
Received: 15 June 2021 Accepted: 23 September 2021

DOI: 10.1002/pamm.202100073
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Conforming Boundary Conditions
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Lattice Boltzmann methods [1] have been extended beyond their initial usage in transport problems, and can be used to
solve a broader range of partial differential equations, e.g. the wave equation [2]. Thereby they can be utilized for fracture
mechanics [3]. In the context of antiplane shear deformation we previously examined a stationary crack [4, 5] with a finite
width. In this work we present two implementation strategies for non-mesh conforming boundary conditions, for which
the bounding geometry does not need to adhere to the underlying lattice. This rectifies problems in modeling the crack. A
numerical example shows the improvement compared to the previous results.

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Lattice Boltzmann Method for Antiplane Shear Deformation

A linear elastic solid body is considered. The displacement w(x, y, t) is regarded only in the x-y-plane, with out of plane
loading applied along the z-axis. For such a system, Hooke’s law together with a linear displacement-strain-relation reduces
to a scalar 2D-wave equation, describing the time evolution of the antiplane shear deformation.

Lattice Boltzmann methods (LBM) use a statistical approach, where distribution functions fα describe the state of the
system, i.e. the state of the bodies deformation in this case. These are defined on a discretized lattice with spacing ∆h, where
each point is linked to its neighbors. The lattice velocities cα facilitate the exchange of information within one time step ∆t.
For α ∈ {0, 1, 2, 3, 4} this is called a D2Q5-scheme. An additional set of distribution functions fα

eq per site describes a local
equilibrium state. The time evolution of the distribution functions is given by relaxation towards these local equilibria, with
relaxation time τ , via the lattice Boltzmann equation (LBE)

fα (x+ cα∆t, t+∆t) = fα(x, t)− 1

τ

[
fα(x, t)− fα

eq(x, t)
]
. (1)

Which information is represented by the distribution functions depends on the model. For solving the wave equation,
Guangwu Yan [2] proposed the interpretation as the velocity

∑

α

fα =
∂

∂t
w = ẇ, with w(x, t+∆t) = w(x, t) + ∆t ẇ(x, t+∆t). (2)

The equilibrium distribution functions are defined as

f0
eq =

∂w

∂t
− 2λw

c2
and fκ

eq =
λw

c2
for κ ∈ {1, 2, 3, 4}, with λ =

c2s
∆t

(
τ − 1

2

)−1

(3)
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Fig. 1: Lattice configuration at a boundary. a) The macroscopic implementation approximates target values at xB by interpolating in cells
CI , CII containing xI , xII . b) The mesoscopic implementation considers the balance of momentum of a cell around xB .
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2 Non-Mesh Conforming Boundary Conditions

At a boundary some distribution functions are missing since the associated neighboring points lie beyond this boundary. Thus
the prescribed boundary conditions need to be translated to these missing values of the distribution functions since the LBE
(1) can otherwise not be used to update the distribution functions at boundary lattice points.

The macroscopic strategy utilizes interpolation to set target values. For a given boundary lattice point xB the closest
point on the boundary xBC is identified. Along a line through xB and xBC , as well as additional points in the interior, the
displacement wB is approximated by a second order polynomial, see Fig. 1 a). With proper constraints, either for Dirichlet or
Neumann type boundary conditions, this leads to a linear system of equations SwB(t+∆t) = R(t+∆t), that can be solved
for the missing values. Since the interpolation regarding any xB can involve other points along the boundary, this is a global
system for all boundary lattice points. Now each of the nmiss missing distribution function at xB is set to an the same value

fα(xB , t+∆t) =
1

nmiss


w(xB , t+∆t)− w(xB , t)

∆t
−

∑

β∈FxB

fβ(xB , t+∆t)


 , ∀α /∈ FxB

, (4)

where FxB
represents the known distribution functions from interior neighbors.

The mesoscopic implementation is based on cells surrounding a boundary lattice point xB , see Fig. 1 b), but only works
for Neumann type boundary conditions. For such a cell the balance of momentum of one time step can be expressed using a
finite difference as

ρVC
ẇ(xB , t+∆t)− ẇ(xB , t)

∆t
= T ext

C + T int
C . (5)

Herein TC describes the total traction for both the external boundary, which is given by the boundary condition, and the
internal boundaries shared with neighboring cells. By identifying the contributions of distribution functions that are already
known, the missing values can each be set to

fα(xB , t+∆t) =
1

nmiss


T ext

C ∆t

ρVC
+ ẇ(xB , t)− f0(xB , t+∆t)−

∑

β ̸=0,β∈FxB

fβ(xB , t)


 , ∀α /∈ FxB

(6)

Fig. 2 shows results for the numerical example of a stationary crack, as described in [5]. The stress intensity factor (SIF) is
evaluated close to the crack tip at three distances. Fig. 2 b) compares both implementations presented here directly to previous
results [5] of mesh conforming implementations and additionally to the finite element method (FEM). With these non-mesh
conforming boundary conditions, the SIF is overall closer to the analytical solution, but still not as close as the FEM.
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Fig. 2: The example of a stationary crack. a) A contour plot at t = 1, corresponding to the peak of the SIF. b) SIF with respect to time for
different computational models. left to right: mesh conforming model, macroscopic, mesoscopic non-mesh conforming model, FEM.
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