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Fluids in narrow gaps are employed frequently in many applications. The motivation for their use is diverse and ranges from
hydrodynamic lubrication in plain bearings to the transport of hard particles into the working gap for the purpose of machining
workpiece surfaces in lapping processes. Depending on the focus of the analysis, it may be useful to investigate the entire
pressure field or to calculate only individual quantities. For example, in sophisticated simulations it may be of interest to
know the resulting force of a fluid as a function of the external system state in order to describe its damping characteristics.
Especially for the simulation of flows in narrow gaps, the Reynolds equation is a convenient choice, which, in contrast to the
more general Navier-Stokes equations, can lead to considerable savings in computational time because no three-dimensional
discretization is required, but only a two-dimensional discretization. However, if not a highly detailed pressure field is of
interest, but only simple relations such as the resulting force as a function of distance and velocity, and if this relation to be
evaluated many times for different parameter combinations over a wide range of values, the use of a robust substitute model is
a good choice. This article deals with the creation of such a substitute model based on the Reynolds equation taking cavitation
into account.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Fluids in narrow gaps can have a significant influence on the surrounding system. The influence includes changed friction and
wear properties as well as heat transfer behavior between the interfaces [1]. Thus, for the targeted use of fluid, it is necessary
to know the effects of its properties.

Modeling of fluids is often based on the Navier-Stokes equations. For a fluid in a narrow gap between the interfaces of two
adjacent bodies, the generalized Reynolds equation can be derived from the Navier-Stokes equations [2]. There are various
representations of the Reynolds equation [2] as well as nonlinear material models to represent fluid behavior in narrow gaps
as accurately as possible. Sophisticated models of elastohydrodynamic or even thermo-elastohydrodynamic effects may be
suitable for the simulation of hydrodynamic journal bearings, but such models also require more parameters than simple
models. In this publication, we use a representation of the Reynolds equation that relies only on a few parameters that are
usually available from literature. Based on this, a substitute model for the calculation of the normal force is constructed, which
increases the efficiency compared to the direct numerical calculation in case of frequent calculation.

2 Procedure

The representation of the Reynolds equation used here describes the laminar flow of an incompressible fluid with constant
viscosity (i.e. Newtonian fluid) in a gap between two rigid bodies
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The quantity p = p(x, y) describes the pressure distribution, h = h(x, y) the (vertical) distance between the interfaces of two
bodies, v1x = v1x(x, y) and v1y = v1y(x, y) resp. v2x = v2x(x, y) and v2y = v2y(x, y) the horizontal velocity components
of body 1 resp. body 2, and η the dynamic viscosity of the fluid. In this paper, the time derivative ∂h

∂t is a (constant) input
parameter ∂h

∂t = v, which means the two bodies move uniformly toward or away from each other and the differential equation
under consideration is independent of time t. On the boundary of the gap ∂Ω the pressure p(x, y) takes the ambient pressure
ps. In addition, a non-mass-conserving cavitation model is used that constrains the occurring pressure downward to the vapor
pressure pv [2].

2.1 Analytical solutions for selected scenarios

In the following, some analytical solutions are given for the reaction force as a function of the (minimum) gap height h0 and
the vertical velocity v for an incompressible Newtonian fluid without considering cavitation. Thereby the adjacent bodies do
not move horizontally v1x = v2x = v1y = v2y = 0. A sketch of the process under consideration is shown in Fig. 1.
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The force between a plane and a sphere with radius R ≫ h0 equals

Fsphere (h0, v) = − 6πηR2v

h0
[3]. (2)

The force between two plane circular disks of radius r ≫ h0 is given by equation

Fdisc (h0, v) = − 3πηr4v

2h3
0

[3]. (3)

The force between two plane, parallel, rectangular plates of dimensions a× b with a, b ≫ h0 can be expressed by
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(4)

according to [4]1. In all three analytical solutions it can be seen from the negative sign that the reaction force F acts in the
opposite direction of the velocity v. This means that the fluid damps the system in the cases considered.

Fig. 1 Sketch of the analytically investigated relationship between the reaction force F , the vertical ve-
locity v and the minimum gap height h0 between the two bodies.

2.2 Numerical solution of the Reynolds equation

For its numerical solution, the Reynolds equation is discretized using finite differences and solved using Jacobi iterations [5].
The Reynolds equation Eq. (1) can be discretized after applying the chain rule to the terms
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with the finite differences
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The derivative ∂h
∂t = v is constant in time and space. Finally, the discretized Reynolds equation can be expressed in the form

Kc(xi, yj) · p(xi, yj)

+Kx−(xi, yj) · p(xi−1, yj) +Kx+(xi, yj) · p(xi+1, yj) (7)

+Ky−(xi, yj) · p(xi, yj−1) +Ky+(xi, yj) · p(xi, yj+1) = B(xi, yj)
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1 D. Cheneler (personal communication, September 22, 2022) confirmed a typo in the original reference, here the correct forumla is displayed.
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It is worth noting that the derivatives obtained using finite differences only exist in the region Ω\∂Ω, but not at ∂Ω. Neverthe-
less, since at the boundary ∂Ω the pressure p(xi, yj) is known, these values are not needed to solve the system of equations.
Eq. (7) can be written as

p(xi, yj) =
1

Kc(xi, yj)

[
B(xi, yj)−Kx−(xi, yj) · p(xi−1, yj)−Kx+(xi, yj) · p(xi+1, yj)

−Ky−(xi, yj) · p(xi, yj−1)−Ky+(xi, yj) · p(xi, yj+1)
]
.

(8)

To solve this system of equations, the ambient pressure p(0)(xi, yj) = ps is given initially in the entire region Ω. For all
interior nodes ∀(xi, yj) ∈ Ω \ ∂Ω, the pressure p(xi, yj) is calculated by iteratively computing array p(k+1)(xi, yj) from step
k → k + 1 using the iteration rule

p(k+1)(xi, yj) =
1

Kc(xi, yj)

[
B(xi, yj)−Kx−(xi, yj) · p(k)(xi−1, yj)−Kx+(xi, yj) · p(k)(xi+1, yj)

−Ky−(xi, yj) · p(k)(xi, yj−1)−Ky+(xi, yj) · p(k)(xi, yj+1)
] (9)

until convergence is achieved. After each iteration, the pressure is checked if it falls below the cavitation pres-
sure p(k+1)(xi, yj) < pv . If this is the case, the pressure is set to p(k+1)(xi, yj) = pv at the respective locations.

The iteration rule Eq. (9) corresponds to the Jacobi iteration [5]. Eq. (9) can be efficiently computed for a rectangular
domain Ω without the need to explicitly express the system of equations in the form A · p = b or storing coefficient matrix A.
The normal force F is obtained from the pressure distribution with

F = ∆x∆y ·
∑

i

∑

j

(p(xi, yj)− ps) . (10)

The convergence criterion considers the relative change of the force F between two successive iteration steps. Convergence
is achieved if

∣∣F (k+1) − F (k)
∣∣

∣∣F (k)
∣∣+ 1 · 10−10

≤ 1 · 10−10 (11)

is satisfied in iteration k + 1. The constant 1 · 10−10 in the denominator is used for numerical stability in case of very small
forces F → 0.

2.3 Substitute model construction using two-step interpolation

For a pair of known arbitrary body interface geometries, the reaction force ¯̄F acting on these interfaces due to the fluid is
calculated as a function of the minimum gap height h0 and the vertical velocity v by interpolating the results of numerical
simulations. For this purpose, the combinations (h0, v) ∈ H0 × V with

H0 = {h(1)
0 , h

(2)
0 , . . . , h

(k)
0 , . . . } (12)

V = {v(1), v(2), . . . , v(l), . . . } (13)

are computed using the numerical solution described in subsection 2.2. Subsequently, an interpolation model can be created
from the calculated tuples (h0, v, F ). To avoid oscillations in the interpolation function caused by higher order polynomials,
linear interpolation is used. However, the analytic solutions have poles for h0 → 0, so direct linear interpolation between
value tuples (h(k)

0 , v(l), F (h
(k)
0 , v(l))) is inaccurate, especially for very small values of height h0.

The analytical solutions Fsphere (h0, v), Fdisc (h0, v) and Frect (h0, v) motivate the relation

F (h0, v) = a · hb
0 · v (14)

with constants a and b and the (smallest) distance h0 of the two bodies. However, this relationship does not account for
cavitation or other effects, so it is only used for interpolation between the known supporting points.

If v∗ ∈ V is constant, the relation between yv∗(h0) := log(F (h0, v = v∗)) and x(h0) := log(h0) is linear according to
the analytical Eq. (14). It follows

log (F (h0, v = v∗))︸ ︷︷ ︸
=yv∗ (h0)

= log (a · v∗) + b · log (h0)︸ ︷︷ ︸
=x(h0)

. (15)
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4 of 6 Section 1: Multi-body dynamics

For each v∗ ∈ V , a linear interpolation function yintv∗ (x) is created. Thus, the force can be determined as a function of the gap
height h0 with v∗ ∈ V in the form

F̄ (h0, v = v∗) = exp
(
yintv∗ (log(h0))

)
. (16)

For a known combination (h0, v), linear interpolation can then be performed between two successive values of v(l), v(l+1) ∈ V

with v(l) ≤ v ≤ v(l+1) and the two function values F̄ (h0, v
(l)) and F̄ (h0, v

(l+1)) to determine the force ¯̄F (h0, v). In this way,
an approximated function value ¯̄F (h0, v) can be assigned for each (h0, v) ∈ [min{H0},max{H0}]× [min{V },max{V }].

3 Results and Discussion

This section investigates the quality of the numerical and the substitute model. Subsection 3.1 verifies the numerical model us-
ing an analytical example. Subsection 3.2 compares the substitute model with the numerical solution concerning the accuracy
between the interpolation support points.

3.1 Comparison of the numerical with the analytical solution

This section compares the numerical solution with the analytical solution for a gap between two plane parallel interfaces of
dimensions a × b = 2mm × 2mm. A fluid with dynamic viscosity η = 0.001Pa s and vapor pressure pv = 0Pa is used.
In addition, an ambient pressure ps = 101325Pa, which is the standard pressure according to [6], is assumed. Both the
numerical normal force F and the analytical normal force Frect are calculated for the combinations (h0, v) ∈ H0 × V with

H0 = {0.01mm, 0.1mm, 1mm} (17)

V = {−1
m

s
,−0.5

m

s
, 0

m

s
, 0.5

m

s
, 1

m

s
}. (18)

For the numerical solution, the computational domain is discretized by 257 × 257 grid points. The analytical solution is ob-
tained by the sum of (m,n) ∈ {1, 2, . . . , 1000}×{1, 2, . . . , 1000} terms of the series in Eq. (4). The calculated normal forces
and the relative difference between numerical and analytical solution are shown in Table 1. If cavitation occurred in the nu-
merical simulation, the cells are colored orange. From the results presented, it can be seen that there is only an extremely small

Table 1: Numerically calculated normal force F , analytical normal force Frect according to Eq. (4) and the relative differ-
ence e := |1− F/Frect| as a function of the minimum gap height h0 and vertical velocity v.

Num. Solution F v = −1 m
s v = −0.5 m

s v = 0 m
s v = 0.5 m

s v = 1 m
s

h0 = 1 · 10−5 m 6.75 · 10+4 N 3.37 · 10+4 N 0N −4.00 · 10+1 N −4.01 · 10+1 N

h0 = 1 · 10−4 m 6.75 · 10+1 N 3.37 · 10+1 N 0N −2.48 · 10+1 N −2.94 · 10+1 N

h0 = 1 · 10−3 m 6.75 · 10−2 N 3.37 · 10−2 N 0N −3.37 · 10−2 N −6.75 · 10−2 N

Analyt. Solution Frect v = −1 m
s v = −0.5 m

s v = 0 m
s v = 0.5 m

s v = 1 m
s

h0 = 1 · 10−5 m 6.75 · 10+4 N 3.37 · 10+4 N 0N −3.37 · 10+4 N −6.75 · 10+4 N

h0 = 1 · 10−4 m 6.75 · 10+1 N 3.37 · 10+1 N 0N −3.37 · 10+1 N −6.75 · 10+1 N

h0 = 1 · 10−3 m 6.75 · 10−2 N 3.37 · 10−2 N 0N −3.37 · 10−2 N −6.75 · 10−2 N

Rel. diff. e v = −1 m
s v = −0.5 m

s v = 0 m
s v = 0.5 m

s v = 1 m
s

h0 = 1 · 10−5 m 0.005% 0.005% − 99.88% 99.94%

h0 = 1 · 10−4 m 0.005% 0.005% − 26.46% 56.39%

h0 = 1 · 10−3 m 0.005% 0.005% − 0.005% 0.005%

deviation of about e = 0.005% between the analytical solution and the numerical solution, provided that no cavitation occurs.
Since cavitation is not considered in the analytical model, the deviations in these cases are correspondingly higher. Assuming
that cavitation occurs in the entire domain, the (theoretically minimum possible) force Fcav = −(ps − pv) · ab = 40.53N
must be reached. Force F approaches this theoretical minimum Fcav with decreasing gap height h0 and increasing velocity v.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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3.2 Comparison of the substitute model with numerical solutions

Building on subsection 3.1, a substitute model, as described in subsection 2.3, is created and compared to the direct numerical
solution. It is obvious that the calculation speed of an interpolation model according to subsection 2.3 is several magnitudes
faster compared to the numerical solution according to subsection 2.2. Therefore, the accuracy of the substitute model for
values between the interpolation points is of particular interest. The numerical solution hardly differs from the analytical
solution (in its range of validity), however, cavitation is included, which will also be investigated here. Therefore, in Table 2
the substitute model is evaluated in-between the grid points and compared with the numerical solution. If cavitation occurred
in the numerical solution, Table 2 is colored orange like Table 1. If inter- or extrapolated values of ¯̄F and ē solely base on
simulation results with occuring cavitation, these cells are again colored orange in Table 2. In contrast, if thes values are based
on a combination of results with and without cavitation, the corresponding cells are colored red. The linear interpolation
models used in subsection 2.3 were thereby extended to include linear extrapolation. This allows the assessment of the
substitute model’s quality even outside the numerically investigated range. The deviation between the substitute model and

Table 2: Force ¯̄F calculated using the substitute model, numerically calculated normal force F and the relative difference ē := |1− ¯̄F/F |
as a function of the minimum gap height h0 and vertical velocity v between the interpolation support points.

Subs. model ¯̄F v = −1.25 m
s v = −0.75 m

s v = −0.25 m
s v = 0.25 m

s v = 0.75 m
s v = 1.25 m

s

h0 = 1 · 10−5.5 m 2.67 · 10+6 N 1.60 · 10+6 N 5.33 · 10+5 N −2.54 · 10+1 N −4.88 · 10+1 N −4.48 · 10+1 N

h0 = 1 · 10−4.5 m 2.67 · 10+3 N 1.60 · 10+3 N 5.33 · 10+2 N −1.58 · 10+1 N −3.29 · 10+1 N −3.58 · 10+1 N

h0 = 1 · 10−3.5 m 2.67 · 10+0 N 1.60 · 10+0 N 5.33 · 10−1 N −4.57 · 10−1 N −1.16 · 10+0 N −1.66 · 10+0 N

h0 = 1 · 10−2.5 m 2.67 · 10−3 N 1.60 · 10−3 N 5.33 · 10−4 N 6.22 · 10−4 N −2.24 · 10−3 N −4.22 · 10−3 N

Num. Solution F v = −1.25 m
s v = −0.75 m

s v = −0.25 m
s v = 0.25 m

s v = 0.75 m
s v = 1.25 m

s

h0 = 1 · 10−5.5 m 2.67 · 10+6 N 1.60 · 10+6 N 5.33 · 10+5 N −4.02 · 10+1 N −4.02 · 10+1 N −4.02 · 10+1 N

h0 = 1 · 10−4.5 m 2.67 · 10+3 N 1.60 · 10+3 N 5.33 · 10+2 N −3.66 · 10+1 N −3.82 · 10+1 N −3.88 · 10+1 N

h0 = 1 · 10−3.5 m 2.67 · 10+0 N 1.60 · 10+0 N 5.33 · 10−1 N −5.33 · 10−1 N −1.60 · 10+0 N −2.67 · 10+0 N

h0 = 1 · 10−2.5 m 2.67 · 10−3 N 1.60 · 10−3 N 5.33 · 10−4 N −5.33 · 10−4 N −1.60 · 10−3 N −2.67 · 10−3 N

Rel. diff. ē v = −1.25 m
s v = −0.75 m

s v = −0.25 m
s v = 0.25 m

s v = 0.75 m
s v = 1.25 m

s

h0 = 1 · 10−5.5 m < 0.0001% < 0.0001% < 0.0001% 36.82% 21.44% 11.61%

h0 = 1 · 10−4.5 m < 0.0001% < 0.0001% < 0.0001% 56.93% 13.88% 7.66%

h0 = 1 · 10−3.5 m < 0.0001% < 0.0001% < 0.0001% 14.24% 27.39% 37.91%

h0 = 1 · 10−2.5 m < 0.0001% < 0.0001% < 0.0001% 16.61% 39.82% 58.39%

the numerical solution is negligible, as long as in the substitute model only supporting points are used where no cavitation
occured. This applies to both the interpolated and extrapolated values. If, on the other hand, the interpolation or extrapolation
is partly based on numerical simulations in which cavitation occurs, the deviations ē > 50% can be observed. In the range
of pure cavitation, however, the error of interpolation and extrapolation decreases again. In order to ensure that the model
is sufficiently accurate in areas where cavitation occurs, in particular including the transition between supporting points with
cavitation and without cavitation, these must be resolved by using a sufficient number of supporting points.

This publication focuses on the principle procedure in establishing a substitute model, not in creating a substitute model
that is as accurate as possible. For this reason, only a few grid points are used here, so that the numerically calculated forces
between two grid points can differ by several powers of ten, cf. Table 1. Both the range covered and the number of supporting
points should be selected reasonably, depending on the intended use.

4 Conclusion

In this paper, a substitute model is proposed that can describe the normal force of a fluid between two bodies. For this purpose,
the Reynolds equation concerning an incompressible Newtonian fluid is used considering a simple cavitation model and solved
numerically for different gap heights and vertical velocities. From this, a two-step interpolation model, the substitution model,
is constructed.

Except for the regions where cavitation occurs, the numerical solution shows excellent agreement with the analytical
solution for a squeezing flow between two plane square plates. The substitute model also agrees very well with the numerical
solution, provided that all the grid points used are from a region without cavitation, both in the interpolation and extrapolation

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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6 of 6 Section 1: Multi-body dynamics

region. In contrast, in the transition and cavitation regions, an increased resolution is required by means of enough numerically
calculated supporting points in order to achieve sufficient accuracy of the substitute model. The resolution can be increased
successively in several steps by comparing specific values in the transition area with the numerical solution. If the deviation is
unacceptably high, additional rows or columns of supporting points can be calculated numerically at the critical locations and
subsequently a refined substitute model can be constructed.

In some applications, a load-bearing effect can already occur at a vertical velocity of v = 0 if the gap height is a function of
the location and the two adjacent bodies perform tangential relative motions. In these cases, cavitation may still be expected
even for negative vertical velocities.

The presented substitute model is suitable for estimation purposes and requires a negligible amount of resources for storage
and evaluation once it has been created. Due to the high computational speed of the substitute model compared to the numerical
model, the substitute model qualifies excellently as a submodel that has to be evaluated frequently and quickly.
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