

tion).

Now choose a f such that E(0O) + V(0) < 0. This is possible only in

the stellardynamic case, where y > 0, since E(0O) is positive

but linear in {fj and V(0) is negatiwve but quadratic in %

Therefore mi"(t) is a negatiwveconstant. mi itself is positive, since
% and therefore f is positive. This is possible only in certain
finite time intervals. So the solutionocan only exist in a finite

time interval (which depends only on f). That was to be shown.



4. The plasmaphysical case with selfconsistent maanetic field

If the particles considered are electrons, they do not only interact
by means of the electric field but also by the maanetic field aene=-

rated by themselves. Therefore instead of looking only at the elec-
tric field

E(t,x) = [ G(x,y)f(t,y,v)dydv = [ G(x,y)p (t,y)dy
IR3 ZR3
in (2), which is a solution of divE= -4nyp, we have to take into

account the full Maxwell equations. In order to be in accordance
with a familiar form of these equations, we slightly chanae the
notation.

Instead of (1), (2) the system of equations we have to consider now
is the following system for the function f, the electric field E and
the magnetic field B:

1 I}f - e ’ l [ o=
(2") ?E*_“V’qradxf' HE[f]4-C v X Blfl,qradvf, 0O

(1a) div E

i +n.
4r(nC nl)

(1b) div B = 0O
(1c) rot E __123B
T c oot
_ 1 ab 4
(1d) rot B = - Tt =3
where
(25) nv(t,X) :=- [ f(t,x,v)dv, j(t,x) :=- [ vE(t,x,v)adv
Rj m3

and ni::nj(x) is a given spatial density of a fixed ion backaoround.

Remarks:

(a) If B=0 and ni::O, then (2') is essentially (2), provided we

add to (la) the boundary condition that E has to vanish at infi-

nity. Then (la) has the solution
. © Univ.-gimy
| DR = G((x t d -
(t,x) [ G yIn (t,y)dy rolsuer
with v = -1,
(L) In (2') we write EIf] and BIf] in order to make clecar that the

fields depend on f: n, and ] arec moments of f, therefore a solu-
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tion of the system (1a) - (1d) depends on f.

(c) We introduced the function n,; representing the spatial density
of a ion gas, while f is the u-space density for the electrons.
We assume that the ions form a fixed background. Otherwise we
would have to consider two distribution functions fe and fi and
two equations of the form (2'), which differ only by a constant
and a sign in front of the third term. This would not cause
principal difficulties but increase the formal complexity of
the system.

We mention that the introduction of a ng and even of an external
magnetic field, which does not depend on f, into equations
(1) = (2) of the preceding lectures would not have generated

essential troubles and could have been handled easily.

In order not to get lost in the complexity of the problem we are
looking for the simplest geometry in which the typical features of
the problem are present. If f would depend only on one space and one
velocity variable no magnetic field would occur. Therefore we look
for solutions which depend only on one space and on two velocity
variables:
R
- . —_— g .= = .
f(t,-) : (xi,vl,vz) > f(t,x1,v1,v2).C) for all P: (x1,v1,v2).ZR
For such a function n, and j defined by (25) do not exist. Therefore
we change these definitions into
(25')  n_(t,x;) = - | f£(t,x,,v)dv, j(t,x) =~ i vE(t,x,,v)dv
:m2 IRZ

with v::(vi,vzj.

Furthermore, we add some boundary conditions for E and B, which also

will depend only on Xt

(26a) 1lim E1 (t,x]) =- 1lim E1 (t,x,l), tc [0,T]
W or=—cm ¥, rtee
1 1
8]

(26b) E2(O,x Ez(x1), E3(0,x1)==0 for all X, R

1)

[y
(26c) Bj(O,x }:=Bz(0,x1)::0, B3(O,x1)==B3(x1) for all x1( R.

1
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It follows that B1(t,x1):=Bz(t,x1) =E3{t,x1)==0 everywhere and in-

stead of (1a) - (1d) the simpler system
3E1
(1a') _é_i-:l- = 41r(ne+ni)
R JoB
L] 2 l -.——__..3 =
(Te) 0%, e - °
a B dE B
. 1 _ . 2 3= _ .
(1d*) ot i 3¢t Cax1 4ndy-
remains to ke considered.
(2') becomes
" of of 1, 5 of _ L af
(2%) ”t-+v1 axI {E1[f]+(:v2b3{f]) Dv1 (EZ[f] c‘v1L3[f]) avz'PO

The initial value problem for the system (2'), (1a'), (1c') and (14')
is unmodified in the sense of lecture 1 but lower dimensional. I
suggest that it has a unique classical solution. But this is not yet
proved. Cnly for a "mollified" problem existence and uniqueness is

assured and 1 will sketch that result (see [25]).

Instead of defining n, and j as in (25') we use a smoothed f  in-
0

stead of £ and define

cn S _ _ 1.
(25")  n_(t,x;) = f3c.36(x1 £) f£(t,6,v) dedv
R
ju(t,x,]] = - f3Vm6(X1_£} f(t,g,y) dfdv.
IR
Now our problem is completely stated by the equations (la'), (1c'),
(1d'), (2") and (25"), where into the equations (1") nh, jﬁ must be

&

inserted instead of ne,j. We have to add *the initial and boundary

conditions (26) for B, E and f.

We first solve the equations (la'), (1c') and (1d') for given f(t,-).
fet g be again the measure with the density f(t,+). We have to be

a little kit mom: carcful, as My has to be such that



8
JT(txy) = [ vo(xg-e) dug (g,V)

H§

exists. But the function (g,v) —€>Vmé(x1—£), X fixed, is not boun-
ded. That causes some trouble, in contrast to the situation of lec-

ture 1.

We will therefore assume, that the supports of My s te[0,T] are uni-
formly bounded with respect to t; i.e. there exists a ball

g = {PE€R’/|P||<R)} such that

SUpp p €« for te|[0O,T].

R

Now (la') with the boundary condition (26a) has the solution

B e
. . 4 . -
E1{t,x1)==2n f 51gn(x1—y)[ne(t;y)‘*ni(y)]dy

- o

4+
=2n [ ( sign(x;-y)o, (y-z) dy) du(z,v)
3 -
IR
+ o

+ 2n sign(x,-y)n, (y) dy .

-

It is easy to check, that E1 is continuous and bounded in [O,T] x IR,
is globally Lipschitz continuous with respect to x with a Lipschitz
constant independent of t and i, . Furthermore, by doing the same small

calculations as in lecture 1 onc gets

|I'],i [, x) - E,] [v.] (t,x) | KTQ (I'lt'vt) .

For arbitrary , . the function ET given by (27) will in general not

satisfy the first equation in (1d'). We forget that equation for a
moment; it will turn out at the end that, if . is a solution of
our problem, this equation is automatically satisfied.

Now we have to consider the equations

By 5

ok 8B3 d ;
2

E ]
2 1 2 .
[N = —_ 4 ——
i, ¢ at C it © Ox 4]

1 )

with the initial condition Ez(O,x1) :Iiz(x1) . Bj(o,x1) :15}(K]J‘

7O solve Lhem we look for a function A: |G, » IR—- 1K, so Uhal
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o
=4

- A 2 =
(28) Ba"ax1‘ 1:2

|

Q=
Wl
o+

is a solution. Inserting this "Ansatz" into the equations for E

2'73
we get
(29) fa 1 azA:_g 50
3xf c?at? c 72
i.e. the inhomogenous wave eguation. Its solution is
& X1+C(t-r) \ 1 x1+ct S
Alt,x ) ==20 [ ( jo(r,y) dy)dt -5 [ E,(y)dy
1 2 2 2
¢ xq-c(t-1) X,~ct
(30)
X, +ct X, —Ct

1 1_" 0 1I 0
+§( - BB(y) dy + ) BB(Y) dy) .
E2 and 83 given by (28), (30) satisfy similar conditions as E1:

They are globally Lipschitz continuous uniformly with respect to t

and p. and there are constants K2,K3,M2,M3, such that

t

(31) |E2[u._} (t,X1) —Ez[v.l(t,x1}| = sz{ut,vt) +M2 éo(llT;\-’T) dr
t

!B.j[u.](t,}{}) “E3[\J.](t,}{1)] SKBp(ut,vt) +M3 (f)p(uT,'\JT) dr

However, these constants K2,K3,M2,M3 depend on the bound of the

supports of Hpo i.e. on R.

The vectorfield V{u.], defined by

! v
o |
V[;_L.}(t,X,I,V) = i—E1[u.]'EV2B3{1l.]
1
—Ez[u.] +EV.I B3[H-] )

satisfies condition (I) of lecture 1; condition (II) has to ke gene-

ralized to

(£ [ Vi1, p) =viva ) (e, p) [ di (P)

H?‘k

1
: }‘:|I(|.JL,\’L) M j-;l{u__l,")_l) di .

o
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There k =3; the additional term M z p(u1,UT) dt causes no troublce
in any proof. What is really unpleasant is the fact, that (I) and
(IT') are only satisfied, if Mg 1V t €[0,T] have uniformly bounded
support. We need an a priori estimate: If u. is in [C,T] a solution
of the initial value problem with M having bounded support, then

Ty t € [0,T] has uniformly bounded support.

In order to prove this we consider again the kinetic energy

6w = [ vIT e G )
. R

(We use W instead of E in order to avoid confusion with the elec-

tric field). Using the fact, that p. is a solution of (2") we get

W(E) =-2 [ (Vi (£,x,) +v,E, (t,%,)) du, (x,v)
3
R

From (27),(28) and (30), we get

t
W(t) sW(0) +2a(t + [W(c)dr1) +dnc te
C

Q =t

(f |v212 du (xq,v)) dr
mq

' (with a =c+4w) and finally
t
O;tW(t):3C1+C2 f W(t) dt , where C1,C2 are dependent on W(0), T and
C

An application of Gronwall's lemma yields Os=sW(t) <A for tc¢[C,T],
where A depends only on W(Q),8§ and T.

As f |v I du,(x;,v) = 1 +#W(t), i=1,2, we get a uniform bound for
IR

these integrals and therefore also for H1,E2 and Bj. licnce

[VIp-1(t,P)] < L, +L, |p|| for telO,T], PCJR3

with constants depending only on n,8 and T. It follows that

L2T

T, Jlu-lell stloli+,me 2, telo,T), Qe

Choosing R := (r+L1T)e , we see that for 0 ¢ supp L the point

§.



T [(L.]Q is contained in «k_ and therefore
t,0 R

supp p, = supp(ﬁ()TO’t[u-]JC KR

This gives the desired a priori estimate.

The remaining part of an uniqueness and existence proof is simple:
One first shows a local (with respect to time) theorem by one of the
standard methods and ccntinues the solution by using the a priori

estimate. The details can be found in [ 25]. This result is

Theorem 6: For %€EL1(ﬂf% with compact support the corresponding
initial value problem given by (2"), (1a'), (1c'), (14"),
(25") together with the initial-boundary condition (26)
has in any intervall [O,T] a unique (weak) solution. The

8] 8] 0

solution is classical if the initial data f, E2 and B3

are continuously differentiable.

Remark:
The following guestions arise but are not answered till now.

(1) Could a similar theorem be proved without reducing the dimension
of the problem, i.e. for the sixdimensional "mollified" case?
Since no essential use of the dimension is made and the advan-
tage consists only in getting solutions of the Maxwell equations,
which are easy to handle, there should be a good chance for a

positive answer.

(2) Is it possible to take the limit § —> O to get solutions for
the unmodified equations? It should be by far easier to get
existence but not uniqueness of weak solutions. (Inspite of not
having shown, that a %-independent bound for the kinetic enerqgy

W exists) Lhan to prove something about classical solutions.

Theorem 6 might be considered only as a first step in solving a
problem, which is of high interest for applications in plasma

physics.



5. Numerical Methods, in particular Simulation Procedures

There exist a lot of numerical methods in order to solve the
Vlasov equation approximately. Difference schemes, Fourier expan-
sions with respect to x, Hermite polynomials are used as well as
the so-called waterbag model, which uses the fact that if % is a
stepfunction, then the solution f(t,-)is of the same kind. As far
as I know, for none of these methods convergence is proved. Besides
these methods plasmaphysicists very often use so-called simulation
methods, especially the "particle-in-cell"-method (PIC), developed
for the Vlasov equation by R. Morse. Since the convergence of this
method can be proved by the methods developed in lecture 1, we will
describe it in more details.

The main idea of a simulation in the kinetic theory is simply as
follows: A real gas consists of say ‘IO23 particles. The Vlasov
equation describes a gas of infinitely many particles (in the sense
given in lecture 1). Let's try to create a gas of about 1061 par-
ticles, whose motion is qoverned by the rules of classical mechanics
such that this gas kehaves "as similar as possible" to the infinite
particle system.

In order to make this more precise, we reformulate the idea:

Let N be the numker of particles in a real system, SN the initial

&)
state and ﬁ==f f dP a good approximation for 68 .
N

Let n be the number of particles in the "simulation gas". Now let
us try to find an initial state 3n for these particles, such that

the distance
D(lﬁ ;IJ-_)
mn(t} t

of the state of the simulated n-particle system at time t to the

solution of the Vlasov equation at the same time is as small as

possiblo.

It should be clear that the only possibility to be successful is
4

(4]
in constructing w for given f. Then § is given by solving

w (t)
the Newtonian system (3), which can be done at least numerically
in a satisfying manner, if n is not too large. But it is again

necessary to smooth the interaction forces or, equivalently, to

"smear out" the particles. This is done by PIC - the particles are



smeared out over cells.

We want to get some information about how the complexity of the
method increases if we increase the dimension k; k=3 is the normal
case of 3 space and 3 velocity variables. The interaction force is

then given by

G(x,y) = - .m—ﬁiiiﬁ , k=1,2,3.
<=yl

The steps of PIC are:

() 0
Step 1: Choose w such that p (8§ ;1) is as small as possible
n
("as small as possible" means: as small as you can make
it):

0 0 0 0 0 _
N = X v .o X v .
L n { ( 1° 1) r ' ( n' n) )

Step 2: Instead of w given in lecture 1 we choose a less smooth
AR ‘

but. simpler mollifier

*J—E for ||x]|| =6
\
w, (x) = 'S ,
§
0] otherwise
where Ty is the volume of the k-dimensional unit ball,
. _ _ 4
1’1"’21 Yz_”: Y37 737 ¢
We use this w. in order to smear out the particles over balls of

I(',
radius ¢ in the x-space (i.e. over "cells"); therefore we substi-

tute the spatial distribution

L
n - ﬁj
of the n-particle system by a distribution with the spatial doen-
sity
| o 10 0
(32) o () s= 0 0 f..t\;(x—xj} = [ w (x=2)ds, (2,v)
3=1 RrX “n
Then
i G(x,y)ﬁn(y)dy = ﬁiG{x,y)( {imﬁ(y—z)dﬁ“ (z,v))dy

R R R “n



[ ] G(x,y)waty—z)dy)da8 (z,v)

ﬁRk :mk n

I

w

i Gﬁ(x,z)da0 (z,v)
mk n

so that this procedure is equivalent to our former modification,

where we substitute G by Gﬁ.

Remark: Our procedure consists in smearing out a particle over a
§-ball centered at the particle. The normal PIC uses fixed cells
not depending on the positions of the particles, but adds after-
wards a socalled area weighting, which gives at least for k=1

exactly the same values of Fn. For k> 1 the differences are not
important and can be avoided by using another W

Step 3: Calculate
0 0

E_(x) =E_(0,x) =jG(x,y)nn(y)dy

0 . . 0 . .
for x==xj, j=1,...,n. Since P, is a step function, the

integration can be done explicitly; one only has to

evaluate n values of an explicit function.

Step 4: Propagate the particles for a time step At > O by

~ 4] 9]
v.(At) =v,+ At E (0,x3)
(33) i i n 1

- (8]
x, (at) Xx. +Atv, (At)
1 1 1

This provides the first step of a numerical integration of the

characteristic equations

X =V

v=E[§ ] (t,x).

[ *
ln( )
0

> > : ] * 1 . 1
(xj(ﬂt},xj(At)) is an approximation for TAt,O[Smn(-)’Pi'

Choosing the symmetric difference scheme (33) has some advantages.

The mapping
9] [§]

(%, V) —+,(§itnt),G(At)) — Ei(At)

has some of the properties T [n ] has: It is mcasure prescerving

A,O
and bijective.



Step 5: Repeat the process with {P1(ﬁt),...,5n(ﬂt}) instead of
0 0 ,
EP1,...,PN) fn order to get on(ﬂt,x), En(At,x) and finally
P1(25t),...,Pn(2At)) and so on.

Remark: As the numerical method is uniformly convergent for At -+ O,
we have i!Pi(m&t%~Pi(mat)H e for O¢smat=T, if At is small

enough. Hence

"y ) 'a () = supl I““”mn(t) } f“’%ﬂ(t)'

"n ptD
n -~
sup e (P (£)) =0 (P, (£)) ]
peD j=1
max ||Pi(t)-§i(t)|h’c

i=1,...,n

for t=mAt, At small enough.

Accordinag to theorem 1
ct o
p(u, ,¢ ) e Tp(u,S5  );
L’ mn(t) ! 8

therefore

’ . Ct .o
, 6a “plu,,s ) +p (s “ < e+ , .
o(ut nm (t)) ”(”t mn(t)) p wn(t)'ﬁwn(t)) ete plu 5g )

n n

Consequently, PIC converges in the sense that for given ¢>0, T>O0

one can choose At small enough and n large enough such that

S A < = < < T.
”(“t"un(t)] € for t=mAt, O<mAt < T

This entails that the numerically calculated electric field ;n

approximates the real electric field E uniformly, i.e.

B (mat, ) - E(mat,-) || <e for O-mAt- T, At sufficiently small.

Looking a bit more carefully, how the constant C= K+L in the pre-

ceding estimate depends on § and the dimension k, one gets

o C(k,8)t Lo
‘-](“tr(%m (t)) e D(].I,(S&)’ }
n n
with
kos) = Va1 B2
Clk,8) = /201 + 551 = 20

& &



If 6 is chosen near to 1 (i.e. in physical dimensions: approximately
equal to the socalled Debye length), then C(k,s) is of order vk

The only thing which remains to be done and which is of big practi-
0 )
cal importance is to find an appropriate O for given L. The problem
0
of finding the optimal w with respect to all n-particle systems has

not even been attacked.

(8]
So we w1ll dlscuss a method to construct a "good" (not a best) w
for given u= ffdP For the special case f Xpo where E is the unit
cube in ]Rzk E={Pe R ]O:?pi‘:1, i=1,...,2k} and Xg is the charac-

teristic function of E, there are some results available. Therefore

we reduce the general case to the special one.

We assume, that there exists a convex domain B in m2k such that
?(P)t»o for Pt B, E(P):=O for Py B. Then one is able to construct a
mapping T : B— E, which has the following properties:

T is differentiable and bijective, and its Jacobian is

(

TT(P) =f(P), PC B.

o]
Then u::uEr)T, where uE==fXEdP is the uniform distribution in E:
o] [
= | % = |X X
¥ }J;«MfdP éMJpo }{MOT dp = jx =g (T(M))

for arbitrary M.
The construction of T is given in a paper by Hlawka and Miick in
8]

1972. It is simple when f factorises,i.e.

0 (9]

8]
f(p) = f.l(r_),‘) ce fzk(pzk) (pi.in and Pryi = V3 for
i=1, . k)
Then
10
T(P) =T (py) :lufi(f;)di, i=1,...,2k, PC B.
If now ﬁn::iﬁ1,...,§n} is a good approximation for Y then
) -1.. -]~ . o -1 .
Ln =T 1P,I,...,T 1Pn_l is a good approximation for w: If T is
Lipschitz continuous with a Lipschitz constant XA , then
Y
,1(&:_“ FRTR I ;\p(ﬁ?:j ,uE).
W n

T_1 is relatively easy to calculate in the special case mentioned



above. The discrepancy, defined in (6) is also a metric which

(o]
measures the distance of §, to p. For the purposes discussed here
U.}n 9]
it is easier to handle. For example, for a factorising f, a set RER

is transformed by T into a set of the same kind whose corner Q is

in E. It follows that for these kind of initial conditions even the

quality
D(6, 1) = D(s. rig)
“n “n
holds.
Therefore, it remains to construct s . We have to point out, that

Uln

this problem cannot be solved in a nice way by using a random
generator: The only property an has to have is, that the discre-

pancy D(&  ,n

ul

F) is small, therefore things like correlations are

irrelevant. Gn might be distributed very regularly - this is what
physicists call a "quiet start".
There 1s a method proposed by Niedereiter how to calculate

D(S§ ’“F) without taking the l.u.b. over all Rt ®R; a finite

—

(al

n -
number of property selected R is enough.
Just to give you an example how real calculations are done, we con-

sider the one dimensional case k=1. For n we choose only the

Fibonacci numbers n=oy k¢ N with a = ag = 1, ak+1::uk*'uk~1'
Then we choose {51,...,§n} with ﬁi:(vai) in the following way:
o 2i-1 v ::[2(1_1)uk‘1+1] i=1 «, =n
i Zrtk ! i 2(1}( ! rertr TR !
where |7 | denotes the fractional part of the positive real number ¢.
One obtains the following values for D(¢ '“E)
{1
k =N DS )
mn
12 144 1,5-102
14 377 7,6-1073
16 987 3,3-10°
18 2584 1,4-107°
4

20 6765 5,610



For 6765 points, generated by the IBM-random-generator, the discre-
pancy is 1,4-10-2: that means, that you need only 144 points with
the construction given above to obtain a similar result. The compu-

ting time however differs by a factor 47.

In the table given above one realizes that the convergence of

D(§, ,UE)zDn to zero is rather slow. In fact it has been shown by
1)
n

numbertheoretists, that there exists a constant Ck' depending only
on the dimension, such that

k-1

€ 3

D .k (In n)
n n

S0, one cannot expect a very quick convergence of the method.
Nevertheless, it is better than most of the other methods used in

praxis - and its convergence is proved!

6. Stationary Solutions

Not very much is known about stationary (i.e. time independent)
solutions. The only exeption is the one-dimensional case, where all
solutions can be explicitly constructed. These solutions, discovered
in 1957, are the socalled "Bernstein-Green-Kruskal"-modes (BGK-

modes) .

The problem is to construct all solutions of the system

' ' ) af_
(34a) v FEHEM) FFE=0
(34b) v o p(x) e
[ 4 BRY:
—l‘il” +m
(35) co f F_(x,v)dx - ¢, f fy(x,v)dv=E"(x),
where c¢- und ¢4 are some positive constants. f_, f4 arce the distri-

bution functions of the electrons and the ions respectively. We con-
sider here a two-component gas, becausc in this casc the solutions

become even simpler.

By solving (35) together with some boundary valucs for E and subslij-
tuting the solution into (34) one realizes that the problem is again

nonlinear.



However, the main idea is to make the problem linear by prescribing
appropriate data of f. If we look for solutions of (34), (35) with

o 4o
(36) p(x) :=c_ff_(x,v)dv - cyf f,(x,v)dx

o —rd

given, then E'(x) is known from the data, E is - up to a boundary
condition - a known function and we have to solve the linear cqua-

tion (34) with the rather unusual condition (36).

For a given E, let us consider (34a). As f. depends only on two
variables x and v, we know that a function f_ is a solution of

(34a) if and only if it depends only on the Hamiltonian

(37) H(x,v) = vt - 2U (x)
where U is an arbitrary integral of E
(38a) f_(x,v)==¢_(V2~2U(x)).
Similarly f4+ has to be of the form

(38b) 4 (x,v) = 64 (V242U (x)) .

The figure on the following page gives you a typical picture for
the level curves of f;, f_ for a given U. To different branches of
such a level curve one might assigndifferent values of the functions f .
These level curves for f, degenerate to a single point at Xy

where U has a local minimum, if we choose c==2U(x1}. For c < 2U(x1)
the level curve is an cmpty set.

The level curves have an intersection with the x-axis, if % is
contained in the range of U; at these intersection points, the

level curves are orthogonal to the x-axis.

The level curves for f_ behave somewhat antisymmetric. They deaene-

rate at maximum points xO of U,do not cxist for C-'—ZU(XO) and

intersect with the x-axis, if 5 is contained in the range of -U.
We restrict our considerations for a moment to an interval of

strict monotonicity of U, say [xo,x | and choose an arbitrary @ in

1
(xo,x1)-

Every point (x,v) in the strip [a,x1|x R lies on a level curve of

f,, which passes x=¢. This is not true for the level curves of fi.
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The level curve passing (§,0)

vZ 4 2(U(x)-U(£)) = O.

41

is given by

Therefore points {x,v)Ei[a,x1]x R with

|v] < V2(U(£)-U(x))

are not reached by curves passing (£,0).

If,

values

(39)  f4(£,v) = 04(V),

then f_ is completely determined in {g,x1]x R;

only for (x,v) with ¢ - X <X, |v| =z V2(U(g)-U(x)).
+
Therefore f f _(x,v)dv is determined by op_, f fi(x,v)dv Dby o4.
w v - V2U(n)-ux)
In order to satisfy (36), we have to solve the eguation
+/2(U(g)-U(x)) e
i fi(x,v)dv =-£é§l4-%: [ f_(x,v)dv - [ f4+(x,v)dv =: h(x)
_ + + _
- V2(U(£)-U(x)) |v| = V2(U(g)-U(x))
h is known in [g,x1l; using (38b), we get
V2 (U(g)-U(x))
2 [ 4, (v?+20(x))dv = h(x)
0O
With v2+2U(x) = t, we find
2u(r)
1t
[ hp(t) ————=h(x).
2U (x) V=20 (x)
U is strictly monotone in X; so 2U has an inverse function W and we
obtain
20(r)
J‘ ql+ (t) __A(.i...t;_: h {W(y) ).
% Ve-y

in addition to p according to (36), we prescribe the boundary

f_(g,v) =p_(v),

f4 is determined

This is Abel's integral equation, which has the unique solution

1 20 (&)

m

h(w(t))

(40)

d1+(2)

z Vz-t

We do not want to work out all the

4
dz —

20(x) = z = 20(¢).

details. However, we note that

f+(x,v)==¢+(v2+2U(x)) is now completely known:



For |v]| = /2(U(£)-U(x)) it is given by o4, for |v]| < /2(U(g)-U(x))
it is determined via (40).

Consequently f,, f_ are determined in {E,x1]x R by (36), (39).

We can continue the procedure, e.g., to the right of X -
f+(x1,v), f_(xq,v) are known. Therefore f,(x,v) is determined for

(x,v) € |x,,x.] ¥R, where x, is the point of the next maximum. In
11% P

2
that strip f_ can be constructed by solving Abel's integral equa-

tion. In that way, we get the solution everywhere.

We have to mention, that we are looking for what is called a "mild"
solution of (34), i.e. a solution, which is constant along the
characteristics (the level curves) and continuous.

We get the following

(2)

Theorem 7: Suppose bBeo C

(R) such that E"(x) =0(LE(x)) for x-n

for any n with E(n) =0, and assume o, f CO{¥L1 with the
following properties:

(a) If A4(f) =sup(U(x)=-U(r)), A-(g) :=-inf (U(x)-U()),

then ¢, is even and HOlder continuous for %—‘:ﬂ}(ﬁ}
4 4o
(b) B'(e)=c_ [ _dv -c, [ widv

—n —y

Then the system (34), (35) has a unique mild solution,

where E is the given function and f, (i ,v) =, (V).

get a mild solution. This solution can be explicitly constructed

and is called a BCK-mode.

There is only one weak point: There are no simple conditions for
Io(or p orespectively) and g, such that [ is cverywhere non-ncgative.
So one really has to calculate the solutions to be sure that they

arce physically relevant.

I want to show you another derivation of the solution, which in my
opinion is nice and shows somcthing about the incrcase of complexity

in higher dimensions.



In order to simplify the subject we consider again the interval
lxo,x1l, where U is strictly monotonically decreasing, and let

I.

£
I exy

Again we assume, that II and f_ are already known in [f,x ] x IR,

1
so we have to solve

f?f.i_ a4

— =L —X==0
vV oox v

+m

with f,(r,v) =9,(v) and f f+(x,v)dv::p+(x) given.

-—r)

Let us forget about characteristics but make a IMFourier transform
of the equation with respect to v:

+w .
With u(x,y) := | e VY f(x,v)dv, we get formally

—_

1uxy--h1.yL1= O

it

o TivY
L&}

-~

—+-
with u(e,y) =g (y) = f wy(v)dv and u(x,0) =4 (%) .
We end up with a characteristic "initial value" problem for a

hyperbolic cquation:

(41) uxy—E(x)yu:O, ul(t,y) = o4(y), u(x,0) = ny(x)

There is a simple trick to solve this equation, a trick, which
secems not to be well-known: If you have to solve

uxy-kf(x)-g{y)urro, substitute

ulx,y) =U0(F(x),G(y)),
where F, G are integrals of f, g respectively. Then you get
u,_ +U=0
Ln

and the Riemann function for that equation is just

Glronsi' ') =I_(2/(6=6") (n-n")) .
Therefore, you get as a Riemann function for the original problem
Z &

(42) G(x,y;x',y") = Io(z/(um—u(x')) (12—— szﬁ))

where 10 is the zeroth order Besselfunction of first kind. G 1s

always recal, even if the argument is complex.

The Riemann function G is defined to be a solution of uxy—E(x)yuLO

with respect to the variables x,y and satisfies the boundary



conditions

G(x',y,x',v") =G(x,y"',x",y'") =1 for all x,y,x',y"'.

Using (42), one gets the solution of the "characteristic" boundary

value problem (41) as

- S — X P — — -
u(x,y) =d L (V2(U(5)-U(x))y) + IO(/2(U(t)—U{X))y}pi(t)dt
I
+ } IO(Hz(U(a)~U(x))(y2—t2)) $;(t)dt
Q

-~

with d:=u(s,0) = f;-+(()) = F‘+(C) .

It is possible to calculate explicitly the inverse Fourier trans-

form of u in order to get f£,. For example, the first term yiclds

d  if 2(U()-U(x))-v® 0 and O otherwise.

T IO S0 (X)) v 2
Note the Hamiltonian. This approach yields exactly the same explicit
solution of the problem as the method using Abel's integral

equation.

what about higher dimensions?
If one is interested in a very special kind of solutions - those

depending only on the Hamiltonian, i.e. for example
: 2
f_(x,v)=4¢_C(]|v]]*-20(x))

everything works like in the one dimensional casc; instcad of Abcel's

integral equation, one gets an equation of the form
) k-2

a 5

g(z) = [ k(t) (t-y) © dt, where k=1,2,3

Y
is the dimension.
This cquat ion can be casily solved by using fractional derivates of
q (for k-2 there is nothing to solvel!) and one gets again explicil
solulions, the socalled "more-dimensional BGK-modos™
il - in contrast to the one=dimensional case - these solutions are
by far not all solutions of the problem - besides the enerqy, there
are more integrals for the Newtonian system, which cannot be given
explicitly. For example Horst remarked, that if k=2 and ¢ is a

stationary solution for the stellardynamic case (for cxample a two-



dimensional BGK-mode), then
o (x,v) =4 (x,v) (1+ W(x1v2-—x2v1))

is also a stationary solution, if y: R— [-1,1] is an odd function.

If one tries to play the Fourier transform trick, one gets for k=2

u + u + “E(X,,X,)y>u= 0.
x1y1 x2y2 1 2

This may be transformed to
~ ~ . e _ Xty _ X-y
f\r‘u—-!\”u} <B{&+n),E-n>4=0, ¢ PE nE= Ty

The difference of the two Laplacians show that this is a socalled
"ultrahyperbolic" equation; not very much is known about that kind
of partial differential cquations. In particular, it is hard to
decide, what kind of boundary value problems are properly poscd -
remember, that we need u(x,0) =u(f,£) as data to linearize the
problem. The problem of determining all stationary solutions in more

than one dimension stays widely open.

Final remarks: Almost all of the material presented in these lectures
is mainly of mathematical interest. Now questions of real physical

interest arise. f.e.:

1) What is the qualitative character of a global solution? lHow does

the system behave in a long run of time? When is it periodic?

2) Which of the stationary solutions are stable, which are not?

The second question can only be asked with respect to the BGK-modes.
A lot of results concerning the problem of linear stability are
available, most of them not really rigorous, but they can eventually
be made rigorous wilh some effort; Nothing rigorous is known on non-
lincar stability as far as I know. But this should be a fiecld of
great interest with respect to physical applications, cspecially
since BGK-modes have really been observed in a plasma a few years

ago.

Concerning the first question there is almost nothing known today.
The only exception is an example given by Kurth, which I want to put
on the end of thesc lectures. We consider the stellardynamic casc

and are interested in a solution f(t,-), whose spatial density p(t, ")



is constant in a certain ball whose diamcter r =r(t) depends on
time

-3

p(t,x) r " (t) if x|« r(t)

11

1
An

3
and

p(t,x) =0 otherwise.

Choose r(t) as a solution of

2+ r= 1, r(0) =1, r(0) =H=const.

This solution can be calculated, depending on H. Then define

1
. 2 . . . - =
-—%[‘I—JL;—H—-—*]Ir(t)v—r(t)x]]2 + |l x x VHZ ]2
2 ro(t)
f(t,x,v) =4 if ||x|l7r(t)
0 otherwisce

Then f is a solution of the Vlasov-equation, whose spatial density
is of the desired form. H might be interpreted as the (dimension-
less) Hubble constant. As you may realize there is a lot of astro-
physical experience needed to find such a solution. Its behaviour
strongly depends on H: For H < 1 it bechaves periodically, for H -1

. . w 3
the density p goes to zero with respect to the L (IR7) - Norm,

Onc might realize by considering this example how complicated the
answers for example on questions of the stability or instability
of solutions might be.

Nevoertheless, working in the field of the Vlasov cquation one
follows somchow the intcrest and the efforts of mest of the great

h and WBth century: Most of the work they

mathematicians of the 17¢
did were concerned with astronomy, the explanation of the behaviour
of the universe (compare for example the highly interesting book
"Mathematics, The Loss of Certainty" by Morris Kline, New York
1980) . Therefore, the rescarch on the Vlasov equation could be a

challenge even for modern mathematicians.
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