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Scaled boundary isogeometric analysis (SB-IGA) describes the computational domain by proper boundary NURBS together
with a well-defined scaling center; see [5]. More precisely, we consider star convex domains whose domain boundaries
correspond to a sequence of NURBS curves and the interior is determined by a scaling of the boundary segments with respect
to a chosen scaling center. However, providing a decomposition into star shaped blocks one can utilize SB-IGA also for more
general shapes. Even though several geometries can be described by a single patch, in applications frequently there appear
multipatch structures. Whereas a C0 continuous patch coupling can be achieved relatively easily, the situation becomes more
complicated if higher regularity is required. Consequently, a suitable coupling method is inevitably needed for analyses that
require global C1 continuity.

In this contribution we apply the concept of analysis-suitable G1 parametrizations [2] to the framework of SB-IGA for
the C1 coupling of planar domains with a special consideration of the scaling center. We obtain globally C1 regular basis
functions and this enables us to handle problems such as the Kirchhoff-Love plate and shell, where smooth coupling is an
issue. Furthermore, the boundary representation within SB-IGA makes the method suitable for the concept of trimming. In
particular, we see the possibility to extend the coupling procedure to study trimmed plates and shells.

The approach was implemented using the GeoPDEs package [1] and its performance was tested on several numerical
examples. Finally, we discuss the advantages and disadvantages of the proposed method and outline future perspectives.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Summary of computational approach

First we sketch the concept of SB-IGA, then we show how to integrate the C1 coupling across interface patches. For this
purpose we introduce special basis functions for the approximation in the scaling center. Finally, we point out opportunities
for generalization including trimmed geometries.

1.1 Scaled boundary isogeometric analysis

The underlying idea of SB-IGA, see e.g. [5], [6], fits to the fact that in CAD applications the computational domain is often
represented by means of its boundary. For a star-convex domain Ω one chooses a scaling center x0 ∈ Rd and the domain is
then defined by a scaling of the boundary w.r.t. to x0. In the planar case, which is the one we focus on here, and in view of the
isogeometric analysis we have some boundary NURBS curve γ(ζ) =

∑n1

i=1 Ci N̂
r
i,p(ζ) and define the SB parametrization of

Ω through

F : Ω̂ := (0, 1)2 → Ω , (ζ, ξ) 7→ ξ
(
γ(ζ)− x0

)
+ x0.

Above, N̂r
i,p denote the basis functions corresponding to a NURBS space Nr

p of degree p and global regularity Cr and they
are associated to proper control points Ci ∈ R2 .
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Fig. 1: On the left we have a single-patch SB parametrization and a multi-patch domain on the right. The C1 coupling of the basis functions
in the latter case requires a special consideration.

Such a SB parametrization can be interpreted as an element of a suitable NURBS space (Nr
p ⊗ Sr

p)
2 with Sr

p denoting an uni-
variate B-spline space. Following the concept of isogeometric analysis one introduces discrete spaces on the domain Ω by
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means of a push-forward operation, i.e. we deal with spaces of the form

Vh := {ϕ |ϕ ◦ F ∈ Nr
p ⊗ Sr

p}.

However, in general the domain boundary is prescribed by multiple boundary curves; see Fig. 1. Then supposing SB
parametrizations F k : Ω̂ → Ωk for the patches Ωk, the uncoupled multi-patch spaces are straightforwardly given by V M

h :=

{ϕ : Ω → R |ϕ|Ωk
∈ V

(k)
h , ∀k}, where V

(k)
h stands for the k-th patch space and Ω = ∪kΩk. A basic assumption of our

approach is the conforming patch interface property, which requires matching control points of meeting patches. Obviously,
depending on the application one needs test and ansatz functions with a specific regularity. Whereas a continuous coupling,
meaning spaces V 0

h := V M
h ∩ C0(Ω), can be achieved easily within SB-IGA, the situation becomes more difficult if higher

regularity is requested.
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Fig. 2: Compared to a classical two-patch geometry on the left we get a singularity at x0 in the SB context. In return we obtain a
geometry that is closely related to so-called analysis-suitable G1 parametrizations.

1.2 C1 coupling

Here we look at the construction of globally C1 smooth basis functions. In other words we focus on V 1
h := V M

h ∩ C1(Ω)
which implies r ≥ 1, p ≥ 2. Starting point of our considerations is the work by Collin et al. [2] which coined the theoretical
foundation for the C1 coupling of isogeometric spaces. It turns out that the constraints coming along with the C1 condition
are in general too restrictive and one observes C1 locking i.e. the worsening or loss of convergence in numerical applications.
Nevertheless, for the class of analysis-suitable G1 multi-patch (ASG1) parametrizations these order reductions can be avoided.
In the case of a simple two-patch scenario like in Fig. 2 (a) one has a ASG1 parametrization if we find polynomial functions
α(S), β(S) : [0, 1] → R, S ∈ {L,R} of degree at most 1 s.t.

α(R)(ξ) ∂ζF
(L)(0, ξ)− α(L)(ξ)∂ζF

(R)(0, ξ) + β(ξ) ∂ξF
(L)(0, ξ) = 0,

with β = α(L) β(R)−α(R) β(L). Contribution [2] states that for B-spline parametrizations latter condition guarantees enough
interface functions in V 1

h for p > r+1 > 1 and C1 locking is not an issue. Thus, it is natural to prefer these special geometry
representations if smoothness is crucial. An analogous two-patch geometry within SB-IGA, see Fig. 2 (b), fulfills the ASG1

condition except at the scaling center, where a singularity appears. However, this connection between SB-IGA and ASG1

geometries suggests good approximation properties of V 1
h and since w.l.o.g. the NURBS weight functions are constant along

SB interfaces, the SB-IGA ansatz seems appropriate for coupling also for general NURBS boundary curves.
But, on the one hand, we have to clarify how one constructs C1 basis functions in the scaling center. On the other hand, the
actual implementation of the coupling conditions should be practicable. Regarding the former, we can exploit the isopara-
metric paradigm observing that in 2D we only need three scaling center basis functions that determine the value and the first
derivatives at x0. Let the k-th patch be parametrized through F k(ζ, ξ) =

∑n1,n2

i=1,j=1 C
(k)
ij N̂r

i,p(ζ)B̂
r
j,p(ξ). Then we can define

ϕ
(k)
l,sc := ϕ̂

(k)
l,sc ◦ F−1

k with ϕ̂
(k)
l,sc(ζ, ξ) :=

p+1∑

j=1

n1∑

i=1

(C
(k)
ij )l N̂

r
i,p(ζ) B̂

r
j,p(ξ), l ∈ {1, 2},

ϕ
(k)
3,sc := ϕ̂

(k)
3,sc ◦ F−1

k with ϕ̂
(k)
3,sc(ζ, ξ) :=

p+1∑

j=1

B̂r
j,p(ξ).

And since

ϕ3,sc(x0) = 1, ∂mϕ3,sc(x0) = 0 and ∂mϕl,sc(x0) = δml for l,m ∈ {1, 2},
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where the ϕi,sc are defined by
(
ϕi,sc

)
|Ωk

= ϕ
(k)
i,sc, we see directly that the global mappings ϕi,sc determine a linearly indepen-

dent Hermite data set in x0.
For the implementation of the coupling conditions one can adapt the approach from [2] which results for two-patch geometries
in the following steps.

1. Remove basis functios with non-vanishing values or derivatives at x0.

2. Add the scaling center basis functions ϕi,sc.

3. Do a C0 coupling step, i.e. we obtain globally continuous basis functions ϕ0
i .

4. Incorporate possible boundary conditions.

5. Compute C1 coupled basis functions by means of the null space of the interface derivative jump matrix

(MJ)i,j = ⟨[[∇ϕ0
i · nL]], [[∇ϕ0

j · nL]]⟩L2(Γ),∀ϕ0
i , ∀ϕ0

j ,

with nL as the normal to the interface Γ and [[·]] as the jump at Γ. The generalization to multi-patch geometries is straightfor-
ward and consequently various shapes Ω are feasible.

1.3 Brief remarks on generalizations

Up to now our approach is quite restrictive since we assumed star-convex domains. But this restriction can be overcome. If
Ω is not star-shaped we need a decomposition into star-convex blocks, which is possible e.g. utilizing a quadtree partition.
Provided that the different star-convex blocks are separated by straight interfaces, like in Fig. 3 (a), we preserve the (quasi)
ASG1 structure, because the parametrizations of two blocks meet as two bilinear B-spline patches, which are always ASG1;
see Fig. 3 (b).
Another feature we want to emphasize is the possibility to construct C1 basis functions also on trimmed geometries. Although
trimming is a fundamental operation in CAD in general it comes along with several difficulties. But if we use a scaled
boundary representation of the computational domain we can reduce the trimmed geometry ΩT to a new untrimmed one in an
exact manner. For this purpose we follow the steps from Fig. 4, namely

1. Compute the intersections between untrimmed boundary curves and the trimming curve γT ; see Fig. 4(a).

2. Insert knots at the parameter values of the intersections s.t. the NURBS are discontinuous at the intersections. As a result
we can extract the NURBS that are relevant for the trimmed domain representation; compare Fig. 4(b).

3. In case of star-convexity of ΩT one calculates a new scaling center, otherwise a preliminary decomposition step has to
be applied; see Fig. 4(c).

After the mentioned steps, we can couple the basis functions analogous to the untrimmed setting.

(a)

Ω

Γ

x0

x1

(b)

Fig. 3: To handle more complex geometries, we partition Ω in several simple star-shaped elements; see (a). If we have straight interfaces,
we can assume bilinear parametrizations at block interfaces; compare (b).
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(a)

γT

(b) (c)

Fig. 4: Trimming can be incorporated into planar SB-IGA.

2 Numerical examples

There are different application examples and methods where C1-regularity of test and ansatz functions is required for the
numerical calculations. In this context, application examples of Kirchhoff-Love plates in structural mechanics are evaluated
and discussed to show the formulations power and applicability. Kirchhoff-Love plates are a two-dimensional fourth-order
boundary value problem governed by the bi-Laplace operator. Considering a domain Ω ⊂ R2 that has a sufficient smooth
boundary ∂Ω such that the unit normal vector n is well-defined in each point. The bilaplacian problem is stated in the strong
form as

∆∆u =
p

D
=: g in Ω, u = 0 on ∂Ω and ∇u · n = 0 on ∂Ω,

with the bending stiffness D = Et3

12(1−ν2) . The classical weak form of the problem for a suitable test function space Vh that
depends on the boundary conditions reads:

Find uh ∈ Vh s.t.
∫

Ω

∇(∇uh) : ∇(∇vh) dΩ =

∫

Ω

gvh dΩ, ∀vh ∈ Vh.

The discretization of the solution field, meaning the definition of Vh, is performed by the previously defined SB-IGA test
functions V 1

h including the coupling approach at the patch boundaries, which ensure C1-continuity within the whole domain
that is required for the plate formulation. In the following, the theory is applied to a rotational symmetric plate, to combine
the power of the boundary representation and the exact approximation of the geometry and solution field for a circular plate,
both. Afterwards, the application of trimming in scaled boundary is evaluated by trimming the center of the structure to a ring.

2.1 Rotational symmetric plate

At first, the plate formulation is checked on its general performance. A rotational symmetric plate of Ω with radius R = 2
is subjected to a smoothly distributed source function g that is chosen such that the exact solution is u = cos(π ρ/4)2, with
ρ denoting the radial coordinate. A homogeneous and isotropic plate of elastic material with Young’s modulus E = 106 and
Poisson’s ratio ν = 0 is considered and the thickness is chosen as t ≈ 0.0229 such that D = 1. The Dirichlet boundary
conditions are clamped on the whole boundary of the domain. The body is discretized with four SB-IGA patches. The scaling
center is placed in the center of the plate. Fig. 5 exemplary shows the mesh for h = 1/4 and the corresponding deformation
plot.

The example is evaluated in terms of the H2 seminorm and the L2 norm. The results are shown in Fig. 6. The model
shows good results for all orders and converges smoothly towards the reference solution. Furthermore, the convergence rate
coincides for both error estimations with the optimal convergence rate C · hp−1 for the H2 seminorm and C · hp+1 for the L2

norm. Note that C differs for each order and error estimation.

2.2 Trimmed plate - ring

In the second example, the rotational symmetric plate from 2.1 is trimmed by a circular trimming curve defined entirely
inside the domain. The resulting ring is subjected to a uniform load g = 1. All other properties stay the same. Since the
structure is not inherently star shaped, the ring is divided manually into four star shaped domains, having four scaling centers.
Consequently, the C1 condition needs to be fulfilled also across block interfaces. The reference solution of the deformation in

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Fig. 5: Example of the smooth solution on a disk. On the left, the underlying mesh of h = 1/4 is pictured. On the right side, the
corresponding deformation plot of the problem for the left mesh with p = 3, r = 1 is shown.
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Fig. 6: Convergence studies of the H2 seminorm errors and the L2 errors on the example of the smooth solution on a disk and orders of
p = 3, p = 4 and p = 5. The underlying regularity is r = 1, i.e. we have C1 smooth splines within each patch.

(a) (b)

Fig. 7: On the left, the original disk mesh for h = 1/4 is pictured including the trimming curve (red) and cut lines (magenta)
which are used to obtain the SB mesh for the ring on the right.

radial direction using a Kirchhoff approach for rotational symmetric plates yields a smooth solution w.r.t. the radial variable
ρ. The results show that the trimming is applicable and the trimmed geometry is described properly. Moreover, in Fig. 8 the
corresponding deformation plot for the mesh from Fig. 7 (b) is displayed, also along the radial direction. The results show
good agreement with the analytical solution.
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6 of 6 Section 4: Structural mechanics
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Fig. 8: The corresponding deformation plot of the mesh figured above and the comparison of the computed deflection in radial direction
along the cut line with y = 0 is shown; (p = 4, r = 1).

3 Conclusion and outlook
We showed that C1 coupling in the context of SB-IGA is possible, despite the singularity in the scaling center. Since the
underlying parametrizations fit to the class of ASG1 geometries from [2], we should not suffer from C1 locking which is
also confirmed by different numerical experiments. Still there are different aspects which are objects of ongoing research,
which should be considered in the future, respectively. First of all, we think that the C1 coupling is appropriate to study also
(trimmed) Kirchhoff-Love shells [3], [4]. For this purpose, one applies the coupling in the planar parametric domain of the
shell and uses the C1 basis functions to approximate the geometry as well as the shell displacement. On the downside of our
approach we have the restriction of conforming patch interfaces. Another point is the need of additional stabilization in case
of fine SB meshes as the mesh elements near the scaling center degenerate.
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