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Abstract

The initial value problem for the modified Vlasov equation
with a mollification parameter §>0, as introduced by Batt,
has a unique global solution in the weak sense whenever
foe£L1 and fozo A-a.e. Assuming boundedness of f0 and bounded-
ness of the kinetic energy, it is shown that, as 6-0, there
are subsequences 6,70 such that the corresponding solutions
converge weakly in the measure-theoretical sense. The limits
are shown to be global weak solutions of the initial value
problem for Vlasov's equation, and these solutions are seen
to be weakly continuous with respect to t. For the plasma
physical case, boundedness of the kinetic energy is a conse-

quence of energy conservation.

AMS (MOS) Classification: 35 Q 99, 82 A 45, 85 A 05.



An Existence Theorem for the unmodified Vlasov Equation

Reinhard Illner and Helmut Neunzert

The mathematical description of the state of a stellar system
or collisionless electrostatic plasma leads to an initial

value problem for the so-called Vlasov equation. In the stellar
dynamical case, this equation was first derived by Jeans in
1915. The initial value problem amounts to finding a function

f = £(t,x,v) such that

o f

(1) g + <V, 0> + <K, v f> =0, £(0,x,v) = f_(x,v)

for t=0, (x,v) E}’x)} = IR6 , where

K(t,x):= - j liﬁ:Z% [p(t,y)=-n(y) ]ldy
| x-y|
(2) x
p(t,y):= f f(t,y,v)dv
)}'.

and y and n are given. f(t,-) can be interpreted as the den-
sity of a stellar or electron gas in phase space X x ')9 at
time t, fO being a given initial value. The case y>0, n=0
corresponds to the stellar dynamical problem, where the force
K results from the Newtonian potential associated with the
spatial density p. For y<O, (1) and (2) describe the evolution
in time of an electron gas with a fixed ion background n, and
K is the Coulomb force due to the spatial charge density p-n.
The initial value problem (1)-(2) has led to a series of
existence investigations, started by Kurth [ 7 ], who proved
an existence theorem locally-in-time. Later, Batt [ 2 ] con-

sidered a modified problem, for which existence and uniqueness
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results could be obtained under various conditions on fo
(see, e.g., Batt [ 2], Neunzert [9 ]).

More recently, Batt [ 3 ] and Horst [in his dissertation,
Munich 79] have formulated global existence theorems for

the stellar dynamical problen, assuming certain symmetries
for the initial values and hence for the solutions. Moreover,
Arsen'ev [ 1] has shown the globally-in-time-existence of

a weak solution for the plasma physical problem.

In this paper we start with the "mollified" or modified
equation introduced by Batt [ 2], which results from (2) by
mollifying the potential T%T in a é-neighborhood of the origin.
Then, using the fact that for any 6>0 the mollified problem
has (weak) solutions f6 under rather weak conditions imposed
on f (see [ 9]), the globally-in-time existence of a (weak)
solution of (1)-(2) is shown by letting §>0. As a crucial

assumption, we will suppose that the kinetic energy

j vzfs(t,x,v)dxdv
xx¥

of the system remains bounded for all t uniformly in §. As we
shall see, this assumption is always true in the plasma phy-
sical case (y<0). Our existence result is hence similar to
Arsen'ev's. The conditions imposed on fO are comparable, but,
in our case, the obtained solution is smoother with respect
to t. The methods used are largely different from Arsen'ev's
and we believe that our proof is easier to comprehend and

more closely related to older results concerning the modified

equation.



In chapter 1 we present the needed notation and results
for the mollified problem. In chapter 2, assuming bounded-

ness of the kinetic energy, we show the existence of a

(n)
t

the densities f6 (t,+) converge weakly to a limit measure
n
Mg for all t. e is seen to have a density f(t,-), and the

sequence 6n+0 such that the measures u associated with

mapping t+ut is proven to be weakly continuous. Chapter 3
contains the proof that this density is a weak solution of

the problem (1)-(2).

In the last chapter we deal with energy conservation and its

consequences for the plasma physical case.

§ 1 Results for the mollified case.

We start with some notation. A point in phase space Hgi is
3 3

denoted by P=(x,v), where x €¥=R", vE)}=IR stand for the

position and velocity coordinate respectively. |P|,|x]|,|v]|

denotes the euclidean norm in IR6 and ]R3 respectively.

1'..etJ“L1 be the set of all finite Borel measures normed to 1
(probability measures) onZRG; By Cb we denote the space of
all continuous bounded functions on:m6, by Cg the space of
all n-times continuously differentiable functions with com-
pact support, and by L1 the space of all absolutely integrable
functions.

A sequence (“n)nEIJ of probability measures un€~H1 is said

to converge weakly to EJH, un=$ u, if



(1.1) lim ff,pdun = [fedy for all wECb.

n-w

As is well-known, W= holds if and only if (1.1) holds for
every o € Cg. As every ¢ € Cg can be approximated by elements
of C; in the maximum norm, it even follows that =

holds if (1.1) is true for every (pec;.

S CJ‘LI is called tight if, for any €>0, there is a compact
set K< ]R6 such that u(K)>1-¢ for all u€S. One then has
Prohorov's Theorem [compare, e.g. [Billingsley], Thm. 6.1]:

If sCM, is tight, then S is relatively compact.

Let us now specify the problem.
Let T>0O be arbitrary but fixed. We call f:[O.,T]x:!R6 —> 1R

weak solution of the IVP (1)-(2), if

(i) f(t,')EL1 CMeEce, )l 1=1, £(t,P20 A-almost every-
L
where for all te€ [0,T]. and f(t,*) is weakly conti-

nuous with respect to t€ [0,T].

(ii) for K(t,x), defined by

(1.2)  K(t,x) := [ G(x,y)[p(t,y)-n(y)]ldy
3
IR
with
(1.3) G{X,YJ = = '_Y_(Xl% r Q(trY)= f f{thrV)dV r
| x-y| r3

6

and for all (pec;([o,'r]xm ), the equation

T
(1.4) g(j&i E£[3L + <v,7 0>+<K, ¥ ¢ Jdp)dt + Jth(O,P)fO(P)dP:O
R

holds, where fOEL1 is the given initial density, fo;_-:O A-a.e.,

. . 1
and n i§ a given nonnegative bounded function in L (X ).



Remarks to (i)-(ii)

(i) Weak continuity of t—> f(t,-) is defined by the corres-
ponding weak continuity of the measures u, with the densi-
ties f(t,-); i.e., t— f(t,.) is weakly continuous iff
the mapping

t—->f6f{t,-)¢: dp , telo,T],
R

is continuous for any mEECb.

(11) As £(t,-)eL', o(t,x) exists r-a.e. and p(t,-)eL’ (R3) ;

therefore, by Fubini's Theorem, K(t,-)EELIOC

(2€).
n represents in the plasma physical case the ion back-

ground; a frequent requirement in this context is
_r n dx = f f dp ;
:m3 iR6 o

then the whole system is initially (and thus for all

t € [0,T]) electrically neutral.

(1.4) is the weak formulation of the initial value problem
(1)-(2); this form is common for conservation equations

(see, e.g., Lax [ 8]).

Next we define the modified problem.
3

Let 6>0 be arbitrary. The "mollifier" 0si BT — R is defined
by
0 for |x|zs

2y -1
c exp(—1+l§l ) for |x|<sé
§ 52

mé(X)z

r

where ¢, is such that j- w, dx = 1.
) ZRB 8

Let

(1.3") Gé(x,y}:= éfaG(x,z)wa(z—y)dz.



We call a function f6: [O,T]XIJS-€>H{ weak solution of the
modified problem, if f6 satisfies (i) and (ii), where in

(1.4) K has to be replaced by

(1.2') K (t,x):= %@ Gy (x,¥) [p, (t,y)-n(y) ]dy.

Note that fO and n are independent of §.

The following results are available for the modified problem
(see Neunzert [9], section 3. Only the case where n=0 is
dealt with there; however, all the proofs can be transferred

without any changes to the general case):

1. For f EZL1, f (P)z0 A-a.e. and [, f dP=1, the modified
o o] IR6 fo

problem has a uniquely determined weak solution fﬁ.

2. This solution can be described in the following convenient
way:
To every weakly continuous function wit—> utGJil, tefo,T],

we assign a vector field KG[H] by

(1.2") Ka[“-”t'xhn{s Gé(x,y)dut{y,v)-i{3 G, (x,yIn(y)dy.

The initial value problem

(1.5) x =v, v =K [ul(t,x) with
P(s)=(x(s),v(s)):=qQ, s€l0,T], Q=(x_,v_ )€ R®

then has for all t€[0,T] a uniquely determined solution,

which we denote by

(1.6) Pp(t) = Tﬁ’s[A]Q .

TE S[u_] is a two-parametric set of diffeomorphic mappings
!
of IR6 onto itself (i.e. every Tﬁ s has an inverse and both
r
1 . s $ 8 $ .
o] = = d
are of class C ), with Tt,s Ts,r Tt,r ' Ts,s i for



-1

all s,t,r € [0,T]; in particular, T6 = T[5 . Moreover it
t,s s,t
follows from Liouville's Theorem that Ti s is measure-pre-
r

serving with respect to the Lebesgque measure A, because the

right side of (1.5) is divergence-free.

Using this concept, the solution of the modified problem
can be written in the form

8

(1.7)  £,(£,P) = £, (T IP)

0 I

o,t'"
Please observe that fG(t") is the density of ug; it is
shown in [9] that, if fﬁ(t,-) is a weak solution of the

modified problem, then uf obeys the equation

§ _ 8 &
(1.8) w, = “o()To,t[”-] ' te[o,T].
Since Tg " is measure-preserving, (1.7) is an immediate

consequence of (1.8).

3. (1.7) has the following obvious consequences:

If 0sf_(P)<M r-a.e. in R® , then also

(1.9) Osfﬁ(t,P)gM A-a.e. in Eﬁ for all te [0O,T]..

Furthermore,

(1.10) [ £ (t,p)dp = jﬁ £_(P)dP = 1.

ZRG Ir

§ 2 Convergence of solutions of the modified problem.

The initial density fOEL1 will henceforth be assumed to

have the properties

(2.1) There is an M such that Ost(P)s M r-a.e.

2
(2.2) f6|p[ f_(P)dP < .
R



The main purpose of this chapter is to prove

Theorem 1 Let f0 satisfy (2.1) and (2.2). Besides we
suppose that the kinetic energies

(2.3) Eg(t):= f ]v|2f6(t,x,v)dxdv
26

belonging to the solutions fa of the modified
problem are uniformly bounded:

(2.4) E;(t) s E <« for all te [0,T] and all §>0.

Then there is a squence (Gn)neﬂ

that the measures utn associated with fé (t,*)
n

converge weakly to a measure utEJT1- The function

R én\x 0, such

u, defined in this way is weakly continuous and
My is absolutely continuous with respect to A

(the density of Mg will be denoted by f(t,-)).

Remark In chapter 4 it will be shown that (2.4) is always

true in the plasma physical case.

Proof of Theorem 1 The proof requires several steps which

we shall formulate as lemmata.

Lemma 1 The set of solutions {ui; te[0,T], 6>0} of the

modified problem is tight in.}L1.

Proof (2.2) implies

(2.5) f x| “£_ (x,v)dxav < =.
26

We denote the position and velocity component of Ti s by

X('S and VG respectively. Then, in view of (1.7),

t,s t,s



ho(t):= f [xlzfﬁ(t,x,v)dxdv = f 1x|2f (78 [W']P)dxdv
6 6 o o,t
R IR

(2.6)
_ 8 &2
- fs %0 IR “E (PYap

R

and we have used that Tg ° is measure-preserving.
r

We show that h,(t) exists for all t€(0,T]. Indeed, for every

§>0 there is a constant Ys such that

A

|G6(x,y)| vs for all x,y. Therefore,

o for all t€ [0,T] and all x € IRBJ and

1A

[KG(t,x)I

8 § 6 .2
consequently |Vt,oP_v| s C.t, [xt’oP-xl s - toH|v|t.

Thusfhé(t) can be majorized by a linear combination of inte-

grals d[’|xflh18fo(x,vjdxdv, a,B€{0,1,2},a+Bs2, with coeffi-
6
IR
cents depending on t and §. These integrals converge in view

of (2.1) and (2.2).

Moreover, hﬁ(t) is uniformly (with respect to 6) bounded in
[0,T]. In fact, one shows similarly as above that h6 is
differentiable and that differentiation and integration can

be interchanged. Hence

|n (tn—![ Tl X2, o712 £, (Prap]

v
_2|[ t oP> fo(p)dplg

“_\
;?

V£ (P) [vt oP | VE  (PTaps
1 1

sZ(/ |X~i O1='|2f0(1t.’)dp)72(/ !vfé o | O(P)dP)
]R6 ' r®
11
=2h ([ fs(t,x,v)dxdv)-z_sZEf ';'(t) —Ch? t).

As h (t)>0 for all te€ [0,T], it follows that

- 10 -
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t hg' (t) % %
72——“ dt = 2h5 (t)-2h (O)éCt or
0 h6 (t)
1
1.,..7, 2 ,
0 s hﬁ{t) g [~2-\_.t+h (0)] =: Ct

The bound C{ does not depend on §, because C and fO (and

hence h(0)) did not depend on §.

1
Now choose e>0 arbitrarily and let R>0 be such that 91%E<s.
R

Let K = per®; |P|<R}. Then

8
e

At

2 by o o\ 2 , 2
R (R \E\R)—R J fﬁ(t,P)dPs{ |p|“f, (t,P)dp

6
R \KR ]R\KR

sf [P|2f (t,p)dp = hé(t} + Eé{t) $C +EK eRz,
6 8

R
i.e. ugtms\KR) < ¢ for sufficiently large R and all §>0.
Thus the set {ui: tEE[O,T},5>o}CJ%1 is tight, and Lemma 1

is proved.

Now let '={t ivE N} be a countable dense subset of [0,T].
By Prohorov's Theorem, Lemma 1 and a common diagonal scheme
tgere is a monotone sequence (5n)n611’ § NO, such that
utn == e 6311 for all ve N . We will show that un:=p6n

Y N t t
converge weakly even if tgT', and we will see that the
limit My defines a weakly continuous function t-e»ut,te[O,T].

First we prove a more technical Lemma which is also needed

for later applications.

Lemma 2 Let FCJRG be a compact set and let Gn:=G6 , N€ NI .

n
Then the functions

- n
(2.7) S_(t,y): = flGn(x,y)ldut(x,v)
r
are uniformly bounded with respect to

veX, te[0,T) and n€ N :

(2.8) oss (t,y) s A for all yeX, ne N ,te [o,T].
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Proof There is an R>0, such that
Fc {(x,v): |x[sRr, |v|sR}.

For fn:= f6 (2.1) and (1.9) imply

n
(2.9) 0sf_(t,P)sM for all ne N ,te [0,T],Pe RS .
By Fubini's Theorem

055 (t,y)= {JGn(x,y) | £a(,%,v)dxdv

< ,f ( J-’Gn(x,y)|fn(t,x,v)dv)dx -

|x|2R |v[R
2} {;R|Gn{x,y)|3n(t,x)dx , where
x|s
3n(t,-):=[ Ij £ (t,-,v)av en'(X).
V| 2R

In view of (2.9), 3n satisfies the inequality

4n_3

(2.10) 0sp_(t,x) s ='R°.M for all te [0,T], x€X .

-3
By (1.3") Gn(x,y)=‘[ G{x,z)m5 (z-y)dz; for the components
3 n
IR
¢'?, 5=1,2,3 of G, this yields
168 i ls [ 169 (x,v) o (2-y)dz,
3

R

where w, 3= Using (1.3), we get for the Norm |Gn|

8
n

IGn(x,yJ[ s /3 j; [G(x,z)lmn(z—y)dz = V3 |y] — -
R R

-mn(z~y)dz.

Hence

s, (t,y) s /3]v] I j——-J—2mn(z-y)dz)6n(t,x)dx <
|x|§R:R3fx—z|

/§[Y|_j wn(z-y){ J-~—;L—7 ﬁn(t,x}dx)dz =
R :m3|x-z]

/§|Y1J mn(z-y)(~f -+l—§5n(t,x+z)dx)dz
R’ r? %!
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As a consequence of (2.10) we find

.f ! 5n(t,x+z)dx§ f —;L—-£5R3b1dx +_f 6n(t,x+z}dx

x| EIRE
R’ Ix | <1 [x]>1
(2.11)
2 2 3
< 16; RS M+ j 5 (t,x+z)dx s JOT R p 4y
3N 3
R
Collecting terms yields
2.3
Saltey) = Iy (F R man) (o (zoyraz o= a
73

which concludes the proof of Lemma 2.

Lemma 3 Assume mecétms). Then the set of functions

t =g (6):= oduy , te[o,T]

Eé

is equicontinuous.

n

§
. n n,__ .n
Proof Abbreviating Tt,s[”-]_‘ T t,s

t,s ! using that T

preserves the Lebesgue measure and recalling (1.7), we get

_ n
b (E) = JG LDOTt,od“o

R

and hence

n
|6, (E) =0 (s) =] _fs m(TE'OP) -fo(p)c'lp-_f6 (p(TS'OP}fO(P}dPh

R R
= [};(d ( (T _P)f_(P)dP)dr|=
- dt '6{0 T,0 o T=
S R

a n
P), 5= T, oP> fO{P)dP)dT!.

t
_ n
= IL({gVPdTT,o

IR
Let T be the compact support of ¢. Then obviously

Vo(Q) = 0 if QZT . Thus
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t
—_ 1 n
|¢n(t)_¢n(s)|&[‘[( / [<vx®(Tr,op)' Vr,op>+

S
To o)
< _o(T _P) f G (X] _P,z)(p_(t,z)-n(z))dz > Jf_(P)dP)dr|
v T,0 "' 3 nt,0 ’ Pttty o T
R

Xt p
. . A o _ T0 .
Substituting Q_(w)_Tr,oP_(yn . yields

T;O

t .
I¢n(t)—¢n(s)I=1£({[< 7.0(0) ,w>+<7 00, [ G (y,2)-

Eg

+(p_(t,2) =n(z))dz > If_(t,0)dQ)dr] s

s sup | V,0(P)| '}(fHWH/?/ |G, (v,2) | (o (t,2z)+n(z))dz]
PET s T IR3

£ (t,0)d0)dr.

Again we choose R>0 such that rc {(y,w);]|y|sR,|w|sR}.

Then

t
S [lf (t,00dQ)dt s R-|t-s].
s T

From Lemma 2 we get

I [3 G, (y,2) o, (t,2)dz) £_(t,Q)dQ
' IR

- /6{/[Gn<y,z)[duﬂty,wndufg(z,w
IR r

- / S (t,z)du™(z,v) < A
6 n t
R

for all ne N, te [0,T]. Finally, as by assumption
nelL' (X)NL"(¥), it follows that

’[ |G_(y,z)|n(z)dz s B
3N
R
for all y€ X . Summarizing, we have shown that

- 14 -
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l6, (£)=¢_(s)] 5;;1;|VP¢>(P)[(R+/§(A+B))|t—-s|= : D|t-s]|

where D depends only on ¢. This concludes the proof of

Lemma 3.

Now we use the following well-known theorem (see, e.qg.,

Smirnow IV, p. 47): If the sequence of functions (¢ nen

is equicontinuous on [0,T] and pointwise convergent on a
dense subset of [0,T], then it converges uniformly on [0O,T].

Therefore, as ¢n(t'}_ﬂﬂf pdu for t, e T', it follows from
1 t. 1
6 i
IR
Lemma 3 that ¢n(tI=J’ wduz converges uniformly in [0, T]
6
R

if mezc;(nfﬁ. On the other hand, by Prohorov's Theorem

there is for every t ¢ T' a subsequence (nj) and a

JEN
n.
measure pt6311 such that utj =¢»ut. From the convergence

of ¢n{t) we conclude

. o oas _ 1
lim ¢n(t) = ].-lm ¢n.(t) = f (Ddut, ©€C, .
N ] ] IR6

Consequently, to every t€ [0,T] there is a utEJ{1 with

J (pclult~1 —->j (pdut , 1.e. UE =:>pt .
6 6
R R

Furthermore, the function y defined in this way is weakly
continuous. To see this, let (tk)kEIJ be an arbitrary

sequence in [0,T] with lim t,=t. As ¢ =1lim ¢ is continuous
k—’w
(as uniform limit of continuous functions), it follows that

¢(tk):= J' wdut —> ¢ (t) as k-= ,

ZR6 K

which means that Ve =:>ut. We get a
k

Corollary to Lemma 3 To every t€ [0,T], there is a utEJ{1

n
so that Wi

u, s £t —

=¢>pt. The function

ueo te [0,T] 1is weakly continuous.

- 15 =
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The last point still missing in the proof of Theorem 1

is now the absolute continuity of u, with respect to A.

t

Lemma 4 My t€ [0,T], is absolutely continuous. The density

f(t,*) of My is essentially bounded by M.

Proof For all @ecg, we have

J (Ddu:-:l = I ‘-D(P)fn(t,P)dP —~>j wdut ’
6 6 6
R IR R

and, by (1.9),

n
Lfsmdut|
IR

1A

Mf Jolap = mlloll |
E& L

Hence

L

[ eaug | s mloll for all oec®, te [0,T],
6 L ©
IR

i.e., for any given fixed t, the functional ¢—> J wdut

Eﬁ

is linear and bounded on the dense subset Cg of L1.

Therefore, it has a unique continuation as a bounded linear
functional on L' with norm sM. Since L'' = L”, there is an

£(t,*)EL with ||f(t,-)

|, € M such that

{ odu, = j o-£(t,)dp

R® r°

for all wecg. It is then easily shown that £(t,-) actually
is the density of My e

The proof of Theorem 1 is complete.
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§ 3 The existence theorem

Theorem 2 Suppose that the assumptions of Theorem 1 hold.
Then the densities f(t,-), t€ [0,T], of the
measure Wy constructed in Theorem 1 are a weak

solution of the initial value problem (1)-(2).

Proof We have to verify (i) and (ii) from § 1.

(i) . follows immediately from Theorem 1.

(ii) We know that f is the weak solution of the modified
problem with mollification parameter 6n‘ Thus, for
wec;{[o,T)XJRG)

T ¢ 3Q

{_56 £ LS+ <V, 7 0>+ <K_,7 _o>]dP)dt + ‘fﬁ ©(0,P)f_dp = O.

0 R R

We want to show that all terms depending on n converge,

as n»>», to the corresponding terms containing f and K.

This will imply (1.4).
i ._ oy o 6
Obviously x(t,P):= Sf(t'P) + v,V 0> € cO([o,T]xJR).

Therefore, there is an R>0 such that y(t,P)=0 if
[PI>R and t€ [0,T]. Moreover, X(t,-) € cgtms} .
Hence “2 = uy implies

f £ x(t,-)dp —>j f£-x(t,-)dp.

IRG im6

Furthermore, as !5 £ x(t,-)dp| = M(sup |Xl)-R(KR),
6

- [O.T1XKR

this (time-independent) constant is an integrable
majorant; by the dominant convergence theorem

T([ T(f
f_+ydp)dt — £-ydP)dt.
'é:RG ! é Eﬁ
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Now

ant}:=

(3.1)

For the

$:=$O a

- 17 =

We still have to consider the expression

T
j( j <Kn,¢>fndP)dt, where ¢=va-

O:RG
The components of y all belong to Cg([O,T)XIR6).

We recall

Ss Kprv>£,dP = JG (J3 <Gp (Xry) v (E,x,v)>
R R R

{Dn{t,y)-n{y)]dy)fn{t,x,v)dxdv

and show in detail that

T
j('js( j <Gy (x,¥) b (£,%,v) >0 (t,y)dy) £_(t,x,v)dxdv —>

OR IR

f ([ <Glx,y),0(t,x,v)>0 (t,y)dy) £(t,x,v)dxdv

RG R

T
— g{
0
as n-oo,
Convergence of the term where pn(t,y) is replaced by

n(v) can be proven in exactly the same way, with some

simplifications.

( <Gn(Xfy):w(t,x,V}>fn(t,y,w)dydw)fn(t,x,v)dxdvz

6

¢Gn(X,y),¢{t,x,v)>fn(t,x,v)dxdv)fn(t,y,w)dydw=

[=21

6

B B

T(t,y)E _(t,y,w)dydw , where
¢ N n

B B e

Pnltiy)s= [ <G ,¥) 0 E,%,v) > £, (8%, v) dxdv.
IR

sake of simplicity, we write GO:=G, f0:=f and define

lso by (3.1).
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We note that the &n, ne N, are uniformly bounded on
[0,T]*X . In fact, there is an R>0O such that y(t,P)=0
for |P|>R and all te€ [0,T], and as |y (t,P)l<C for all

Pe ]R6 and all te [0,T], (2.7) yields

15, (e, y) ] < C: f]Gn(x,y)ffn(t,P)dP =
|P| <R
= CSn (t,y) < aA-C for all ne NO.

We proceed by showing

Lemma 5 ﬁn converges uniformly to # with respect to

(t,y) € [o,T]x X.
Proof We need two steos. Let €>0 be arbitrary but fixed.

(a) There is a d>0 such that

(3.2) J’

] ( ‘f <G (x,y),v(t,x,v) > fn(t,x,v)dx)dv[<%
R™ |x-y|<d

holds for all te [0O,T], yez]i and neEN_ . We show this for

the "limit" case n=0. The left side of (3.2) is then bounded

by
1 - f
C-{YI — p(t,x)dx, where §(t,x)= f(t,x,v)dv.
ly=-xl<d |x-yl| lv]-R

p is uniformly bounded, as f <M by Theorem 1,

and thus

1 1

— p(t,x)dx < A'J.
ly-x1<d Ix-v]|

C-|v| dx < A"d ,

lx-y[2

from which (3.2) follows. The case n#0 is similar.

- 19 -



- 19 -

(b) The mappings x —e’Gn(x,y), nEiNO, y fixed, are conti-

. 3
nuous in R” \Ky(y) := {x;lx-yl2d} and [Gn(x,y)—G(x,y)!—>0
uniformly for all (x,y) with |x-y|zd. Hence, the functions

(x,v) — <Gn(x,y),w(t,x,v)> , € NO ’

defined on.(IR3\Kd(y})XI§ , are of class Cg and converge
uniformly on their domain to <G(:,y),v(t,-)> . The convergence
is even uniform with respect to t and y, because, for a given
n>0, the corresponding n depends only on d.
By Lemma 3, we already know that “2 = u, uniformly with
respect to t, i.e.

[ odug = [ pan

R R
uniformly in t for every wﬁicg(ﬂgn . The same is then true
for wECg(]RG) and even if ]R6 is replaced by (IR3 \Kd(y))X]"R3 ’
as 1is easily seen. A simple application of the triangle ine-
quality now shows that there is an no=no(e) (independent of t
and y) such that

| (<G (x,¥) 0 (t,x,v)> dul(x,v)

(w3 \I<d(y))XIR3
(3.3)

< Glx,y)ult,x,v)> dug (x,v) ]| s

wm

for all nzn_ (e). Together with (3.2), this yields the state-

ment of Lemma 5.

Corollary As $n is continuous for all n€ N, Lemma 5 implies

continuity of ¢y with respect to t and y.

Now, since $ne Cb([O,T]X X ) for all ne N and H&n(t,-)-

- (t,-)I|_ — 0 as n»=~ uniformly in t, we get at once that
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-1 = . n _ J' . —_
IW_(£)-W_(t) | |j6 Patt @l - f o dan = o
R IR

as n»», uniformly in t. But then also

T T
é W (t)dt *e,é W_(t)dt as now,

which proves Theorem 2.

§ 4 The Plasma Physical Case. Convergence of Simulation
Methods.

We return for the moment to the modified case with an arbi-
trary but fixed mollification parameter 6>0, and, only for
simplicity, vanishing ion background, i.e. n=0. Let us recall
that the kinetic energy Eﬁ(t) was defined by

E (t):= j' v2f6(t,x,v)dxdv.
Bg
As the force K in (2) resulted from the Newtonian potential
Y . .
u(x-y):=- , we define the potential ener v(t), as
(x-y) W p gy

usual, by

(4.1) Vit):= f‘ Rf u(x=vy)p(t,y)dy)p (t,x)dx,
]R3 ZRB
if this integral exists. Similarly, in the modified case,

KG results from the "mollified potential” ua(x-y]::

j u(x-z)w, (z-y)dz, because then G_(x,y)=-9V_u_ (x-y). Here
3 ) 8 X 8
R

the potential energy vﬁtt) is defined by

(4.1 vier:= [ (f u xey)og(t,y)dy)e, (£,x)dx

R’ w3

and the total energy is Ea(t) + Vs{t)'
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It is certainly reasonable to start with initial densities
such that both E(0) and V(0) are finite. For simplicity, let
us assume that, in addition to the conditions (2.1) and (2.2),

fo is sﬁch that there is a constant M' with

(4.2) Osp_(y) s M' for all yeX ir-a.e.,

where pO(y):= J fo{y,w}dw. Then, as is easily seen, V(0O)
m}
and vﬁ{o) are bounded by a constant which can be chosen

independent of §.

Remark The last statement above is what we really need.
(4.2) is a very simple condition such that this statement
is true. There are weaker conditions, but they are more
complicated.

We can now formulate energy conservation as

Theorem 3 For any given §>0,
Eé(t) + VG(t} = E(0) + Vﬁ(O)
holds for the solution fé(t") of the modified

problem, t€ [0,T].

Proof This is, e.g., proven in [5] (Horst). We give a brief

outline, using (1.5), (1.6}, (1.7).

Actually
Vﬁ(t) = _( {_( UG(x-y}fﬁ(t,y,w)dydw)fa(t,x,v}dxdv =
Eﬁ ﬁm6
= [ (f ugx} p-x} 0)f_()a0)f_(P)dp =
6 "6 § "t,o t,o o' o]
R R N
: § 8 § 8 ]
= J (Jf [ua(x-y)+j§u6(xs’0P—Xs,OQ)-{VS’OP-VS'OQ)dSJ
Eﬁ :mﬁ o :

-£,(Q)d) £ (P)dP =
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°fO{Q}deO(P}dP.

Similarly,
2
E () = [ v (t,x,v)dxdv =
8 6 $
IR
_ é 2 _
= jG (Vt’OP) £, (P)dP =
R t
_ - 4] o) _ 8 . _
= ‘[6[\; 2fvs'opf6 Vug (XS (P-X¢ Q)£ (0)dods] £ (P)dp=
IR & (o] R
. 5 8 5
= -2 - . .
E(O} j '(6 [6 vuﬁ(XS,OP XS;OQ} (VS,OP)fO(Q}fO(P)
o R° R
*dQdpds =
t o) 8 [ &
= E(O)—, J6 .(6 vuﬁ(XS,OP-xS,OO) (VS,OP_VS,OQ)fO(Q)fo(P) ’
o R° R

*d0odpds ,
and by the first part of our calé¢ulations this equals

E(0) - Vel(t) + Vs (0), proving the theorem.

Remark If, in the general case with n#0, we define

Vg(t)e= [ ({ ugx=y) (p,(t,y)-n(y))dy) (o, (t,x)-n(x))dx,
3 23
R R

the energy conservation is proven in exactly the same way.

Only the occuring expressions are longer.

Corollary to Theorem 3 For the plasma physical case, where

u(x-y)20 whenever x#y, the initial value problem (1)-(2) has

a weak solution whenever f, satisfies (2.1), (2.2) and (4.2).

Proof Under the quoted conditions Vﬁ(t) is uniformly
bounded from below and the total energy remains constant.
Hence the boundedness condition'concerning Eg(t) in Theorem 1

is satisfied.
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The weaknesses of our existence theoreﬁ are that it is not
constructive and yields no information about uniqueness of
solutions. A general uniqueness theorem is, to our knowledge,
not available in this context, and we will not make any
conjecture. There is, however, some hope to prove that the
(unique) solutions ui of the modified problem will converge
weakly to the solution'ut delivered by Theorem 1. This

would not only show uniqueness of My in the class of solutions
which can be approximated by solutions Ui of the modified
probleﬁ, but also convergence of simulation procedures to

our solution [cf. Neunzert [9]].
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