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Abstract

The measurement of self-diffusion coefficients using pulsed-field gradient

(PFG) nuclear magnetic resonance (NMR) spectroscopy is a well-established

method. Recently, benchtop NMR spectrometers with gradient coils have also

been used, which greatly simplify these measurements. However, a disadvan-

tage of benchtop NMR spectrometers is the lower resolution of the acquired

NMR signals compared to high-field NMR spectrometers, which requires

sophisticated analysis methods. In this work, we use a recently developed

quantum mechanical (QM) model-based approach for the estimation of self-

diffusion coefficients from complex benchtop NMR data. With the knowledge

of the species present in the mixture, signatures for each species are created

and adjusted to the measured NMR signal. With this model-based approach,

the self-diffusion coefficients of all species in the mixtures were estimated with

a discrepancy of less than 2 % compared to self-diffusion coefficients estimated

from high-field NMR data sets of the same mixtures. These results suggest

benchtop NMR is a reliable tool for quantitative analysis of self-diffusion coef-

ficients, even in complex mixtures.
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1 | INTRODUCTION

Diffusion plays a significant role in many types of chemi-
cal and biological processes. Thus, the measurement of
diffusion coefficients has been part of scientific research
for many years. High-field nuclear magnetic resonance
(NMR) spectroscopy is a powerful tool that allows an
accurate measurement of self-diffusion coefficients. How-
ever, these measurements are complex, and well-trained
users are required. Low-field benchtop NMR

spectrometers could be used, but they place higher
demands on the analysis of the acquired NMR signals.
This work demonstrates the applicability of benchtop
NMR spectrometers for the measurement of self-diffusion
coefficients with the use of a recently developed model-
based approach that is able to deal with complex bench-
top NMR signals with significant peak overlap.

A differentiation is made between transport and self-
diffusion, both characterised by their specific diffusion
coefficient. Transport diffusion coefficients are needed to
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describe mass transfer, which is a prerequisite for the
design of separation processes. Self-diffusion coefficients
are important material properties that characterise the
mobility of the molecules and contain information on
molecule size, shape, or interaction parameters.[28] At
infinite dilution, both the transport and the self-diffusion
coefficients of the diluted component merge into each
other. For the measurement of self-diffusion coefficients,
pulsed-field gradient (PFG) NMR spectroscopy methods
are well established. In contrast to other measurement
methods, e.g., tracer measurements,[34] PFG NMR spec-
troscopy is fast, requires only a small sample volume, and
covers a wide temperature and pressure range.[13]

In PFG NMR experiments, two consecutive pulsed-
field gradients are applied. The first gradient pulse causes
a dephasing of the spins, whereas the second pulse is
intended to refocus the spins back to the initial phase.
However, due to molecular motion of the spins, the ini-
tial phase is not restored fully. Measurements consist of
many molecules, and when the residual phase of many
different molecules is combined, it leads to an attenua-
tion of the acquired NMR signal. The attenuation experi-
enced by a spin is used to measure its self-diffusion
coefficient. The PFG NMR experiment is usually repeated
with incrementing gradient strength. This results in a
series of NMR spectra with signals that, depending on
their self-diffusion coefficient, show a more or less strong
attenuation of their signal intensities (cf. Figure 1).

A general description of the dependence between the
gradient strength and the attenuation of the acquired

NMR signal, using a spin-echo pulse sequence, is given
by the Stejskal-Tanner Equation (1)[31]:

Ii ¼ I0,i exp �Diγ
2g2δ2 Δ� δ

3

� �� �
: ð1Þ

Therein, Ii denotes the intensity of the signal i, I0,i is
the signal intensity with no gradient applied, γ is the
gyromagnetic ratio, g is the gradient strength, δ is the
duration of the gradient pulse, Δ is the diffusion time,
and Di is the self-diffusion coefficient for signal i. The
self-diffusion coefficients are derived by fitting
Equation (1) to the series of signal intensities obtained
from PFG NMR experiments. A variety of different PFG
style pulse sequences exist. Equation (1) has to be
adjusted for each pulse sequence, usually by changing
the correction to Δ.

Signals that originate from the same molecule show
the same attenuation and thus identical values for the
self-diffusion coefficients. This characteristic is used in
so-called diffusion ordered spectroscopy (DOSY) maps to
identify different chemical species in a mixture. In DOSY
maps, the signals are plotted as a function of the chemi-
cal shift value of the acquired NMR signal and the corre-
sponding self-diffusion coefficient. The width of the
plotted signal is determined by the accuracy of the fit of
the self-diffusion coefficient, e.g., as obtained
from Equation (1).

In principle, self-diffusion coefficients are directly
accessible from Equation (1) via the inverse Laplace

FIGURE 1 Principle of self-diffusion measurements with NMR spectroscopy; left: sequential (standard) approach, i.e., each spectrum is

adjusted separately; right: simultaneous approach, i.e., amplitudes are coupled via an higher-level function (here, Equation (5)) and

simultaneously adjusted with the meta parameter of the higher level function (here, D)
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transform. This method potentially enables the determi-
nation of different self-diffusion coefficients when multi-
ple signals overlap. However, the inverse Laplace
transform is an ill-posed problem, which can have an
infinite number of solutions.[6] Inverse Laplace transform
methods are used, but these require some regularisation
functions and the resulting self-diffusion coefficients may
not be precise.

Advanced processing methods for the estimation of
self-diffusion coefficients from PFG NMR experiments
exist that can be classified into univariate and multivari-
ate methods. Results from univariate methods are typi-
cally visualised in DOSY maps, whereas multivariate
methods yield the self-diffusion coefficients of all species
in the mixture together with their individual signature
spectra.[26]

Univariate methods assume that each signal in an
NMR spectrum arises from one individual species and
thus has an unique self-diffusion coefficient. The signals
are approximated by Gauss-Lorentzian curves, and the
attenuation of each signal is fitted by a mono-exponential
or, if the peaks slightly overlap, by a multi-exponential
decay. The most common univariate method is the High-
Resolution (HR)-DOSY approach.[2] For well-resolved
NMR spectra and only slight overlapping peaks, HR-
DOSY is the method of choice that yields a high resolu-
tion for the separation of different species in a mix-
ture.[26] However, if the spectra suffer from significant
peak overlap, as is often the case in benchtop NMR data,
more than one species contributes to the attenuation of
the acquired NMR signal, and the self-diffusion coeffi-
cients estimated with HR-DOSY may be biased.[26]

Multivariate methods exploit the fact that signals that
arise from the same species show identical attenuation of
their NMR signal by regarding the spectra (or parts of it)
as a whole and fit the NMR spectrum simultaneously.[26]

Thus, these methods are well suited for NMR signals
with overlapping peaks. Several methods exist, such as
Direct Exponential Curve Resolution Algorithm
(DECRA),[35] Multivariate Curve Resolution (MCR)[32] or
Speedy COmponent REsolution (SCORE).[27] The
acquired PFG NMR signal is described as the product of
the unattenuated signal of each species and the diffusion
decay profiles.[26] The goal is to estimate the contribution
from each signal in the frequency domain and the diffu-
sion decay so that the residuals between the modelled
and the measured NMR signal become minimal. Most of
these methods use prior knowledge of the number of spe-
cies present in the mixture to improve the fitting process.
The results of both the univariate and the multivariate
analysis strongly depend on the quality of the given PFG
NMR data and the amount of overlap between peaks.
Also post-processing steps are required, including phase

and baseline correction, zero-filling, apodisation, and ref-
erence deconvolution.[6]

In order to get a good resolution of the acquired NMR
signal, which is a prerequisite for accurate estimation of
self-diffusion coefficients and separation of different spe-
cies, PFG NMR measurements are typically carried out
using high-field NMR spectrometers. There are several
publications that demonstrate the use of high-field PFG
NMR spectroscopy for an accurate estimation of self-
diffusion coefficients or its use to gather more information
on the studied systems, e.g., dynamic behaviour. [3,13,14,28]

The high resolution, however, is associated with high costs
as special laboratory equipment is required. This has
driven the development of low-field benchtop NMR spec-
trometers. These devices are affordable, compact, and
user-friendly, which makes NMR spectroscopy more
accessible to general laboratories.

Unfortunately, the lower magnetic field entails a
lower spectral resolution and sensitivity of the acquired
NMR signals, compared to that obtained with high-field
NMR spectrometers. In addition, significant peak overlap
prevents the use of standard analysis methods. To over-
come these challenges, sophisticated analysis methods
have been developed that enable an accurate quantitative
analysis of benchtop NMR signals, thus extending the
application of benchtop NMR as an analytical tool in the
field of reaction and process monitoring.[9,15,23] The use
of benchtop NMR spectrometers for PFG NMR experi-
ments has also been reported.[12,22]

PFG NMR experiments on a benchtop NMR spec-
trometer have been used to study the dynamic properties
of aqueous salt solutions[10] or the solvent effects in
homogeneous catalysis.[25] Others have used benchtop
PFG NMR experiments for the determination of the
molar mass of lignins,[29] the hydrodynamic radii of
PEE-G dendrons[21] or for the characterisation of porous
catalytic material.[11] The treating of benchtop PFG NMR
data, however, is especially challenging, as the low reso-
lution impedes accurate estimation of the peak intensi-
ties, which are needed for an accurate determination of
the self-diffusion coefficients. Assemat et al.[1] reported
the use of a benchtop NMR spectrometer to predict self-
diffusion coefficients from drug samples using univariate
processing. Although discrepancies between the absolute
values of self-diffusion coefficients from benchtop and
comparative high-field NMR measurements were
obtained, a consistent separation of the different species
in the mixture was possible, at least in the absence of sig-
nificant peak overlap. McCarney et al.[22] used both the
multivariate SCORE algorithm and the HR-DOSY
approach to analyse benchtop PFG NMR signals with
highly overlapping peaks. In contrast to the univariate
HR-DOSY approach, the multivariate processing yielded
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consistent self-diffusion coefficients and a clear separa-
tion of the individual species.

In this work, we present a model-based approach for
the estimation of self-diffusion coefficients from benchtop
PFG NMR signals with a target accuracy similar to high-
field NMR experiments. In this approach, we combine a
quantum mechanical model that allows the estimation of
ideal signatures for the individual species in a mixture
based on a few model parameters (e.g., chemical shifts or
J-coupling constants) with the Bayesian framework.
Model-based approaches have already been proven to be
particularly suitable for the analysis of benchtop NMR
data with low signal-to-noise ratios and overlapping
peaks.[4,7,24] The use of a quantum mechanical model
also reduces the number of model parameters by not
treating the signals corresponding to the same species
independently. The model formulation in terms of the
Bayesian statistics allows the inclusion of prior knowl-
edge about the model parameters.

This model formulation offers the possibility to ana-
lyse diffusion data in two different ways. As is usually the
case, the acquired NMR signals may be treated indepen-
dently and the signal intensities and the values of the
self-diffusion coefficients are estimated sequentially, as
shown in Figure 1a. In contrast to that, the inclusion of
prior knowledge in the Bayesian framework allows the
simultaneous fitting of the peak intensities and the corre-
sponding self-diffusion coefficients by analysing the
entire data set. This approach may help to minimise the
uncertainties in the determination of self-diffusion coeffi-
cients from complex NMR data, for example, measured
with benchtop NMR spectrometers. The simultaneous
procedure is visualised in Figure 1b.

The QM model fitting has already been successfully
established for the analysis of complex 1D 1H NMR sig-
nals acquired with benchtop NMR spectrometers.[18,30]

Even for mixtures with up to 15 components and low
signal-to-noise ratio, accurate quantification results can
be obtained, as was recently demonstrated for the analy-
sis of wine samples.[17]

In this work, the application of the method was
extended to the estimation of self-diffusion coefficients in
complex mixtures with benchtop NMR spectroscopy. In a
first study, the inclusion of prior knowledge about the
attenuation of the PFG 1H NMR signal (i.e., the Stejskal-
Tanner equation) was tested for synthetic PFG 1H NMR
data sets with known self-diffusion coefficients, overlap-
ping peaks, and low signal-to-noise ratio. Further, PFG
1H NMR experiments of simple mixtures were acquired
on a high-field and a benchtop NMR spectrometer. The
high-field NMR data were analysed with the proposed
model-based approach and the estimated self-diffusion
coefficients were compared to a standard analysis

procedure, the method of direct integration. In addition,
the benchtop PFG 1H NMR data of the simple mixtures
were analysed using the model-based approach, and the
results were compared to those from high-field PFG
1H NMR experiments. In a last study, the model-based
approach was applied to two aqueous mixtures consisting
of glycerol (Glyc), 1,2-propylene glycol (PG), monodietha-
nolamine (MDEA), ethanol (EtOH), and acetonitrile
(ACN). The similar chemical structure of these species
makes this mixture a challenging and complex system.
The mixtures were measured on both the high-field and
the benchtop NMR spectrometer and analysed with the
model-based approach. For comparison, the benchtop
NMR data were also analysed with quantitative global
spectral deconvolution (qGSD),[8] as standard peak inte-
gration was not applicable due to strong overlapping
peaks. It should be mentioned that it was not the aim of
this work to predict self-diffusion coefficients of species
in mixtures, since they depend on the composition and
only two different compositions were studied. Instead,
the focus was on demonstrating that such measurements
are possible using a benchtop NMR instrument. This
work shows that benchtop NMR spectroscopy, supported
by advanced analysis methods, is a good alternative to
expensive high-field NMR spectroscopy. It can signifi-
cantly help to expand the application field of NMR
spectroscopy.

2 | MODEL-BASED
QUANTIFICATION

Model-based quantification methods have recently
renewed interest in benchtop NMR spectrometers as sig-
nificant peak overlap and low signal-to-noise ratios of
NMR signals acquired with benchtop NMR spectrometers
preclude the application of traditional analysis methods,
such as direct integration. One class of model-based
approaches that were primarily developed for the quanti-
fication of 1D NMR signals makes use of the prior knowl-
edge that the species in a mixture are known and that the
intensity ratios of peaks pertaining to the same species
are locked. These methods describe the measured NMR
signal as a sum of signatures for each species present in
the mixture. One way to derive these signatures is to
approximate the component spectra with lineshape
models that are agnostic to the underlying chemical
structure, for example, a collection of Gauss-Lorentzian
curves as done in the Indirect Hard Modelling method
(IHM).[16] The measured NMR signal of a mixture can
then be described as a weighted sum of the signatures of
the individual species, where the weighting factors corre-
spond to the amount of each species in the mixture.
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Our proposed method uses a similar approach, but
the underlying signature models for each species are
derived using a quantum mechanical model to reduce
the number of free parameters and improve the robust-
ness (e.g., to easily account for changes of chemical shift
values with composition). With the signatures of the indi-
vidual species, the measured NMR signal is described by
Equation (2):

smodel θk, ckf gKk¼1,φ0, τ
� �¼ eiφ0

XK

k¼1

ckuk θk, τð Þ: ð2Þ

The signature model uk of a component k is a set of
Lorentzian functions, parameterised by the vector θk.
The weighting factor ck describes the signal intensity and
is thus proportional to the amount of the species k in the
sample. The vector θk includes the model parameters,
such as the chemical shift values, J-coupling constants,
and information on the relaxation delay that is propor-
tional to the width of transition peaks. The global phase
shift φ0 and the ringdown delay τ determine the zero-
and first-order phase angles of the NMR signal, respec-
tively. Given a 1D NMR signal s the concentration of the
species are estimated by minimising the differences
between the measured and the modelled NMR signal
with respect to the model parameters, for example, in a
least-squares sense. The QM model formulation has the
advantage that the underlying model is independent from
the magnetic field strength and thus its QM parameters
(chemical shifts and J-coupling values) can be deter-
mined from high-field NMR spectra, or chemical data-
bases, and then applied to benchtop NMR data. More
information about the QM model set up can be found in
Matviychuk et al.[20]

The QM NMR model captures a variety of complex
peak shapes arising from higher-order coupling effects.
However, it is still not a perfect representation of the
spectra. For example, we do not necessarily model all
long-range couplings, or there may be imperfections in
the magnetic field that lead to distortions of the peak
shape. To account for these model misspecification, and
thus to improve the accuracy of the model fit, a recently
developed approach was used for the high-field data.[19]

For the benchtop data, this approach was not used
because significant peak overlap led to incorrect distribu-
tions of the pure residual signals between the different
species. In the following, the set of model parameters for
all species fθkgKk¼1 is referred to as Θ and the set of signal
intensities fckgKk¼1 as c.

The major challenge of model-based fitting is to find
the best set of model parameters that match the mea-
sured NMR signal, as there are often several locally opti-
mal solutions. Casting the parameter estimation problem

in terms of the Bayesian framework allows us to incorpo-
rate prior knowledge about the model parameters and
thus reduce the possibility of the fitting algorithm being
stuck in one of the local optima.

If the model-based fitting is combined with the
Bayesian framework, the new target function is the pos-
terior distribution p Θ, cjsð Þ that characterises the proba-
bility that the set of model parameters produces the
measured NMR signal. The posterior is proportional to
the product of the likelihood function p sjΘ, cð Þ, which
describes the residuals between the measured and the
modelled NMR signal, and the prior distribution of
model parameters p Θ, cð Þ:

p Θ, cjsð Þ/ p sjΘ, cð Þp Θ, cð Þ: ð3Þ

By maximising the posterior with respect to the model
parameters the most probable set of model parameters is
found that has produced the measured NMR signal. The
prior term can include prior information about the model
parameters that is available even before the measure-
ment. The amplitudes, for example, are described with
Gaussian priors; if no information about the intensities is
available, we chose uninformative priors, for example,
Gaussians with large variances.

Prior information about the model parameters is
helpful to improve the model fitting process, especially
when analysing benchtop NMR data. As mentioned
above, QM parameters (chemical shifts and J-coupling
values) can be adopted from high-field measurements.
Also, statistical dependencies between model parameters
can be modelled using joint priors, as has been demon-
strated in Matviychuk et al.[18] This approach can also be
used in kinetic experiments in which the peak ampli-
tudes of the reactants are dependent of the stoichiometry
of the reaction as well as in PFG NMR experiments,
where the acquired NMR signals are related via the
Stejskal-Tanner equation. Prior knowledge about the
dependence between peak intensities can be incorporated
via some higher-level function, for example, a kinetic or
a diffusion model. By fitting the higher-level function to
the acquired NMR signal, the NMR signals in a PFG
NMR data set are adjusted simultaneously with the corre-
sponding meta parameters such as kinetic constants or
self-diffusion coefficients (cf. Figure 1b). Another advan-
tage of working with Bayesian statistics is the possibility
to estimate the uncertainty in the quantification with
Markov-Chain-Monte-Carlo (MCMC) sampling methods.
In MCMC sampling, the entire posterior is sampled with
respect to all model parameters of interest, resulting in
distributions for all model parameters instead of point
estimates that are obtained by maximising the posterior.
From the found distributions, the mean, standard
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deviations, and credible intervals of the model parame-
ters can be estimated.

3 | MATERIALS AND METHODS

3.1 | Chemicals

Table 1 lists all chemicals that were used for the PFG
1H NMR measurements together with their chemical
structure, suppliers, and purities specified by the suppliers.
Ultrapure water was produced with an ultrapurification
system of Merck Millipore. In addition, a Bruker standard
diffusion sample with a well-defined self-diffusion coeffi-
cient at 25 �C was used to validate the benchtop PFG
1H NMR measurements. The Bruker standard diffusion
sample (PN Z10906) is composed of 1 % H2O in D2O, with
0.1 % GdCl3 and 0.1 % methanol (MeOH) (13C).

3.2 | Sample preparation and data
acquisition

All samples were gravimetrically prepared using a preci-
sion balance with an absolute error of 0.001 g specified
by the manufacturer. For the study of the simple mix-
tures, MDEA and glycerol were diluted in D2O in a volu-
metric ratio of 1:100. In addition, a second dilution of
MDEA in D2O of 1:2 was prepared. Acetonitrile and
water were used as pure components, and the Bruker
standard sample was used as supplied by the manufac-
turer. Two complex mixtures were prepared, consisting of

MDEA, glycerol, 1,2-propylene glycol, ethanol, acetoni-
trile, and water. The composition of both mixtures is
given in Table 2. All mixtures were measured using stan-
dard 5mm NMR tubes. For the pure components aceto-
nitrile and water, special 2.5mm NMR tubes were used
to reduce convection and minimise the risk of radiation
damping.

3.2.1 | High-field PFG NMR

High-field PFG 1H NMR measurements were carried out
on a 400 MHz NMR spectrometer from Bruker Biospin,
which is equipped with a probe with cryogenically cooled
electronics (magnet Ascend 400, console Avance 3 HD
400, probe CryoProbe Prodigy). The PFG 1H NMR experi-
ments were performed with a stimulated spin-echo pulse
sequence using bipolar gradients (stebpgp1s) provided by
the Software TopSpin. Accordingly, the following modifica-
tion of the generalised Stejskal-Tanner equation was used:

Ii ¼ I0,i exp
X2

n¼1

cn �Diγ
2g2δ2 Δ� δ

3
� τ

2

� �� �n

�:
"

ð4Þ

Therein, τ is a correction constant that accounts for
the use of bipolar gradients. The probe specific calibra-
tion factors c1 and c2 were adopted from Bellaire et al.[3]

and account for the non-linearity of the gradient. A
graphical view of the pulse sequence can be found in the
supporting information. The diffusion time for every PFG
1H NMR experiment was set to Δ¼ 50 ms; and the

TABLE 1 Chemical structure, purities, and suppliers of the chemicals used in this work

Chemical Structure Supplier Purity / mass-%

MDEA Sigma Aldrich ≥99.00

Glycerol VWR Chemicals 99.50

1,2-Propylene glycol Sigma Aldrich >99.00

Ethanol Merck >99.90

Acetonitrile VWR Chemicals ≥99.95

TABLE 2 Gravimetrically determined mole fractions of all species in mixtures 1 and 2

xi/ mol mol�1

Mixture MDEA Glyc PG EtOH ACN Water

1 0.0057 0.0112 0.0172 0.0086 0.0143 0.9409

2 0.0114 0.0115 0.0114 0.0114 0.0114 0.9429

1118 STEIMERS ET AL.

 1097458xa, 2022, 12, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/m

rc.5300 by R
heinland-Pfälzische T

echnische U
niversität K

aiserslautern-L
andau, W

iley O
nline L

ibrary on [17/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



correction constant for the bipolar gradient was
τ¼ 0:2 ms. The gradient strength was incremented in
16 steps from 2.5 to 48.5 G cm�1 for the simple mixtures
and from 5.6 to 48.5 G cm�1 for the complex mixtures.
The gradient steps were spaced equally with increasing
gradient amplitude squared. The duration of the gradient
pulse δ was adjusted for every sample separately to ensure
approximately 90–95 % attenuation of the acquired NMR
signal for the strongest gradient. The set duration times
for both the simple and the complex mixtures can be
found in the supporting information. The high-field PFG
1H NMR spectra were recorded with 16 scans, 32k data
points for the simple mixtures and 48k data points for the
complex mixtures, an acquisition time of 8 s, and a relaxa-
tion delay ranging between 10 and 20 s to ensure sufficient
relaxation (at least 4�T1) of the sample.

All high-field PFG 1H NMR measurements were per-
formed at 28.7 �C to ensure the same temperature condi-
tions compared to the benchtop NMR measurements. All
measurements were repeated 10 times to avoid biased
values of the self-diffusion coefficients due to possible
random measurement errors, e.g., fluctuations in temper-
ature, and to estimate the uncertainty in the measured
self-diffusion coefficients.

3.2.2 | Benchtop PFG NMR

Benchtop NMR measurements were performed on a Magri-
tek Spinsolve Carbon 43 MHz NMR spectrometer, which is
equipped with a gradient coil with a maximum field gradi-
ent of 15.7 G cm�1. For the PFG 1H NMR experiments on
the benchtop NMR spectrometer, we use a pulsed-field
gradient stimulated echo (PGSTE) sequence that is avail-
able in the standard operating software Spinsolve
(Magritek). The following modification of the general
Stejskal-Tanner equation was used to determine the self-
diffusion coefficients from the acquired NMR signals:

Ii ¼ I0,i exp �Diγ
2g2 δ2eff Δ�δ2eff

3

� �� �� �
: ð5Þ

Therein, δeff is the effective duration of the gradient
pulse that is composed of the manually set duration and a
gradient ramp time that helps to prevent distortions in the
acquired NMR signal. As for the high-field NMR experi-
ments, the gradient strength was incremented in 16 steps,
which were spaced equally with increasing gradient ampli-
tude squared, and ranged from 1.8 to 15.7 G cm�1. The
ramp time was 0.1 ms and was equal for all experiments.

To avoid signal distortions arising from J-modulation,
the duration of δ was kept constant at a maximum value

of 2 ms, and the diffusion time Δ was adjusted accord-
ingly to obtain attenuation of approximately 90–95 % of
the acquired NMR signals for the strongest gradient
strength. Details on the pulse sequence and the acquisition
parameters can be found in the supporting information.

The PFG 1H NMR spectra were acquired with
16 scans, 32k data points, an acquisition time of 6.4 s,
and a relaxation delay ranging between 10 to 25 s to
ensure sufficient relaxation (at least 4�T1) of the sam-
ple. For the Bruker standard sample, 32 scans were used
to ensure approximately the same signal-to-noise ratio
conditions as for the other simple mixtures. The bench-
top NMR spectrometer is operating at a temperature of
28.7 �C and all measurements were repeated 10 times.

3.3 | Data processing and quantification

The least-squares model-based fitting, described in
Section 2, was implemented in a custom software written
in Python 3.5.

For the estimation of the signal intensities from an
1H NMR spectrum, the model parameters (chemical
shifts, J-couplings, peak widths, and phasing values) were
optimised iteratively with the L-BFGS-B algorithm from
the optimisation package of the Python SciPy tool-
box.[5,33] For the analysis of the benchtop 1H NMR data,
initial guesses, that is, prior knowledge, for the model
parameters were adopted from the high-field analysis. In
addition, zero-filling with a factor of 2 was applied to all
benchtop NMR signals.

Each spectrum within a PFG 1H NMR data set was
adjusted separately and the estimated set of signal inten-
sities for each species ck was used to determine the corre-
sponding self-diffusion coefficient via Equations (4)
and (5) for the high-field and benchtop PFG 1H NMR
data sets, respectively. The non-linear least-squares fit of
the Stejskal-Tanner equation was performed either in
Python with the Levenberg-Marquardt algorithm that is
used by the curve fit function or in MATLAB using the
lsqnonlin solver that is based on the trust-region-
reflective algorithm, both yielding equivalent results. In
the following, this procedure is referred to as the stan-
dard procedure.

The inclusion of prior knowledge about the signal
intensities, i.e., the relation via the Stejskal-Tanner equa-
tion, allows the simultaneous fitting of the signal intensi-
ties and the corresponding self-diffusion coefficients. This
might be especially helpful for the analysis of complex
NMR spectra, e.g., with overlapping peaks and low
signal-to-noise ratios, as additional information reduces
the number of degrees of freedom and thus improves the
model-fitting process.
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In order to investigate this possibility, synthetic PFG
1H NMR data sets with known self-diffusion coefficients
were generated and analysed with the sequential and the
simultaneous fitting procedure. The spectra were mod-
elled with two overlapping peaks (A and B). In addition,
random noise was added to the data to achieve low
signal-to-noise ratio conditions, which we expect to
favour the simultaneous analysis approach. The true
values for the self-diffusion coefficients were set to DA ¼
3:5 �10�9 m2s�1 and DB ¼ 1:5 �10�9 m2s�1. In addition,
two different scenarios were studied. In the first scenario,
the sequential and simultaneous fitting procedures were
compared analysing a synthetic PFG 1H NMR data set
with 16 gradient steps. The second, worst case, scenario
demonstrates the performance of both procedures if only
five gradient steps were measured.

The synthetic data sets of both scenarios were ana-
lysed with the sequential procedure as described above.
For the simultaneous fitting, Equation (5) was implemen-
ted in Python as a Gaussian prior for the decay of the
amplitudes of both peaks. Based on the fitting results
obtained from the sequential analysis, the self-diffusion
coefficients and the amplitudes were adjusted in a next
step simultaneously, but iteratively for both peaks.

To estimate the uncertainty of the PFG 1H NMR mea-
surements, it is necessary to differentiate between differ-
ent types of errors that contribute to the overall error of
the estimated self-diffusion coefficients. First, the values
of the self-diffusion coefficients may be erroneous due to
differences between the experimental and the modelled
NMR signals. For example, inhomogeneities in the mag-
netic field lead to distortions of the peak shape, and the
assumption of ideal signatures is no longer valid. Further,
in the standard model-based fitting procedure, the ampli-
tudes are assumed to be Gaussian distributed, and only
point estimates of the amplitudes are considered for the
estimation of the self-diffusion coefficients. By MCMC
sampling the complete distribution of the amplitudes can
be estimated. This offers the possibility to calculate the
mean values and the variance of the amplitudes, which
would give more information on the accuracy of the esti-
mated self-diffusion coefficients. Another source of error
is the accuracy of the fit of the Stejskal-Tanner equa-
tions (4) and (5) to the PFG 1H NMR data. This accuracy
can be quantified with the standard error of the opti-
mised parameters, that is, the self-diffusion coefficient,
that is given by the least-squares solver. Since several rep-
etitions of the PFG 1H NMR experiments were per-
formed, a variance in the estimated self-diffusion
coefficients between the different experiments is also to
be expected.

The estimation of the overall error of the self-
diffusion coefficients is briefly described below. First,

MCMC sampling was used to calculate the distributions
of amplitudes for each signal in each of the 16 spectra
from a PFG 1H NMR data set. Each amplitude was sam-
pled with 4 random walkers and 1,000 steps for the sim-
ple mixtures and 250 steps for the complex mixtures. The
range for the chemical shift values for MCMC sampling
was set to �σ, where σ is the standard deviation of the
individual fits, obtained in a least-squares sense, for each
spectra in the data set (cf. Section 2). The range for the
peak widths was set to �0:05.

Sampling the amplitude of one signal in a PFG
1H NMR data set results in 16 distributions for the ampli-
tude, one distribution for each spectrum with a different
gradient strength. Then, one point was randomly taken
from each distribution, resulting in a series of 16 ampli-
tudes one for each gradient strength. For each of these
series, the self-diffusion coefficient was determined with
the least-squares fit of the corresponding Stejskal-Tanner
equation, i.e., Equation (4) or (5). This results in a num-
ber of distributions for the self-diffusion coefficients
equal to the number of samples drawn from the ampli-
tudes. Each distribution is thereby characterised by the
mean and the variance of the self-diffusion coefficient. To
obtain the overall distribution of the self-diffusion coeffi-
cient, 1,000 random samples were drawn from each dis-
tribution. From these final distributions, the mean and
the variance of the self-diffusion coefficients were
extracted and used to define the confidence intervals for
each self-diffusion coefficient, which are shown as error
bars in the following figures. These confidence intervals
account for the errors of the model fit, the variance of the
amplitudes, and the uncertainty of the fit of the Stejskal-
Tanner equation.

The determination of signal intensities by direct inte-
gration for the high-field PFG 1H NMR data of the simple
mixtures was performed in MestreNova (Mestrelab,
v14.2.0). Phase and baseline correction as well as zero-
filling and apodisation were done automatically. The
integration boundaries were set to encompass all peaks of
the species of interest. The qGSD analysis of the benchtop
PFG 1H NMR data of the complex mixtures was also per-
formed in MestreNova. The spectra were manually phase
corrected, and the baseline was adjusted using automated
algorithms from MestreNova. The qGSD algorithm was
applied with eight improvement cycles. With the multi-
plet manager, overlapping peaks were assigned to the
corresponding species.

From the peak intensities determined with direct
integration as well as with qGSD, the self-diffusion coeffi-
cients were estimated with the Equations (4) and (5). The
processing parameters of the high-field and the benchtop
PFG 1H NMR spectra can be found in the supporting
information.
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4 | RESULTS AND DISCUSSION

4.1 | Test study: Simultaneous approach

The synthetic PFG 1H NMR spectra for both scenarios
are shown in Figure 2, where the five spectra of the sec-
ond scenario are marked with red rectangles. Both peaks
strongly overlap and have a low signal-to-noise ratio,
which makes the analysis, especially of peak A with a
higher self-diffusion coefficient, challenging.

The PFG 1H NMR data were analysed using the
sequential procedure, i.e., estimation of signal intensities
using the model-based approach and fitting Equation (5)
to determine D, and the simultaneous procedure,
i.e., coupling of amplitudes via Equation (5) and simulta-
neous fitting of D and the amplitudes. Both peaks show,
independent of the number of gradient steps, a signifi-
cant attenuation of their amplitude, which allows the
determination of the self-diffusion coefficients for all data
sets. It is also obvious that the signal intensities that were
estimated with the sequential model-based approach

(standard procedure) scatter more compared to the signal
intensities after the simultaneous fitting. This is due to
the fact that in the latter case the amplitudes are corre-
lated via the Stejskal-Tanner equation and an optimisa-
tion of the self-diffusion coefficients leads to smooth
values for the amplitudes. Figure 3 shows the signal
intensities of peak A and B of one synthetic PFG
1H NMR data set for each scenario, after the fitting with
the sequential and the simultaneous procedure. The solid
line, represents the Stejskal-Tanner fit of Equation (5).

To compare the performance of each procedure for
the estimation of the self-diffusion coefficients, 20 PFG
1H NMR data sets were synthesised and analysed using
the sequential and simultaneous fitting procedure.
Table 3 shows the mean values of the self-diffusion
coefficients from these analyses and compares these
with the true values for the self-diffusion coefficients.
Root mean square errors (RMSE) between the true and
the estimated self-diffusion coefficients were calcu-
lated from

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1

Dest
n �Dtrue

� �2
,

vuut ð6Þ

where N is the number of synthesised PFG 1H NMR
data sets.

For scenario 1 in which 20 PFG 1H NMR data sets
with 16 gradient steps were analysed with the sequential
and the simultaneous procedure, the estimated mean
values of the self-diffusion coefficients for both peaks A
and B are close to the true values of the self-diffusion
coefficients. Also, for scenario 2 in which 20 PFG
1H NMR data sets with only five gradient steps were ana-
lysed, a good agreement between the true and the esti-
mated self-diffusion coefficients is achieved. Due to the
higher true value of the self-diffusion coefficient of
peak A, which leads to a stronger attenuation of the
NMR signal, the overall differences between the true and
estimated values of self-diffusion coefficient for peak A
are slightly larger than those for peak B. However, there
is no significant difference between the sequential and
the simultaneous fitting procedure. For both procedures,
the mean values of the self-diffusion coefficients were
similar. Furthermore, the RMSE values do not differ sig-
nificantly between the sequential and the simultaneous
fitting procedure. Thus, although the simultaneous fitting
procedure leads to smooth amplitudes and thus to a visu-
ally better fit to the Stejskal-Tanner equation, the final
results are comparable to those of the sequential fitting
procedure, even for low signal-to-noise ratios. The use of
the simultaneous fitting procedure for the analysis of
PFG 1H NMR data was in this work not necessarily found

FIGURE 2 Synthetic PFG 1H NMR data set with two peaks

(A ≈ 4.8 ppm, B ≈ 5 ppm) for comparison of the sequential and

simultaneous fitting procedure; scenario 1: 16 spectra, scenario 2:

5 spectra (marked with red rectangles)
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to be more advantageous compared to the sequential pro-
cedure. Thus, only the sequential fitting procedure was
used in the following for the analysis of experimental
PFG 1H NMR data. The inclusion of the prior knowledge
could be more beneficial for systems with more complex
models (e.g., kinetic models or more complex component
models), which is part of ongoing research.

4.2 | Simple mixtures

For all simple mixtures, namely, MDEA (1:2), MDEA
(1:100), glycerol (1:100), Bruker standard, acetonitrile,

and water, PFG 1H NMR experiments were acquired on
the high-field and on the benchtop NMR spectrometer.
The signal intensities of all species were estimated using
the model-based approach, and the self-diffusion coeffi-
cients were determined via Equations (4) or (5). The mea-
sured 1H NMR signals of all simple mixtures are plotted
in Figure 4 together with the modelled NMR signals,
which are obtained after the model-based fitting. Each
plot shows the 1H NMR signals acquired on the high-field
NMR spectrometer at 400 MHz and the same spectrum
acquired on the benchtop 43 MHz NMR spectrometer.
Also, the residuals between the measured and the mod-
elled NMR signals are displayed, respectively.

FIGURE 3 Normalised signal intensities of peak A (red) and B (blue) as a function of the gradient strength and the corresponding

Stejskal-Tanner fit (solid lines) for one PFG 1H NMR data set analysed with the sequential (left) and the simultaneous (right) fitting

procedure; top: scenario 1, bottom: scenario 2

TABLE 3 Comparison of the sequential and the simultaneous fitting procedure for the estimation of self-diffusion coefficients from

synthetic PFG 1H NMR data sets with two peaks A and B

Scenario 1 Scenario 2

Peak A Peak B Peak A Peak B

Mean RMSE Mean RMSE Mean RMSE Mean RMSE

True 3.50 - 1.50 - 3.50 - 1.50 -

Sequential 3.47 0.16 1.52 0.07 3.51 0.23 1.51 0.10

Simultaneous 3.55 0.17 1.51 0.06 3.58 0.26 1.50 0.10

Note: Scenario 1: 16 gradient steps; scenario 2: 5 gradient steps; the mean values of the self-diffusion coefficients of both scenarios were calculated from 20
synthesised PFG 1H NMR data sets, respectively, and are expressed in units of 10�9 m2 s�1.
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The NMR signals acquired with the high-field NMR
spectrometer show sharp and well separated peaks. In
contrast, on the benchtop NMR spectrometer, the peaks
become much broader and merge so that a separation of
the different peaks of a species with standard analysis
methods, for example, direct integration is no longer pos-
sible. With the use of the model-based approach, which
uses a quantum mechanical model to describe the individ-
ual signatures, it is possible to resolve the different peaks
of each species. As can be seen in the Figure 4a,b,d, even
the complex MDEA and glycerol NMR signals, in which

many transition peaks occur, are well described with the
QM model-based approach.

Also, the dilution ratio of MDEA has an influence on
the measured NMR signal and the corresponding self-
diffusion coefficient as the viscosity decreases with
increasing amount of D2O. The change in viscosity affects
the molecular mobility that causes a significant change
in the self-diffusion coefficient and the relaxation rate, so
that the peaks are much narrower at a high dilution ratio.
For the measurement of self-diffusion coefficients in
high-viscosity samples, higher durations for the gradient

FIGURE 4 1H NMR spectra of all simple mixtures acquired with the high-field (top) and benchtop (bottom) NMR spectrometer;

measured NMR signal ( ), model-based fit ( ). The different shaded colours correspond to different peaks of the same species. The

insets in each figure show the residual after the model fitting process
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pulse and diffusion times are required to obtain the same
attenuation as for low-viscosity samples (cf. acquisition
parameters of the PFG 1H NMR experiments in the sup-
porting information). High δ and Δ values, however, lead
to phase distortions in the acquired NMR signal due to J-
modulation. This is observed in Figure 4a and explains
the larger deviations between the modelled and the mea-
sured NMR signal of the high concentrated MDEA sam-
ple compared to the MDEA sample with high dilution
ratio (cf. Figure 4d). Model misspecifications due to J-
modulation in the acquired NMR signal is a well-known
problem. The use of different, more complicated, relaxa-
tion models to set up the chemical signatures could
account for this effect. However, in our method, we use a
simple relaxation model that provides sufficiently accu-
rate results for our purposes.

In the high-field NMR spectrum of the Bruker stan-
dard (cf. Figure 4e), the peak for water appears at
≈4.7 ppm, and the peaks of the methanol doublet, result-
ing from the coupling between the protons from the CH3

group and the 13C atom, appear at ≈3.2 and ≈3.5 ppm.
Due to the high coupling constant between the protons
of the CH3 group and the 13C atom of approximately
142 MHz, the two peaks of the methanol doublet are
spread in the benchtop NMR spectrum and appear at
≈1.7 and ≈5 ppm. Besides water and methanol, the sam-
ple consists of D2O and GdCl3. Both species do not
appear in the NMR signal but GdCl3 with its strong para-
magnetic properties leads to an increase in the peak
width, which minimises the influence of imperfections in
the shim and makes the model fit better, as can be seen
in the residual spectra on the top left of each plot.

Water and acetonitrile are in principle the simplest
species of these set of chemical components, as both are
used as pure components and their individual NMR sig-
nals show only one peak. The difficulty, however, of
using high-field NMR spectroscopy for the estimation of
self-diffusion coefficients of pure components is the high
signal intensity that can lead to radiation damping and
thus phase distortions in the acquired NMR signals. Radi-
ation damping is not included in our model and hence
introduces errors into the model-based approach. To
minimise radiation damping, smaller NMR sample tubes
with an outer diameter of 2.5 mm were used. However,
the occurrence of radiation damping cannot be
completely excluded, which may explain the relatively
high residuals in the high-field NMR signals of water and
acetonitrile that can be observed in Figure 4c,f. Also,
small fluctuations in the magnetic field may have an
impact on the quality of the high-field NMR signals and
thus on the residuals between the measured and the
modelled NMR signals. When using benchtop NMR spec-
trometers, radiation damping and magnetic field

inhomogeneities play a subordinate role, because of the
lower magnetic field strength compared to the high-field
NMR spectrometer. The application of the model-based
approach for the estimation of self-diffusion coefficients
from experimental PFG 1H NMR data was first validated
using the high-field NMR experiments of the simple mix-
tures. Self-diffusion coefficients were estimated using the
model-based approach. For comparison, all spectra were
analysed with direct integration. If the NMR signal is free
from overlapping peaks, direct integration is the method
of choice for the estimation of the signal intensities,
because this method is robust against lineshape distor-
tions. In contrast, the model-based approach assumes
ideal signatures for the different species, and if the line-
shapes of the peaks are distorted, the estimated signal
intensities may be biased. To overcome this problem in
model-based fitting, we use the new approach mentioned
in Section 2 to adjust the residuals between the measured
and the modelled NMR signal for all high-field NMR sig-
nals. For both procedures, model-based fitting and direct
integration, the mean values of the self-diffusion coeffi-
cients for all species in the simple mixtures were calcu-
lated from the 10 repetitions of the PFG 1H NMR
experiments. Figure 5 shows the relative deviation
between the mean values of the self-diffusion coefficients
estimated with the model-based approach and with direct
integration, for each species of the simple mixtures. In
general, a good agreement between both analysis method
is achieved. The differences between the model-based
approach and direct integration for the self-diffusion
coefficient of water in the Bruker standard sample are
approximately zero. The mean values of the self-diffusion
coefficients of glycerol and pure water show the largest
deviations.

In the PFG 1H NMR data set of water, phase errors
near the peak edges in the NMR spectrum with the

FIGURE 5 Relative deviation between the mean value of the

self-diffusion coefficient determined with the model-based

approach (MB) and with direct integration (DI); the mean was

calculated from 10 high-field PFG 1H NMR experiments,

respectively
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lowest gradient strength are observed. This is caused by
radiation damping and leads to a reduction of the peak
areas, and the estimated self-diffusion coefficient is
slightly biased. Radiation damping was observed in the
samples of water and acetonitrile, which explains the
larger deviations between the analysis methods for these
samples.

Also, errors in the model fit or in the adjustment of
the residuals can contribute to deviations between the
model-based approach and direct integration. Neverthe-
less the deviation of the mean values of the self-diffusion
coefficients for all species are less than 1 %. In the follow-
ing analysis, the high-field results of the model-based
approach were used to assess the benchtop PFG 1H NMR
experiments.

Figure 6 shows the self-diffusion coefficients for all
species estimated from the 10 benchtop PFG 1H NMR
experiments plotted against the self-diffusion coefficients
determined from the high-field PFG 1H NMR experi-
ments. For a better visualisation, the minor plots show
an expansion of the interesting regions for all species.
The self-diffusion coefficients of the different species lie
in a range between ≈ 0:027 �10�9 m2s�1 for MDEA (1:2)

and ≈ 4:5 �10�9 m2s�1 for acetonitrile. Pure water at
28.7 �C has a self-diffusion coefficient of
≈ 2:51 �10�9 m2s�1. The higher the dilution of MDEA
and glycerol the higher the self-diffusion coefficients of
the species as the viscosity decreases and thus the molec-
ular motion of the spins increases. In this parity plot, the
diagonal shows the ideal case, in which the self-diffusion
coefficients determined from the benchtop PFG 1H NMR
signals match those from the high-field PFG 1H NMR
experiments. Since hardly any differences between the
self-diffusion coefficients determined from the benchtop
and the high-field PFG 1H NMR experiments can be
identified in the original view, the results for all species
are additionally shown enlarged in the minor plots. Each
point in the vertical dimension corresponds to an esti-
mated self-diffusion coefficient from an experiment
acquired with the benchtop NMR spectrometer and a
horizontal point corresponds to a result of a high-field
NMR experiment. In the centre, the mean values of the
self-diffusion coefficients of all 10 benchtop and high-
field PFG 1H NMR experiments are plotted. The error
bars were calculated for each species by MCMC sam-
pling as described in Section 3.3. It can be seen that the

FIGURE 6 Parity plot of the self-diffusion coefficients of MDEA (1:2) ( ), MDEA (1:100) ( ), glycerol (1:100) ( ), methanol (Bruker

standard) ( ), water (Bruker standard) ( ), water (pure) ( ), and acetonitrile (pure) ( ) at 28.7 �C estimated from the 10 benchtop ( ) and

high-field ( ) PFG 1H NMR experiments, respectively, with the model-based approach; the minor plots show an expansion of the region of

interest for each species; the dashed lines correspond to the diagonal of the parity plot; the error bars were calculated according to the

procedure described in Section 3.3 and are centred around the mean values of the self-diffusion coefficients determined from the benchtop

and high-field PFG 1H NMR experiments, respectively. The grey shaded area shows the 2 % deviation from the diagonal (ideal) line
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scatter of the self-diffusion coefficients between the rep-
etitions of the PFG 1H NMR experiments are covered by
the error bars. Overall, a good agreement between the
self-diffusion coefficients determined from the benchtop
and the high-field PFG 1H NMR experiments is
achieved. All benchtop values show deviations less than
2 % compared to the high-field values for the self-
diffusion coefficients. This deviation has an order of
magnitude equal to the accuracy of standard NMR mea-
surements. Thus, the model-based approach was found
to be well suited for the determination of self-diffusion
coefficients from benchtop PFG 1H NMR data sets and
was in the following applied to a more complex mixture.

4.3 | Complex mixtures

After the validation of the model-based approach for the
determination of self-diffusion coefficients from benchtop
PFG 1H NMR measurements using the simple mixtures
and pure components, a more complex mixture,

consisting of MDEA, glycerol, 1,2-propylene glycol, etha-
nol, and acetonitrile highly diluted in water, was studied.
Two mixtures with different compositions were prepared,
and for both mixtures, 10 PFG 1H NMR experiments
were measured on the high-field and on the benchtop
NMR spectrometer, respectively. Figure 7 shows a
1H NMR spectrum of the first mixture, measured with
the high-field and the benchtop NMR spectrometer. On
the high-field 1H NMR spectrum, the peaks of all species
can be well separated. However, the analysis is not triv-
ial, since peak overlapping at about 3.5 ppm can also be
observed. The signal intensity of glycerol, for example,
can be hardly determined using standard analysis
methods, such as direct integration. The same 1H NMR
spectrum acquired with the benchtop NMR spectrometer
is plotted in the bottom view of Figure 7. In the region at
about 3.5 ppm, significant overlap of the peaks of glyc-
erol, 1,2-propylene glycol, MDEA, and ethanol is
observed. Also, the triplets of ethanol and 1,2-propylene
glycol at about 1 ppm strongly overlap. With the model-
based approach, it is possible to resolve the signals of all

FIGURE 7 1H NMR spectrum of the complex mixture 1 measured with the high-field (top) and the benchtop (bottom) NMR

spectrometer together with the signatures of MDEA ( ), glycerol ( ), 1,2-propylene glycol ( ), ethanol ( ), and acetonitrile ( )

obtained with the model-based approach. The plot in the middle shows the full view of each 1H NMR spectrum, respectively
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species as can be seen by the signatures, which are plot-
ted with different colours.

All PFG 1H NMR data sets of both complex mixtures
were analysed with the model-based approach. The self-
diffusion coefficients of all species were determined
from the signal intensities using Equations (4) and (5)
for the high-field and benchtop PFG 1H NMR data sets,
respectively. In Figure 8, the self-diffusion coefficients
of each species in complex mixture 1 estimated from
benchtop PFG 1H NMR data sets are plotted against
those obtained from the high-field PFG 1H NMR data
sets. The minor plots show an expansion of the interest-
ing region for each species. The vertical and horizontal
values correspond to the self-diffusion coefficients, esti-
mated from each of the 10 repetitions of the benchtop
and high-field PFG 1H NMR experiments, respectively.
The error bars are estimated with the MCMC method
described in Section 3.3 and are centred around the
mean values of the self-diffusion coefficients, for all

benchtop and high-field PFG 1H NMR experiments. All
values for the self-diffusion coefficients lie close to the
diagonal, for example, a good agreement between the
benchtop and the high-field results is achieved. A slight
systematic bias between the benchtop and the high-field
measurements was observed only for glycerol and
water. For water, the differences can be explained by
radiation damping that occurred in the high-field NMR
signals due to the high concentration of water in the
samples. The differences for glycerol can be explained
by possible errors in the model fit, which also led to dif-
ferences between the model-based approach and direct
integration (cf. Figure 5). However, the differences
between the self-diffusion coefficients estimated with
the benchtop and the high-field NMR spectrometers are
less than 2 %, even in these cases. Thus, these results
demonstrate that the model-based approach is able to
obtain quantitatively accurate measurements of the
self-diffusion coefficients in this complex mixture,

FIGURE 8 Parity plot of the self-diffusion coefficients of MDEA ( ), glycerol ( ), 1,2-propylene glycol ( ), ethanol ( ), acetonitrile ( ),

and water ( ) at 28.7 �C estimated from the 10 benchtop ( ) and high-field ( ) PFG 1H NMR experiments of the complex mixture

1, respectively, with the model-based approach; the minor plots show an expansion of the region of interest for each species; the dashed line

corresponds to the diagonal of the parity plot; the error bars were calculated according to the procedure described in Section 3.3 and are

centred around the mean values of the self-diffusion coefficients determined from the benchtop and high-field PFG 1H NMR experiments,

respectively. The grey shaded area shows the 2 % deviation from the diagonal (ideal) line

STEIMERS ET AL. 1127
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despite significant overlap in the peaks associated with
the different components.

For a better assessment of the use of benchtop NMR
spectrometers for the measurement of self-diffusion coeffi-
cients in complex mixtures, a second composition of the
species in the mixture was studied. In addition, all bench-
top PFG 1H NMR data sets of both mixtures were analysed
with qGSD. Since a complete resolving of all peaks by
qGSD was not possible, only one peak per species was
considered for the qGSD analysis. The intensities of etha-
nol and 1,2-propylene glycol were determined using the
peaks at about 1 ppm, for the intensities of MDEA and
acetonitrile the singlets at 2.2 and 2 ppm were analysed
and for glycerol the largest peak at about 3.55 ppm was
used. The benchtop NMR results of both analysis
methods, model-based fitting and qGSD, were compared
to the corresponding high-field results. For this compari-
son, an average value for the self-diffusion coefficients of
all species was calculated from the high-field PFG
1H NMR experiments, for both complex mixtures, respec-
tively. Figure 9 shows the relative deviations between the
self-diffusion coefficients estimated from the benchtop
PFG 1H NMR experiments and the mean value of the
high-field self-diffusion coefficients for the model-based
approach and qGSD and for both complex mixtures.

The filled circles show a comparison between the self-
diffusion coefficients of complex mixture 1 estimated from
the benchtop and the high-field PFG 1H NMR experi-
ments, both analysed with the model-based approach,
similar to Figure 8. A good agreement between the bench-
top and the high-field self-diffusion coefficients is
achieved. Also for complex mixture 2, displayed in dia-
monds, the self-diffusion coefficients estimated with the
model-based approach lie close to the high-field self-

diffusion coefficients, that is, low relative deviations are
observed. In addition, no systematic bias between the glyc-
erol and water self-diffusion coefficients are observed, sug-
gesting that the deviations that were observed for mixture
1 depend on the sample or may arise from a possible mea-
surement error (e.g., due to a slight difference in tempera-
ture in either the high-field or benchtop NMR data). For
both mixtures, slightly larger errors are obtained for etha-
nol and 1,2-propylene glycol as these components show
significant peak overlap and lineshape distortions. The
lineshape distortions are mainly caused by J-modulation
due to the use of field-gradient pulses, and could possibly
be corrected with a more advanced relaxation model.
However, even for these molecules, the discrepancy
between the high-field and benchtop data is small.

The self-diffusion coefficients, estimated from the differ-
ent benchtop PFG 1H NMR data sets with qGSD also agree
well with the high-field results. However, the self-diffusion
coefficients estimated with qGSD are more scattered com-
pared to those obtained with the model-based approach,
and more outliers are observed. This is also evident when
the average RMS error for both mixtures is compared for
both analysis methods. For the analysis with the model-
based approach, an average RMS error of 0.011 is obtained,
whereas the average RMS error for qGSD is significantly
higher at 0.026. Thus, the model-based approach is better
suited for the estimation of self-diffusion coefficients from
benchtop NMR spectra with high accuracy.

5 | CONCLUSIONS

In this work, we presented a QM model-based approach
for the estimation of self-diffusion coefficients from
benchtop NMR signals that is capable of dealing with the
complex NMR signals often observed when using bench-
top NMR instruments.

The model-based quantification is combined with the
Bayesian statistics that allows the inclusion of prior knowl-
edge into the model-based fitting process. It has been dem-
onstrated that even overlapping peaks from complex
benchtop NMR signals can be resolved, when prior infor-
mation of the model parameters from high-field measure-
ments is available. However, in the absence of prior
information on the model parameters, such as chemical
shift values, the quantification results may be less accurate.

For the estimation of the self-diffusion coefficients,
the inclusion of prior knowledge about the correlation of
signal intensities via the Stejskal-Tanner equation did not
turn out to be beneficial, since no significant improve-
ment of the results was obtained and the implementation
is even more complex compared to the standard fitting
procedure. The inclusion of prior knowledge for a set of

FIGURE 9 Relative deviation between the self-diffusion

coefficients of each species in complex mixtures 1 (circles) and

2 (diamonds), determined with the model-based approach ( ) and

qGSD ( ) from the benchtop measurements and the mean value

of all high-field PFG 1H NMR measurements determined with the

model-based approach
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NMR signals might be more advantageous for other types
of measurements, such as the determination of kinetic
constants, which is part of ongoing research.

With the model-based approach, the estimated self-
diffusion coefficients from the benchtop PFG 1H NMR data
sets were in good agreement with the high-field self-
diffusion coefficients, which were used to assess the perfor-
mance of the model-based approach. Both benchtop and
high-field analyses showed an agreement of 2 % for the self-
diffusion coefficients determined from the simple and com-
plex mixtures. Compared to the self-diffusion coefficients
estimated with qGSD, the results obtained with the model-
based approach showed less scatter, so that estimation of
self-diffusion coefficients with the model-based approach is
more robust compared to the qGSD analysis.

The use of benchtop instruments in combination with
the model-based approach is a good option when accu-
rate values for self-diffusion coefficients are required.
With some prior information about the molecular struc-
ture of the species and their assignment, even benchtop
signals with many different species can be analysed with
low effort. Although knowledge of the species in the mix-
ture is required, the method is particularly suitable for
routine measurements with changing composition of the
species in a mixture.
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