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Configurational Forces in a Phase Field Model for Fatigue
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In the last decades, the phase field method has drawn much attention for its application in fracture mechanics because it
offers a simple unified framework for crack propagation. The core idea of phase field models for fracture is to introduce a
continuous scalar field representing the discontinuous crack. Recently, a phase field model for fatigue has been proposed along
this path. The fatigue failure differs from the other fracture scenarios since cracks only occur after a considerable number of
load cycles. As fracturing happens, changes of the material microstructure are involved, which causes the evolution of the
structural configuration. Thus, a new mathematical description not based on traditional spatial coordinates but the material
manifold is desired, which will serve as an elegant analysis tool to understand the energetic forces for crack propagation.
Configurational forces are a suitable choice for this purpose, as they describe the energetic driving forces associated with
phenomena changing the material itself. In this work, we present a phase field model for fatigue. Furthermore, the phase field
fatigue model is analyzed within the concept of configurational forces, which provides a straightforward way to understand
the phase field simulations of fatigue fracture.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 A Phase Field Model for Fatigue

The phase field fracture model introduces an additional field variable to represent cracks. The crack field s is 1 if the material
remains undamaged and if is 0 where cracks occur [1]. Furthermore, it is postulated that the displacement field u and crack
field s locally minimize the total energy of a loaded body Ω. This yields the equilibrium of the stress field and the evolution
of the crack field for fatigue fracturing. The total energy E is given as [2] [3]

E =

∫

Ω

ψ(ε, s,∇s,D)dV =

∫

Ω

[
(g(s) + η)ψe(ε) + ψs(s,∇s) + h(s)ψad(D)

]
dV, (1)

where ψ denotes the total energy density. The stain energy density

ψe(ε) =
1

2
ε : (Cε) (2)

is the energy stored inside of a body and g(s) is the degradation function, which models the loss of stiffness of the broken
material. The crack surface density

ψs(s,∇s) = Gc

(
(1− s)2

4ϵ
+ ϵ|∇s|2

)
(3)

is the energy required to separate the material in order to generate the crack, which is assumed to be proportional to the crack
surface. The parameter Gc denotes the fracture toughness, which is the ability of a material to resist fracturing. The numerical
parameter ϵ models the width of the smooth transition zone. The fatigue energy density

ψad(D) = q < D −Dc >
b with D = D0 + dD (4)

is introduced to account for the accumulated fatigue driving forces, which is associated with a fatigue damage parameter D.
This parameter D models the damage related to fatigue, inspired by Miner rule [4], which will be accumulated during the

entire simulation; D0 is the previous damage; dD =
dN

nD

(
σ̂

AD

)k

is the damage increment, which is associated with the

cycle increment dN , where the parameters nD, AD and k are read from the Wöhler curve of experiments. In the phase field
model, the first principal stress from the undegraded stress field σ̂ = [Cε]1 is used as the fatigue driving force. Dc is a damage
threshold, which models the crack nucleation process. The additional fatigue energy will not give attributions when the damage
D is below this threshold. After the crack nucleation stage, the parameters q and b are numerical parameters controlling how
fast the additional fatigue energy growth.

2 Phase Field Fatigue Simulation of 1D Bar

A 1D fracture problem is given as follows: a homogeneous bar of length 2L under a given displacement load u0 at both sides
and the middle of the bar is broken s = 0 (see Fig. 1). Let the degradation function for both elastic strain energy density ψe
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Fig. 1: A homogeneous bar is under displacement load.

and fatigue energy density ψad be g(s) = h(s) = s2, the equilibrium equation of the stress field reads

dσ

dx
= 0 with σ = (s2 + η)2µε+ s2

∂ψad

∂ε
and ε =

du

dx
(5)

and the evolution of crack field s in a cyclic domain reads

ds

dN
= −M

{
s2µε2 − Gc

(
2ϵ

d2s

dx2
− s− 1

2ϵ

)
+ 2sψad

}
. (6)

We consider first the bar in a quasi-static state without any load, the elastic energy contribution is therefore neglected. Eq. (6)
can be then simplified as a second order linear differential equation

d2s

dx2
− (

1

4ϵ2
+
ψad

Gcϵ
)s+

1

4ϵ2
= 0. (7)

For the given boundary conditions s′(±L) = 0 and a crack s(0) = 0 at the bar middle, ignoring the higher order infinitesimal
and assuming the crack is ideal e.g. ϵ→ 0 yields the crack field profile

s(x) = 1− exp

(−|x|
2ϵ

)
. (8)

Look again to Eq. (5), it implies that the stress σ = σ̄ is constant over the whole bar

σ(x) = σ̄. (9)

Let Eq. (8) be an approximated solution and taking boundary condition for u into consideration yields the displacement
profile [5]

u(x) =
u0

F (L)− F (0)

∫
x

0

1
[
1− exp

(
− x

2ϵ

)]2
+ η

dx with F =

∫
1

s2 + η
dx. (10)

The significant feature of the fatigue phase field model is to introduce a fatigue driving force σ̂. The driving force here is not
the stress associated with the degradation function, which has turned out to be constant over the whole bar as shown in Eq. 9.
The driving force σ̂ is given as

σ̂ = 2µε =
σ̄

(s2 + η)
. (11)

Letting the model parameter ϵ = 0.1 and η = 0.00001, Fig. 2 shows the pattern of the field values along the right side of the
bar with a given displacement load u0 = 0.1. As intended, different from the stress field, which appears constant over the bar,
the driving force has a peak value at the crack front (x = 0) and almost vanished at the other locations of the bar.

3 Phase Field Fatigue Model with Configurational Forces

Consider a body defined in a stress-free reference configuration CR. It deforms under mechanical loading and occupies into a
new configuration Cr shown in Fig. 3. This transformation can be usually defined by a deformation gradient F. Let the body
be unloaded, the occupying back into the stress-free configuration C ′

R can be defined by a reversed deformation gradient f . If
the material of the body is perfectly elastic, the reverse deformation can be formulated as f = F−1 and the original reference
configuration CR and the stress-free configuration C ′

R are identical. However, if irreversible microstructural changes like
fatigue cracking are involved during the deformation, the gradients f and F−1 are close but not the equal. Therefore, a new
perspective based on the material manifold but not the spatial coordinates is required, which must provide a unified and elegant
framework for the analysis of various kinds of material imperfections like fatigue fracturing.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Fig. 2: The field quantities (a: displacement field; b: crack field; c: stress field; d: driving force) of the right side of the bar.

Fig. 3: If crack occurs, the deformation f and the inverse of the original deformation F−1 are not equal. Configurational force describes the
dislocation of material associated with material itself (red point).

Starting point again is the total energy density of the body ψ. Computing the gradient of the extended energy density for
fatigue with respect to the displacement field u, the crack field s, the fatigue damage D, and the location of the crack tip xtip

yields

∇ψ(ε, s,∇s,D,xtip) =
∂ψ

∂ε
: ∇ε+ ∂ψ

∂s
∇s+ ∂ψ

∂∇s∇∇s+ ∂ψ

∂D
∇D +

∂ψ

∂xtip
∇xtip

= −∇uT∇ · σ +∇uT +
∂ψ

∂s
∇s−∇ ·

(
∂ψ

∂∇s

)
∇s+∇ ·

(
∇s ∂ψ

∂∇s

)
+

∂ψ

∂ψad

∂ψad

∂D
∇D +

∂ψ

∂xtip
∇xtip.

(12)

Noting the equations of the equilibrium of the stress field, the evolution of the crack field and applying partial integration on
that, Eq.(12) can be further simplified as

∇ ·
(
ψI−∇uTσ − ∂ψ

∂∇s∇s︸ ︷︷ ︸
Σ

)
+

1

M

ds

dN
∇s− ∂ψ

∂ψad

∂ψad

∂D
∇D − ∂ψ

∂xtip
∇xtip

︸ ︷︷ ︸
g

= 0. (13)

This equation gives a configurational force balance

divΣ + g = 0, (14)

where Σ is the generalized Eshelby stress tensor and g is the generalized configurational force. The generalized Eshelby stress
tensor captures the local changes as the fatigue fracturing, and the generalized configurational force is the energetic force for
the crack evolution.

Noting Eq. (12), the generalized Eshelby stress tensor can be split as

Σ = (g(s) + η)ψeI−∇uTσ︸ ︷︷ ︸
Σe

+ψsI− ∂[(g(s) + η)ψe + ψs]

∂∇s ∇s
︸ ︷︷ ︸

Σs

+h(s)ψadI− ∂h(s)ψad

∂∇s ∇s
︸ ︷︷ ︸

Σad

(15)
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4 of 6 Section 3: Damage and fracture mechanics

and similarly for the general configurational forces

g =
1

M

ds

dN
∇s

︸ ︷︷ ︸
gdis

− ∂ψ

∂ψad

∂ψad

∂D
∇D

︸ ︷︷ ︸
gD

− ∂ψ

∂xtip
∇xtip

︸ ︷︷ ︸
gtip

. (16)

Σe is the classical Eshelby stress tensor in the case of an undamaged material s = 1. The second term Σs can be seen as
a fracture surface contribution of the generalized Eshelby stress tensor [1]. The last part Σad is related to the fatigue part
of the generalized Eshelby stress tensor, which is introduced here to provide the necessary fatigue driving forces against
fatigue crack self-healing. The dissipative configurational force gdis represents the energetic forces associated with the energy
dissipation during the crack propagation. The contribution gD can be interpreted as the energetic fatigue driving force due to
the accumulated fatigue damage. The total configurational force acting on the crack tip gtip stands for a measure of the change
of total energy density around the crack tip and as a total energetic driving force for crack propagation.

4 Evaluation of the Phase Field Model on Configurational Forces

Let Ω0 be a sufficient large domain around the crack tip and n is the normal vector of the boundary domain ∂Ω0 as shown in
Fig. 4,

Fig. 4: Assuming Ω0 ⊂ Ω is a sufficiently large domain around the crack tip and ∂Ω0 is its boundary.

For a pure mode I loading case, the integral over the control volume for the first term in Eq. (15) can be seen as a elastic
part of the general configurational force, which corresponds the negative J-integral, also known as the energy release rate [6].

Ge = −
∫

∂Ω0

ΣendA = −
∫

∂Ω0

[
1

2
(s2 + η)ε : (Cε)I−∇uTσ

]
ndA =

ϵ→0
−J ex. (17)

The J-integral is a measure of the intensity of deformation at a crack tip. As shown in [1], the second part of Eq. (15) is the
respective fracture surface part of the total configurational force, equaling the crack resistance Gc [7]

Gs = −
∫

∂Ω0

ΣsndA = −
∫

∂Ω0

[
Gc

(
(1− s)2

4ϵ
+ ϵ|∇s|2

)
I− 2Gc∇s⊗∇s

]
ndA =

ϵ→0
Gcex. (18)

The crack resistance stands for an energetic force which acts in the opposite direction of the crack propagation, giving the
resistance against crack extension at the crack tip.

For further investigation of the third component in Eq. (15), the entire volume integration over domain Ω0 is split into two
parts (see right side of Fig. 4)

Gad = −
∫

∂Ω0

ΣadndA = −
∫

∂Ω0|A→B

ΣadndA−
∫

∂Ω0|B→A

ΣadndA. (19)

For the section A → B, the driving force σ̂ vanishes outside the crack tip due to the pure mode I load situation as discussed
before in Fig. 2; thus,

∫
∂Ω0|A→B

ΣadndA = 0. The section of B → A can be computed with ignoring the damage threshold
Dc as

∫

∂Ω0|B→A

ΣadndA =

∫

∂Ω0|B→A

s2ψadIdx =

∫

∂Ω0|B→A

s2q

[
N

nD

(
σ̄

AD(s2 + η)

)k]b
Idx. (20)

Therefore, the fatigue configurational force is given as

Gad =

∫

∂Ω0|B→A

s2q

[
N

nD

(
σ̄

AD(s2 + η)

)k]b
Idx. (21)
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The fatigue configurational force Gad is an additional energetic driving force related to fatigue, which acts against the cracks
self-recovery.

For the generalized configurational forces, processing to define an integral over the domain Ω0 of the dissipative part gdis

yields

Gdis =

∫

Ω0

gdisdV, (22)

and of the damage part gD yields

GD =

∫

Ω0

gDdV with gD = − ∂ψ

∂ψad

∂ψad

∂D
∇D = −h(s)qb < D −Dc >

b−1 ∇D (23)

Allocating the Eq. (15) and (16) with the above definitions, an energetic balance equation around the crack tip is derived as

Gtip = Ge +Gs +Gad −Gdis −GD (24)

where Gtip =
∫
Ω0

gtipdV is the total configuration force acting on the crack tip as the total energetic fatigue driving force.
The x1 component of different terms G as shown in Fig. 5. The integration domain needs to be large enough to cover

the whole transition zone but not intersect the boundary, where with an integration radius of 6.25ϵ (crack width) the result
shows a smooth and constant configurational force profile of the fracture surface part Gs ≈ 1. It is noted that the onset of
cracking happens when the total configurational forces on the crack tip vanishes (Gtip

x = 0), where the damage part GD and
fracture surface part Gs cancel themselves out. The fatigue crack can be observed to propagate faster at the later stage of the
simulation, as the total configurational forces Gtip is more often to be zero.

Fig. 5: Configurational force with different integration radius in respect to the length scalar(crack width) ϵ (a: 2.5ϵ; b: 6.25ϵ; c: 12.5ϵ). The
black line denotes the crack length.

For a detailed illustration, the depicted Fig. 6 are taken from a small number of cyclic domain intervals where the crack only
slightly propagates in the right horizontal direction. It can be noticed that the configurational force for the crack tip gtip are
dominated by its horizontal component, which provides the driving force for crack propagation. This part of configurational
force reduces from cycle N1 to N3 at the previous crack tip, and grows again at the new crack tip from cycle N3 to N5. The
vertical direction components provide the energetic force for the crack to widen. However, they vanish during the integral over
the domain near the crack tip. The elastic part of the configurational force ge is not pronounced, it is because the mechanical
loads involved in fatigue scenarios are relatively smaller in contrast to the other fracture cases. The fracture surface part gs

points in the opposite direction to the crack propagation since it provides the energetic forces to resist the crack growth.
Moreover, it reduces during the fracturing (N1 to N3) as the fracture resistance decreases due to the broken material. The
additional fatigue configurational forces provide additional energetic forces from the fatigue, whose vertical components can
be interpreted as the energetic force against the crack self-closure. The damage part gD is the energetic force due to the
accumulated fatigue damage, which works at the crack propagation direction as an energetic fatigue driving force. At cycle
N3, the fatigue damage energetic force reaches its maximum value and the total configurational force at the crack tip is zero,
enabling the outset of cracking.

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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6 of 6 Section 3: Damage and fracture mechanics

Fig. 6: The configurational forces for crack propagation in a short cycle domains interval at every nodes(a: configurational forces at the
crack tip gtip; b: elastic part of the configurational force ge; c: fracture surface part of the configurational forces gs; d: fatigue part of the
configurational forces gad; e: damage part of the configurational forces gD .

5 Conclusion

In this work, we combine the phase field fatigue model with the concept of configurational forces. By using this tool, our
results illustratively explain how the energy components of the total energy density influence the crack evolution.

Acknowledgements Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 252408385 –IRTG 2057
Open access funding enabled and organized by Projekt DEAL.

References
[1] Charlotte Kuhn and Ralf Müller. A continuum phase field model for fracture. Engineering Fracture Mechanics, 77(18):3625–3634,

2010.
[2] Christoph Schreiber, Charlotte Kuhn, Ralf Müller, and Tarek Zohdi. A phase field modeling approach of cyclic fatigue crack growth.

International Journal of Fracture, 225(1):89–100, 2020.
[3] Sikang Yan, Christoph Schreiber, and Ralf Müller. An efficient implementation of a phase field model for fatigue crack growth.

International Journal of Fracture, pages 1–14, 2022.
[4] Milton A Miner. Cumulative damage in fatigue. 1945.
[5] Charlotte Kuhn. Numerical and Analytical Investigation of a Phase Field Model for Fracture. doctoralthesis, Technische Universität

Kaiserslautern, 2013.
[6] Dietmar Gross and Thomas Seelig. Fracture mechanics: with an introduction to micromechanics. Springer, 2017.
[7] C Kuhn and R Müller. Configurational forces in a phase field model for fracture. In 18th European Conference on Fracture. DVM,

2010.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com

 16177061, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202200034 by R

heinland-Pfälzische T
echnische U

niversität K
aiserslautern-L

andau, W
iley O

nline L
ibrary on [17/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


