Error estimates for band-limited spherical
regularization wavelets in some inverse
problems of satellite geodesy

Sergei Pereverzev and Eberhard Schock

Abstract

In this paper we discuss a special class of regularization methods
for solving the satellite gravity gradiometry problem in a spherical
framework based on band-limited spherical regularization wavelets.
Considering such wavelets as a result of a combination of some regu-
larization methods with Galerkin discretization based on the spherical
harmonic system we obtain the error estimates of regularized solutions
as well as the estimates for regularization parameters and parameters
of band-limitation.

1 Introduction

In a spherical framework the problems arising in satellite gradiometry can
be formulated as an integral equation of the first kind

Afa) = [ <r2 —

=R | ar m) f(y)dwr(y) = g(z) (1)
Qr

To be more specific, we assume a spherical surface of the earth Qp = {x e R?,

2| = (22 + 2% + 22)"/> = R } as well as the orbit Q, = {z e R |z| =7},

r > R, (dwg denotes the surface-element on Qy). From a physical point of

view, f(y), y € Qg, represents the gravitational potential at the surface of
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the earth Qg, g(z), z € Q,, is the measured function at satellite altitude.
For more details we refer the reader to [10,11].

In what follows €2, denotes the surface of the earth Qg for £ = 1 and €, for
¢ = 2. Furthermore, we use the Hilbert space L2({),) containing all square-
summable functions on the sphere 2, equipped with the inner product

(f,9)e = Qf FW)g(y)dw,(y)

and with the usval norm | f|,, = (f, f);/z.

Let {Yok, n=0,1,2,...; k=1,2,....2n + 1} be a set of spherical harmonics
L*-orthonormalized with respect to the unit sphere in Euclidean space R?
(for more details see [2,9]). One of the central statements which relates a
system of spherical harmonics {Yox, £ =0,1,2,...,2n + 1} of order n to a
Legendre polynomial of degree n

Po(t) = (2nl) ™ £ (22— 1)"]

dtn

1s the addition theorem

2n+1

D Yor(@Yar(h) = BEPE- ), Je| = |kl =1, 2)
k=1
where § - h = §1hy + §3hy + E3hs. For later use we introduce the L2(€)-
orthonormal system {Yn(,ek)} , £ =1,2, given by
Yn(gk)(y) = rlen,k (,‘%) , Y €8y,

where r; = R and ry = . The corresponding spherical harmonic spaces are
denoted by

hn(Q0) = span {¥, k=1,2,...2n + 1]



Of particular interest for our considerations are spherical Sobolev spaces
introduced in [3]. Starting with an unbounded self-adjoint strictly positive
definite in L?(£),) operator

oo 2n+1

Li@) = 32 5. (n+ )/ 79 v )

n=0 j=1
where f, o = (f, Y,fi-))g, we introduce the space
Ey () = { ”Lsf”u Zo Z (n+ )23 (f(£)> } .
n=0 j=

On F,(£2,) we are able to define an inner product
or s 2 A 1yes (®) [ ®
(f.9)ee = (1 L0 = 5 3. (3 (£2) (49)
n=0 j=1

and the associated norm | fl,,, = (f,f )1/ ? . The spherical Sobolev space
Hs(S) is the completion of E4() under the norm |9, In particular
Ho(Q) = L2(Qy).

A straightforward calculation (see [11, p. 42], [4]) shows that if we con-
sider (1) only at z € Q. we can rewrite A in the form of a singular-value
decomposition

Af(z) = [ (i’é 2’§lony<,;)<y)yéz’<x>> F(y)dwg(y)

i\ ®
= S0 3 Y@
o =™

where o, = (?)n (n + 1)(n + 2)r~2. Now we recognize that o, — 0 for

n — oo and therefore A is compact. Remembering Hadamard’s definition
of a well-posed problem (existence, uniqueness, continuity of the inverse),
we consequently see that the problem (1) is ill-posed as it violates the first
and third condition. Due to the ill-posedness of the equation (1) a variety
of regularization methods are being considered for an approximate solution,
where particular emphasis must be put on balancing the data and the ap-
proximation error. In this paper we are concerned with a special class of
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regularization methods, as proposed in [4,11]. More precisely, the authors
of these papers implement regularization methods based on filtered singular-
value decomposition as a wavelet analysis. This enables us to pass over from
one regularized solution to another by adding so-called detail information in
terms of wavelets. It should be remarked that the idea to use wavelet based
regularization techniques is realized already in [1,5]. The essential feature
of the approach proposed in [4,11] is the ability to construct regularization
wavelets on the sphere, for example. On the other hand, in the theory of
spherical regularization wavelets the so-called band-limited case is among
the most important. In this case the spherical regulariziaton wavelet packet
as well as the spherical regularization scaling function and corresponding
regularized solution of (1) belong to H,,(£,). Therefore, using band-limited
spherical regularization wavelets we reduce the number of wavelet coefficients.
Moreover, the numerical realization can be performed by a fast pyramid
scheme [13]. Lastly, the basis of H,,(£),) is the system of spherical harmonics
{ Yn(ek) }. On the other hand, it is not surprising that in our days geodesy is still
dominated by spherical harmonics models for a global gravitational potential
determination, i.e. up to now a table of spherical harmonic coefficients to a
certain order is available.

A very important question when dealing with band-limited spherical regular-
ization wavelets is the relation between the regularization level and the pa-
rameter of band-limitation m. Moreover, since in practice we are confronted
with error affected right hand sides g5 of (1) such that

”g - 95”2,2 < 67

the relation of regularization level as well as the parameter of band-limitation
m to the level of noise ¢ is another important question.

In this paper we consider band-limited spherical regularization wavelets as
a result of a combination of various regularization methods with Galerkin
discretization based on the spherical harmonic system and investigate both
the above mentioned questions. From such point of view the second question
is connected with error estimates of regularized solutions in terms of the
level of noise ¢. There are many papers devoted to the in-depth study of this
problem. But as has been mentioned in [11, p.44] (see Section 2 of this paper
too) we have to deal with the exponentially ill-posed integral equation (1).
Tikhonov regularization for such ill-posed problems was investigated in [8].
In Section 2 we apply some elements of the technique from [8] to the case of
general regularization methods.



The essence of the first above mentioned question consists in the relation
between the level of Galerkin discretization and the regularization parameter.
Probably such a question was considered for the first time in [12] and later
in [6,7]. In Section 4 we extend this analysis to the geodetic exponentially
ill-posed problems.

2 A general error estimate for the exponen-
tially ill-posed problem (1)

In this section we consider the frequently used constraint of assuming that the
exact solution f, of (1) is in some fixed ball in a Sobolev space H,(Q2z), s > 0.
Recall that {H,(€), s € R} is a Hilbert scale generated by a selfadjoint,
densely defined, unbounded operator L on L?(€). We study a general class
of regularization methods to reconstruct the solution f, of (1) from noisy
data gs, in which the approximate solutions f:f are defined by

=G, (LAA) L™ A%gs (4)
As usual (see, for example, [14]), we suppose that G.,()) is a piecewise con-
tinuous function and satisfies the following assumption.

Assumption 1. There ezist constants ¢, < oo, d, < oo such that with
c=|L°A*AL¢|| L2(Qn)— L2(0g) the following estimates are satisfied:

sup VG (N)| < 6, 0<p< 1
0<A<e
sup [A[1—AG,(A)]| <dpy?, 0< g <1

0<A<e

Note that regularization methods defined by (4) have been studied in [14] in
the case when A is a finitely smoothing operator. Now applying some ideas
of [8] we obtain an estimate on the rate of convergence of fg to f. for the
exponentially ill-posed problem (1), i.e. for an infinitely smoothing operator
A

Let

v(e) = {”f||2,1 : f € Hs(2g), ”Afnz,z e, ||L8f”2,1 < 1}



Lemma 1. There ezists a constant c., depending only on r and s, such
that

v(e) < crglog™ L,

Proof. Let £, be the spectral measure of L, i.e.

6f@)= % zf,, Y ().

n+ <\ J=

From Theorem 2.10, Lemma 3.5 and Theorem 3.6 of [8] it follows that if for
some constants a >0, 6>1, p>0

1AfN5 = P* [ exp(=bA*)d(6rf, £

then there exists a constant ¢ such that

where
o0 = (aty)"
Note that
P [exp(=bA")d(4rf, f)1 = p*(exp(=bL%)f, f):
= P55 ey
_0 ] ’J

-1
andset a =1, b = 2log %, p = (r Rr) . Then from (3) and from the

valid relation

2 2 2 r a
o2 = (§) " (nt D)7 (n42)° Le-2nlogf > p26—b(n+%)

rd = r

we conclude that for any f € L?(Qg)

4515, = 50255 (1) 2 2 J exploon)a(enf, s
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Now the statement of the lemma follows immediately from the above men-
tioned results of [8]. O

Theorem 1. Let the Assumption 1 be satisfied. Then for f, € Hy(Qg) and
v = & there holds the error estimate

foe il < clog™ B
where ¢ = c(r, s, || full, 5,) is a constant independent of 6.
Proof. We put f, = G,(L2°A*A)L 2°A*g and T = AL"*°. Then
fy =13 = Gy(L™* A" A) L™ A* (g — gy)
using the formula [14]
L°G,(L™*A*A) = G(T*T)L*
and Assumption 1, we obtain the estimate

o= )y = TG L2 4 A)L 24 (g = gy,
IG(T*T)T*(g — go)l,
lo = gslly sup [X/2G,(3)
0<x<e
< ey V%6

IN

Moreover, it follows from Lemma 3.1 [15,p.34] that for any piecewise contin-
uous function G(\)

TG(T*T) = G(TT*)T, T*G(TT*) = G(T*T)T*.
Keeping in mind these formulas from the Assumption 1 we have

“A(fw - fi)Hz,z = ”AL%LSG‘/(L_%A*A)L_%A* (g~ 95)”2,2
|AL=*G(T*T)L~* A* (9 - 96)”2,2
ITG(T*T)T*(g - 96)”2,2
|Gy (T*T) TT* (9 — ) ”2,2
“9—96“2,2 sup [AG,())]

0<A<e

IA

IN
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Let co = max{cy/y,c1}. As a result of the above mentioned estimates we

obtain
s 8 =13
‘ L (CO‘S”/_I/?') l21 =5 HA <CO6V—1/2> 2,2 SV
Then from Lemma 1 there follows
1= £3ll1 < cocrs b log™ 2= (6)

Now we note that
fe— f,y = ([ - GV(L_zsA*A)L‘%A*A)f*.
Applying the same tricks as above we have

| = £)ll,y = NP = G (T°T) LA AL 1) £,
”(I - GW(T*T)T*T)L"f*”m
“f*“s,?,l sup |1 — AG,(N)]

0<A<c

S dO ||f*||s,2,l :

IA

”A(f f7)|’2’2 = |AL™L2(f. - f’r)”2,2

T - G TR,
= I = G(TT)TTIT L L],

1 £ells20 sup. \(1 - ,\G_y(/\)))\l/z‘

< dygY | fullgay -
From these inequalities and the notation d = max{dy, d; /2} one can conclude
that

I

IN

(i)l <t )], s v

Then by virtue of Lemma 1

1
f* - f < dcr,s log_s 0= 7
1fe = Follas 7 (7)



For y = §° this estimate together with (6) yields the desired estimate (5)

’Y||2,1 S “f’?' f6”21+”f* f"/”21
< CoCrys v,_log \/_ +dc,slog™* f
< clog™
The theorem is proved. O

Note that in the case of the Tikhonov regularization, i.e. G,(A) = (y+A)™",
the assertion of the Theorem 1 follows from [8].

3 Spherical regularization wavelet packets

In this section we follow the approach [4,11] and our aim is to show that the
regularized solution f$ is obtainable by decomposition and reconstruction of
the noisy right hand side g5 with respect to the wavelet basis. We start with
the representation

f(@) = Gy(L™* A" A)L > A"gs = f ke, (2,9)9s(y)dw, (y),

where

ka(xvy) §:27§1G (( 2)23>( Un)?sy;z(lz)(x)y;fi‘)(y)'

n=0 1= n+2

If we apply the addition theorem (2), ke, reduces to a so-called radial basis
function which depends only on the inner product

Ty _ T1y1+woy2+x3ys
T Rr

- T Oy a2 T
kG,Y(.'E,y) = Zﬂ'}; (n+%)2sG'y <(’n+l)28) Pn (R_’Ig"/) .

n=0 2

Let {7} be a strictly decreasing sequence of real numbers satisfying

lim v, =0, lim v; = oc.

]—DOO

The function



with

b,(n) = (“_)\/ &, (i) ®)

is called the scale discrete spherical regularization scaling function corre-
sponding to the regularization method (4). Moreover, we call {¥;, j € Z},
defined by

with

A

bi() = ((30m) = (45(m)) 2 )

the scale discrete spherical regularization wavelet packet with respect to (4).
As in [4,11] we define the dilation operators D,, p € Z, acting on the families
{¢;}, {¥;} in the following way: Dpo; = ¢,,,,, Dp¥; = ¥,

In particular, we obtain ¥; = D;¥,. Thus, we refer to ¥, and ¢y as "mother
wavelet packet” and "mother scaling function” respectively. Moreover, we
define a rotation (shifting) operator R on Q,, £=1,2, by

2n

T

2

il

0 1
RP¢,(x) = ROD;o(x) = >N 4,n)Y ()Y 0), z €, (10)
n=0 1

In the same manner as (10) we define Rﬁl)Dj\Ilo(a:), z € Q which can be
interpreted as a dilated and rotated copy of the mother wavelet ¥,. From
Theorem 4.6 [4] it follows that
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2@ = f (f Ré%bo(y)g&(y)dwr(y)) R (z)dwp(2)

Qr

r

+ % [ | [ B2 D;%o(y)gs(w)dwn(v) | B D, @ (w)dwn(2)

3=00n \Qr
This formula shows the essential characteristic of regularization wavelets.
By adding the so-called detail information of level k as the difference of two
smoothings of two consecutive scales k + 1 and k (see (9)), we change the
regularized solution from fgk to fgkﬂ thereby satisfying ffk — f, in the case

that § — 0, ry;, ~ 6% (see Theorem 1).

4 Galerkin discretization and band-limited
spherical regularization wavelets

In this section we want to draw the attention to band-limited spherical regu-
larization wavelets. As in [11, p.113] we assume that there exists an increasing
sequence of non-negative integers {m;} such that for j € Z

ROD;¢o, ROD;Tg € Hy (), £=1,2 (11)
Let Qm be the orthogonal projector on H,,(Qg), that is

m 2n-+1
Qnf(®) = 32 3 Vo D@)f).

i=1

It is not hard to verify that

Qg

T

(@)= [ (f Ri”quso(y)ga(y)dwr(y)) RV D;go(z)dwa(2)

Keeping in mind this formula from (11) we conclude that in the band-limited
case fgj € Hpm,(Qr). Therefore

gj = megj = Qmj G’Yj (L-?sA*A)L—2sA*g6

On the other hand, a straightforward calculation shows that
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I

QmGV(L—2sA*A)L~2s G’Y(L_szmA*AQm)L'2S

— GV(L_%A*A)L_zSQm (12)

Thus, the only possibility to obtain the band-limited spherical regularization
wavelets (11) is to apply regularization methods defined by functions G, (A)
to the discretized equation AQm f(x) = gs(z) instead of Af(z) = gs(2). Then
by virtue of (12) the function

67n — G/‘/(L_ZSA*A)L_szmA*gé
gives the approximate solution of (1).

Theorem 2. Let the Assumption 1 be satisfied and f, € Hy(Qg). Then

+1
= Foallyy < clog™ & (1 + &l (BT ) ,
where c is the constant independent of &,v,m

Proof. By definition

1L (1 = Qm) fll3; = It = @Qm) Lfll3,
= 2 Y () () < m ) I,

n=m+1 =1

Furthermore, we have

0 -Quaslyy = & 025 (52) < ohnlfia |
= (r)2(m+l)wllf||22<cm (8 )2m+2 Hf“zz

rd

Now the same steps as in the proof of Theorem 1 lead to the estimates

1L (f5 = £3 )l IL°Gy(L™* A A)L™> (I - Qm) A*9s]l,,
“GV(T*T)LWS(I - Qm)A*!]&“z,l

ll

IA

sup |GA(NL™* (1 = Q) A*gs ),
< EA,allL_s(I Qm)(I Qm)A*gﬁnu
< @(m+3)7 NI - Qm) Agslly,
c m+1
S ymes=—2 (7) “96“22
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Moreover,

A = By = NALTSLPG, (L2 A A)2(1 - Q) A*gs|, 5
“TG’Y (T*T) L_S(I - Qm)A*96||2,2
IGY(TT*)TL *(I = Qm)A*gsll,

I

< sup (Gv(/\)’\l/z‘ IL™* (I = Qm) A*gs|ly
0<A<Le .
C m+
< = (B)7 llgslly

Finally, we apply Lemma 1 in a way analogous to that used before. Then as
a result of the above mentioned estimates we obtain

173 = Pl < s (27 gl g .

The assertion of the theorem follows from the last inequality and (6),(7).

By inspecting the result of Theorem 2 for an error free right hand side (§ = 0)
we can see that it has a sense to take the parameter of band-limitation m; for
band-limited spherical regularization wavelets as m; ~ log % From Theorem

2 and (7) it follows that in this case

f* - fwj,mj

< —s_1_
) <clog NGz

2, 3

On the other hand, using error affected data the exponentially ill-posed char-

acter of the original integral equation (1) leads to a much larger error level

in the solution in comparison to the data error. Namely, for m; ~ log %,
J

7j~62

_ 75 -5 1
f* 'yj,mj 2.1 S C]'Og 6"
’

Nevertheless, as appears from the numerical test example [4], the results are
still applicable and agree with the above mentioned estimates.
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