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Abstract

To increase situational awareness of the crane operator, the aim of this thesis is to develop
a vision-based deep learning object detection from crane load-view using an adaptive
perception in the construction area. Conventional worker detection methods are based on
simple shape or color features from the worker’s appearances. Nonetheless, these methods
can fail to recognize the workers who do not wear the protective gears. To find out an
image representation of the object from the top view manually or handcrafted feature
is crucial. We, therefore, employed deep learning methods to automatically learn those
features.
To yield optimal results, deep learning methods require mass amount of data. Due to
the data deficit especially in the construction domain, we developed the photorealistic
world to create the data in addition to our samples collected from the real construction
area. The simulated platform does not benefit only from diverse data types, but also
concurrent research development which speeds up the pipeline at a low cost. Our research
findings indicate that the combination of synthetic and real training samples improved the
state-of-the-art detector. In line with previous studies to bridge the gap between synthetic
and real data, the results of preprocessed synthetic images are substantially better than
using the raw data by approximately 10%.
Finding the right deep learning model for load-view detection is challenging. By investi-
gating our training data, it becomes evident that the majority of bounding box sizes are
very small with a complex background. In addition, we gave the priority to speed over
accuracy based on the construction safety criteria. Finally, RetinaNet is chosen out of the
three primary object detection models.
Nevertheless, the data-driven detection algorithm can fail to handle scale invariance,
especially for detectors whose input size is changed in an extremely wide range. The
adaptive zoom feature can enhance the quality of the worker detection. To avoid further
data gathering and extensive retraining, the proposed automatic zoom method of the
load-view crane camera supports the deep learning algorithm, specifically in the high scale
variant problem. The finite state machine is employed for control strategies to adapt the
zoom level to cope not only with inconsistent detection but also abrupt camera movement
during lifting operation. Consequently, the detector is able to detect a small size object by
smooth continuous zoom control without additional training. The adaptive zoom control
not only enhances the performance of the top-view object detection but also reduces the
interaction of the crane operator with camera system, reducing the risk of fatality during
load lifting operation.
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1. Introduction

Recently, digitalization using Machine Learning (ML), particularly Deep Learning (DL)
methods has been embraced by construction industry. In comparison to other industry
sectors such as the automotive industry, entertainment, healthcare, the construction
domain is relatively slow in adopting these techniques [1]. The scope of research activity
in construction is very broad, ranging from robotics to project planning using Building
Information Modeling (BIM). DL approach is used in many applications, specifically as
safety assistance or sensory systems for construction automation and robotics. Applying
these technologies in construction can increase productivity as well as safety.
In this thesis, we focus on developing a crane operator crane safety assistance system. The
adaptability of the load-view zoom camera can improve the safety of operation and help
the crane operator to focus on load handling rather than manually adjusting the zoom level
of the camera. Indeed, this thesis addresses the challenges in top-view pedestrian detection
and introduces the active zoom control to improve the performance of DL networks.

1.1 Overview of Construction
The construction sector plays an important role in the economy. This sector in 2002
contributed approximately 9% and 8% to the gross domestic product (GDP) of the
European Union (EU) and United States (US), respectively. As a result, it employs over
18 and 7 million workers in the EU and US [2, 3]. The construction sector plays a vital
role in all parts of economic infrastructure such as factories, buildings, offices, schools,
houses, hospitals, and roads. They are all byproducts of the construction.
In addition to the lack of resources, labor participation in this industry decreases annually
due to the great number of accidents. In the EU, more than 20% of all work fatalities
appeared in the construction division in 2015 [4]. Similarly, the Occupational Safety and
Health Administration (OSHA) reported 19.5% of fatal occupational accidents in the
US from 2002 to 2012 were from the construction sector. Construction is a labor-driven
industry. It is a field-based, changeable and project-oriented industry. The workers
experience a wide range of hazards in daily work which lead to injury. Some examples
that show construction as a dangerous job are working with power tools, operating heavy
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(a) (b)

(c) (d)

Figure 1.1: Example of construction robots. (a) Spot robot observing construction site.
[5]© IEEE 2020. (b) Safety assistance on a crane. (c) Bomag Tandem roller for autonomous
road compaction and robot collaboration. [6] (d) HRP-5P, a humanoid construction robot.
[7]© IEEE 2019.

equipment, constructing sewer/duct, demolition, and high-rise construction. The workers
have to cope with risks in every perspective such as airborne diseases from toxic mixtures,
unintended collapse, hit by objects, hand-arm vibration syndrome (blue finger) from
continuous use of vibratory tools and electrocutions. The causes of accidents on the
construction site can occur in any phase of the construction. Small failure can set off
the chain reaction to endanger the rest construction phase. With the low construction
productivity and the high number of accident problems, construction automation and
robotics have been introduced to bridge the gap.

1.2 Construction Automation and Robotics
Construction automation and robotics were primarily used to increase productivity and
efficiency. They are introduced to eliminate human error while increasing production
and optimizing energy consumption. The construction automation is considered as the
technology which helps the construction process with minimal human intervention. In other
words, construction automation is labor-saving technology. The application of construction
automation ranges from boiler control of household thermostats to heavy machine control
systems. On the other hand, the construction robotics is one of the growing fields in
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construction automation. It is considered as a research extension of field service robots
that work in unstructured and harsh environments. The construction robots are generally
designed to assist humans or have no human supervision.
Construction robotics was initially started in Japan at the beginning of the 1970s. At
that time, Japan mainly experienced the worker’s shortage. The automated machines
and robots were made to perform an individual task so-called single-task construction
robots[8]. The task of processing building material production like handling wall panels or
spraying exterior walls was founded in many companies - Kajima, Shimizu, etc [9]. Outdoor
construction robotic primarily adopted technology from factory-based manufacturing or
aerospace research[10].
The construction robots can range from small manipulators to large-scale construction
robots like tower cranes. Since 2002, humanoid robots have been involved in various
construction applications. The design of the construction robots is very diverse in different
sizes. They can be bipedal, quadruped, vehicle, etc. For example, HRP-5P in Fig. 1.1d is
a bipedal robot which is capable of installing drywall [7] or Spot in Fig. 1.1a, a quadruped
robot, is able to record and track construction progress or damage in remote operation
with autonomous sensing.
The research activities exist in every element of the construction life cycle i.e., planning and
design, construction robotic, intelligent job-site management, operation and maintenance,
and others [11]. The robotic technology is not limited to conventional robot manipulators
but it can include automated construction with the advancement of digitalization. The
capabilities of construction robotics are not framed only by performing an individual
simple repetitive task but also include teleoperation, sensory data collection, numerically
control, and performing the task autonomously while collaborating with the workers.

1.3 Safety in Construction
Safety is one of the most important aspect in construction. So far not all of the construction
works can be replaced by automated machines or robots. In general, the decision-making
and reliability in the robots are still very far away from the human. Especially in vehicle
construction machine, it rarely finds fully automation especially for the complicated tasks
e.g., lifting, in construction starts to have only semi-autonomous which is an assistance
system or remote operation.
As automation and robotic technologies are gradually brought into the construction
industry, robots and humans start to work side-by-side. Consequently, the construction
robots should be functional with harmless interaction in the workplace. In the safety
domain, the research also exploits robot technology to assist the machine operator or
to observe worker’s ergonomic. Thus, the goal is to reduce the number of accidents in
addition to increasing productivity.
Falling load or struck-by load are the most common and most dangerous crane-related
hazards. The workers can be struck or hit by any moving load while they are working in
close proximity to the crane. Beavers et al. [12] reported that 32% of the crane fatalities
caused in 1997-2003 are struck-by load. The victims were mainly workers, who were not
involved with crane [13]. The human factor is the main root cause of accidents besides
the environment, equipment, etc. Operating the crane is a difficult task. Unlike in the
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Figure 1.2: Example of deep learning object detection from an unmanned vechicle. This figure
is modified from [19]© IEEE 2018.

street environment, the construction site is complex and unstructured. Lifting operations
is a repetitive and exhaustive task. Underestimating the hazardous situation is the most
frequent cause of the struck-by accident [14]. The operator may not be able to see any
workers who are underneath the load or stay in a swing radius or falling zone. Several of
the human casual factors in crane accidents are inadequate training, miscommunication,
exhaustiveness, etc [15]. Moreover, a construction worker may work more than five distinct
construction sites in a year [16]. The worker may not be familiar with the different
construction sites e.g., environments, colleagues (communication), and equipment (cranes).
The crane operators are prone to human errors as they misjudge how risky the current
situation will be (or to identify hazards). The operator simultaneously concentrates on
many elements while operating e.g., load, controlling the crane, load chart, and wind speed.
To reduce such human error, Situational Awareness (SA) should be provided. In other
words, the operator should actively perceive what is going on around during operation or
identify potential hazards and properly respond [17]. Having a good SA is the foundation
of good decision making and therefore the fewer failures or errors.
Robotics start to become a part of the construction industry. In the same way (as a
human), fatal accidents can happen in robots such as collisions, crushing, and injuries
from mechanical parts. In spite of no specific OSHA standards for the robotics industry,
construction robotics must have safety features while operating in the environment with
human [18]. The robot itself should be able to be aware of the surroundings same as the
operator to avoid any accident.

1.4 Usage of Deep Learning Methods
Despite the recent deep learning trend in autonomous driving, the self-driving car, called
an Autonomous Land Vehicle In A Neural Network (ALVINN), was created in 1989 [20].
At the same time, the deep learning method also existed in other applications. For instance,
handwriting digit recognition is proposed using the back-propagation network of LeCun
et al. [21]. Due to the immaturity of internet technology, the deep learning approaches,
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which require a lot of training data, could not be fully exploited. Another reason was that
the hardware technology was yet very expensive and hardware architectures or GPUs that
supported the computation of Convolutional Neural Network (CNN) and accelerated the
long training process, seldomly existed.
Since the information age, which began in the mid-20th century, has arrived. The sensor
technology or powerful hardware is getting cheaper and cheaper. The data resource
becomes much easier to access such as Google Images and Gettyimages. As a result, DL
methods nowadays become more recognized and have been widely adopted in many research
areas e.g., self-driving cars, Unmanned Aerial Vehicle (UAV) (see Fig. 1.2), Human-robot
Interaction (HRI).
With the outstanding results of the DL methods, the construction domain also employs
these data-hungry learning methods for worker recognition. In spite of the flood of big
data, a simulation platform or a game engine platform is taken as data augmentation tools
in order to generate more data feeding these learning algorithms. The simulation provides
perfect annotations for perception learning tasks including as an experimental platform.
There are three primary situations, where the simulation becomes extremely helpful [22].
First, the data is difficult to obtain from the source such as a construction worker catching
an ostrich in the middle of a construction area. Second, the data is difficult to label
such as to annotate workers from a bird’s-eye view or each individual object in a densely
crowded situation, see Fig. 1.3a. Lastly, the closed-loop and repetitive behavior have to
be performed specifically if the data depends on such actions.

1.5 Aims and Objectives
(Semi-)Automated safety assistance system has been widely adopted in the field of construc-
tion domain. For instance, worker detection helps the operator who simultaneously works
on many tasks, to be aware of workers nearby the machine. To prevent struck-by-load
accidents, observation from the top view should be carried out. The top view offers a wide
and advantageous perspective, where the observer stays higher than the observed objects.
The top view, which can be perceived from a standard crane zoom camera, basically
supports the crane operator during the blindlift. By feeding the top-view camera streaming
to worker detection, the location of the worker-on-foot in the proximal distance can be
shown to the operator. Although there has been much similar research on aerial image
detection from UAV, there has been no study focusing on load-view object detection.
The ultimate goal in this thesis is to develop a vision-based worker detection from top view
including zoom active control using the deep learning method. Most of the conventional
detection methods are highly dependent on target appearances or background environment.
As a result, they usually fail in sophisticated situations like construction areas where it
is dynamically reconstructed through each construction phase. Using the deep learning
method, the object detection is able to discover the hidden feature patterns in the image
which is difficult for a human to find out such as detecting workers from the top view whose
size is very small. By showing the result of detection, it can further raise the situational
awareness of the operator to reduce struck-by load accidents. However, detecting objects
from aerial view remains challenging. Despite remarkable results of data-driven detection
methods, the highest accuracy presented in the statistic of top view detection VisDrone
benchmarks is merely 30 percent [25].
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(a) (b)

(c) (d)

Figure 1.3: Comparison of top view on different heights. (a) Example of building detection on
satellite image at an altitude of higher than 500 km. [23]© IEEE 2018. (b) UAV the range of
most commercial drones can fly between 0.5 and 1.5 km depending on the weight and restricted
areas such as airports, federal highways, and railways. [24]© IEEE 2019. (c) Example of the view
from a mobile crane. (d) Example of building with the height of 22 meters.

The scope of the work mainly studies the situation when the worker-on-foot comes nearby
the load while a mobile crane performs lifting. The safety monitoring can be conducted
when the work zone can be seen within the camera view and excluded by load obscurity.
To develop the top view deep learning worker detection using adaptive zoom, the objectives
of this research are the following.

• To generate a substantial amount of data including investigation of the synthetic
data for training of deep learning networks:
By employing DL approaches, a large dataset has to be generated to reach the
full potential of the DL approach. One of the major objectives of this work was
to create a simulation platform especially for the construction area in addition to
real-world data collection. The simulation toolchain can be easily adjusted to the
new environment in future work. The experiment should be conducted to check
whether the synthetic data can either replace or augment the real-world data. To
train the DL models, the dataset will be generated in a significant amount. The
analysis of training data should be studied to have a better understanding of the
data characteristics affecting the training process.
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• To choose the competent deep learning network for the load-view detection:
The main objective is to determine suitable deep learning methods for worker
detection using a load-view camera. Detecting objects from top view can perform in
various methods based on different altitudes as the amount of the information and
the appearance of the object is completely non-identical in each level as depicted in
Fig. 1.3. Several state-of-the-art network models which were commonly adopted in
the aerial image object detection e.g., Faster Region Based Convolutional Neural
Networks (R-CNN), Single Shot MultiBox Detector (SSD), and RetinaNet, should
be explored. In addition, the choices of network parameters that are suitable to
the load-view input data should be examined. The time performance of the chosen
network should be appropriate for safety measurement. In other words, the detected
output should present to the operator within safety response time in order to allow
the operator to respond and handle the incoming risk such as halting the lifting
operation.

• To preliminary analyze a capability of the adaptive perception:
Recognizing an object from the top view is very difficult, even for a human because
the object size is very small and the perspective is completely changed relative to the
frontal view. In detecting workers from the load-view camera, most detection methods
could fail due to a big range of scale changing from either crane boom movement
or zooming camera despite scale invariance characteristic. The top view DL-based
detection indeed struggles from extracting the feature out of the small number of
pixels. Thus, the objective is to devise and implement an adaptive perception via
zoom crane camera for increasing the quality of the chosen DL detector. To utilize
the zoom mechanism of the load-view camera, it is necessary to examine the sensor
properties in particular the zoom control function. Instead of raw sensor data, the
step of zoom control verification should be carried out using a reliable and accurate
reference target such as a fiducial marker.

1.6 Outline
To address the safety awareness of the crane operator, the purpose of this thesis is to
implement a robust top view DL-based object detection via an active perception in a
construction environment. The worker detection is a part of an operator assistance
perception system which can increase situational awareness of the crane operator. The
crane is a heavy equipment vehicle. Small mistakes can lead to huge consequences such as
fatal accidents.
In this chapter, we briefly provided the importance of construction and accident statistics.
To reduce accidents and increase productivity in construction, automation and robotics
including safety are introduced. The aim and objectives are then discussed to set out what
we expect to achieve and steps corresponding to each goal.
In Chapter 2, the previous studies of automated vision-based top view safety monitoring
in construction areas are discussed into three main categories based on risk identification.
Different types of image sensors, which are typically employed in safety monitoring, are
listed. Later, we presented the literature review of the top view object detection and its
development. The important concept and the limitations of the existing research were
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pointed out. The contributions behind this thesis have been introduced in Chapter 3. The
significance and advantages of this research including the scope of work are indicated.
Chapter 4 demonstrates the usage of the synthetic data to enhance the quality of the
load-view worker detection using the deep learning approach. The construction safety
and the typical crane operation that potentially causes the struck-by load accident is
described. The application of the simulation platform in the previous studies such as
dataset generation is elaborated. Afterward, we showed the development of our simulation
platform and the real crane setup of the test environment where the experiment of this
thesis took place. After the great amount of data was collected from both real and virtual
platforms, two experiments were conducted at the end of the chapter to validate the usage
of synthetic data for top view worker detection.
Chapter 5 presents the finding of the suitable deep learning network model for the load-view
worker detection. Several most primarily deep learning object detection models in the
literature were first discussed. Based on the selection criteria and the analysis of our
collected dataset, the chapter contains the experiment for choosing the final network model
that fits our application from the candidate list.
The analysis of the crane load-view zoom camera is presented in Chapter 6. The zoom
control mechanism of this off-the-shelf image sensor is employed to support the top view
worker detection using deep learning. Without zoom function, the detector suffers from
extracting the image feature due to the very small size of the bounding box. In this chapter,
the proposed zoom controller logic is demonstrated including the zoom verification using
the fiducial marker.
Eventually, Chapter 7 integrates all proposed components from the previous chapters as
a comprehensive experiment. The content in the last chapter, Chapter 8, comprises the
conclusion and follows by a future work that we plan to work on.
The acronyms is declared in Appendix A. The making of simulation environment in
Unreal Engine (UE) such as virtual characters and UE-Finroc connection is elaborated in
Appendix B. The detail of network configurations used in the network selection procedure
is given in Appendix C. Appendix D further expands the experimental results regarding
zoom controller FSM from Chapter 6 and Chapter 7. Lastly, Appendix E additionally
presents Magnitude Spectrum (MS) result for each dataset.



2. Automated Vision-Based Top
View Safety Monitoring in
Construction Area

Identifying the risk in the construction site is manually conducted by observers and highly
depends on their perceptual capability. The observer including the operator and personnel
involved require experiences to understand and evaluate the scenario by comparing to
the safety checklist, guideline, or rules to spot potential hazards e.g., a working and load
radius indicator with audible alarm is installed, the ground condition should be stable
and ensuring only competent or trained personnel are allowed in the working area [26, 27].
Likewise, vision-based safety monitoring approaches should consider not only how to
recognize construction entities in an image, but also how to apply expert knowledge
regarding unsafe conditions to the perceived information.
There are numbers of image sensor which are adopted for vision-based perception of
the safety monitoring in construction. For imagery data collection, camera(s) can be
installed either on the vehicle or on-site. Camera sensors are used in research including a
monocular or surveillance camera, stereo camera (e.g., Bumblebee XB3, FLIR Systems,
Inc.), Pan-tilt-zoom camera (PTZ) camera, and motorized zoom camera, etc. Browatzki
et al. [28] found that 3D-based and the combination of 2D and 3D-based approaches
provide higher classification accuracy than 2D-based. For construction indoor tasks such
as finishing work (e.g., facing, plastering, flooring, painting, wallpapering, and glazing),
Kinect™ RGB-D camera is used to sense the motion and posture of workers. The raw
perceptual information is later analyzed for the proper ergonomic properties [29, 30].
Unlike stereo vision, the 2D camera is inexpensive. The monocular 2D imaging system is
typically used in construction. More specification comparison of imagery devices—Light
Detection and Ranging (LiDAR), flash LiDAR, monocular and stereo vision cameras, can
be found in [31].
For the vision-based safety monitoring system, workers and construction equipment are
the targets in the images. The target is localized by different computer vision techniques.
The recognized target can be further interpreted and identified the risk in different
dimensions—scene, location, and action according to Seo et al. [32].
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Figure 2.1: Comparison among object recognition techniques based on risk identification
criteria. From the left, object detector identifies the location of workers-on-foot nearby the mobile
crane. Object tracker in the center figure estimates both location and trajectory of the objects
which also gives a potential direction where the worker is working to move next. The activity
recognition in the right figure provide the pose of the objects that can be further intepreted if
the safety is violated such a worker is running toward the crane.

First, scene-based risk identification refers to the understanding and estimating any
likelihood of harm in a static scene by observing the overall site condition in the safety
context such as high noise or congested area [33, 34], Personal Protective Equipment (PPE)
non-compliance [35, 36]. The scene-based risk; therefore, can be determined by the number
of construction resources, tools, or safety equipment (e.g., hard helmets, safety vest)
presented. Object detection method can be used to identify the object’s location in an
image scene by detecting its features e.g., shape, texture, and color. Object classification,
which part of object detection’s pipeline, later classifies the detected objects into different
categories.
Second, location-based risk identification points out the hazard based on the location
and movement of the construction resources such as proximity warning for the struck-by
accident, anti-collision, motion planning, and speed violation [37, 31, 38, 36, 34, 39, 40].
Object tracking predicts and estimates the location and trajectory of one or more objects
over time by distinguishing image features, motion, etc. Each tracking target has its
own identification. Object tracking can be initialized automatically by the output of the
detector or manually by the user. In addition, object tracking does not only provide
temporal information but also improves the performance of object detection [41]. Tracking
stabilizes the accuracy and precision of the detector by linking noisy targets on a new
image frame based on previously tracking targets.
Third, action-based risk identification aims on detecting unsafe activity between worker and
job conditions. Working in awkward positions can lead the worker to the risk of developing
a work-related musculoskeletal disorder (WMSD) [42]. Activity recognition techniques
mainly focus on injury prevention i.e., what action between worker and equipment is, and
evaluate if it is an ergonomic violation such as improper lifting [43] or unsafe during ladder
climbing [30]. The techniques make sequentially observations on the detected targets’
actions in the environment. In particular, most activity recognition methods attempt to
extract the skeleton data of the human or parts of the vehicle, like joints, and determine
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Figure 2.2: An illustration of blind spot situation. From the crane cabin, the operator is unable
to notice the workers, who are in red BBox due to the obstruction. As a result, the workers can
be hit by the load.

the target pose. The pose is subsequently converted into action. In addition, the location
and action-based approach can be used for performance and productivity analysis [44, 45].
Fig. 2.1 illustrates the difference of computer vision techniques mentioned above. Detecting
objects are the basic categories of vision-based safety monitoring. Tracking and Action
recognition is beyond the scope of this thesis. A complete survey of the topic tracking and
action-based approaches can be found in [46, 47].
Top view vision-based object detection plays a crucial role in the research field. It has
been widely used in many domains such as construction, traffic, sport, social etiquette
analysis [48], search and rescue. Detecting object from the top provides overall information
instead of a specific one. The goal of such application e.g., safety monitoring and crowd
analysis requires to perceive merely the existence of the objects as many as possible in the
large viewpoint. Henceforth, it serves the purpose of the applications. In this work, the
literature review is mainly provided in the direction of using computer vision techniques
in construction sites for safety monitoring or crane operator safety assistance.
Monitoring the safety of the construction site from above can be done by using the
surveillance camera mounted on the site or the load-view camera on the crane. Detecting
workers from the load-view is challenging. In general, it is very hard for a human to notice
the small-sized workers from the top view, see top right of Fig. 2.2 which explains the
high fatality rate in crane operation and necessitates the application of load-view worker
detection. The construction area is cluttered and dynamically changing over time.
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Figure 2.3: Comparison between conventional detection and deep learning methods. The
feature extraction in the traditional object classification method (1st row) is essentially hand-
crafted, while generating the features in the deep learning method (2nd row) can be obtained
from end-to-end learning where human does not need to define how the feature looks like for the
method the learn.

There are not much research has been conducted on this topic. In the standard visibility
assistance in the crane, the load-view camera feed gives non-semantic information e.g., no
identification of the object’s position surrounding the crane. In contrast to the frontal view,
the load view is advantageous for safety observation as it provides an object viewpoint
without occlusion. It is crucial for an operator to understand or be aware of what happens
inside the working zone without manual inspection. Despite the fact that the operator
perceives a lot of incoming information, such as lift trajectory and wind speed during
lifting, the operator has to observe objects surrounding the large load (e.g., a container)
from merely a camera stream of the 7-inch standard monitor.
In general, top view object detection techniques in literature can be categorized into two
groups as depicted in Fig. 2.3. The following section will first introduce conventional
object detection which includes techniques and their applications which were used in the
top-view safety monitoring. The basic top view object detection pipeline will break down
into blocks and will be discussed in detail. Later, the top view object detection using
deep learning approaches are presented in Sec. 2.2. The development of well-known deep
learning network architectures are introduced together with the previous studies.

2.1 Conventional Top View Object Detection
2.1.1 Conventional Vision Techniques
Traditional top view object detection pipeline consists of three main steps i.e., candidate
generation, feature selection or extraction and classification, see Fig. 2.4.
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Figure 2.4: Object detection pipeline.

Candidate generation: Any different objects may randomly appear in any location in
the image with different sizes. To find out the potential regions, the intuitive method is
scanning through the image completely with multi-scale sliding window. a sliding window
is a rectangular region of predefined width and height that strides across an image.
Teutsch and Krüger [49] used the sliding windows to generate targets, which are moving
vehicles from aerial image frames. After sliding window, Non-Maximum Suppression (NMS)
is commonly applied as the post process to select the most appropriate BBoxes. In other
words, NMS suppresses the smaller overlapping BBoxes and outputs only the larger ones
as shown in Fig. 2.5a. Unlike person detection which rescales the sliding window into 50
different scales, the authors introduced three different sliding window scales for the vehicles
based on typical vehicle size. They were small scale (buses and trucks whose length are
between 15-20 m), mid scale (large cars, small trucks), and original scale (standard cars
whose length are between 4-5 m). As the result, the search space of sliding window became
much more less. The authors finally demonstrated that the detection using this exhaustive
candidate search approach resulted better than the detector using segmentation as the
candidate generation. Nevertheless, the slide detection window has to go over all scales
and positions as the sliding window methods attempt to search for all possible candidates.
This results expensive computation and causes region duplication [50, 51].
Another alternative candidate generation method is background modeling. The background
subtraction results in the blob or rectangular foreground regions due to the change of
motion between frames. Kim et al. [34] used an on-site camera to detect worker-on-foot
and construction machines using background subtraction and estimate the risk of each
entity on the field. The Gaussian mixer model (GMM) or Mixture of Gaussians (MoG) is
used to distinguish the moving objects from the background. MoG models the background
pixel values as a mixture of multiple Gaussian distributions. The authors [34] mentioned
the background subtraction can increase the reliability of the safety monitoring. The
performance of the method can be optimized by parameter tuning. Lingam et al. [52]
improved the quality of foreground extraction for real time UAV tracking, shown in
Fig. 2.5b and 2.5c. The authors addressed the noise and ghosting effect of traditional
background subtraction technique, which can be occured due to dynamic environment
from the aerial surveillance. They proposed an adaptive Gaussian-based background
subtraction approach. The tuning factor is statistically optimized ranging from 0 to 1.
Despite the background subtraction is computationally efficient, there are several limitations
in detecting construction resources. For instance, it is unable to detect static objects.
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(a) (b) (c)

Figure 2.5: Different candidate generation methods. (a) Sliding window. This figure is modified
from [49]© IEEE 2015. (b) and (c) MoG Background subtraction© Reprinted by permission
from Springer Nature: Springer [52], Copyright (2014).

Additionally, the object type of the extracted foreground object is unable to be identified
such as finding the difference between pedestrian and construction worker. Furthermore,
it may consider several objects which partially overlap as a single object. The extensive
literature related in background subtraction techniques can be found in [53].
Identifying a region can be beneficial to find multiple candidates which potentially exist
in an image. This image processing, which partitions an image into multiple regions, is
called image segmentation. The representation of the image becomes more meaningful
and easier to analyze. Segmentation does not require making an assumption about the
object size or shapes compared to an exhaustive search like the sliding window approach.
Felzenszwalb and Huttenlocher [54] proposed an efficient image segmentation algorithm
using a graph theory. An image is represented by a undirected graph G “ pV,Eq. A pixel
is defined as a node vi P V , while an edge e “ pvi, vjq P E links between vertices pvi, vjq.
The pixel difference or weight score wpvi, vjq can be distinguished by pixel’s intensity, color
or location, etc. The more different the two pixels are, the higher the weight is. Eventually,
segmentation is a partition of vertices into multiple linked components C. Similar pixels
are assigned to the same components. Nevertheless, segmentation is difficult because
sometimes it is unclear what separates an object. In other words, it is hard to define the
pixel similarity. Selective search (SS) [55] is a region proposal method that offers better
segmented candidates via a bottom-up hierarchical grouping. The method recursively
combines similar regions into larger ones, see Fig. 2.6. This method is initially developed
based on the image segmentation algorithm [54]. Tewari et al. [56] employed the selective
search to generate targets for deep learning based classifier for detecting vehicles in aerial
images, see Fig. 2.7. The authors indicated the simplicity to generalize object proposal to
any vehicle aerial images by adjusting the parameters of the selective search such as initial
segmentation size, minimum and maximum proposal size.
In general, candidate generation methods are used to define the object boundary for the
feature extraction and is later classified.
Feature extraction: Given an image from top view perspective, a feature extraction
algorithm generates a set of feature descriptors or feature vectors. An image feature is
a point of interest for describing an image for detection. The top view images typically
have less features to detect pedestrian since they usually return a horitzontal plane unlike
frontal view that presents a wide range of features that can be used to detect human or
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Figure 2.6: Selective Search, one of the candidate generation methods© Reprinted by permission
from Springer Nature: Springer [55], Copyright (2013).

pedestrian. For example, the silhouette of a human from the frontal view is much more
complex (rich feature) compared to the top view. The feature descriptor should carry
sufficient information of the object in the image and should not have any unnecessary
data, like an image noise from the extraction. Importantly, the descriptor should cost low
computation to ease for a large collection of images and quick extraction. They should be
invariant to clutter, illumination change, size, posture, etc. In other words, the descriptor
should generalize the same object type, even from the different views, it should produce the
identical feature as much as possible. The feature descriptor should contain well-organized
information of the image for the detection tasks. Image feature extraction can be ranged
from low level (e.g., color, motion, gradient) to mid-level (e.g., edge, regions, corners)
and high level (e.g., background, object model) [57]. The image feature is considered to
represent a target. Constructing handcraft visual features requires expertise in order to
process the raw data into a suitable internal representation form. The features should be
robust and semantic.
Image gradients or Gradient vectors is one of the most basic concepts in computer vision.
It measures how the image is changing. The change is in pixel value along the x-direction
and the y-direction around each pixel. The image gradient ∇I has two properties; (a)
magnitude |∇Ipx, yq| “

b

Ix
2
` Iy

2 is L2-norm. It shows how quickly the image is changing
and (b) direction θ∇I “ arctan pIy{Ixq tells us the orientation in which image is changing.
The advantages of the image gradients are invariance in brightness and scale. Given Ipx, yq
is a pixel color value at location px, yq, the image gradient computation can be defined as
follows.
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are the partial derivative on the x-direction and y-direction respectively. The
well-known applications of image gradients are edge detection and feature extraction of
Histogram of oriented gradients (HOG) descriptor [58]. Garcia et al. [59] exploited HOG
features to localize person from aerial view to boost disaster search. The study showed that
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Figure 2.7: Example of selective search from top view images from VEDAI
dataset[60]© Reprinted by permission from Springer Nature: Springer [56], Copyright (2019).

using HOG as image descriptor provide general representation of the object in different
domains e.g., pose and angle of view. Consequently, this is suitable for the aerial view
because the local feature such as face, which is invisible from the aerial view. In addition,
HOG is tolerant to different brightness.
Another examples of the prominent visual features are Local Binary Pattern (LBP) [61],
Scale-Invariant Feature Transform (SIFT) [62], Haar-like [63], etc. LBP feature is relatively
similar to HOG which are built on gradient of a surrounding pixel. As the name implied,
LBP extracts the local patterns from eight directions for each pixel, while the HOG
only used one direction of the greatest magnitude for each pixel. Therefore LBP has
better local representation. On the other hand, HOG outperforms in capturing edges and
corners. Moranduzzo et al. [64] used LBP features to classify the agriculture region to
support archaeological analysis from extremely high resolution (EHR) aerial images. The
Chi-square distance is used as similarity measurement. Instead of pixel-based, the authors
used the tile-based which turned out to be simpler and more efficient.
To track a single object from drone, Jabar et al. [65] employed SIFT feature for Kanade–
Lucas–Tomasi (KLT) tracking method to overcome similar objects in the video frames
and cluttered background. The authors demonstrated that using SIFT feature was able to
provide sufficient information to represent the object shape. Although the generated visual
features are associated based on how the human brain interprets, it remains difficult to
have general features which can be used for any objects [62]. It is challenging to recognize
objects in different appearance, scale, brightness, pose, or obscure, etc.
Classification: The classic classification appraches are used intensively in satellite
imagary and drone vision, which will be elaborated later on after introducing common
classification approaches. Classification is a machine learning process that generates a
prediction model. The classifier model determines the class label of subregions in the
image based on the feature representation. Once the visual feature of the candidate is
generated, those features have to be categorized into a class. There are three main learning
paradigms in machine learning. In this thesis, only supervised learning will be mainly
discussed. The rest are beyond the scope of this work. Supervised learning is the most
common form of machine learning such as Support Vector Machine (SVM) [66]. A large
dataset of images is collected. Each object in an image is labeled by hand. The model
learns from the given dataset including its label. While the unsupervised learning does not
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Figure 2.8: Vision-based crane load monitoring. The upper row depicts the load monitoring
simulation in indoor, while the bottom row illustrates load monitoring in the actual construction
area. [70]

have any training dataset or has only an incompleted dataset, the model itself has to find
the unknown patterns in the non-labeled dataset. Lastly, the reinforcement learning (RL)
is the trial-error method where the agent learns how to achieve a goal on their own under
an uncertain environment. The agent gets either rewards (positive) or penalties (negative)
feedback based on the actions it performs. The goal is to maximize the reward. Neural
Network (NN) can be used in all these three learning methods depends on the learning
tasks.
In supervised learning, the machine is shown an image during training and produces
an output in the form of a vector of scores, one for each category. SVM and Artificial
Neural Network (ANN) are the most robust classifier option in supervised learning. SVM
is a non-probabilistic binary linear classifier. It builds a model which represents the
training examples as points in space. The model separates a new example into one class or
other. Park et al. [67] obtained the foreground blob using the median filter as background
subtraction. The small bounding boxes wrapping around the blob are fed to feature
extraction. The HOG features are fed to SVM classifier whether the candidate is a person
or not. Gleason et al. [68] proposed vehicle detection from drone image which is used for
visual inspection in patrol service. The authors made the comparison with different image
descriptors (HOG and Histogram of Gabor coefficients) and classifier (k-Nearest Neighbors
(kNN), random forests (RF) and SVM). The dataset was collected from both indoor and
outdoor. The top performer was the detector which used Gabor histogram features and
classified them with RF classifier. Than Noi et al. [69] showed the comparison of different
classifier for land use classification for satellite images. Overall, SVM outperformed RF
and kNN. The authors observed that there was no significant difference among the three
classifiers when the training sample size was large (ě 500 pixels) apart from one specific
dataset whose size was approximately 750 pixels with kNN classifier.

2.1.2 Top View Applications of Traditional Approach
Traditional worker detection methods are based on simple features like helmet and color
of high visibility vest. Neuhausen et al. [71] proposed worker detection and tracking from
the bird’s eye view using the color of high-visibility safety vests as the image feature. The
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(a) Drone top view (b) Load top view

Figure 2.9: Top view comparison between load and drone [73].

authors initially extracted the target worker from the foreground using the color histogram
of the emergency vest and pass them to the soft cascaded classifier [72]. Two color spaces,
namely RGB and HSV were compared. In contrast to RGB color space, HSV is more
robust in brightness changes. After the targets were generated, the soft cascaded classifier
which is based on decision tree. At the end of the object detection pipeline, Kalman Filter
is used to smoothen the detection result. However, this work fails to consider complex
environment of the construction area including majoritiy of the workers who did not wear
safety apparel which is high visibility vest because the method highly relied on the shape
and color of the target. In addition, the background subtraction method to generate target
is limited to non-stationary camera.
To increase spatial awareness of the operator, Fang et al. [70] proposed real-time monitoring
of load motion for an offshore platform. For load sway monitoring, the vision-based method
is adopted to track the load position in addition to the crane motion monitoring using
Inertial Measurement Unit (IMU), see Fig. 2.8. A monocular camera mouted at the crane
boom looking downward to the ground. With the monocular camera, the authors used
a color-based segmentation approach to track the large-colored marker on the load. To
obtain discriminative color segmentation, the authors chose CIELAB color space instead
of RGB. After the position of the load is obtained in form of the bounding box, the 3D
position with respect to the camera is calculated by using camera project method, given
the wire rope length and camera focal length. Nevertheless, this study would be more
interesting if the authors assess the different load shapes as only in the shape of box or
containers existed despite of many types of loads in actual construction.
Takahashi et al. [74] measured the three-dimensional position of the crane hook. Given
a load-view monocular CCD camera, the hook region can be obtained by optical flow.
The part of the detected hook region at the center is tracked based on Orientation Code
Matching (OCM) [75]. According to the experiments, the authors set the size of the
tracked region template is 21ˆ21 pixels. To speed up the processing time, the authors
suggested to increase the searching region to 51ˆ51 pixels. Consequently, they obtained
approximates 33 frames per second (FPS). The study was limited to the static camera
mounted at the boom.
For vision-based Search and Rescue (SAR), Andriluka et al. [76] showed the comparison
of victim detection from a quadcopter among five classic detectors which were based on
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monolithic and part-based models. Two monolithic detector models were HOG-based with
the full bodies of pedestrian and the other with only upper bodies. As the name implies,
these types of detector provides global descriptor of the target. Therefore, these methods
are very sensitive to pose variation which could worsen their performance. On the other
hand, the three different part-based model detectors were Deformable Part Model (DPM),
pictorial structures with discriminant part detector [77], and poselet based detector [78].
The authors concluded that the part-based features have better performance and more
robust with partial occlusion.
Nevertheless, the above mentioned conventional detection, methods which are built on
handcrafted feature such as high visibility colors, parts of object and shape, can fail to
PPE noncompliant scenario. According to a survey about worksite accidents and injuries
conducted by the Bureau of Labor Statistics (BLS), 84% of all workers who suffered head
injuries were not wearing head protection [79]. This shows most workers do not regularly
wear protective clothes. Thus using PPE information, the high-visibility color of helmet or
vest, as a feature to detect workers may not be adequate. Moreover, the methods which
rely on static environment or background can fail because the construction site keeps
changing through the project phases.

2.2 Deep Learning-Based Top View Object Detec-
tion

As an emerging trend, the research on Deep Learning for top view object detection is
swiftly expanded. Localizing the objects from very high altitude is very challenging. The
target size is very small which yields insufficient image feature extraction of target.
Deep Learning (DL) is a class of machine learning techniques based on ANNs. For decades,
handcraft feature extraction is limited. Traditional machine learning methods require
expert knowledge to extract the features out of raw input data. To train a model of these
conventional object detection, the expert indicates each part of the object rather than a big
picture. For example, the face detector [63] features the differences of eye-cheeks or eye-nose
bridge. DPM detector models an object based on the global and local appearance [51].
The global appearance consists of local appearances which have spatial connections as
a spring among them. DPM is a graph-based method. Each part considers as a single
node and each node has a cost. To illustrate, the global appearance is the whole body of
a person while the local appearances are parts of the body (e.g., torso, head, arms, and
legs). On the contrary, DL object detection approach is learned by showing a vast amount
of image data including labels without guiding through each part of the object. Hence, it
is end-to-end learning which includes complete detection pipeline, namely, localization,
features extraction and classification, see Fig. 2.3 at the bottom.

2.2.1 Deep Learning-Based Detection Techniques

The notable DL-based object detector algorithms can be categorized into two classes,
namely two-stage detector and one-stage detector (see, Fig. 5.1). The classification of
the detectors are based on Convolutional Neural Network (CNN) or ConvNets instead of
manual engineered features. The well-known CNN object classification architecture are
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(a) (b)

Figure 2.10: Mask R-CNN [80]. (a) Raw image. (b) Mask R-CNN is applied.

AlexNet [81], VGG [82], and Residual Neural Network (ResNet) [83]. More comparison of
CNN-based object detectors regarding speed and accuracy can be found from [84, 85].
Similar to the traditional object detection pipeline, the two-stage detectors treat the
detection problem in two steps. First, the object proposal generates potential candidates.
The candidates are later sent to the top of the classification and regression network or their
network head for further class prediction and bounding box regression, respectively. Region-
based CNN series including Region Based Convolutional Neural Networks (R-CNN) [86],
Fast R-CNN [87], Faster R-CNN [88] and Mask R-CNN [89] are the renown two-stage
detectors.
On the other hand, single-stage detectors are rapid detection models such as You Only Look
Once (YOLO) series [90, 91, 92, 93, 94, 95], Single Shot MultiBox Detector (SSD) [96] and
RetinaNet [97]. They proposed the candidates from the input image directly without the
region proposal step. This leads to simpler and faster model architecture while lessening
the performance slightly. Further discussion of DL network architecture is elaborated in
Sec. 5.

2.2.2 Top View Applications of Deep Learning Approach
With the outstanding results of DL methods, a researcher in the construction domain
started to employ these data-hungry learning methods. Besides construction domain, it is
worth to mention the literature of object detection from Unmanned Aerial Vehicle (UAV)
because the aerial view and crane load view are nearly identical, see the comparison in
Fig. 2.9.
Yang et al. [80] presented the automated safety distance identification system from a tower
crane based on Mask R-CNN method. By monitoring the distance between worker and
falling zone area, the system gives a warning to the operator if any worker accesses the
hazard area which was marked in yellow and black stripe area, see Fig. 2.10. To detect
worker-on-foot, the training data was first collected. Due to the difficulty in finding data
from the actual crane platform, the authors created an internal crowdsourcing platform
for the workers to collect the data from the real construction site. Unlike Mask R-CNN
detector, the bounding box-based detectors such as HOG, YOLO, or SSD, output each
recognized target as a bounding box. These detectors can have large errors when the
camera is rotated or tilted. This results the target to be heavily deviated. Mask R-CNN
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Figure 2.11: RetinaNet model to localize transmission line defects© Reprinted from [103],
Copyright (2020), with permission from Elsevier.

is an instance segmentation which compute pixel-wise mask of individual object instance.
This allows the operator to have better risk estimation of the worker.
Ahmed et al. [98] proposed multiple people tracking via surveillance IP camera under 5G
infrastructure. The authors employed YOLOv3 as the detector with tracking algorithm
called Deep Simple Online and Realtime Tracking (SORT) [99] to gain better detection
performance, see Fig. 5.1b. The comparison between two YOLO detectors were made,
namely original pre-trained model with MS COCO dataset and one with top view image
fine-tune. With the pre-trained model, the detector was able to achieve 92% accuracy
while it gained 4% better with transfer learning. Kim et al. [100] used YOLOv3 to localize
objects to further monitor proximity between mobile constructions resources.
Zhu et al. [101] applied a two-stage detector to detect person from UAV. The authors
improved Faster R-CNN to detect small-size targets and reduce overlapped bounding
boxes among targets. To improve small target size detection, the authors extended the
anchor size to cover smaller target size. Two additional anchor scales, namely 32ˆ32 and
64ˆ64 were added in RPN to match small object size. To handle overlapped or proximal
targets, RoI pooling was replaced by RoI align [89].
Kim et al. [40] developed a prediction model for trajectory of mobile construction resources
using UAV image data. The Socially Acceptable Trajectories with Generative Adversarial
Networks (Social GAN) model is able to predict for more than five seconds in advance.
The trajectory is further used to monitor struck-by accidents.
Barekatain et al. [102] proposed an action detection model to detect person using SSD[96]
as a base architecture. The author trained the detector with different daily actions e.g.,
lying, walking, pushing, and calling. However, the worker activities on the construction site
are quite different than the actions of the pedestrian. Some examples of worker activities
are lay brick, nailing, welding, etc. Evidently, the worker’s action basically appears as
squatting, bending, dragging objects, etc. Such approaches, however, failed to address the
unstructured background, change in object appearance, or viewpoint.
Kapania et al. [104] combined both YOLOv3 and RetinaNet as detectors for multiple object
tracking with drones. The authors reason of using the two detectors is to bring out the
best properties of each detector and compensate the drawbacks of both. While YOLOv3
usually fails to small object size or objects in close proximity, RetinaNet performs well in
small and dense objects. NMS was later applied to remove redundant BBoxes. In the same
manner as [98], the tracking algorithm is based on Deep SORT. For transmission line defect
recognition via UAV, Liu et al. [103] increased the performance gain of the RetinaNet-based



22 2. Automated Vision-Based Top View Safety Monitoring in Construction Area

(a) (b)

(c) (d)

Figure 2.12: Examples of AV Dataset. (a) ApolloScape [109]© IEEE 2018. (b) Waymo Open
Dataset[110]© IEEE 2019. (c) Cityscape [111]© IEEE 2016 and (d) KITTI [112].

detector, see Fig. 2.11. There were four common defected on the transmission line which
are tower, fittings, insulator, and ground wire. The authors made several modification
on the RetinaNet model for the improvement. For instance, the original backbone of
RetinaNet (i.e., FPN) was replaced by DenseNet [105]. As a result, the frame rate and the
accuracy become higher. In addition, the anchor box generation mechanism of YOLOv3
was included to obtain better quality of anchor box. In the end, the authors demonstrated
the improved RetinaNet outperformed Faster R-CNN and YOLOv3.

Golcarenarenji et al. [106] proposed CraneNet network architecture for top view worker
detection for a mobile crane in safety monitoring. The network was trained with Visdrone
2019 and Stanford Drone Dataset (SDD). The CraneNet was based on Path Aggregation
Network (PANet) [107] which contains deeper network layer to gain more meaningful
information and improves small object detection and Spatial Pyramid Pooling (SPP) [108]
which expands the receptive field of CraneNet backbone network. Despite the good
accuracy, it would be more interesting that the authors considers target without high
visibility emergency vest. Because the targets are usually blended to the background which
result more challenging in worker localization, especially at very high altitude.

The performance of deep learning methods is highly dependent on the existence of ample
training samples. There is an intensive shortage of training data and pretrain models in the
construction domain. Laflamme et al. [113] present the self-driving car datasets publicly
exist in great amount such as KITTI [112], Waymo [110], Cityscape [111], ApolloScape [109]
and Mapillary Vista [114], see Fig. 2.12. Each dataset has its own strengths and weaknesses.

Unfortunately, these datasets do not apply to load-view object detection due to the frontal
viewpoint. The street environment is quite structured, unlike the construction site which
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Figure 2.13: Drone dataset. (a) Stanford Drone Dataset© Reprinted by permis-
sion from Springer Nature: Springer [48], Copyright (2016). (b) VCI-CITR and VCI-
DUT dataset [24]© IEEE 2019. (c) Okutama [102]© IEEE 2017.

is always rapidly changing. The objects that appear in between two scenarios are entirely
different.
In addition, UAV datasets (e.g., SDD [48], VCI-CITR and VCI-DUT dataset [24], Oku-
tama [102], see Fig. 2.13, could not be used as an alternative because of an uncluttered
and static background. The pose or activity of the worker and the pedestrian are not
identical, which can lead to different image features. Lastly, there is another solution of
data gathering for the data-driven approaches is to exploit the simulation platform which
will be further discussed in Sec. 4.3.
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3. Thesis Overview

Top view vision-based object detection attract researchers’ attention in recent years. It is
used in surveillance, crowd analysis, safety monitoring, etc. These applications require
observing multiple objects simultaneously in a large area. Top view image is taken vertically
from an elevated position such as aircraft, buildings, and huge construction machines. The
name of the top view can also be seen in different terms such as bird’s-eye view, aerial
view, overhead view, and top-down perspective. The view can provide the existence of
the objects in the large viewpoint rather than the detail of every single object. On the
contrary, the front view, such as a dashboard camera view, is taken where the observer is
at the same elevation as the object. Unlike the top view, there are fewer visible objects
can be captured and more inter-object occlusion.
Detecting objects from the top view is significantly used in a wide range of application
domains, from safety to disaster relief. In general, such application areas are inaccessible or
hard for ground vehicles or humans to reach. Additionally, the idea of top view perception
is gathering the information in a big picture scheme instead of detail specific. Therefore
detecting objects from the top view is a suitable approach for these applications. In
traffic monitoring, the surveillance camera mounting on the light pole can observe the
vehicle movement or indicate the density of the vehicles on the road. Regarding the
rescue mission, a camera is mounted on Unmanned Aerial Vehicle (UAV) to recognize
any victims in serious disruption areas. Another example would be the construction area.
The information from the surveillance camera is used to estimate the construction asset.
For safety monitoring, a crane operator is unable to see any worker who is immediate to
a load from the cabin because the workers could be obscured by the load. Instead, the
camera attached at the top of the crane arm is used to facilitate the operator during lifting
operation and importantly notice if any worker comes nearby the load to avoid struck-by
load accidents or a situation where a worker can be hit by a load.

3.1 Challenges of Top View Object Detection
Detecting objects using a monocular image sensor from the top view is extensively employed
to perform autonomous operation [115]. The position of the identified target is later used
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Figure 3.1: MC5200 on crane. [118]

in higher-level image processing for semantic understanding such as pose estimation,
activity recognition. Despite remarkable results, there is a big room for improvement
due to different challenges, such as changes in scale and viewpoint. As previously stated,
top view observation offers a larger viewpoint and higher numbers of object existence,
comparing to front view. However, the bigger the area covers, the smaller the object size
becomes. Consequently, the traditional object detections suffer from manually defining the
image features or environment constraints such as object apparel [71], background [34].
Bhattarai et al. [116] employed a binary classifier on Haar-feature to detect a person
from UAV. The authors mentioned the tradeoff between object size and accuracy. Such
approaches, however, failed to address the unstructured background, change in object
appearance, or viewpoint. The previous survey[117] showed the comparison of top view
detection methods using UAV in three different height intervals. The eye level is the lowest
drone flying range which is at the same level as a human viewpoint. The low-medium
range is the most common flying zone i.e., 5 to 120 m above the ground. The rest falls
into the aerial level which is higher than 120 m. The authors mentioned the changes
in size and perspective result in various and specific detection techniques. Besides the
impressive outcome of data-driven detection methods, the top view object detection using
Deep Learning (DL) approach is far behind, comparing to the front view. The difference
of the best Average Precision (AP) achievement in object detection benchmark between
the front view and the top view is very large. In spite of different evaluations, the highest
AP of front view object detection benchmarks is approximately 96 percent [119] whereas
the statistic of top view detection benchmarks is merely 30 percent [25]. Zhu et al. [120]
points out the serious and open problem in data inadequacy of aerial image. The data
generation for the top view is problematic due to the unreachable area and small object
size which is very difficult to annotate. In the absence of data, the DL methods are not
able to reach the promising outcome. There are numerous test platforms for self-driving
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Figure 3.2: Overview workflow of this thesis.

cars [121]. To conduct the experiment, the test platform for top view autonomous operation
is indeed necessary. Nevertheless, the simulation platforms for top view object detection
are limited [122, 123].
The aim of this thesis is to develop a robust vision-based 2D object detection with adaptive
zoom camera from top view images using a deep learning algorithm. To solve the challenges
of top view object detection, we opt to investigate the problems in the construction area
as the use case. The motorized zoom camera on the mobile crane is employed as an image
sensor to recognize the object from above. The camera is attached at the boom end, shown
in Fig. 3.1 and always pointing downward to the ground. During lifting operation, it
moves straight up and down along the movement of the crane arm. The target object is a
worker-on-foot who works on the ground around the load. The arguments of choosing the
construction area as the use case are following. First, the environment of the construction
site is highly unstructured and rapidly changing. Second, the height of the crane camera
to the ground is frequently changing during the lifting operation. Lastly, research activities
of the construction industry are fairly small relative to autonomous passenger vehicles.
Ultimately, detecting objects from the top view in a construction area contains most of
the mentioned challenges.
The research objectives fall into the following steps. To overcome the drawback of the
traditional methods, we investigate the suitable DL network models and their parameters
that are competent for the complex environment with several viewpoints. The speed
performance should be assessed, as well as the accuracy because most standard image
sensors to obtain top view images are typically small, compact, and low resolution especially
in industrial machines. The space and weight of the sensor to install on the platform are
very restricted.
Regarding the data deficit in data-driven methods and limitation of test platforms, the
simulated environment is developed using a game engine, Unreal Engine (UE). The
environment is built resembling the selected use case. A good amount of synthetic datasets
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Figure 3.3: Summary of thesis contributions.

are generated and expected to increase the quality of the detection method. UE has been
commonly used in many applications e.g., film industry, architecture, automobile, robotics.
It can provide the realistic simulation in various perspectives such as texture and physical
properties. Therefore, we want to analyze the realism effect of training using synthetic
data whether it can improve the accuracy of the detector in the real world. Lastly, we
inspect the zoom mechanism of the crane camera to address the scaling problem. The
analysis of the zoom controller should be executed to see how much it can maintain the
object size.
The workflow to fulfill the research objectives is briefly shown Fig. 3.2. The concept of
this work can be adapted to other application areas e.g., using a surveillance camera to
detect objects in an urban area instead of using a crane camera on a construction site. To
bridge the gaps in the aforementioned challenges, the following contributions are made.
Each problem will be first described in detail and followed by the associated contribution.
The contribution overview of this thesis is depicted in Fig. 3.3.

• Generating and Analysis of synthetic data to enrich the quality of top view detec-
tion [124, 118]:
The data-driven object detection methods require good quality of data in great
amount [125]. Despite the vast number of the public dataset, the groundtruth are
faulty due to interpolation among frames and human errors. To the best of our
knowledge, there is no public dataset for top view worker detection in the construction
area. On the other hand, data generation is tedious, especially for huge construction
machines.
In this work, simulation platform [126] for a mobile crane is developed using UE,
shown in Fig. 3.4. This platform has the advantage of a more comparable environment
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Figure 3.4: Simulation platform of Steil Kranarbeiten, Trier, Germany

to the actual construction including surrounding objects. The environment can be
modified in a fast manner. Another practical advantage of the platform is that it can
be used as a lab-based experiment for a mobile crane which does not exist in other
works. The simulation platform is necessary for construction research, especially
automation and robotics. The construction site is hazardous. The simulation
platform contains an immediate connection to the robotic framework, FINROC1. By
using the platform, many experiments or algorithms can be achieved concurrently
without any risk and high costs.
The simulated environment is used for dataset generation to support object detec-
tion using DL. Numbers of synthetic datasets are generated using the developed
platform [124]. The crane camera recorded the data in different heights, weathers,
zoom levels, and camera movement. The benefit of using this platform is expected
to reproduce the zoom function or crane maneuverability to collect the identical
data as from the real crane. There is no compatible public dataset that is suitable
for worker detection using a load-view zoom camera. Therefore, the author believes
that these synthetic crane datasets will be valuable to the construction research
domain whose dataset is hardly available. Lastly, the evaluation of synthetic data in
[118] demonstrated the possibilities of using synthetic data in training. In addition,
there is a significant improvement of more than 10% in average precision between
the pre-processing and non-preprocessing synthetic dataset.

• Top view object detection using Deep Learning [118]:
Most of the traditional object detection methods are based on simple feature extrac-
tion and image processing. Object regions are given by background subtraction[34].

1Framework for Intelligent RObot Control (FINROC) is a real-time robotic framework based on a
systematic design. It has been developed at the RRLab of TU Kaiserslautern, Germany since 2008[127]
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(a) load-view camera (b) surveillance view camera

Figure 3.5: (a) shows the yellow-black color combination area is defined as physical hazard zone
according to OSHA [80]. (b) PPE non-complaint workers working nearby the heavy machine in
yellow locating on the right of the figure.

Additionally, the image features of the traditional worker detectors are limited to
PPE [71] or the marked danger zone, see Fig. 3.5a. Such protective gears have
high visibility colors and specific shapes i.e., circle (helmet). Color histograms
such as HSV, YUV, or RGB color space are incorporated to represent the workers.
Nevertheless, the methods do not account for manifold of PPE noncompliance, see
Fig. 3.5b or dynamic changes in the construction environment.
With the DL breakthrough, object detection using a data-driven approach is employed
in this work. In contrast to traditional methods, this method has the advantage of
an end-to-end learning concept which allows the Neural Network to automatically
find out the most descriptive features which are suitable for each object class. The
approach can overcome the conventional methods which are highly committed to
PPE presence [71].
A further question is whether person detection from UAV image using in typical
outdoor environments (e.g., university, city, sports ground) could be an alternative
solution [102]. In fact, the detection algorithms in UAV are limited to a plain
background, invariant height, and importantly restricted to objects which differ on
appearances and activities. Therefore, the study of worker detection via load-view
crane camera particularly remains to be explored.
Detecting workers from load-view is challenging. In particular, no study, to the
author’s knowledge, has considered the worker detection from the load-view zoom
camera. This remains an open problem in the area. Such the industrial crane camera
has low pixel resolution. It also swings with pendulum motion which adds more
degree of difficulty, see Fig. 3.1. Selecting network architecture is another challenging
problem due to time and accuracy trade-off [84]. In this work, the studies will further
discuss the network option in Chapter 5 concerned hardware resource, accuracy, etc.
The analysis of parameter tuning including the training process is investigated and
properly customized to the application in this task. Based on the evaluation, the
optimal network is chosen.

• Analysis of adaptive zoom to maintain the quality of top view detection [128]:
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(a) (b)

Figure 3.6: Snap from load-view Orlaco. The red bounding boxes are annotated the person in
the image frame. [131]

Data acquisition is one of the essential stages in the object detection pipeline. To
the author’s knowledge, no previous research has investigated the zoom mechanism
on a mobile crane for object detection. Alternatively, the previous research on
the safety monitoring system using object detection attempt to exploit additional
particular sensors to augment the perception information. Unlike a crane zoom
camera, these non-standard crane sensors, like laser scanners, significantly increase
the hardware cost. The undesired cost explains the small usage of the LiDAR in
the industries [129]. Hence, more specific research to investigate the existing crane
sensor, which is the load-view camera, is needed.
The in-depth literature review in Sec. 6.1 shows that the zoom function of the
camera can be used to improve accuracy. Nevertheless, the methods presented solely
the problem of zoom constraints. For example, the camera is zoomed in or out to
hold the certain range of pixel ratio between the recognized object and the image
width [130]. These studies would have been more useful if they include how to
control the zoom. In practice, the unsteady pixel of the object can affect zoom
oscillation. Zoom control is a challenging subject. To zoom to a certain condition
e.g., the defined specific pixel size, it requires stable zoom control to maintain the
state. Thus, the problem regarding handling zoom control remains to be addressed.
In this work, the control adaptation in optical zoom function of the crane camera is
investigated. The zoom level adjustment of the camera is mathematically modeled
in the finite state machine under the safety criteria. The state transition is handled
continuously. The (semi-)automatic zoom can be changed based on the recognized
worker-on-foots. During operation, the crane operators have to simultaneously
concentrate on every surrounding and can be a lack of situational awareness. Hence,
this adaptive zoom gives a significant advantage for the crane operators.
Besides operator support, the adaptive zoom feature gives a favor to the DL worker
detection. The DL detection algorithm can fail to insufficient training various sizes.
Although DL is scale-invariant, working crane radius are very wide range and it is
different from one crane to another, see Fig. 3.6. To avoid extensive retraining and
re-optimization, the zoom adaptability of the load-view camera supports the DL
algorithm in a similar manner as the operator. In other words, the operator can see
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or the camera can automatically detect the workers closer by the adaptive zoom
function.
In general, DL methods neither can yet solve every computer vision problem nor
are widely accepted among industries [132]. Such algorithms can be deceived by
simple tricks [133]. So far, there are failures of the data-driven approaches in
autonomous vehicle car accidents [134]. Hence, the adaptive zoom feature can be
another advantage compared to applying the DL method alone.



4. Analysis and Generation of Real
and Synthetic Data

To address the problems of top view object detection, we investigated the construction
domain as the use case. The definition of the construction area in this thesis work is an
area where construction operation is carried out, see Fig. 4.1.
As mentioned in Sec. 3.1, we aim to increase the situational awareness of the crane operator
by proactively recognize the struck-by load hazard i.e., the workers can be hit by the crane
load during the lifting operation. To warn the operator, any workers nearby the load
radius are visualized and highlighted on smart glasses, Microsoft Hololens, see Fig. 4.4b.
Furthermore, we had an opportunity to work with the real setup including the experts,
who are crane lift planning designers and camera solution system provider for construction,
as part of this research project. With the close collaboration with crane industries, we
gained knowledge about the crane safety regulation in practice, how crane trajectory
should be especially during the blind lift, the suitable hardware including their position
should be mounted, etc. As our contribution in this project, Top view worker detection
provides meaningful information to the crane operator to be aware of the surrounding risk.
The structure of this chapter will be first discussed on how the construction operation
task and brief safety regulation are. Secondly, the literature review related to simulation
usage in construction domain and dataset generation will be elaborated in Sec. 4.2 and
4.3. Sec. 4.4 describes the scenario and the environment where usually causes accidents
and also were used for running the experiments in this thesis. The hardware setup in
the real world will be later presented in Sec. 4.5 then followed by the transition from the
real world to the proposed simulation platform in Sec. 4.6. Importantly, it is necessary
to investigate the simulation platform for construction automation and robotic research
experiments such as worker detection or dataset augmentation for Machine Learning.
After the development of the simulation platform including the hardware setup in the
real world is presented, Sec. 4.7 and 4.8 present the approach on how the datasets were
gathered both in the actual setup and using the virtual setup, including an analysis of
the synthetic data. The data generation procedure both in the real world and the virtual
platform is first described in two steps i.e., data recording and data annotation. All the
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Figure 4.1: The examples of the typical industrial or construction areas where a crane operates.
(a) Surveillance camera view. [34]. (b) and (c) illustrate view from crane camera. (d) depicted
top view from the 6th floor building using load-view crane camera.

generated datasets including the public datasets will be later summarized and used to
refer for the rest of the thesis. The evaluation metric for object detection algorithms for
the experiments is introduced in Sec. 4.10. Finally, a part of the generated datasets was
adopted in the two experiments for the analysis of the synthetic data in Sec. 4.12.

4.1 Crane Operation and Safety
A crane is a central machine that serves in many construction operations. This powerful
machine is the main drive for the construction project. It provides great mechanical
support which is moving materials or loads beyond the normal human capability. However,
keeping the construction site safe is challenging because the area dynamically changes
across the construction phases. The size of the crane including the loads is huge. Any
small mistakes can lead to great damage or loss. Among the nine major economic sectors,
construction has the third highest fatality rate [12]. Approximately 30 percent of all
construction fatalities are related to cranes [16].
For lifting operation, the operator works with several personnel (a)rigger and (b)signaller.
The riggers set up and connect the lifting equipment (e.g., a hook) to the load and assure
that they are tight and will not fall down during the lifting. They work closely to the
load during not only the attachments (see Fig. 4.2b), but also the lifting. Sometimes, the
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(a) (b)

Figure 4.2: (a) The overview of crane personnel during the operation. (b) The rigger works
closely to the load and the crane.

operator needs small adjustments to the load, whose movement is too small for the huge
machine to perform. Therefore, the riggers have to either drag load strap or go close by
to push/pull the load. On the other hand, the signaller, who acts as additional eyes of
the operator, mostly stands nearby the crane cabin, see Fig. 4.2a. He gives a crane signal
which provides the proximity information of the crane and the load for the operator. The
signaller guides the direction or indicates obstacles via either hand signals or a handheld
transceiver (HT) when it is out of the operator’s sight.

4.1.1 Construction Safety
In construction operation, safety measures have to be executed in adequate manner. The
safety officer is responsible to build a safe environment for all construction workers and
assure all the construction workers follow the safety regulation. Traditionally, the safety
personnel or supervisors walk through the construction site, observe other workers and
notify them if any potential hazards (i.e., unsafe conditions or acts) are found. The job
site inspection and observation are performed every one or two weeks depending on the
size of the project [135]. Each inspection takes 1-2 hours at an arbitrary time.
Safety monitoring tools or safety assistance systems, visibility in particular is important for
the situational awareness as it allows crane operators to be able to see what is happening
around the equipment. The struck-by equipment or vehicle accidents are highly visibility-
related. Human highly depends on sight. In general, human obtains more than 90% of
information transmitted to the brain is via visual sense [136]. Limited or poor visibility
such as blind spots or obstruction accounted for 82% of all visibility-related fatalities [137].
In a crane, the operator has to perform blind lift when the operator is unable to see the
load or personnel from the cabin, see Fig. 4.2a and 4.3. Without any crane assistance
system, the crane operator has to rely on the signaller or the load-view camera; however,
the communication can go wrong or be delayed, which can lead to an accident[138]. The
crane operator can maneuver the load to strike the workers unintentionally because of
invisibility. For instance, the operator in Fig. 4.2a is in a higher position than the worker
and the hand signaller are. Apparently, he may not be able to see the people on the ground
below directly from the cabin, particularly blind spots. Despite the load-view camera,
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Operator
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Figure 4.3: Blind lift at the test location, Steil. [73]

the operator has to change the zoom level by himself in the way that he can see all the
workers.
To avoid struck-by accidents, the operator has to always manually observe where the
worker-on-foot and the load area from the small screen (7-inch), see Fig. 4.13. In particular,
it is more difficult for the operator to observe the workers especially when the workers do
not comply with the safety regulation. The operator may not be able to see the worker
who does not wear the highly visible color vest in the construction area because their
appearance becomes uniform to the background. Moreover, when the camera zooms in,
Field of View (FOV) becomes smaller. As a result, the observable area for the operator is
narrower and does not cover the area as large as zooming out at maximum. For example,
the worker is visible to the operator when the camera is at maximum zoom out. After
the operator zooms the camera in, the worker can not be anymore seen by the operator
despite no change in the worker’s position. As can be seen, the operator has to change the
zoom level by hand during the operation in order to observe the workers.
In general, the off-the-shelf camera video system merely offers visual information but not
in a semantic manner. This assistance system, which is the load-view camera feed system,
does not provide an automated alert or point out where a hazard is. The operator has
to observe and further make decisions based on the given raw information i.e., control
feedback or video stream. As a result, they do not remove all of the human factors as the
operator yet performs multi-tasking which is vulnerable to getting into an accident. The
operators have to ballpark estimate on possible risks that may cause the accident based
on their experience.
(Semi-) automated, continuous, and semantic monitoring is considerably useful for the
construction operator. To observe the safety surrounded the crane, the location of
construction resources including their relative locations must be first determined. To
achieve the position or location of the construction resources, top view object detection
from the crane camera is employed in this thesis work to provide the location of the worker
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(a) (b)

Figure 4.4: (a) The top left image shows the view of the operator which can be seen from the
monitor inside the cabin during the blind lift. (b) The crane operator wears Microsoft Hololens,
a pair of mixed reality (MR) smartglasses. [73]

surrounding the crane to increase the situational awareness of the operator during the
safety monitoring.
The cranes are used everywhere and not limited to construction areas such as on the
street right next to the pedestrian path or sports stadium. In this work, we opted to
investigate the challenging environments which is an industrial or construction area. The
following sections will describe the scenario including the typical setup of the top view
object detection in the safety monitoring system.

4.2 Simulation Usage in Construction
A simulation is a tool that a scientist primarily uses for trial-error experiments. This
technology builds the mathematical model to estimate the physical or real-world outcome.
Based on the outcome, it can be further used to analyze for the optimal solution. The
simulation is originally used to increase productivity during World War II [139]. Jon Von
Neumann and Stanislaw Ulam simulated the behavior of neutrons to find out how far the
neutrons would travel in different materials [140]. The electric roulette wheel is used as a
physical random number generator in hit and trial experimentation. As an outstanding
result, the method is known as Monte Carlo became popular and is adopted by many
applications including industry and business.
Simulation eases humans in problem-solving. It offers graphic and data visualization
instead of text form. In general, the human brain can process visual data 60k times
faster than text, and more than 90 percent of transmitted information to the brain is
visual [141]. Therefore, a human can effectively use this skill to analyze the data pattern
and have a better understanding of the problem. As an illustration, it is better to
visualize a room temperature or weather forecast as heatmap colors instead of showing
the degree numerically e.g., red shows as a high range temperature while blue shows a low
range temperature. Some examples of notorious simulation software tools are MATLAB,
Simulink, AnyLogic, Ansys, etc.
Besides data visualization and experiment independence, simulation can increase safety
while saving cost and time especially in robotics or autonomous vehicles. These applications
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Table 4.1: Examples of robotic simulator.

Application Simulator platform
AV : passenger CARLA, Apollo, Udacity, LGSVL, Virtual KITTI [153, 154], DeepGTAV [155]
AV : racing car TORCS
Underwater robotics UUV, UWSim
UAV AirSim, UdaciDrone
Rescue robotic USARSim [156]
Commercial vehicles RRLAB [157, 126]
Computer vision UE4Sim [158], Sim4CV [159],UnrealCV [160]
Vocational training LiSIM

essentially need simulation for research and development. The simulation allows the
researchers to concurrently work on different parts e.g., vehicle control, vehicle perception,
and assess their particular algorithms. In addition, the researcher can work on a physical
robot without modifying the actual robots. A large number of robot simulators are
available such as Gazebo [142], Virtual Robot Experimentation Platform (V-REP) [143]
and CoppeliaSim [144], see Fig. 4.5. Initially, the goal of the robot simulator targets
merely on the physical properties and the main robot function itself. However, the test
environment of these robot simulators is limited or invariant. Further comparative studies
of robotic simulators can be found in [145, 146]. Table 4.1 lists the robotic simulator
examples based on the application.

Simulating diverse environments for testing a robot is another challenging problem. Despite
the ability to create complex manipulator robot arms or quadruped robots, the traditional
robot simulators suffer from building large-scale complex virtual environments which
are nearly identical to the real world [122]. Game engine (e.g., Unity [147], Unreal
Engine (UE) [148]) started to draw a great deal of interest among scientific research.
The game engine platform is a software development environment for people who aim
to create video games. Likewise, the game engine shares the same goal as the robot
simulator, which is having a realistic environment. It also delivers good accurate and
precise modeling such as Microsoft Flight Simulator (MSFS) [149]. The highlight of the
game framework is a real-time rendering engine or renderer [150]. It can generate a
photorealistic for 2D or 3D graphic models. Other game engine features are a physics
engine, collision response, character animation, acoustic, networking, artificial intelligence,
etc. [151]. Furthermore, the game engine software architecture contains a handy interface
and libraries including plugins. The plugins can be obtained from the e-commerce platform
e.g., UE4 Marketplace [152] where other developers provide game-ready content and code.

4.2.1 Simulation Platforms

Robotic researchers specifically in the autonomous vehicle area exploit the game engine
features to develop autonomous vehicle simulation platforms. The architecture of an
open-source game engine allows the developers to interface with their robotic framework.

Numerous game engine-based simulation platforms for autonomous driving research are
available. Car Learning to Act (CARLA) is a UE-based platform that not only supports
the diverse sensors but also validation features of the autonomous driving algorithms with
perception and controls [161]. The architecture is scalable with a client-server model. It
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(a) AirSim [122] (b) CARLA [161]

(c) Sim4CV [159] (d) Gazebo [142]© IEEE 2004

Figure 4.5: Robot Simulation platforms.

offers simulated application programming interfaces (APIs) which allow the user a high
degree of flexibility such as traffic control, map generation, and pedestrian behavior.
Additional self-driving car simulators are Apollo simulation [162], Udacity Self-driving
Car Simulator [163] and LGSVL Simulator [164] which are made in Unity, a game engine.
TORCS (The Open Racing Car) is designed for AI racing game [165]. Reviewing of the
self-driving car simulators can be found from [121]. For underwater robotics, there are UUV
Simulator (Unmanned Underwater Vehicle Simulator) [166] and UWSim (The UnderWater
Simulator) [167] while AirSim [122] and UdaciDrone [123] are the UAV simulators. Most
of the simulator platform are based on Unity or UE with connections to the ROS robot
framework interface [168].
Despite extensive research on Autonomous Vehicle (AV) simulators, there is a lack of
simulator platforms for commercial vehicles (e.g., excavator, mobile cranes, drum roller)
whose dynamics are different than a passenger car. Commercial vehicles started to employ
AV technology; however, not everything can be reiterated. To have reliable robotic systems,
the robot must be able to operate in the actual environment. As previously mentioned,
one of the advantages of the game engine over a traditional robotic simulator is being
able to create a realistic and complex environment. The difference between driving on
the street and driving on a construction site or forest are at the opposite poles, see
Fig. 4.6. To illustrate, the street view is plain, well-structured including the surrounding
objects (e.g., traffic lights, pedestrians, trees, buildings). The road path are clearly defined
with many landmarks and references to facilitate the navigation algorithm. In constrast,
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(a) Road [112] (b) Construction site [34]

Figure 4.6: Comparison between different scenarios: road vs construction site.

non-street environments are changed rapidly. The surrounding objects appear and behave
differently. Wolf et al. [157] demonstrate a complete simulated robotic framework for
complex commercial vehicles which are used in an unstructured environment such as off-
road vehicles and construction machines. The author implemented the interface between
UE and Finroc, a framework for intelligent robot control of RRLAB [127]. There exist
a variety of simulated sensors (e.g., IMU, GNSS, cameras, 3D lasers) and environments
(e.g., quarry, forest, construction area).

In construction, simulation can improve safety and worker’s health quality in a less cost and
time-efficient manner. The simulation is generally used in the main construction phases
e.g., vocational training, planning, and operation. For training, Virtual Reality (VR)
recently becomes a trend in vocational education. Krafft [169] presented how Unity-based
VR platform helps the worker to improve the safety, see Fig. 4.7a and 4.7b. The VR
provides more reality and essentially affects the decision-making of the trainee during
training compared to conventional training which is lecture structure or watching the
class from the screen and answers the questions. The VR platform allows the worker
to experience and physically interact with the current situation which happens right
in front of the trainee. Zhao and Lucas [170] developed a simulation for the virtual
reality-based safety training program. The program allows the users to do the safety
practice for electrical hazards repetitively without actual danger. For crane operation,
crane simulators LiSIM (Liebherr Simulator) in Fig. 4.7c which is developed by Vortex
Studio, a simulation software [171]. Liebherr offers several location solutions i.e., classroom,
cabin, and container. The scenarios and environmental conditions, which the tool can
generate, are diversified.

In planning, the lifting trajectory has to be planned before the incoming operation to
avoid the possible hazards. AlBahnassi and Hammad [172] present the framework for
motion planning to avoid collision among cranes. Many key factors have to be considered
such as site conditions, load, equipment, and types of lifting. The lifting routes and basic
obstructions are simulated and visualized. During operation, Fang et al. [173] use a game
engine, Unity to acquire sensor data real-time and visualize their application interface.
The application is a framework that eases a crane operator specifically for blind lift.
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(a) (b)

(c)

Figure 4.7: Different VR Simulation platforms. (a) VR in Unity. [169]. (b) VR in UE. [174]
and (c) Crane simulator, LiSIM (Liebherr Simulator) for vocational training. [175]

4.3 Dataset Generation
To yield high accuracy, deep learning-based object detection algorithms require large-scale
image datasets as learning samples. There are great amount of self-driving car datasets
mentioned in Sec. 2.2 including synthetic data like SYNTHIA dataset [176].
Dataset acquisition consists of two main steps, data recording, and data labeling. Data
recording is a process that collects the data from the different environments where the
robot should operate including multiple sensor installations, calibration, etc. Next, the
collected data has to be labeled as the important information in the scenario for operating
of AV system and decision-making algorithm of the vehicles e.g., traffic light, road lane,
traffic sign, static and dynamic surrounding objects.
For non-street or off-road areas, recording data is not straightforward. It is limited
due to the legal action. For example, driving through a forest in Germany is only
permitted with the consent of the forest owners [177]. In the same way, a drone or UAV
is not allowed to fly 100 meters above the ground without a permit and only 50 meters
high is allowed in controlled airspace [178]. The aircraft pilot is mandatory to have a
license to fly a drone weighing more than 2 kilograms. On the construction site, there
is an expense for construction equipment rental including related personnel (e.g., rigger,
operator). For instance, a crane rental including an operator and heavy cargo liability
for a basic task operation in Germany costs approximately 1130 euros per day[73]. The
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Figure 4.8: Example of difficult annotation. It is difficult to label every single objects in each
image. [180]

operator requires additional specific driving licenses and training. Installing sensors can
be difficult to (un-)mount and adjust due to the large machine size. To assure that
the outdoor robots function in all situations, every possible states of weather should
be collected. This introduces another difficulty of data recording as it has to be based
on unpredictable nature such as rain, sun, and snow. Image annotation techniques can
be manual, semi-automatic and automatic [179]. Annotation is not simple, see Fig. 4.8.
Manual annotating data is tedious and can create localization error. The annotators
require the knowledge to define object boundary and must follow the labelling policy
e.g., occlusion constraints, object representation and boundary [180]. For the very large-
scale dataset, there exist crowd-sourcing platforms, such as Amazon Mechanical Turk
(MTurk) [181] and Amazon SageMaker Ground Truth [182], to gather image annotation
possible. The annotated data needs to be verified. Semi-annotation tool (e.g., CVAT [183],
Labelbox [184], SuperAnnotate [185]) includes a linear interpolation feature for image
stream which allows the annotator not to label objects in every single frame. Despite
the defined annotation guideline (e.g., [186, 187]), the ground truth data is yet not clean
or perfect. In particular, the size of the BBox is much bigger than the objects or the
ground truth box has a poor alignment, see Fig. 4.9. Consequently, these error deviates
and worsens the learning algorithm. Milan [190] left a remark in his public dataset portal
that “Bounding boxes are not always perfectly aligned due to articulation, interpolation,
and mistakes made by the annotator.”. Zhang et al. [188] showed the localization errors of
original annotation in Caltech dataset [191]. Ammar et al. [189] found annotation error and
BBoxes are not fit in Stanford Drone Dataset (SDD) [48]. Nechyba and Schneiderman [192]
show error due to groundtruth interpolation.

Simulation, therefore, helps to augment data while reducing localization error and time
from the manual labeling. Table 4.2 shows the comparison of data generation productivity
between simulation and real world. Using simulation to generate data costs around 400
times per image cheaper than generating in the real world. Soltani et al. [194] propose an
automated annotation using the synthetic image that can reduce the annotating time while
improving the detection accuracy. Another automated data generation is developed in [195].
The authors exploit ray-tracing techniques of UE to extract annotated BBoxes. Kolar
et al. [196] propose guardrail detection based on CNN. The authors indicate promising
results by using a combination of synthetic and real data. The synthetic data is generated
by placing the guardrail 3D model on the real-world background of the construction site.
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(a) (b)

Figure 4.9: Ground truth localization error: (a) Ground truth error of Caltech on body part
[188]© IEEE 2016. FP is shown in red, while original annotations in blue and TP in green. The
dashed blue box can be ignored in this case due to irrelevance. (b) Imprecise ground truth of
SDD dataset which is much larger than the actual object [189].

Table 4.2: Data generation productivity. [193]

Synthetic Real World
Dataset Size (images) 1,000,000+ 1,500
Dataset Preparation Time (hours):
Acquisition 5 10
Content 70 0
Annotation 8 110
Simulation 13 0
Total Dataset Cost $7,200 $4,800
Cost per Image $0.0072 $3.20

Neuhausen et al. [197] demonstrate the synthetic data can be used as an additional option
to augment the data. The authors compare the detection and tracking errors between
actual data and synthetic scenario which is mimic from the real world.

4.3.1 Gap Between Synthetic and Real Data
Although the simulation platforms allow researchers to generate large quantities of training
data, there is one important remark in the using of the synthesized images which is how
similar between synthetic data and real data. The estimation of similarities or differences
between two image data sources helps in defining the qualities of the synthetic data. In
like manner, the machine learning literature employ this kind of benchmark as error metric
to model or generate a novel style of image base on the original which is called Neural
Style Transfer (NST).
To generate the synthetic data as close as in the real world, the data generation process
has to be decently handled and ensure them in the good distribution. Henceforth, such
the virtual data can potentially be a complement or alternative solution to improve the
quality of the object detection using data-driven approaches in addition to the lower data
generation cost and less time-consuming. Generating synthetic data copes with a problem
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of how to methods model and render scene to be comparable with the real data. This can
be carried out by setting the scenario manually or using the machine learning methods e.g.,
Domain Randomization (DR), Generative Adversarial Network (GAN)[198, 199], noise
modelling. Modelling or generating the scene content is the process of constructing the
virtual environments and objects. On the other hand, scene rendering is the process of light
transport in the environment or how the light transfers from the light sources to the camera.
Takemoto et al. [200] refined the synthetic data with the real noise using NST technique.
Maximov et al. [201] addressed the generalization in training deep learning networks for
depth estimation. The authors in [202] applied DR to minimize the difference between
the synthetic data and real world data in training DNN object detection. Jain et al. [203]
adopted the euclidean distance as the error measurement between real and synthetic
data. As a final note, a complete survey of image synthesis including the experimental
comparison is beyond the scope of this thesis (see [204] for an overview).

4.4 Environment and Scenario
The chosen location for the experiment is the headquarter of the crane service provider
company, Steil Kranarbeiten GmbH & Co. KG which is located in Trier, Germany, see
Fig. 4.3. The operating area covered over 20,000 m2. The ground surface is gravel soil or
asphalt, see Fig. 4.1b and 4.1c. It is one of the main hubs for crane maintenance, repair,
and checkup service. Although Steil is not precisely categorized as a construction area, it
is an industrial area or a typical environment where accidents or incidents could possibly
occur. This is because the crane activities happen all the time over the place e.g., crane
assemble and disassemble. As can be seen in Fig. 4.3, the area is occupied with various
cranes or heavy vehicles, counterweights, dummy loads, containers, boom parts, etc. There
are forklifts or trucks that drive around and workers carry tools or work with devices. The
test crane used in real environment is a telescopic crane Liebherr LTM1130, see Fig. 4.10.
The maximum load capacity is 130 tons. The maximum working radius is 72 m and the
maximum hoisting height or the maximum height where the crane can lift is 91 m. The
telescopic boom can extend from 12.70 m to 60.00 m. For safety reason, only certified
operator is permitted to maneuver the crane.
For the experiments at Steil, the crane operator performed the blind lift, which is a
common movement in crane activity, see Fig. 4.11. The operator moved the dummy load
block from position A to position B. To reach position B, the operator had to pass the
load over the white building. While dropping the load at position B, the operator was
unable to observe the load from the cabin besides the load-view camera or getting the
information from the hand signaller via the handheld transceiver. During the lifting, the
operator could observe the annotated worker walking, see Fig. 4.12.
In addition to the test location Steil, a building at TU Kaiserslautern (TUKL) was used
to further assess the proposed worker detection algorithms, see Fig. 4.1d. Although the
experiments were conducted without the actual crane, the setup was akin. Instead of
installing the camera on the crane boom, it was mounted on MiniTec profile and protruded
out of the building. Likewise, the camera faced down to the ground. The ground surface is
both clay/sand soil and concrete brick blocks. During the experiments, several actors, who
were with and without the emergency vest, walked under the camera. Some construction
tools (e.g., wheelbarrow, pipes, and barricades) were brought into the scene and worker’s
activities, such as squatting and working with devices, were imitated, see Fig. 4.1d.
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Figure 4.10: The telescopic crane, Liebherr LTM1130, which is used in the experiments.

B

A

B

A

Figure 4.11: At the test location, Steil. On the left figure, a crane operator performs a
blindlift during moving a dummy load block from position A to position B. In the right figure,
CRANEbee, a crane planning software, visualizes the planned trajectory from [73]

4.5 Crane Setup for Real Dataset Generation

The hardware setup on the crane is shown in Fig. 4.13. The camera system consists of four
main components i.e., an image sensor, a wireless video transmission system, a display
monitor, and a camera control unit. The last two components together with an industrial
PC were located in the crane cabin, see Fig. 4.13b. The Motec crane motor zoom camera
MC5200 is attached at the pendulum bracket which is mounted at the boom tip. The
camera always faces down to the ground.

Regarding the transmission system, the pair of the transmitter and receiver must be
calibrated or paired at the first usage. The transmitter was located nearby the zoom
camera and aligned parallel to the telescopic boom and facing the sender which was
attached at the first telescopic section. To send or receive the information, their antenna
surfaces should be faced and aligned to each other as shown in Fig. 4.13a. The distance
between them should be longer than 10 meters, otherwise, the video stream can be
interfered by an overamplified signal. By the wireless video transmission system, the
image frame and the zoom control command can be streamed and sent, respectively. The
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Figure 4.12: These figures present a snapshot from a drone (upper row) and the crane planner
software, CRANEbee (lower row). During the experiments, the worker walked from point C to
point D. The yellow spots in CRANEbee shows the corresponding position of the annotated
worker from the load-view crane camera image which is located at the top left corner. The
pop-up warning message showed up due to the crane working radius violation of the worker at
point D. [73]

operator can observe the video stream from the 7-inch screen monitor which was in the
crane cabin. The video output is analog which contains an interlaced display.
To obtain an image from the camera to the industrial PC, we need an A/D video grabber,
Logilink VG0001A. It results in a partially interlaced image after digitalization. According
to VLC codec information, the image resolution is 720 ˆ 576. The image format is
YUV422 which is later converted to RGB24 format. The industrial box PC, which ran
the experiment under Finroc framework, is Nuvo-7160GC. The specification of the PC
is Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, 12 cores, 32GB RAM with a graphic
card NVIDIA GeForce GTX 1660 Ti, 6GB.
The camera control can be executed manually by either the remote controller or sending
the control command via Controller Area Network (CAN) bus protocol, namely Motec
System Bus (MSB 2.0) [206]. Due to the product confidentiality, we have partial access to
the camera which are 2D streaming video and basic controller function—Zoom in (Ozi)
and Zoom out (Ozo) which make the objects inside the image becomes larger and smaller,
respectively. The CAN pulse frequency of the zoom command can be parameterized.

4.6 From Real World to Simulation
Recently, the construction industries have started to adopt automation and robotics. The
perception and control algorithms require proper validation. The test should be executed
thoroughly in every possible usage condition.
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Figure 4.13: Crane hardware setup. (a) Hardware setup on the telescopic crane Liebherr
LTM1130. The industrial box PC including the camera controller and the 7-inch display monitor
are placed inside the crane operator cabin. (b) Inside crane cabin. The figure is modified from
[205].

Although experiments on the actual robot or vehicle are very important, the simulation
platform is necessary, especially for construction research. The construction machines are
huge. Running any experiments on a real construction site is not simple due to stringent
safety regulations. One small mistake can lead to fatal accidents. To generalize top
view object detection algorithms, the algorithms should be assessed in a broad range
of environmental conditions. Despite the additional test location at the university, not
everything can be imitated such as the crane cable or hook block.
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(a) Rain (b) Day (c) Day-Night cycle

Figure 4.14: Sample data with different light conditions. [124]

The simulation platform [126] in this work is mainly developed using Unreal Engine (UE),
Epic Games. UE is a photorealistic simulation tool or a game engine. It provides not
only photorealism to the environment e.g., various light conditions, camera lens flare, and
weather but also the dynamic movement of objects. This platform has the advantage of a
more comparable environment to the actual construction including surrounding objects.
The environment can be created and modified in a fast manner. Importantly, the simulation
platform contains an immediate connection to the robotic framework, Finroc. By using
the platform, many experiments or algorithms can be achieved concurrently without any
risk and low cost.

4.6.1 Implementation Concept
In the following, the approach to transfer from reality to the simulated world will be
discussed. The further detailed implementation of each component in the virtual platform,
such as characters and crane, is discussed in Appendix B. The workflow of transition to
the simulation can be found in Fig. 4.15.

1. Observation of the real world —First of all, the observation in the real world had
been made to create the simulated environment as close as possible. Steil site is
the place where cranes ground and maintain. The color texture of the crane and
environment were collected to later apply to the color of the virtual crane or other
construction entities in the simulation. The texture was mapped to the surfaces of
the assets in UE. Besides the observation in Steil, we additionally inspected the
construction site nearby TUKL through different construction phases. The observed
period of TUKL was from Jan to May 2018. The appearance and behaviors of
workers-on-foot, especially those who worked under the load or around the crane,
had been noted. In comparison to Steil, TUKL site is the place where the actual
construction took place. However, both places were beneficial to observe because
mobile cranes are generally used everywhere not limited to the construction area.

2. Create 3D models and map—To have such 3D models and map from the observation
are arduous. Fortunately, there are many available 3D model resources that resemble
the real world. For instance, instant scene properties or props can be found in
UE4 Marketplace [152]. The character’s asset or person can be obtained from
Mixamo, Adobe Fuse CC , Renderpeople, etc. The specific map region can be selected
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Figure 4.15: Workflow of simulating platform. Each number in grey circle is aligned to the
implementation step number in Sec. 4.6.1, namely (1) Observation of the real world, (2) Create
3D models and maps, and (3) Skeletal animation or rigging.

and exported into a 3D map from OpenStreetMap (OSM) [207]. The virtual Steil
resembles the actual site. They both are comparable not only the buildings but also
the weather such as the daylight cycle and rain. To model the 3D objects, it requires
additional tools in addition to UE. Blender is primarily a modeling and animation
tool.

3. Skeletal animation or Rigging—After the 3D models are given, the models are not
yet able to move as they are merely surface or mesh of the model. Thus each 3D
model should have a hierarchical set of interconnected parts, see Fig. 4.17. The
hierarchical set forms the skeleton, bones, or joints of the models. To animate virtual
people or vehicles, the sequence of joint movements has to be assigned. Similar to
the 3D model, the sequence templates are available in UE4 Marketplace and Mixamo.
Motion capture technology is used to capture and track the real movement of human
activities and turn them into character movement templates.

Once all 3D models and the map are ready, these external assets are imported to UE. All
of the created assets are eventually assembled into one virtual site which resembles to
the actual Steil site as shown in Fig. 4.16. The connection interface between Finroc and
UE are later connected, shown in Fig. B.3. The port name list can be found in Fig. B.2.
As a result, all the sensor IO and control IO can be obtained and managed through our
framework.

4.6.2 Virtual Environment and Scenario
The virtual crane was placed in the related position as in the experiment at Steil, see
Fig. 4.16. The landscape is filled up with buildings, vegetation, virtual workers/pedestrians,
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(a) Real Steil (b) Virtual Steil

Figure 4.16: Comparison of real and simulation view.

(a) Grove GMK3060 (b) Character

Figure 4.17: The hierarchical set of interconnected parts shown in the white edgy cone blocks
or virtual bones.

construction entities, and supplies, etc. Different atmospheric conditions are shown in
Fig. 4.14. The conditions can be adjusted based on the light and rain/snow particle
distribution rate such as low or high precipitation.

The day-night cycle can be applied by changing the brightness intensity in the physical
light unit (lux). The position of the sun in the sky causes the various length of the shadow.
The longer the shadows are, the lower the sun on the horizon and vice versa. The shadow
from the sunrises and sunsets is advantageous to the assessment or data generation of the
detection algorithm. The discussion of how the shadow affects the detection algorithm
can be later found in one of experiments in Sec. 4.12.

Virtual characters are one of the most important simulated components because they are
the targets of the top view object detection. The person’s appearance is diverse e.g., the
worker with a safety helmet, with/without an emergency vest, and pedestrians. The virtual
workers can move likewise to the construction worker in the real world. The different
postures that can be seen in the construction site such as working with the device and
bending, see the second row of Fig. 4.24. The people can do talking on the phone, walking
or looking around, etc. The virtual persons in the scenarios randomly move with the
collision avoidance or interact with other characters. The animated movements between
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Figure 4.18: UE crane all view. 1 - front view, 2 - left side view, 3 - right side view, 4 - top
view, 5 - rear view, 6 - front view.

different genders can be distinguishable. After each character is properly configured, the
crowd simulation can be implemented. Instead of placing characters on the map one by
one, the crowd simulation generates many characters into the map at once. The character
manager handles how to character move and interact with others or obstacles.

4.6.3 Virtual Hardware
Grove GMK3060 is given as a 3D telescopic crane model for the simulation. Fig. 4.18
presents different perspectives of Grove GMK3060 in UE.
Although Grove GMK3060 is smaller than Liebherr LTM1130, their functions are the
same in principle e.g., hoisting, swing. In addition, this demonstrates that our simulation
platform is flexible to any vehicle. This virtual crane has a basic driving functionality.
It contains three crane common mechanisms as the real crane i.e., hoisting, swing, and
travelling. For hoisting, the boom can extend and retract. The hook block can hoist
up and down with or without attached load. Different types and sizes of load can be
changed. Fig. 4.19 shows the example of an intermodal container or a shipping container
as a load. The second mechanism is swing. Based on the robot coordinate system OR, the
uppercrane part can rotate around the z-axis (yaw or slew angle). The uppercrane can
rotate around the y-axis or pitch angle. Finally, basic travelling can be performed such
as driving forward/backward, steering and braking. The outrigger, which is an extended
beam to stabilize the crane, can be applied during lifting or removed when the crane truck
travels. The maneuver of the virtual crane can be manually controlled or defined as a
sequence of trajectory paths. The type of hook block, cable, or load can be effortlessly
changed. Any crane lifting trajectory (e.g., blind lift) therefore can be defined by Sequencer
feature in UE. The example of the iterative sequence maneuvers temporally based on given
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controls as shown in Fig. B.1. These features allow us to investigate the proximity between
the load and worker-on-foot. In other words, it is beneficial to investigate struck-by load
accidents.

For the virtual image sensor, the MC5200 motor zoom camera is implemented in the same
manner as the actual camera. The virtual camera is mounted with the pendulum bracket
at the tip of the boom. The physic properties in UE allow the zoom camera to have the
effect of the pendulum. Therefore, the pendulum bracket can be swung by the action of
gravity and acquired momentum. The zoom level can be adjusted by changing FOV. In
addition, the zoom speed can be changed similarly to the Controller Area Network (CAN)
pulse frequency in the actual camera. To have better observation during the testing in
the simulation world, additional monocular cameras are additionally mounted on several
positions e.g., operator and driver cabin. During the simulation, each view can be toggled
by a keyboard input, C. Fig. 4.19 visualizes the different views from each camera. Finally,
the whole virtual world setup in UE is an alternative to the real world. It can be run on
any PC and connected to the proposed framework in Finroc in the same fashion.

Previously, the development of the hardware setup in the real world including the simulation
platform is presented in Sec. 4.5 and 4.6, respectively. The following presents the approach
on how the datasets were gathered both in the virtual world and using the actual setup,
including an analysis of the synthetic data.

4.7 Data Collection From Real Environment
As mentioned in Sec. 4.4, the test took place in two locations. Steil is the industrial area
in Trier where many crane activities occur, while TUKL is the building of Technische
Universität Kaiserslautern where no crane involved during the data collection.

4.7.1 Data Recording

• Steil—In November 2018, the data were recorded during the afternoon between
15:00 and 17:00. As it was winter, the weather was cloudy. Three data sequences had
been recorded, namely R00-S-C2, R01-S-C2, and R02-S-C2. The estimated height
from the camera to the ground was 25 m. The first two sequences are relatively
similar. They were recorded at the same position. A few construction workers with
protective gears walked under the zoom camera. In addition, there were four to five
cars parked nearby the workers. The crane hook without load was always in the
camera frame. The camera was at the minimum zoom position or no zoom. On the
other hand, the brightness in the last sequence is quite higher than in the previous
two sequences. There were seven workers on average and all wore dark color clothes
with mostly no protective gear. In this sequence, the operator performed the blind
lift. At the beginning of the sequence, the rigger tied up the wooden pallet, which
was used as a dummy load. After the pallet was equipped, the operator hoisted up
the load and rotated the uppercrane to position B, see Fig. 4.11. While the operator
was lifting, the workers walked beneath the load. The camera was zoomed in and out.
The camera view partially covered the road, where a forklift or a car occasionally
passed by. There were parking cars, white stones, and grey boulders lying around.
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(a) Cabin view (b) Frontal view

(c) Load view (d) Isometric view
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Figure 4.19: UE crane camera in different view

• TUKL —Two sequences were recorded during the summer afternoon in June 2018
and during spring noon in April 2021, namely R03-K-N1 and R04-K-N2. The camera
was mounted on the constructed aluminium profiles and extended out of the building
on the 5th floor and 7th floor, respectively. These sequences were recorded without a
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Figure 4.20: CVAT interface. A purple BBox represents a labeled target, whose object class is
person. On the right hand side, an object list of the current image frame shows on the side bar.

(a) (b) (c)

Figure 4.21: Sample public datasets which were used in this thesis.
(a)Okutama[102]© IEEE 2017. (b)VCI-CITR[24]© IEEE 2019 (c)VCI-DUT[24]© IEEE 2019

crane, hence no load, hook and crane hoist cable existed. None of the workers wore
protective gear. For sequence R03-K-N1, the ground surface had both clay/sand soil
and concrete brick blocks. The activities of the workers included squatting, carrying
construction assets, dragging an air compressor generator, etc. Moreover, the typical
activities were appeared such as talking on the phone, walking. It was very sunny
during the data collection. The workers stood in the position where the sun made
the angle caused the shadows’ length which was nearly identical to the height of
the worker, see Fig. 4.26k. From another side of TUKL building, R04-K-N2 was
collected during the sunny day at the parking lot. The ground surface was concrete
brick blocks. In this sequence, many construction supplies were brought into the
scenarios such as barricades, wheelbarrows, pallets, cable reels, and large PVC tubes.
Several workers walked randomly to the area under the sun at least half an hour.
Some of them wore emergency vests. A couple of them carried the pipes and pushed
the wheelbarrow around.
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4.7.2 Data Annotation
As discussed in Sec. 4.3, the data annotation is the important process as the data recording.
To manually label the real data, is fairly tedious. Faulty BBox alignments can lead to poor
learning in object detection. In this work, we followed the VOC2011 annotation protocol
guideline [208] to have labeling errors as small as possible. Although the guideline is based
on the frontal view object detection, most of the protocols are applicable. For example,
objects in mirror should be labelled or BBox should contain all visible area of the object
but not the estimated total boundary of the object. We additionally specifically defined
for the labeling top view object. In particular, the worker can be labeled only when a head
and a complete shoulder are visible. Consequently, the protocol ensures all annotators
label the groundtruth in the same manner. Without the protocol is one of the reason that
causes the annotation error. For instance, one annotator could draw a large bounding box
around a small target, while another annotator could draw the bounding box very fit to
the shape of the target.
CVAT [183] is the annotation tool used in our manual labelling. The sample of CVAT in-
terface can be seen in Fig. 4.20. It is an open-source tool developed by Intel for annotating
images and videos. The tool supports three object recognition tasks—object detection,
image classification, and image segmentation. CVAT is available both locally and browser-
based, however, the online portal limits the amount of the image. Furthermore, it supports
many additional optional components such as TensorFlow. Many standard annotated
output file formats are available e.g., TFRecord, Pascal VOC XML[209]. There is an
interpolating annotation feature, which estimates the targets in-between frames. This
feature is available for both video and image sequence in Track mode. By using this tool,
the one-class annotation, which was done by an experienced person, took approximately
14-20 seconds per frame. Each frame has three objects on average.

4.7.3 Public Datasets
Two public datasets, which are referred in this work and both, were taken from UAV. All
sample snapshot of public datasets can be found in Fig. 4.21. A brief description of the
public datasets is as follows.

• Okutama [102] contains one object class i.e., person and is originally used for the
action recognition. Although the action is pedestrian-based, it has some common
activities with the construction worker e.g., carrying, pushing/pulling wheelbarrow,
and lying. These datasets were captured in different heights (10-45 m) and angles
(45-90 degrees) at a baseball field in Okutama, Japan. They were collected at two
different times of the day, morning and noon. Ordinary actions were included e.g.,
drinking, walking, and carrying. The annotation is available in both detection, single
and multi-label action. Only non-interpolated data was selected for training in this
work. Due to original groundtruth mislocalization, the defected data is filtered out
by setting the generated flag to false.

• Vehicle-Crowd Intraction (VCI) [24] consists of two datasets, namely VCI-
CITR and VCI-DUT. These datasets contain two object categories, pedestrian and
vehicle. The original authors aim to model the crowd motion under the vehicle
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Figure 4.22: Overview simulation interface of collecting data using a load-view camera.
© Reprinted by permission from Springer Nature: Springer [124], Copyright (2020).-check
again rgd copyright

influence. While recording the data, the drone hovered above the ground plane
with no change in altitude. The video was stabilized to remove the oscillation of
drone motion. The camera was always faced down to the ground. In other words,
the camera depression angle is 90 degrees. VCI-CITR was collected at a parking
lot near the facility of Control and Intelligent Transportation Research (CITR)
Lab at The Ohio State University (OSU) in the United States. A golf cart was
used as a small vehicle to drive through the group of eight people. VCI-DUT was
collected at the campus of Dalian University of Technology (DUT) in China. The
area includes a pedestrian intersection crosswalk and roundabout. Most of the
pedestrians were students. The density of the pedestrian in the scene was higher
than VCI-CITR. There were more than 20 students who just came out of classes.
The original pixel groundtruth of VCI dataset provides only center point format
pcx, cyq not BBox format px, y, w, hq. To have the BBox format for training object
detection, we estimated the size of the box based on the center point and expanded
the point to 30ˆ30 pixel BBox. The object class vehicle was removed as it is not
our goal target.

4.8 Synthetic Data Generation
To generate the synthetic data, we employed the simulated platform developed in Sec. 4.6.

4.8.1 Data Recording
After the simulation environment was set up, we started to collect the data. The data
collection user interface (UI) in Fig. 4.22 allows us to observe what is the possible risks
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associated with the crane and the current movement of the crane. The interface allows us
to observe what is the possible risks associated with the crane and the current movement
of the crane. In addition, this ensures a clean data i.e., neither purely background image
nor only negative samples for training. The inteface is built by using Unreal Motion
Graphics UI Designer (UMG). It is a tool that can be used to create user interface elements
presenting to users such as in-game menus. Similarly, we created to the inteface to facilitate
our data recording. As shown in Fig. 4.22, the overall crane at Steil is visualized. There are
several control buttons and displays of other camera angles including the crane information.
From the bottom left of Fig. 4.22, the small figure shows a current load-view camera.
The following three buttons are the possible annotation options, namely, start_seq_00,
record_gt, and snapt_gt. For start_seq_00, the simulation executes the defined vehicle
control sequence including the camera snap control based on the given timeline. record_gt
starts after the option is selected and ends until simulation terminated. snapt_gt allows
us to take a camera shot at any desired time. Lastly, the bottom right figure shows the
top view perspective of the crane. The white texts on top-right display current states of
crane control. In the end, the raw annotation output consists of three items —an original
RGB image, segmented image, and a comma-separated values (CSV) file, see Fig. 4.23.
At the virtual Steil, there were five datasets collected, namely U00-S-C0, U01-S-C1, . . . ,U04-
S-C4. The number at the end of the dataset indicates how many crane telescopic sections
are extended during the record of each sequence. For example, none of the boom sections in
U00-S-C0 was extended while all four sections were fully extended in U04-S-C4. The crane
lift angle or pitch was approximately between 45 and 50 degrees. While recording, the slew
angle was kept turning around for 360 degrees. The hook and the hoisting cable were in
the camera view. The weather was gradually changed from day to night or sometimes rain.
The virtual characters were spawned into the virtual world. The workers and pedestrians
walked around both inside and outside the barricades. Similar to the real world, workers
were working with devices, pushing the wheelbarrow, driving the forklift or the truck.
U06-S-N2 and U07-S-N2 were recorded in the same manner as U00-S-C0, . . . ,U04-S-C4,
but the ground plane was fully asphalt and the lift angle is 30 degrees.
As the usage of the crane is not limited to the construction, we additionally collected
the data from the Urban City environment, which is available in UE4 Marketplace. The
dataset U05-C-N2 was collected without crane. A down-facing camera was fixed at one
position with its depression angle of 90 degrees. The people arbitrary walked on the road
and pedestrian path.

4.8.2 Data Annotation

We exploited the post-processing feature of UE into our implementation. The original
image is labeled at pixel level. The target object in the annotated image, which has
the same color, belongs to the same object class and identity. Both the original image
and its annotation are then converted into a proper data format and used for learning
to get the optimal weight. We adopted the annotation calculation in [195]. It processes
the raw annotation outputs and later draws bounding boxes for each object. The final
annotation data are converted into PASCAL VOC in the XML file. Regarding having
clean data annotation, human verification can be quickly done by using labeling tools.
After generated data is verified, we can now use this data for training object detection
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(a) RGB image (b) RGB image

(c) Segmented image (d) Segmented image

Figure 4.23: Groundtruth generation outputs. (a) and (b) show RGB images with virtual
actors from load-view camera while (c) and (d) show the groundtruths which correspond to the
second row.© Reprinted by permission from Springer Nature: Springer [126], Copyright (2020).

using deep learning. This XML file can be accessible for further training object detection
by many conventional deep learning frameworks such as TensorFlow [210]. In general, our
system recorded and annotated the data with a speed of 0.5 seconds per frame with no
limitation of object number or class.

4.9 Dataset Summary

Table 4.3 lists all the datasets which were used in this thesis. The list summarizes both
synthetic and real data. There are nearly 177K target boxes in total i.e., ~69K real target
boxes and ~108K synthetic target boxes. The dataset naming convention can be found in
Fig. 4.25. Generally, the data source (S) identifier denotes where the data was captured
and will be either U for UE or R for real world. The sequence number (##) identifies
dataset index in each individual source. The data recording location (L) can be City (C),
Steil (S), TUKL (K). The vehicle platform identifier (V) can be either with crane (C) or
without crane (N) as mentioned in Sec. 4.7.1. Finally, the last digit (#) represents the
altitude ranges between the camera and the ground. The ranges were categorized based
on the number of the extended boom section. In other words, the bigger number the digit
is, the longer the distance between the camera and the ground is. There are five ranges
i.e., 0 (0-12m), 1 (13-19m), 2 (20-26m), 3 (27-33m), and 4 (higher than 33m).
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(a) (b) (c)

(d) (e) (f)

Figure 4.24: Sample annotation output. The first row (a-c) is segmented images and the second
row (d-f) is RGB images visualized the bounding boxes of each object from a generated annotation
file. Activity in (a),(d) is bending. Activity in (b),(e) is carrying an object. Activity in (c),(f)
is working with the device. © Reprinted by permission from Springer Nature: Springer [124],
Copyright (2020).

S ## - L - V #

Data source
U – Synthetic data
R – Real data

Dataset index of each data source Dataset collected
location
S – Steil
K – TUKL
C – City

Vehicle platform
C – Crane
N – Without crane

Altitude record range
0 – 0-12 m
1 – 13-19 m
2 – 20-26 m
3 – 27-33 m
4 – higher than 33 m
X – Unknown

Figure 4.25: Dataset naming convention.

4.10 Evaluation Metrics for Object Detection Algo-
rithms

Evaluation metric is a measurement to assess how good an object detection algorithm to
satisfy the user’s requirements is or how much it differs from the others in various aspects
among literature such as speed or accuracy. In other words, choosing detectors depends
on many factors e.g., an application usages and capability of existing hardwares. For
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(a) U00-S-C0 (b) U01-S-C1 (c) U02-S-C2

(d) U03-S-C3 (e) U04-S-C4 (f) U05-C-N2

(g) U10-S-C4 (h) U11-S-C4 (i) R00-S-C2

(j) R02-S-C2 (k) R03-K-N1 (l) R06-K-N2

(m) R10-S-C2 (n) R14-K-N2 (o) R16-S-CX

Figure 4.26: Sample datasets for worker detection [118]. The detail of each dataset can be
found in Table 4.3.
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Table 4.3: Dataset summary. The snapshot of dataset can be found in Fig. 4.26.

Seq name Frames Resolution Dcam(m)
Collected

from
crane

Average
object instances

per frame

Total
object instances

Snapshot
figure

U00-S-C0 120 1600ˆ1200 12 3 2 283 4.26a
U01-S-C1 300 1600ˆ1200 19 3 3 753 4.26b
U02-S-C2 303 1600ˆ1200 26 3 5 1636 4.26c
U03-S-C3 501 1600ˆ1200 33 3 9 4463 4.26d
U04-S-C4 1110 1600ˆ1200 39 3 8 8448 4.26e
U05-C-N2 [211] 10231 800ˆ600 20 7 8 81302 4.26f
U10-S-C4 1083 1600ˆ1200 40 3 8 8656 4.26g
U11-S-C4 363 1600ˆ1200 40 3 8 2974 4.26h

R00-S-C2 713 720ˆ480 25 3 3 2139 4.26i
R01-S-C2 264 720ˆ480 25 3 3 592 similar to 4.26i
R02-S-C2 4073 720ˆ480 25 3 5 22138 4.26j
R03-K-N1 9748 720ˆ480 19 7 2 22013 4.26k
R06-K-N2 1382 720ˆ576 25 7 4 5497 4.26l
R10-S-C2 642 720ˆ480 25 3 1 777 4.26m
R14-K-N2 500 720ˆ480 25 7 3 1500 4.26n
R16-S-CX 3829 720ˆ480 25 3 4 14330 4.26o

example, Detector A can provide nearly 100% accuracy, however it requires very powerful
computation resource to be able to execute in real time. On the other hand, Detector
B is able to execute in real time with 80% accuracy. If an end-user does not have such
hardware resource, Detector B is the option.
Examples of the object detection evaluation metrics, which are used in literature or
competitions [209, 212, 119] are Average Precision (AP), mean average precision (mAP),
average recall (AR) and mean average recall (mAR), etc.
In this thesis, we adopted AP metric. Particularly, our detection evaluation metric
is adopted from PASCAL Challenge [209] including its evaluation MATLAB toolbox
from [213]. The basic concepts which are parts of the metric calculation e.g., confidence
score, IoU are first described before the discussion of the metric.

• Confidence score—is the probability that a bounding box contains an object. It is
usually assigned by a classifier.

• Intersection over Union (IoU)—is an overlap criteria to determine whether a detection
is considered correct or not. The definition of IoU is identical as the Jaccard similarity
index in statistics, see Eq. 4.1. This concept was introduced by Everingham et
al. [214]. For the detection task, a detector returns a list of bounding boxes and
their associated confidence score with respect to an image. Each detection result is
assigned to a ground truth object and evaluated to be either true positive (TP) or
false positive (FP) by calculating IoU or the overlapped area between the ground
truth Bg and the predicted detection Bx. The IoU is a score to determine how much
the detection closes to the ground truth. The ratio must be higher than a certain
threshold to consider as TP. According to [214], we followed the default threshold
which is 0.5 or 50%. The depiction of the overlap terminology can be found in
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Fig. 4.27. In PASCAL challenge, the additional rules are defined for TP and FP.
When there are multiple predictions correspond to the same ground truth, only the
prediction with highest confidence score counts as TP. The rest predicted detection
are considered as FP.

IoU “
Area of Intersection

Area of Union
“
Bx XBg

Bx YBg

(4.1)

where Bx is predicted bounding box and Bg is ground truth bounding box.

• Precision and Recall—Precision in Eq. 4.2 is positive predictive value (PPV) or the
ratio of correct positive detected cases to all the predicted postives cases, which is
the sum of TP and FP. Recall or sensitivity in Eq. 4.3 is true positive rate (TPR) or
the ratio of the correct positive detected cases to all actual positive cases, which is
the sum of TP and FN.

precision “
TP

TP ` FP
(4.2)

recall “
TP

TP ` FN
(4.3)

By assigning the threshold for the confidence score at different levels, pairs of
precision and recall can be obtained. A Precision-Recall (PR) curve can be plotted
with precision on the y-axis and recall on the x-axis. The PR curve visualizes the
relationship between the two metrics. It indicates the trade-off between the TPR
and the PPV for a predictive model using different probability thresholds.

4.10.1 Average Precision (AP)
Average Precision (AP) is widely used in measuring the accuracy among object detectors.
The AP addresses the problem of selecting the best performance detector of PR-curves
when there are many curves intersect with each other. AP is a numerical metric, therefore,
it is easier to compare. Basically, AP is finding area under the PR curve or AUC. For the
PASCAL VOC challenge, the 11-point interpolated AP is calculated. The recall value is
divided into 11 points r under the value from 0 to 1.0—0, 0.1, 0.2, . . . , 1.0.

AP “
1
11

ÿ

rPt0,0.1,...,1u
APr (4.4)

When there is a multiclass detector or a detector which recognizes more than one object
class (i.e., M ą 1), the mean of the AP across all M classes is defined by mean Average
Precision (mAP) in Eq. 4.5, where M is total object classes. In our work, there is only
one single target class M “ 1 (person); thus, mAP and AP are equivalent.

mAP “

řM
i“1 APi
M

(4.5)
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𝑥1𝑔1

𝑥2𝑔2

(a) TP

𝑔1

𝑔2

(b) FN

𝑥1

𝑥2

(c) FP

𝑔1

𝑔2
𝑥1

𝑥2

𝑥3

(d) FP and FN

(intentionally left blank)

(e) TN

Figure 4.27: Observation type and its terminology for overlap criteria. The green bounding
box is denoted as ground truth g while the red bounding box is denoted as detected hypothesis
x. (a) TP - True positive or correct detection. (b) FN - False negative or miss detection. (c)
FP - False positive or false alarm. (d) FP and FN. (e) TN - True negative or correct rejection,
which is neither the ground truth nor predicted detection exists. In general, this value is not
considered in object detection algorithms.

4.11 Analysis of Real and Synthetic Data in Frequency
Domain

Frequency domain study of the synthetic data captures the unrealistic features of these
images by analyzing the local rate of changes of pixels. It can highlight edges and noise as
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 4.28: (a) MSpIRq is a magnitude spectrum summation of real world image dataset.
The second column, (b) and (c), are a magnitude spectrum summation of raw synthetic dataset,
MSpIU,nBLq and a magnitude spectrum summation of preprocessed synthetic dataset,MSpIU,BLq,
respectively. In the the third column, (d) ∆MSpIR, IU,nBLq is a magnitude spectrum difference
between real world and raw synthetic dataset. (e) ∆MSpIR, IU,BLq is a magnitude spectrum
difference between real world and preprocessed synthetic dataset. The intensity of the color
represents the magnitude of Fourier transform, while u and v are the frequencies along m and n,
respectively.

high-frequency contents which appears on-surround region of magnitude spectrum. De and
Masilamani[215] proposed a measurement method to assess image sharpness and blurriness
in frequency domain.
As discussed earlier, we have applied average filter on synthetic data during preprocessing.
This filter makes the image blurred by applying low pass filter which attenuates the
magnitude of high-frequency components of the frequency spectrum. As an example,
frequency spectrum of a grayscale image resembles Fig. 4.28(a). The high frequency
components are located on outer diameters and by moving toward center the frequency
reduces such that the center point captures the DC value of the image (average over all
pixels).
To examine an image in frequency domain, we first apply 2D Discrete Fourier Transform
(DFT)1 to an individual greyscale image2:

F ru, vs “
M´1
ÿ

m“0

N´1
ÿ

n“0
f rm,nse´i2πum{Me´i2πvn{N , (4.6)

1F ru, vs denotes a 2D Discrete Fourier Transform (DFT) of f rm,ns
2f rm,ns denotes a greyscale image in the spatial domain.
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where u “ 0 . . .M ´ 1 and v “ 0 . . . N ´ 1. m and n are spatial coordinates, while u and
v are frequencies along m and n respectively. The result of Fourier transform consists of
two components, magnitude and phase. For this analysis, we consider only the magnitude.
We apply Fourier transform on real world image dataset (IR), raw synthetic dataset
(IU,nBL), and preprocessed synthetic dataset (IU,BL). The sample result of Magnitude
Spectrum (MS) of each image sequence can be found in Fig. E.1 of Appendix E. After
Fourier tranform of each image dataset IR, IU,nBL, and IU,BL is individually calculated, MS
of each dataset is accumulated to later determine the differences. Using IR as a reference,
we then find the absolute MS difference on two pairs i.e., pIR, IU,nBLq and pIR, IU,BLq, listed
in the following Eq. 4.7 and Eq. 4.8. Before determining the diffrence, all MSs should be
normalized.

∆MSpIR, IU,nBLq “ |MSpIRq ´MSpIU,nBLq|

“

∣∣∣∣ K´1
ÿ

k“0
logp|F k

Rru, vs|q ´
L´1
ÿ

l“0
logp|F l

U,nBLru, vs|q
∣∣∣∣, (4.7)

∆MSpIR, IU,BLq “ |MSpIRq ´MSpIU,BLq|

“

∣∣∣∣ K´1
ÿ

k“0
logp|F k

Rru, vs|q ´
L´1
ÿ

l“0
logp|F l

U,BLru, vs|q
∣∣∣∣, (4.8)

where K is total number of real world dataset (IR) and L is total number of synthetic
training dataset (IU).
The results of the magnitude spectrum differences are depicted in Fig. 4.28. F p0, 0q
indicates the DC-component or zero frequency of the image which corresponds to the
average brightness, and F pM ´ 1, N ´ 1q represents the highest frequency.
MSpIRq in Fig. 4.28a has only strong edge along the high-range frequencies and contains
mostly low-frequency magnitudes. Most dominant edges of the building, road, or cars in
(IR) correspond to the bright lines in the Fourier transform, which can be seen in the first
row of Fig. 4.29 illustrating a snapshot of real image sequence R00-S-C2. The cars and
crane cable in the figure appears as oblique lines in the magnitude spectrum, see Fig. 4.29e
and 4.29f.
In contrast, MSpIU,nBLq in Fig. 4.28b gets various large values of the magnitude even
for higher frequencies which scatter in the further off-center region, see Fig. 4.29b. As a
result, the magnitude spectrum difference between IR and IU,nBL in Fig. 4.28d tends to
have more high-frequency components compared to the real-preprocessed MS difference in
Fig. 4.28e. Unlike the raw synthetic images, MSpIU,BLq, see Fig. 4.28c, is comparable to
the real world dataset.
The frequency analysis proves that IU,BL shares common characteristic with IR. To
quantitatively describe the MS difference instead of the visualization, Root Mean Square
Error (RMSE) of each ∆MS is calculated. The RMSE of MSpIR, IU,nBLq is 0.143, while
the RMSE of MSpIR, IU,BLq is merely 0.072. The frequency characteristics of the image
have a prominent influence on the detection rate. Our results clearly provides evidence to
further develop frequency tests and complex frequency-domain filters for the synthetic
data. In fact, these filters can be integrated in the simulation engines to obtain more
realistic dataset.
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(a) U00-S-C0 (b) (c)

(d) R00-S-C2 (e) (f)

(g) U03-S-C3 (h) (i)

(j) R14-K-N2 (k) (l)

Figure 4.29: Examples of Magnitude Spectrum (MS) on sample images. The first column is
the snapshots of each original image dataset. The second column depicts MS of the raw image of
the previous column. The last column shows MS of the filtered images.
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4.12 Experiments
As mentioned in Sec. 4.3, the simulation platform supports data acquisition of the object
detection using a deep learning algorithms, which requires a large amount of data. Many
research domains, such as autonomous passenger vehicles, have exploited the simulated
data to yield the best detection accuracy. However, there is not much evidence in the
construction research area including the validation of simulated data usage.
The objective of the experiments is to provide the findings of how the simulated data
impacts upon the top view object detection using deep learning algorithms in construction
environment. In other words, we explored the quality of the synthetic data whether it
can be further adopted to improve the quality of the data-driven top view detection.
Given the synthetic datasets which were generated by our system, two experiments were
conducted to accomplish the defined goal. The first experiment is to explore the pre-
trained UAV network model directly on the crane load-view data. The association between
two different top view images, which are aerial and crane load-view were investigated.
As discussed in Sec. 2.2.2, there is no public pre-trained model including dataset from
load-view crane camera. Nevertheless, the crane load-view and the aerial view are nearly
identical. Regarding the data deficit situation, the second experiment analysed whether
the synthetic data can completely replace the real world data in training of deep learning
object detection. Overall experimental workflow can be found in Fig. 4.30. Basically,
we addressed the problem twofold, network model (Experiment 1) and synthetic data
(Experiment 2).

• Experiment 1 : Can UAV network model, which was trained with comparable dataset,
be immediately used as the alternative detector for the crane load view object
detection ?

• Experiment 2 : Can real data be completely replaced by synthetic data in training
process of top view object detection ?

According to the requirement of visibility assistance, the operator should be warned about
the nearby object in order to recognize the accident risk in (near) real-time. In these
two experiments, SSD based detectors were then chosen. SSD is a one-stage detector
and introduced to address the problem of multi-scales. As described in Sec. 5.1, SSD
architecture model is based on VGGNet [82]. Unlike the two-stage detectors such as
Faster R-CNN [88], SSD is relatively fast, but less accuracy [84]. Therefore, SSD detectors
provide a good trade-off between speed and accuracy. Experiment 1 and Experiment 2
were conducted in Sec. 4.12.1 and Sec. 4.12.2 respectively. The detail of evaluation metrics
for object detection algorithms in all experiments i.e., AP can be found in Sec. 4.10.

4.12.1 Exploration Aerial Image DL model With Crane Load-
View Data

To the author’s knowledge, there is no pre-trained model for top view object detection
from the crane, which is available publicly. Unlike UAV model, they are non-ubiquitous.
As mentioned in Sec. 2.2.2, the background of UAV training dataset is much plainer,
in constrast to the load-view camera in construction area which is relatively complex.



68 4. Analysis and Generation of Real and Synthetic Data

(a)

(b)

Figure 4.30: Experiment workflows. (a) illustrates the workflow of the first experiment discussed
in Sec. 4.12.1. (b) shows the workflow of the second experiment discussed in Sec. 4.12.2.

However, the camera perspective of UAV data is quite similar to the crane load view. In
general, the data from UAV shares most in common similarity with the load-view data in
relative to other applications e.g., frontal view in Autonomous Vehicle (AV).

The workflow of this experiment can be found in Fig. 4.30a as Experiment 1. First, we
directly adopted the original UAV pre-trained SSD model from [102], or SSD-OkuPed for
short. The authors [102] retrained the model with Okutama dataset, pedestrian action
from aerial view. Unlike other UAV datasets, the dataset is relatively similar to the
load-view crane camera as discussed in Sec. 4.7.3. The AP of the model, which the authors
originally evaluated on the Okutama dataset is 72.3%. The authors made the remark when
the altitude is higher than 30 meters, the model performed poorly because the pedestrians
were too small. Finally, we passed our four load view data sequences, two synthetic sets,
and two real sets to the model. The hardware used in experiments is Intel(R) Xeon(R)
Gold 6126 CPU, 2.60GHz, 48 cores, 188G memory.

Table 4.4: The detection results of Experiment 1.

Seq name AP@0.5
(%)

Average
inference time
(ms per frame)

U06-S-N2 49.03 217.24
U07-S-N2 39.24 217.33
R00-S-C2 75.23 206.52
R03-K-N1 12.0 208.08
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(a) U06-S-N2 (b) U07-S-N2

(c) R00-S-C2 (d) R03-K-N1

Figure 4.31: Sample of detected results. The green bounding box is the detected target with
class and confidence label. © Reprinted by permission from Springer Nature: Springer [124],
Copyright (2020).

Fig. 4.31 shows selected frames from the detector. Table 4.4 reports AP of each sequence.
For the synthetic dataset, the detector results in fair performance. The detector is able to
achieve AP of 49.03% and 39.24% for the synthetic data, U06-S-N2 and U07-S-N2. As
mentioned earlier in Sec. 4.7.3, Okutama dataset which is used in the pre-trained model
has some common activities to the worker. The detector, therefore, produced a correlative
result with the load view.
For further analysis of the real dataset, the detector achieved a good result in sequence R00-
S-C2 with 75.23% AP. On the contratry, the detector in sequence R03-K-N1 suffered from
the shadow of the object which is strongly akin to a person dimension itself, see Fig. 4.31d.
It is a challenging sequence because it was very sunny. Regarding the small angle between
the sun and the targets, this results in a short shadow. The detector considered the body
and its shadow as one single object. Moreover, the shadow shape looked similar to the
lying person, which is one of the activity class in the Okutama data. Consequently, this
created a lot of false positives. Despite the fact that this SSD detector precisely detected
a person with the bigger bounding box, this causes IoU to become extremely low and
eventually lower AP. The difference of inference time between sequence U and sequence R
is derived from the larger image size in sequence U whose takes longer to process.
In conclusion, there were common features between aerial view and load view image
such as standing pose. On the other hand, it failed when there was short shadow or the
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workers bent their back or crouched, whose activities do not exist in pedestrians. The
pretrained aerial image detector was able to generally sufficient to produce average results.
However, the detector unfortunately could not apply to the load view image in direct
manner for the construction environment. The aerial image sequences mostly occupy with
plain background and not sunny. To achieve better result, it is recommened to do transfer
learning.

4.12.2 Investigation of Synthetic Data Replacement in Training
a NN Model

The objective of the experiment is to investigate the performance of the deep learning
object detector which was trained by only the synthetic data. In particular, we wanted to
examine if the virtual data can support or completely replace the real data in the training
process. The experimental workflow can be found in Fig. 4.30b. Five synthetic datasets,
U00-S-C0, . . . ,U04-S-C4 were first generated. Instead of training the deep learning detector
from scratch, the transfer learning was used to accelerate the training process. Once
the training ended, the actual crane load view images were fed to the detector for the
evaluation.

In the experiment, we selected the SSD based detector [97]. It is introduced to handle
objects in different scales and accurately localize dense objects. To create the synthetic
data closely resembling the target dataset (i.e., crane load-view images), the synthetic data
were preprocessed by image filtering. We noticed that the target images have more motion
blur than the training samples because they tend to come from the swing movement of
the camera, the vibration of the machine, or the video interlace. In order to close the
domain gap as discussed in Sec. 4.3.1, the motion blur was added to the synthetic data. In
practice, the averaging filter K with the kernel size of 10ˆ10 was applied to all simulated
data to blur the images. The normalized box filter is shown in Eq. 4.9, where J10 is an
10 ˆ 10 matrix of ones. The size of box filter was chosen by trial and error. The original
synthetic datasets are denoted as U00-S-C0, . . . ,U04-S-C4 and the blurred datasets are
denoted (U00-S-C0)1, . . . ,(U04-S-C4)1. Thus the blurry image is close enough to the actual
distribution.

K “
1

100 ¨ J10 (4.9)

The ResNet-50 model was used as a backbone network. We initialized our weights from
a pre-trained checkpoint of the MS COCO dataset [212]. All synthetic data, (U00-S-
C0)1, . . . ,(U04-S-C4)1 are combined and randomly shuffled into training and development
sets. The train set and the development set consist of 10907 and 4675 objects respectively.
The test set with 4934 objects are from R00-S-C2 and R02-S-C2. The network was trained
until the optimal point with a learning rate of 1e´ 7. The sizes of anchors were set to {32,
64, 128, 256, 512} and the strides to {8, 16, 32, 64, 128}. The hardware used in detection
experiments is NVIDIA GeForce GTX 1060, 3GB GDDR5.

We conducted two main trials. In the first trial pBLq, we trained the network with the
BLurred images, (U00-S-C0)1, . . . ,(U04-S-C4)1, while the second trial pnBLq trained the
non-BLurred images, U00-S-C0, . . . ,U04-S-C4. In each trial, we validated the network
with two test sets, R00-S-C2 and R02-S-C2.
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Figure 4.32: Precision-Recall (PR) curves of the experiments. AP in Table 4.5 can be achieved
by the approximation of area under PR curve. [118]

(a) (b) (c)

(d) (e) (f)

Figure 4.33: Predicted results of trial BL on the test sequence R00-S-C2 in the first row (frame
30, 219, 632) and R02-S-C2 in the second row (frame 40, 297, 348). The blue BBox is the
detected target with confidence score label while the green box is groundtruth. [118].

Our detection evaluation metric is adopted from PASCAL Challenge [209] with IoU
threshold of 0.5. Fig. 4.33 presents several predicted frames from both test sets. APs of
the trials are listed in Table 4.5. The AP is obtained by the approximation of areas under
PR curve. The PR curves of experiments are shown in Fig. 4.32.
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Table 4.5: Results of AP on each dataset. The performance gain between preprocessed training
images (green font) and original images (red font) is approximately 10%.

Trial Test
seq name

AP@0.5
(%)

Average
inference time
(ms per frame)

BL´ All R00-S-C2,R02-S-C2 66.84 -
BL´R0 R00-S-C2 78.10 150.0
BL´R2 R02-S-C2 50.10 152.7
nBL´ All R00-S-C2,R02-S-C2 53.13 -
nBL´R0 R00-S-C2 78.20 155.6
nBL´R2 R02-S-C2 38.26 151.7

(a) (b)

Figure 4.34: Comparison of the top view perspective between load-view camera (left) and drone
camera (right). The identity of each object in both images is defined by the same number tag in
the scenario. Number 1 is a rock border next to the fence. Number 2 is two yellow emergency
vests hanging on the fence. Number 3 is two road manholes. Number 4-5 are cars. [118]

First, we evaluated the networks, which are trained with blurred and non-blurred images
on the test sequence R00-S-C2. Both of them, BL´R0 and nBL´R0, yield nearly the
same results (AP«78%). The workers in the sequence most often can be recognized by
both networks. Despite the low-light condition, the workers were wearing the high-visibility
color vest and hard helmet which can be visible to the networks.
Afterward, we assessed the second test sequence R02-S-C2 for the trial BL ´ R2 and
nBL´R2. The detector trained with blurred images, BL´R2, shows a positive outcome.
As a result, the overall AP of the network is higher when trained with the blurred datasets
(U00-S-C0)1, . . . ,(U04-S-C4)1), compared to the non-blurred ones (U00-S-C0, . . . ,U04-S-
C4), check the AP values for trial BL´ All and nBL´ All in Table 4.5. The difference
in the average predicting times among trails is negligible.
In fact, R02-S-C2 is a difficult sequence. It is recorded in higher elevations and thus it is
hard to recognize the worker. Fig. 4.34 shows the comparison of the same objects from two
different camera angles. Apparently, the white rocks (number 1) and manholes (number 3)
are almost identical to the person wearing the safety helmet. The workers’ appearance
forms a similar color and shapes view as of the ground. For the yellow emergency vest, we
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notice that the load-view camera is unable to reproduce the same color as shown in the
drone camera or being visible to the human eye. Instead, it displays as white pixels, see
Fig. 4.34. This could be caused by the variant brightness, low image resolution, etc. In
addition to the issue of the traditional detectors using only PPE color features mentioned
in Sec. 2.1.2, color inaccuracy shown in the load-view camera can worsen these detectors
because those color feature ranges are normally predefined. These negative samples can
likely lure the human to misjudge as well as the detector.
Furthermore, we had prior experience in training the load-view worker detector with
merely UAV data whose detail is not included in this work or likewise in the experiment
of Sec. 4.12.1 where UAV detector was employed to detect worker from the load-view
camera. The drone data were initially expected to be used as an alternative to augment
the training dataset for load-view worker detection. The prediction results were quite
unsatisfactory. Evidently, the workers in the drone camera in Fig. 4.34 can be seen fully
while only the heads and shoulders of the workers in the load-view camera are visible.
In conclusion, there is a significant improvement of 11.71% in average precision between
the pre-processing and non-preprocessing synthetic dataset. Using artificial data to train
a DNN model is beneficial. The model acquires the image features and is able to yield
good performance without seeing none of the real-world data. Nevertheless, they can
not completely replace the real data, but can be used as a supplement. Synthesizing the
artifical data remains challenging. Sometimes, it is easier to create the synthetic data that
appears realistic to a human than creating the data that appears realistic to the learning
algorithms [216].

4.13 Discussion
In this chapter, we introduced the setup of the automatic safety monitoring system as
the platform to experiment with our proposed top view object detection algorithms both
in real and virtual world. The system can increase situational awareness of the operator,
especially blind lift. In the real world platform, we chose the typical scenario i.e., blind
lift, in the industrial area Steil which appears to have many crane activities take place.
Furthermore, the experiments were performed under expert guidance and advice. On the
other hand, the simulation platform strongly supports research and development, especially
in the construction domain for the following reasons.
First, it shortens the development time. Multiple researchers can concurrently work on
different parts under the same platform. To conduct specific experiments such as high
brightness or under the rain, the experiments have to be always prepared and standby
to achieve such states. Because in the real world, the circumstances e.g., weather, light
condition are beyond human control. On the other hand, this can be conveniently done
by the configuration change in the UE. Any new vehicle or environment can be built up
in a fast manner according to the workflow in Fig. 4.15. Second, it prevents the chance
of accidents or incidents. To prepare the experiments, the sensors had to be mounted
and unmounted many times on the huge machine. Driving a crane mandates a certified
or trained operator. On the contrary, the complete experiments can be carried out on a
single PC using the simulation platform. Lastly, it costs less expense. The development
time speeds up. The real crane is unnecessary to rent.
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Nonetheless, the question arises of how close the simulated environment to the real world
is. Eventually, not all simulated data always look identical to the real world, even to
the computer [216]. People dedicated themselves to travel over the world and capture
the texture assets from the entire real environment and bring them into the simulated
world [217]. In addition, there is a big activity in the research domain of bridging the gap
between real and virtual world [204].
Later in Sec. 4.3, we presented how the datasets were collected from both the real world
and the virtual world using the proposed platforms described in Sec. 4.5 and 4.6. The
real-world data were labeled manually, while the groundtruth of the synthetic data were
automatically produced via the developed simulation platform. The scenerio in the virtual
world was physically based modelling or hand modelled scenes that visually follows those
physic laws without mathematical formulation. In particular, we modelled the simulated
platfrom from observation in the real construction area in Trier and applied real-time
rendering for differnt light transporation which allowed us to collect diverse weather
scenarios.
Regarding the data deficit in the construction domain, we generated diverse data sequences
to later improve the quality of the deep learning object detection algorithms. Several data
sequences were collected from the real world. More than five synthetic sequences were
produced based on the observation in the real construction areas including the discussion
with the experts in mobile crane operation. The platform provides the researchers a place
where they can independently investigate and analyze their algorithms and design. Also,
it reduces time of the development or system optimization or adjustment. For the dataset
generation, it is sufficient to point out that the simulation platform shortens both data
collection and data annotation time. As discussed in Sec. 4.7.2 and 4.8.2, the virtual
platform is able to generate the annotation 280-400 times faster than the hand labelling
method. Hence, it significantly speeds up the system delivery time. The last important
remark is that it reduces the probability of accident occurrence as there is less contact or
interaction between the actual vehicle and the human.
Finally, two experiments were conducted to assess if the simulated data can be exploited to
improve the top-view detector. In the first experiment in Sec. 4.12.1, the UAV pretrained
SSD model indicated the common features to the targets from the load-view crane camera.
This leads to the starting point to use this pre-trained network as the initial weight for the
fine-tuning process of our top view detection. While the second experiment in Sec. 4.12.2
purely used the synthetic data to train SSD based detector and test with the real load-view
data afterward. There are two networks trained for evaluation. The first network was
trained with preprocessed images and the second was trained with the primitive images.
The synthetic data were preprocessed to make them comparable to the real data. In
the end, the detector ran on the two test sequences that were taken from the real crane.
Consequently, blurred virtual data appeared to make data more realistic to the learning
algorithm with the improvement of more than 10% accuracy relative to non-preprocessed
data.
In the following chapter, the choice of network including suitable configuration for the top
view object detection from load-view crane camera will be diagnosed. Additionally, the
generated datasets will be employed in the training process of the chosen network model
for optimization.



5. Top View Object Detection Using
Deep Learning

Detecting workers from the load-view is challenging. One of the important requirements
of having effective deep learning detectors is a great amount of high-quality data. In
particular, it does not only require a high number of data, but the data should also contain
correct ground truth and be relevant to the goal application. In the previous chapter, the
load-view dataset generation in a fast manner and the validation of the synthetic data with
the deep learning algorithms were presented. Consequently, synthetic data is able to be
employed for data augmentation to improve the detectors. Besides the data augmentation,
there are many other approaches that can enhance the quality of the detection using deep
learning algorithms such as parameter configuration.
The goal of this chapter is first to investigate the trade-off between two standard types of
deep learning object detectors for worker detection from the load-view crane camera and
determine the network model which is competent for the target application. The second is
to find suitable parameters which are applicable for the chosen network and the hardware
setup.
The structure of the chapter is as follows. Sec. 5.1 presents the detail of the specific network
architecture models which are widely adopted and their development. The analysis of the
collected dataset was examined in Sec. 5.2. Later, the candidate list of network models
in Sec. 5.3 is discussed based on the architecture and the data statistic from the earlier
section. The network configuration and selection are later presented in Sec. 5.4.

5.1 Deep Learning-Based Detection Techniques
As mentioned in Sec. 2.2, object detection using deep learning approach has became
notorious. Several network architecture models which were commonly used in object
detection are listed. In this section, we will further discuss the networks in detail including
previous studies, especially in top view object detection in construction domain or similar.
The well-known DL-based object detector algorithms can be categorized into two classes,
namely two-stage detector and one-stage detector (see, Fig. 5.1).
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Two-stage detectors:

• R-CNN [86] used the Selective Search as an object proposal method. Nearly 2000
Region of Interests (RoIs) with the size of 224ˆ224 are fed into CNN based feature
extraction. At the end, SVM predicts and assigns the class and the probability for
each RoI. Although R-CNN is first notably of using the CNN in object detection, a
speed bottleneck is the CNN feature extraction of «2k region proposals.

• Fast R-CNN [87] was able to reduce the overall training time while improving the
accuracy compared to R-CNN. RoI pooling layer, which is a type of max-pooling,
is added. Given different sizes of input images, this network pooling layer allows
creating feature maps in varying scales. Instead of SVM classifier, BBox regressor
is employed to predict localization boxes. As can be seen, Fast R-CNN network
contains two network branches, a classification which indicates an object class and
regression which gives object coordinate.

• Faster R-CNN [88] replaced Selective Search to a small ConvNets, called Region
Proposal Network (RPN) as depicted in Fig. 5.1a. Using Selective Search for
candidate generation is cumbersome because it is the slowest part of Fast R-CNN.
Faster R-CNN used RPN to perform candidate search instead. Anchor boxes, which
is a set of BBoxes, is introduced as an input to train the RPN. The boxes are variant
in aspect ratios and size. RPN only distinguishes the object from the background but
not the object class. The aim of the RPN is therefore to indicate the BBoxes which
are close to the position of the ground truth object as much as possible. Finally, the
BBoxes are passed to the pooling layer like Fast R-CNN. With comparable accuracy
in the VOC-2007 dataset, Faster R-CNN is 10 times faster than Fast R-CNN.

• Mask R-CNN [89] is an object detector based on instance segmentation. The
architecture is built upon Faster R-CNN. Likewise, it has two stages, candidate
generation, and classification. The main difference is an additional masking network
branch which pixel-to-pixel masks the object based on the first stage proposal. As
the result, the pixel-level masking refines the BBox and provides better alignment of
the object.

One-stage detectors:

• YOLO [90] passed an input image to CNN only once at runtime, hence the name,
You Only Look Once (YOLO). The method contains only a single NN which directly
predicts BBoxes location, a confidence score and a likelihood of object class. The
network breaks down the input image into square grids as shown in Fig. 5.1b. Each
grid predicts a limited number of BBoxes. The grid cell handles only objects whose
center lies on that cell. Despite speed outperformance, one major drawback of this
approach is detecting very small objects. Moreover, each grid can only predict a
single object class. In other words, if there is more than one object in the same grid,
the method outputs only one of the object classes.

• SSD [96] is a VGG-16 based model to extract feature maps and uses a convolution
filter to detect objects. This approach provides a good trade-off between speed and
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Figure 3. The one-stage RetinaNet network architecture uses a Feature Pyramid Network (FPN) [20] backbone on top of a feedforward
ResNet architecture [16] (a) to generate a rich, multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two
subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor boxes to ground-truth object boxes (d). The network
design is intentionally simple, which enables this work to focus on a novel focal loss function that eliminates the accuracy gap between our
one-stage detector and state-of-the-art two-stage detectors like Faster R-CNN with FPN [20] while running at faster speeds.

Classification Subnet: The classification subnet predicts
the probability of object presence at each spatial position
for each of the A anchors and K object classes. This subnet
is a small FCN attached to each FPN level; parameters of
this subnet are shared across all pyramid levels. Its design
is simple. Taking an input feature map with C channels
from a given pyramid level, the subnet applies four 3×3
conv layers, each with C filters and each followed by ReLU
activations, followed by a 3×3 conv layer with KA filters.
Finally sigmoid activations are attached to output the KA
binary predictions per spatial location, see Figure 3 (c). We
use C = 256 and A = 9 in most experiments.

In contrast to RPN [28], our object classification subnet
is deeper, uses only 3×3 convs, and does not share param-
eters with the box regression subnet (described next). We
found these higher-level design decisions to be more im-
portant than specific values of hyperparameters.

Box Regression Subnet: In parallel with the object classi-
fication subnet, we attach another small FCN to each pyra-
mid level for the purpose of regressing the offset from each
anchor box to a nearby ground-truth object, if one exists.
The design of the box regression subnet is identical to the
classification subnet except that it terminates in 4A linear
outputs per spatial location, see Figure 3 (d). For each
of the A anchors per spatial location, these 4 outputs pre-
dict the relative offset between the anchor and the ground-
truth box (we use the standard box parameterization from R-
CNN [11]). We note that unlike most recent work, we use a
class-agnostic bounding box regressor which uses fewer pa-
rameters and we found to be equally effective. The object
classification subnet and the box regression subnet, though
sharing a common structure, use separate parameters.

4.1. Inference and Training

Inference: RetinaNet forms a single FCN comprised of a
ResNet-FPN backbone, a classification subnet, and a box

regression subnet, see Figure 3. As such, inference involves
simply forwarding an image through the network. To im-
prove speed, we only decode box predictions from at most
1k top-scoring predictions per FPN level, after threshold-
ing detector confidence at 0.05. The top predictions from
all levels are merged and non-maximum suppression with a
threshold of 0.5 is applied to yield the final detections.

Focal Loss: We use the focal loss introduced in this work
as the loss on the output of the classification subnet. As we
will show in §5, we find that γ = 2 works well in practice
and the RetinaNet is relatively robust to γ ∈ [0.5, 5]. We
emphasize that when training RetinaNet, the focal loss is
applied to all ∼100k anchors in each sampled image. This
stands in contrast to common practice of using heuristic
sampling (RPN) or hard example mining (OHEM, SSD) to
select a small set of anchors (e.g., 256) for each minibatch.
The total focal loss of an image is computed as the sum
of the focal loss over all ∼100k anchors, normalized by the
number of anchors assigned to a ground-truth box. We per-
form the normalization by the number of assigned anchors,
not total anchors, since the vast majority of anchors are easy
negatives and receive negligible loss values under the focal
loss. Finally we note that α, the weight assigned to the rare
class, also has a stable range, but it interacts with γ mak-
ing it necessary to select the two together (see Tables 1a
and 1b). In general α should be decreased slightly as γ is
increased (for γ = 2, α = 0.25 works best).

Initialization: We experiment with ResNet-50-FPN and
ResNet-101-FPN backbones [20]. The base ResNet-50 and
ResNet-101 models are pre-trained on ImageNet1k; we use
the models released by [16]. New layers added for FPN are
initialized as in [20]. All new conv layers except the final
one in the RetinaNet subnets are initialized with bias b = 0
and a Gaussian weight fill with σ = 0.01. For the final conv
layer of the classification subnet, we set the bias initializa-
tion to b = − log((1 − π)/π), where π specifies that at

5

(d)

Figure 5.1: Examples of two common architectures of Deep Learning-based object detector.
(a) Two-stage detector - FasterR-CNN. [88]© IEEE 2015. One-stage detectors - (b) YOLO
© Reprinted by permission from Springer Nature: Springer [98], Copyright (2020). (c) SSD
© Reprinted by permission from Springer Nature: Springer [96], Copyright (2016)., and (d)
RetinaNet [97]© IEEE 2017.

accuracy. To handle multi-scale objects, it added several convolutional feature layers
of decreasing sizes on top of VGG-16. As the result, such pyramid representation
allows the network to capture objects of various sizes. SSD generates default boxes
which is equivalent to anchor boxes of Faster R-CNN, for each location of activation
map. Unlike the anchor boxes, the size and position of the default boxes are fixed
relative to their associated cell. In contrast to YOLO, SSD does not divide an image
into random size grid cell but simply predicts the offset of the default boxes.
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• RetinaNet is a one-stage object detector that performs well for images that contain
dense and small size objects. The backbone of this architecture shown in Fig. 5.1d is
ResNet model [83]. RetinaNet is constructed based on the combination of featurized
image pyramids and focal loss. The image pyramid in traditional image processing
resolved the scale-variant of the object detection. However it is quite unpleasant
due to very expensive computation and memory. On the other hand, featurized
image pyramids, which is similar to image pyramid in SSD, resolves object detection
at different scales in a faster manner and less computation because CNN utilized
pyramid structure.
In addition, the method addresses the imbalance problem between foreground and
background classes. It introduced the new loss function, called focal loss which solves
the foreground-background class imbalance problem on top of FPN. Focal Loss (FL)
described in Eq. 5.2 is a modified Cross-Entropy Loss (CE) described in Eq. 5.1. By
adding a modulating factor ´p1 ´ ptq

γ, it appends more weight to hard examples
while down-weight on easy examples.

CEpptq “ ´logpptq (5.1)

FLpptq “ ´p1´ ptqγlogpptq ; γ ě 0 (5.2)

where γ is a focusing parameter of the focal loss with the default value of 2.

5.2 Data Inspection
The procedure workflow can be found from Fig. 5.2, which is the network selection process
based on the real target dataset. The data inspection must be initially carried out. Three
networks were carefully picked from the literature regarding our data observation result.
In training neural networks, inspecting data is a critical, inevitable, and very important step
because this has effects upon the training procedure. Any irrelevant data or localization
errors can worsen the performance of the detectors. Given the collected dataset from the
previous chapter, we spent long hours scanning through thousands of generated examples
to understand their patterns, distributions, correct ground truth localization error or class
name, remove corrupted images, etc.
For the process of splitting data, we adopted the hold-out method for network model
selection [218]. The method splits the entire dataset into three different sets, namely
training, development (dev), and test. The dev-set is referred to in many terms in the

Figure 5.2: Workflow for object detection network selection procedure.
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Figure 5.3: Data statistic of (a) R03-K-N1, (b) R00-S-C2, R01-S-C2, R02-S-C2, and (c)
combination of (a) and (b). The different BBox sizes on the x-axis can be categorized as small
(BBox< 32ˆ 32 px), medium (32ˆ 32 px < BBox < 96ˆ 96 px) and large(BBox > 96ˆ 96 px).

literature such as hold-out, cross-validation, or evaluation set. As a rule of thumb, we
chose the train-dev-test split ratio of 70-15-15 for around 47000 examples. Although the
trend of the deep learning split training set ratio should be extremely much high than the
dev-set and the test set e.g., 90-5-5, 98-1-1, 99.5-0.25-0.25, this ratio setup is suggested
for the big data which contains one or more than millions examples. In this case, the
dev-set and test set become much smaller percentage because the goal of having these sets
is to simply see how the network models behave towards the data, unlike learning in the
training process which requires a lot of data to provide sufficient knowledge to guide the
learning algorithm for reasonable recognition.
The data statistic for network selection procedure can be found from Fig. 5.3. In spite of
different data sources in Chapter 4, the data from real source (i.e., R00-S-C2, R01-S-C2,
R02-S-C2, and R03-K-N1) were solely used. Under this circumstance, this ensures not to
mismatch the data distribution with simulated data during the network model selection
process.
The dataset is categorized based on the size of the BBox according to the standard of [212]
and types of the dataset. Fig. 5.3c shows overall statistics. Around 70% of the overall
data are subjected to small object size. Almost half of the small objects are occupied by
20ˆ 20 px BBox. Two quarters of the small objects are 24ˆ 24 px and 28ˆ 28 px BBox.
Fewer than 4% is 16ˆ 16 px BBox. On the other hand, a third of overall data are medium
BBox size. Just over half of the medium proportion were 96ˆ 96 px BBox and the rest
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are 32ˆ 32 px BBox. Lastly, less than one percent of the overall data is the object larger
than 96 px size.
In brief, the small object size constitutes the highest proportion of the selected dataset.
All datasets has only a single object class, which is person. As shown in Fig. 5.3a, the
statistic of dataset R03-K-N1 contains the large object size more than the other because
several zoom-in events occurred during the data record which caused the larger object size.
Unlike R03-K-N1, the zoom level of the dataset R00-S-C2, R01-S-C2, R02-S-C2 usually
remain in zoom out most position which results in the objects were visibly smaller, see
Fig. 5.3b.

5.3 Candidate List of Network Models
Similar to most object detection studies [84], we chose two criteria in picking models for
real-world application which are speed and accuracy. Nevertheless, there are other factors
that we do not consider in this work, but also can affect the performance of the detector
as well such as boundary box encoding, deep learning software platform that used, the
number of predictions or proposals, and feature extractor.
Most of the safety assistances in industry or autonomous vehicles use safety proximity or
distance sensor. Using the proximity sensor provides no semantic information. For instance,
crane collision avoidance system employs Ultra-wide Band (UWB), Radio Frequency
Identification (RFID) tag, laser scanner, or IMU to obtain the pose of the crane and
perceive the surroundings [219, 173]. These proximity sensors present the existence of
objects but not the accurate position where the object is. Given the information or
alarm, the operator must immediately stop the ongoing construction task despite the
unknown exact position of the nearby worker. The requirement of the applications using
proximity sensors prioritizes the time aspect before the accuracy. In other words, the
Safety Response Time (SRT) of the proximity sensors is quite low regardless of given
non-semantic information such as no appearance of the target. For instance, once the
sonar sensor detects any incoming worker to the forklift, it suddenly gives a warning to
the forklift driver without identifying which part of the worker’s body violates the working
area of the vehicle. As can be seen, the response time or speed is more important than
the accuracy in a safety application.
Likewise, our priority goal is speed and then accuracy while providing the semantic
information for the operator via the load-view crane camera. Regarding the requirement of
visibility assistance, the operator should be alarmed about any surrounding workers-on-foot
or to be aware of the hazards in (near) real-time. In this work, we therefore selected
two typical deep learning network baselines i.e., Faster R-CNN, two-stage detectors and
RetinaNet, one-stage detector, see Fig. 5.5. The backbone architecture or the deep learning
classification model which is chosen for all detectors is ResNet [83]. ResNet is one of the
most powerful deep learning classification model, which yields ImageNet Large Scale Visual
Recognition Challenge or ILSVRC in 2015 [220]. It shone a light after the great success
of AlexNet in 2012. ResNet has many variants —ResNet-18, ResNet-34, ResNet-164,
ResNet-1202, etc. The digit suffix represents a number of neural network layers of ResNet
architecture. The more layer the network has, the better network accuracy [83].
According to the speed and accuracy measurement shown in Fig. 5.4a, the ideal detector
should have high mAP and low GPU time, which means the detector should be at the
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(a)

(b)

Figure 5.4: (a) mAP vs GPU elapse real time by meta-architecture and feature extractor.
[84]© IEEE 2017, p.8. (b) mAP for size 300 input by meta-architecture and feature extractor.
The GPU time report based on a batch size of one. The machine used in this benchmark is
Intel Xeon E5-1650 v2 processor, 32GB RAM and Nvidia GeForce GTX Titan X GPU card.
[84]© IEEE 2017, p.9.

top left corner of the plot as much as possible. FasterR-CNN models are suitable for high
accuracy and low throughput application requirement. On the contrary, SSD models are
recommended when processing time is the most important factor.

In addition, Fig. 5.4b reported the accuracy of the detectors based on different object
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(a)

(b)

Figure 5.5: (a) FasterR-CNN detector architecture. (b) RetinaNet detector architecture. The
figures were modified from [88]© IEEE 2015 and [97]© IEEE 2017 respectively.

sizes—small, medium or large1 [212]. Obviously, all detectors perform relatively well on
large object sizes. Although SSD based models trail in the accuracy of small objects, they
are competitive on large objects with FasterR-CNN. SSD models are faster and their
feature extractor is more lightweight than the two-stage detectors. One-stage detectors
like SSD suffer inequality of class numbers among all training samples.
Unlike the two-stage detectors, the number of the generated candidate from the one-stage
detector is fairly huge, 10k to 100k candidates. Among the candidates, it may contain
much more easy samples than hard samples. The difficulty level (easy and hard) describes
how difficult for the detector to categorize an object. The easier the object class, the more
confident the detector. In other words, the loss becomes less when the detector is very
certain which class of the object it sees. The loss of easy examples (e.g., background)
dominates the loss of hard example e.g., class person. Consequently, it reduces the overall
accuracy of the detector. This type of example causes the problem for the one-stage
detector. Besides the class imbalance problem, one-stage detectors also have difficulty in
handling small size objects. The feature mapping of the detector is very low resolution.
As a result, the feature of the small objects becomes too less detectable.
In terms of load-view application, the network baseline models which are mostly adopted
are Faster R-CNN and RetinaNet instead of SSD detector. The RetinaNet architecture
base is widely adopted as a lightweight and accurate aerial image detector in many
literature. It addresses the problem of dense and small size objects as discussed in Sec. 2.2.
It solves the class imbalance problem by focusing on the loss of the hard example.

1small (BBox< 32ˆ 32 px), medium (32ˆ 32 px < BBox < 96ˆ 96 px) and large(BBox > 96ˆ 96
px). BBox stands for bounding box.
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Table 5.1: Candidate list of network models.

Detector Network Model Backbone architecture Abbreviation
FasterR-CNN ResNet50 F50
FasterR-CNN ResNet101 F101
RetinaNet ResNet50 R50

According to the data observation in Sec. 5.2, most of the data are small. The data
content was mostly filled with the plain road which is considered as the high number of
easy negative examples or background. Therefore, picking a one-stage detector like SSD is
not preferable. As previously mentioned, such one-stage detectors have a class imbalance
problem. The loss value will be influenced by the high amount of background examples.
Another problem of a one-stage detector is handling small size objects as already stated.
RetinaNet copes with this issue by adopting Feature Pyramid Network (FPN) which allows
detecting objects in large variation in object scale. As reported in the aerial image object
detector challenges [221, 222], RetinaNet base model holds the best AP of the VisDrone
detection challenge in 2018. Furthermore, 13% of the VisDrone 2019 challenge participants
used RetinaNet architecture base. For FasterR-CNN, approximately 15% and one-fourth
of submitted detectors employed this method in 2018 and 2019 respectively.
Based on these assumptions, the following detectors are chosen in the network model
selection process which will be discussed in Sec. 5.4. The summary of candidate list can
be found in Table 5.1 including their abbreviation which will be referred for the rest
of the chapter. FasterR-CNN models with two different backbones (i.e., ResNet50 and
ResNet101) are used as the baseline accuracy in comparison, while RetinaNet-ResNet50 is
our detector which we aim to employ for the load-view object detection.

5.4 Network Configuration and Selection
In this work, the framework which we used to train and optimize the deep learning
algorithm is TensorFlow Object Detection API. This API is an open-source deep learning
framework that is built on top of TensorFlow (TF), which is a software library developed by
Google Brain for machine learning and aritficial intelligence. The API facilitates building
the neural network models starting from data preparation, training, until the deployment
phase of the models. The version of TF which is used in this thesis is 1.14.
The hardware resources2 for training Deep Neural Network (DNN) is Google Colaboratory
(Colab) more commonly referred to as Google Colab or just simply Colab [223]. Colab is a
Jupyter notebook environment, which runs in the cloud platform and stores data on Google
Drive. It is an interactive programming terminal, hence it is easy to learn and debug. This
tool has got several features such as it requires neither setup nor most dependency library
installation. Moreover, it offers free access to Google computing resources e.g., GPUs,
Tensor Processing Units (TPUs) under a certain time period. In general, the maximum
lifetime which Google allows the notebooks connecting to the virtual machine is up to 12
hours.
Before presenting the network selection procedure, we first go through the standard object
detection network configuration in TensorFlow Object Detection API in the following

2Intel(R) Xeon(R) CPU @ 2.20GHz, 12.72G memory, Nvidia Tesla T4, 16GB
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section. Afterward, the configurations of each network model candidate which were chosen
in Sec. 5.3 are presented. Based on the training outcomes, the final model which is suitable
for our application is determined in Sec. 5.4.2.

5.4.1 Network Configuration
In TensorFlow Object Detection API, there are three main basic configuration components
—model, configuration, and input, as seen in List. 1. All component configuration files are
in protobuf format, which can be set in a single file pipeline.config of the TensorFlow
Object Detection API. Each training and evaluation process contains both configuration
and input components.

1 model {
2 (... Add model config here...)
3 }
4

5 train_config: {
6 (... Add train_config here...)
7 }
8

9 train_input_reader: {
10 (... Add train_input configuration here...)
11 }
12

13 eval_config: {
14 (... Add eval_config here...)
15 }
16

17 eval_input_reader: {
18 (... Add eval_input configuration here...)
19 }

Listing 1: Skeleton configuration file of TensorFlow Object Detection API [224].

• Model configuration—Defines which object detection model will be trained. Some
examples of the parameters of the network model are the total of object classes, loss,
feature extractor, anchor generator, etc.

• Evaluation configuration—Defines which metrics_set will be used during detec-
tion assessment. Our detection evaluation is set to pascal_voc_detection_metrics.
The TensorFlow Object Detection API supports three main evaluation protocols
which were originated from the well-known competitions namely, PASCAL VOC
2010 detection metric, MS COCO detection metric, and Open Images V2 detection.
In general, these benchmarks commonly use mAP metric for evaluating the quality
of the object detectors. The conventions are slightly different. For instance, the
Open Images protocol has hierarchy label system. The MS COCO benchmark has
additional statistc of reporting IoU and object size. The detailed comparison among
the evaluation metrics can be found in [225]. The num_examples is the number of
the test images.
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Figure 5.6: This figure visualizes the example of the feature development through layers,
starting from the left is the initial layer then goes to the deeper layer as we can see more feature
pattern developed© Reprinted by permission from Springer Nature: Springer [227], Copyright
(2014).

• Input configuration —The train_input_config and eval_input_config define
the desired training dataset and evaluation dataset respectively. A tfrecord file
contains a sequence of binary sample data records including their annotation. Besides
the tfrecord data, a label file, labelmap.pbtxt, is a reference lookup table file of
the object class name. The file is referred to in both training and evaluation input
configuration. The file contains two fields, namely id and associated object class
name. The label id starts at 1 as the id 0 is reserved for an object class background.
An example of the label map file can be found in Appendix C.5.

5.4.2 Network Selection
The procedure of selecting the network is following. First, the network configurations of
the three networks are discussed. After the training process, the result and the choice of
the network are presented.
To yield a low training loss, it is better to start from a pretrained weight of the selected
models. A pretrained model is a model trained by others to address a similar problem.
This technique generally refers to Transfer Learning (TL) or knowledge transfer, which is
another complex research area that addresses what kind of knowledge to transfer, how to
transfer, and when to transfer. For a more extensive survey of TL, see [226]. To avoid
negative transfer, the researchers try to explain these arising questions which depend on
domain and task of the source and target (or destination). It occurs when the knowledge
transfer worsen the target learning process. Although the training data and the target
data should theoretically be in the same feature space and distribution, this premise may
not apply in many real-world scenarios [226]. Therefore, training network models from
scratch or building up own network is strongly not recommended at the initial stage
of implementation. Although a pretrained model may not first work perfectly in our
application, using the pretrained knowledge saves huge efforts instead of teaching the
network from zero. As illustrated in Fig. 5.6, such the knowledge can initially ease the
feature extraction process of the network as it employs the feature presentation which
learned by the previous network that typically trained on a very large-scale dataset.
According to the candidate list discussed in Sec. 5.3, the following network models in
Table 5.2 including their pretrained weights were taken from TF detection model zoo [228],
which is a marketplace for TF standard model architectures. The networks were trained
on the MS COCO dataset which is a large-scale image dataset. It contains approximately
32000 images with the context of everyday humans and objects. To the author’s knowledge,
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there is no pretrained network available which is trained by crane load-view dataset. The
initial weights of each network are in the checkpoint (ckpt) file format which is set as
fine_tune_check_point of training configuration file.

Table 5.2: Network model name listed in model zoo.

Network model Model zoo network model name
F50 faster_rcnn_resnet50_coco_2018_01_28
F101 faster_rcnn_resnet101_coco_2018_01_28
R50 ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03

5.4.2.1 Configuring the Trainer

Next, only important parts of the configuration file of the three networks are discussed.
The rest of the configuration mostly leave as default and is included in the complete
configuration, which are available in Appendix C. Table 5.3 lists the model configuration
for the three network candidates.

• Number of classes (num_classes) —The aim of this work is to detect worker-on-foot,
hence the number of object class is one for all networks.

• Image resizer (image_resizer) —FasterR-CNN family are the model trained to
detect object in real aspect ratio thus keep_aspect_ratio_resizer option is chosen.
The default [min, max] image dimension is [600,1024]. However the image resolution
of our real training data set is 720ˆ 480 therefore the new image dimension range is
[600,900] according to the function of shape aspect ratio calculation in Alg. 5.1. For
RetinaNet, the input image is stretched into the default specific width and height
i.e., 640ˆ 640 by using fixed_shape_resizer option.

• Data augmentation (data_augmentation_options) —It is carried out not only to
increase the amount of relevant data in our dataset but also to reduce overfitting.
In other words, our target application may exist in a variety of conditions such as
different orientations, scales, and locations. In addition to the simulated dataset
discussed in Chapter 4, another data augmentation technique can be done by
synthetically modifying the existing data. Basic augmentation techniques are flip,
rotation, scale, crop, translation, and Gaussian noise. On the other hand, advanced
techiques are Conditional Generative Adversarial Networks (cGANs), neural style
transfer, etc. Despite many augmentation options, we need to consider whether the

Algorithm 5.1: Calculate shape keeping aspect ratio
Input: H,W,min_dimension,max_dimension
Output: min_dimension,max_dimension

1 ratio_min “ min_dimension
Min(H, W ) ;

2 ratio_max “ max_dimension
Max(H, W ) ;

3 ratio “ Min(ratio_min, ratio_max);
4 min_dimension “ Round(H ˆ ratio);
5 max_dimension “ Round(W ˆ ratio);
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Table 5.3: Model configuration for each network candidate. Both FasterR-CNNs used the same
configuration.

Configuration F50, F101 R50
Number of classes 1 (person) 1 (person)
Image resizer keep_aspect_ratio_resizer, [600,900] fixed_shape_resizer, 640ˆ 640
Data augmentation • random horitzontal flip

• random vertical flip
• random jitter boxes with ratio

of 2e-2

• random horitzontal flip
• random vertical flip
• random crop image

Number of training steps (ˆ103) 700 50
Batch size 1 16
Optimizer Momentum Momentum
Learning rate (ηq step decay cosine decay
Anchor scales [0.0625, 0.125, 0.25, 0.5, 1.0, 2.0] —

option is relevant to our target application or not. For instance, augmenting data
for the upward arrow classifier with the vertical flipped images, which becomes a
downward arrow, will lead the model in a completely wrong direction. According
to our top-view dataset, an image could be possibly view rotated by 180 degrees,
which is equivalent to a vertical flip or horizontal flip. The two flips applied to both
FasterR-CNNs. Moreover, random jitter or Gaussian jitter was applied with a ratio
of 0.02. For RetinaNet, horizontal and vertical image flipping and random crop
image were kept as the default option.

• Number of training steps (num_steps) —Both F50 and F101 were set to train for
700k steps. On the other hand, RetinaNet required much less than the FasterR-CNN
because of the smaller network therefore we set to 50k steps.

• Batch size (batch_size) —Similar to the training steps, the smaller the network
size, the higher the batch size can be. Increasing batch size results in increasing the
required GPU memory. On the other hand, taking a bigger batch size allows the
network to directly reach a local minimum faster. The default batch size of both
FasterR-CNNs is 1 which we found out that it is also suitable for our hardware to
have smooth training without GPU memory error while training. The batch size of
RetinaNet can be set upto 16 not to be over the memory limitation.

• Optimizer (optimizer) —All three models used momentum [229] as the default
gradient descent optimization algorithm. The typical momentum value γ is set to
0.9. Momentum term in practice means a strength gained by motion or a series
of actions. The more actions are built, the more motion is generated. As a result,
momentum is analogous to great speed improvement in learning. The momentum is
a method to accelerate Stochastic Gradient Descent (SGD) in the related direction
including absorb of loss oscillation. A further detailed comparison of gradient-based
optimization algorithms can be found in [230].

• Learning rate (learning_rate) —It is one of the most important optimization
parameters. As the name implies, it controls how fast or slow a Neural Network (NN)
learns the training samples. In other words, how often the model should update
the weight in response to the estimated loss. Too large a learning rate will result
Gradient Descent (GD) overshoot to the minimum. It may fail to either converge or
diverge. On the contrary, finding the minimum can be slow if the learning rate is too



88 5. Top View Object Detection Using Deep Learning

small. For FasterR-CNN, we changed the default initial learning rate to be smaller
instead of 3e´ 4. To anneal the learning rate over time, a step decay method was
adopted with a reducing factor of 0.1. The learning rate was scheduled based on the
step number or after a set of training epochs as in Eq. 5.3.

ηFasterRCNN “

$

’

&

’

%

1e´ 4 ; 0 ă step ă 500k
1e´ 5 ; 500k ď step ă 700k
1e´ 6 ; otherwise

(5.3)

Instead of reducing the learning rate stepwise, RetinaNet used the cosine learning rate
decay technique. The annealing schedule relies on the cosine function. Unlike one
single downward trip for searching minimum, the model undergoes several learning
rates annealing cosine cycles or moving ridges.

• Anchor scales (grid_anchor_generator) —In constrast to MS COCO, the overall
object size discussed in Sec. 5.2 is much smaller. Therefore, we appended two
additional smaller anchor scales i.e., 0.0625 and 0.125 to the default r0.25, 0.5, 1.0, 2.0s.
For RetinaNet, this parameter does not exist hence it is not applicable.

5.4.3 Result of Network Selection
The training results of the three network candidates are shown in the second to the fourth
columns of Table 5.4. The test results are shown in the last three columns of the identical
table. The hardware that was used during the test procedure in Finroc was Intel(R)
Xeon(R) Gold 6126 CPU @ 2.20GHz, 12 cores, 12.72G memory, and NVIDIA GeForce
GTX 1660 Ti, 6GB.
Among the three network models, the network size of R50 is relatively small. Training
process therefore took much less than both Faster R-CNN i.e., seven times less. With
the same reason, its speed performance is 3-3.5 times faster. The accuracy of R50 was
comparable to the large network, Faster R-CNN. The snapshot of evaluation can be
found in Fig. 5.7. First, the objects in the scenario in R00-S-C2 dataset (1st column of
Fig. 5.7) appeared to be stood out of the background. All the workers wore the emergency
vests and the ground of the image sequence was very dark. As a result, all detectors
were able to properly distinguish and recognize the workers. For the second scenario as
R02-S-C2 dataset (2nd column of of Fig. 5.7), the workers were very small. The appearance
of the worker was mostly in black without wearing a high-visibility jacket or safety helmet.
Moreover, there were many circular objects (e.g., manhole or rocks) that closely resembled
the head of the worker from the top view. This is very difficult not only for the detectors
but also for a human to differentiate the objects out of those similar object shapes. Despite

Table 5.4: Training results of the three network models.

Train Test

Detection
Network Architecture Batch size

Number
of

epochs (ˆ103)
Training time

Average
detection time (ms)

per frame
FPS AP

R50 16 50 48 hours 238 3.986 0.72
F50 1 700 2 weeks 714 1.329 0.69
F101 1 700 2 weeks 833 1.139 0.70
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no false positive of the similar objects, F50 and R50 missed several workers, see Fig. 5.7b
and 5.7e. On the other hand, F101 was able to detect them all as shown in Fig. 5.7h.
Lastly, the 3rd column of Fig. 5.7 represented the R03-K-N1 dataset. All detectors were
generally able to detect workers without false positive with such shadow. Unlike the result
in Fig. 4.31d, SSD-OkuPed, which were trained by UAV dataset, included both worker
and their shadow as a single object. Regarding network selection criteria discussed in
Sec. 5.3, we opted RetinaNet-Resnet50 or R50 as our final network model as it was able to
satisfy the requirement both in terms of speed and accuracy based on our load-view object
detection application. As the higher prior criteria of speed, R50 was able to gain the best
time performance not only runtime, but also took less time than other networks to train. In
term of accuracy, focal loss of R50 solved the shortcoming of the class imbalances problems
which resulted the network to distinguish the small size object from the background.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: The snapshot of the detection result on three datasets (i.e., 1st column: R00-S-C2,
2nd column: R02-S-C2, and 3rd column: R03-K-N1). The ground truth is shown in blue BBox
and the predicted result is shown in green BBox. The first row (a-c) are results of R50. The
second row (d-f) are the result of F50. The last row (g-i) are the result of of F101.
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5.5 Discussion
In this chapter, top view object detection using deep learning approaches had been
investigated. The network selection procedure is mainly conducted in this chapter to seek for
the appropriate network for our load-view worker detection. The extensive data inspection
first showed that most of the object size among the real load-view crane camera datasets
were small (20 ˆ 20 px). Later, three network model candidates namely, FasterRCNN-
Resnet50 (F50), FasterRCNN-Resnet101 (F101), and RetinaNet-Resnet50 (R50) which are
mostly adopted in terms of load-view object detection application or similar, were selected.
They were top primarily network models selected in object detection research in many
application domains, but not limited to, safety in construction area, AV, surveillance, etc.
The network selection criteria was speed over accuracy due to the requirement of visibility
assitance, which the operator should be warned regarding any nearby hazards such as
workers-on-foot in (near) real-time. The network configuration of each model had been
properly adjusted according to the data inspection. Finally, R50 or RetinaNet detector was
chosen out of the three detector choices. R50 detector achieved the good result, specially
in term of speed and small object size. Moreover, its training duration time was seven
times less than the R-CNN series with the comparable accuracy.
The deep learning network struggles to detect the objects from the top view since the
information embedded in each BBox is not sufficient for robust detection performance.
Hence, the active zoom control is introduced to improve the performance of the detector
instead of parameter tuning and retraining the deep learning network. By controlling the
camera zoom we can adapt the size of the BBoxes in the image and boost the number
of features in each BBox. The output of the detector is used as sensory information in a
feedback loop to control the camera zoom. Since the zoom control performance is sensitive
to the sensory data it is crucial to achieving a detector output that has (a) low delay
and (b) stable detection rate. The selected detector is suitable for zoom control since it
provides a suitable compromise on both of the above conditions.



6. Analysis of Motorized Zoom
Camera

In the previous chapter, a suitable network model was determined for the worker de-
tection from the load view camera. Three renowned object detection network mod-
els i.e., FasterRCNN-Resnet50 (F50), FasterRCNN-Resnet101 (F101), and RetinaNet-
Resnet50 (R50) were chosen as network candidate for the application. According to
the speed and accuracy criteria, R50 detector outperformed the rest of the detectors.
Nevertheless, the result remains imperfect. Top-view images inherently contain a poor
feature set for worker detection, explaining the low performance of the state-of-the-art
detectors. Furthermore, the size of the Bounding Boxs (BBoxs) are relatively small in the
crane applications which exacerbates the feature deficiency in the image.
The crane operator actively uses a zoom camera to increase the size of the workers, which
further decreases the efficiency of the detection algorithm due to dynamic and abrupt
changes in the size of the targets. Although R50 detector is robust in handling variations
in BBox scale, it is insufficient to cope with rapid scale change resulting from the zoom.
In this chapter, we proposed an adaptive zoom control scheme that not only assists the
operator during load lifting but also improves the accuracy of the detection network. The
proposed adaptive zoom control incorporates the requirements of the detector to achieve a
smooth zoom operation and track the optimum object size.

6.1 Adaptive Zoom Camera and Its Applications
A zoom camera offers the flexibility to change focal lengths in a single lens. The zoom
level corresponds to the value of focal length. Zoom camera is used in a wide range of
applications. In Human-robot Interaction (HRI), Atienza and Zelinsky [233] implemented
an active stereo zoom camera for optimal gaze tracking. The face is first detected using
a skin color feature and later the gaze. The quality of the gaze is based on the image
resolution of the face. To keep face image resolution high, the zoom is automatically
adjusted based on the distance between the head and the camera. For zoom camera
calibration, the authors indicated that it was more challenging relative to a static camera
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(a) (b) (c)

Figure 6.1: Diffent camera lens types. (a) Fixed lens camera. [231]. (b) (Motorized) Varifocal
Lenses and (c) PTZ camera [232]© IEEE 2016.

because there is a large number of possibilities of lens settings. Similarly, Zheng et al. [234]
employed a camera with zoom and focus control in guiding robot motion. The authors
demonstrated that changing zoom and focus improves the accuracy of positioning the
robot end effector to grab an object. Moreover, they also suggested using a zoom camera
instead of a classic stereo camera or multiple viewpoints from several cameras.
In the construction domain, Azar [235] improved construction equipment detection for
an automated monitoring system for productivity. The aim of the zoom function in this
study is to both obtain a suitable resolution and have a wide Angle of View (AOV) to
monitor the overall construction area. An construction equipment is detected via visual
marker i.e., AprilTag [236]. The author proposed an automated zoom control algorithm
to have reliable detection. The active zoom control maintains the minimum tag pixel
resolution [237]. The zoom function of the crane load-view camera is necessary for the
crane operator. Depending on the load size, the operator zooms in or out to observe
the distance between load and workers including obstruction not to hit them. Vierling
et al. [238] proposed an automatic zoom load-view camera based on the working zone
and load occlusion. The authors trained the CNN with the load-view images and several
zoom levels, which then results in the optimal zoom level for the operator. Li et al. [130]
increased the precision in tracking tower crane hook during hoisting to avoid blind lifting.
To capture the hook movement, the author used the PTZ surveillance camera to detect
the hoist cable instead. The cable provides better and stable features than the hook
since linear cable shape can be consistently detected as it always points downward and is
vertically aligned. The adaptive zoom is used to maintain the hook size on the monitor.
The hook is recognized by the color histogram of the warning stripes on the hook e.g.,
yellow, black and red. The zoom is adapted based on the defined pixel distance of the
hook which is recognized and maintained to appear between 0.125 and 0.1 of the full image
width in pixel.
Zoom control is a critical subject. One major problem with all the studies reviewed is that
they fail to take zoom control performance into account. To zoom to a certain condition
e.g., the defined specific pixel size requires stable zoom control to maintain the state.
The closed-loop zoom control is highly sensitive to the performance of its vision-based
perception system. Imperfections in the sensor system result in oscillations in the control
loop. For example, jittery target detection introduces a nonlinear effect on the control
loop which induces abrupt zoom or undesirable oscillations.
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Figure 6.2: Accessible zoom signals. The yellow arrow denotes the sensor signal, while the red
arrow denotes the control signal. Ozi, Ozo are zoom in and zoom out control commands.

6.2 Implementation of Zoom Control
In this section, the control interface of zoom camera MC5200 is introduced. This camera
is developed by Motec and is deployed on the crane for experimentation. The camera
monitor system consists of two main components i.e., the camera and the control unit. The
communication between the camera and the control unit is via CAN bus protocol [206].
All inputs and outputs are connected to the control unit. The control can be executed
manually by either the remote controller or sending the control command via CAN bus
protocol. The accessible signal are listed in Fig. 6.2. Due to the product confidentiality,
we have partial access to the camera which are 2D streaming video, basic controller
function i.e., Zoom in (Ozi) and Zoom out (Ozo) which make the objects inside the image
becomes larger and smaller, respectively. Therefore, the desired zoom level can not be
precisely adjusted, and we can only control the direction of the zoom by issuing Ozi or
Ozo commands to zoom in or zoom out respectively. When the camera receives the CAN
message, a step-motor drives the lens forward or backward. Unfortunately, the amount of
change in focal length is nondeterministic, and hence zoom level is not available. However,
the zoom speed can be adjusted by the time interval T between two CAN messages.
To test the zoom speed control, a fiducial marker is positioned in the distance of 20 m
from the camera. The workflow of the test can be found in Fig. 6.3. First, the camera
is initialized to maximum zoom out. We counted the number of pulses that are sent
to the camera by a parameter called zoom step count or zoom step (Zi). At the start
Zi “ 0 which means no zoom. The zoom pulse interval T is initialized at 50 ms. In other
words, the zoom control command is sent to the control unit every 50 ms. Our Hardware
Abstraction Layer (HAL) of the camera in Finroc started to generate the zoom in pulse
command until the camera reaches the maximum zoom in. Afterwards, we calculated
downward turn by zooming out. Likewise, the zoom step is decreasing while the camera is
zooming out with the same value of zoom interval T . During the test, the zoom level is
measured by the size of the fiducial marker. Fig. 6.4 illustrated the relationship between
zoom level and zoom step count Zi for a variety of intervals. The zoom speed is the slope
of the lines in Fig. 6.4. For T ă“100 ms, the zoom speed is almost constant, indeed zoom
commands are sent faster than the response time of the zoom motor. Therefore the zoom
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Figure 6.3: Workflow for zoom pulse control command test.
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Figure 6.4: Zoom step count Zi vs time. Each legend represents period T or zoom interval.
The zoom level is measured by fiducial marker in placed at 20 m from the camera.

level is not controllable and the camera reaches rapidly to the digital zoom zone i.e., zoom
level higher than 500. This indicates that the consistent zoom interval in the range of
300´ 1000 ms yields a controllable zoom speed. The highest zoom speed can be reached
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at T “300 ms and by increasing T the zoom speed linearly decreases.

Despite the lack of access to absolute zoom level, in this section, we devised a method to
control the zoom speed of the camera by using the zoom interval parameter T . Additionally,
the zoom count parameter Zi also provides an approximate zoom level. These two
parameters will be used as camera inputs in our proposed method for autonomous zoom
control.

6.3 Worker Localization in Camera Coordinate
The zoom level of the camera can be used to localize the target with respect to the camera.
This section provides the mathematical calculations to exploit the localization advantage
of the zoom camera. Knowing the size of the target, it will be shown that it is possible to
estimate the position of the person with respect to camera and load. This information is
crucial to assess if the detected worker is inside the safety zone.

The location of the worker Pc in the camera coordinate Oc (3D) is estimated, given the
location of the worker in pixel coordinate Op (2D). This can be used can a piece of base
information for further applications which can be developed as future works. For instance,
the speed of the workers around the crane moving from one point to another can be
further calculated from their position and time difference. Consequently, we can assess
the accident risk of the workers. If the workers travel toward the crane very fast or come
nearby the load falling zone, there is a high possibility that the worker can get an accident.
The safety assistance system can warn the operator in advance when the worker who is
coming fast, is still far away.

To determine the object size in the world units or the camera’s location in the scene, it
requires the parameters of a lens and image sensor of the camera itself. Camera calibration
is the process to estimate the parameters such as intrinsic parameter K, scale factor s, focal
length f , and extrinsic parameter. The pinhole camera model [239] depicted in Fig. 6.5 is
employed in this work. The model maps an object in the 3D world scene onto the image
plane. The mathematical model which describes how a point in a 3D scene gets projected
into 2D pixel coordinates is called forward projection. In contrast, backward projection
model maps a point in pixel cooridates back to the 3D world coordinates as depicted in
the diagram in Fig. 6.5 and Table 6.1. The pinhole camera matrix comprises two matrices
i.e., the extrinsic and intrinsic matrix. The extrinsic matrix represents the location of the
camera in the 3D world and which angle it is pointing. It has two components, namely a
rotation matrix cRw and a translation vector cTw. On the other hand, the intrinsic matrix
in Eq. 6.1 represents the focal length and the principal point of the camera. The following
value in matrix K belongs to the camera MC5200 calibrated at maximum zoom.

K “

»

–

fx ε cx
0 fy cy
0 0 1

fi

fl “

»

–

820.30 ´1.9201 352.79
0 890.40 306.64
0 0 1

fi

fl (6.1)

where ε is skew coefficient. pcx, cyq is the principal point or optical center in pixels. K3ˆ3
is the camera intrinsic matrix. pfx, fyq is the focal length in pixels. It is the distance from
the center of the lens to the principal foci (or focal points) of the lens.
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Figure 6.5: Pinhole camera model. Pc is the location of a worker in the world coordinate.

Table 6.1: Camera projection. The right arrow denotes the forward projection, while the left
arrow denotes the backward projection. A is rigid transformation matrix. 4P‘ defines as a point
P in coordinate ‘, O‘ with respect to coordinate 4, O4.

Backward projection wAc
cAi

iAp
World Ô Camera Ô Image (Film) Ô Pixel

Forward projection cAw
iAc

pAi
Dimension 3D 3D 2D 2D
Coordinates (Origin) OW OC OI OP

Point wPw “

»

–

xw
yw
yw

fi

fl

cPc “

»

–

xc
yc
zc

fi

fl

cPi “

„

xi
yi



cPp “

„

xp
yp



6.3.1 Camera Projection

As there is no genuine zoom step returned from the original image sensor, the focal length
f could not be achieved accurately. Nevertheless, we attempted to examine under the
condition of available interface which is in the case of zoom out max or no zoom (i.e.,
no focal length changed). First, the camera matrix was obtained by using the standard
Open source computer vision (OpenCV)1 library. The checkerboard pattern was used as
a reference during the calibration process. The nomenclature list for MC5200 camera
calibration paramether can be found in Table 6.2. Given a point in a pixel coordinate
pPw, the location of a worker Pc in the world coordinate or wPw can be derived through
the following steps. A position of a worker in pixel coordinate pPw can be obtained from
any top view worker detectors, assuming all workers stand on the same flat ground plane.

1OpenCV – v3.4.5
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Table 6.2: Nomenclature for MC5200 camera calibration.

Symbol Definition Value

K intrinsic matrix

»

–

820.30 ´1.9201 352.79
0 890.40 306.64
0 0 1

fi

fl

pfx, fyq focal length (pixels) p820.30, 890.40q
pcx, cyq principal point (pixels) p352.79, 306.64q
ε skew coefficient ´1.9201
4P‘ a point P in coordinate ‘, O‘ with respect to coordinate 4, O4 -
cRw Rotation matrix from Ow to Oc I3ˆ3
cTw Translation vector from Ow to Oc 04ˆ1

Figure 6.6: Camera projection from top view. dw is a person’s shoulder width whose default
value is an avarage men’s shoulder width (i.e., 40 cm). dp is a diameter of the detected person
BBox resulted from top view worker detector in pixels. f is focal length. zc is the distance
between the camera and the head of the person.

In particular, the point pxp, ypq is located at a center point of each detected BBox. For
simplicity, we started with the forward projection equation.

pPw “ KpcRw
wPw `

cTwq

K´1pPw “
cRw

wPw `
cTw

K´1pPw ´
cTw “

cRw
wPw

cR´1
w pK

´1pPw ´
cTwq “

wPw
wPw “

cRT
wpK

´1pPw ´
cTwq; cR´1

w “
cRT

w,
∣∣∣cRw

∣∣∣ “ 1

“
cRT

wpK
´1

¨

˝s

»

–

xp
yp
1

fi

fl

˛

‚´
cTwq

(6.2)
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Assume the world coordinates is the same as camera coordinates i.e., Ow “ Oc. Therefore,
there is no cRw and cTw (i.e. cRw “ I3ˆ3 and cTw “ 04ˆ1 ), we then get

wPw “ K´1
ps ¨ pPwq (6.3)

Regarding to Eq. 6.3, it is impossible to find wPw, given pPw and K because s is unknown.
s depends on the object size in the real world. For instance, two identical objects are
located in front of a fixed position camera at a different distance. The s value of the closer
object to the camera is smaller than the s value of the farther object. To bypass finding s,
there is another approach. By incorporating the average men’s shoulder width referred as
the object size in the real world dw, we can estimate the scale factor s as long as the focal
length does not change. Hence, the scale factor can be derived via similar triangles rule,
see Fig. 6.6.

dp
f
“
dw
zc

; zc “ s (6.4)

The test was executed both in the simulation platform and the real world. The result of the
backward projection is illustrated in Fig. 6.7. The load falling zone can be parameterized
by setting the radius shown in the red circle which means there are workers inside the fall
zone. The fall zone is typically projected out further the suspended load. The calculation
of the fall zone is beyond the scope of this thesis. In general, it is estimated based on the
swing radius and the direction where the load move.

6.4 Proposed Approach

In this section, we proposed an adaptive zoom control method to eliminate the retraining
and data augmentation process in object detection using DL algorithm, and meanwhile
increase the situational awareness of a crane operator.

The data-driven method mandates a large amount of training data to reach high accuracy.
Detecting objects from a load-view crane camera is challenging especially in the construction
area. The object appears in wide-ranging size and appearance. During lifting, the distance
between the load-view camera and the ground is dynamically changing because the boom
arm can be lowered or extended. Hence, the detected objects appear differently—small,
medium or large2 [212]. Additionally, the background is full of features that can be easily
misclassified as a worker. On the other hand, recording data from the crane for training
data-driven detector is expensive and effort demanding such as crane rental, (un)mounting
sensor on the huge machine, and data annotation.

The image sensor in this work is a Motec MC5200 crane motor zoom camera mounted at
the boom tip of the mobile crane with a pendulum bracket, see Fig. 3.1. The original video
output is analog which contains an interlaced display. It results in a partially interlaced
image after digitalization. As mentioned in Sec. 4.5, the camera can do basic controller
function by sending the output control command, Zoom in (Ozi) and Zoom out (Ozo)
which make the objects inside the image becomes larger and smaller, respectively.
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(a)

(b)

Figure 6.7: Worker localization without zoom using 3D backward projection. The estimated
worker’s shoulder width = 40 cm. The load falling zone can be parameterized shown in red circle
with 2.5 m radius.
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Figure 6.8: The sketches illustrate two scenarios of the proposed FSM, target size preservation
(left) and target area preservation (right). R` is the outer region filled with a dot pattern. R´ is
the inner region filled with upward diagonals. Rc is the center region. Rt is the overall detected
region which is shown in translucent. On the left figure, the green translucent region Rt identifies
the satisfied constraints of size including the borders which show in black. On the other hand,
the right figure depicts the violated case of both size and region which are identified by the red
translucent rectangle and red border. di is a bounding box diagonal of target xi in pixel.
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Figure 6.9: Zoom controller manager architechture in Finroc.

6.5 System Architecture
In our system modules, there are two main components, namely perception, and control,
see Fig. 6.9. First, the perception part is an object detector. In a real-world application, a

2small (BBox< 32ˆ 32 px), medium (32ˆ 32 px < BBox < 96ˆ 96 px) and large(BBox > 96ˆ 96
px). BBox stands for bounding box.
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Figure 6.10: Dataflow of the adaptive zoom control architecture.

worker detection using deep learning approach, whereas AprilTag detector, which is adopted
from [236] used to evaluate our proposed zoom control method. In this chapter, only the
adaptive zoom control method including its verification will be discussed. The application
of the adaptive zoom control to the worker detection will be later presented in Sec. 7.2
as a comprehensive experiment. Second, the control regulates the zoom level to satisfy
the defined constraints. We applied a finite state machine (FSM) for control strategies
to generate Ozi and Ozo pulse command as the output from our ZoomController by
incrementally increase or decrease, respectively. The detail of the control logic will be
further discussed in Sec. 6.6. The system data flow is shown in Fig. 6.10. The load-view
crane camera feeds image frames to the detector. The detector processes the image and
subsequently passes the recognized bounding boxes (BBoxes) to ZoomController. Finally,
the controller generates the zoom command based on the observation back to the camera
to adjust the zoom level.

AprilTag Detector : The incoming sensor data, like the worker detector, can be inconsis-
tent. It can cause difficulty to assess the zoom control logic. To decouple the control part
from the perception, we then verified our control using AprilTag. The AprilTag detector
is used as a reference of sensor data. This fiducial marker detector provides relatively
more reliable and consistent sensor data. In other words, using the visual fiducial marker
creates more measurable and controllable experiments[236]. Additionally, the output from
both detectors, which is BBoxes, is comparable.

6.6 Zoom Controller
The proposed solution exploits the zoom function of the standard crane camera to keep
the quality of the detector instead of parameter tuning and retraining the DL network.
The principle idea of the method is to maintain the BBox size of all target instances while
keeping them in the image frame as long as possible. In particular, the zoom method
preserves the targets in the image frame not to let them out of the camera FOV. The
regions, R˘, Rc are additionally defined to restrict targets by two frame offsets ∆R˘, shown
in Fig. 6.8. Each offset is equally positioned in both x- and y-axis. The outer region R` is
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a prohibited zone, where any target should not be inside. R´ is an inner region while Rc

is a center region.
The zoom control logic in ZoomController is mathematically modeled in the Mealy FSM,
see Fig. 6.11. The nomenclature of the zoom control is described in Table 6.3. The FSM
is defined using a 6-tuple (S, S0,Σ,Λ, T,G) as the following.

• A finite set of all states S “ tSE, STA, STDu

• An initial or reset state S0 “ SE

• A set of inputs Σ “ tN,D,Au

• A set of outputs Λ “ tOzi, Ozou

• Transition function T : S ˆ Σ Ñ S

• Output function G : S ˆ Σ Ñ Λ

• A set of parameters Π “ tDD ˘∆D, α, R˘, Rcu.

Table 6.3: Nomenclature for zoom controller.

Symbol Definition Value
Input
A Moving average Rt -
di Bounding box diagonal of target xi (pixel), see Fig. 6.8 -
DSD Standard deviation of Dt (pixel) -
Dt Instant average diagonal of all targets (pixel) -
D Moving average of Dt (pixel) -
I Image frame -
N Instant target number -
N Moving average of N -
PX , PY A set of instant target BBox coordinates in x- and y-axis -
Rt Instant overall detected region, see Fig. 6.8 -
Xt A set of detected targets at time t -
Output
Ozi, Ozo Input zoom control command in and out -
Zt Instant zoom level [0, Zci,max]
Parameters
DD Desired BBox diagonal (pixel) 60
R˘ Outer and inner region, see Fig. 6.8 -
Rc Center region, see Fig. 6.8 -
α Moving average window size 5
∆D Range of the desired BBox diagonal DD (pixel) 10
∆R`,T ,∆R´,T Image frame offset of R` and R´ for tag detector (5,35)
∆R`,W ,∆R´,W Image frame offset of R` and R´ for worker detector (45,75)

The inputs of FSM are obtained by preprocessing the raw data Xt. The component of a
detected target BBox consists of top left box xtl, ytl, w, and h in an image coordinate. In
addition to the set of inputs Σ, we have a set of parameters Π. The values of Π are chosen
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Figure 6.11: Mealy finite state machine diagram of the ZoomController logic. < is a reset
signal.

by trial and error experiments. The moving average (MA) is applied to the input data as
a noise filter.
The set of states S “ tSE, STA, STDu is designed to associate to three following scenarios,
namely target loss, target area preservation and target size preservation, respectively.
Fig. 6.8 depicts the last two scenarios. The pseudocode of the method is described in
Alg. 6.1. We manipulate the zoom control by zoom level and perception. Zoom level Z
ideally represents how much the camera lens has move based on the zoom pulse command
as there is no original zoom control access. The following presents the definition of state
machine in Fig. 6.11 including the transition T and output G function.

• State Explore SE - This state corresponds to target loss case (T,G:SearchTarget).
When there is no target or the detector is unable to recognize the target, the camera
should explore or search for the target(s) by zooming in or out. The scenarios is
depicted in Fig. 6.8 on the left. The state machine is initiated or reset to this state.
The zoom level Z of the camera must be set first at the zoom out max (Z0 “ 0).
Then the camera starts to search for targets until the target appears in the image
frame or the detector is able to recognize it, which implies N ą 0. The searching
procedure is carried out by zooming in (Ozi: Zt`1 “ Zt ` 1) until the camera reaches
maximum zoom in (Zt “ Zci,max) then it starts to zoom out (Ozo: Zt`1 “ Zt ´ 1).
The procedure repeats until a reliable target is found. In this case, the next state
goes to STA to further observe the overall target area.

• State TrackArea STA - This state corresponds to target area preservation case which
the overall target area is assured in the center area (T,G:AdjustRegion). Any
target steps into the region R`, the camera should adjust the zoom level to keep the
target inside at least in the inner region R´ or the center region Rc as long as it is
not beyond the camera FOV limit, see Fig. 6.8 on the right. In other words, if A
intersects R`, the camera zooms out until A intersects R´ or A does not anymore
overlap with R`. When the area criterion is satisfied, the next state goes to STD.

• State TrackDiagonal STD - This state corresponds to target size preservation case
(T,G:AdjustDiag). The camera should adapt the zoom level to keep the average
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diagonal value of overall detected objects D to the ideal diagonal DD which is
suitable to the selected DL detector. In particular, this condition pDD ´ ∆Dq ď

D ď pDD `∆Dq should be satisfied. When the D is lower than the desired diagonal
range, the camera zooms in to observe the targets closer, and vice versa. Unless the
overall detected area A complies, the next state goes back to STA because the area
criterion has higher priority than the diagonal one.

6.7 Zoom Controller Verification

Figure 6.12: Zoom verification setup on the hallway.

This section presents the verification of the zoom controller using AprilTag as a reference
target to evaluate the controller function. The AprilTag family is 36h11 with the size
of 16ˆ16 cm. The test was set up in a hallway. Both camera and the tag were placed
on the same ground plane. The maximum distance from the camera to the corridor end
was 20.3 meters as depicted in Fig. 6.12. During the experiment, only the tag was moved
farther away or nearer to the camera. The DD is primarily set to 60 with its offset ∆D of
10 pixels. The graph in Fig. 6.13 shows how the zoom level Z adapted to the target. In
each image frame, the dashed line locates in between the region R` and the region R´,
while the dotted line divides between the region R´ and the region Rc. The further detail
of the substate of FSM can be found in Appendix D.

At t1, both D and Zt are zero because no tag was found. Therefore, the FSM started to
search for the target by Ozi. Despite the tag was found at t2, the FSM continued to zoom
in because D remained lower than the floor of DD. At t3, Zt started to be steady as it
met the diagonal criterion. At t4, DD was later manually increased, thus the zoom control
started to zoom in and D was then back again in range at t5.

From t6 to t7, Zt slightly depreciated because ZoomController tried to maintain the size
by Ozo as the tag was moved toward the camera which caused D became larger and
accordingly exceeded DD `∆D.
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𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11

Figure 6.13: ZoomController verification using AprilTag. The dashed line locates in between
the region R` and the region R´, while the dotted line divides between the region R´ and the
region Rc. The translucency on the tag identifies the size violation. The green tag at t3,5,7,11
means D are in target range, pDD´∆Dq ă D ă pDD`∆Dq. The yellow tag at t2,4,10 means it is
below the range, D ă pDD´∆Dq. The red tag at t6,9 means it is over the range, D ą pDD`∆Dq.
The red border at t9 identifies the area violation i.e., A overlaps with R`. The complete state of
tag detection and camera state can be further found in Fig. D.1 and D.2.

Between t8 and t9, the tag was removed out of the camera FOV. For this reason, ZoomCon-
troller went to the explored state SE. At t9, D suddenly soared up during the searching
because the tag immediately appeared with violated D and A where the tag was colored
in translucent red and the borders visualized in red, respectively.
At t10, The zoom level Zt gradually rose because the tag is moved away from the camera.
D became lower than the desired range where the tag was colored in translucent yellow.
ZoomController simultaneously tried to handle until the tag is back in the DD range at
t11.
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Algorithm 6.1: Adaptive zoom control algorithm
Input: Σ, I
Output: Λ “ tOzi, Ozo}
Parameters : Π “ tDD ˘∆D, α,R˘, Rcu

1 Initialization;
2 Z0 :“ 0;
3 S :“ S0;
4 while true do
5 Xt :“ DetectTarget(I);
6 N :“ ntXtu;
7 N0 :“ pN ““ 0q;
8 Rt :“ BBoxpmin PX ,min PY , w, hq;
9 di :“

a

w2
i ` h

2
i ;

10 Dt :“
řN
i“1 di
N ;

11 A :“ 1
α´1

řα
i“1Ri :“ R1`R2`¨¨¨`Rα´i

α ;
12 D :“ 1

α´1
řα
i“1 di :“ d1`d2`¨¨¨`dα´i

α ;
13 if N0 then
14 S :“ SE ;
15 SearchTarget(S,N);
16 else
17 if A is violated then
18 S :“ STA;
19 AdjustRegion(S,R˘, Rc, Rt, N);
20 else
21 if D is violated then
22 S :“ STD;
23 AdjustDiag(S,DD ˘∆D, D,N);
24 end
25 end
26 end
27 end



7. Comprehensive Experiment

Top view object detection using Deep Learning (DL) algorithms is able to solve complex
problems or find the features which are complicated and hard even for a human to
recognize. To derive the optimal outcome, the number of training datasets is of great
importance. To recap, Chapter 4 presents the crane hardware setup and how to transform
the real-world scenario into the virtual world to collect and augment data. The simulation
platform does not only support concurrent research development but also remedies the
data deficit in load-view object detection using deep learning methods. In addition to
the dataset generation and simulation platform, the experimental results confirm that
using preprocessed synthetic to train the data-driven detection method give clearly better
Average Precision (AP) than using the raw one.
As can be seen in Chapter 5, the primary problem with the top view detection is scale
variation. Despite less occlusion compared to the frontal view, the viewpoint of the object
is changed and the target size becomes very small which make it more difficult for detectors
to recognize, also for the human because of the small size and less information—only a
head and a shoulder of a person can be seen from the top view. Furthermore, the size
can be changed in different altitudes by either crane boom arm or zoom camera level.
Although there are many deep learning object detection studies, the research in detecting
objects from top view or aerial images remains limited, particularly in the construction
domain. The applications using top view images include surveillance, traffic, inspection,
and construction. The image sensor can be installed on Unmanned Aerial Vehicle (UAV),
buildings, or large machines such as a mobile crane. To address the problem, there is great
effort to augment training small-object size datasets for training to yield better accuracy
of the data-driven methods [240]. However, there is room for improvement. Although
using synthetic data helps the detectors, the detector remains intolerant to rapid change
in object size due to altitude variation. In the mentioned chapter, the final network,
RetinaNet-Resnet50 (R50), is selected based on speed over accuracy criteria, after the
extensive data inspection.
In Chapter 6, we investigated the zoom crane camera and proposed the zoom controller
method to tackle the scale variant issue in object detection using adaptive zoom. The
method is able to support object detection by smoothly adjusting the zoom level to address
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Figure 7.1: This figure mainly focuses on the content of Chapter 7. This chapter presents the
integration of all proposed component from the previous chapters as a comprehensive experiment
to improve the top view deep learning using the adaptive zoom camera. The contributions lie
into three main parts i.e., dataset generation, load-view worker detection, and adaptive zoom
control, also listed in Fig. 3.3. They are referred as blue column, green column, and red column,
respectively. The upper horizontal band part, namely Chapter 4, Chapter 5, and Chapter 6,
recaps individual component contributed. On the other hand, the lower horizontal part is the
integration of all proposed component at the upper part and presented in this chapter.

the problem of inconsistent detected object size. Zoom camera is widely used in many
applications such as construction sites or surveillance. The zoom feature is used to retain
the image quality in a wide field of view or provide a close-up view for better recognition.
For example, the zoom camera can enhance the load view for the crane operator to observe
the safety proximity surrounding the load during the lift operation. The surveillance zoom
camera can track the movement of suspects and zoom in to their faces for accurate facial
recognition [241]. Nevertheless, it is crucial to control the zoom level automatically because
it requires stable zoom control to hold each zoom constraint. In general, it is challenging to
adjust the zoom level smoothly, given the noisy sensor data. Moreover, zoom control has
rarely been studied directly. The research is mainly focused on adaptive zoom conditions
rather than how to implement an effective zoom control. In other words, the previous
studies[130, 238] do not provide evidence on how to conduct the zoom control to reach the
desired zoom level, but only zoom constraints. For instance, the authors in [130] merely
mentioned that the camera is zoomed to hold a defined pixel range. However, there are
many factors that should be considered such as inconsistent detection, zoom speed, which
can cause zoom oscillation.

The overview of Chapter 7 is illustrated at the bottom horizontal band in Fig. 7.1. In this
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Figure 7.2: Workflow for the final network model test is shown in red frame. It extended from
the workflow in Fig. 5.2. After the network was chosen in Sec. 5.4.2, the improvement of the
network with larger data training was carried out. Once it was done, the final detector was then
deployed on Finroc robotic framework under the mobile platform.

chapter, we eventually integrate all proposed components from the previous chapters as a
comprehensive experiment in order to improve the top view deep learning object detection
using the adaptive zoom camera.

In Chapter 5, we have already selected the network model RetinaNet-Resnet50 which
will be further evaluated in Sec. 7.1 with much larger amount of dataset. Then, the
Bounding Box (BBox) output from the RetinaNet-Resnet50 instead of AprilTag detector
is forwarded to the zoom controller. The analysis of the zoom camera including the proof
of the adaptive zoom control is already presented and verified as demonstrated in Sec. 6.7.
To our knowledge, no prior studies have examined zoom function on the mobile crane to
improve worker detection for safety monitoring. The application of the zoom controller
logic for the top view worker detection is presented in Sec. 7.2.

7.1 Final Network Model Test
According to the network selection procedure in Sec. 5.4.2, the RetinaNet model was chosen
for the final test. The selected R50 network model henceforth will be called R50-final.

Using the full dataset to train three networks would elongate the selection process which
would hinder the speed of development of the project. Hence only the available limited-data
was used during the network selection process presented in Chapter 5. The comprehensive
dataset that will be used in this chapter is the result of data collection and annotation
that has been gradually performed in the duration of four-year study.

The workflow of this section is presented in Fig. 7.2. The comprehensive training data
contains both real-world dataset (i.e., IR ={R00-S-C2, . . . ,R03-K-N1}) and synthetic
dataset (i.e., IU = {U00-S-C0, . . . ,U11-S-C4}) which were documented in Chapter 4.

In regard to using synthetic and real data for training, the study in [242] has shown that
the combination between the rendered images and the real images outperformed training
either real or synthetic data alone. The authors [242] assessed the quality of the rendered
images if it is beneficial to the car viewpoint classification task. In addition, there are
several factors involved such as rendering quality and size of the training set.
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Our synthetic datasets is blurred (pre-processed) in the same manner that had been
done in Sec. 4.12.2. The averaging filter made our synthetic data look comparable to
the real crane dataset. The investigation of synthetic data in Sec. 4.12.2 proved that the
preprocessed synthetic data yields better training results than the original image. As can
be seen, applying the basic image filtering method on the synthetic data could enhance
the accuracy. The supporting evidence is futher discussed in Sec. 4.11. In addition to the
real crane data, the drone VCI public datasets were included. As described in Sec. 4.7.3,
VCI-CITR and VCI-DUT shared the similar view as the load-view crane camera. The
camera of these VCI datasets was always looking downward. The summary of the data,
which is used to train and test, is shown in Fig. 7.3. Around 85% of all data came from
the real world, while the rest were generated from Unreal Engine (UE).
The network configuration of R50-final were identical as in the selection procedure (see
Table 5.3). Regarding the training results, we further brought up part of training sequences
to discuss. The training results including the frame rate of each sequence are listed in
Table 7.1. R50-final also performed well in the sequences where the workers were distinct
from the background namely, R00-S-C2 and R01-S-C2. Despite having many training
samples of R02-S-C2, the sequence is challenging for the detector, since the distance
between workers and the camera is very high. Consequently, workers became very small
and are nearly blended into the surface background because of the similar colors. For
synthetic data, the R50-final detector obtained a moderate accuracy result.

For testing, there were three standard scenarios —a sequence from the university building
(R06-K-N2) and two sequences from Steil (R10-S-C2, R16-S-CX).
In addition to the test result of R50-final, we reported the evaluation of two UAV Single Shot
MultiBox Detector (SSD)-based detectors i.e., SSD-OkuPed [102] and SSD-IntelUav [243]
as baseline. To the best of the author’s knowledge, it is very hard to find a comparable
trained model for top view object detection. Most studies merely presented the result of

Figure 7.3: Data statistic of R50-final.
The data consists of real and synthetic
data which are collected from the camera
mounted either on crane (orange) or on the
building (blue).

Figure 7.4: Training data set distribution
of SSD-IntelUav. The training data con-
tains 1312 color images. The seven object
class consists of person(yellow), train(black),
tree(green), truck(blue), boat(light blue),
bus(orange), and car(grey). [243].
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Table 7.1: Result of R50-final training sequences.

#sample AP FPS
R00-S-C2 2139 76.68 5.12
R01-S-C2 592 90.91 5.57
R02-S-C2 22138 48.44 6.91
U02-S-C2 1636 43.38 4.50

the standard UAV dataset without publishing their trained models. Fortunately, we found
these two SSD detectors which were relatively close to our application.
List of all detectors applied in testing can be found in Table 7.2. As discussed in Sec. 2.2.2,
SSD-OkuPed is the person detector from UAV which was trained by the public dataset,
Okutama. It was trained for 20k iterations with a learning rate of 1e´ 4. On the other
hand, SSD-IntelUav was the object detector on drone video from Intel®. The authors [243]
described the chosen dataset for training consisting of 30 real-time aerial videos in seven
classes, shown in Fig. 7.4. More than 50% of the dataset are object class car. The
second-largest occupied object class is person. The amount of object class tree and truck
are relatively same. The rest, which is bus, boat, train, take up small numbers. The
training dataset contains 1312 color images. Nevertheless, the paper made no attempt
to publish the dataset. The network base architecture of both SSD is VGG16 with the
pre-trained data Microsoft Common Objects in COntext (MS COCO). The only difference
between the two SSDs is input image size. The input image of SSD-OkuPed and SSD-
IntelUav is 512ˆ512 and 300ˆ300 respectively. SSD512 provides better resolution and is
more accurate than SSD300 [96].

Table 7.2: List of detectors for the test set comparison.

Detector Base network Pretrained data Train data (FineTune) Test data

R50-final ResNet50 MS COCO • VCI-CITR, VCI-DUT
• R00-S-C2, . . . ,R03-K-N1
• U00-S-C0, . . . ,U05-C-N2, U10-

S-C4, U11-S-C4
SSD-OkuPed [102] SSD512VGG16 MS COCO Okutama
SSD-IntelUav [243] SSD300VGG16 MS COCO 30 real-time drone videos

• R06-K-N2
• R10-S-C2
• R16-S-CX

7.1.1 Results
AP in Table 7.3 can be achieved by the approximation of area under Precision-Recall (PR)
curve. PR curves of each test sequences including the overall AP can be found in Fig. 7.5.
The overall AP measures the accuracy of the detectors on all test sequences. The results
of the three detectors will be reported in dataset order. In general, our R50-final was the
one that obtained the most robust results with AP of 41.18. Despite the inferior AP, the
result was directly in line with the previous studies of top view evaluation benchmark
mentioned in Sec. 3.1 in which the best AP of object detection challenges on aerial images
is approximately 30 percent. The Precision-Recall (PR) curve in Fig. 7.5e presented
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Table 7.3: Result of AP on test sequences.

Detector R06-K-N2 R10-S-C2 R16-S-CX Overall APAP FPS AP FPS AP FPS
R50-final 70.48 6.58 68.53 6.50 17.91 6.35 41.18
SSD-OkuPed 54.01 6.29 29.48 6.28 23.03 6.30 33.35
SSD-IntelUav 24.88 6.15 9.09 6.17 «0 6.19 9.09

overall outcome of the four different scenarios for all detectors. R50-final gained the best
recall. In other words, the detector returned most of the relevant results (whether or
not irrelevant ones were also returned). At the same time, SSD-OkuPed had the same
PR curve pattern, but with less recall, that is to say, it produced less false positive than
R50-final. SSD-IntelUav outputed many oversized BBoxes and tended to fail with small
object. Alternatively, it could presumably mean that the object size in train data of the
unpublished video sequences were bigger than the average object size in our application.
Challenging Dataset: Besides the three test dataset, we assessed the detector with
the challenging sequence, R14-K-N2, which imitates typical construction scenario. The
sequence includes construction tools of different sizes separated everywhere in the parking
lot. The dataset is recorded on the bright sunny day. As the result, it causes shadow both
on objects and persons. Moreover, construction activity such as throwing objects from
one person to another is performed.
The snapshot of evaluation of all detectors can be found in Fig. 7.8. This test sequence
appears as one of the tough challenging datasets, although it was recorded both without
crane and not at Steil. R50-final results AP of 1.43, while the AP SSD-OkuPed and SSD-
IntelUav approximate to zero. Throughout the sequence, it was occupied with construction
equipment. The objects and workers have either short or long shadows under the harsh
sunlight. In this scenario, all detectors basically misperformed. Instead, they recognized
all construction resources and their shadows such as a cable reel, barrier, wheelbarrow,
wooden pallet, etc. R50-final arduously localized the objects in spite of the highest AP.
For instance, one of the workers, who stood nearly in the center of the image, threw an
object at another. It caused the shape like another person in opening arm posture as
illustrated in Fig. 7.8a. Unlike R50-final, SSD-OkuPed and SSD-IntelUav had less false
positive errors.
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Figure 7.5: Precision-Recall curves of the experiments. AP in Table 7.3 can be achieved by the
approximation of area under PR curve. The red, green and blue legends are corresponded to
R50-final, SSD-OkuPed, and SSD-IntelUav detector respectively.
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• R06-K-N2—The snapshot of evaluation of all detectors can be found in Fig. 7.6. The
three columns in the figure represent different zoom levels during the data recording.
R50-final was able to detect workers with occasionally false alarms especially on a
stopping sign on the ground, see Fig. 7.6a, 7.6b. SSD-OkuPed accurately detected
objects in closer distance, see Fig. 7.6e. When the zoom level became less, the
false negative error increased because the size of workers became smaller. SSD-
IntelUav obtained not only false negative error, but also false positive. In summary,
R50-final achieved the best Average Precision (AP) out of the three detectors.
Fig. 7.5a indicates that R50-final got the best sensitivity rate and AP.

• R10-S-C2—The snapshot of evaluation of all detectors can be found in Fig. 7.7.
As shown in Fig. 7.5b, R50-final performs well, giving good results by gaining the
highest Area Under Curve (AUC). In contrast to SSD-OkuPed, its training data
did not contain any crane hooks in the background, but the baseball field. As the
result, the detector falsely outputed the crane hook as the worker, see Fig. 7.7d.
SSD-IntelUav failed to detect the workers and consistently missed the workers of
this sequence.

• R16-S-CX—The snapshot of evaluation of all detectors can be found in Fig. 7.9.
Most of them failed to recognize the workers. In this sequence, the construction
activities were imitated. For instance, two workers were rigging the load to the hook
in the second column of Fig. 7.9, while there was a worker lying on his stomach
in the third column. Nonetheless, none of the detectors detected workers during
such activities. Moreover, the sunlight was very strong. The distance between the
camera and the ground was high which is a result of the very small object size.
SSD-OkuPed performed the best for this sequence; however, it failed to detect a
person lying on the ground, which was part of its training set, see Fig. 7.9f. In
comparison to SSD-OkuPed, R50-final obtained the AP in fractional difference.
Similar to other sequences, SSD-IntelUav generally failed.
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(d) (e) (f)

(g) (h) (i)

Figure 7.6: Detection result on the dataset R06-K-N2. The ground truth is shown in black
BBox and the predicted result is shown in non-black BBox. The first row (a-c) are results of
R50-final. The second row (d-f) are the result of SSD-OkuPed. The last row (g-i) are the result
of of SSD-IntelUav. Each column (frame 36, 670, 1368) represents different zoom level.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.7: Detection result on the dataset R10-S-C2. The ground truth is shown in black
BBox and the predicted result is shown in non-black BBox. The first row (a-c) are results of
R50-final. The second row (d-f) are the result of SSD-OkuPed. The last row (g-i) are the result of
of SSD-IntelUav. Three columns represent frame 358, 528, and 590 of the sequence respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.8: Detection result on the dataset R14-K-N2. The ground truth is shown in black
BBox and the predicted result is shown in non-black BBox. The first row (a-c) are results of
R50-final. The second row (d-f) are the result of SSD-OkuPed. The last row (g-i) are the result of
of SSD-IntelUav. Three columns represent frame 120, 259, and 460 of the sequence respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.9: Detection result on the dataset R16-S-CX. The ground truth is shown in black
BBox and the predicted result is shown in non-black BBox. The first row (a-c) are results
of R50-final. The second row (d-f) are the result of SSD-OkuPed. The last row (g-i) are the
result of of SSD-IntelUav. Three columns represent frame 1318, 1384, and 2201 of the sequence
respectively.
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Regarding the speed performance, all three detectors were comparable. By referring our
results to the similar study in operator’s Situational Awareness (SA) [244], we hope to
verify our time performance that it is capable to notify the operator in the real application.
Fang et al. [244] provided the measurement of operator’s SA of the crane assistance system
for the blind-lifting. The system provided 3D environment surroundings, crane motion
using crane camera, Inertial Measurement Unit (IMU), and laser scanner. Given the lifting
task, the crane operator gave an acknowledge when he saw the obstacles and assessed the
proximity during the measurement. The minimum and maximum response time (or time
to acknowledge) were 1.0 and 9.5 seconds respectively, while the average response time
was 4.5 seconds. As can be seen, the study case of this SA measurement is equivalent
to our application as the operator should recognize nearby worker-on-foot during the lift
operation. Consequently, the average response time in our application aligned in the range
of operator response time. In particular, our estimated throughput of detection pipeline
for the operator was 15.71 milliseconds which was around 6 to 60 times faster than the
operator’s response time in [244].

7.2 Top ViewWorker Detection Using Adaptive Zoom
Finally, we demonstrate the practical experiment of the top view worker detection using
adaptive perception. The camera position on the crane is simulated by mounting the
camera from the rooftop of a building. The camera looks down to the parking lot which
has an even surface. The approximate distance from the camera to the ground is 22 meters
which is equivalent to the height of a 6-story building. The DD ˘∆D is initially set to
60˘ 10 pixels. During the experiment, four workers walk into the camera field of view.
In spite of worker safety requirements, the workers do not wear any protective gear or
Personal Protective Equipment (PPE). Most of the traditional detector methods exploited
the PPE appearance to ease the detector which allowed the detector to see the target
better [118]. However, there are many incidents of non-compliant workers violating the
rules [245]. Thus, we have chosen a generic construction environment where there is no
restriction on worker cloth.

7.2.1 Result
The graph in Fig. 7.10 shows how the zoom level Z adapted to the detected workers. The
figure consists of two main parts, which are snapshot image frames and the zoom control
result. In the image section, the 1st and 3rd row of images show the detection result while
the 2nd and 4th row display the same image frame with the result for zoom control logic.
At t1, Zt swiftly increased because the average overall diagonal size D was below the floor
of DD. At t2, Zt is stable because the size preservation was complied.
At t3, the border violation occurred. Two of the workers walked near toward the prohibited
region R`. One worker was toward the top right corner and the other was toward the
bottom of the image frame. Consequently, Zt decreased in between t3 and t4 until the
workers stayed inside the inner region R´. After the area adjustment, the zoom level went
up because of the size violation before t4 where ZoomController reached the stable state
SE. At t5 including the nearby period, the zoom level was gently changed and kept D
in the desired diagonal range because of the size change. Likewise, the border violation
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𝑡1 𝑡2 𝑡3 𝑡4

𝑡5 𝑡6 𝑡7 𝑡8

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8

Figure 7.10: ZoomController experiment with the worker detection from load-view crane
camera. The upper image row of each time point shows the raw data from the detector while the
lower image shows the visualized result from the ZoomController. The red border identified the
area violation which means there is an intersection area between A and R`. The complete state
of box detection and camera state can be further found in Fig. D.3 and D.4.

again happened as the border showed in red at t6. One worker walked toward the top of
the frame. As the result, the camera zoomed out and later Zt became consistent at t7.
At t8, the camera again plunged because the parameter DD was configured to a smaller
value. The further detail of the substate of finite state machine (FSM) can be found in
Appendix D.

In summary, our results demonstrate that adaptive zoom control can improve the quality
of data-driven worker detection. To evaluate the zoom control logic, we replaced the worker
detector with AprilTag detector which provides a reference target. The verification performs
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well, giving the correct result as is defined in the FSM. The zoom level was adjusted
without jitters. The camera first could not detect the target because of the too-small size
object. With adaptive zoom control, the target was able to be recognized from distance.
When comparing AprilTag results to the worker detector, it must be pointed out that there
is a lot of noise from the sensor data. In other words, the RetinaNet could not constantly
detect all four workers despite the MA filter. However, the ZoomController functions
without any zoom oscillations. The controller is able to handle the side effect of the
detector such as miss detection, anomaly, and outlier detection. Furthermore, running DL
detector on less powerful hardware including the video transmission introduced a delay of
approximately two seconds in our experiment. Our proposed method can be adjusted to
this lagging via the parameters Π.
A major source of limitation is the lack of camera sensor that measures the zoom level.
We use an approximate estimation of zoom level Z by incrementing the Z counter up and
down when zooming in/out is executed. Additionally, the crane control information of the
operator e.g., hook length measurement and boom angle would be definitely beneficial to
refine the detector. For instance, the zoom controller can be performed based on hook
cable length in addition to the proposed criteria.

7.3 Discussion
As the final network test, R50-final was intensively trained by real-world datasets and
preprocessed synthetic datasets which were generated from our simulation platform. The
network was evaluated through the four test scenarios, which consisted of many challenging
conditions (e.g., strong sunlight, short and long shadows, construction resources looked
alike worker from the top view.) and actions (e.g., hoisting the load, person lying on
stomach, workers throwing objects to the another). Despite no published pretrained model
for load-view crane object detection in previous studies, we additionally provided the
evaluation results of two aerial SSD detectors (i.e., SSD-OkuPed, SSD-IntelUav) using the
same four scenarios as the reference to our R50.
The final result of the network model test found clear support that R50-final was able
to yield the most robust results with AP of 41.18. Unlike the evaluation of the frontal
view object detection, the best AP of the aerial view evaluation challenges is 30 percent
on average as mentioned in Sec. 3.1. Importantly, it is able to promptly output nearby
workers-on-foot within the range of the crane operator SA response time. From this
standpoint, this result can be considered as the promising one.
Later, we applied the adaptive zoom control of the load-view crane camera for worker
detection. This is an important finding in the understanding of how to handle the zoom
control to reach the zoom criteria. We exploited the zoom mechanism which exists in
typical mobile crane cameras. The proposed method adopts the Mealy FSM to observe and
determine the zoom command which suitable for the given situations, namely target loss,
target area preservation, and target size preservation. The state definition is characterized
by the three scenarios. The evaluation is first verified in Sec. 6.7 by using the reliable and
controllable detector, AprilTag. Our proposed zoom control method is able to smoothly
adapt to the problem of DL object detection, which is inconsistent detection and detecting
small size objects.
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Further studies should investigate sensor fusion with more access to crane information
for zoom control improvement. An additional monocular camera can be installed nearby
the zoom camera. The monocular camera provides overview information to the zoom
camera. Although the zoom camera status is in maximum zoom in, the overview camera
can notify ZoomController of the zoom camera if there is a new incoming target then the
zoom camera can zoom out. Moreover, the position of workers including the velocity in
world coordinate can be estimated by camera projection and object tracking. Hence, the
risk of each worker can be assessed for the operator safety assistance system. For instance,
if the worker walks away from the crane, the risk of the worker getting hit by the crane is
low.
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This thesis aimed to develop top view DNN-based object detection using an active
perception with specialization in construction environment as a vision-based operator
safety assistance. Unreal Engine (UE), the simulation tool, was employed to support not
only the training data shortage, but also as an experimentation platform. The active zoom
feature of the off-the-shelf image sensor was utilized to enhance the quality of recognition
in addition to the data-driven detection method.
Based on the literature surveys in Chapter 2, it can be concluded that detecting objects
from the aerial images is challenging and the research activities in this area, particularly
construction remains far behind, unlike passenger autonomous vehicles. Hence, this thesis
chose to study the crane load-view object detection in construction domain as a use case,
which contains most of the common challenges in other applications such as complex
environment and rapid changes in object scale.
First of all, testing every implementation of algorithms on heavy-duty vehicles is not trivial.
Working with heavy machinery is very dangerous because any small mistakes can lead to
high fatality. It requires a safe, efficient working environment including an experienced
operator.
It is therefore necessary to have the simulation platform for the experimentation in order
to avoid accidents. Furthermore, it enables concurrent development, which allows multiple
researchers simultaneously work on the same or different components independently.
Consequently, the manufacturing costs is lowered while the productivity becomes higher.
By developing the simulation platform in UE, this thesis has shown how flexibility and pho-
torealism in building up the environment in Sec. 4.6. The adaptability of new surrounding,
vehicles, or various weather conditions can be done swiftly.
Conventional object detection methods, which cling to the object appearances or color,
could fail because of Personal Protective Equipment (PPE) noncompliance or dynamic
background. Hence, this work adopted the top view object detection using deep learning
methods to learn hidden patterns in which human may not be able to solve from the
data by themselves. To put it another way, it is difficult for human to determine the key
information of the target image for tackling the top view object detection task.
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To yield the optimal results of the deep learning object detection, it is required to have
massive amounts of data. However, there is a great absence of training data for the deep
learning object detection in previous studies, especially from top view. Collecting data is
laborious process and take a lot effort such as mount and dismount sensors from the huge
industrial machines or finding the large area for evaluation. The data should contain all
environmental conditions and importantly they must be correctly annotated in order not
to mislead the learning algorithms.
As another goal of the proposed simulation platform, this thesis demonstrated how to
exploit the platform to swiftly produce numerous of training data and simultaneously their
groundtruth without any localization error, see Sec. 4.8. Our virtual platform is able to
generate the groundtruth much faster than manual annotation.
By investigating the synthetic data from our proposed simulation platform in Sec. 4.12, we
tested the two following hypotheses. First, the preliminary examination of the pretrained
UAV object detection model with the crane load-view image data shows that the UAV
images and load-view images share basic image features. The result in Sec. 4.12.1 clearly
demonstrated that the UAV detector was able to localize the target worker despite some
difficulties e.g., short shadow, which is a lying down person look-alike. The present findings
confirm that the synthetic data can be employed for training deep learning object detection
model.
Second, this thesis has shown that the synthetic data potentially accommodates the top
view worker detection. To make the synthetic data be comparable to the real world data,
our experimental results in Sec. 4.12.2 indicated that the data should be preprocessed
using average filter before model training. Overall, our results demonstrate preprocessed
synthetic data improve the accuracy gain more than 10%.
Choosing the network model that is suitable to our application is crucial. Based on the
two criteria —speed and accuracy discussed in Sec. 5.3, RetinaNet-Resnet50 (R50) is
the preferable network model choice as it is able to handle small object size and class
imbalance issue. The investigation of the collected crane data in this work indicates that
most of the BBox size are small (i.e., ď 20 ˆ 20 px). Additionally, in our application,
speed is considered as a top priority due to two reasons i.e., safety and the activeness of
the image sensor.
After intensive training R50-final using both synthetic data and real world data, the speed
evaluation result shown in Sec. 7.1.1 is well confined to the Situational Awareness (SA)
measurement of the crane assistance system in the literature [244]. In general, the Safety
Response Time (SRT) of the safety assistance system in the industry or autonomous
vehicle should be very low. In other words, the faster the response time, the lower the
accident risk.
Detection speed is crucial for automatic zoom control of crane camera. In this thesis, we
proposed the closed-loop worker detection system which required prompt response between
the sensing (i.e., detector) and control (i.e., zoom camera control) to maintain the quality
of the top view detection. The detector should instantly output the sensor data to the
zoom control module to process, while the zoom control command should be fed back
quick enough to adjust the load-view image sensor.
Unlike the image sensor on UAV, the altitude of the crane load-view camera is frequently
changed by crane boom arm or camera zoom level itself. Instead of the top view traditional
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detection, we employed the deep learning method to mainly solve feature selection problem.
Nevertheless, small-scale Bounding Box (BBox) samples which were collected from the
crane camera, does not present adequate information. In other words, it is difficult for
the deep learning approach to extract features from the small and low resolution BBox
to define target representation of the worker. Despite surpassing other state of the art
UAV which is shown in the evaluation report of Sec. 7.1, the quality of the deep learning
detection from top view is comparatively much lower than frontal view.
Finally, this thesis has shown the recent adaptive zoom control method using Mealy
finite state machine (FSM). The adaptive controller method is correctly verified by using
AprilTag as a reference target. According to the analysis of adaptive zoom in Chapter 7,
the zoom control is not only smoothly regulated, but also preserve the BBox size and
allows the deep learning detector to perceive more information.

8.1 Outlooks
For the simulation platform, the physical properties such as crane load capacity can be
included in order to make the virtual environment naturalistic. Object tracking and
activity recognition could help the detector however they could decelerate the system
throughput.
Due to unpublished and inaccessible camera control information e.g., zoom level, we
use discrete control input, where the zoom level switch abruptly between two states i.e.,
zoom-in and zoom-out. With the camera control access, future studies exert control input
continuously which enables the application of variety of controllers such as PID. The use
of P-controller can improve the controller response based on the error size, in order to
control the zoom speed e.g., the higher the error is, the faster the zoom speed becomes
(i.e., zt`1 “ zt ` eˆ∆z).
In this work, the distance between the ground and camera fixates or the crane neither
extended nor retracted during adaptive zoom control experiment. The further study can
be explored on the different distance between the zoom camera to the ground to improve
the deep learning model in this work or possibly adjust to additional models based on
each distance range.
It will be important that future research investigate additional camera as an overview
camera and collaborate between these two cameras. Albeit the improvement of the
detection using the adaptive zoom camera, the overall information is lost when the camera
zooms in. With the zoom control access including the camera detail, future research could
continue to explore the target observation in 3D-world coordination.
Lastly, further research is needed to conduct the standard commercial experiments and
concept for certification of automated construction safety assistance system. Also, more
construction industry experts should take part in the evaluation process.
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B. Building Simulation Environment

This appendix describes the technical implementation detail of turning real world environ-
ment into the simulation. The features of main constructed virtual elements at Steil site
such as a mobile crane and workers, are described as follows.

B.1 Crane and Sensor
In this work, Grove GMK3060[246] is given as a 3D telescopic crane model for the
simulation. Although Grove GMK3060 is smaller than Liebherr LTM1130[247] which was
the actual crane that we experimented with, their functions are the same in principle e.g.,
hoisting, swing. This virtual crane can drive in basic movement. It contains three crane
common mechanisms as the real crane, namely hoisting, swing, and travelling. For hoisting,
the boom can extend and retract. The hook block can hoist up and down with or without
attached load. Different types and size of load can be changed. The second mechanism
is swing. Based on the robot coordinate system OR (see Fig. 4.18), the uppercrane part
can rotate around z-axis or yaw angle. The uppercrane can rotate around y-axis or pitch
angle. Finally, the basis travelling can be performed such as driving forward/backward,
steering and braking. The outrigger, which is an extended beam to stabilize the crane,
can be applied during lifting or removed when the crane truck travels. The crane can be
controlled manually via either joystick or control input sequence. Similar to a PC game
control, the crane control shortcut keys can be assigned which is listed in Table B.1. The
crane can be controlled manually via joystick or input sequence. The example of sequence
maneuvers temporally based on given controls as shown in Fig. B.1. As a result, this
allows the researchers generate the dataset or study the closed loop scenario repetitively
such as a routine lift plan.
For the virtual image sensor, the MC5200 motor zoom camera is implemented in the same
manner as the actual camera. The virtual camera is mounted with the pendulum bracket
at the tip of the boom. The physics properties in Unreal Engine (UE) allows the zoom
camera to have the effect of pendulum. Therefore, the pendulum bracket can be swung
by the action of gravity and acquired momentum. The zoom level can be adjusted by
changing FOV. In addition, the zoom speed can be changed similarly as the Controller
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Table B.1: Key assignment to control the virtual mobile crane in UE.

Key Control
W, S Uppercrane pitch (up, down)
A, D Uppercrane yaw (left, right)
E, R Extend, Retract
Arrow key Vehicle control
B Brake
C camera toggle view (vehicle view, operator view, driver view, load view). For the vehicle view, move the mouse to look up-down / left-right.
Num 2, Num 8 Hook drop (down, up)
P, Shift+P Spawn a load, Drop the load
O, Shift+O Spawn a stage3-outrigger, Remove the outrigger
Num 3, Num 9 down (toward the crane), up (outward the crane) over the pitch of 2nd zoom camera. Make to enable "enable ctrl zoomcam rot"
Num 1, Num 7 Possess the pawn, Unpossess the pawn (BP_pawn_gmk3060_v01 for "steil_1" map only)
Num 0 Capture groundtruth manually (Snapshot).
Num . Start record groundtruth (long sequence).
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Figure B.1: Test control sequence for a crane lift trajectory. x-axis is a step count and y-axis
is time.
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Area Network (CAN) pulse speed in the actual camera presented in Sec. 6.2. To have
better observation during the testing in simulation world, additional monocular cameras
are additionally mounted on several positions e.g., operator and driver cabin, see Fig. 4.19.

B.2 Connection to Finroc

The connection of data ports between UE and Finroc1 are created. The port name list
can be found in Fig. B.2. The Finroc control panel can be seen in Fig. B.3. The port
name list can be found in Fig. B.2. A port in Finroc is a type of data structure for data
exchange. They are basic sensor and control ports that suffice the experiments. Sensor
and control port names can be categorized into two main groups —crane and camera.
First, the crane group consists of three mechanisms which are hoist, swing, and travel.
The hoist mechanism is related to parts that are used for lifting via hook blocks or sets of
cables. The swing mechanism is a upperworks or superstructure which can freely rotate
360°, while the travel mechanism is associated with the main truck. The truck carries
the upperwork part from one place to another. The second group is the camera. The
image frame and camera FOV as sensor data are sent from UE to Finroc framework
while the control value of crane and camera zoom level in UE can be configured and input
via Finroc. As a result, these basic controls allowed us to experiment arbitrarily.

Figure B.2: UE - Finroc portname interface. C - Camera mechanism, H - Hoist mechanism,
S - Swing mechanism, T - Travel mechanism.

1A real-time robotic framework based on a systematic design. It has been developed at the Robotics
Research Lab (RRLab) of TU Kaiserslautern, Germany since 2008[127]
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Finroc control panel UE View

1 32 4

Figure B.3: Connection between Finroc and UE. On the left, the figure shows the Finroc con-
trol panel from the crane including the zoom camera feed from UE while on the right, it shows
the UE viewport panel. 1 - zoom camera control, 2 - image stream from UE, 3 - crane control
panel, 4 - Grove GMK3060 in UE.

(a) Animation option. (b) Character panel. (c) Mesh option.

Figure B.4: Mixamo interface. The user first must select the character appearance by choosing
from the skin or skeletal mesh options provided in (c). Once the look is chosen, an individual
animation sequence of the character can be rigged from the animation options in (a). In (b), it
displays a final look of the character in the character panel.

B.3 Human Characters
Virtual characters2 are one of the most important simulated components because they
are the targets for worker detection. In this virtual platform, the virtual characters are
obtained from Renderpeople, Adobe Fuse CC , and Mixamo, see Fig. B.6. Fig. B.4 depicts
Mixamo feature which allows user to pick character and its individual animation sequence.

The basic properties of the imported character are following.

• Appearance —Besides the clothes and their colors which can be randomly changed,
the virtual character is able to hold any objects while moving e.g., a man in Fig. B.6b
is holding an object while walking, or a worker in Fig. B.6g is pushing a wheelbarrow.

2A virtual character in game engine is a person or any other entity acting in a game.
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• Animation —The movement of female and male characters were made separately.
The animation can be reused between characters which have the same skeleton or
their animation is retargeted. The retargeting process maps the original skeleton to
the target skeleton. The movement speed of the character can be adjusted. For the
unit measurement in UE, it uses Unreal Units (uu). One Unreal unit is equivalent
to 1 cm by default. The animation of the character is associated to the speed. For
instance, the speed of idle movement is 0 uu/s. The speed of walking and running
are 375 and 600 uu/s respectively. To have a smooth movement of the character,
two or more animations are blended via Blend Space asset.

• Sensory —To provide the sensory to the characters, there are several methods in
UE such as Pawn Sensing and LineTraceByChannel. This allows the characters to
perform collsion avoidance or interact with other characters or objects.

After each character is properly configured, the crowd simulation can be implemented,
shown in Fig. B.5. Instead of placing character to the map one by one, the crowd simulation
generates many characters into the map at once. The character manager handles how
character move and interact with the others or obstacles.
To spawn characters on the map, the characters are initialized or created in the 3D
boundary volume is shown the green area in Fig. B.5a. Such the area can be defined via
NavMeshBoundsVolume. It is used to define where your AI players and controller will be
able to go. In other words, the volume can restrict the area where the AI characters can
move. It also can create characters from the area or destroy them if they travel into that
defined area.

B.4 Environment
The overall environment shown in Fig. 3.4. Given the target area in Steil, we started to
select the area in OSM, which provide 3D models of the buildings, see Fig. B.7a. Later,
the 3D model map is imported into Blender , where we assign and color the surfaces. In
UE, we employed UE Plugin called OpenStreetMap importer to bring the Blender model
into the game engine. Once the map is built, we started to import construction assests
(shown in Fig. B.8) and some decorations such as trees and vegetation. These decorations
can be obtained from the UE Plugins or UE4 Marketplace. The landscape is filled up
with the virtual workers, construction entities and supplies, , etc. Fig. B.7b depicted
the complete decoration of Steil from top in UE. The virtual persons in the scenarios
randomly move with the collision avoidance feature. In addition, the person appearance is
diverse including the worker with safety helmet.
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(a) One-way or bidirectional walk. (b) Random walk.

(c) Spline walk. (d) Walk between points.

Figure B.5: Crowd simulation and Spline walk in UE. The figure depicts result of character
generation features in this thesis to support synthetic data augementation. There are four main
features i.e., (a) one-way or bidirectional walk, (b) random walk, (c) spline walk and (d) walking
between defined points. (a) The green rectangles are NavMeshBoundsVolume, which are block
areas used in UE. They are the area where the character are spawned. After the characters are
generated, they can walk either toward the top of the figure or the bottom of the figure. (b) The
characters are spawned on any random position of the floor. (c) After creating spline on the
floor which defines the valid path for the character, the characters are generated in different
appearances and walk along the spline. (d) In stead of spline path, the waypoints are defined.
Character can then walk randomly among the waypoints.
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(a) (b) (c)

 

(d) (e)

(f) (g)

Figure B.6: Virtual characters in UE. (a) Standing construction worker wearing PPE. (b)
Working in carrying an object post. (c) Standing worker without emergency vest. (d) and
(e) illustrate different imported characters from Renderpeople [248], Adobe Fuse CC [249] and
Mixamo [250]. (f) and (g) depicted the virtual characters perform construction activities such as
working with devices or pushing a wheelbarrow.



138 B. Building Simulation Environment

X

(a)

X

(b)

8

7

6

5

4

2

1

3

X

(c)

Figure B.7: Steil top view presented in different tools which is (a) OSM, (b) UE, and (c) Google
Maps [251]Map data©2021 Google, Trier. The number label on each location is corresponding to
the same place while a symbol b is the location where the crane is, see Fig. 4.16.

Figure B.8: Examples of UE assets for construction props are imported to decorate our
simulated construction area such as wheel barrows, jack hammer, cement mixer, wooden beam,
etc [252, 253].



C. Network Configuration

This appendix further elaborates the network configuration which are used in the network
selection process in Sec. 5.4.

C.1 FasterRCNN-Resnet50
FasterRCNN-Resnet50 is a two-stage detector. The model first proposes the region of
interestes by using RPN instead of selective search. It is the third generation of the R-CNN
with a ResNet-50-FPN backbone.

C.1.1 Model configuration

1 model {
2 faster_rcnn {
3 num_classes: 1
4 image_resizer {
5 keep_aspect_ratio_resizer {
6 min_dimension: 600
7 max_dimension: 900
8 }
9

10 }
11 feature_extractor {
12 type: 'faster_rcnn_resnet50'
13 first_stage_features_stride: 16
14 }
15 first_stage_anchor_generator {
16 grid_anchor_generator {
17 scales: [0.0625, 0.125, 0.25, 0.5, 1.0, 2.0]
18 aspect_ratios: [0.5, 1.0, 2.0]
19 height_stride: 16
20 width_stride: 16
21 }
22 }
23 first_stage_box_predictor_conv_hyperparams {
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24 op: CONV
25 regularizer {
26 l2_regularizer {
27 weight: 0.0
28 }
29 }
30 initializer {
31 truncated_normal_initializer {
32 stddev: 0.01
33 }
34 }
35 }
36 first_stage_nms_score_threshold: 0.0
37 first_stage_nms_iou_threshold: 0.7
38 first_stage_max_proposals: 300
39 first_stage_localization_loss_weight: 2.0
40 first_stage_objectness_loss_weight: 1.0
41 initial_crop_size: 14
42 maxpool_kernel_size: 2
43 maxpool_stride: 2
44 second_stage_box_predictor {
45 mask_rcnn_box_predictor {
46 use_dropout: false
47 dropout_keep_probability: 1.0
48 fc_hyperparams {
49 op: FC
50 regularizer {
51 l2_regularizer {
52 weight: 0.0
53 }
54 }
55 initializer {
56 variance_scaling_initializer {
57 factor: 1.0
58 uniform: true
59 mode: FAN_AVG
60 }
61 }
62 }
63 }
64 }
65 second_stage_post_processing {
66 batch_non_max_suppression {
67 score_threshold: 0.0
68 iou_threshold: 0.6
69 max_detections_per_class: 100
70 max_total_detections: 300
71 }
72 score_converter: SOFTMAX
73 }
74 second_stage_localization_loss_weight: 2.0
75 second_stage_classification_loss_weight: 1.0
76 }
77 }
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C.1.2 Training Configuration

1 train_config: {
2 batch_size: 1
3 optimizer {
4 momentum_optimizer: {
5 learning_rate: {
6 manual_step_learning_rate {
7 initial_learning_rate: 0.0001
8 schedule {
9 step: 500000

10 learning_rate: .00001
11 }
12 schedule {
13 step: 700000
14 learning_rate: .000001
15 }
16 }
17 }
18 momentum_optimizer_value: 0.9
19 }
20 use_moving_average: false
21 }
22 gradient_clipping_by_norm: 10.0
23 fine_tune_checkpoint: "/content/gdrive/My Drive/train/faster_rcnn_resnet50_coco_2018_01_28/model.ckpt"
24 from_detection_checkpoint: true
25 num_steps: 800000
26 data_augmentation_options {
27 random_horizontal_flip {
28 }
29 random_vertical_flip {
30 }
31 random_jitter_boxes{
32 ratio: 0.2
33 }
34 }
35 }

C.1.3 Evaluation Configuration

1 eval_config: {
2 metrics_set: "coco_detection_metrics"
3 use_moving_averages: false
4 num_examples: 1463
5 num_visualizations : 1463
6 visualization_export_dir : "EXPORT_DIR"
7 visualize_groundtruth_boxes : true
8 groundtruth_box_visualization_color: 'blue'
9 min_score_threshold : 0.1

10 }
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C.2 FasterRCNN-Resnet101
FasterRCNN-Resnet101 is a two-stage detector. The model first proposes the region of
interestes by using RPN instead of selective search. It is the third generation of the R-CNN
with a ResNet-101-FPN backbone.

C.2.1 Model configuration

1 model {
2 faster_rcnn {
3 num_classes: 1
4 image_resizer {
5 keep_aspect_ratio_resizer {
6 min_dimension: 600
7 max_dimension: 900
8 }
9 }

10 feature_extractor {
11 type: 'faster_rcnn_resnet101'
12 first_stage_features_stride: 16
13 }
14 first_stage_anchor_generator {
15 grid_anchor_generator {
16 scales: [0.0625, 0.125, 0.25, 0.5, 1.0, 2.0]
17 aspect_ratios: [0.5, 1.0, 2.0]
18 height_stride: 16
19 width_stride: 16
20 }
21 }
22 first_stage_box_predictor_conv_hyperparams {
23 op: CONV
24 regularizer {
25 l2_regularizer {
26 weight: 0.0
27 }
28 }
29 initializer {
30 truncated_normal_initializer {
31 stddev: 0.01
32 }
33 }
34 }
35 first_stage_nms_score_threshold: 0.0
36 first_stage_nms_iou_threshold: 0.7
37 first_stage_max_proposals: 300
38 first_stage_localization_loss_weight: 2.0
39 first_stage_objectness_loss_weight: 1.0
40 initial_crop_size: 14
41 maxpool_kernel_size: 2
42 maxpool_stride: 2
43 second_stage_box_predictor {
44 mask_rcnn_box_predictor {
45 use_dropout: false
46 dropout_keep_probability: 1.0
47 fc_hyperparams {
48 op: FC
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49 regularizer {
50 l2_regularizer {
51 weight: 0.0
52 }
53 }
54 initializer {
55 variance_scaling_initializer {
56 factor: 1.0
57 uniform: true
58 mode: FAN_AVG
59 }
60 }
61 }
62 }
63 }
64 second_stage_post_processing {
65 batch_non_max_suppression {
66 score_threshold: 0.0
67 iou_threshold: 0.6
68 max_detections_per_class: 100
69 max_total_detections: 300
70 }
71 score_converter: SOFTMAX
72 }
73 second_stage_localization_loss_weight: 2.0
74 second_stage_classification_loss_weight: 1.0
75 }
76 }

C.2.2 Training Configuration

1 train_config: {
2 batch_size: 1
3 optimizer {
4 momentum_optimizer: {
5 learning_rate: {
6 manual_step_learning_rate {
7 initial_learning_rate: 0.0001
8 schedule {
9 step: 500000

10 learning_rate: .00001
11 }
12 schedule {
13 step: 700000
14 learning_rate: .000001
15 }
16 }
17 }
18 momentum_optimizer_value: 0.9
19 }
20 use_moving_average: false
21 }
22 gradient_clipping_by_norm: 10.0
23 fine_tune_checkpoint: "/content/gdrive/My Drive/train/faster_rcnn_resnet101_coco_2018_01_28/model.ckpt"
24 num_steps: 800000
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25 from_detection_checkpoint: true
26 data_augmentation_options {
27 random_horizontal_flip {
28 }
29 random_vertical_flip {
30 }
31 random_jitter_boxes{
32 ratio: 0.02
33 }
34 }
35 }

C.2.3 Evaluation Configuration

1 eval_config: {
2 metrics_set: "coco_detection_metrics"
3 use_moving_averages: false
4 num_examples: 2355
5 num_visualizations : 2355
6 visualization_export_dir : "EXPORT_DIR"
7 visualize_groundtruth_boxes : true
8 groundtruth_box_visualization_color: 'blue'
9 min_score_threshold : 0.1

10 }

C.3 RetinaNet-Resnet50
RetinaNet-Resnet50 outperforms Faster R-CNN by using focal loss and featurized image
pyramid. Focal loss is designed to penalize the background class or easy-examples which
is easy for the network to learn by downing the weight. Featurized image pyramid is much
faster than the traditional image pyramid. Similar to image pyramid in SSD, featurized
image pyramids resolves object detection at different scales in faster manner and less
computation because CNN utilized pyramid structure.

C.3.1 Model configuration

1 model {
2 ssd {
3 inplace_batchnorm_update: true
4 freeze_batchnorm: false
5 num_classes: 1
6 box_coder {
7 faster_rcnn_box_coder {
8 y_scale: 10.0
9 x_scale: 10.0

10 height_scale: 5.0
11 width_scale: 5.0
12 }
13 }
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14 matcher {
15 argmax_matcher {
16 matched_threshold: 0.5
17 unmatched_threshold: 0.5
18 ignore_thresholds: false
19 negatives_lower_than_unmatched: true
20 force_match_for_each_row: true
21 use_matmul_gather: true
22 }
23 }
24 similarity_calculator {
25 iou_similarity {
26 }
27 }
28 encode_background_as_zeros: true
29 anchor_generator {
30 multiscale_anchor_generator {
31 min_level: 3
32 max_level: 7
33 anchor_scale: 4.0
34 aspect_ratios: [1.0, 2.0, 0.5]
35 scales_per_octave: 2
36 }
37 }
38 image_resizer {
39 fixed_shape_resizer {
40 height: 640
41 width: 640
42 }
43 }
44 box_predictor {
45 weight_shared_convolutional_box_predictor {
46 depth: 256
47 class_prediction_bias_init: -4.6
48 conv_hyperparams {
49 activation: RELU_6,
50 regularizer {
51 l2_regularizer {
52 weight: 0.0004
53 }
54 }
55 initializer {
56 random_normal_initializer {
57 stddev: 0.01
58 mean: 0.0
59 }
60 }
61 batch_norm {
62 scale: true,
63 decay: 0.997,
64 epsilon: 0.001,
65 }
66 }
67 num_layers_before_predictor: 4
68 kernel_size: 3
69 }
70 }
71 feature_extractor {
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72 type: 'ssd_resnet50_v1_fpn'
73 fpn {
74 min_level: 3
75 max_level: 7
76 }
77 min_depth: 16
78 depth_multiplier: 1.0
79 conv_hyperparams {
80 activation: RELU_6,
81 regularizer {
82 l2_regularizer {
83 weight: 0.0004
84 }
85 }
86 initializer {
87 truncated_normal_initializer {
88 stddev: 0.03
89 mean: 0.0
90 }
91 }
92 batch_norm {
93 scale: true,
94 decay: 0.997,
95 epsilon: 0.001,
96 }
97 }
98 override_base_feature_extractor_hyperparams: true
99 }

100 loss {
101 classification_loss {
102 weighted_sigmoid_focal {
103 alpha: 0.25
104 gamma: 2.0
105 }
106 }
107 localization_loss {
108 weighted_smooth_l1 {
109 }
110 }
111 classification_weight: 1.0
112 localization_weight: 1.0
113 }
114 normalize_loss_by_num_matches: true
115 normalize_loc_loss_by_codesize: true
116 post_processing {
117 batch_non_max_suppression {
118 score_threshold: 1e-8
119 iou_threshold: 0.6
120 max_detections_per_class: 100
121 max_total_detections: 100
122 }
123 score_converter: SIGMOID
124 }
125 }
126 }
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C.3.2 Training Configuration

1 train_config: {
2 fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
3 batch_size: 8
4 sync_replicas: true
5 startup_delay_steps: 0
6 replicas_to_aggregate: 8
7 num_steps: 100000
8 data_augmentation_options {
9 random_horizontal_flip {

10 }
11 random_vertical_flip {
12 }
13 }
14 data_augmentation_options {
15 random_crop_image {
16 min_object_covered: 0.0
17 min_aspect_ratio: 0.75
18 max_aspect_ratio: 3.0
19 min_area: 0.75
20 max_area: 1.0
21 overlap_thresh: 0.0
22 }
23 }
24 optimizer {
25 momentum_optimizer: {
26 learning_rate: {
27 cosine_decay_learning_rate {
28 learning_rate_base: .04
29 total_steps: 50000
30 warmup_learning_rate: .013333
31 warmup_steps: 2000
32 }
33 }
34 momentum_optimizer_value: 0.9
35 }
36 use_moving_average: false
37 }
38 max_number_of_boxes: 100
39 unpad_groundtruth_tensors: false
40 }

C.3.3 Evaluation Configuration

1 eval_config: {
2 metrics_set: "pascal_voc_detection_metrics"
3 use_moving_averages: false
4 num_examples: 8000
5 }
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C.4 Input Configuration
The two following snippets show the training and evaluation configuration. The multiple
training sets can be done by appending to the input path.

1 train_input_reader: {
2 tf_record_input_reader {
3 input_path: "PATH_TO_BE_CONFIGURED/train.tfrecord"
4 }
5 label_map_path: "PATH_TO_BE_CONFIGURED/label_map.pbtxt"
6 }

1 eval_input_reader: {
2 tf_record_input_reader {
3 input_path: "PATH_TO_BE_CONFIGURED/evaluation.tfrecord"
4 }
5 label_map_path: "PATH_TO_BE_CONFIGURED/label_map.pbtxt"
6 shuffle: false
7 num_readers: 1
8 }

C.5 Label Map
The aim of this work is to detect worker-on-foot, hence the number of object class is one
for all networks.

1 item {
2 id: 1
3 name: 'person'
4 }



D. Zoom Controller

This chapter elaborates the experimental results regarding zoom controller FSM by showing
internal substates of the state machines. The first two figures presents the detailed result
of zoom controller FSM using AprilTag detector as an input sensor which corresponds
to the zoom control result in Sec. 6.7. On the other hand, the input sensor of the latter
two figures comes from the top view worker detection which corresponds to the result of
Sec. 7.2. The two experiments will be referred as TAG for AprilTag and as BOX for top
view detection BBox. The (internal) sensor states (e.g., D, N) are depicted in Fig. D.1
and D.3, while the camera control states are illustrated in Fig. D.2 and D.4.
There are three main FSM states, S “ tSE, STA, STDu, which is mentioned in Chapter 6.
However, SE and STA break down as follows.

• State Explore SE “ tSE,in, SE,outu - The Explore state searchs for the target(s) by
zooming in or out. As long as there is no target and the zoom level Zt does not reach
to the boundary i.e., r0, Zci,maxs. SE,in basically means the camera zooms in until a
target is detected or the camera is maxmimum zooomed out i.e., Zt “ 0, while the
camera zooms out at state SE,out after Zt reaches Zci,max.

• State TrackArea STA “ tSTA, STA,adjustu - STA, STA,adjust - The task of this state is
to preserve overall target area. Once the target is found after exploring, the current
state stays at STA to check the overall area of the target. The state will transit to
STA,adjust when the overall target area A goes beyond or violates the outer region R`.
STA,adjust will try to adjust A by either zooming in or out to bring A back inside the
inner region R´.
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E. Magnitude Spectrum

Frequency domain study of the synthetic data captures the unrealistic features of these
images by analyzing the local rate of changes of pixels. It can highlight edges and noise as
high-frequency contents which appears on-surround region of magnitude spectrum. This
appendix presents the additional Magnitude Spectrum (MS) result for each dataset.
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(a) R00-S-C2

(b) R01-S-C2

(c) R02-S-C2

(d) R03-K-N1

(e) R06-K-N2

(f) R07-K-N3

Figure E.1: Magnitude Spectrum (MS) of an individual frame of each image sequence. The
first column displays original images. The second column presents a magnitude spectrum of the
first column. The third column shows preprocessed images using the image filtering method.
The fourth column is a magnitude spectrum of the preprocessed images which locate in the
immediate previous column.
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(g) R10-S-C2

(h) R14-K-N2

(i) R16-S-CX

(j) U00-S-C0

(k) U01-S-C1

(l) U02-S-C2

Figure E.1: Magnitude Spectrum (MS) of an individual frame of each image sequence. The
first column displays original images. The second column presents a magnitude spectrum of the
first column. The third column shows preprocessed images using the image filtering method.
The fourth column is a magnitude spectrum of the preprocessed images which locate in the
immediate previous column.
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(m) U03-S-C3

(n) U04-S-C4

(o) U05-C-N2

(p) U07-S-N2

(q) U08-S-C4

(r) U09-S-C4

Figure E.1: Magnitude Spectrum (MS) of an individual frame of each image sequence. The
first column displays original images. The second column presents a magnitude spectrum of the
first column. The third column shows preprocessed images using the image filtering method.
The fourth column is a magnitude spectrum of the preprocessed images which locate in the
immediate previous column.
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(s) U10-S-C4

(t) U11-S-C4

Figure E.1: Magnitude Spectrum (MS) of an individual frame of each image sequence. The
first column displays original images. The second column presents a magnitude spectrum of the
first column. The third column shows preprocessed images using the image filtering method.
The fourth column is a magnitude spectrum of the preprocessed images which locate in the
immediate previous column.



160 E. Magnitude Spectrum



Bibliography

[1] T. D. Akinosho, L. O. Oyedele, M. Bilal, A. O. Ajayi, M. D. Delgado, O. O. Akinade,
and A. A. Ahmed, Deep learning in the construction industry: A review of present
status and future innovations. Elsevier, 2020.

[2] European Commission, “Construction | Internal Market, Industry, Entrepreneurship
and SMEs.” https://bit.ly/3TzXrUB, 2020.

[3] K. S. Saidi, T. Bock, and C. Georgoulas, “Robotics in construction,” in Springer
handbook of robotics, pp. 1493–1520, Springer, 2016.

[4] European Commission, “Accidents at work statistics.” https://bit.ly/3sbrq9Q,
June 2018.

[5] A. Bouman, M. F. Ginting, N. Alatur, M. Palieri, D. D. Fan, T. Touma, T. Pail-
evanian, S.-K. Kim, K. Otsu, J. Burdick, et al., “Autonomous spot: Long-range
autonomous exploration of extreme environments with legged locomotion,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 2518–2525, IEEE, 2020.

[6] Robotics Research Lab, TU Kaiserslautern, “Bomag BW154 and BW174.” https:
//agrosy.informatik.uni-kl.de/roboter/weitere-roboter/tandem-roller,
2021.

[7] K. Kaneko, H. Kaminaga, T. Sakaguchi, S. Kajita, M. Morisawa, I. Kumagai, and
F. Kanehiro, “Humanoid robot HRP-5P: An electrically actuated humanoid robot
with high-power and wide-range joints,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 1431–1438, 2019, IEEE.

[8] T. Bock and T. Linner, Construction Robots: Volume 3: Elementary Technologies
and Single-task Construction Robots. Cambridge University Press, 2016.

[9] T. Bock, “Construction robotics,” Autonomous Robots, vol. 22, no. 3, pp. 201–209,
2007, Springer.

[10] B. C. Paulson Jr, “Automation and robotics for construction,” Journal of construction
engineering and management, vol. 111, no. 3, pp. 190–207, 1985, American Society
of Civil Engineers.

[11] H. Son, C. Kim, H. Kim, S. H. Han, and M. K. Kim, “Trend analysis of research and
development on automation and robotics technology in the construction industry,”
KSCE Journal of Civil Engineering, vol. 14, no. 2, pp. 131–139, 2010, Springer.

https://bit.ly/3TzXrUB
https://bit.ly/3sbrq9Q
https://agrosy.informatik.uni-kl.de/roboter/weitere-roboter/tandem-roller
https://agrosy.informatik.uni-kl.de/roboter/weitere-roboter/tandem-roller


162 Bibliography

[12] J. E. Beavers, J. Moore, R. Rinehart, and W. Schriver, “Crane-related fatalities in
the construction industry,” Journal of Construction Engineering and Management,
vol. 132, no. 9, pp. 901–910, 2006, American Society of Civil Engineers.

[13] M. McCann, “Understanding crane accident failures: A report on causes of deaths
in crane-related accidents,” tech. rep., The Center for Construction Research and
Training (CPWR), May 2010.

[14] J. Hinze, X. Huang, and L. Terry, “The nature of struck-by accidents,” Journal
of construction engineering and management, vol. 131, no. 2, pp. 262–268, 2005,
American Society of Civil Engineers.

[15] WSHCouncil, “Crane safety analysis and recommendation report,” tech. rep., 2009.

[16] R. L. Neitzel, N. S. Seixas, and K. K. Ren, “A review of crane safety in the
construction industry,” Applied occupational and environmental hygiene, vol. 16,
no. 12, pp. 1106–1117, 2001, Taylor & Francis Group.

[17] R. H. Flin, P. O’Connor, and M. Crichton, Safety at the sharp end: a guide to
non-technical skills. Ashgate Publishing, Ltd., 2008.

[18] Occupational Safety and Health Administration (OSHA), “Robotics standards.”
https://www.osha.gov/SLTC/robotics/standards.html, 2020.

[19] C. Kyrkou, G. Plastiras, T. Theocharides, S. I. Venieris, and C.-S. Bouganis, “Dronet:
Efficient convolutional neural network detector for real-time uav applications,” in
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 967–972, IEEE, 2018.

[20] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,”
tech. rep., Carnegie-Mellon University Pittsburgh PA Artificial Intelligence and
Psychology, 1989.

[21] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel,
“Handwritten digit recognition with a back-propagation network,” Advances in neural
information processing systems, vol. 2, 1989.

[22] V. Govindan, “Observations On Tesla’s AI Day.” https://cleantechnica.com/
2021/08/30/observations-on-teslas-ai-day/, 2021.

[23] I. Demir, K. Koperski, D. Lindenbaum, G. Pang, J. Huang, S. Basu, F. Hughes,
D. Tuia, and R. Raskar, “Deepglobe 2018: A challenge to parse the earth through
satellite images,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 172–181, 2018.

[24] D. Yang, L. Li, K. Redmill, and Ü. Özgüner, “Top-view trajectories: A pedes-
trian dataset of vehicle-crowd interaction from controlled experiments and crowded
campus,” in 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 899–904, 2019.

https://www.osha.gov/SLTC/robotics/standards.html
https://cleantechnica.com/2021/08/30/observations-on-teslas-ai-day/
https://cleantechnica.com/2021/08/30/observations-on-teslas-ai-day/


Bibliography 163

[25] P. Zhu, D. Du, L. Wen, X. Bian, H. Ling, Q. Hu, T. Peng, J. Zheng, X. Wang,
Y. Zhang, et al., “Visdrone-vid2019: The vision meets drone object detection in
video challenge results,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, 2019.

[26] NU, “Mobile crane checklist.” https://www.northwestern.edu/risk/documents/
ehs-documents/facility-docs/mobile-crane-checklist.pdf, 2020.

[27] WSHC, “Sample checklist for mobile crane.” https://www.wshc.sg/files/wshc/
upload/cms/file/3_Mobile_Crawler_Crane_checklist.pdf, 2020.

[28] B. Browatzki, J. Fischer, B. Graf, H. H. Bülthoff, and C. Wallraven, “Going into
depth: Evaluating 2d and 3d cues for object classification on a new, large-scale object
dataset,” in 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops), pp. 1189–1195, IEEE, 2011.

[29] S. J. Ray and J. Teizer, “Real-time construction worker posture analysis for er-
gonomics training,” Advanced Engineering Informatics, vol. 26, no. 2, pp. 439–455,
2012, Elsevier.

[30] S. Han, S. Lee, and F. Peña-Mora, “Vision-based detection of unsafe actions of a
construction worker: Case study of ladder climbing,” Journal of Computing in Civil
Engineering, vol. 27, no. 6, pp. 635–644, 2013, American Society of Civil Engineers.

[31] S. Chi and C. H. Caldas, “Image-based safety assessment: automated spatial safety
risk identification of earthmoving and surface mining activities,” Journal of Con-
struction Engineering and Management, vol. 138, no. 3, pp. 341–351, 2011, American
Society of Civil Engineers.

[32] J. Seo, S. Han, S. Lee, and H. Kim, “Computer vision techniques for construction
safety and health monitoring,” Advanced Engineering Informatics, vol. 29, no. 2,
pp. 239–251, 2015, Elsevier.

[33] X. Yan, H. Zhang, and H. Li, “Estimating worker-centric 3d spatial crowdedness for
construction safety management using a single 2d camera,” Journal of Computing
in Civil Engineering, vol. 33, no. 5, p. 04019030, 2019, American Society of Civil
Engineers.

[34] H. Kim, K. Kim, and H. Kim, “Vision-based object-centric safety assessment using
fuzzy inference: Monitoring struck-by accidents with moving objects,” Journal of
Computing in Civil Engineering, vol. 30, no. 4, p. 04015075, 2015, American Society
of Civil Engineers.

[35] A. H. M. Rubaiyat, T. T. Toma, M. Kalantari-Khandani, S. A. Rahman, L. Chen,
Y. Ye, and C. S. Pan, “Automatic detection of helmet uses for construction safety,”
in 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops
(WIW), pp. 135–142, Oct 2016.

[36] R. Mosberger, H. Andreasson, and A. J. Lilienthal, “Multi-human tracking using high-
visibility clothing for industrial safety,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 638–644, IEEE, 2013.

https://www.northwestern.edu/risk/documents/ehs-documents/facility-docs/mobile-crane-checklist.pdf
https://www.northwestern.edu/risk/documents/ehs-documents/facility-docs/mobile-crane-checklist.pdf
https://www.wshc.sg/files/wshc/upload/cms/file/3_Mobile_Crawler_Crane_checklist.pdf
https://www.wshc.sg/files/wshc/upload/cms/file/3_Mobile_Crawler_Crane_checklist.pdf


164 Bibliography

[37] J. Yang, O. Arif, P. A. Vela, J. Teizer, and Z. Shi, “Tracking multiple workers on
construction sites using video cameras,” Advanced Engineering Informatics, vol. 24,
no. 4, pp. 428–434, 2010, Elsevier.

[38] R. Mosberger and H. Andreasson, “An inexpensive monocular vision system for
tracking humans in industrial environments,” in 2013 IEEE International Conference
on Robotics and Automation, pp. 5850–5857, May 2013.

[39] K. M. Rashid and A. H. Behzadan, “Risk behavior-based trajectory prediction
for construction site safety monitoring,” Journal of construction engineering and
management, vol. 144, no. 2, p. 04017106, 2018, American Society of Civil Engineers.

[40] D. Kim, M. Liu, S. Lee, and V. R. Kamat, “Trajectory prediction of mobile construc-
tion resources toward pro-active struck-by hazard detection,” in ISARC. Proceedings
of the International Symposium on Automation and Robotics in Construction, vol. 36,
pp. 982–988, IAARC Publications, 2019.

[41] T. Sutjaritvorakul, S. Piao, and K. Berns, “Single camera based multiple pedestrian
tracking for resource-limited hardware systems,” in Proceedings DGR Days 2016,
June, 29-30, Leipzig, p. 27, 2016.

[42] J. T. Albers and C. F. Estill, “Simple solutions ergonomics for construction workers,”
Tech. Rep. 2007-122, The National Institute for Occupational Safety and Health
(NIOSH), Aug. 2007.

[43] S. Kamat, N. M. Zula, N. Rayme, S. Shamsuddin, and K. Husain, “The ergonomics
body posture on repetitive and heavy lifting activities of workers in aerospace manu-
facturing warehouse,” in IOP Conference Series: Materials Science and Engineering,
vol. 210, p. 012079, IOP Publishing, 2017.

[44] J. Yang, Z. Shi, and Z. Wu, “Automatic recognition of construction worker activities
using dense trajectories,” in ISARC. Proceedings of the International Symposium on
Automation and Robotics in Construction, vol. 32, p. 1, IAARC Publications, 2015.

[45] J. Kim, S. Chi, and J. Seo, “Interaction analysis for vision-based activity identification
of earthmoving excavators and dump trucks,” Automation in Construction, vol. 87,
pp. 297–308, 2018, Elsevier.

[46] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” Acm computing
surveys (CSUR), vol. 38, no. 4, pp. 13–es, 2006, Acm New York, NY, USA.

[47] S. Schneider and P. Susi, “Ergonomics and construction: a review of potential
hazards in new construction,” American Industrial Hygiene Association Journal,
vol. 55, no. 7, pp. 635–649, 1994, Taylor & Francis.

[48] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning social etiquette:
Human trajectory understanding in crowded scenes,” in European conference on
computer vision, pp. 549–565, Springer, 2016. Stanford Drone Dataset.



Bibliography 165

[49] M. Teutsch and W. Kruger, “Robust and fast detection of moving vehicles in aerial
videos using sliding windows,” in Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pp. 26–34, 2015.

[50] C. H. Lampert, M. B. Blaschko, and T. Hofmann, “Beyond sliding windows: Object
localization by efficient subwindow search,” in 2008 IEEE conference on computer
vision and pattern recognition, pp. 1–8, IEEE, 2008.

[51] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part-based models,” IEEE transactions on
pattern analysis and machine intelligence, vol. 32, no. 9, pp. 1627–1645, 2010, IEEE.

[52] R. A. Lingam and K. S. Kumar, “Statistically tuned gaussian background subtraction
technique for uav videos,” Sadhana, vol. 39, no. 4, pp. 785–808, 2014, Springer.

[53] G. Morris and P. Angelov, “Real-time novelty detection in video using background
subtraction techniques: state of the art a practical review,” in 2014 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC), pp. 537–543, IEEE,
2014.

[54] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmenta-
tion,” International journal of computer vision, vol. 59, no. 2, pp. 167–181, 2004,
Springer.

[55] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective
search for object recognition,” International journal of computer vision, vol. 104,
no. 2, pp. 154–171, 2013, Springer.

[56] T. Tewari, K. V. Sakhare, and V. Vyas, “Vehicle detection in aerial images using
selective search with a simple deep learning based combination classifier,” in Pro-
ceedings of the Third International Conference on Microelectronics, Computing and
Communication Systems, pp. 221–233, Springer, 2019.

[57] D. E. Maggio and D. A. Cavallaro, Video Tracking: Theory and Practice. Wiley
Publishing, 1st ed., 2011.

[58] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05) - Volume 1 - Volume 01, vol. 00 of CVPR ’05,
(Washington, DC, USA), pp. 886–893, IEEE Computer Society, 2005.

[59] A. M. Garcia, M. A. Rufino, L. C. Sangalang, J. A. Teodoro, and J. Ilao, “Application
of histogram of oriented gradient in person detection from aerial images,” 2014.

[60] S. Razakarivony and F. Jurie, “Vehicle detection in aerial imagery: A small target
detection benchmark,” Journal of Visual Communication and Image Representation,
vol. 34, pp. 187–203, 2016, Elsevier.

[61] S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Z. Li, “Learning multi-scale block local
binary patterns for face recognition,” in International Conference on Biometrics,
pp. 828–837, Springer, 2007.



166 Bibliography

[62] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J.
Comput. Vision, vol. 60, pp. 91–110, Nov. 2004, Kluwer Academic Publishers.

[63] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple
features,” in Computer Vision and Pattern Recognition, 2001. CVPR 2001. Pro-
ceedings of the 2001 IEEE Computer Society Conference on, vol. 1, pp. I–I, IEEE,
2001.

[64] T. Moranduzzo, M. L. Mekhalfi, and F. Melgani, “Lbp-based multiclass classification
method for uav imagery,” in 2015 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), pp. 2362–2365, IEEE, 2015.

[65] F. Jabar, S. Farokhi, and U. Sheikh, “Object tracking using sift and klt tracker
for uav-based applications,” in 2015 ieee international symposium on robotics and
intelligent sensors (iris), pp. 65–68, IEEE, 2015.

[66] C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., vol. 20, pp. 273–
297, Sept. 1995, Kluwer Academic Publishers.

[67] M. Park, E. Palinginis, and I. Brilakis, “Detection of construction workers in video
frames for automatic initialization of vision trackers,” in Construction Research
Congress 2012: Construction Challenges in a Flat World, pp. 940–949, 2012.

[68] J. Gleason, A. V. Nefian, X. Bouyssounousse, T. Fong, and G. Bebis, “Vehicle
detection from aerial imagery,” in 2011 IEEE International Conference on Robotics
and Automation, pp. 2065–2070, IEEE, 2011.

[69] P. Thanh Noi and M. Kappas, “Comparison of random forest, k-nearest neighbor,
and support vector machine classifiers for land cover classification using sentinel-2
imagery,” Sensors, vol. 18, no. 1, p. 18, 2018, Multidisciplinary Digital Publishing
Institute.

[70] Y. Fang, J. Chen, Y. K. Cho, K. Kim, S. Zhang, and E. Perez, “Vision-based
load sway monitoring to improve crane safety in blind lifts,” Journal of Structural
Integrity and Maintenance, vol. 3, no. 4, pp. 233–242, 2018, Taylor & Francis.

[71] M. Neuhausen, J. Teizer, and M. König, “Construction worker detection and track-
ing in bird’s-eye view camera images,” in Proceedings of the 35th ISARC, Berlin,
Germany, 2018.

[72] L. Bourdev and J. Brandt, “Robust object detection via soft cascade,” in 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 2, pp. 236–243, IEEE, 2005.

[73] BIBA, “safeguARd, Augmented Reality-based assistance system for commercial
vehicles to raise the safety level,” Nov. 2015.

[74] S. Takahashi and S. Kaneko, “Motion tracking of crane hook based on optical flow
and orientation code matching,” in 2008 10th IEEE International Workshop on
Advanced Motion Control, pp. 149–152, IEEE, 2008.



Bibliography 167

[75] H. Takauji, S. Kaneko, and T. Tanaka, “Robust tagging in strange circumstance,”
Electrical Engineering in Japan, vol. 156, no. 4, pp. 22–32, 2006, Wiley Online
Library.

[76] M. Andriluka, P. Schnitzspan, J. Meyer, S. Kohlbrecher, K. Petersen, O. Von Stryk,
S. Roth, and B. Schiele, “Vision based victim detection from unmanned aerial
vehicles,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1740–1747, IEEE, 2010.

[77] M. Andriluka, S. Roth, and B. Schiele, “Pictorial structures revisited: People
detection and articulated pose estimation,” in 2009 IEEE conference on computer
vision and pattern recognition, pp. 1014–1021, IEEE, 2009.

[78] L. Bourdev and J. Malik, “Poselets: Body part detectors trained using 3d human
pose annotations,” in 2009 IEEE 12th International Conference on Computer Vision,
pp. 1365–1372, IEEE, 2009.

[79] BLS, “Accidents involving head injuries,” techreport 605, Bureau of Labor Statistics
(BLS), U.S. Department of Labor, Washington, D.C., Government Printing Office,
July 1980. p. 1.

[80] Z. Yang, Y. Yuan, M. Zhang, X. Zhao, Y. Zhang, and B. Tian, “Safety distance
identification for crane drivers based on mask r-cnn,” Sensors, vol. 19, no. 12, p. 2789,
2019, Multidisciplinary Digital Publishing Institute.

[81] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, pp. 1097–1105, 2012.

[82] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[83] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[84] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna,
Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy trade-offs for modern
convolutional object detectors,” CoRR, vol. abs/1611.10012, 2016.

[85] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A survey of deep
learning-based object detection,” IEEE Access, vol. 7, pp. 128837–128868, 2019,
IEEE.

[86] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 580–587, 2014.

[87] R. Girshick, “Fast R-CNN,” in 2015 IEEE International Conference on Computer
Vision (ICCV), pp. 1440–1448, Dec 2015.



168 Bibliography

[88] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks,” in Advances in Neural Information Processing
Systems 28 (C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
eds.), pp. 91–99, Curran Associates, Inc., 2015.

[89] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proceedings of
the IEEE international conference on computer vision, pp. 2961–2969, 2017.

[90] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified,
Real-Time Object Detection,” 2015.

[91] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271,
2017.

[92] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” CoRR,
vol. abs/1804.02767, 2018.

[93] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal speed and
accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[94] G. Jocher, K. Nishimura, T. Mineeva, and R. Vilariño, “YOLOv5.” https://github.
com/ultralytics/yolov5, 2020.

[95] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, et al.,
“YOLOv6: A single-stage object detection framework for industrial applications,”
arXiv preprint arXiv:2209.02976, 2022.

[96] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in European conference on computer vision,
pp. 21–37, Springer, 2016.

[97] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” in Proceedings of the IEEE international conference on computer vision,
pp. 2980–2988, 2017.

[98] I. Ahmed, M. Ahmad, A. Ahmad, and G. Jeon, “Top view multiple people tracking by
detection using deep sort and yolov3 with transfer learning: within 5g infrastructure,”
International Journal of Machine Learning and Cybernetics, pp. 1–15, 2020, Springer.

[99] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a
deep association metric,” in 2017 IEEE international conference on image processing
(ICIP), pp. 3645–3649, IEEE, 2017.

[100] D. Kim, M. Liu, S. Lee, and V. R. Kamat, “Remote proximity monitoring be-
tween mobile construction resources using camera-mounted UAVs,” Automation in
Construction, vol. 99, pp. 168–182, 2019, Elsevier.

[101] H. Zhu, Y. Qi, H. Shi, N. Li, and H. Zhou, “Human detection under uav: an
improved faster r-cnn approach,” in 2018 5th International Conference on Systems
and Informatics (ICSAI), pp. 367–372, IEEE, 2018.

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5


Bibliography 169

[102] M. Barekatain, M. Martí, H.-F. Shih, S. Murray, K. Nakayama, Y. Matsuo, and
H. Prendinger, “Okutama-action: An aerial view video dataset for concurrent human
action detection,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 28–35, 2017.

[103] J. Liu, R. Jia, W. Li, F. Ma, H. M. Abdullah, H. Ma, and M. A. Mohamed, “High
precision detection algorithm based on improved retinanet for defect recognition of
transmission lines,” Energy Reports, vol. 6, pp. 2430–2440, 2020, Elsevier.

[104] S. Kapania, D. Saini, S. Goyal, N. Thakur, R. Jain, and P. Nagrath, “Multi object
tracking with uavs using deep sort and yolov3 retinanet detection framework,” in
Proceedings of the 1st ACM Workshop on Autonomous and Intelligent Mobile Systems,
pp. 1–6, 2020.

[105] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and K. Keutzer,
“Densenet: Implementing efficient convnet descriptor pyramids,” arXiv preprint
arXiv:1404.1869, 2014.

[106] G. Golcarenarenji, I. Martinez-Alpiste, Q. Wang, and J. M. Alcaraz-Calero, “Machine-
learning-based top-view safety monitoring of ground workforce on complex industrial
sites,” Neural Computing and Applications, pp. 1–14, 2021, Springer.

[107] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8759–8768, 2018.

[108] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 37, no. 9, pp. 1904–1916, 2015, IEEE.

[109] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin, and R. Yang,
“The apolloscape dataset for autonomous driving,” CoRR, vol. abs/1803.06184, 2018.

[110] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo,
Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A. Timofeev,
S. Ettinger, M. Krivokon, A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and
D. Anguelov, “Scalability in perception for autonomous driving: An open dataset
benchmark,” 2019.

[111] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understand-
ing,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[112] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti
dataset,” International Journal of Robotics Research (IJRR), 2013.

[113] C. N. Laflamme, F. Pomerleau, and P. Giguère, “Driving datasets literature review,”
arXiv preprint arXiv:1910.11968, 2019.



170 Bibliography

[114] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, “The mapillary vistas
dataset for semantic understanding of street scenes,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 4990–4999, 2017.

[115] D. Feng, A. Harakeh, S. L. Waslander, and K. Dietmayer, “A review and comparative
study on probabilistic object detection in autonomous driving,” IEEE Transactions
on Intelligent Transportation Systems, 2021, IEEE.

[116] N. Bhattarai, T. Nakamura, and C. Mozumder, “Real time human detection and
localization using consumer grade camera and commercial uav,” 2018, Preprints.

[117] D. Cazzato, C. Cimarelli, J. L. Sanchez-Lopez, H. Voos, and M. Leo, “A survey of
computer vision methods for 2d object detection from unmanned aerial vehicles,”
Journal of Imaging, vol. 6, no. 8, p. 78, 2020, Multidisciplinary Digital Publishing
Institute.

[118] T. Sutjaritvorakul, A. Vierling, and K. Berns, “Data-driven worker detection from
load-view crane camera,” in Proceedings of the 37th International Symposium on
Automation and Robotics in Construction (ISARC) (F. H. T. K. "Osumi, Hisashi",
ed.), (Kitakyshu, Japan), pp. 864–871, International Association for Automation
and Robotics in Construction (IAARC), October 2020.

[119] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking performance:
The clear mot metrics,” J. Image Video Process., vol. 2008, pp. 1:1–1:10, Jan. 2008,
Hindawi Publishing Corp.

[120] P. Zhu, L. Wen, D. Du, X. Bian, Q. Hu, and H. Ling, “Vision meets drones: Past,
present and future,” arXiv preprint arXiv:2001.06303, 2020.

[121] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic review of
perception system and simulators for autonomous vehicles research,” Sensors, vol. 19,
no. 3, p. 648, 2019, Multidisciplinary Digital Publishing Institute.

[122] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and
physical simulation for autonomous vehicles,” in Field and service robotics, pp. 621–
635, Springer, 2018.

[123] Udacity, “UdaciDrone.” https://udacity.github.io/udacidrone/, 2018.

[124] T. Sutjaritvorakul, A. Vierling, J. Pawlak, and K. Berns, “Simulation platform for
crane visibility safety assistance,” in Advances in Service and Industrial Robotics
(S. Zeghloul, M. A. Laribi, and J. S. Sandoval Arevalo, eds.), vol. 84 of Mechanisms
and Machine Science, (Cham, France), pp. 22–29, Springer International Publishing,
2020.

[125] N. Mayer, E. Ilg, P. Fischer, C. Hazirbas, D. Cremers, A. Dosovitskiy, and T. Brox,
“What makes good synthetic training data for learning disparity and optical flow
estimation?,” International Journal of Computer Vision, vol. 126, no. 9, pp. 942–960,
2018, Springer.

https://udacity.github.io/udacidrone/


Bibliography 171

[126] T. Sutjaritvorakul, A. Vierling, and K. Berns, “Simulated environment for devel-
oping crane safety assistance technology,” in Commercial Vehicle Technology 2020.
Proceedings of the 6th Commercial Vehicle Technology Symposium – CVT 2020
(K. Berns, K. Dressler, P. Fleischmann, D. Görges, R. Kalmar, B. Sauer, N. Stephan,
R. Teutsch, and M. Thul, eds.), (Kaiserslautern, Germany), Commercial Vehicle Al-
liance Kaiserslautern (CVA), Springer, March 10–12 2020. ISBN: 978-3-658-29717-6.

[127] M. Reichardt, T. Föhst, and K. Berns, “Introducing FINROC: A Convenient Real-
Time Framework for Robotics Based on a Systematic Design Approach,” no. III,
pp. 1–8, 2012.

[128] T. Sutjaritvorakul, A. Nejadfard, A. Vierling, and K. Berns, “Adaptive zoom control
approach of load-view crane camera for worker detection,” in Proceedings of the 38th
International Symposium on Automation and Robotics in Construction (ISARC),
(Dubai, UAE), pp. 553–560, International Association for Automation and Robotics
in Construction (IAARC), November 2021.

[129] B. Gleissner, “LiDAR and the Land Surveyor,” Tech. Rep. 01, Point of Beginning
(POB), Oct. 2019.

[130] Y. Li, S. Wang, and B. Li, “Improved visual hook capturing and tracking for precision
hoisting of tower crane,” Advances in Mechanical Engineering, vol. 5, p. 426810,
2013, SAGE Publications Sage UK: London, England.

[131] Orlaco Inc, “Product catalog, cranes vision solutions.” https://cranewarning.
com/wp-content/uploads/2015/07/ORLACO%20North%20American%20Crane%
20Booklet.pdf, Sept. 2019.

[132] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V. Hernandez,
L. Krpalkova, D. Riordan, and J. Walsh, “Deep learning vs. traditional computer
vision,” in Science and Information Conference, pp. 128–144, Springer, 2019.

[133] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual
classification,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1625–1634, 2018.

[134] V. V. Dixit, S. Chand, and D. J. Nair, “Autonomous vehicles: disengagements,
accidents and reaction times,” PLoS one, vol. 11, no. 12, p. e0168054, 2016, Public
Library of Science San Francisco, CA USA.

[135] J. Hinze, “Construction safety,” Safety science, vol. 46, no. 4, pp. 565–565, 2008,
Elsevier Publishing.

[136] S. Lichiardopol, “A survey on teleoperation,” Technische Universität Eindhoven,
DCT report, vol. 20, pp. 40–60, 2007, Citeseer.

[137] J. W. Hinze and J. Teizer, “Visibility-related fatalities related to construction
equipment,” Safety science, vol. 49, no. 5, pp. 709–718, 2011, Elsevier.

https://cranewarning.com/wp-content/uploads/2015/07/ORLACO%20North%20American%20Crane%20Booklet.pdf
https://cranewarning.com/wp-content/uploads/2015/07/ORLACO%20North%20American%20Crane%20Booklet.pdf
https://cranewarning.com/wp-content/uploads/2015/07/ORLACO%20North%20American%20Crane%20Booklet.pdf


172 Bibliography

[138] J. G. Everett and A. H. Slocum, “Cranium: device for improving crane productivity
and safety,” Journal of construction engineering and management, vol. 119, no. 1,
pp. 23–39, 1993, American Society of Civil Engineers.

[139] E. Winsberg, “Computer simulations in science.” https://plato.stanford.edu/
entries/simulations-science/?utm_source=feedly, 2013.

[140] J. F. Robeson, Logistics handbook. Simon and Schuster, 1994.

[141] Thermopylae Sciences + Technology, “Humans process visual data better.” https:
//bit.ly/3s7BOPF, Sept. 2014.

[142] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154,
IEEE, 2004.

[143] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and scalable robot
simulation framework,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1321–1326, Nov 2013.

[144] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly v-rep): a versatile
and scalable robot simulation framework,” in Proc. of The International Conference
on Intelligent Robots and Systems (IROS), 2013. www.coppeliarobotics.com.

[145] A. Staranowicz and G. L. Mariottini, “A survey and comparison of commercial
and open-source robotic simulator software,” in Proceedings of the 4th International
Conference on PErvasive Technologies Related to Assistive Environments, pp. 1–8,
2011.

[146] L. Nogueira, “Comparative analysis between gazebo and v-rep robotic simulators,”
Seminario Interno de Cognicao Artificial-SICA, vol. 2014, no. 5, 2014.

[147] Unity Technologies, “Unity.” https://unity.com/, 2005.

[148] Epic Games, “Unreal engine.” https://www.unrealengine.com, 1998.

[149] R. Louali, A. Belloula, M. S. Djouadi, and S. Bouaziz, “Real-time characterization of
microsoft flight simulator 2004 for integration into hardware in the loop architecture,”
in 2011 19th Mediterranean Conference on Control & Automation (MED), pp. 1241–
1246, IEEE, 2011.

[150] M. Lewis and J. Jacobson, “Game engines in scientific research,” Communications
of the ACM, vol. 45, no. 1, p. 27, 2002.

[151] J. Gregory, Game Engine Architecture. CRC Press, 3 ed., 2018.

[152] Epic Games, “Unreal engine marketplace.” https://www.unrealengine.com/
marketplace/store, 2017.

https://plato.stanford.edu/entries/simulations-science/?utm_source=feedly
https://plato.stanford.edu/entries/simulations-science/?utm_source=feedly
https://bit.ly/3s7BOPF
https://bit.ly/3s7BOPF
https://unity.com/
https://www.unrealengine.com
https://www.unrealengine.com/marketplace/store
https://www.unrealengine.com/marketplace/store


Bibliography 173

[153] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for multi-object
tracking analysis,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4340–4349, 2016.

[154] Y. Cabon, N. Murray, and M. Humenberger, “Virtual KITTI 2,” 2020.

[155] A. Ruano, “DeepGTAV: A plugin for GTAV that transforms it into a vision-based
self-driving car research environment,” 2017.

[156] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “USARSim: a robot
simulator for research and education,” in Robotics and Automation, 2007 IEEE
International Conference on, pp. 1400–1405, IEEE, 2007.

[157] P. Wolf, T. Groll, S. Hemer, and K. Berns, “Evolution of robotic simulators: Using UE
4 to enable real-world quality testing of complex autonomous robots in unstructured
environments,” 2020.

[158] M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem, “Ue4sim: A photo-
realistic simulator for computer vision applications,” 2017, arXiv.

[159] M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem, “Sim4cv: A photo-
realistic simulator for computer vision applications,” International Journal of Com-
puter Vision, vol. 126, no. 9, pp. 902–919, 2018, Springer.

[160] W. Qiu and A. L. Yuille, “UnrealCV: Connecting Computer Vision to Unreal Engine,”
CoRR, vol. abs/1609.01326, 2016.

[161] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open
urban driving simulator,” in Conference on robot learning, pp. 1–16, PMLR, 2017.

[162] Baidu, “Apollo simulation.” http://apollo.auto/platform/simulation.html,
2017.

[163] A. Brown et al., “Udacity’s self-driving car simulator.” https://github.com/
udacity/self-driving-car-sim, 2016.

[164] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko, E. Boise,
G. Uhm, M. Gerow, S. Mehta, et al., “LGSVL Simulator: A High Fidelity Simulator
for Autonomous Driving,” arXiv preprint arXiv:2005.03778, 2020.

[165] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and A. Sumner,
“Torcs, the open racing car simulator,” Software available at http://torcs. sourceforge.
net, vol. 4, no. 6, p. 2, 2000.

[166] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and T. Rauschenbach, “UUV
simulator: A gazebo-based package for underwater intervention and multi-robot
simulation,” in OCEANS 2016 MTS/IEEE Monterey, IEEE, sep 2016.

[167] M. Prats, J. Perez, J. J. Fernandez, and P. J. Sanz, “An open source tool for
simulation and supervision of underwater intervention missions,” in 2012 IEEE/RSJ
international conference on Intelligent Robots and Systems, pp. 2577–2582, IEEE,
2012.

http://apollo.auto/platform/simulation.html
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim


174 Bibliography

[168] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA workshop on
open source software, vol. 3, p. 5, Kobe, Japan, 2009.

[169] M. Krafft, “The VR construction worker-safety training program of the future.”
https://unity.com/event/unite/2019/copenhagen, Sept. 2019.

[170] D. Zhao and J. Lucas, “Virtual reality simulation for construction safety promotion,”
International journal of injury control and safety promotion, vol. 22, no. 1, pp. 57–67,
2015, Taylor & Francis.

[171] Liebherr, “Liebherr simulations (LiSIM).” https://www.liebherr.com/en/int/
products/maritime-cranes/maritime-technology/crane-simulators-lisim/
lisim-special-page.html, 2013.

[172] H. AlBahnassi and A. Hammad, “Near real-time motion planning and simulation of
cranes in construction: Framework and system architecture,” Journal of Computing
in Civil Engineering, vol. 26, no. 1, pp. 54–63, 2011, American Society of Civil
Engineers.

[173] Y. Fang, Y. K. Cho, and J. Chen, “A framework for real-time pro-active safety
assistance for mobile crane lifting operations,” Automation in Construction, vol. 72,
pp. 367–379, 2016, Elsevier.

[174] K. Pimentel, “Interactive vr training improves construction site
safety and roi.” https://www.unrealengine.com/en-US/spotlights/
interactive-vr-training-improves-construction-site-safety-and-roi,
2019.

[175] Liebherr, “Liebherr simulations - solutions for construc-
tion machines.” https://www.liebherr.com/shared/media/
construction-machinery/deep-foundation/digital-solutions/lisim/
liebherr-lisim-training-simulators-brochure-english.pdf, 2020.

[176] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The synthia
dataset: A large collection of synthetic images for semantic segmentation of urban
scenes,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3234–3243, 2016.

[177] Ministerium der Justiz, “Landeswaldgesetz (LWaldG).” https://bit.ly/3DdhOBM,
2000.

[178] LBA, “Luftverkehrsgesetz.” http://www.gesetze-im-internet.de/luftvg/index.
html, 2007.

[179] R. Pagare and A. Shinde, “A study on image annotation techniques,” International
Journal of Computer Applications, vol. 37, no. 6, pp. 42–45, 2012, Citeseer.

[180] A. Barriuso and A. Torralba, “Notes on image annotation,” arXiv preprint
arXiv:1210.3448, 2012.

https://unity.com/event/unite/2019/copenhagen
https://www.liebherr.com/en/int/products/maritime-cranes/maritime-technology/crane-simulators-lisim/lisim-special-page.html
https://www.liebherr.com/en/int/products/maritime-cranes/maritime-technology/crane-simulators-lisim/lisim-special-page.html
https://www.liebherr.com/en/int/products/maritime-cranes/maritime-technology/crane-simulators-lisim/lisim-special-page.html
https://www.unrealengine.com/en-US/spotlights/interactive-vr-training-improves-construction-site-safety-and-roi
https://www.unrealengine.com/en-US/spotlights/interactive-vr-training-improves-construction-site-safety-and-roi
https://www.liebherr.com/shared/media/construction-machinery/deep-foundation/digital-solutions/lisim/liebherr-lisim-training-simulators-brochure-english.pdf
https://www.liebherr.com/shared/media/construction-machinery/deep-foundation/digital-solutions/lisim/liebherr-lisim-training-simulators-brochure-english.pdf
https://www.liebherr.com/shared/media/construction-machinery/deep-foundation/digital-solutions/lisim/liebherr-lisim-training-simulators-brochure-english.pdf
https://bit.ly/3DdhOBM
http://www.gesetze-im-internet.de/luftvg/index.html
http://www.gesetze-im-internet.de/luftvg/index.html


Bibliography 175

[181] A. Sorokin and D. Forsyth, “Utility data annotation with amazon mechanical turk,”
in Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE
Computer Society Conference on, pp. 1–8, IEEE, 2008.

[182] Amazon, “Amazon sagemaker ground truth.” https://aws.amazon.com/sagemaker,
2017.

[183] B. Sekachev et al., “Computer vision annotation tool: a universal approach to data
annotation,” Intel [Internet], vol. 1, 2019. CVAT.

[184] Labelbox, “Labelbox.” https://labelbox.com/, 2019.

[185] SuperAnnotate AI, Inc., Sunnyvale, California, SuperAnnotate Desktop version 1.0
(2020), 2020.

[186] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“Pascal visual object classes challenge 2007 (voc2007) annotation guidelines.” http:
//host.robots.ox.ac.uk:8080/pascal/VOC/voc2007/guidelines.html, 2007.

[187] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“Voc 2008 annotation guidelines.” http://host.robots.ox.ac.uk/pascal/VOC/
voc2008/guidelines.html, 2008.

[188] S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele, “How far are we from
solving pedestrian detection?,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1259–1267, 2016.

[189] A. Ammar, A. Koubaa, M. Ahmed, and A. Saad, “Aerial images processing for car
detection using convolutional neural networks: Comparison between faster r-cnn
and yolov3,” arXiv preprint arXiv:1910.07234, 2019.

[190] A. Milan, “Ground truth.” http://www.milanton.de/data/#gt, 2019.

[191] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A benchmark,”
in CVPR, June 2009.

[192] M. C. Nechyba and H. Schneiderman, “Pittpatt face detection and tracking for the
clear 2006 evaluation,” in International Evaluation Workshop on Classification of
Events, Activities and Relationships, pp. 161–170, Springer, 2006.

[193] C. Romeo, “How synthetic datasets generated by a game engine can help train
real-world computer vision models,” July 2020.

[194] M. M. Soltani, Z. Zhu, and A. Hammad, “Automated annotation for visual recognition
of construction resources using synthetic images,” Automation in Construction,
vol. 62, pp. 14–23, 2016, Elsevier.

[195] A. Vierling, T. Sutjaritvorakul, and K. Berns, “Dataset generation using a simulated
world,” in International Conference on Robotics in Alpe-Adria Danube Region,
pp. 505–513, Springer, 2019.

https://aws.amazon.com/sagemaker
https://labelbox.com/
http://host.robots.ox.ac.uk:8080/pascal/VOC/voc2007/guidelines.html
http://host.robots.ox.ac.uk:8080/pascal/VOC/voc2007/guidelines.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2008/guidelines.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2008/guidelines.html
http://www.milanton.de/data/#gt


176 Bibliography

[196] Z. Kolar, H. Chen, and X. Luo, “Transfer learning and deep convolutional neural
networks for safety guardrail detection in 2d images,” Automation in Construction,
vol. 89, pp. 58–70, 2018, Elsevier.

[197] M. Neuhausen, P. Herbers, and M. König, “Synthetic data for evaluating the visual
tracking of construction workers,” in Construction Research Congress 2020, 2020.

[198] Apple Engineers, “Improving the realism of synthetic images,” Apple Machine
Learning Journal, vol. 1, July 2017.

[199] C. Atapattu and B. Rekabdar, “Improving the realism of synthetic images through
a combination of adversarial and perceptual losses,” in 2019 International Joint
Conference on Neural Networks (IJCNN), pp. 1–7, 2019.

[200] N. Takemoto, L. d. M. Araújo, T. A. Coimbra, M. Tygel, S. Avila, and E. Borin,
“Enriching synthetic data with real noise using neural style transfer,” in Int. Congress
of the Brazilian Geophysical Society, vol. 78, 2019.

[201] M. Maximov, K. Galim, and L. Leal-Taixé, “Focus on defocus: bridging the syn-
thetic to real domain gap for depth estimation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1071–1080, 2020.

[202] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To,
E. Cameracci, S. Boochoon, and S. Birchfield, “Training deep networks with synthetic
data: Bridging the reality gap by domain randomization,” in Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, pp. 969–977,
2018.

[203] A. Jain, J. Keller, and M. Popescu, “Explainable ai for dataset comparison,” in 2019
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7, IEEE,
2019.

[204] A. Tsirikoglou, G. Eilertsen, and J. Unger, “A survey of image synthesis methods
for visual machine learning,” in Computer Graphics Forum, vol. 39, pp. 426–451,
Wiley Online Library, 2020.

[205] Motec GmbH, “Motec camera system for construction equipment.” https:
//www.esquenet.be/sites/default/files/basic-files/construction_
brochure_en.pdf, 2016.

[206] Motec GmbH, “MOTEC SYSTEM BUS Basis Spezifiktion MSB 2.0,” tech. rep.,
Motec GmbH, Feb. 2018.

[207] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,” IEEE
Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008, IEEE.

[208] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“VOC2011 Annotation Guidelines.” http://host.robots.ox.ac.uk/pascal/VOC/
voc2012/guidelines.html, 2011.

https://www.esquenet.be/sites/default/files/basic-files/construction_brochure_en.pdf
https://www.esquenet.be/sites/default/files/basic-files/construction_brochure_en.pdf
https://www.esquenet.be/sites/default/files/basic-files/construction_brochure_en.pdf
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/guidelines.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/guidelines.html


Bibliography 177

[209] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.” http:
//www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.

[210] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learning,”
in 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI) 16), pp. 265–283, 2016.

[211] J. Husemann, “Topview Detection via CNNs,” project report, Robotics Research
Lab, TU Kaiserslautern, Kaiserslautern, Germany, September 30 2018. unpublished,
supervised by Axel Vierling.

[212] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision, pp. 740–755, Springer, 2014.

[213] P. Dollár, “Piotr’s Computer Vision Matlab Toolbox (PMT).” https://github.
com/pdollar/toolbox.

[214] M. Everingham, L. Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal
visual object classes (voc) challenge,” Int. J. Comput. Vision, vol. 88, pp. 303–338,
June 2010, Kluwer Academic Publishers.

[215] K. De and V. Masilamani, “Image sharpness measure for blurred images in frequency
domain,” Procedia Engineering, vol. 64, pp. 149–158, 2013, Elsevier.

[216] A. Ng, “Machine learning yearning,” URL: http://www. mlyearning. org/(96),
vol. 139, 2017.

[217] T. B. Lind, “Quixel - CAPTURING THE WORLD.” https://quixel.com/blog/
2018/6/26/capturing-the-world, June 2018.

[218] J.-H. Kim, “Estimating classification error rate: Repeated cross-validation, repeated
hold-out and bootstrap,” Computational statistics & data analysis, vol. 53, no. 11,
pp. 3735–3745, 2009, Elsevier.

[219] C. Zhang and A. Hammad, “Multiagent approach for real-time collision avoidance
and path replanning for cranes,” Journal of Computing in Civil Engineering, vol. 26,
no. 6, pp. 782–794, 2012, American Society of Civil Engineers.

[220] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition chal-
lenge,” International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015,
Springer.

[221] P. Zhu, L. Wen, D. Du, X. Bian, H. Ling, Q. Hu, H. Wu, Q. Nie, H. Cheng, C. Liu,
et al., “Visdrone-vdt2018: The vision meets drone video detection and tracking
challenge results,” in Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, pp. 0–0, 2018.

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
https://github.com/pdollar/toolbox
https://github.com/pdollar/toolbox
https://quixel.com/blog/2018/6/26/capturing-the-world
https://quixel.com/blog/2018/6/26/capturing-the-world


178 Bibliography

[222] D. Du, P. Zhu, L. Wen, X. Bian, H. Lin, Q. Hu, T. Peng, J. Zheng, X. Wang,
Y. Zhang, et al., “Visdrone-det2019: The vision meets drone object detection in
image challenge results,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pp. 0–0, 2019.

[223] E. Bisong, “Google colaboratory,” in Building Machine Learning and Deep Learning
Models on Google Cloud Platform, pp. 59–64, Springer, 2019.

[224] Google Brain, “Configuring the object detection training pipeline.”
https://github.com/tensorflow/models/blob/master/research/object_
detection/g3doc/configuring_jobs.md, 2021.

[225] R. Padilla, S. L. Netto, and E. A. da Silva, “A survey on performance metrics for
object-detection algorithms,” in 2020 International Conference on Systems, Signals
and Image Processing (IWSSIP), pp. 237–242, IEEE, 2020.

[226] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009, IEEE.

[227] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
in European conference on computer vision, pp. 818–833, Springer, 2014.

[228] Google Brain Team, “Tensorflow 1 model zoo.” https://github.com/tensorflow/
models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.
md, July 2020.

[229] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural
networks, vol. 12, no. 1, pp. 145–151, 1999, Elsevier.

[230] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[231] A. Bal and H. Palus, “A smooth non-iterative local polynomial (snilp) model of
image vignetting,” Sensors, vol. 21, no. 21, p. 7086, 2021, Multidisciplinary Digital
Publishing Institute.

[232] S. Wu, T. Zhao, C. Broaddus, C. Yang, and M. Aggarwal, “Robust pan, tilt
and zoom estimation for ptz camera by using meta data and/or frame-to-frame
correspondences,” in 2006 9th International Conference on Control, Automation,
Robotics and Vision, pp. 1–7, IEEE, 2006.

[233] R. Atienza and A. Zelinsky, “Active gaze tracking for human-robot interaction,”
in Proceedings. Fourth IEEE International Conference on Multimodal Interfaces,
pp. 261–266, IEEE, 2002.

[234] J.-Y. Zheng, T. Sakai, and N. Abe, “Guiding robot motion using zooming and
focusing,” in Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems. IROS’96, vol. 3, pp. 1076–1082, IEEE, 1996.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/configuring_jobs.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/configuring_jobs.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md


Bibliography 179

[235] E. R. Azar, “Active control of a pan-tilt-zoom camera for vision-based monitoring of
equipment in construction and surface mining jobsites,” in ISARC. Proceedings of the
International Symposium on Automation and Robotics in Construction, vol. 33, p. 1,
Vilnius Gediminas Technical University, Department of Construction Economics,
2016.

[236] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in 2011 IEEE
International Conference on Robotics and Automation, pp. 3400–3407, IEEE, 2011.

[237] E. R. Azar, “Construction equipment identification using marker-based recognition
and an active zoom camera,” Journal of Computing in Civil Engineering, vol. 30,
no. 3, p. 04015033, 2015, American Society of Civil Engineers.

[238] A. Vierling, T. Sutjaritvorakul, and K. Berns, “Crane safety system with monocular
and controlled zoom cameras,” in ISARC. Proceedings of the International Symposium
on Automation and Robotics in Construction, vol. 35, (Berlin, Germany), pp. 1–7,
IAARC Publications, 2018.

[239] K. Hata and S. Savarese, “CS231a course notes 1: Camera models.” https://web.
stanford.edu/class/cs231a/course_notes/01-camera-models.pdf, 2015.

[240] M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, and K. Cho, “Augmentation for
small object detection,” arXiv preprint arXiv:1902.07296, 2019.

[241] Y. Cai and G. Medioni, “Persistent people tracking and face capture using a ptz
camera,” Machine Vision and Applications, vol. 27, no. 3, pp. 397–413, 2016, Springer.

[242] Y. Movshovitz-Attias, T. Kanade, and Y. Sheikh, “How useful is photo-realistic
rendering for visual learning?,” in European Conference on Computer Vision, pp. 202–
217, Springer, 2016.

[243] K. T and R. A., “Object detection on drone videos using caffe* framework,” tech.
rep., Intel, June 2018.

[244] Y. Fang and Y. K. Cho, “Measuring operator’s situation awareness in smart operation
of cranes,” in ISARC 2017-Proceedings of the 34th International Symposium on
Automation and Robotics in Construction, pp. 96–103, 2017.

[245] OHS, “Survey Finds High Rate of PPE Non–Compliance.” https://ohsonline.com/
articles/2008/11/17-survey-finds-high-rate-of-ppe-noncompliance.aspx,
November 2008. [Online; accessed 18-06-2019].

[246] Manitowoc, “GMK3060 Product Guide.” https://www.manitowoccranes.
com/~/media/Files/MTWDirect/Grove/AllTerrain/GMK3060/ProductGuides/
GMK3060-Product-Guide-Metric.pdf, 2017.

[247] Liebherr, “Mobile Crane LTM 1130-5.1,” tech. rep., Liebherr-Werk Ehingen GmbH,
2018.

[248] Renderpeople, “Scanned 3d people pack.” https://www.unrealengine.com/
marketplace/en-US/product/9c3fab270dfe468a9a920da0c10fa2ad, 2019.

https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf
https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf
https://ohsonline.com/articles/2008/11/17-survey-finds-high-rate-of-ppe-noncompliance.aspx
https://ohsonline.com/articles/2008/11/17-survey-finds-high-rate-of-ppe-noncompliance.aspx
https://www.manitowoccranes.com/~/media/Files/MTW Direct/Grove/All Terrain/GMK3060/Product Guides/GMK3060-Product-Guide-Metric.pdf
https://www.manitowoccranes.com/~/media/Files/MTW Direct/Grove/All Terrain/GMK3060/Product Guides/GMK3060-Product-Guide-Metric.pdf
https://www.manitowoccranes.com/~/media/Files/MTW Direct/Grove/All Terrain/GMK3060/Product Guides/GMK3060-Product-Guide-Metric.pdf
https://www.unrealengine.com/marketplace/en-US/product/9c3fab270dfe468a9a920da0c10fa2ad
https://www.unrealengine.com/marketplace/en-US/product/9c3fab270dfe468a9a920da0c10fa2ad


180 Bibliography

[249] Adobe Systems, “Adobe Fuse CC.” https://www.adobe.com/wam/fuse.html, 2014.
[Online; accessed 25-Jan-2019].

[250] Mixamo, “Mixamo.” http://mixamo.com/, 2008. [Online; accessed 25-Jan-2019].

[251] Google, “Map of Steil Kranarbeiten GmbH Co. KG, Trier, Germany.” https:
//goo.gl/maps/6vKgnGZ2z9bmfSsz5, (n.d.). [Online; accessed 01-Dec-2021].

[252] Dekogon Studios, “Construction site vol. 1 - supply and material
props.” https://www.unrealengine.com/marketplace/en-US/product/
construction-site-vol-1-supply-and-material-props, 2019.

[253] Dekogon Studios, “Construction site vol. 2 - tools, parts, and ma-
chine props.” https://www.unrealengine.com/marketplace/en-US/product/
construction-site-vol-2-tools-parts-and-machine-props, 2019.

https://www.adobe.com/wam/fuse.html
http://mixamo.com/
https://goo.gl/maps/6vKgnGZ2z9bmfSsz5
https://goo.gl/maps/6vKgnGZ2z9bmfSsz5
https://www.unrealengine.com/marketplace/en-US/product/construction-site-vol-1-supply-and-material-props
https://www.unrealengine.com/marketplace/en-US/product/construction-site-vol-1-supply-and-material-props
https://www.unrealengine.com/marketplace/en-US/product/construction-site-vol-2-tools-parts-and-machine-props
https://www.unrealengine.com/marketplace/en-US/product/construction-site-vol-2-tools-parts-and-machine-props


Bibliography 181

Academic CV

Tanittha Sutjaritvorakul

Education
2016 — 2024 PhD, Informatik

RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
Thesis: Top View Deep Learning Object Detection using Active Perception in Construction Environment
Advisor: Prof. Dr. Karsten Berns

2013 — 2015 M. Sc. in Electrical and Computer Engineering
TU Kaiserslautern, Kaiserslautern, Germany
Thesis: Multiple Pedestrian Tracking
Advisor: Prof. Dr. Karsten Berns

2004 — 2008 B. Eng. in Computer and Network Engineering
Assumption University, Bangkok, Thailand
Thesis: Digital Spectrum Analyzer
Advisor: Dr. Kong Kritayakirana


	Contents
	1 Introduction
	1.1 Overview of Construction
	1.2 Construction Automation and Robotics
	1.3 Safety in Construction
	1.4 Usage of Deep Learning Methods
	1.5 Aims and Objectives
	1.6 Outline

	2 Automated Vision-Based Top View Safety Monitoring in Construction Area
	2.1 Conventional Top View Object Detection
	2.1.1 Conventional Vision Techniques
	2.1.2 Top View Applications of Traditional Approach

	2.2 Deep Learning-Based Top View Object Detection
	2.2.1 Deep Learning-Based Detection Techniques
	2.2.2 Top View Applications of Deep Learning Approach


	3 Thesis Overview
	3.1 Challenges of Top View Object Detection

	4 Analysis and Generation of Real and Synthetic Data
	4.1 Crane Operation and Safety
	4.1.1 Construction Safety

	4.2 Simulation Usage in Construction
	4.2.1 Simulation Platforms

	4.3 Dataset Generation
	4.3.1 Gap Between Synthetic and Real Data

	4.4 Environment and Scenario
	4.5 Crane Setup for Real Dataset Generation
	4.6 From Real World to Simulation
	4.6.1 Implementation Concept
	4.6.2 Virtual Environment and Scenario
	4.6.3 Virtual Hardware

	4.7 Data Collection From Real Environment
	4.7.1 Data Recording
	4.7.2 Data Annotation
	4.7.3 Public Datasets

	4.8 Synthetic Data Generation
	4.8.1 Data Recording
	4.8.2 Data Annotation

	4.9 Dataset Summary
	4.10 Evaluation Metrics for Object Detection Algorithms
	4.10.1 Average Precision (AP)

	4.11 Analysis of Real and Synthetic Data in Frequency Domain
	4.12 Experiments
	4.12.1 Exploration Aerial Image DL model With Crane Load-View Data
	4.12.2 Investigation of Synthetic Data Replacement in Training a NN Model

	4.13 Discussion

	5 Top View Object Detection Using Deep Learning
	5.1 Deep Learning-Based Detection Techniques
	5.2 Data Inspection
	5.3 Candidate List of Network Models
	5.4 Network Configuration and Selection
	5.4.1 Network Configuration
	5.4.2 Network Selection
	5.4.2.1 Configuring the Trainer

	5.4.3 Result of Network Selection

	5.5 Discussion

	6 Analysis of Motorized Zoom Camera
	6.1 Adaptive Zoom Camera and Its Applications
	6.2 Implementation of Zoom Control
	6.3 Worker Localization in Camera Coordinate
	6.3.1 Camera Projection

	6.4 Proposed Approach
	6.5 System Architecture
	6.6 Zoom Controller
	6.7 Zoom Controller Verification

	7 Comprehensive Experiment
	7.1 Final Network Model Test
	7.1.1 Results

	7.2 Top View Worker Detection Using Adaptive Zoom
	7.2.1 Result

	7.3 Discussion

	8 Conclusion and Outlook
	8.1 Outlooks

	A Acronym
	B Building Simulation Environment
	B.1 Crane and Sensor
	B.2 Connection to Finroc
	B.3 Human Characters
	B.4 Environment

	C Network Configuration
	C.1 FasterRCNN-Resnet50
	C.1.1 Model configuration
	C.1.2 Training Configuration
	C.1.3 Evaluation Configuration

	C.2 FasterRCNN-Resnet101
	C.2.1 Model configuration
	C.2.2 Training Configuration
	C.2.3 Evaluation Configuration

	C.3 RetinaNet-Resnet50
	C.3.1 Model configuration
	C.3.2 Training Configuration
	C.3.3 Evaluation Configuration

	C.4 Input Configuration
	C.5 Label Map

	D Zoom Controller
	E Magnitude Spectrum
	Bibliography
	Index

