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Abstract
We study the sensor fault estimation and accommodation problems in a
data-driven ∞ setting, leading to a data-driven sensor fault-tolerant control
scheme. First, we formulate the fault estimation problem as a finite-horizon
minimax ∞-optimization problem in a data-driven setup, whose solution
yields the fault estimate. The estimated fault is then used for output com-
pensation. This compensated output and the experimental input are used
to achieve certain control objectives in a data-driven ∞ setting. Next, the
data-driven ∞ fault estimation and control problems are solved using a sub-
space predictor-based approach. Finally, the proposed algorithm is applied to
the steering subsystem of the remotely operated underwater vehicle.
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1 INTRODUCTION

Modern control systems are becoming more and more complex. Therefore, there is an increasing need to guarantee their
reliability, robustness, resilience, safety, and stability. From a control system’s perspective, faults can cause degraded per-
formance and instability.1,2 Hence, the fault-tolerant control (FTC) problem is becoming an essential part of modern
control system design. On the other hand, sensors are indispensable components of modern control systems, and their
resilience is vital to ensure reliable operation of the control systems. Sensor faults can lead to significant performance
degradation of the control systems.3 Therefore, the study of the sensor FTC problem is strongly motivated.4

The FTC techniques can be categorized as model-based and data-driven. In the following, we review various method-
ologies available in the literature for model-based FTC problems. An FTC method has been presented in Reference 5
for an internet-based three-tank system with sensor faults. An FTC problem for a linear system with model uncertainty
and multiplicative faults has been studied in Reference 6 via coprime factorization. A distributed integrated FTC for a
class of uncertain nonlinear multiagent systems has been investigated in Reference 7. A novel neuroadaptive FTC track-
ing controller has been designed in Reference 8 for time-delay systems subject to nonaffine uncertainties and external
disturbances to compensate actuator faults.

All of the techniques mentioned above require the system’s mathematical model for designing an FTC scheme.
However, in most industrial processes, the accurate system model is not available or is of a high-order with many
nonlinearities.9 Fortunately, the industrial processes generate and store a large amount of process data that can be used
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directly for FTC purposes. These facts motivated us to consider the sensor FTC method in a data-driven setting. To this
end, we propose a new data-driven subspace predictor-based ∞ approach for the FTC problem. We first formulate the
sensor fault estimation problem in a data-driven∞ set up. The estimated fault is then used for output compensation. This
compensated output and the experimental input are then utilized to achieve certain control objectives in an ∞ set up.
Finally, the data-driven ∞ fault estimation and control problems are solved using a subspace identification algorithm.
The subspace identification algorithm proposed in References 10,11 forecasts the future plant output by past I/O data
and decreases noise effects from data. The subspace identification algorithm assumes the availability of a large set of data
samples and that the data is ergodic, and that input and noise are independent. This property is used in the subspace
identification to reduce the effects of noise.10 Our proposed methodology guarantees robustness against disturbance, and
it can eliminate false positive alarms of detecting disturbances instead of faults. We apply the proposed approach to a
remotely operated underwater vehicle (ROUV). A data-driven subspace predictor-based ∞ approach for the sensor FTC
problem in the presence of a disturbance, to the best of authors’ knowledge, is not studied before.

A data-driven residual-based fault detection scheme is proposed in Reference 12, and it is applied to a wind turbine
benchmark. The residual vectors are robust to disturbances. However, in Reference 12, the focus is on fault detection prob-
lems, and the fault estimation and FTC problems are not studied therein. A data-driven sensor fault detection method is
presented in Reference 13, wherein a delay between each input/output pair is considered. Residual signals are utilized
to detect different kinds of faults such as bias, drift, and precision degradation based on closed-loop I/O measurements.
However, in comparison with our proposed method, the method presented in Reference 13 is not robust against distur-
bance, and an FTC scheme is not considered. Moreover, in our proposed methodology, fault isolation can be performed
by simply estimating the fault, and there is no need to generate a residual vector to isolate the fault. As a consequence, our
method has a less computational burden. A data-driven cooperative FTC scheme is designed in Reference 14 for multiple
quadrotors with a virtual leader. The proposed scheme is based on a reinforcement learning algorithm. However, sensor
faults are not studied therein, and the proposed method is also not robust to disturbances. A data-driven FTC problem for
PID systems has been discussed in Reference 15. For fault detection purposes, the I/O model is derived in the fault-free
case. Then an observer-based residual generator is proposed. The variance of the residual signal is then utilized for defin-
ing a threshold for fault detection purposes. When the fault is detected, a fault-tolerant compensation control scheme
based on state estimation is designed for ensuring stability and minimizing reference tracking error of the PID system.
The state is estimated directly from I/O data. The proposed method is extended to time-varying plants in Reference 16.
An integrated data-driven FTC scheme using the configuration of Youla parameterization is introduced in Reference 17.
This FTC scheme employs two observers. One of them is a scalar diagnostic observer for fault detection and isolation
(FDI) purposes, while the other is used to enhance the system’s performance when the fault occurs. There are two main
differences between our work and Reference 17. First, the method presented in Reference 17 is adaptive, and it does not
consider disturbance. Second, in Reference 17, two residuals must be designed to achieve control and fault detection
objectives. In addition, for tracking purposes, a prefilter is required therein in a fault-free case. On the contrary, there is
no need to design an observer, residuals, or a prefilter in our proposed method. As a result, our proposed method is com-
putationally efficient compared with Reference 17. A recursive algorithm is proposed in Reference 18 for updating the
subspace predictor’s matrices. There are two main differences between our work and Reference 18. First, no disturbance
is considered therein. Second, the method proposed therein neither detect nor isolate or estimate the fault, whereas our
method can detect, estimate and isolate the fault(s) in the presence of disturbance. Therefore, in contrast with Reference
18, our work not only solves the FTC problem but also solves a data-driven FDI problem.

In summary, the main contributions of our article can be enlisted as:

(i) Since only I/O data is required for fault estimation and FTC schemes, the method proposed in this article is
well-suited to various industrial processes, which are not amenable to empirical models.

(ii) In contrast with other data-driven methods,14,17,18 to the best of the authors’ knowledge, for the first time, the
data-driven sensor FTC problem is formulated as an ∞ control problem. Studying the data-driven FTC problem
in an ∞ setup offers the plausibility of considering the 2 disturbances as exogenous inputs, which guarantees
that our fault estimation and FTC schemes are robust against disturbances, and eliminates false positive alarms of
detecting disturbances instead of faults.

(iii) Designing FTC techniques with FDI capabilities is a vital and challenging task in many practical applications.19 It
is further emphasized that designing FTC schemes with FDI capabilities becomes much more challenging in the
presence of process and measurement disturbances.20 To the best of the authors’ knowledge, existing data-driven
FTC techniques do not include FDI schemes. Nevertheless, some of them, References 15-17, employ a residual vector
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SALIM et al. 6993

for fault detection purposes but do not provide fault isolation. Fault isolation is necessary because, in its absence,
the feedback controller may compensate the effect of faults and therefore effectively hide them Reference 21. By
contrast, we propose fault estimation that allows us to detect the fault and isolate it. Therefore, our data-driven FTC
scheme also includes FDI capabilities, which is a significant contribution.

Now, we point out that in our recent work,22 the simultaneous fault detection and control (SFDC) problem is solved in
a data-driven ∞ setting. The main objective of the SFDC problem is to achieve specific control objectives while fulfilling
some detection objectives simultaneously. However, the SFDC scheme does not have fault compensation capabilities,
which is a significant problem from a practical point of view. It can be seen from [ 22, figure 5] that the SFDC approach
cannot compensate the fault between samples 2000 and 2600, and the effect of the fault persists on the output. Therefore,
the FTC problem studied here is different from the SFDC problem studied in Reference 22.

The method proposed in this article, nevertheless, has some limitations. First, the input signal needs to be persistently
exciting. Second, our proposed method applies to linear time-invariant (LTI) systems. Therefore, to apply our algorithm,
a nonlinear system must be excited to validate its linearization around an operating point. Moreover, nonlinear systems,
in general, have various operating points. Therefore, the amplitude of the input signal should be small enough to ensure
that it may not change a certain chosen operating point to another. Third, the subspace identification algorithm is suitable
with an extensive dataset, which is no more a restriction nowadays with increasing computational resources.

This article unfolds as follows. In Section 2, the problem formulation is provided along with some preliminary results.
Section 3 provides the main results. In Section 4, the proposed algorithm is applied to ROUV. Concluding remarks are
given in Section 5.

The notation used in this article is standard: AT denotes the transpose of a matrix A. I denotes the identity matrix of a
compatible dimension. For two symmetric matrices A and B, A ≽ B implies that A − B is a positive semidefinite matrix,
and A ≻ B implies that A − B is a positive definite matrix. We denote the space of real rational, stable, and proper transfer
matrices by ∞. The minimal state-space realization of a transfer function matrix Ω is denoted by the bold symbol 𝛀.
The finite-horizon ∞-gain from an exogenous input a to regulated output b is denoted by ||Tba||∞. Moreover, we use {a⃗}i

j
to denote

⎡⎢⎢⎢⎢⎢⎣

ai

ai+1

⋮

aj

⎤⎥⎥⎥⎥⎥⎦
.

2 PROBLEM FORMULATION AND PRELIMINARIES

Consider the LTI system described by

G ∶

{
x[𝓁 + 1] = A x[𝓁] + B u[𝓁] + B d[𝓁] + e[𝓁]
y[𝓁] = C x[𝓁] + D u[𝓁] + D d[𝓁] + f [𝓁] + 𝜗[𝓁],

(1)

where x ∈ Rn, u ∈ Rnu , y ∈ R
ny , and d ∈ Rnd denote the state, the input, the output, and the disturbance, respectively. The

sensor fault is denoted by f ∈ R
nf , and it is assumed to be unknown. The process and measurement noises are denoted

by e ∈ Rn and 𝜗 ∈ R
ny , respectively. These noise sequences are assumed to be normally distributed and white. Moreover,

it is assumed that they are statistically independent of the input and the initial condition. A, B, B, C, D, and D represent
constant and unknown matrices of appropriate dimensions. We refer system G as a fault-free or healthy system if f ≡ 0.
The pair (A,B) is assumed to be stabilizable and the pair (C,A) is assumed to be detectable.

Defining the exogenous input w ∈ R
nu+nd+nf as

w ≜

⎡⎢⎢⎢⎣
u
d
f

⎤⎥⎥⎥⎦ , (2)
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6994 SALIM et al.

F I G U R E 1 Schematic of a sensor fault-tolerant control system

the inputs u, d, and f in system G can be expressed as

u = 1w, 1 =
[

Inu 0nu×(nd+nf )

]
d = 2w, 2 =

[
0nd×nu Ind 0nd×nf

]
f = 3w, 3 =

[
0nf ×(nu+nd) Inf

]
.

A general schematic of the FTC system is given in Figure 1.
The purpose of fault estimation problem is to obtain an estimate f̂ ∈ R

nf fulfilling some prespecified fault detection
objectives. This objective can be captured by the detection performance measure

zd ≜ f − f̂ ,

where f = Ωf f . The diagonal proper stable transfer function matrix Ωf captures frequency information of the fault f.23

Given the input and output data from the healthy plant and 𝛾 > 0, the data-driven sensor fault estimator problem in
an ∞ set up is to select f̂ such that ||Tzw||∞ ≤ 𝛾 .

Note that the estimated fault f̂ is considered as a virtual control input in the formulated ∞ set up, so its magnitude
should be limited. Therefore, the performance measure zf̂ is defined in order to achieve reasonable control effort for the
virtual control signal f̂ and is given by

zf̂ ≜ Ωf̂ f̂ ,

where the transfer function matrix Ωf̂ is assumed to be proper and stable. Then we can define the unified performance
measure z for detection purposes as

z ≜

[
zd

zf̂

]
. (3)

We can now formulate the fault estimation problem as a minimax ∞-optimization problem in a data-driven setup
as follows:

Problem 1. Let the input and output data of the healthy plant (i.e., plant G with f ≡ 0) and 𝛾 > 0 is available. Compute
the fault estimate f̂ such that

min
f̂

sup
w

J(𝛾) ≤ 0, (4)

where the cost function J is defined by

J(𝛾) ≜
𝜌−1∑
l=0

(z[l]Tz[l] − 𝛾2w[l]Tw[l]), (5)
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SALIM et al. 6995

where 𝜌 denotes the finite-horizon length.
The estimated fault f̂ is then used to generate a corrected output y − f̂ to compensate the effect of the sensor fault f on

the faulty output y.
The fault-tolerant controller can now be obtained by solving a data-driven∞ control design problem: given the input

data and corrected output and 𝛾c > 0, determine the control sequence u such that the ||Tzcr||∞ ≤ 𝛾c, where r ∈ R
ny is the

reference signal. Solving this control problem results in a controller that achieves some predefined control objectives. We
now introduce a performance measure zc for control purposes as

zc ≜

[
zr

zu

]
=

[
Ωr(r − (y − f̂ ))

Ωuu

]
, (6)

where Ωr and Ωu are appropriate proper stable transfer function matrices.
We can now formulate the sensor FTC problem as a minimax ∞-optimization problem in a data-driven setup as

follows:

Problem 2. Given input data and the corrected output data and 𝛾c > 0, find the control u such that

min
u

sup
r

Jc(𝛾c) ≤ 0, (7)

where the cost function Jc is defined by

Jc(𝛾c) ≜
ic−1∑
l=0

(zc[l]Tzc[l] − 𝛾2
c r[l]Tr[l]). (8)

Here, ic denotes the finite-horizon length.

The solutions of the Problems 1 and 2 are discussed in Section 3. These solutions are based on a subspace predictor
proposed in References 10,11. We next provide an overview of the subspace predictor-based design methodology.

2.1 Subspace predictor-based design

The main purpose of a subspace predictor is extrapolation of future plant I/O behaviour from past I/O data to solve
Problems 1 and 2. The subspace predictor design methodology is described as follows: Let 𝓁, 𝜃, and 𝜙 represent present,
past and future time indices, respectively. If we are given with the future inputs {u⃗}𝓁𝓁+𝜌−1 and the past data Λ𝜃[𝓁], then
the subspace predictor design problem is to determine Υw, Υu to estimate the future output

{⃗̂y}𝓁𝓁+𝜌−1 = ΥwΛ𝜃[𝓁] + Υu{u⃗}𝓁𝓁+𝜌−1, (9)

where i is the horizon of prediction and

Λ𝜃[𝓁] ≜

[
{u⃗}𝓁−𝜌𝓁−1

{y⃗}𝓁−𝜌𝓁−1

]
. (10)

Suppose that the input–output data from the following fault-free system without disturbance{
x[𝓁 + 1] = A x[𝓁] + B u[𝓁] + e[𝓁]
y[𝓁] = C x[𝓁] + D u[𝓁] + 𝜗[𝓁],

(11)

is available as follows:

{u⃗}0
N−1, {y⃗}0

N−1. (12)
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6996 SALIM et al.

In order to determine Υw, Υu, we arrange (12) in the form of the following Hankel matrices:

U𝜃 =
[
{u⃗}0

𝜌−1 {u⃗}1
𝜌 … {u⃗}j−1

𝜌+j−2

]
, Y𝜃 =

[
{y⃗}0

𝜌−1 {y⃗}1
𝜌 … {y⃗}j−1

𝜌+j−2

]
U𝜙 =

[
{u⃗}𝜌2𝜌−1 {u⃗}𝜌+1

2𝜌 … {u⃗}𝜌+j−1
2𝜌+j−2

]
, Y𝜙 =

[
{y⃗}𝜌2𝜌−1 {y⃗}𝜌+1

2𝜌 … {y⃗}𝜌+j−1
2𝜌+j−2

]
, (13)

where j = N − 2𝜌 + 1. We aim at finding a predictor that optimizes the j prediction problems simultaneously in the least
squares sense. The solution can be obtained by minimizing the following norm:

min
Υw,Υu

‖‖‖‖‖‖Y𝜙 −
[
Υw Υu

][Λ𝜃
U𝜙

]‖‖‖‖‖‖
2

F

,

where

Λ𝜃 ≜

[
U𝜃

Y𝜃

]
. (14)

For finding Υw and Υu, the QR decomposition can be employed as follows. First, the following QR-decomposition is
computed:

⎡⎢⎢⎢⎣
Λ𝜃
U𝜙

Y𝜙

⎤⎥⎥⎥⎦ = RTQT =
⎡⎢⎢⎢⎣
R11 0 0
R21 R22 0
R31 R32 R33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Q1

Q2

Q3

⎤⎥⎥⎥⎦ , (15)

then

Υ =
[
Υw Υu

]
=
[

R31 R32

][R11 0
R21 R22

]†

. (16)

In the subspace predictor design methodology presented above, the disturbance effect is not considered, but in this
article, we assume that the data is collected from the system affected by disturbance. Then, an estimate of future output
can be modified as

{⃗̂y}𝓁𝓁+𝜌−1 = ΥwΛ𝜃[𝓁] + Υu{u⃗}𝓁𝓁+𝜌−1 + Υd{d⃗}𝓁𝓁+𝜌−1.

Note that we do not explicitly require to determine Υd because the effect of Υd{d⃗}𝓁𝓁+𝜌−1 can be attenuated by tuning a
certain transfer function matrix, which will be explained in the following section.

3 MAIN RESULTS

This section proposes a solution to the estimation and control problems, that is, Problems 1 and 2, respectively, based
on the subspace predictor-based algorithm introduced in Section 2.1. Figure 2 shows the setup for data-driven ∞ fault
estimator. The future output estimate yh in Figure 2 is generated by the subspace prediction algorithm using the input
and output data from the healthy system, whereas the signal f̂ in Figure 2 is generated by the fault estimator unit by
minimizing the combined detection measure z. To this end, the transfer function matrices Ωf , Ωf̂ , and Ωd are assigned
to represent the fault estimation objectives. Ωd is usually a low pass filter. By tuning Ωd, the effect of disturbance, mod-
eled by ΥdD𝜙 on fault estimate f̂ , is attenuated. The transfer function matrix Ωf̂ is usually a diagonal matrix used for
tuning the amplitude of the estimated fault. Larger Ωf̂ leads to a smaller amplitude for the estimated fault and vice
versa. The transfer function matrices Ωd, Ωf , and Ωf̂ can be written in the following minimal realization state-space
form:
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SALIM et al. 6997

F I G U R E 2 Data-driven fault estimator

𝛀d ∶

{
xd[𝓁 + 1] = Ad xd[𝓁] + Bd d[𝓁]
d′[𝓁] = Cd xd[𝓁] + Dd d[𝓁]

(17)

𝛀f ∶
⎧⎪⎨⎪⎩

xf [𝓁 + 1] = Af xf [𝓁] + Bf (y[𝓁] − yh[𝓁] − d′[𝓁])
f [𝓁] = Cf xf [𝓁] + Df (y[𝓁] − yh[𝓁] − d′[𝓁])
zd[𝓁] = f [𝓁] − f̂ [𝓁]

(18)

𝛀f̂ ∶

{
xf̂ [𝓁 + 1] = Af̂ xf̂ [𝓁] + Bf̂ f̂ [𝓁]
zf̂ [𝓁] = Cf̂ xf̂ [𝓁] + Df̂ f̂ [𝓁].

(19)

As shown in Figure 3, the output of fault estimator unit, that is, f̂ is used to correct the system’s output. The corrected
output y − f̂ , and the input u are then used by controller unit to generate the signal u in order to satisfy control objectives
by minimizing zc. To this end, the transfer function matrices Ωr and Ωu are assigned. Ωr is usually a low pass filter. On
the other hand, Ωu is usually chosen a high pass filter. The transfer function matrices Ωr and Ωu have following minimal
realization state space form:

𝛀r ∶

{
xr[𝓁 + 1] = Ar xr[𝓁] + Br [r[𝓁] − (y[𝓁] − f̂ [𝓁])]
zr[𝓁] = Cr xr[𝓁] + Dr (r[𝓁] − (y[𝓁] − f̂ [𝓁])),

(20)

𝛀u ∶

{
xu[𝓁 + 1] = Au xu[𝓁] + Bu u[𝓁]
zu[𝓁] = Cu xu[𝓁] + Du u[𝓁].

(21)

Gathering the I/O data from (7)–(19), we arrive at

{d⃗′}𝓁𝓁+𝜌−1 = Γdxd[𝓁] + Hd{w⃗}𝓁𝓁+𝜌−1 (22)

{z⃗f̂ }
𝓁
𝓁+𝜌−1 = Γf̂ xf̂ [𝓁] + Hf̂ {

⃗̂f }𝓁𝓁+𝜌−1 (23)

{z⃗d}𝓁𝓁+𝜌−1 = Γf xf [𝓁] + Hf {y⃗}𝓁𝓁+𝜌−1 − Hf xd[𝓁] − Hw{w⃗}𝓁𝓁+𝜌−1 − HfΥwΛ𝜃 − {⃗̂f }𝓁𝓁+𝜌−1 (24)

{z⃗r}𝓁𝓁+𝜌−1 = Γrxr[𝓁] + Hr({r⃗}𝓁𝓁+𝜌−1 − ({y⃗}𝓁𝓁+𝜌−1 − {⃗̂f }𝓁𝓁+𝜌−1)) (25)

{z⃗u}𝓁𝓁+i−1 = Γuxu[𝓁] + Hu{u⃗}𝓁𝓁+𝜌−1. (26)
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6998 SALIM et al.

F I G U R E 3 Data-driven controller

Letting the subscript j denote f , d, f̂ , r, and u, Γj’s in Equations (22)–(25) are given as

Γj =

⎡⎢⎢⎢⎢⎢⎣

Cj

Cj Aj

…
Cj A𝜌−1

j

⎤⎥⎥⎥⎥⎥⎦
. (27)

Letting the subscript o denote f , f̂ , r, u, Ho’s in Equations (22)–(25) are given as

Ho =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Do 0 0 … 0
Co Bo Do 0 … 0

Co Ao Bo Co Bo Do … 0
⋮ ⋮ ⋮ ⋱ ⋮

Co A𝜌−2
o Bo Co A𝜌−3

o Bo … Co Bo Do

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and the lower triangular Toeplitz matrix Hd in (22) are given as

Hd =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Dd 2 0 0 … 0
Cd Bd 2 Dd 2 0 … 0

Cd Ad Bd 2 Cd Bd 2 Dd 2 … 0
⋮ ⋮ ⋮ ⋱ ⋮

Cd A𝜌−2
d Bd 2 Cd A𝜌−3

d Bd 2 … Cd Bd 2 Dd 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Let us define

Hw ≜ Hf Hd + Hf Υu u,

where u is a diagonal matrix with 1 elements on its original diameter.
The following lemma will be useful in proving our main results.
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SALIM et al. 6999

Lemma 1. 24 If M−1
1 and M−1

3 exist, then

[
M1 M2

MT
2 M3

]−1

=

[
(M1 − M2M−1

3 MT
2 )

−1 −(M1 − M2M−1
3 MT

2 )
−1M2M−1

3

−(M3 − MT
2 M−1

1 M2)−1MT
2 M−1

1 (M3 − MT
2 M−1

1 M2)−1

]
. (28)

Note that (28) can be written as

[
0 I

][M1 M2

MT
2 M3

]−1

= (M3 − MT
2 M−1

1 M2)−1
[
−MT

2 M−1
1 I

]
. (29)

Now we are ready to provide our main results.

Theorem 1. Let the input data u and the output data y from the healthy plant (i.e., plant G with f ≡ 0), for times
𝓁 − 𝜌, … ,𝓁 − 2,𝓁 − 1, are available. Then an ∞ fault estimator, satisfying (4), is given by

f̂ = (Inf 𝜌 + Qf̂ − Hw(HT
wHw − 𝛾2I)−1HT

w)−1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−Hw(HT
w Hw − 𝛾2I)−1HT

wHf + Hf

Hw(HT
wHw − 𝛾2I)−1HT

wHfΥw − HfΥw

Hw(HT
wHw − 𝛾2I)−1HT

wHfΓd − HfΓd

−Hw(HT
wHw − 𝛾2I)−1HT

wΓf + Γf

−HT
f̂
Γf̂

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎣

y
Λ𝜃[𝓁]
xd[𝓁]
xf [𝓁]
xf̂ [𝓁]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (30)

provided that

HT
wHw − HT

w(Inf 𝜌 + Qf̂ )
−1Hw ≺ 𝛾

2I. (31)

Proof. Let the input and output data from the unknown healthy plant (i.e., plant G with f ≡ 0) and yh extrapolated by a
subspace predictor, are available. Substituting (23) and (24) into (3) yields

z =

[
zd

zf̂

]
=

[
−Hf Γd xd[𝓁] + Γf xf [𝓁] − Hw w − Hf Υw Λ𝜃 + Hf y − f̂

Γf̂ xf̂ [𝓁] + Hf̂ f̂

]
. (32)

Substituting (32) into (5) results in

J = ST M S, (33)

where

S =
[

wT f̂
T

y Λ𝜃[𝓁]T xd[𝓁]T xf [𝓁]T xf̂ [𝓁]T
]T
,

M ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HT
w Hw − 𝛾2I HT

w −HT
w Hf HT

w Hf Υw HT
w Hf Γd −HT

w Γf 0
Hw Inf i + Qf̂ −Hf Hf Υw Hf Γd −Γf HT

f̂
Γf̂

−HT
f Hw −HT

f Qf −Qf Υw −Qf Γd HT
f Γf 0

ΥT
w HT

f Hw ΥT
w HT

f −ΥT
w Qf ΥT

w Qf Υw ΥT
w Qf Γd −ΥT

w HT
f Γf 0

ΓT
d HT

f Hw ΓT
d HT

f −ΓT
d Qf ΓT

d Qf Υw ΓT
d Qf Γd −ΓT

d HT
f Γf 0

− ΓT
f Hw −ΓT

f ΓT
f Hf −ΓT

f Hf Υw −ΓT
f Hf Γd ΓT

f Γf 0
0 ΓT

f̂
Hf̂ 0 0 0 0 ΓT

f̂
Γf̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q𝜁 ≜ HT
𝜁 H𝜁 ,
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7000 SALIM et al.

where 𝜁 stands for f , d, and f̂ . Therefore, the Problem 1 boils down to

min
f̂

sup
w

ST M S ≤ 0. (34)

Then f̂ and w in (34) can be had by solving

𝜕J

𝜕

[
w
f̂

] = 0,

which yields

[
w

f̂ opt

]
=

[
HT

w Hw − 𝛾2I HT
w

Hw Inf 𝜌 + Qf̂

]−1 ⎡⎢⎢⎣
HT

w Hf −HT
w Hf Υw −HT

w Hf Γd HT
w Γf 0

Hf −Hf Υw −Hf Γd Γf −HT
f̂
Γf̂

⎤⎥⎥⎦ S. (35)

Next f̂ opt can be written as (30) using (29).
The sufficient optimality condition demands that nf 𝜌 eigenvalues of the Hessian matrix

𝜕2J

𝜕2

[
w
v

] =

[
HT

w Hw − 𝛾2I HT
w

Hw Inf 𝜌 + Qf̂

]
≜

[
M1 M2

MT
2 M3

]

must be positive and remaining (nf + nd + ny)𝜌 eigenvalues must be negative.11 Using Schur decomposition, the Hessian
matrix can be written as

𝜕2J

𝜕2

[
w
v

] = ΓT

[
M1 − M2M−1

3 MT
2 0

0 M3

]
Γ,

where

Γ =

[
I 0

M−1
3 MT

2 I

]
.

For maximization over w and minimization over f̂ , nf 𝜌 eigenvalues of the matrix[
M1 − M2M−1

3 MT
2 0

0 M3

]

must be positive, and the remaining (nf + nd + ny)𝜌 eigenvalues must be negative. Since M3 ≻ 0, and M3 ∈ R
nf 𝜌×nf 𝜌,

therefore, M1 − M2M−1
3 MT

2 ≺ 0, which gives us

HT
w Hw − HT

w (Inf 𝜌 + Qf̂ )
−1 Hw ≺ 𝛾

2 I.

This completes the proof. ▪

Theorem 2. Let the input data u and output data y from the faulty plant G, reference signal r, and the fault estimate f̂ from
Theorem 1 are available. Then an ∞ controller, satisfying (7), is given by
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SALIM et al. 7001

uopt = −(ΥT
u Qr Υu + Qu)−1

⎡⎢⎢⎢⎣
(ΥT

u Qr Υw)T

(−ΥT
u (𝛾−2

c Qr + I) HT
r Γr)T

(HT
u Γu)T

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

Λ𝜃[𝓁]
xr[𝓁]
xu[𝓁]

⎤⎥⎥⎥⎦ (36)

Qr ≜ (Q−1
r − 𝛾−2

c I)−1,

provided that

𝛾c > 𝛾cmin ≜

√
𝜆[(Q−1

r + Υu Q−1
u ΥT

u )−1], (37)

where
uopt ≜ {u⃗}𝓁𝓁+𝜌−1. (38)

Proof. Let the input and output data from the unknown faulty plant G and the fault estimate f̂ from Theorem 1 are
available. Substituting (25) and (26) into (6) yields

zc =

[
zr

zu

]
=

[
Hr −Hr Υu −Hr Υw Γr 0
0 Hu 0 0 Γu

]
S. (39)

Substituting (39) into (8) results in

J = ST M S, (40)

where

S =
[

rT uT Λ𝜃[𝓁]T xr[𝓁]T xu[𝓁]
]T
,

M ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Qr − 𝛾2
c I −Qr Υu −Qr Υw HT

r Γr 0
−ΥT

u Qr ΥT
u Qr Υu + Qu ΥT

u Qr Υw −ΥT
u HT

r Γr HT
u Γu

−ΥT
w Qr ΥT

w Qr Υu ΥT
w Qr Υw ΥT

w HT
r Γr 0

ΓT
r Hr −ΓT

r Hr Υu −ΓT
r Hr Υw Qr 0

0 ΓT
u Hu 0 0 Qu

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Q𝜁 = HT
𝜁 H𝜁 ,

where 𝜁 stands for r,u. It should be noted that {y⃗}𝓁𝓁+𝜌−1 − {⃗̂f }𝓁𝓁+𝜌−1 is a new output vector that should be replaced by (9)
to obtain the result of Theorem 2. Then, the Problem 2 boils down to

min
u

sup
r

ST M S ≤ 0. (41)

Then u and r in (41) can be had by solving
𝜕J

𝜕

[
r
u

] = 0,

which yields [
r

uopt

]
=

[
Qr − 𝛾2

c I −Qr Υu

−ΥT
u Qr ΥT

u Qr Υu + Qu

]−1 [
QrΥw −HT

r Γr 0
−ΥT

u QrΥw ΥT
u HT

r Γr −HT
u Γu

] ⎡⎢⎢⎢⎣
Λ𝜃[𝓁]
xr[𝓁]
xu[𝓁]

⎤⎥⎥⎥⎦ . (42)
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7002 SALIM et al.

Next uopt can be written as (36) using (29). The sufficient optimality condition demands that m𝜌 eigenvalues of the
Hessian matrix

𝜕2J

𝜕2

[
r
u

] =

[
Qr − 𝛾2

c I −Qr Υu

−ΥT
u Qr ΥT

u Qr Υu + Qu

]
≜

[
M1 M2

MT
2 M3

]

must be positive and remaining nyi eigenvalues must be negative.11 Using Schur decomposition, the Hessian can be written
as

𝜕2J

𝜕2

[
r
u

] = ΓT

[
M1 − M2M−1

3 MT
2 0

0 M3

]
Γ,

where

Γ =

[
I 0

M−1
3 MT

2 I

]
.

For maximization over r and minimization over u, m𝜌 eigenvalues of the matrix[
M1 − M2M−1

3 MT
2 0

0 M3

]

must be positive, and the remaining ny𝜌 eigenvalues must be negative. Since M3 ≻ 0, and M3 ∈ Rnu𝜌×nu𝜌, therefore,
M1 − M2M−1

3 MT
2 ≺ 0, which gives us

HT
w Hw − HT

w (Inf 𝜌 + Qf̂ )
−1 Hw ≺ 𝛾

2 I.

The proof is complete. ▪

The Algorithm 1 sums up the suggested methodology for data-driven ∞ sensor FTC system.

Algorithm 1. Data-driven ∞ Sensor FTC Design

Gather the input and output data from the fault-free system G.
Construct Hankel matrices U𝜃 , Y𝜃 , U𝜙, Y𝜙 as in (13).
Construct Λ𝜃 as in (14).
Calculate Υw and Υu using (16).
Select the transfer function matrix Ωj (j symbolizes f , d, f̂ , r,u).
Initialize xj[𝓁] (j symbolizes f , d, f̂ , r,u).
Calculate 𝛾min using (31) and select 𝛾 > 𝛾min.
Calculate 𝛾cmin using (37) and select 𝛾c > 𝛾cmin.
for 𝓁 = 1 → 𝜌 do

Form Λ𝜃[𝓁] using (10).
Compute f̂ [𝓁] using (30).
Update xj[𝓁] (j symbolizes f , d, f̂ ).
Take the measurement y[𝓁] from the system G.
Correct the current system output measurement using f̂ [𝓁] and compute y[𝓁] − f̂ [𝓁].
Compute uopt for current time instant 𝓁 using (36).
Update xr[𝓁] and xu[𝓁].

end for
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SALIM et al. 7003

4 APPLICATION TO ROUV

In this section, we provide a practical application of our proposed algorithm to a ROUV. The ROUV has recently been a
benchmark system for studying fault detection and control design; see References 25-27.

In ROUV, faults can occur in the depth sensor, ground speed sonar, altitude and frontal sonar, global positioning
system, vision system, baseline acoustic, compass, current meter, and vision system.28 A fault-tolerant scheme is strongly
motivated to safely recover the compromised ROUV because no choice is available for turning off the power or applying
some braking mechanism in case of a fault.

Next, we apply our Algorithm 1 to the steering subsystem of an ROUV. The discretized parameters of the steering
control subsystem, taken from Reference 26, are given by

x[𝓁 + 1] =

⎡⎢⎢⎢⎢⎢⎣

−0.71 −0.09 −0.2 −0.005
2 0 0 0
0 0.5 0 0
0 0 0.12 0

⎤⎥⎥⎥⎥⎥⎦
x[𝓁] +

⎡⎢⎢⎢⎢⎢⎣

0.5
0
0
0

⎤⎥⎥⎥⎥⎥⎦
u[𝓁] +

⎡⎢⎢⎢⎢⎢⎣

0.5
0.5
0.5
0.5

⎤⎥⎥⎥⎥⎥⎦
d[𝓁] + e[𝓁],

y[𝓁] =
[
0 0 1 0

]
x[𝓁] + f [𝓁] + 𝜗[𝓁], (43)

where x = [𝜈, r, 𝜓, 𝛿r]T , u = 𝛿rd, y = 𝜈; 𝜈 is the absolute position in Y plane, r is the angular velocity in Z plane, 𝜓 is the
orientation with respect to Z plane, 𝛿r and 𝛿rd are the actual and demanded deflection of the rudder in degrees, respectively.
The I/O measurement data is obtained from the fault free systems (i.e., system (43) with f ≡ 0) with sampling rate 100 Hz,
i = 30, and N = 1059. We choose the transfer function matrices as

Ωd = 1
(0.1s + 30)

, Ωf =
11

(0.6s + 10)
,

Ωf̂ = 1, Ωr =
0.5

10s + 0.01
, Ωu = 0.1s + 0.05

5s + 250
,

which are discretized when applying Algorithm 4.1.
Figure 4(A) shows that the fault f happens between the samples 2000 and 2600, and the disturbance, d, occurs between

the samples 1000 and 1300. Equation (31) is satisfied for 𝛾 ≥ 0.2. Therefore, we choose 𝛾 = 0.7 to achieve the fault detec-
tion objectives. Equation (37) is satisfied for 𝛾c ≥ 0.5. Therefore, we choose 𝛾c = 0.8 is to achieve control objectives. We
choose a step function as a reference input. Figure 4(B) shows the fault estimate. As shown in Figure 4(B), the estimated
fault is in good agreement with the fault that occurred.

(A) (B)

F I G U R E 4 (A) Fault and disturbance signals and (B) the estimated fault f̂
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7004 SALIM et al.

(A) (B)

F I G U R E 5 (A) The faulty system output and (B) the fault-tolerant control system output

(A) (B)

F I G U R E 6 (A) Reference tracking error and (B) the control input u

Figure 5(A) shows the output of the faulty system. It can be observed in Figure 5(A) that the effect of disturbance and
fault persists on the output. Figure 5(B) shows the output of our proposed FTC system. It is evident from Figure 5(B) that
the effect of disturbance and fault on the output is almost eliminated and good reference input tracking is obtained.

In Figure 6(A), the tracking performance and robustness of the FTC system against fault and disturbance are demon-
strated. As evident from Figure 6(A), the error is approximately equal to zero most of the time; its amount is limited when
the fault and disturbance occur. Figure 6(B) shows the control effort. It can be observed in Figure 6(B) that the control
effort is reasonable.

Figure 7 shows the effect of choosing Ωd on the output of our proposed FTC system. In this figure, the output of the
FTC system is plotted for three different choices of Ωd, that is, Ωd1 = 10

(0.1s+100)
, Ωd2 = 1

(s+1)
, Ωd3 = 10

(10s+1)
. As shown in

Figure 7, Ωd can be tuned effectively to reduce the effect of disturbances on the output.
Model-based fault estimation and accommodation of ROUV subject to sensor faults have been studied in Reference

26. However, the complex modeling process poses difficulty in accurately determining the system parameters, or find-
ing them may be expensive. By contrast, our method is data-driven and it does not require information about the system
parameters. Moreover, our application also covers reference tracking and reasonable control effort that were not consid-
ered in Reference 26. It can also be observed from [ 22, figure 5] that between samples 2000 and 2600, the SFDC approach
based on subspace identification proposed in our recent work is not tolerant to faults. However, it can be seen from
Figure 5(B) that the effect of fault is eliminated. Therefore, the FTC problem proposed here is robust against sensor faults.
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SALIM et al. 7005

F I G U R E 7 The effect of Ωd on the fault-tolerant control system output

Note that our method is based on the subspace identification algorithm, which requires a large set of data samples. It
also requires the data to be ergodic, and input and noise to be independent to remove the effects of noise; as evident from
Figures 4(B), 5(B), and 6(A) that the effect of noise is attenuated on the estimated fault, the FTC output, and tracking
error, effectively. Fortunately, in modern practical systems, a large amount of data is usually available due to increasing
computational resources, so obtaining a large dataset is not a hurdle. For applying our algorithm to practical applications,
it is also required that the input signal is persistently exciting.

5 CONCLUDING REMARKS

The article proposes a data-driven sensor FTC system using linear subspace predictors. The sensor fault estimation
problem is formulated in an ∞ setting, where the fault estimate is considered a virtual control input. The subspace
predictor estimates the healthy plant output from experimental I/O data to solve the fault estimation problem. The sen-
sor fault estimate is then used to generate a corrected output for FTC purposes. The FTC output is obtained using the
corrected output and satisfying some control objective in an ∞ based control setup.

Since the data-driven FTC problem is formulated as an ∞ control problem, the proposed fault estimation and FTC
schemes guarantee robustness against disturbances, and they can eliminate false positive alarms of detecting distur-
bances instead of faults. The proposed method has less overall complexity than other data-driven methods because it
does not require generating a residual for fault detection and provides a simpler algorithm that is easy to implement.
Therefore, our proposed method is better suited for practical applications in terms of implementation and robustness
guarantees.

The methodology proposed in this article, nevertheless, has some limitations. First, the input signal needs to be persis-
tently exciting. Second, the proposed method applies only to LTI systems. Therefore, a nonlinear system must be excited
so that its linearization is valid around an operating point, and the amplitude of the input signal should be small enough
to ensure that it may not change a certain chosen operating point to another.

We plan to extend the proposed data-driven FTC problem to cover the actuator and component faults. Extending the
proposed method for nonlinear systems also seems an interesting future research direction to explore. We also aim at for-
mulating the data-driven fault estimation and fault-tolerant problems in a mixed 2∕∞ setting to guarantee robustness
against both disturbance and noise.
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