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Abstract 

Living systems incessantly engage in the regulation of their cellular processes to fulfill their 

biological functions. Beyond development-related adjustments or cell cycle oscillations, 

environmental fluctuations compel the system to reorganize metabolic pathways, structural 

components, or molecular repair and reconstitution mechanisms. These responses manifest 

across diverse temporal scales, necessitating an intricate regulatory orchestration. Time 

series experiments have become increasingly popular for charting the chronological order and 

elucidating the underlying mechanisms. In the era of high-throughput technologies, the 

majority of cellular molecules can be analyzed in one fell swoop, generating a comprehensive 

snapshot of the status quo of most present molecules. Methodological advancements also 

permit the monitoring not only of molecular abundances but also the functional status of 

transcripts and proteins. However, due to the still high efforts associated with such 

experiments, the number of measured time points and the replication of measurements 

remains limited. Resulting datasets contain signals from thousands of molecules, yet they are 

sparse in temporal resolution and are often imprecise due to biological variability and technical 

measurement inaccuracies. 

This thesis explores the complexities arising from the examination of short time series data 

and introduces pioneering tools that offer fresh insights into the realm of biological time series 

analysis. The broad spectrum of analytic possibilities ranges from a molecule-centric 

investigation of individual time courses to a holistic aggregation of the system’s response to 

its main characteristics. By creating a modeling framework that applies domain-specific 

constraints, time-course signals can be transformed from a series of discrete data points into 

a continuous curve. These curves align with current biological conjectures about molecule 

kinetics being smooth and devoid of superfluous oscillations. Noise present at individual time 

points is judiciously accounted for during curve fitting, mitigating the impact of time points with 

high variance on the curve. Subsequent classification is based on the features of these curves 

(extreme points and inflection points) and ensures a reduction in data amount and complexity. 

Succinct labels assigned to each molecule's kinetics encapsulate the signal's most notable 

features. Besides this modeling approach, an innovative enrichment strategy is introduced, 

that is independent of prior data partitioning and capable of segregating the temporal response 

into its thermodynamically relevant components. This approach allows for a continuous 

assessment of each molecule's contribution to these components, obviating the need for 

exclusive allocation. The application of various analytical approaches to heat acclimation 

experiments in Chlamydomonas highlights the relevance and potential of time series 

experiments and specifically tailored analysis techniques. The integration of different system 

levels has led to the identification of regulatory peculiarities, such as an increased correlation 

between transcripts and corresponding proteins during acclimation responses. These and 

other insights may herald new avenues of research that could ultimately enhance plant 

robustness in the face of increasing environmental perturbations. 

The growing popularity of time series experiments necessitates dedicated analytical 

approaches that empower researchers and analysts to decipher patterns, discern trends, and 

unravel the underlying structures within the data, facilitating predictions and the derivation of 

meaningful conclusions that could potentially build bridges between the interweaved systems 

levels.  
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Zusammenfassung 

Ein biologisches System, sei es eine einzelne Zelle, ein Gewebe, Organ oder Organismus, 
beschäftigt sich unermüdlich mit der Regulierung zellulärer Prozesse, um seine biologischen 
Funktionen zu erfüllen. Über Anpassungen während der Entwicklung und Zellzyklus-
Oszillationen hinaus, zwingen Schwankungen von Umweltfaktoren das System dazu, 
Stoffwechselwege, strukturelle Komponenten oder Reparationsmechanismen neu zu 
organisieren. Diese Reaktionen verlaufen in unterschiedlichen zeitlichen Abfolgen und 
Laufzeiten und erfordern dadurch eine komplexe regulatorische Orchestrierung. 
Zeitreihenexperimente erfreuen sich zunehmender Beliebtheit, um diese Reihenfolgen zu 
erfassen und die zugrunde liegenden Mechanismen aufzuklären. Die Ära der 
Hochdurchsatztechnologien ermöglicht Wissenschaftlern, einen Großteil der zellulären 
Moleküle in einem einzigen Durchgang zu quantifizieren, was eine umfassende 
Momentaufnahme des zellulären Zustands liefert. Methodische Fortschritte ermöglichen 
neben der Messung der Molekülabundanz auch eine Schätzung ihrer biologischen Aktivität. 
Aufgrund des nach wie vor hohen Aufwands solcher Experimente ist die Anzahl von 
vermessenen Zeitpunkten sowie die Replikatanzahl von Zeitserienexperimenten 
vergleichsweise gering. Die resultierenden Datensätze enthalten die Messwerte von 
Tausenden von Molekülen, sind jedoch in ihrer zeitlichen Auflösung spärlich und aufgrund 
biologischer Variabilität und technischer Messungenauigkeiten oftmals ungenau. 

Diese Arbeit befasst sich mit den Herausforderungen, die sich mit der Analyse kurzen, 
verrauschten Zeitreihen ergeben, und präsentiert die Entwicklung innovativer Methoden, die 
neue Perspektiven in der biologischen Zeitreihenanalyse eröffnen. Das Spektrum der 
Analysemöglichkeiten reicht von einer molekül-zentrischen Untersuchung einzelner 
Zeitverläufe bis hin zu einer ganzheitlichen Aggregation der Reaktion des Systems auf seine 
Hauptcharakteristiken. Durch die Entwicklung einer Modellierungsstrategie, die 
domänenspezifische Annahmen durchsetzt, können Zeitseriensignale aus einer Reihe 
diskreter Datenpunkte in einen kontinuierlichen Abundanz-Verlauf umgewandelt werden. Die 
entstehenden Kurven entsprechen aktuell gültigen Annahmen über die Kinetik von 
biologischen Molekülen, indem ihr Verlauf glatt ist und keine unnötigen Oszillationen 
aufweisen. Vorhandenes Rauschen an einzelnen Zeitpunkten wird bei der Modellierung 
berücksichtigt, um die Auswirkungen von Zeitpunkten mit hoher Varianz auf die Kurve zu 
mildern. Eine anschließende Klassifizierung, die auf den Merkmalen dieser Kurven beruht 
(Lage und Beschaffenheit von Extrem- und Wendepunkten), ermöglicht eine Reduktion der 
Datenmenge und -komplexität. Jedem Molekül kann so eine Kennzeichnung seiner Kinetik 
zugewiesen werden, die die auffälligsten Merkmale des Signals zusammenfasst. Neben 
dieser Zeitserien-Modellierung wird außerdem eine Label-Enrichment-Strategie vorgestellt, 
die von einer vorherigen Aufspaltung des Datensatzes unabhängig ist und außerdem die 
biologischen Reaktionen in ihre markantesten Komponenten unterteilt. Diese Methodik 
ermöglicht eine gewichtete Zuordnung der Molekülrelevanz zu diesen Komponenten. Die 
Anwendung verschiedener analytischer Strategien auf Hitzeakklimatisierungs-Experimente in 
Chlamydomonas soll die Relevanz und das Potenzial von Zeitreihenexperimenten und 
speziell darauf zugeschnittenen Analysetechniken unterstreichen. Durch die Integration 
verschiedener Systemebenen konnten regulatorische Besonderheiten unter Hitze ermittelt 
werden, wie beispielsweise eine erhöhte Korrelation zwischen Transkripten und ihren 
entsprechenden Protein-Abundanzen. Diese und weitere Einblicke eröffnen neue 
Forschungsansätze, die angesichts zunehmender klimatischer Veränderungen letztendlich 
die Widerstandsfähigkeit von Pflanzen steigern könnten. 

Die wachsende Popularität von Zeitreihenexperimenten erfordert spezielle analytische 
Methoden, die Forschende dazu befähigen, zugrunde liegende Muster und Strukturen in den 
Daten zu entschlüsseln. Dies trägt dazu bei, Vorhersagen zu ermöglichen und 
Schlussfolgerungen abzuleiten, die potenziell unerkannte Verbindungen zwischen 
miteinander verflochtenen Systemebenen sichtbar machen.  
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1. Introduction 

Cellular dynamics 

Cellular dynamics, the orchestrated interplay of diverse elements within living cells, form the 

essence of biological systems. At the molecular level, the interactions between proteins, 

nucleic acids, and other biomolecules regulate the cellular choreography and affect vital 

functions. Moving up the hierarchy, cellular networks emerge, comprising signaling pathways, 

metabolic processes, and genetic regulations that collectively sustain life. These elements 

seamlessly interact, creating a delicate steady state that ensures the smooth progression of 

cellular activities (Alberts 2008; Sharom et al. 2004; Qi and Ge 2006). 

Understanding the dynamics at different systems levels is crucial to elucidate complex 

behavior and function or prevent disruptions in this balance leading to disorders and even 

diseases. Therefore, unraveling the complexities of cellular dynamics holds significance 

beyond academic curiosity. It provides insights crucial for advancements in medicine, 

biotechnology, and environmental sciences. At every moment an organism is regulating 

thousands of processes to either maintain its intended function, processing information 

gathered by internal or external signals, repair or remodel cellular structures, or cope with new 

environmental conditions (Tyson et al. 2001). When cells are faced with environmental 

changes there are several scenarios for how to proceed. If the change drives the cells or 

cellular processes outside their biological niche for a prolonged period, then senescence or 

programmed cell death may eliminate damaged cells beyond repair (Kerr et al. 1972; Mittler 

2002). These cells cannot fulfill their function and even could cause tumorigenic events leading 

to further damage to the tissue or organism (Galluzzi and Myint 2023; Galluzzi et al. 2018). 

Subtle changes in environmental conditions can already be compensated for by the dynamics 

of metabolism itself and may not require any further action to restore any set point of cellular 

homeostases. As soon as there is an active intervention to regulate processes in order to (i) 

navigate to the previous set point, or (ii) navigate to a newly set point, the response is called 

acclimation. Acclimation not only deals with the mitigation of detrimental effects, but also takes 

advantage of favorable conditions (Kleine et al. 2021; Kültz 2005; Vonk and Shackelford 2022; 

Tuteja and Singh Gill 2013). The distinction between beneficial and detrimental perturbation 

effects is not trivial as a positive condition change in one process can simultaneously be 

negative for others. Increased oxygen availability for example can be advantageous for the 

efficiency of the respiratory chain, while increasing DNA damage or protein oxidation (Postmus 

et al. 2011; Bergamini et al. 2004). The states of all homeostatic systems together define 

whether a biological system as a whole must take acclimation reactions. 
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Acclimation 

The definition of the term acclimation has been under dispute for many decades. While 

adaption is widely accepted as a descriptor of genetic adjustments in a population that are 

inheritable, acclimation describes non-hereditary, usually reversible changes within the 

lifetime of a single organism to cope with fluctuating environmental conditions (Kleine et al. 

2021; Lagerspetz 2006; Vonk and Shackelford 2019). In 1950 Prosser gave two definitions for 

different kinds of acclimatization. Genetic acclimatization which operates by selection, and 

physiological acclimatization in which individuals alter their resistance within genetic 

limitations (Bishop et al. 1950). Later he defined the term acclimatization as genotypic adaptive 

alterations and the term acclimation as phenotypic adaptive alterations of individual organisms 

(Prosser 1955). In 1968 Precht didn’t differentiate genetic from non-genetic processes, but 

defined performance acclimation (“Leistungsakklimatisierung”) as processes within normal 

temperatures, whereas resistance adaptation (“Resistenzadaptation”) describes the 

organism’s adjustment to extreme temperatures (Precht 1968). Darwin himself seems to have 

used the term as a general description of any adjustment to abiotic changes. Despite chapter 

5 of Darwin’s “The Origin of Species” being titled “Acclimatisation” no definition is given, and 

it is used as a generic description for “adaptation to particular climates” (Darwin 1859). In later 

studies, acclimation described the short-term adjustment to a single specific factor, while 

acclimatization was used to describe the adjustment to a multi-variate change like seasonality 

(Feder and Hofmann 1999; West 1972) or real-world conditions outside the controlled 

laboratory (Buguet et al. 2023). Other publications use both terms interchangeably (Acosta et 

al. 2023; Diego et al. 2023; Banerjee et al. 2023). In some more recent publications, 

acclimation is not only restricted to abiotic climatic factors, but also biotic interactions 

(Khlebovich 2017). In the same study, the time span in which acclimation usually occurs is 

described as seasonal, while other publications - in line with the definition used in this thesis 

- describe acclimation as a response to environmental fluctuations varying from minutes to 

days with effects ranging from metabolic adjustments to differential gene expression (Kleine 

et al. 2021). To further specify acclimation, the concept of homeostasis must be considered 

(Figure 1): Homeostasis, of which there are many different definitions in scientific literature, 

describes a set of regulatory machinery that can sense, compare, and control its respective 

variable (e.g. ion concentration, redox state, energy household, pH) (Modell et al. 2015; 

Borowitzka 2018; Koolhaas et al. 2011; Torday 2015; Chrousos 2009). Every homeostatic 

system must have a set point, which is rather a value range instead of an exact value and 

resembles the range that the variable can take without the biological system being at risk. 

Minor fluctuations in the cellular redox state can easily be compensated by the passive 

buffering capacity of the metabolism. Once the variable is outside of the set point (but still 
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within limits that are viable in the short term), coping mechanisms are actively started to bring 

the variable back into the set point range. This process must be activated deliberately and 

therefore is part of an acclimation response. Alternatively, the set point may change, and 

acclimation assists in reaching the new homeostatic set point (e.g. fever). The restriction of 

acclimation being dependent on gene expression can be found in literature, but to difficulties 

in the real world. Sometimes acclimation responses that have a drastic effect to cope with 

environmental changes do not include differential gene expression. A photosynthetic cell, for 

example, whose redox state is disturbed (out of the homeostatic set point) due to intense 

illumination may respond by a decoupling of light harvesting complexes and potentially a 

physical reorganization of thylakoid membranes. These changes, while clearly being part of 

an acclimation response to increased light, may not require any expression of genes, but rely 

on signaling pathways that utilize cellular reserves to dissociate the complexes and cause 

structural adjustments. However, if gene regulation occurs in response to environmental 

changes, it definitely is part of an acclimation response. 

 

Figure 1 A theoretical homeostatic system regarding intracellular pH. A biological system without effort can tolerate all pH 
values that lie within the set point (a and b). No acclimation is happening, and no acclimation responses are required when 
the system transitions from state a to state b. When the pH is outside of the set point (c), acclimation is required to direct the 
variable toward its set point. If the pH is outside of the range the homeostatic system can control, all processes that rely on 
the respective homeostatic system (all pH dependent processes and components) irreversibly fail. Alternative scenarios 
include a sudden relocation of the set point (e.g. fever for homeothermic organisms). If the current variable lies outside of this 
range, again acclimation responses are activated that aim to bring the variable towards this new set point. 

Especially in the realm of short-term acclimation responses, the effectiveness of cellular 

dynamics relies on the precise coordination of molecular events. The regulatory networks 

governing these responses involve a myriad of signaling pathways, gene expressions, protein 

regulation, and metabolic adjustments. Identifying the central contributors within this complex 

interplay is crucial for deciphering acclimation responses, understanding the evolution of 

cellular processes, and in the future increasing the ability to predict and engineer cellular 

reactions (Lopes-Ramos et al. 2017; Kim et al. 2012). The simultaneous presence of identical 

players in multiple cellular processes makes it challenging to isolate and attribute functional 
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significance to each participant. Nevertheless, understanding these nuanced contributions of 

individual molecules in acclimation responses becomes imperative to fully understand 

underlying regulatory dynamics. 

As living systems rely on dynamic interactions and a constant control of the cell’s state, all 

processes inevitably must be examined with respect of time. It plays a critical role in shaping 

the narrative of cellular events and hence requires a time resolved monitoring of cellular 

players. During acclimation, the biological system may trigger several reactions. Immediate 

life-threatening changes must be addressed quickly. Drastic changes in osmolarity, redox 

status, membrane fluidity, or a failure of essential pathways, for example, pose an acute threat. 

These require rapid recruitment of chaperones or structural components from cellular reserves 

that quickly can be mobilized (Schroda et al. 2015; Balogh et al. 2011, 2011; Csoboz et al. 

2013). If the condition persists, a deeper reorganization could be required after this first aid to 

ensure continued survival. This can include a lasting change in the proteome. Instead of simply 

replacing aggregated proteins, efforts must be made to ensure that they do not immediately 

aggregate again. Either the processes these proteins are involved in are not sustainable under 

the given circumstances, or additionally synthesized folding capacities must ensure the 

stability of the proteins or enable their refolding. In the case of heat-induced influences, an 

accumulation of thermoprotective substances can help to maintain cellular processes, for 

which the expression of corresponding genes must be activated (Hemme et al. 2014). The 

entire biological system with all its components (e.g. energy management, anabolism, 

catabolism, cell cycle) could be affected and must be adapted to the new physiological 

conditions. Once the external influence has come to an end, the cell can revert the changes 

that have been made. As long-term changes, epigenetic changes may persist and lead to 

increased vigilance when the stimulus reappears (Boyko and Kovalchuk). To study these 

dynamics, many techniques were developed to perform real time in vivo measurements of 

metabolites, protein interactions, or gene expression to investigate these processes 

(Niemeyer et al. 2021; Xing et al. 2016; Hamada et al. 2016). However, these techniques are 

often limited to monitoring just a few molecules simultaneously. In order to get a 

comprehensive picture of cellular dynamics, huge parts of system levels need to be assessed 

in an efficient and reproducible way. This can be achieved by taking snapshots at various 

stages during acclimation, creating reference points that, when combined with high throughput 

technologies, enable time-resolved data acquisition of thousands of molecules. The resulting 

time series have interesting properties that can be used to obtain far more information than 

the individual data points provide in combination. This thesis aims to provide and apply 

analytical techniques that help to uncover these dynamics, with a focus on transcripts and 

their associated proteins. The developed tools intend to examine the existence of dynamics 
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and their functions across various systems levels – from the time resolved classification of 

molecular kinetics to the broader behavior of systems subset in respect with their relevance 

during acclimation responses. Therefore, it is necessary to understand the types and 

properties of time series data and compare strategies to analyze these kinds of data in order 

to elucidate underlying dynamics. 

Time series data 

Time series consist of readings that have a natural temporal ordering and are used to track 

the change of these readings over time (Casella et al. 2008). The measurements could be 

either one dimensional data, e.g., ambient temperature measured over the course of a year, 

or multidimensional data, e.g. a weather station, that logs temperature data as well as 

humidity, air pressure, precipitation, and solar radiation intensity. A weather station is a 

common example of a time series in which time points are equally spaced, meaning that the 

time span between two adjacent measuring time points is fixed. In contrast, event-driven data 

collection results in irregular time point spacing (Salfner 2006). These include data logging 

devices that take a snapshot of the current readings when triggered by a threshold sensor. 

The same irregular time intervals occur in time series, for which prior knowledge of the 

expected data exists. To illustrate this subject, imagine an object to be heated to exactly 50 °C. 

An attached temperature sensor is rated for a limited number of measurement cycles only. To 

optimize its usage, the sampling rate has to be increased with higher readings. When the plate 

is cold, the readings can be rare, while in the range of the target temperature, the readings 

have to be frequent to not miss the point to stop the stove. Especially storage, computation, 

or cost constraints can lead to the generation of time series data with irregular time point 

spacings. 

In contrast to other data point collections with no temporal ordering, time series data points 

often are highly dependent on each other while the ordering encodes valuable information 

(Leung et al. 2021; Jung and Tremayne 2003). Ten measurements of the ambient temperature 

taken in short succession are not limited to just accurately describing the temperature at each 

time point but enable the prediction of (i) temperature readings within two of the time points, 

and (ii) the temperature forecasting of time points that lie outside of the measured time span. 

Without additional environmental distortions, the temperature reading is constrained by its 

neighboring points, which limit the expected temperature range. The same is true for cellular 

protein amounts. If it is ensured that no new distortion of environmental conditions and internal 

processes occurs, a protein abundance measurement is going to lie between the prior and 

subsequent measurement time points. However, this statement is not helpful at all even if the 

environmental conditions are absolutely controllable. Living matter always undergoes some 

sort of regulation and ongoing processes constantly change the state of the intra-cellular 
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environment. Additionally, expression noise cannot be adequately controlled or predicted 

(Chowdhury et al. 2021). Especially for biological molecules involved in regulatory processes 

that depend on signaling cascades or thresholds to be reached, abundance readings may 

result in unexpected patterns. Sudden expression bursts require complex regulatory 

machinery whose prediction involves multifaceted differential equation modeling (Luo et al. 

2023; Beckman et al. 2021; Gardner et al. 2000). To understand these patterns or to be able 

to predict them, in theory, all factors influencing the state of a molecule must be known and 

measured. Quite some progress was made in the past in optimizing analysis and prediction 

techniques to cover a plethora of measurable molecules. Especially for isolated subprocesses 

of metabolite conversions it often is sufficient to measure a small set of enzymes that take 

place in these conversions and their activity status (Weaver et al. 2014). Thereby metabolic 

flux models can be created and used for predicting metabolite fluxes by varying abundances 

or activities for one or multiple players, be it proteins, co-factors, or the involved metabolite 

concentrations themselves (Kim et al. 2008). However, the data collected worldwide is still not 

sufficient to make reliable predictions about changes in the proteome or transcriptome on a 

global level, especially during acclimation responses (Lee et al. 2012). The reasons include 

(i) missing information about unknown protein-coding genes, (ii) unknown interactions 

between nucleic acids, proteins, and metabolites, (iii) inaccurate measurement techniques, 

(iv) phenotypic heterogeneity caused by genetic variability, and many more (Ghatak et al. 

2019; Fröhlich et al. 2018). It is questionable anyway if a global model is reachable or even 

desirable. Predictive models – as introduced in the next chapter – must always represent a 

compromise between accuracy and universality. Accurately describing a specific relationship 

naturally is prone to overfitting and does not claim to be universal or generally applicable to 

any conditions (van Impe et al. 2013). However, the growing prevalence of machine learning 

approaches is undoubtedly revolutionizing the field enabling to connect data to predictive 

models of unseen accuracy and spanning various subdisciplines (Lopatkin and Collins 2020; 

Hassoun et al. 2022). But what is the connection of this kind of modeling to time series? 

Besides simple data logging approaches that just present the measured data points, time 

series data can be used to build models and investigate underlying principles or identify factors 

that influence the measured feature. For the study of climate recordings, many of the factors 

that influence the readings are known, some may be unknown and none of them is controllable 

in the sense of performing multiple real-world scenarios. Laboratory experiment setups, 

however, should be designed to limit the number of factors influencing the sample to one at 

best. A highly controlled experiment, in which a temperature dependent chemical conversion 

takes place, is an example of an univariable experiment in which reaction rates can be 

precisely analyzed by comparing time series observations at different temperature conditions. 
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To be able to compare these changes in a quantitate manner, each time series can be 

condensed to a set of coefficients that describe the signal. These coefficients fully characterize 

the curve shapes and can be used to compare various conditions and infer conditions of e.g. 

maximal reaction speed. The next chapter deals with such models in general, how they are 

constructed and parameterized, and how they help to understand and predict the world around 

us. 

Understanding time series requires a model-based representation 

Models are simplified representations of real-world processes (Berry and Houston 1995). They 

capture the system’s important aspects and enable the description, analysis, and prediction 

of system responses (Edwards and Hamson 1989). While models can be conceptual (flow 

charts and diagrams), computational (simulations), or physical (actual physical prototypes), 

here I focus on univariable mathematical models that can be expressed as functions taking 

numerical values as input parameters and output prediction. Factors that have no, or negligible 

influence are not taken into account by the model, thereby reducing the complexity to a 

minimum while preserving relevant dependencies. These models can range from single- to 

multi-coefficient complexity that incorporate a multitude of variables which in turn may 

influence themselves (e.g. the prior mentioned climate model). 

𝑓(𝑡) = 𝑚𝑡 (Equation 1) 

An example for a single coefficient model is a linear regression line through the origin 

(Equation 1). The function value 𝑓(𝑡) is determined by multiplying its input variable 𝑡 by a 

scalar coefficient 𝑚 which resembles the slope of the line. This model can be used to calculate 

the distance travelled by a car at a constant speed, where 𝑡 is the time travelled in hours and 

𝑚 is the speed in kilometers per hour (Figure 2A). While it would be straightforward to just 

have the distance measured, or look at the pedometer, having this model at hand is handy if 

you want to predict how far you can drive within a specific amount of time. By rearranging the 

function, you can determine how fast you have to drive to reach your destination in time. 

Furthermore, you can apply calculus operations to determine the slope or the area under the 

curve for a specific time interval. While for the presented example this “absement” with its unit 

of km∙h has no intuitive interpretation, it demonstrates the possibilities a model offers even if 

it just contains a single coefficient and a single input variable. A more complex model with 

multiple coefficients is the Verhulst growth model, which is used to describe the growth phases 

of organisms (Vogels et al. 1975). 
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𝑃(𝑡) =
𝐾

1+(
𝐾−𝑃0

𝑃0
𝑒−𝑟𝑡)

  (Equation 2) 

𝑤𝑖𝑡ℎ 𝑃(𝑡) = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡 𝑡 

𝑟 = 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 

𝐾 = 𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

𝑃0 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑙𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 

The origin of the function may seem complex, but in fact, it derives from the easy to interpret 

differential equation 
𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃

𝐾
). It describes that the slope of the growth curve depends 

on the (scaled) current population count itself (𝑃) and a second term, that with constant 𝐾 and 

increasing 𝑃 reduces the overall slope (Figure 2B). Here the left part describes the rate of 

change the population experiences over time (the curves slope). Neglecting the second term, 

the first term on the right describes exponential growth, as the curve’s slope just depends on 

its current reading multiplied with a growth constant that describes the population’s average 

net growth. The second term, however, leads to a gradient descent when 𝑃 approaches 𝐾. 

When integrated into the so called closed-form function (Equation 2) the three resulting 

coefficients (𝑟, 𝐾, and 𝑃0) have straightforward interpretations and especially 𝑟 can be used 

directly to either determine generation times, or to compare populations regarding their 

maximal growth rate (Perni et al. 2005; Maier and Pepper 2015). 

As demonstrated, models are theoretical templates you expect reality to fit in, that can be 

superimposed (fitted) to measured data. As researchers we observe a phenomenon, construct 

a mental model out of it and ultimately generate a mathematical model out of the theoretical 

constraints and the actual observations. The obtained coefficients associated with a model 

can be used to describe the reality or compare instances of the model. While the presented 

models have coefficients that have a direct interpretation (e.g. speed or carrying capacity), 

models of which relevant factors are unknown may have coefficients that lack a logical 

interpretation.  

If the model is unknown, polynomials are practical tools for such signal modeling, in which no 

empirical or theoretical model is available (Greenland 1995; Royston et al. 1999). They are 

linear combinations of the input variable and coefficients. A cubic polynomial has a degree of 

three and consists of four coefficients (a, b, c, and d). 

𝑓(𝑡) = 𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑 

While polynomials lack interpretable coefficient interpretations, they are convenient in 

modeling data. By adding additional terms, their flexibility is extendable as required, and 
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calculus operations, as differentiation and integration, are easy and efficient (Edwards 1995) 

(Figure 2C).  

 

 

Figure 2 Model based data representation. (A) The distance travelled in km is given as function of time. Blue markers indicate 
raw data measurements while the orange line is the model representation of 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑡𝑖𝑚𝑒 ∙ 𝑠𝑙𝑜𝑝𝑒. Because the 

function starts at (0,0), no intercept term is required. (B) Verhulst growth model with three parameters (𝑃0, 𝐾 and 𝑟) and the 
variable 𝑡. The cell count starts with exponential growth at 𝑃0 before the growth is affected negatively by the carrying capacity 

(𝐾), leading to a saturation phase in which the cell count asymptotically advances 𝐾. (C) The raw data (blue dots) are fitted 

by polynomials of different degree. While a straight regression line corresponds to a polynomial of degree 1 (p1: 𝑎𝑥 + 𝑏), a 

degree increase leads to increased flexibility (p3: cubic polynomial, 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑). If the degree reaches the number 

of data points – 1, the polynomial interpolates all points (p8: 𝑎𝑥8 + 𝑏𝑥7 …). 

On the one hand, this easy extension of the mathematical formula is great to make the model 

more flexible, on the other hand, its prone to overfitting (Figure 2C). In the so called kitchen 

sink regression the analyst throws “everything but the kitchen sink” into the regression in 

hopes of finding the correct model, thereby maximizing the coefficient of determination (R2). 

While the resulting model shows a higher fidelity to the data, its prediction capabilities are 

dramatically reduced, as the areas between measurements are unlikely to be observed (Yin 

2022). If underlying models are unknown or not known to full extent, analysts should keep the 

number of coefficients and thereby the number of assumptions of a model low in order to 

reduce overfitting effects. This principle is called Occam’s razor and has a long tradition in 

model selection e.g. the most appropriate model for chemical reaction (Minkin and Carpenter; 

Carpenter 1984). 

While it frequently is inaccurately paraphrased as “The simplest model is the correct one” 

(Domingos 1999), its more accurate translation is:  

“If everything is equal, the simplest model is probably the correct one”, or more formally 

“Entities should not be multiplied without necessity” – Clauberg, Logica vetus et nova. 

(1654). 

The addition of necessity is crucial as it isn’t necessarily beneficial to choose the option with 

the smallest number of coefficients just because it’s the simplest, speaking the one with the 
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fewest assumptions. In the worst case, the model underfits the underlying phenomenon and 

therefore isn’t useful as a representation (Figure 2C dotted line). Even if the exact 

mathematical equation is unknown and the model therefore only represents a rough 

approximation, restrictions are often possible that limit the capabilities of the model. Occam's 

razor therefore reminds us to select the number of assumptions in such a way that the 

anticipated properties are fulfilled, but to avoid making additional assumptions in the case of 

uncertainty. In the end, it - as often - condenses to “make as many assumptions as required, 

but as few as possible”. It is important to note that few assumptions do not necessarily 

correspond to having few coefficients. In fact, many models just have one or two coefficients, 

but are very constrained to their specific use case, i.e. radioactive decay (2 coefficients 𝜆 and 

𝑁0) or Michaelis-Menten model (2 coefficients 𝑉𝑚𝑎𝑥 and 𝐾𝑚) (Rutherford 1904; Michaelis and 

Menten 1913). 

Excursus: Omics technologies 

Models, however, require data to be modeled on. In modern biology, these data often originate 

from so called omics technologies that systematically aim to make life quantifiable. A living 

cell can be characterized by measuring the abundance and – if available – the activity status 

of its contained molecules. This molecule composition is different between cells of differing 

specialization (Melé et al. 2015). The plant’s leaf cells that are involved in photosynthesis are 

likely to produce proteins that are crucial for light harvesting and sugar synthesis, while its root 

cells need a different set for starch storage and structural stability (Shi et al. 2021). The 

identification of such patterns is not always trivial, as proteins share functionalities, and many 

proteins are shared between cells of different tissues. Furthermore, the amount of molecule 

species within a cell is huge and the cell’s function often is characterized by just a small subset 

of its proteome (Emig and Albrecht 2011; Uhlén et al. 2015). Cells consist of thousands of 

transcript- and protein species with hundreds or several thousand copies each (Ho et al. 

2018). Omics technologies enable a holistic and undirected quantification of the molecules of 

a specific systems level (e.g., proteins, transcripts, or metabolites) (Subedi et al. 2022; 

Aebersold and Mann 2003; Winkler 1920). In contrast to analyses that rely on the purification 

of a single molecule species, all molecules are considered equally. Analyzing the number and 

composition of all proteins in a cell at a specific time point, i.e. the proteome, is the subject of 

proteomics. The same applies to transcripts (transcriptomics), metabolites (metabolomics), or 

lipids (lipodomics). There are now several other omics specializations, such as complexomics 

or interactomics, that deal with the identification and quantification of protein complexes and 

the interaction of proteins with other cellular molecules respectively (Narad and Kirthanashri 

2019). While the comparison of the molecule composition of different tissues helps to analyze 

substrate flux within an organism or to describe tissue specialization, another interesting 
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approach is to compare e.g. the proteome or transcriptome of the same tissue at differing 

development stages or environmental conditions. Hence, changes in molecule composition 

can be pinpointed to the reaction of the system to the stimulus faced during the experiment. 

The high accuracy necessary to detect subtle abundance changes and to cover the majority 

of the systems level is facilitated by modern high throughput methods. RNA sequencing 

(RNASeq) is a next generation sequencing (NGS) approach and deals with the quantification 

of transcript copies. At each moment in every cell, genes are transcribed to transcripts, which 

in turn are processed to mature mRNA and ultimately translated to proteins (Figure 3). While 

transcripts in most cases serve as an intermediate step, the resulting proteins act as executive 

elements that facilitate enzymatic reactions, ensure the cell’s structural integrity, assist in 

transport activities, and serve in various other processes (Rost et al. 2003). However, 

transcripts can act on their own, e.g. as rRNA being involved in the synthesis of other proteins 

at ribosomes (Campbell and Farrell 2009). The transcriptome can be described as the entire 

RNA component of a cell, but often is defined as the polyadenylated products of RNA 

polymerase II (Tang et al. 2011; Wang et al. 2009). In RNASeq, purified transcripts are 

converted to cDNA and afterwards sequenced using NGS strategies (Figure 3D). The 

sequence reads are aligned to a reference genome which subsequently are aggregated and 

reported as reads, counts, or read counts per transcript in the original sample (Wang et al. 

2009). Comparing read counts of different transcripts remains challenging, because of the 

formation of secondary structures and the probability of counts increasing with the transcript’s 

length. While there are strategies to account for this bias (e.g. TPM normalization), it often is 

not required as counts of the same transcript are compared across different conditions. Here 

the length correction factor would be the same for both counts (Zhao et al. 2021). Ultimately 

protein coding transcripts are translated to proteins by ribosomes. Many ribosomes can attach 

to a single transcript resulting in a cascade effect during the transcription-translation 

procedure. Several thousand kinds of proteins exist in an organism, each of which exists in 

several thousand copies within a single cell (Ho et al. 2018). Using mass spectrometry-based 

proteomics (MS proteomics), a huge proportion of proteins can be measured in a single 

machine run (Figure 3E). Cell lysate containing all or specific factions of proteins is prepared 

by digesting them into peptides using endoproteases (e.g. Trypsin). Subsequently these 

peptides are separated by hydrophobicity on an HPLC and measured as mass over charge 

ratio using a mass spectrometer. If necessary, these peptides may be fragmented even further 

to identify the exact composition and order of the amino acids. By in silico analysis of the 

organism’s theoretical proteome, these peptides can be associated with their originating 

proteins. The intensities determined for each peptide can then be aggregated to a global 

abundance estimate for each protein (Yates et al. 2009). It should be noted that the intensities 

across all proteins do not necessarily correlate with an exact abundance measure. This is due 
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to differences in peptide observability leading to peptides with equal abundance showing 

differing intensities (Zimmer et al. 2018). While there are possibilities to quantify proteins in an 

absolute manner, e.g. using QconCATs, in comparative studies quantification is often 

performed relatively (Hammel et al. 2018). If changes in the same protein between different 

conditions are of interest, the absolute protein amount does not add further information since 

the intensity ratios stay constant. An extension of the proteomics workflow is called 

complexome profiling and deals with the analysis of protein complexes. While the peptide 

preparation and detection stay the same, an additional gel-based separation step enables the 

identification of complexes. Therefore, protein complexes are isolated and ran in a blue native 

PAGE before the individual lanes are cut into multiple slices. These slices contain native 

proteins in their original complex configuration and are separated by complex size. The mass-

spectrometry based quantification of proteins allows for the identification of profiles that are 

separated by molecular weight or complex size complexes (Heide et al. 2012; Spaniol et al. 

2022). Thereby ‘mer stages and the formation of protein complexes can be studied. A third 

major omics class deals with the measurement of metabolites. These intermediates or 

products of biochemical pathways play characteristic roles in cell physiology, development, 

and pathology and hence define the cell’s phenotype (Figure 3C). The metabolome resembles 

the complete set of all metabolites formed by the cell in association with its metabolism (Villas‐

Bôas et al. 2007). Unlike the direct connection that links genes to transcripts and ultimately to 

proteins, metabolites can have multiple sources, either by direct import or conversion out of 

precursors. Their quick turnover renders the prediction of metabolite levels out of prevalent 

transcript or protein abundances difficult. A high diversity in chemical composition which 

requires special handling and multiple spectrometry based analytical techniques to quantify 

the metabolome of a cell or tissue (Figure 3F).  
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Figure 3 Different system levels within a photosynthetic cell with compartments schematically reduced to a nucleus (grey), chloroplast 
(green), and mitochondrion (orange). (A) Genes are transcribed from the genome by an RNA polymerase. The resulting transcripts 
(pre-mRNA) are processed (e.g. capped, spliced, poly-A modified) and translocated into the cytosol. (D) The cellular transcript pool 
can be isolated, enriched for desired properties (poly-A purification or fractionation of compartments), and quantified by RNA-
Sequencing. (B) Ribosomal complexes of proteins and rRNA form the ribosome, which translates the fully matured mRNA to 
sequences of amino acids, provided by tRNAs (not shown). Subsequent folding and post translational modification results in 
functional proteins. (E) The cellular or compartment specific protein pool can be isolated and quantified by MS-proteomics. (C) 
Metabolites are chemically diverse molecules that are produced or used during metabolism. Proteins that convert or produce 
metabolites are called enzymes and often are organized in metabolic pathways. (F) Due to their fast turnover and chemically diverse 
structure, the isolation and quantification of metabolites must be conducted with special care and do not follow a uniform protocol. 
Different metabolite kinds require different measuring devices. 

When measuring molecules within cells, the choice and preparation of the sample material is 

crucial. As described earlier, different cell types can be characterized by differences in their 

‘omes, so care must be taken to ensure that the samples being compared are of the same 

composition. When dealing with unicellular organisms, e.g. the green algae Chlamydomonas 

reinhardtii, no tissue specialization is present. Despite compartmentalization still separates 

important metabolic reactions, all processes, e.g. replication, motility, energy conversion, 

storage, and sensing of the environment, are facilitated by a single cell (Coates et al. 2014). 

While this may seem to complicate the analysis of general systems responses, it has the 

advantage of not being biased by tissue specific responses and not relying on an error-prone 
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sampling strategy. For tissue specific studies it is crucial to sample comparable parts and 

amounts of an organism, but for unicellular organisms samples are taken from a uniform cell 

population. Although differences can also occur despite the same environmental conditions 

due to temporal synchronization or reaching critical cell densities, it is easier to control these 

factors and ensure a homogeneous sampling (Carrasco-Pujante et al. 2021). Despite its 

comfort and benefit of capturing a snapshot of the complete systems level, all presented omics 

techniques require a high level of skill, specialized equipment and are still cost and labor 

intensive. In practice, this commonly results in a certain sparsity within the datasets and 

renders data modeling even more necessary. 

Omics driven time series measurements  

Modern omics approaches allow to capture the status quo of the respective systems level 

experimentally. Based on the knowledge available from databases (e.g. ENA, PRIDE, GEO, 

MetaboLights) predictions of the cell’s function and prevalent pathological conditions are 

possible if empirical data for the experimental circumstances exist (Chen and Zhou 2019). 

Using at least two samples allows for comparative analysis of the same tissue at differing 

conditions. By analyzing differential expression transcript and protein sets can be identified 

that potentially are important for the observed phenotype. It enables us to infer a variety of 

biological phenomena, such as protein function, involved signaling pathways, underlying 

pathophysiology, and the identification of biomarkers (Kline et al. 2022; Wang et al. 2014). 

Analyzing multiple samples taken over time allows additional analysis techniques to monitor 

acclimation responses and infer regulation properties and kinetics. These longitudinal studies 

are especially important when dealing with dynamic processes (Bar-Joseph et al. 2012; Desai 

et al. 2011). Therefore, samples are drawn from the same population in regular or irregular 

time intervals with subsequent isolation and detection of transcripts or proteins. If specific 

research questions have to be answered, the analysis of molecule subsets, e.g. by western 

blot, dot blot, northern blot or other biochemical methods may be sufficient, but if whole 

systems level are of interest or systems biology techniques should be applied, the 

beforementioned high throughput methods can be used to gain comprehensive insights into 

molecule kinetics. By concatenating the snapshots of biological statuses, time series analysis 

techniques can be exploited to gain insights into metabolic fluxes, regulatory processes, or 

signaling pathways. 

Time point spacing 

Biological systems encompass a myriad of processes occurring across various spatial 

dimensions and vastly disparate time scales. However, in many settings the time point spacing 

is fixed, so that samples are taken at regular intervals. This sampling pattern is used when 
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studying cyclic processes or when the rate of change cannot be estimated in advance (Bar-

Joseph et al. 2012; Spellman et al. 1998; Menges et al. 2002). This approach is particularly 

useful and cost effective when consistent changes are expected with no anticipated regulatory 

fluctuations, as is the case for cell cycle processes and circadian rhythms. Deviations from 

this uniform sampling scheme are particularly necessary when analyzing developmental 

processes or when samples are subjected to sudden perturbations. Cellular or organic 

differentiation is mainly driven by cytokines and hormones that trigger signaling cascades and 

a resulting reorganization of cellular tasks and processes. These differentiation reactions 

follow a strict temporal schedule in which important developmental stages are reached at 

different time intervals. Morphological markers that indicate the current development status 

can serve as a guide for choosing appropriate sampling time points (Mathavan et al. 2005; 

Gerstein et al. 2010; Bar-Joseph et al. 2012). Furthermore, empirical data shows that 

perturbations introduced by abiotic or biotic treatments trigger an acclimation response that 

predominantly happens directly after treatment onset and weakens over time (Gaucher et al. 

2008; Mendoza-Parra et al. 2011). This is intuitive from a control system engineering 

perspective because when the change in conditions is beneficial, cells aim to take advantage 

of the new favorable conditions. When faced with detrimental influences, however, cells shift 

their focus to adjust their transcriptome, proteome, and metabolome to cope with the changes 

and prepare for the direct and indirect consequences of the treatment. If this fast initial 

regulation burst with a subsequent decreasing regulation rate is expected during an 

experiment, it is recommended to select sampling time points accordingly. A trivial solution is 

to capture homogeneous amplitude changes instead of homogeneous time spacings. Starting 

with the shortest sampling interval and doubling it with each iteration (e.g. 0 h, 1 h, 2 h, 4 h, 

8 h, etc.) corresponds to an exponential regulatory pattern. However, the considered system 

level has to be kept in mind when selecting sampling times. While the metabolome may 

change within seconds after treatment, the degradation or synthesis and preparation of 

transcripts require energy investments and signaling pathways that activate transcription 

factors. It has been found that only a few minutes after treatment onset the first significant 

transcriptome changes can be observed (Ashburner and Bonner 1979; Lindquist 1986). As 

proteins are synthesized from transcripts, their response time is assumed to lag behind, at 

least for proteins that are synthesized de novo. Of course, besides transcription regulation, 

there are several alternative ways to influence protein activity. For example, by translational 

regulation biological systems can directly influence the protein synthesis processes while the 

transcript count remains the same. In general, it should be noted, that transcript counts and 

protein abundance are just proxies for transcriptional and protein activity (Furlan et al. 2021). 

Several regulation mechanisms exist, that alter the translational activity as well as protein 

activity (Figure 4). Just to mention a few, translation can be regulated by affecting the transcript 
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stability, phosphorylation of initiation factors, modification of ribosome binding sites, or the 

formation of transcript structures that attract regulatory elements (Gebauer and Hentze 2004). 

An important acclimation reaction is the induction of aberrant expression of miRNAs that 

reduces the available mRNA pool (Ferrando et al. 2017). The activity of proteins can be 

regulated by conformation changes due to the binding of small molecules, in-/activation by 

post translational modification, protein-protein interactions, or spatial separation from the 

place of action (Cooper 2019). However, as most translational regulation relies on the 

modification of the available transcript pool, transcript counts and protein intensities are in 

most cases an appropriate estimator for increased or decreased activity of biological 

processes (Csárdi et al. 2015; Vogel and Marcotte 2012). This raises the question of whether 

there are regulatory techniques that are specific to certain stimuli. Depending on the source, 

the correlation between transcripts and corresponding proteins is between 0.6 and 0.9 (Csárdi 

et al. 2015). In this scenario, time series experiments help to shed light on translational 

regulation whether it is condition specific or even changes over time.  

 

Figure 4 Collection of regulatory mechanisms from DNA to protein function. Some of the existing regulation mechanisms are 
listed, starting from chromatin modification (left) to protein activity tuning (right). Histone or DNA modification can alter the 
accessibility of underlying genes. Transcription is influenced by the presence of transcription factors and enhancer elements, 
that improve DNA accessibility and can bend the DNA to bring regulatory complexes in near proximity. The transcript (pre 
mRNA) can be inhibited by the formation of loops or the binding of complementary micro RNA. The degree of polyadenylation 
influences the mRNA’s decay rate while alternative splicing can lead to the synthesis of proteins with differing functions. The 
translation of matured mRNA to proteins occurs in the cytosol or ER membrane associated and depends on generic and 
transcript specific initiation factors. Protein activity itself requires the protein to be correctly folded and located as well as post 
translational modifications, regulatory co-factors, or the formation of protein complexes. 

Challenges of short time series data 

When performing time series experiments the sampling time point number often ranges from 

four to ten. Even for experiments lasting several days with multiple condition changes, up to 

this day, sample counts rarely exceed 15 samples. Simultaneously the number of biological 

replicates remains small and often is lower than five (Kleyman et al. 2017; Garcia-Molina et 
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al. 2020; Dudek et al. 2021; Zaza et al. 2023; Bakker et al. 2023). While challenging from a 

modeling and analysis perspective, this sparse sampling is due to the still high effort and cost 

associated with omics technologies and biological experiments in general. The initial organism 

population, may it be plants in a highly controlled environment, organisms in liquid culture, or 

animals, must be big enough to last throughout the sampling time course. With every 

measuring point, the remaining pool is reduced, at least if the organisms are not able to restore 

the same biomass within a measurement interval. Spatial or volumetric constraints as well as 

the limitation of analytical and preparational apparatuses limit the technically feasible number 

of samples. Furthermore, the sampling and sample preparation process often requires a high 

level of skill and takes minutes to hours of focused work which defines the lowest possible 

time interval between samplings. Nested teamwork is suboptimal as samples have to be highly 

consistent and laboratory devices may cause limited capacity. From an analytical perspective, 

several demands must be addressed. 

 

Table 1 Analytical challenges of time series analysis 

i The identification of relevantly different from unaltered time series: This can 

employ a single molecule’s time course or the comparison of different molecules 

over time. 

ii The identification of shared responses by detection of similar kinetics. 

iii The condensation of obtained information to a level that is interpretable for 

researchers. 

iv The consideration and incorporation of biological variability as well as technical 

noise into the data analysis approach. 

v The modeling of an appropriate representation of the data received. 

 

With improvements in automated sampling methodologies and decreasing costs of high-

throughput technologies, the application of time series experiments in combination with omics 

technologies is becoming increasingly popular. They are useful to monitor, compare, and 

predict the transcript, protein, and metabolic fluxes and interpret acclimation reactions of 

biological systems. Due to the size and complexity of high-throughput data, dedicated analytic 

techniques are required to interpret the measured data. 

Comparative analysis 

The identification of relevant changes (Table 1i) can be realized with comparative approaches. 

Many study designs either focus on molecule abundances that are compared within a single 

sample, or a treated sample is compared against a control sample. A single molecule time 

series can be seen as a progressive shift from control to treatment (and eventually back). For 
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any protein, transcript, or other molecule of interest, a statistical test can be applied to assess 

whether it underwent any statistically significant change. A commonly applied statistical test 

to check for a global change is an ANalysis Of VAriance (ANOVA, or more specifically one 

way ANOVA). It takes all replicates of all samples and checks if at any point there is a 

significant deviation of the sample means. An extension, called (multivariate) repeated 

measures ANOVA, incorporates the information that the samples are dependent on each 

other. If the abundance at time point 2 is higher than at time point 1, it is likely that time point 

3 is higher as well. However, while often applied in behavioral science, in long lasting time 

series experiments this assumption not always holds true and the increased sensitivity to 

missing values or imputed data often leads to the decision for default ANOVA (Keselman et 

al. 2001; Park et al. 2009; Brillinger). Using post hoc tests, time points can be identified that 

differ from the overall mean. However, as many models and post hoc tests require the replicate 

variance at the individual time points to be equal or at least homoscedastic, this procedure is 

suited to just get a crude overview of the overall systems response and is not necessarily 

suited for in depth analysis of individual molecules. While non-parametric versions exist, the 

availability of just 3-4 biological replicates greatly reduces the test power and increases Type 

I errors (false positives). In general, the statistical test used should be chosen carefully, taking 

theoretical assumptions as well as the test’s prerequisites into account. Tests to consider are 

Dunnett’s test, variants of repeated measures ANOVA, or mixed-effect models in general 

(Dunnett 1955; Park et al. 2009; Laird and Ware 1982; Wood 2013). 

Clustering 

Shared responses can be identified by clustering or network-based techniques (Table 1ii), that 

can be applied to various data structures, including time series, often without the need for 

statistical tests. Clustering, in general, aims to group similar objects and form coherent groups 

that are similar within, but different between clusters. Popular algorithms include k-means 

clustering, hierarchical clustering, and density-based clustering (Warren Liao 2005). While not 

going into detail, all clustering techniques have in common that there is the need for a distance 

measure that describes the distance or (dis)similarity between two elements.  

 Distance measures and standardization 

Most commonly the squared Euclidean distance is used for clustering approaches. It 

summarizes all squared distances between two elements at corresponding time points. In 

contrast to Euclidean distance, which contains an additional square root calculation, the 

squared variant behaves proportionally while being computationally more efficient. 

𝐸𝑠𝑞 = ∑ (𝑎𝑡 − 𝑏𝑡)2𝑛
𝑡=1  (Equation 3)  

with 𝑎,𝑏 being time series signals of two molecules and 𝑛 being the number of time points. 
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Other distance measures that are commonly used in clustering algorithms are Manhattan 

distance, Dynamic Time Warping, or even correlation-based measures such as Pearson’s 

correlation coefficient. For clustering approaches, it is especially important to prepare the data 

appropriately. If two proteins are regulated the same way and show identical rates throughout 

the time course, they should be assigned a similarity of 1 or a distance of 0. Abundance 

discrepancies between both proteins however lead to high distances because the absolute 

deviation is measured rather than a relative one (Figure 5A). This holds true for most 

commonly used distance measures and clustering algorithms. While correlation measures are 

insensitive to intercept changes, they instead are outlier sensitive and by their nature assign 

higher weights to low or high values. To correct for differences in abundance, the signals can 

be standardized to lie within the same amplitude range (Figure 5D). 

 

Figure 5 Testing and clustering of time series data. (A) Normalized protein abundance data of a time series experiments. (B) 
Statistical testing of protein data reveals differences within and between protein time courses (n.s. not significant, * significant, 
** highly significant). Note: Multiple testing corrections must be applied when multiple tests are conducted. (C) Using e.g. post 
hoc tests, each protein time course can be analyzed in detail. Here, time points 2-5 are tested against time point 1 within each 
respective protein. (D) The normalized protein data signals are standardized via z-score transformation to have zero mean 
and unit variance. The variance information is lost during this process. While proteins A and C showed high abundance 
differences, a z-score transformation yields almost identical signals, potentially indicating a shared regulator or similar 
functions. (E) From standardized signals distances (e.g. Euclidean distance) can be determined between each pair of proteins 
and written into a distance matrix. For high similarity, the distance measure must be minimal while similarity measures as e.g. 
Pearson correlation coefficient must be maximized. As protein B was identified to show mean differences during its time 
course, it can be excluded from downstream clustering analysis. (F) Based on the distance matrix clustering approaches can 
partition the data into groups of coherent signal behavior. These clusters subsequently can be characterized by label 
enrichments. 

This preprocessing step is required for most clustering procedures as well as other distance-

based approaches. While in many clustering approaches the features have to be standardized 
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(data columns or here time points), for high throughput data a row wise standardization is 

applied (Tavazoie et al. 1999). A common technique called z transform, z-score transform, or 

just standard score, standardizes each time series signal to be centered at zero with a 

variance of one. The resulting signals are often referred to have zero mean and unit variance 

(Smet et al. 2002). When handling high throughput data, the amplitudes can span several 

orders of magnitude, interfering with the distance measures. Additionally, the transcript count 

or protein abundance is just a proxy for the underlying real measures and hence two equally 

abundant molecules may show different measurement values. However, these are not the 

only reasons why row-wise standardization is necessary.  

Molecule activity status 

Biological molecules do not have to be present to the same extent to have the same activity 

or a similar influence on processes. In signaling cascades, for example, proteins that are at 

the beginning of the pathway can have a much greater influence on the cell, even though they 

are much less abundant in their sheer number compared to players involved downstream of 

the cascade. Another example of this are transcription factors, which in relation to their 

abundance can be significantly more influential than highly abundant enzymes. In general, 

protein efficiency must always be considered when assessing their activity. While RubisCO, 

the most widespread carboxylating enzyme in autotrophic organisms, can account for up to 

10% of a cell's abundance, its turnover is limited to a few reactions per second (Bathellier et 

al. 2018). Catalase, on the other hand, can carry out tens of thousands of reactions per second 

(Singh et al. 2008). These examples illustrate that in many cases it is not the absolute quantity 

(amplitude) that is of interest, but the change in it. Relative changes help us to investigate 

cellular regulation and the importance of individual molecules for certain processes. If co-

regulation is of interest, candidates with similar rates of change (slopes) relative to their 

abundance could be identified. By performing a z-score transform, the amplitude information 

is lost but the relative changes are aligned. Distance calculations based on standardized 

signals allow these potentially co-regulated molecules to be identified. However, care must be 

taken with signals that do not differ over time! If a signal is theoretically constant and only 

affected by white noise, a z-score transformation would amplify the noise to appear as a real 

change (Figure 5). Clustering procedures would be corrupted by these originally constant 

signals, which often appear as oscillating spikes. Not only will these signals be misinterpreted 

as valid regulatory events, but because clustering procedures rely on grouping similar 

elements, the distinctiveness of these groups may be diluted. To address this problem, 

potentially constant signals can be filtered out prior to the transform and thus be excluded from 

the analysis (Figure 5B). A commonly used method is to use a statistical test to determine 

whether a signal changes in any way over time. One possibility is to perform an ANOVA, which 
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examines the individual replicates of each time point and indicates without further specification 

whether the mean value of a time point differs significantly from the overall mean value of the 

time series signals (Askari 2021; Liu et al. 2005). The selection of a suitable p-value threshold 

must be made depending on the study design and is not generally valid. As this is only a first 

rough filter step and no further significances are of interest afterwards, a multiple testing 

correction can be dispensed with in most cases. 

As with any analysis approach, assumptions must be made about the available data. 

Clustering techniques require some form of parameterization that affects either the clustering 

itself or the interpretation of the result. For the popular k-means clustering, the expected 

number of clusters must be specified in advance in addition to the distance measure used 

during the procedure. For known systems, this differentiation into a specific number of 

expected patterns is possible but proves to be difficult for global analyses of entire biological 

system levels. In hierarchical clustering, it may also be necessary to dissect the resulting 

dendrogram at a certain level after the actual clustering process to contain a certain number 

of resulting clusters. There are numerous strategies for determining a specific number of 

clusters (Xu et al. 2016; Kodinariya and Makwana 2013). Many methods use dispersion 

calculations of the resulting clusters to determine the number of clusters to be analyzed by 

visual methods (elbow method), cross validation (leave-one-out or k-fold cross validation), or 

comparison with a reference dataset (gap statistics or silhouette index). For dendrograms 

resulting from hierarchical clustering, the number of clusters is determined after the clustering 

itself by cutting the dendrogram at a certain height. Extensions of this approach allow the level 

height to be varied (Langfelder et al. 2008). Ultimately, the methods aim to minimize the mean 

dispersion within the clusters in relation to the mean dispersion between the clusters (Figure 

5F). Experience has shown that typically cluster numbers between four and six are suggested 

for classical biological high-throughput studies. Density based clustering (DBSCAN) does not 

depend on the determination of cluster numbers. Instead, each signal is encoded as a single 

coordinate vector and thus represented as a single point in a multidimensional coordinate 

system. The number of coordinates corresponds to the number of measurement points. It is a 

non-exhaustive clustering technique, meaning that signals may not be assigned to a cluster 

(Ester et al. 1996; Pirim et al. 2012). In addition to identifying outliers, this method can generate 

an unlimited number of clusters. However, this advantage comes with the burden of 

determining two initial parameters that are difficult to estimate from the data. In addition to the 

minimum size of a cluster (minPts), the maximum distance between two points must be 

specified (𝜀). This distance is difficult to estimate intuitively in multidimensional spaces and 

the strong dependence of the two parameters on each other makes individual hyperparameter 

optimization difficult. OPTICS – as an alternative density-based clustering procedure – isn’t 
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sensitive to exact parameter choice, but as for hierarchical clustering makes it necessary to 

manually inspect the result and choose a specific cluster topology to identify distinct signal 

groups (Ankerst et al. 1999; Kriegel et al. 2011).  

An alternative to clustering-based data partitioning is the application of network approaches. 

Correlation measures are insensitive to amplitude differences and therefore do not require 

prior standardization. Using pairwise correlations, co-expression networks can be generated. 

Without going through details, biological high throughput time series can as well be used to 

generate networks and afterwards detect communities that share similar behavior to the 

experimental conditions (Aoki et al. 2007; Rao and Dixon 2019; Luo et al. 2007; Blondel et al. 

2008). In contrast to distance-based approaches, correlation measures additionally detect 

anti-correlation, meaning connections of molecules, that are negatively influenced by each 

other. In a broader sense, both clustering and network approaches lead to groups of molecules 

that may be connected in some regulatory way and that can be studied as a coherent element. 

The choice of partitioning approaches, however, is not trivial and differs in required user input, 

speed, outlier/tie handling, cluster topology, and the necessity for multi-cluster memberships 

(Andreopoulos et al. 2009; Jollyta et al. 2023). There is no strict guideline on when to use 

which approaches, but it is important to keep in mind the underlying partition strategy when 

interpreting the outcome. 

Dealing with partitioned data 

If conducted properly, clustering results offer a condensed view of the analyzed data. 

Considering the vast amount of signals, it is unfeasible to examine them all individually. 

However, identifying groups with high similarity permits the application of various techniques 

to extract valuable information representing shared properties among individuals in a group. 

Co-expressed genes or co-regulated proteins with consistent expression patterns may 

indicate shared functionality or involvement in the same pathway (Pirim et al. 2012; Ma and 

Chan 2009). Similarly, a partition of the dataset can be realized using aforementioned 

statistical analysis. 

Enrichment analysis 

For many biological molecules, additional information is available from experiments or 

predictions providing information about gene functions or physicochemical properties that can 

be exploited to characterize a cluster. Elements that show similar behavior and therefore are 

grouped together can be analyzed by gene set enrichment analysis (GSEA) of their annotation 

labels (Table 1iii, Figure 6). Most common enrichment methods include the comparison of 

identified labels within a cluster versus outside of the cluster (Subramanian et al. 2005). If 

there is a high discrepancy between the expected and observed label distribution, a label can 
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be identified as significantly over- or underrepresented (enriched) for each cluster. The most 

common strategy to identify overrepresented labels is the application of a one-sided Fisher’s 

exact test that relies on the hypergeometric distribution. Here, for each label present within a 

cluster, a probability is reported that describes how likely it is to observe the actual label 

distribution or more extreme ones by chance (Rivals et al. 2007; Venn and Mühlhaus 2022). 

Low p-values indicate a high asymmetry between expected and observed label counts and 

therefore imply the cluster being enriched with molecules with the label in question. After 

multiple testing correction of the p-value list, the tandem analysis strategy of data-partitioning 

and label-enrichment enables the researcher to identify global trends and characterize 

common response kinetics. 

Excursus: Data Labeling and Ontologies 

The labels themselves can describe various molecule characteristics. These annotations are 

organized in ontologies where terms of a distinct domain are formally specified along with their 

relationships. They help to standardize the terminology and provide a framework for organizing 

and integrating biological information (Noy, McGuiness 2001). These annotation domains 

range from generic descriptions to organism or even disease specificity (Jackson et al. 2021). 

One of the most common biological ontologies describes three categories summarized under 

the Gene Ontology (GO) consortium (Ashburner et al. 2000). Here, ontologies exist for (i) 

biological processes, (ii) molecular functions, and (iii) cellular components. Annotation terms 

may originate from empirical studies, predicted from computational models, or inferred from 

paralogs or orthologs based on sequence similarity. Biological processes involve some sort of 

transformation, may it be ‘cell division’, a specific metabolic pathway, or signal transduction, 

i.e. ‘sterol metabolic process’ or ‘abscisic acid-activated signaling pathway’. Molecular 

functions refer to biochemical activities, i.e. ’protein kinase activity’, ‘protein binding’, or 

‘glutathione transferase activity’. Cellular components define the place of action of the protein 

(e.g. ‘cytoplasm’, ’nucleus’, or ’chloroplast outer membrane’) (Ashburner et al. 2000). Besides 

these generic ontologies that benefit from inferring functions from other species that already 

are experimentally analyzed, specialized ontologies exist for many model organisms and are 

tailored to the needs of the research conducted on with these organisms. Besides Mouse 

Anatomy Ontology, Fungal Phenotype Ontology, and Zebrafish Anatomy Ontology, MapMan 

is a hierarchical ontology that is specialized for photosynthetic organisms such as plants or 

algae (Thimm et al. 2004; Usadel et al. 2009). A special feature of MapMan is the hierarchy, 

which remains immediately visible for each term. Unlike ontologies that contain hidden is_a or 

child_of fields to represent the relationships, MapMan annotations are exhaustive and contain 

every higher level descriptor within the label itself. All proteins that have been found to be 

involved in light harvesting complex II are therefore labeled with 
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PS.lightreaction.photosystem II.LHC-II. By addition of terms separated by periods, the 

specificity level is increased. Like most ontologies, they tend to be highly specialized in 

domains that have been the focus of current or past research. Domains that do not lie within 

the current research focus are often summarized under superficial terms. Hierarchical 

ontologies allow such asymmetric research mapping by aiming for a similar level of specificity 

per annotation level. With the emergence of powerful machine learning models, ontologies 

can benefit and increasingly adopt robust predicted annotations to complement research 

areas with sparse coverage. 

 

Figure 6 Enrichment analysis. (A) Data is partitioned either by hypothesis testing or by grouping based on similarity (clustering, 
network communities). (B) Annotation table that assigns generic or organism-specific terms to the proteins. Functions could 
include e.g. photosynthesis, structural component, cell cycle related. Subcellular locations may be the nucleus, thylakoid, or 
plasma membrane. (C) By performing a gene set enrichment analysis based on hypergeometric tests, overrepresented terms 
can be identified by comparing their occurrence within the cluster of interest against its occurrence in the background data. 
Here cluster B is overrepresented with elements located in L3. 

If clustering and enrichment strategies are applied to time series, it is natural to (i) use 

significant labels to characterize the cluster progression, or (ii) attribute the average cluster 

progression to the labels. While it seems reasonable, caution is advised for both statements. 

First, even if annotations are significantly enriched within a cluster, it does not 

necessarily indicate that the cluster consists primarily of elements associated with the 

respective annotations. An annotation can be significantly enriched while being present with 

only a few elements. The challenges are illustrated for the following example: In an experiment 

in which 1000 proteins were measured, 10 proteins were assigned to the term cell cycle. A 

cluster of size 350 which contains just 7 cell cycle proteins, already has a p-value of 0.025 and 
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would therefore be significantly enriched. However, proteins of this term make up only 2% of 

the cluster and therefore only qualify to a limited extent as a characterization of the cluster. 

On the other hand, the average cluster time course may not be the exclusive descriptor 

for all cell cycle proteins. There may even be multiple clusters that each report cell cycle 

proteins to be overrepresented. Even if there is a sole enriched cluster, the majority of proteins 

may not be part of it. Imagine the upper example with population size 1000, cluster size 10, 

50 cell cycle proteins, and 3 cell cycle proteins within the cluster. This results in a p-value of 

0.01, despite just 6% of cell cycle proteins being within the cluster. Assigning the average 

cluster time course to the cell cycle process could potentially lead to misinterpretation. The 

method could be improved by dissecting the cellular responses by their temporal progression 

and identifying the respective important processes.  

Both cluster-interpretation examples show that conclusions on both cluster composition and 

protein group behavior should not be based on significance alone, but always together with 

considering the respective proportions. Furthermore, regulation of pathways may be facilitated 

by single activator or repressor proteins that alone are capable of enhancing or reducing 

metabolite turnovers. While just a few players undergo significant abundance changes 

complete metabolic cycles or regulatory pathways are affected, which cannot be identified by 

“majority vote” based enrichment approaches. 

Especially when dealing with time series data, the results that are drawn from such analyses 

are often misinterpreted. As illustration, it would be natural to label a cluster with high 

amplitudes at the beginning of a time series that decreases just at the very end as late down 

response group. Accordingly, strong increases after treatment onset could be described as an 

early up response group. While in theory, it is possible to make rough categorizations with a 

given degree of caution, such an approach is prone to misclassification. Cluster progressions 

of the same clustering often are similar or lack a distinct intuitive categorization due to 

ambiguous progressions. Additionally, within a single cluster, signals can be highly variable 

leading to misclassification of enclosed signals and thereby further increasing the 

classification bias. In general, it is advisable not to mix clustering with classification 

approaches. 

Clustering vs classification 

Partitioning signals into clusters based on data point similarities can unveil inherent patterns 

or structures within datasets, without the need for pre-specified categories or labels. This 

method differs from classification, which assigns data points to specific categories by 

extracting features that differentiate between them. Clustering is especially useful when 

working with complex datasets or when patterns are unclear, as it enables the identification of 
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natural groups based on similarities between data points. Due to its unsupervised nature, 

clustering may encounter difficulties in situations that necessitate explicit class labels or when 

the objective is to produce precise predictions for new, unseen instances. In contrast, 

classification excels in circumstances where distinct categories are available, and the goal is 

to accurately assign data points to predetermined classes (Figure 7). This makes it appropriate 

for tasks that prioritize accuracy and well-defined categorization. 

 

Figure 7 Clustering vs classification. (A) Two-dimensional raw data that shall be partitioned into groups. (B) Clustering based 
approaches (e.g. k-means) compare the distances between all points and partition the data into the desired number of clusters. 
If new data points occur (central circle), the cluster landscape will change to incorporate the additional point (dashed green 
cluster). (C) Classification based approaches define feature ranges that strictly separate the data into distinct groups. New 
points do not change the classification ranges and the new point is assigned with the label of the range it lies in. 

The k-means clustering algorithm commonly yields cluster sizes that are similarly large, at 

least within an order of magnitude. This outcome is a result of the similarity-based grouping 

approach, wherein every element is averaged into new centroids during each iteration. Small 

clusters of molecules, which may have significant roles in acclimation responses, are not given 

preferential treatment and are instead included in the nearest cluster, thereby reducing 

conciseness. As a result of this averaging-out effect, the cluster mean becomes blurred, and 

relevant shapes are often covered up (Singh et al. 2011). 

The lack of conciseness of the cluster shape, together with the reliance on prior significance 

filtering and standardization, isn't much of a problem for obtaining impressions of the 

experiment and a condensed average system response. However, it makes the methodology 

prone to error when it comes to identifying and characterizing temporal responses based on 

similarity partitioning. As discussed earlier, there are several reasons why transcript counts or 

protein abundances may change in similar ways without being related in any way. In particular, 

for sudden changes in conditions, as often encountered in time series experiments, regulatory, 

acclimation, and repair processes must occur simultaneously. The limitation to a small number 

of time points makes it difficult to identify these processes in the necessary detail and 
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challenges the analysis approach to distinguish causal relationships from spurious 

correlations. 

When similarity partitioning is performed on time series data, the ordered sequence of 

measurements for each molecule is used as input. Since distance measurements generally 

neglect the readings' order, the time dependence is not considered (Table 1v). This oversight 

is a major limitation of clustering approaches, especially when dealing with time series data. 

Traditional clustering methods, such as k-means, hierarchical clustering, or density-based 

clustering compare each measurement individually and treat them as independent entities. In 

time series data, however, the order and temporal dependencies between measurements are 

critical to capturing underlying patterns and dynamics. Neglecting the temporal order of 

observations can lead to suboptimal clustering results by ignoring important information 

encoded in the time-dependent relationships between data points (Aghabozorgi et al. 2015). 

Incorporating the temporal aspect into clustering approaches is essential for creating more 

robust and precise models. Researchers should carefully consider the temporal 

characteristics of their data and choose partitioning methods that account for the sequential 

nature of observations to obtain more meaningful insights and reliable results. Several 

techniques have been proposed to address this limitation and enhance clustering algorithms 

to account for the sequential nature of observations. By exchanging the popular Euclidean 

distance measure with dynamic time warping (DTW) distance, measurement order is taken 

into account. DTW is a technique designed to measure the similarity between two sequences 

while considering possible distortions in the time axis. By aligning time series based on their 

shapes, DTW allows clustering algorithms to capture similarities in temporal patterns, even if 

they exhibit variations in speed or phase. Unfortunately, a warp is not meaningful for a rough 

time series with not more than five measurement time points (Müller 2007).  

Signal variation 

An important aspect of biological time series is the noise introduced by either biological 

variability or technical variation (Table 1iv). Biological variability is a fundamental aspect of 

living systems, reflecting the inherent diversity and complexity of biological entities. When 

employing high-throughput techniques, understanding and accounting for this variability is 

critical for obtaining reliable and reproducible results. Biological variability refers to the natural 

differences observed among biological samples, even when they are derived from the same 

organism or genetically identical populations. Origins of biological variability are (i) genetic 

variation or epigenetic modification, (ii) cellular heterogeneity, (iii) environmental factors, or 

(iv) biological dynamics (Eling et al. 2019; Simpson et al. 2009; Arriaga 2009): (i) Ongoing 

mutations lead to single nucleotide polymorphisms (SNPs) or copy number variations that 

affect gene expression or protein function. Differences in epigenetic factors, such as DNA 
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methylation or histone modification do not alter the underlying DNA but may regulate the gene 

expression in different ways. (ii) Biological samples are composed of diverse cell types, each 

with its own gene expression. Heterogeneity within a sample introduces variability as the 

contribution of each cell type is mixed. For liquid cultures of unicellular organisms with 

thorough stirring, this effect is mitigated. (iii) It is difficult to control all environmental factors in 

an experimental setup. Even the smallest differences in lighting, temperature, ventilation, 

vibration, or spatially varying cell densities can lead to differential expression of gene sets. (iv) 

Biological systems are dynamic, exhibiting temporal changes in response to different stimuli. 

The sampled snapshots of these dynamic processes may be subject to variability due to the 

inherent fluctuation of biological activities over time. Cells at different stages of their cell cycle 

naturally differ in their expressed gene set. In addition, random expression noise adds to the 

phenotypic heterogeneity (Chowdhury et al. 2021). By using cultures that are not synchronized 

in cell cycle and sampling large numbers of cells, the variability due to biological dynamics 

can be reduced. 

These deviations should not be the target of normalization techniques. Biological variability 

provides valuable information on uncertainty that should not be overinterpreted. If perfectly 

controlled cell cultures differ significantly after exposure to a perturbing condition, a high 

measurement variance in certain transcripts or proteins may indicate a minor role of the 

respective molecules. Attempting to normalize this variability will impede all subsequent 

analysis strategies. Understanding and addressing biological variability in high-throughput 

techniques is essential for the accurate interpretation of experimental results.  

Technical variance, on the other hand, is not caused by actual differences in the composition 

of individual samples. Rather, it arises from undesirable measurement distortion that is 

introduced by sampling and sample processing, measurement devices, or the application of 

inappropriate data mapping or normalization techniques (Piehowski et al. 2013; McIntyre et 

al. 2011): (i) Inhomogeneous sampling of tissue or culture medium can result in technical 

errors, leading to incorrect representations of the underlying population. Heterogeneous 

solubilization due to impurities in chemicals or inconsistent sample preparation can also 

interfere with measuring devices. (ii) High-throughput technology measurement devices are 

particularly delicate and precise instruments that require careful handling and knowledge of 

possible disruptive factors. Parameter settings, vibrations, humidity and temperature changes, 

or component wear during the measurement runs may impact both the accuracy and 

detectability of the analytes. (iii) Data generated by measurement of the samples often needs 

special attention before a comparison of molecules from different samples is possible. The 

most common deviation is due to inconsistencies of material amount in each sample. To 

account for these homogeneous deviations, linear correction techniques can be applied that 
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overall aim to align expression profiles to an underlying average. Common techniques for 

normalization include aligning measurement sums and using the median of ratios (Love et al. 

2014). Heterogeneous distortions may occur if there is disproportionate sensitivity for certain 

areas or if heteroscedasticity is present. This could require the utilization of nonlinear 

normalization methods that adjust their normalization intensity based on measurement 

intensity or other measurement features. Commonly used techniques include variance 

stabilizing transformation (VST) or regularized logarithm (rLog). In comparison to biological 

variability, technical variation between samples and their replicates needs to be addressed in 

the early steps of data analysis. Unfortunately, only in the rarest of cases can a distinction be 

made between biological and technical variance, so that a normalization step represents a 

compromise that deals with both uncertainties. Researchers need to acknowledge the 

multifaceted origins of variability and adopt strategies that not only minimize technical artifacts, 

but also embrace the inherent diversity of biological systems. By doing so, the reliability and 

robustness of high-throughput analyses can be significantly improved, paving the way for more 

accurate biological insights and discoveries (Sloutsky et al. 2013). 

Signal fitting 

Many of the analysis strategies presented focus solely on individual time points, without taking 

time into consideration (Table 1v). By considering the sequential order of time series, 

additional information can be incorporated to refine the modeling of the system response. 

Although connecting sequential data points in two dimensions may appear simple at first 

glance, it presents a wide range of potential techniques and approaches. When discussing 

fitting of biological signals, it involves defining a curve that closely approximates the trajectory 

transcript counts or protein amplitudes (y axis) over multiple time points (x axis). Several 

assumptions can be made to model the path, each of which has the potential to change its 

shape slightly or on a global level (Maeland 1988). After introducing models in general on 

page 7, the following section explores a range of fitting techniques for biological time series. 

The nature of the highly diverse and dynamic system does not allow for a universal 

mathematical model to be applied to each of these signals. Multifaceted regulation, diverse 

modes of action, and involvement in a variety of cellular processes contribute to a signal range 

that spans from constant to oscillating, from responsive to slow, and from subtle to dramatic. 

Appropriate models are necessary to capture all of these signal properties. The most intuitive 

approach is to just connect the data points of each measurement time point. This fitting 

approach is called linear spline and is in accordance with the recommendation to use as few 

assumptions as possible. But it lacks in fulfilling the second part of Occam’s razor principle: 

“as many as necessary”. While being easy, several problems become apparent when dots are 

connected. From a regulatory perspective it of course is unreasonable to assume the curve is 
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straight between measurements. Additionally, it is impossible for the curves’ slope to change 

instantaneously without any sort of curvature or smooth transition. Fitting a curve to a signal 

aims to enable amplitude predictions within intervals. However, utilizing linear splines offers 

only marginal benefits, as the predictive capabilities merely offer a vague idea of what occurs 

between measurements. 

Replicate aggregation 

Speaking about the connection of dots, most biological experiments rely on replication to either 

be able to perform statistical tests, or to assess present variability. Valid mathematical curves 

allow only one amplitude value per time point, so replicate measurements must be aggregated 

into a single reading. For many biological scenarios, features are expected to be normally 

distributed, hence, the most common and obvious aggregation strategy is to take the 

arithmetic mean of all replicates taken as a point estimate for each respective time point. If 

sufficient replicate counts are present, outlier insensitive estimates can be determined by 

geometric mean or trimmed mean. However, if feature distributions are not normal but skewed, 

then alternative estimation procedures are required. Count distributions from transcript counts 

typically follow a negative binomial distribution or lognormal distribution that includes no 

negative values and is highly right skewed. To account for this, the geometric mean can be 

used to estimate an average expression (Williams et al. 2014; Booeshaghi and Pachter 2021; 

Love et al. 2014). Equivalently you can apply a log transform to the count data and treat the 

transformed data as you would with normally distributed data. Therefore, count data often are 

represented with a logged y axis. 

Modeling the time 

Special attention should be given to the time axis. As discussed in section Time point spacing, 

researchers frequently choose the measurement intervals based on anticipated changes in 

rate. This practice can result in irregular time point intervals, requiring additional precautions 

when fitting the data. In cases where homogeneous changes are expected or the time points 

were chosen to match the expected response kinetics, it is recommended to have uniformly 

spaced x values (e.g., corresponding to the time point index, 0, 1, 2, 3 …) instead of treating 

the x values according to their original sampling time. While this has no impact on prediction 

results for linear splines, it should be considered for more intricate fitting procedures. 

Curve fitting: Interpolating techniques 

Interpolation deals with the construction of a curve, that passes through all available data 

points and thereby approximates the underlying function (Figure 8). Linear splines connect all 

data points using straight lines (Figure 8A). Sudden changes in slope are inconvenient for 

modeling biological time series. A curve is considered smooth if its derivatives are continuous 
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throughout the time course. 𝐶1 smoothness ensures the curve itself and its first derivative 

(slope) are continuous, while 𝐶2 smoothness additionally constrains the second derivative to 

be continuous. Having a continuous curvature (𝐶2) is usually considered a condition that 

should apply to a smooth function as expected in modeled time series. There are 

computationally efficient ways to determine coefficients for interpolating polynomials (Figure 

8B). A system of linear equations must be solved to determine the polynomial coefficients. As 

interpolating polynomials require the same number of coefficients as there are data points, 

constructing and solving the equation system is straightforward (Bjorck and Pereyra 1970). 

For time series fitting purposes they are unfeasible because of their high tendency of 

oscillations, called Runge’s phenomenon, which are of course unfounded for the time series 

in question (Figure 2Figure 8B, D). 

This oscillation can be reduced by utilizing cubic splines that ensure a smooth C2 curve and 

avoid frequent oscillations. Within the framework of splines, knots represent the points at 

which the individual cubic polynomials “meet”. These are typically the x-values of the given 

data points. The cubic spline function is defined using a distinct cubic polynomial between 

each pair of knots (Figure 8C). As a result, the number of coefficients needed to construct a 

cubic spline is considerably greater in comparison to linear splines or polynomials. 

Nevertheless, determining the coefficients is straightforward and has been studied for 

decades (Micula and Micula 1998; Dyer and Dyer 2001). For any interval, four coefficients are 

required to fit a cubic polynomial (𝑓(𝑡) =  𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑). The computation of coefficients 

again involves solving a system of equations. For each unknown coefficient, a constraint 

function is required that gives some hint for the function shape. As a polynomial must be fitted 

for each interval the following conditions are imposed: (i) Interpolation: The function value at 

the knots must be identical for adjacent polynomials. This prevents sudden function steps. (ii) 

Slope continuity: The curve’s slope at knots must be identical for adjacent polynomials. This 

prevents kinks that are unreasonable to occur at the measuring time points. (iii) Curvature 

continuity: Additionally to the slope, the second derivative has to be identical at the knots. 

Continuous curvature ensures a smooth transition between the intervals. Slopes and 

curvatures cannot be constrained for the first and last time points because there are no 

adjacent intervals and therefore no polynomial. These two missing constraints cannot be 

defined universally and require further user input. While several options are available, the most 

common approach is to set the curvature at the first and last knot to zero. By solving this 

system of equations, we obtain the coefficients for each cubic polynomial, fully defining the 

cubic spline. Numerical methods such as Gaussian elimination or tridiagonal matrix algorithms 

are often employed to efficiently solve these systems (Venn et al. 2022). If a cubic spline is 

constructed in the described way it’s called a natural cubic spline, often to be found in 
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computer graphics, numerical analysis, engineering, and scientific curve fitting research. 

Cubic splines offer a versatile and effective way to represent functions with a high degree of 

smoothness and continuity. Understanding the interplay between knots, cubic polynomials, 

and coefficients is crucial for successfully implementing cubic splines in various applications. 

For biological time series cubic splines provide an effective tool to model the time course signal 

and analyze the underlying kinetics. However, the most relevant drawback of this method is 

its reliance on interpolation. All interpolating methods have to pass through the measured data 

points regardless of their initial accuracy. However, the accuracy of transcript and protein 

measurements is often unsatisfactory for confidently designating the measurements as 

ground truth, due to the presence of biological and technical variation. 

 

Figure 8 Signal interpolation. As interpolants always pass through all data points variances of individual points have no 
influence on the models. (A) Uniformly spaced data points are interpolated by connecting straight lines (linear splines). (B) 7th 
order interpolating polynomial. (C) Cubic splines with boundary conditions: For natural cubic splines the second derivative of 
the first and last point are set to 0. For periodic cubic splines the slope of the first point is equivalent to the slope of the last 
point. For parabolic cubic splines, the curvature of the first and second as well as the curvature of the last and penultimate 
points are equal. (D) The data points are rearranged to a typical experimental spacing and modeled by a polynomial and a 
natural cubic spline. Note that interpolants in B,C, and D add inappropriate oscillations even when there is a monotone 
increase. 

Curve fitting: Regression techniques 

Curves that are fitted to the time series data should not be constrained to match the data 

points exactly. Because of heavy noise that may be superimposed on the true time-abundance 

relationship, a curve should (i) be smooth with respect to the first and second derivative, (ii) 

not be constrained to pass through the measurements, and (iii) be outlier insensitive. The 
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transition from interpolation to regression techniques comes with an intuitive objective change. 

Rather than constraining the curve to interpolate the data smoothly, in regression the curve 

should be smooth and minimize the distance of the predicted curve to the actual data points. 

Again, polynomials play a crucial role in regression. Regression with polynomials is also called 

linear regression as the relationship is modeled as a linear combination of the input variable. 

The goal is to find the best-fit polynomial of specified order, that minimizes the sum of squared 

differences between the observed and predicted values (Figure 9B). In contrast to polynomial 

interpolation, in regression, the polynomials order is not fixed and has to be defined by the 

user. This choice of an appropriate order cannot be made based on theoretical considerations, 

but often requires iterative fitting with varying order and comparing their performance (either 

by cross validation or coefficient of determination (R2)). The determination of the polynomial 

coefficients again involves a system of equations that is constructed by setting all partial 

derivatives of the error term to zero. Without going into mathematical detail, this ensures the 

sum of squared differences between the prediction curve and actual measurement values, 

called residuals, is minimal (Gergonne 1974; Venn et al. 2022).  

A convenient advantage of regression techniques in general is the possibility of individual data 

point weighting which comes in handy to account for variation between sample replicates. Two 

features of time series data of biological high throughput experiments were already discussed: 

(1) Description of the time axis with necessary interval spacing considerations and (2) the 

description of the y axis, be it protein abundances or transcript counts that may need to be 

transformed and normalized. The third property to consider is the measurement variation at 

each time point. Biological replicates are taken to assess the certainty of the respective 

readings and to evaluate their confidence. This variation can be used as additional information 

to strengthen the model’s validity and robustness against overfitting. By assigning weights to 

the data points, the impact of these points on the resulting curve can be influenced (Figure 

9A). The implementation of the weighting is straightforward and discussed in the publication 

Temporal classification of short time series data (Venn et al. 2024). While the sum of squared 

residuals is minimized, weights can be added that in- or decrease the respective distance. In 

many cases, the inverse replicate variance is used as weighting. If the variance - and therefore 

its uncertainty - is high, its inverse is low, therefore the impact of the distance from the resulting 

curve to the actual data point is reduced. This leads to the curve not being forced to comply 

to this point. Wherever the variance is low, the curve should be near to the original data point 

as the certainty of the estimation is high. A low variance leads to a high inverse and therefore 

to a higher weighting of the distance, which should be minimized (Strutz 2016). 

As mentioned, the choice of the optimal order is not trivial as with increasing order, the function 

starts to oscillate as it’s the case for polynomial interpolation (Figure 8). Fortunately, as for 
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interpolating cubic splines, the same piecewise technique exists for cubic regression 

polynomials. Smoothing splines combine the smoothness possibilities of cubic splines with 

the benefits of regression and time point weighting (Figure 9C). They aim to find an optimal 

compromise of being flexible enough to match the data points, but simultaneously ensuring 

the necessary stiffness to prevent the curve from overfitting. The construction of these splines 

is part of this thesis and is discussed in the publication Temporal classification of short time 

series data (Venn et al. 2024). 

 

Figure 9 Regression with weighted polynomials and smoothing splines. (A) The weighting of point relevance can be realized 
by determining the reciprocal of the standard deviation of each time point. Points with high variance are assigned with low 
weights. (B) If the degree of polynomials is lower than data count - 1, the curve does not necessarily pass through the data 
points. The lower the degree, the stiffer the curve will become. (C) Smoothing splines consist of piecewise cubic polynomials 
and balance between fidelity to the data (residuals) and smoothness (curvature). The parameter 𝜆 defines the smoothing 
strength. 

Although, or perhaps because, there are still so many hurdles to the analysis of short noisy 

time series, it is a rapidly developing field that holds great potential for extracting previously 

unrecognized knowledge from time series. As existing analysis methods evolve and new 

strategies are developed, the analysis becomes more robust, and the hurdles are overcome. 

Due to decreasing costs and standardized procedures, more and more time series 

experiments are being performed, providing more precise measurements at shorter intervals 

and with a higher number of replicates, to ultimately be able to model all large components of 

cellular processes and use them to enable simulations and unravel the regulatory secrets. In 

a broader sense, these methods can also be applied to experimental designs that match key 

properties with time series. For example, complexomics studies described earlier are suitable 

candidates. Although there is no temporal component, the individual band snippets are 

comparably dependent on each other. Technical variation is more common here, as even 

small differences in gel polymerization and (semi-) manual cutting can cause proteins to shift 

into adjacent bands.  
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2. Aims of this thesis 

In the field of plant biology, time-series experiments that investigate acclimation reactions are 

becoming increasingly significant. While unraveling the underlying processes is an academic 

pursuit, comprehending acclimation reactions is imperative in light of inevitable climate 

changes. Plants, leading a sessile lifestyle, are already faced with intensifying climatic 

fluctuations, that demand further scientific inquiry of the molecular responses (Janni et al. 

2020; Ortiz-Bobea et al. 2019). Time-series experiments coupled with high-throughput 

technologies have emerged as the preferred method to shed light on the global intricacies of 

cellular dynamics. These experiments enable time-resolved observations across multiple 

system levels, providing crucial insights into cellular regulation strategies. Within the realm of 

short time series data, new analysis possibilities emerge that use established strategies and 

adapt them to the special characteristics of short biological time series. Especially the 

measurement variance of high-throughput techniques combined with a limited number of 

replicates requires specialized approaches that cannot only handle uncertainties, but actively 

leverage them to attain more robust results without being prone to overinterpretation. 

This thesis aims to apply various data partition and enrichment approaches to time series 

experiments conducted on the green algae Chlamydomonas. Moreover, this work presents 

novel methodologies that incorporate established approaches and merge them into new 

strategies. As described in previous chapters, drawing a curve through data points is not a 

trivial task. A plethora of techniques are available, each with its own benefits and challenges. 

It’s the responsibility of the researcher to choose appropriate methods for modeling their data. 

Keeping Occam’s razor in mind, assumptions can and should be made to help identify the 

best model and not get lost in the sheer number of fitting possibilities. This model choice does 

not only depend on the kind of data you are dealing with, but also on the question that should 

be answered by its application. In this work I extended the application of smoothing splines by 

additionally applying further constraints and assumptions to the curve’s shape.  

The main goal is to extend the analytical toolkit by developing approaches that capture the 

temporal coordination of acclimation responses and enhance enrichment techniques by 

incorporating a temporal dimension into the analytical framework. Thereby, the 

comprehension of the temporal orchestration regulating acclimation responses can be studied 

with a new perspective and support researchers dissecting the huge amount of data into 

manageable groups of separated cellular responses. 
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3. Relevant publications for this thesis 

This cumulative thesis is based on the following publications: 
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Benedikt Venn, Thomas Leifeld, Ping Zhang, Timo Mühlhaus 
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II. TMEA: A Thermodynamically Motivated Framework for Functional 

Characterization of Biological Responses to System Acclimation 

Kevin Schneider*, Benedikt Venn*, Timo Mühlhaus 
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III. Systems-wide analysis revealed shared and unique responses to moderate and 

acute high temperatures in the green alga Chlamydomonas reinhardtii  

Ningning Zhang, Erin M. Mattoon, Will McHargue, Benedikt Venn, David 

Zimmer, Kresti Pecani, Jooyeon Jeong, Cheyenne M. Anderson, Chen Chen, 

Jeffrey C. Berry, Ming Xia, Shin-Cheng Tzeng, Eric Becker, Leila Pazouki, 

Bradley Evans, Fred Cross, Jianlin Cheng, Kirk J. Czymmek, Michael Schroda, 

Timo Mühlhaus & Ru Zhang  

| Communications Biology, 2022, doi.org/10.1038/s42003-022-03359-z 

 

IV. Moderate high temperature is beneficial or detrimental depending on carbon 

availability in the green alga Chlamydomonas reinhardtii 
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Mattoon, Timo Mühlhaus, Ru Zhang 

| Journal of Experimental Botany, 2023, doi.org/10.1093/jxb/erad405 

 

* These authors contributed equally to this work 
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Article I: Temporal classification of short time series data 

 

Summary 

This publication introduces an innovative methodology for the analysis and interpretation of 

time series data, particularly those subject to replicate variability. The central aim is to 

conceptualize short time series as continuous functions, facilitating the extraction of extreme 

points to characterize molecular regulation dynamics. Preliminary analysis confirms that 

biological signals typically follow a smooth trajectory. Consequently, the fitting of these signals 

is performed with adjustable monotonicity constraints, effectively reducing unnecessary 

oscillations in the curves. This technique allows the generation of diverse shape configurations 

on individual protein or transcript signals. The incorporation of measurement variance is a 

pivotal aspect of this methodology, allowing for the fine-tuning of the impact attributed to each 

temporal data point. The parameter λ, denoting smoothness, plays a crucial role in determining 

the rigidity of the resultant curve. Under the given point weightings, the optimization of λ is 

achieved through modified generalized cross-validation (mGCV). Given the non-convex 

nature of the resultant objective function, a systematic grid search is employed to ascertain 

the most suitable value of λ. Following the establishment of a smoothing spline for each 

predefined shape configuration, the selection of an optimal model is governed by the 

minimization of the Akaike Information Criterion (AICc). The final model, characterized by its 

smooth and, where relevant, monotonic curve, allows for the isolation of extremal points via 

an analysis of the first and second derivatives. These distinct maxima and minima are 

indicative of significant regulatory events within the observed time series and thus serve a 

pivotal role in the classification process. In instances where a signal exhibits a monotonically 

increasing or decreasing trend, the classification is refined based on the characteristics of the 

signal's curvature, as determined by the second derivative. This refined classification scheme 

enables a comprehensive grouping of signals in accordance with their regulatory 

characteristics. 

The approach allows the classification of data into distinct temporally resolved regulation 

classes. Thereby acclimation responses are provided as time resolved response groups, that 

can either be examined in isolation or grouped into coherent regulatory cohorts (e.g. group of 

early increasing and late decreasing elements). This nuanced classification facilitates a 

deeper understanding of the temporal dynamics governing molecular regulation. 
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Figure 10 From raw data to temporal annotations. (A) Raw data of a typical time series experiment with eight measured time 
points that are affected by noise. (B) Several models are fitted onto the data, each with other curve characteristics (yellow: 
monotonically decreasing; orange: a single maximum; red: minimum followed by a maximum and a minimum). The models 
incorporate variance information by considering points of high variance less important. Where appropriate models are 
constrained to be monotone. (C) Based on a quality score that balances the fidelity to the data against the curve smoothness 
together with the number of extrema the optimal model is chosen. (D) Given the splines coefficients the curve characteristics 
(slope and curvature) are determined and used for signal labeling. After fitting of all signals measured during the experiment 
(E), temporal patterns can be analyzed and used for further functional characterization of the system response (F). 
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Article II: TMEA: A Thermodynamically Motivated Framework for Functional 

Characterization of Biological Responses to System Acclimation 

 

Summary 

The statistical evaluation of time series data, particularly those with a limited number of 

replicates, poses distinct challenges. Conducting gene set enrichment analysis (GSEA) can 

be approached in two ways: either for each individual time comparison or for the entire time 

series. However, this necessitates the establishment of a threshold value capable of 

distinguishing between significantly altered and unaltered molecules, a non-trivial task with 

underpowered tests. TMEA (thermodynamically motivated enrichment analysis) was created 

to enable a time-resolved enrichment analysis that removes the need for a preliminary 

significance threshold. It dissects the biological system's response into its main components, 

referred to as constraints. The framework then accurately assesses the significance of 

individual annotation groups in relation to these constraints. Annotations determined to be 

significant thus have a noteworthy impact on the respective constraint potential curve and can 

be characterized accordingly. Moreover, to groups coherently following the constraint 

potential’s time course, a strong response of an individual element can cause the whole group 

to become significant. This enables the identification of molecules whose sole regulation is 

responsible for the activity status of a pathway. A salient feature of TMEA is that each element 

within the dataset is ascribed a weight relative to the individual constraints, thereby 

circumventing the requirement for a priori significance testing. This methodology facilitates a 

more nuanced understanding of the data, enabling researchers to discern patterns and 

relationships that might otherwise be obscured. Furthermore, TMEA allows for the merging of 

different experimental conditions, offering insights into the shared and distinct responses 

elicited under varying conditions. 
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Figure 11 TMEA workflow. (A) Normalized time series abundances (e.g. transcripts or proteins). (B) Surprisal analysis dissects 
the dataset into its main components (constraints). Their potentials are depicted as function with respect to time. Here three 
major temporal responses were identified. (C) Weights are assigned to each molecule that corresponds to the contribution 
they possess to each constraint. Negative weights indicate high contributions to the inverse constraint. (D) For any annotation 
term included in the dataset, a permutation test on molecule weight sums is conducted and returns whether a function group 
has a significant contribution to the constraint time course. Significant negative contributions indicate high a high contribution 
to the inverse constraint time course. 
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Article III: Systems-wide analysis revealed shared and unique responses to 

moderate and acute high temperatures in the green alga Chlamydomonas 

reinhardtii 

 

Summary 

The study investigates the 24h acclimation and 48h recovery of Chlamydomonas reinhardtii 

to 35 °C and 40 °C respectively. The cells were cultivated mixotrophically in photobioreactors. 

Besides measurements of ploidy, photosynthetic efficiency, pigments, starch, and oxygen, 

proteomics and transcriptomics measurements were conducted at several time points during 

the heat acclimation and the recovery phase. It could be observed that cells stopped 

replicating at 40 °C, but were able to grow at 35 °C after an initial short cell cycle arrest. An 

active cellular response in both treatments was verified by increased levels of HSP’s and HSF 

levels and by comparison using dimensionality reduction methods. As expected from the 

observed growth behavior, the transcript and protein analysis revealed an increased 

regulation in cells undergoing 40 °C heat treatment. A strong discrepancy was observed for 

transcripts and proteins involved in gluconeogenesis and the glyoxylate cycle. While under 

35 °C there was an increase of transcripts and proteins, the same decreased at 40 °C. 

Interestingly it could be observed that under heat acclimation there is an elevated correlation 

between transcript count and protein abundance. This indicates a reduced translational 

regulation and instead a reliance on canonical direct transcription-translation coupling.  

TMEA was conducted separately for both conditions and revealed similar constraint potential 

courses, indicating shared responses during heat acclimation. The most important constraint 

differentiates the conditions and undergoes a sign switch from acclimation to recovery. 

Constraint 2 deviates during the whole time course from the control time point and recovers 

after 8-24 hours of recovery. Through multiple time-point enrichments and a correlation 

network approach, a significant reorganization was observed in several key biological 

processes. These included photosynthesis, protein folding, redox reactions, lipid metabolism, 

and the gluconeogenesis/glyoxylate cycle, highlighting the complex adaptive mechanisms 

employed by Chlamydomonas reinhardtii in response to heat stress. 
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Figure 12 Transcript-protein correlation during heat acclimation and recovery. (A) DNA is transcribed into transcripts by RNA 
Polymerase II. The matured mRNA is translated into a polypeptide chain by the ribosome. After folding and post translational 
modification, the synthesis of a functional protein is completed. (B) Chlamydomonas cells are treated with 35 °C or 40 °C 
heat. During early heat acclimation the correlation between transcripts and their corresponding proteins increases drastically. 
In later phases of acclimation and recovery to 25 °C, the correlation declines to a low value similar to conditions prior to heat 
onset. This indicates a direct coupling between the transcript and corresponding protein without major translational regulation. 
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Article IV: Moderate high temperature is beneficial or detrimental depending on 

carbon availability in the green alga Chlamydomonas reinhardtii 

 

Summary 

This study deals with the response of Chlamydomonas to high temperatures under 

mixotrophic or semi-photoautotrophic conditions. Therefore, Chlamydomonas cells were 

grown at 25 °C, 35 °C, and 40 °C in media containing acetate as an organic carbon source, 

and media that was acetate-depleted during the time course. Besides a control, RNASeq 

samples were taken after 2 h, 4 h, 8 h, and 24 h respectively. Carbon sources play an 

important role in acclimation behavior to heat. While cells can grow at 35 °C with provided 

acetate, cells that depend on atmospheric carbon fixation cannot cope with the additional 

burden and stop growth. Cells faced with 40 °C heat stress could not grow, regardless of 

carbon supply. RNASeq analysis revealed proteins involved in acetate uptake, acetate 

metabolism, and carbon concentrating mechanism to be significantly increased at 35 °C 

whereas at 40 °C no such behavior could be observed. A decreased CO2 solubilization 

capacity at elevated temperatures makes these changes necessary to sustain the cell’s 

function. Transcripts involved in plastidic protein synthesis were strongly depleted during both 

temperatures and both media, suggesting a transient translation stop to reorganize the cellular 

energy resource management. For 40 °C conditions transcripts related to mitochondrial F1-

ATPase were drastically downregulated within the first two hours but reached levels 

comparable to 25 °C and 35 °C during the rest of the time course. In summary, as seen before, 

40 °C heat treatment leads to a cell cycle arrest and leads to cell death after 3-4 days. 35 °C 

conditions, however, can be tolerated, but its effect strongly depends on the presence of an 

organic carbon source. With acetate, cells even have an increased PSII efficiency and slightly 

increased growth rate, whereas acetate diminishing conditions lead to the depletion of cellular 

carbon reserves due to required carbon investments to acclimate to the increased 

temperature. 
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Figure 13 Key effects of acetate supply during heat acclimation. Chlamydomonas cells were treated with 35 °C (A) and 40 °C 
(B) with and without continuous acetate supply. Transcriptomics samples were taken at five individual time points. While 40 °C 
treatment was detrimental regardless of the energy source, the culture’s response at 35 °C differed strongly depending on the 
availability of acetate. 
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Statement of own contribution 

Article I: Benedikt Venn, Thomas Leifeld, Ping Zhang, Timo Mühlhaus, Temporal 

classification of short time series data, Bioinformatics, 2024 

The project's initial conceptualization was undertaken by other authors, upon which I 

significantly refined its objectives and strategic approach. Utilizing the programming language 

F#, I lead the method's implementation. Originally a component of the FSharp.Stats library the 

project evolved, leading to its establishment as an independent software library, now 

accessible at github.com/CSBiology/TempClass. I was involved in developing the majority of 

the methods required, specifically those relating to spline implementations, model selection, 

extrema extraction, and classification. For the purpose of the publication, I conducted an in-

depth analysis of a protein dataset from Zhang et al. 2022. This involved a comparative 

assessment against various other fitting techniques, most of which were implemented by me 

and consumed from the FSharp.Stats package. In addition to the technical contributions, I was 

responsible for preparing the manuscript, including the composition of the text, the creation of 

figures, the result interpretation, and the collation of supplemental information. 

 

Article II: Kevin Schneider*, Benedikt Venn*, Timo Mühlhaus, TMEA: A Thermodynamically 

Motivated Framework for Functional Characterization of Biological Responses to System 

Acclimation, Entropy, 2020 

For the publication, I annotated the data retrieved from the Gene Expression Omnibus (GEO, 

specifically dataset GSE125950) using annotation labels derived from the MapMan Ontology 

and the KEGG Compound Database. For the purpose of GSEA, I performed the necessary 

hypothesis testing to identify differentially expressed genes. As a benchmark GSEA was 

performed based on hypergeometric tests with subsequent multiple testing correction via 

Benjamini-Hochberg. Subsequently, I engaged in a detailed interpretation of the results 

obtained from both TMEA and the conventional GSEA. This interpretation was not only 

grounded in the statistical outcomes but was also correlated with relevant biological 

processes. These processes were, in part, verified by metabolic measurements provided in 

the original publication of the data source. TMEA was found to be able to dissect a huge 

number of biological signals in its most relevant underlying response kinetics and connect 

biological processes to these traces. 
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Article III: Ningning Zhang, Erin M. Mattoon, Will McHargue, Benedikt Venn, David Zimmer, 

Kresti Pecani, Jooyeon Jeong, Cheyenne M. Anderson, Chen Chen, Jeffrey C. Berry, Ming 

Xia, Shin-Cheng Tzeng, Eric Becker, Leila Pazouki, Bradley Evans, Fred Cross, Jianlin 

Cheng, Kirk J. Czymmek, Michael Schroda, Timo Mühlhaus, Ru Zhang, Systems-wide 

analysis revealed shared and unique responses to moderate and acute high temperatures in 

the green alga Chlamydomonas reinhardtii, Communications Biology, 2022 

After obtaining the imputed and normalized protein abundance matrix, I annotated the dataset 

and performed all subsequent proteome analyses. After hypothesis testing of the individual 

time series using Dunnett’s multiple comparison test, gene set enrichments were carried out 

on proteins deemed significantly deregulated, followed by the application of multiple testing 

correction using the Benjamini-Hochberg FDR. For network generation, I determined a 

Pearson correlation matrix and an appropriate correlation coefficient threshold by employing 

random matrix theory. After dissecting the generated network into communities, I determined 

the eigenvectors of the communities and identified significantly enriched cellular processes 

associated with these. In addition, I conducted a thermodynamically motivated enrichment 

analysis (TMEA) and identified contributing gene sets. Together with the normalized transcript 

data I performed the correlation analysis between gene expression and protein abundance. 

By separating the time series into several chunks and performing linear regression on each 

MapMan annotation group it could be analyzed whether protein abundance correlated with 

observed transcript counts. By this, it could be shown, that the correlation of protein amount 

and transcript counts increases when Chlamydomonas cells are faced with abiotic stress. 

Finally, I visualized all signals and summarized them into an interactive spreadsheet 

containing relevant information to facilitate the scientist's analysis. 

 

Article IV: Ningning Zhang*, Benedikt Venn*, Catherine E Bailey, Ming Xia, Erin M Mattoon, 

Timo Mühlhaus, Ru Zhang, Moderate high temperature is beneficial or detrimental depending 

on carbon availability in the green alga Chlamydomonas reinhardtii, Journal of Experimental 

Botany, 2023 

After receiving the transcriptomics data, I performed quality control and prepared them for 

further analysis. This included the imputation of missing samples using additional 

measurements from a 25 °C time course and correlation-based guidance. The data was 

normalized and labeled with both MapMan and ChlamyCyc pathway annotations. A PCA 

ensured the data quality and enabled the verification of induced acclimation responses and 

constant behavior for 25 °C time courses. Statistical testing was conducted using DeSeq2 in 

a multifactor design followed by ontology annotations and subsequent multiple testing 
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correction. The results were summarized in an interactive spreadsheet with combined 

visualization of transcript time courses and statistical results. Transcripts were grouped 

according to their annotation label, z-score transformed and visualized to interpret the 

responses of each group to the six conditions. 

 

* These authors contributed equally to this work 
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4. Discussion 

The interplay of transcripts, proteins, and metabolites enables organisms to convert energy 

sources - be it food or sunlight – into the building blocks needed to sustain life. Nucleic acids, 

proteins, lipids, carbohydrates, and other metabolites all play a part in the organization of 

processes within either subcellular compartments, cells, tissues, organisms, or even 

populations (Shen 2020; Leoncini et al. 2004). As these processes are dynamic, time series 

experiments are crucial to investigate underlying molecule kinetics and connect them to draw 

an overarching picture of cellular orchestration. Understanding the dynamics helps to 

elucidate regulatory mechanisms and coordination, the crosstalk of metabolic pathways, as 

well as protein function at steady state or during acclimation conditions. Especially when faced 

with perturbations, a temporally resolved depiction of involved molecules helps in the 

identification of the regulatory organization of cellular responses. Consequently, time series 

experiments in combination with ‘omics technologies have emerged as a fundamental 

approach for studying cellular dynamics. Indeed, there has been a constant increase in annual 

time series dataset uploads in public databases like GEO for transcriptomics or PRIDE for 

proteomics (Edgar et al. 2002; Perez-Riverol et al. 2022). Due to declining costs and their high 

accuracy, high throughput measurements have become popular even when the focus of a 

study is on the quantification of only a few molecules. These datasets can be made available 

in specialized repositories for scientists around the world to answer further questions. This 

leads to a more efficient use of monetary and human resources, as well as increased 

recognition for experimenters who have shared their data (Barrett et al. 2011; Weil et al. 2023). 

 

Figure 14 Number of datasets containing “time series” or “time course” for transcript data (GEO) and protein data (PRIDE). 

Perspectives on the analysis of time series 

Omics time-series experiments are characterized by their ability to simultaneously capture a 

plethora of molecules. Additionally, the time-resolved sampling allows for tracing the kinetics 

of these molecules. However, due to biological or technical reasons, the variance at individual 
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time points can be high and should be addressed especially in global analyses in which the 

influence of individual signals cannot be interpreted afterwards. Given the multitude of 

measured samples, an appropriate normalization strategy is necessary to mitigate 

experimental and technical artifacts as effectively as possible. From molecule-centric 

analytical approaches, which examine the temporal profiles of individual molecules, to global 

analyses aiming to aggregate all temporal profiles into a few key statements, time-series 

experiments enable a broad range of analytical strategies that can vary significantly in detail. 

Statistical methods enable the examination of individual profiles for changes or the 

identification of differences between different profiles, automatically considering any occurring 

variances. In many comparisons, a robust and high-quality normalization strategy is essential, 

as individual outliers can disrupt the analysis of specific signals. If an outlier specifically occurs 

at the beginning of the measurements, statistical tests may be flawed if they consider this 

value as a reference. Statistical analyses at the level of individual molecules are rightfully 

popular for detailed examination of the response of individual components. 

On the other end of the spectrum are global analyses based on data aggregation to summarize 

the experiment with its key characteristics. Often, this approach involves separating the data 

into groups whose members exhibit similar temporal profiles. Difficulties in normalization play 

a subordinate role here, as they equally affect all molecules and thus the effect is at least 

numerically corrected. However, the consideration of time point variances receives little 

attention, and replicates are often summarized by determining the mean. This aggregation 

strategy is solely based on the replicates themselves and without the consideration of the 

surrounding signal topology. This carries the risk of overinterpreting oscillations caused by 

outliers. Standardization techniques (e.g., z-score) can promote this bias and distort both the 

clustering algorithm itself and the resulting groups. Particularly for time series, there exist 

suitable possibilities to model the temporal progression and thus the measurements at 

individual time points. 

Between these two extremes, the observation of individual molecules in contrast to holistic, 

summarizing analyses, a wide range of analytical possibilities opens up, in which both 

perspectives can be balanced (Figure 14). Depending on the chosen aggregation degree, 

interactions between molecules or entire system levels can be examined to attribute 

commonalities and differences to shared effectors. 
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Figure 15 Analysis perspectives. Time series can be analyzed from molecule- to process-centric strategies. Approaches 
regarding individual molecules result in a multitude of detailed information whereas process-centric approaches lose these 
details in favor of a condensed representation of the system’s response. 

Experimental challenges 

Capturing a whole system level, requires several purification and processing steps which leads 

to a relatively high amount of required biological mass especially at the start of the recording. 

Advances in sequencing methodologies and machine sensitivity have led to a decrease in 

required sampling amounts. For transcriptomics, single cell sequencing serves as an 

improvement to reduce the required cell count (Tang et al. 2011). For proteomics, 

improvements in sample preparation strategies and the development of single cell proteomics 

were driven by increasing the sensitivity and performance of instruments (Cai et al. 2022; 

Kassem et al. 2021). However, in many applications the limited number of available cells 

together with still high costs of high throughput studies constraints the number of sampling 

time points and measured replicates (Labib and Kelley 2020). Using bioreactors in 

combination with fast-replicating organisms ensures experimental conditions to be highly 

controllable and cell counts sufficient for many sampling time points. The sampling time points 

themselves must be chosen carefully. In contrast to data logging approaches, most biological 

experiments that involve repeated sampling investigate some sort of system reaction to 

environmental or developmental factors. In most cases educated guesses have to be made 

of how the organism is going to react and what is of interest to the researcher. For model fitting 

techniques, a spacing at which the expected amplitude change is uniformly distributed would 

be desirable, but as process reaction speeds vary drastically, the choice of sampling schemes 

always is a compromise. 
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Analytical challenges 

General pitfalls in the analysis of biological time series include their preprocessing and 

normalization. This thesis does not cover different normalization techniques, however, briefly 

acknowledging the utter importance of proper normalization for interpreting omics data. 

Several factors, i.e. handling variations, changes during machine runs, or the measurement 

technique itself harbor sources for technical variation and were discussed earlier. If the input 

samples are of comparable composition and concentration, median of ratios (Love et al. 2014) 

or quantile normalization (Bolstad et al. 2003; Venn et al. 2022) are intuitive and powerful 

techniques to align abundances of multiple samples. When interpreting visual comparisons of 

transcript counts or protein abundances of a perfectly normalized dataset, error bars should 

indicate the biological variability of each element across all biological replicates. However, this 

term gives the impression that this variation is undesirable and should be avoided. Approaches 

such as the use of the standard error of the mean (SEM) instead of standard deviation are 

often used to keep these error bars small. When the labeling is unclear or the sole reason to 

favor SEM is to reduce the error bar, it is not only misleading to the reader, but even could 

deceive the researcher to overinterpret the data when no proper statistical testing is 

performed. A reconsideration is needed that does not condemn large error bars out of hand 

but encourages the results to be presented as they were measured to allow transparent 

interpretation. However, biological variability can never be analyzed in detail, as it always 

occurs in combination with technical variance. 

Another important aspect regarding the time series visualization is the applied standardization 

technique. Since abundances can span several orders of magnitude and therefore signals 

may differ in amplitude while still behaving similarly over time, a standardization to the same 

amplitude range is necessary to be able to detect these similarities. A popular approach is to 

determine relative changes to the control time point (T0) and visualize these fold changes as 

logarithm of base 2. This is convenient as an amplitude change of +1 always indicates a 

doubling (+2 corresponds to a fold change of 4) and -1 indicates the reduction to half of the 

original reading. However, there is a flaw in this strategy. As every time point is related to the 

first, the accuracy of all data points depends on the accuracy of a single sample (the first one). 

Slight deviations in the first sample can have huge implications for the whole time course. A 

better strategy is to use a z-score transform as described earlier. Here, the impact of all 

samples is evened out by setting the time course of each molecule to zero mean and unit 

variance. A single outlier still has an impact on the values of all other points, although to a 

lesser degree. 

When it comes to the detection of effects that occurred during a time course, the examination 

of gene expression or protein abundance data is crucial, as these changes encode most of 
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the relevant cellular responses that are required when faced with the applied condition. The 

homogeneity of the chemical structure of the molecules led to the development of high 

throughput techniques that cover the majority of the cellular molecule pool and give accurate 

results even when using single cells as starting material (Jovic et al. 2022; Bennett et al. 2023).  

When relating abundance differences with the observed variances between replicates, 

probabilities can be determined of how likely the observed difference is valid and relevant. 

This corresponds to a molecule-centric perspective which enables the examination focused 

on individual transcripts or proteins (Figure 14). As for any data analysis approach 

assumptions and prerequisites have to be discussed before employing statistical tests. 

Dozens of approaches and statistical packages are available to study these differences (e.g. 

repeated measures (two way) ANOVA, DESeq2, or limma) (Macey et al. 2016; Jones 1985; 

Love et al. 2014; Ritchie et al. 2015). Taken together, the aim of inferential statistical analyses 

is to support the researcher to focus on real differences and neglect differences that are most 

likely due to chance and probably would waste time and resources when investigated further.  

However, it should always be kept in mind, that transcript counts as well as protein abundance 

are just estimators of their respective molecule activity. For transcripts, activity in most cases 

refers to the translation rate of mRNA to proteins. The activity of proteins that are involved in 

enzymatic reactions or signalling pathways on the other hand, is evaluated from their turnover 

rate. There are dozens of regulatory mechanisms that influence the activity, despite its 

abundance being constant. However, until now these abundance proxies are the method of 

choice to get closest to the actual activity level. Several methods have been developed to 

determine the activity status of proteins that are regulated by modifications. The most common 

modification that regulates protein activity is their phosphorylation by kinases. 

Phosphoproteomics is based on the enrichment of phosphopeptides using phosphospecific 

antibodies with subsequent mass spectroscopic analysis (Kratchmarova et al. 2005; Zhang et 

al. 2005). In redox proteomics, alkylating agents lead to a size difference between reduced 

and oxidized proteins, which can subsequently be separated by electrophoresis and 

measured individually (Zimmer et al. 2021). On the transcriptome side, it is possible to 

determine the read rate of individual transcripts using RiboSeq. Here, mRNA-ribosome 

complexes are isolated and the mRNA that is not occupied by ribosomes is digested. The 

remaining mRNA fragments can then be sequenced to obtain an overview of how many 

ribosomes were in the process of translation at any given time (Ingolia 2014; Dougherty 2017). 

RNA immunoprecipitation involves the targeted enrichment of transcripts to which ribosomal 

proteins or initiation factors are bound. Subsequent sequencing can also provide an overview 

of the translatome. A proteomics-based analysis of the transcript activity status is the so-called 

Puromycin-Associated Nascent Chain Proteomics (PUNCH-P) in which nascent chains 
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emerging from the ribosome are labeled, isolated, and analyzed via mass spectrometry 

(Aviner et al. 2014). Using these techniques in combination with time resolved monitoring of 

cellular reactions will shed light on regulatory particularities and have the potential to give rise 

to new medication approaches or increase acclimation capabilities. 

Development of analysis approaches specialized on omics time series 

The wide range of analytical methods for short time series ranges from the analysis of 

individual molecules to a holistic view of the system response (Figure 14). The set of tools can 

be extended by developing intermediate approaches that aim for a certain balance between 

both extremes. Both presented approaches temporal classification (TC) as well as 

thermodynamically motivated enrichment analysis (TMEA) aim to occupy two of those balance 

niches that are further specified in the following. 

The identification of groups that share the same regulator can be a promising approach when 

studying the response to stressors. Besides network analysis techniques, clustering 

algorithms are commonly applied to longitudinal data to identify signal groups that behave 

coherently over time. This approach is not limited to time series data, but can also be applied 

to data of several conditions instead of time points. Clustering challenges include the 

determination of the correct cluster number, missing point weighting based on replicate 

variability, and reliance on statistical tests for subsequent enrichment analyses. TC partially 

solves these issues and tends to be located in the molecular spectrum of Figure 14. By using 

predefined classes instead of arbitrary cluster numbers, signals do not influence the classifier. 

While in theory, every data addition requires the recomputation of clustering techniques, 

classification strategies are based on a feature extraction that is independent of other 

presented data. Low replicate counts combined with high biological and technical variance not 

only reduce statistical power but also degrade the performance of clustering approaches. TC 

employs constrained smoothing splines to model each molecule signal as a continuous and 

smooth curve. These curves are constrained to reduce oscillations where possible and 

incorporate the time point variance leading to a robust description of the time course. In 

regions of increased noise, the curve tends to be constant in order to reduce overinterpretation 

of measurement artefacts. This incorporation of measurement noise in signal modeling is 

exclusive to time series data. Neighboring time point readings are highly dependent on each 

other and thereby present unique characteristics. While for classical hypothesis testing, this 

dependence requires careful consideration of testing framework prerequisites, it enables 

curve fitting strategies to be applied to exploit information of measurement values in the near 

proximity to get a more robust estimate of the actual measurements. As proven in (Venn et al. 

2024), biological time courses in general tend to be smooth. Sudden changes in slope or 

curvature are unlikely from a regulatory perspective as they require an energy-dependent 
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decay or de novo synthesis of molecules. To ensure efficient use of energy resources, 

continuous modeling is preferable, especially in cases where available measurement time 

points are sparse and thus sudden regulatory events cannot be made visible at all. This leads 

to constraining assumptions that can be modeled using monotonicity constraints. By isolating 

features out of the modeled signals that can be used for subsequent classification, molecule 

kinetics can be sorted into predetermined groups with labels that accurately describe the 

feature of interest. Besides the function trajectory itself, its slope and curvature can be 

calculated efficiently and can be used e.g. for the determination of regulatory events that point 

to the molecule’s function or regulation. By using extreme values as classifying features we 

chose events in which the molecule abundance trend switches from de- to increasing or vice 

versa. It is important to note, that these time points do not necessarily indicate time points of 

regulatory switches that affect the molecule in question. A switch in regulation in most cases 

would lead to a sign change in curvature rather than a sign change in slope. However, the 

modeling of the time series as continuous piecewise polynomials allows for the isolation of 

various characteristics. Besides the function trajectory itself, a comparison based on slope or 

curvature is trivial to establish. During the development of this method, it was found that 

comparing it with established clustering-based approaches is challenging. The number and 

topology of the resulting groups are too heterogeneous for an objective comparison. Clustering 

algorithms typically generate few and similarly sized clusters, whereas in TC, the number of 

classes is fixed before analysis, and the class size is distributed heterogeneously depending 

on the given stimulus. However, the question posed to both methods is fundamentally 

different. Clustering aims to group signals based on similarity, while classification determines 

relevant properties in advance and sorts signals into classes based on those properties, 

regardless of internal similarities. Although both methods separate data into groups, it is 

difficult to make an objective comparison. However, the analysis of the robustness of different 

fitting methods has shown that spline-based modeling has advantages over mean-based 

clustering. Time points of high variance, which are aggregated to their mean value during 

clustering, can be specifically taken into account by the modeling so that their relevance for 

the subsequent classification is reduced. A limitation that must be considered is the reliance 

on a smooth curve, preventing sudden slope changes. While this is an essential property for 

the description of molecule kinetics at constant environmental conditions, it prohibits the 

application of TC to time series experiments that undergo an additional change in condition 

other than the initial perturbation at the very first time point. Such condition changes during 

the time course could result in sudden reregulation of molecules that consequently would 

change the slope of molecule kinetics instantly. However, the modeling of short time series by 

constrained smoothing splines allows for a detailed and robust representation of the 

underlying kinetics. The possibility to aggregate signal kinetics based on selected features 
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rather than non-reproducible similarity clustering, enables subsequent enrichment analysis 

that has an increased degree of conciseness, as group labels describe distinct kinetic features. 

In future, extensions of the current methodology could include quality measures of assigned 

class labels, that give hint to the label’s robustness. By assessing mGCVs of all applied 

models and smoothing factors (λ), an empirical score distribution can be obtained and 

compared to the score of the final model. Furthermore, the isolation of signal features of each 

molecule could serve as input for neural networks, enabling a new perspective of time series 

analysis. In addition to identified extreme points, slope and curvature signals may provide 

valuable benefits as feature input vectors. A third application perspective is the comparison 

between two time courses. This could be established by developing distance measures that 

describe the differences between the two curves and report a significance of how likely both 

signals differ from each other. Using the current state of the methodology, classes resulting 

from the classification and concise labeling can be investigated individually by filtering specific 

events, or globally by enrichment analysis. Thereby, scientists are assisted in detecting 

interesting regulatory peculiarities and examining the regulatory cellular events in their 

temporal order. The subsequent analysis of enriched functional terms within a class helps to 

characterize the chronological response sequence of cellular processes. Searching for 

overrepresented functional terms is a common approach to condense the information of 

hundreds of individual signals to a few dozen statements. Over- or underrepresented groups 

can be used to characterize either network communities, clusters, or a group of differentially 

expressed genes. A necessary preprocessing step is to partition the data into two (or more) 

groups. While one serves as background knowledge, the group of interest is analyzed for 

deviations from the observed background term distribution.  

TMEA pursues a different strategy and can be located more towards the process-centric 

spectrum of Figure 14. Enrichment strategies often rely on a prior hypothesis testing to 

distinguish between significantly different molecules versus molecules that show a constant 

time course. Instead of partitioning the data into these two groups, TMEA associates weights 

to each molecule that indicate its relevance to the most prominent time courses. While this 

weighting is molecule-centric, the association of these weights to the most prominent system 

responses that originate from aggregation procedures is process-centric. By determining the 

weight sum for each functional term and conducting a permutation test, p-values are assigned 

to the terms. Instead of a minimum count threshold that must be exceeded in conventional 

enrichment tests, even single strong weights can lead to a significant contribution to the 

respective constraint. This is especially useful when searching for regulators that serve as 

on/off switches for regulatory or metabolic pathways. In these scenarios, abundances of many 

involved proteins stay the same while a single conversion step is inhibited to prevent further 
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pathway activity. The regulation of switch-like molecules is efficient as it influences all 

downstream reactions without the need to regulate all involved enzymes. Naturally these 

switch-behaviors are common in pathways, whose metabolic intermediates are pathway 

exclusive and are not synthesized from multiple processes. Future applications of TMEA 

include the concatenation of time series data from differing experiments. Thereby, TMEA can 

extract and compare the main components driving the changes between different conditions. 

There is no free lunch 

TMEA as well as TC extend recognized analysis strategies to refine the interpretation 

capabilities that time series experiments provide. As omics technologies generate thousands 

of data points, an aggregation step is inevitable for the interpretation at a systems level. 

Established methods such as similarity-based clustering and gene set enrichment strategies 

enable the researchers to extract global effects of the experimental treatments. A more 

detailed dissemination of the data in which even subtle changes and regulatory peculiarities 

become visible inevitably requires a higher degree of manual examination of the results. 

Wealth of detail always goes hand in hand with a lower aggregation degree and therefore a 

higher interpretation effort and higher degree of error or miss interpretation. Both methods, 

TMEA and TC, were developed to balance the amount of additional information and necessary 

manual inspection.  

As outlined in the introduction, Occam’s razor principle – or parsimony principle – states that 

when modeling unknown phenomena, the use of coefficients should be kept low where 

possible. However, in the presented case of modeling time series data using constrained 

smoothing splines, several constraints are imposed: Unlike simple interpolating polynomials 

with 𝑛 coefficients, a smoothing spline of the same time series contains 4(𝑛 − 1) coefficients. 

In addition, there are restrictions on the monotonicity and curvature of the function, as well as 

on the weighting of each time point depending on the variance. The reason why this is still a 

valid procedure lies in the motivation for the restriction. Both interpolating and regressing 

polynomials tend to oscillate strongly, especially in the bounds. However, the statement that 

little is known about the abundance curve of biological time series is only partially true. 

Although there are hardly any concrete biochemical formulas that can describe system-wide 

adaptive reactions, it was shown that the function progressions are generally both smooth and 

low in oscillation. As a result, models built under these constraints are more accurate, even 

though they require a higher number of coefficients and assumptions. 

In articles III and IV some of the aforementioned methods were applied to time series data of 

heat acclimation experiments in Chlamydomonas reinhardtii. Besides classical hypothesis 

testing, ontology enrichment, and several clustering approaches, network-based community 
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detection and transcript-protein correlation analysis were conducted. Because transcriptomics 

as well as proteomics samples were taken throughout the time course, both systems levels 

could be compared where transcripts were quantified (RNASeq) along with their 

corresponding proteins (MS proteomics). Note, that these correlations cannot be determined 

for individual transcript-protein pairs, but only for functional groups as defined in MapMan 

(Thimm et al. 2004). Therefore, the predictive capabilities for individual molecules must be 

questioned. However, it became apparent that transcript counts and protein abundances do 

not correlate well at control conditions (Article III Figure 2e). The average Pearson’s correlation 

coefficient was approximately zero, indicating that the abundance of most proteins cannot be 

predicted from the transcript counts. While this may seem astonishing, this phenomenon is 

commonly observed (Bauernfeind and Babbitt 2017; Moritz et al. 2019; Edfors et al. 2016). It 

partly can be explained by the manifold regulation mechanisms that decouple protein levels 

from mRNA levels (Figure 4) (Wilhelm et al. 2017; Payne 2015; Gygi et al. 1999). In steady 

state with no acclimation pressure, cellular processes seem to rely on fine-tuned regulation 

and not on the relatively costly regulation by increasing translation rates to increase first 

transcription and finally protein abundances. Under stress, however, transcriptional regulation 

seems to have a major stake in regulating the pool of available protein. The Pearson 

correlation coefficient between transcripts and proteins strongly increases after heat onset (2-

8 h) and steadily declines to zero after 48 h of recovery at control conditions. A direct link 

between gene expression and protein activity without reliance on post translational 

modifications could be interpreted as a conservative and robust backup system if fine 

adjustment via assembly regulation, allosteric inhibition, and other cross talk regulation is 

derailed, like for sudden environmental perturbations. Cells need to rapidly adjust their 

physiological and biochemical states, leading to more synchronized changes in both mRNA 

and protein levels. This coordination seems to ensure an effective response to mitigate 

damage or adapt to new conditions (Halbeisen and Gerber 2009; Lackner et al. 2012).  

Besides these global analyses, several specific findings have been made that cannot be 

discussed in necessary depth here. One discovery, however, was the effect of supplied 

acetate during heat acclimation. As an organic carbon source, Chlamydomonas is able to 

grow heterotrophically without light driving photosynthesis by importing acetate from the 

surrounding environment and converting it to carbohydrates in the glyoxylate cycle and 

gluconeogenesis (Burlacot et al. 2019; Johnson and Alric 2012). Of course, any additional 

energy source can become vital under environmental perturbations that require major 

metabolic and structural reorganization. Consequently, an increased acetate uptake to supply 

thermotolerance processes during heat acclimation is not surprising (Zhang et al. 2023; Olas 

et al. 2021). Besides the import of external carbon sources, the energy distribution is actively 
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reorganized during heat acclimation by the redirection of photosynthetic energy from the 

Calvin cycle to the remodeling of membrane composition to ensure an appropriate fluidity 

(Hemme et al. 2014). Stopping the Calvin cycle in an effective and quick manner is part of 

ongoing research. First glances in the evolutionary conserveness degree of RCA1, a regulator 

of RubisCO, hint to a deliberate thermolability that enables quick aggregation and thereby a 

stop of the Calvin cycle (unpublished data). It was shown that acetate may also play a critical 

role in protecting PSII against photoinhibition and support the accumulation of 

thermoprotective metabolites (Schroda et al. 2015; Roach et al. 2013; Hemme et al. 2014). 

In summary, time series analysis provides a lens through which we can observe, quantify, and 

interpret the temporal patterns inherent in cellular processes. From the oscillating rhythm of 

molecular clocks to the orchestrated interaction of cellular networks, this experimental 

approach offers an analytical method to unravel the dynamic nature of biological systems. 

This allows for a more nuanced understanding of the regulatory mechanisms governing 

cellular dynamics. Due to the possibility applying modeling and prediction techniques, the total 

information gain of time series data is greater than the sum of the information drawn from their 

individual point comparisons. Moreover, time series analysis goes beyond retrospective 

examination. It empowers us to construct predictive models of cellular behavior. By 

deciphering temporal trends and correlations, we gain the ability to anticipate future states of 

cellular systems. This predictive capacity holds immense potential for understanding the 

consequences of perturbations, offering valuable insights for therapeutic interventions and 

environmental assessments.  
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Supplementary Fig. 1: Algal cultures were grown in photobioreactors (PBRs) under well-controlled 

conditions with turbidostatic mode for different temperature treatments. (a) PBR cultures were grown with 

air level CO2 in Tris-acetate-phosphate (TAP) medium under constant light (100 µmol photons m-2 s-1 with equal 

amount of blue and red light) turbidostatically within a small range of OD680 which monitors chlorophyll content. 

When PBR cultures grew to the set maximum OD680, pumps turned on to add fresh medium and dilute the cultures 

to the set minimal OD680, then pumps turned off to allow for exponential growth to the maximum set OD680. (b) 

The doubling time of the PBR cultures were calculated by fitting the OD680 curves during exponential growth. (c) 

Doubling time of the PBR cultures before, during and after treatment at 35 °C, 40 °C, or constant 25 °C. Doubling 

time is inverse of relative growth rates and smaller doubling time represents faster growth based on the rate of 

chlorophyll increase. Three independent biological replicates are plotted for each treatment. Constant 25 °C served 

as controls which showed steady growth without heat treatment. (d) PBR heating profiles. PBR temperatures 

changed from 25 °C to 35 °C or 40 °C gradually within 30 min. Three independent biological replicates are plotted 

for each temperature treatment. (e) Heat treatment in PBRs at 35 °C or 40 °C up to 24 h did not affect cell viability. 

Algal cells with different heat treatments were diluted and spotted on TAP plates, grown under 150 µmol photons 

m-2 s-1 white LED light, 25°C for 44 h before microscopic imaging. Colony numbers were quantified using ImageJ. 

Cell viability was calculated as the number of colonies on plates divided by the number of cells spotted. Values are 

mean ± SE, n = 3 biological replicates. Statistical analyses were performed with two-tailed t-test assuming unequal 

variance by comparing different time points with the pre-heat samples. No significance (ns) among different time 

points (p>0.05). (f) Heating speed affected algal cell viability and direct heating at 41 °C in water bath significantly 

reduced algal cell viability. Algal cultures were harvested from PBRs before heat treatment (pre-heat, black bars), 

or incubated in a water bath which was heated from 25°C to 41 °C gradually in 25 min then kept at 41oC for 2 h 

(orange bars), or directly heated in a water bath which was pre-heated to 41oC (sharp temperature switch) then 

kept at 41 °C for 2 h (red bars). Cell viability was quantified as in (e). Values are mean ± SE, n = 3 biological 

replicates. Statistical analyses were performed using two-tailed t-tests assuming unequal variance by comparing 

treated samples with pre-heat (*, p<0.05, the colors of asterisks match the treatment conditions) or between the 

two heating methods (#, p<0.05). (g, h) The circadian regulated genes LHCA1 and TRXF2 had constant expression 

levels without heat treatments. The relative expressions were calculated from RT-qPCR by normalizing to the 

reference gene CBLP and pre-heat-stress level. Mean ± SE, n = 3 biological replicates. Statistical analyses were 

performed with two-tailed t-test assuming unequal variance by comparing different time points with the first time 

point. No significance (ns) among different time points (p>0.05). (c, e) Red shaded area depicts the duration of 

high temperatures. 
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Supplementary Fig. 2. Moderate high temperature at 35 °C increased algal growth rates. (a) PBR mean 

media consumption before heat, at the end of 24-h heat of 35 °C or 40 °C, and at the end of the recovery at 25 °C, 

total media consumption volume divided by time. Cell growth induced culture dilution through turbidostatic control 

and consumed medium. Mean ± SE, n = 4. (b-e) The increased growth rates under 35 °C were confirmed by 

spotting tests on plates. Algal cells harvested from PBRs at 25 °C without heat treatments were diluted and spotted 

on TAP plates, grown under 150 µmol photons m-2 s-1 white LED light, in incubators of 25 °C or 35 °C for 44 h (b, 

c) or 3 days (d) before imaging. (b, c, d) One of the three biological replicates was shown. (e) Algal spots with 200 

cells were imaged after 44-h growth and colony areas were quantified using ImageJ. Values are mean ± SE, n = 3 

biological replicates. (a, e) Statistical analyses were performed with two-tailed t-test assuming unequal variance by 

comparing treated conditions with the pre-heat (a) or the 25 °C conditions (e) (*, p<0.05; **, p<0.01; the colors of 

asterisks match treatment conditions) or between 35 °C and 40 °C heat treatment (#, p<0.05). 
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Supplementary Fig. 3. RT-qPCR analysis was consistent with RNA-seq results. Transcript fold-changes of 

two heat stress marker genes (HSP22A, HSP90A) and two heat shock transcription factors (HSF1 and HSF2) were 

calculated based on RT-qPCR (a-d) or RNA-seq (e-h) results. Different y scales were used for samples with 35oC 

(left) or 40oC (right) treatments. Red shaded area depicts the duration of high temperature. For RT-qPCR results, 

the fold-changes were calculated by normalizing the relative expression values at different time points with different 

treatments to the reference gene CBLP and the pre-heat time point. For RNA-seq results, the fold-changes were 

calculated based on Transcripts Per Million (TPM) normalized RNA-seq read counts. Values are mean ± SE, n = 

3 biological replicates. 
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Supplementary Fig. 4: Transcriptomic and proteomic analyses revealed shared and unique regulation of 

transcripts and proteins during and after heat treatments of 35oC or 40oC. (a, b) Log2(fold-change, FC) 

distribution of Differentially Expressed Genes (DEGs) and Differentially Accumulated Proteins (DAPs) at different 

time points, respectively. For each time point, the first two violins represent up-regulated transcripts/proteins, and 

the last two violins represent down-regulated transcripts/proteins. For down-regulated transcripts/proteins, the 

inverse of the log2FC was displayed. The width of the violins is proportional to the fraction of transcripts/proteins 

at a certain fold-change value out of the total DEGs/DAPs at a given time point. Time points during heat: 0 h, reach 

high temperature of 35oC or 40oC; 0.5 h, heat at 35oC or 40oC for 0.5 h, similar names for other time points during 

heat. Time points during recovery: 0 h, reach control temperature of 25oC for recovery after heat; 2 h, recovery at 

25oC for 2 h, similar names for other time points during recovery. (c-f) Venn diagrams of transcripts (c, d) and 

proteins (e, f) differentially expressed in at least one time point during heat treatment (c, e) or recovery (d, f). For 

each panel: top, up-regulated transcripts/proteins; bottom: down-regulated transcripts/proteins. Only transcripts 

and proteins identified in both 35oC and 40oC treatment groups were used for this analysis. Expected values are 

the number of transcripts/proteins expected to have overlapping differential expression between the 35ºC and 40ºC 

treatment groups based on random chance (Fisher’s exact test, *: p< 1.29 x10-226). (g, h) Pie chart of transcripts 

(g) and proteins (h) in our analyses that have at least one MapMan annotation (green) versus no MapMan 

annotations (white). 
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Supplementary Fig. 5: Global transcription patterns were similar between 35oC and 40oC treatments, but 

detailed analysis revealed uniquely differentially expressed genes in the 35oC treatment. Time course of the 

three major constraint potentials (l1- 3) derived from surprisal analysis for 35 °C (a) and 40°C (b) experiments, 

respectively. The constraint potentials indicate the most important transcriptional patterns during the time course. 

(c-f) Mean transcript per million (TPM) read counts at each time point for select genes that were uniquely up-

regulated during 35 °C (brown) but not 40 °C (red) heat treatment period. Values are mean ± SE, n = 3 biological 

replicates, asterisks indicate significance in differential expression modeling. (c) GAP1/GAPDH: Cre12.g485150, 

Glyceraldehyde 3-phosphate dehydrogenase, involved in gluconeogenesis, glycolysis, and Calvin-Benson Cycle; 

(d) TAL1: Cre01.g032650, transaldolase, involved in the pentose phosphate pathway, which acts upstream of the 

glycolytic and gluconeogenic pathways; (e) COX15: Cre02.g082700, encoding mitochondrial cytochrome c oxidase 

assembly factor; (f) CAV4: Cre11.g467528, encoding a putative voltage-gated calcium channel. Vertical black lines 

indicate the start and end of heat treatments. Time points were labeled at the bottom. (a-f) Pre-heat, before heat 

treatments. Time points during heat: 0 h, reach high temperature of 35 °C or 40 °C; 0.5 h, heat at 35 °C or 40 °C 

for 0.5 h, similar names for other time points during heat. Time points during recovery: 0 h, reach control 

temperature of 25 °C for recovery after heat; 2 h, recovery at 25 °C for 2 h, similar names for other time points 

during recovery. (G) Conservation of Chlamydomonas heat induced genes (HIGs), which are up-regulated in at 

least one time point of 35 °C or 40 °C high temperature period, with select land plant species. Orthologous 

relationships were determined using JGI InParanoid data. Dashed horizontal line indicates the number of 

Chlamydomonas HIGs that were present in the JGI InParanoid data (2754 genes out of 3960 HIGs total). 

Abbreviated species names on x-axis correspond with the following JGI genomes: Volvox (Volvox carteri, 

Vcarteri_v2.1), Arabidopsis (Arabidopsis thaliana, Athaliana_TAIR10), Rice (Oryza sativa, Osativa_v7.0), Wheat 

(Triticum aestivum, Taestivum_v2.2), Soybean (Glycine max, Gmax_Wm82.a2.v1), Maize (Zea mays, 

Zmays_RefGen_V4), Sorghum (Sorghum bicolor, Sbicolor_v3.1.1), Setaria (Setaria viridis, Sviridis_v2.1). 
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Supplementary Fig. 6: Some overlapping DEGs between 35 °C and 40 °C were more differentially regulated 

with 35°C than 40°C treatment. DEGs, differentially expressed genes. FC, fold-change. Histograms of log2(FC 

in 40 ºC)/log2(FC in 35 ºC) for overlapping up-regulated (a) and down-regulated (b) genes between 35 °C and 

40 °C are displayed for each time point. Very few overlapping DEGs between 35 °C and 40 °C were identified at 

8, 24, and 48 h of recovery, which were thus omitted. Black vertical lines indicate equal differential expression 

between 35 °C and 40 °C treatments. Bars to the left of the black line indicate genes more differentially expressed 

in the 35 ºC treatment group while bars to the right of the black line indicate genes more differentially expressed in 

the 40 ºC treatment group. Numbers in the top left and right corners of each histogram represent the number of 

genes with higher fold change values in 35 °C or 40 °C, respectively. H_0h, reach high temperature of 35 °C or 

40 °C. H_0.5h, heat at 35 °C or 40 °C for 0.5 h, similar names for other time points during heat. R_0h, reach control 

temperature of 25 °C for recovery after heat. R_2h, recovery at 25 °C for 2 h, similar names for other time points 

during recovery. 
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Supplementary Fig. 7: The fold-change correlation between transcripts and proteins were investigated. 

Transcript and protein correlation analysis by using Cre2.g222 (hypothetical gene ID as Cre identifier) of functional 

term aminoacid.metabolism as an example. Log2(fold-changes, FC) of transcript reads and protein abundance are 

calculated in respect the pre-heat sample. The high temperature period (HS) as well as the recovery period (RE) 

are split into three windows each (HS1-3 and RE1-3). HS1-3 windows: 0-1 h, 2-8 h, 16-24 h during the heat period; 

RE1-3 windows, 0-2 h, 4-8 h, 24-48 h during the recovery period after heat treatment. Every identifier that has 

transcripts as well as proteins associated to it, results in a transcript-protein fold-change pair for each window. The 

average Log2FC is determined for each transcript-protein pair in each window. By collecting all Cre identifiers that 

are associated with aminoacid.metabolism, a scatter plot of transcript-protein fold-change pairs is generated and 

the Pearson correlation coefficient is calculated. By repeating the workflow for all functional terms for each window, 

a density plot for each of the six windows is created to describe the overall correlation of transcript reads and 

protein abundance for that window.  
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Supplementary Fig. 8. The kinetics of transcripts and proteins suggest gluconeogenesis/glyoxylate cycle 

and acetate uptake/assimilation increased during 35 °C but decreased during 40 °C heat. Transcript (a, c, e, 

g) and protein (b, d, f, h) signals related to the gluconeogenesis/glyoxylate cycle and acetate uptake/assimilation 

were standardized to z-scores (standardized to zero mean and unit variance) and are plotted against equally 

spaced time point increments. The red dashed lines indicate the start and end time of heat treatment for 35 °C (a, 

b, e, f) and 40 °C (c, d, g, h) respectively. Time points are labeled at the bottom. Timepoint 1: pre-heat. Time points 

2-9, heat treatment at 35 °C or 40 °C, including reaching high temperature (0), 0.5, 1, 2, 4, 8, 16, 24 h during heat; 

time points 10-15, recovery phase after heat treatment, including reaching control temperature (0), 2, 4, 8, 24, 48 

h during recovery. Genes involved in gluconeogenesis/glyoxylate cycle were based on MapMan function 

annotation; genes involved in acetate uptake/assimilation were manually curated based on Durante et. al. (2019) 

and Johnson et. al. (2013). See the interactive figures with gene IDs and annotations in Supplementary Data 10, 

gluconeogenesis_glyoxylate cycle.html. More information about genes involved in acetate uptake/assimilation can 

be seen in Supplementary Data 1 and 2 using the gene IDs on the figure. 
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Supplementary Fig. 15. Transcript/protein kinetics and TEM analysis suggested increased and reduced 

mitochondrial electron transport during 35 °C and 40 °C heat treatments, respectively. Transcript (a, c) and 

protein (b, d) signals related to the MapMan bin mitochondrial electron transport were standardized to z-scores 

(standardized to zero mean and unit variance) and are plotted against equally spaced time point increments. The 

red dashed lines indicate the start and end time of heat treatment for 35 °C (a, b) and 40 °C (c, d), respectively. 

Time points are labeled at the bottom. Timepoint 1: pre-heat. Time points 2-9, heat treatment at 35 °C or 40 °C, 

including reaching high temperature (0), 0.5, 1, 2, 4, 8, 16, 24 h during heat; time points 10-15, recovery phase 

after heat treatment, including reaching control temperature (0), 2, 4, 8, 24, 48 h during recovery. See the interactive 

figures with gene IDs and annotations in Supplementary Data 10, mitochondrial electron transport _ ATP 

synthesis.html. (e) Relative volume fractions of mitochondria were quantified using TEM images and Stereo 

Analyzer with Kolmogorov–Smirnov test for statistical analysis compared to the pre-heat condition (*, p<0.05, the 

colors of asterisks match treatment conditions) or between 35 °C and 40 °C at the same time point (#, p< 0.05). 

Each treatment had three biological replicates, total 30 images per treatment.  
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