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Abstract
A characterisation of the spaces GK and G′

K introduced in Grothaus et al. (Meth-
ods Funct Anal Topol 3(2):46–64, 1997) and Potthoff and Timpel (Potential Anal
4(6):637–654, 1995) is given. A first characterisation of these spaces provided in
Grothaus et al. (Methods Funct Anal Topol 3(2):46–64, 1997) uses the concepts of
holomorphy on infinite dimensional spaces. We, instead, give a characterisation in
terms of U-functionals, i.e., classic holomorphic function on the one dimensional
field of complex numbers. We apply our new characterisation to derive new results
concerning a stochastic transport equation and the stochastic heat equation with mul-
tiplicative noise.
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1 Introduction

Gaussian Analysis, in particular White Noise Analysis, has been intensively investi-
gated and developed in recent years. It gained interest by its applications in stochastic
(partial) differential equations, quantum physics and many more. One aspect is the
construction, analysis and characterisation of spaces of (generalised) random variables
on infinite dimensional Gaussian spaces. In this paper we deal with a specific type
of random variables, which are natural in the context of stochastic partial differen-
tial equations, as illustrated in Sect. 5 below via different examples. These random
variables have important properties, such as Malliavin differentiability. The type of
random and generalised random variables under consideration in this paper can be
described as follows. Let H be a real seperable Hilbert space carrying a self-adjoint
operator (K , D(K )). Furthermore, N is a nuclear space, densely and continuously
embedded intoH such thatN ⊂ D(K ). By the Bochner-Minlos theorem one obtains
a Gaussian measure μ on the dual space N ′ of N with covariance functional (·, ·)H .
Via the Wiener–Itô–Segal isomorphism the second quantisation �(K ) of (K , D(K ))

is defined on the space L2(N ′, μ). The random variables GK ⊂ L2(N ′, μ) we inves-
tigate are exactly the C∞ vectors of the self-adjoint operator �(K ). Furthermore, the
operator �(K ) induces a finer topology on GK . The space of generalised random vari-
ables G′

K is the dual space w.r.t. this topology. Important examples of random variables
and their dual space arise in this way. For example, the pair of Hida test functions and
distributions (S) and (S)′, see e.g. [15], and the pair G and G′ in [25] arise in this way
for suitable choices of the operator K . In particular, for K = λI d, λ > 1, the elements
of the space D(�(K )), which contains GK , are infinitely oftenMallivain differentiable
along H .

Our results can be divided into two parts. The first part consists of a refinement of
the one found in [12]. There the authors used the concept of holomorphy on Hilbert
spaces. In this paper we avoid this technique, which also results in a shorter proof
of the main result. Furthermore, this makes our result easier to apply. To overcome
the usage of holomorphy on Hilbert spaces we use the concepts of the S-transform
(see Definition 2.6) and U -functionals (see Definition 2.7) as well as the famous
characterisation theorem by Potthoff and Streit (see Theorem 2.8). Observe that in
applications (generalised) random variables are often constructed and defined only
via their S-transform, see also the example in Sect. 5 below. Fortunately, this is the
only ingredient we need for our characterisation. In the second part we deal with two
different kind of stochastic partial differential equations. The first one is a stochastic
transport equation, the second is the stochastic heat equation both with amultiplicative
noise. For both equations we give explicit conditions in terms of the coefficients of
the equations such that their respective solutions are actually contained in the much
smaller space GaI ⊆ L2(μ), a > 1, of smooth functions in the sense of Malliavin
calculus.

This article is organized as follows. In Sect. 2 we briefly describe the functional
analytic framework and the main concept of Gaussian and white noise analysis we
use throughout this paper to state our main theoretical result. In particular we give
the definition of the spaces GK and G′

K under consideration. Theorem 2.11 contains
our main result, a characterisation of GK and G′

K in terms of the S-transform. In Sect.
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3 we further introduce concepts of Gaussian Analysis. Section 4 contains the proof
of Theorem 2.11. In Sect. 5 we present two applications from the field of stochastic
partial differential equations. In the first case we apply our main result to the stochastic
partial differential equation

∂ut,x

∂t
= 1

2
ν(t)

∂2ut,x

∂x2
+ ∂ut,x

∂x
σ(t)Ḃt t > 0, x ∈ R,

u(0, ·) = δ0,

⎫
⎬

⎭
(ST E)

where ∂ut,x
∂x σ(t)Ḃt is understood in the Itô sense. The coefficients ν and σ are allowed

to be singular. This equation was treated by several authors, see e.g. [4,11,24]. In
particular, in [24] solutions were constructed as elements of the Hida distribution
space (S)′, see the references for the precise statement. We use the characterisation
theorem to improve the results from [24] by showing that the solution belongs to the
space of regular distributions G′. In particular, we determine explicitly in terms of the
coefficients the regularity of the solutions, see Theorem 5.2.
In the second part we consider a stochastic heat equation with general coloured noise,
i.e.,

∂ut,x

∂t
= 1

2
�ut,x + ut,x Ẇt,x , t > 0, x ∈ Rd ,

u0,x = u0(x), x ∈ Rd ,

⎫
⎬

⎭
(SH E)

where the product between ut,x and the centered Gaussian process Ẇt,x , t > 0,
x ∈ Rd , is treated in the Skorokhod and Stratonovich sense. The covariance of Ẇt,x is
given in (31) below. Our results are based on [17] and extend the results given there. In
particular, we show that u(t, x) ∈ G ⊆ L2(μ) for all t ∈ (0,∞), x ∈ Rd . This implies,
using the results from [25], that u(t, x) is infinitely oftenMalliavin differentiable. This
was not shown in [17]. Eventually, in Sect. 6we give an outlook for further applications
of the derived characterisation in the context of stochastic currents.

The following core results are achieved in this article:

(i) We prove a new characterisation theorem for the space GK and its dual G′
K , which

is an improvement of the result in [12].
(ii) In Example 2.12 we show how to construct appropriate nuclear triples to use our

theoretical result in (i) in order to analyse stochastic partial differential equations
driven by a Gaussian noise.

(iii) We derive explicit integrability conditions on the coefficients ν and σ of (STE)
to determine that the solution ut,x belongs to G′

λI d , λ > 0.
(iv) For the Skorokhod and Stratonovich version of (SHE) we improve results

obtained in [17] and show that the corresponding mild solution is contained
in GλI d , λ > 0. This implies that the solution is smooth in the sense of Malliavin
calculus.

The aim of this article is to further bridge the gap between classical stochastic analysis
and white noise analysis. Moreover, it is intended to show case that the combination
of white noise analysis and Malliavin calculus can be very fruitful.
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2 Preliminaries andmain results

To state our results we briefly introduce the main concepts of Gaussian analysis. The
material in the following can be found in e.g. [2,15,19,22]. Henceforth in the Sects. 3,
4 and 5 we fix a separable real Hilbert space (H, (·, ·)H). Furthermore, there exists a
real nuclear countably Hilbert spaceN densely and continuously embedded intoH. In
the following we briefly explain the notion of a nuclear countably Hilbert space. I.e.,
there exists a family of real inner products {(·, ·)p}p∈N0 on N with induced norms
{‖·‖p}p∈N0 , where (·, ·)0 = (·, ·)H. Theses norms satisfy ‖ϕ‖p ≤ ‖ϕ‖p+1 for all
ϕ ∈ N and p ∈ N0. Furthermore the family {‖·‖p}p∈N0 is compatible, meaning
that for all p, q ∈ N0 and every sequence (ϕn)n∈N ⊆ N which is a fundamental
sequence w.r.t. ‖·‖q and converges to zero w.r.t. ‖·‖p converges also to zero w.r.t.
‖·‖q . This implies that the identity operator I : (N , ‖·‖p) −→ (N , ‖·‖q), p > q
extends linearly to an continuous, injective map with dense range from Hp to Hq ,
where Hp and Hq denote the completion of N w.r.t. ‖·‖p and ‖·‖q , respectively.
This extension is denoted by Ip,q . Also, for every q ∈ N there exists a p ≥ q s.t.
Ip,q is a Hilbert-Schmidt operator. Eventually, the spaceN equipped with the metric

d(ϕ, ψ) = ∑∞
p=0 2

−p ‖ϕ−ψ‖p
1+‖ϕ−ψ‖p

is assumed to be a seperable complete metric space.

Hence, we obtain a chain of continuous and dense embeddings

N ⊆ Hp ⊆ Hq ⊆ H ⊆ H−p ⊆ H−q ⊆ N ′, p ≥ q (1)

whereN ′,H−p andH−q denote the dual spaces ofN ,Hp andHq , respectively. The
dual pairing between an element ϕ ∈ N and � ∈ N ′ is denoted by 〈ϕ,�〉 ∈ R. We
consider N ′ to be equipped with the weak topology and denote the respective Borel
σ -field by F . Via the Bochner-Minlos theorem we obtain measures defined on N ′ in
the following way:

Definition 2.1 Let σ 2 > 0 and define the continuous function

Cσ 2 : N −→ C, ϕ → exp

(

−σ 2

2
(ϕ, ϕ)H

)

. (2)

Observe that Cσ 2 is positive definite and satisfies Cσ 2(0) = 1. Hence, by the Bochner-
Minlos theorem, see e.g. [22, Theorem 1.5.2], we obtain a probability measure μσ 2

defined on theBorelσ -fieldF ofN ′ uniquely determined by the characteristic function
Cσ 2 , i.e., it holds

∫

N ′
exp

(
i 〈ϕ, ·〉 ) dμσ 2 = Cσ 2(ϕ) for all ϕ ∈ N . (3)

Forσ 2 = 1we simplywriteμ instead ofμ1.Wedenote by L2(μ) := L2(N ′,C;μ) the
space of equivalence classes of complex-valued functions which are square-integrable
with respect to μ. The next proposition is an immediate consequence of (2) and (3).
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Proposition 2.2 Let ϕ1, ..., ϕn ∈ N , n ∈ N. The image measure of μ under the map

Tϕ1,...,ϕn : N ′ −→ Rn, ω → (〈ϕi , ω〉)i=1,...,n

is the Gaussian measure with mean zero and covariance matrix C = (
(ϕi , ϕ j )H

)

1≤i, j≤n
on Rn, i.e.,

μ ◦ T −1
ϕ1,...,ϕn

= N (0, C).

An important subspace of L2(μ) is the space of polynomialsP(N ′) onN ′. A poly-
nomial F ∈ P(N ′) is a function onN ′ of the form F(ω) = p(〈ϕ1, ω〉 , ..., 〈ϕk, ω〉)),
where k ∈ N, ω ∈ N ′, ϕ1, ..., ϕk ∈ N , and p is a complex polynomial in k variables.
An elementary proof shows that P(N ′) is dense in L2(μ). The subspace P(n)(N ′),
n ∈ N0, is the space of all polynomials F where p is of degree at most n. Now we
define orthogonal subspaces W(n)(μ) for n ∈ N0. Define

W(0)(μ) := span(1),

W(n)(μ) :=P(n−1)(N ′)⊥ ∩ P(n)(N ′), n ∈ N,

where P(n)(N ′) denotes the closure of P(n)(N ′) and P(n−1)(N ′)⊥ the orthogonal
complement of P(n−1)(N ′) in L2(μ), respectively. For n ∈ N the subspace W(n) is
called the space of nth order chaos. It follows by definition of

(
W(n)(μ)

)

n∈N0
and the

density ofP(N ′) in L2(μ) that L2(μ) is the orthogonal sum of the subspaces W(n)(μ),
n ∈ N0. A characteristic element of W(n)(μ), n ∈ N0, is given by

N ′ � ω → Hn,(ϕ,ϕ)H (〈ϕ, ω〉) ∈ R,

where ϕ ∈ N and Hn,(ϕ,ϕ)H is the nth Hermite polynomial with parameter (ϕ, ϕ)H .
The family ofHermite polynomials with parameterα2 > 0 is defined via its generating
function

exp

(

−α2 t2

2
+ t x

)

=
∞∑

n=0

Hn,α2(x)
tn

n! , t, x ∈ R.

From Proposition 2.2 we obtain for n, m ∈ N0 and ϕ, ξ ∈ N

∫

N ′
Hn,(ϕ,ϕ)H (〈ϕ, ω〉)Hm,(ξ,ξ)H (〈ξ, ω〉) dμ = δn,mn!(ϕ, ξ)n

H = δn,mn! (ϕ⊗n, ξ⊗n)

H⊗n .

(4)

123



364 Stoch PDE: Anal Comp (2022) 10:359–391

Let n ∈ N0 be fixed and I a finite index set and ϕi ∈ N , αi ∈ C for i ∈ I . Define the
function in L2(μ)

N ′ � ω →
〈
∑

i∈I

αiϕ
⊗n
i , :ω⊗n :

〉

:=
∑

i∈I

αi Hn,(ϕi ,ϕi )H (〈ϕi , ω〉) ∈ C. (5)

From (4) we obtain the Itô isometry between L2(μ) and the symmetric tensor product
H⊗̂n

C

∥
∥
∥
∥
∥

〈
∑

i∈I

αiϕ
⊗n
i , :·⊗n :

〉∥
∥
∥
∥
∥

2

L2(μ)

= n!
∥
∥
∥
∥
∥

∑

i∈I

αiϕ
⊗n
i

∥
∥
∥
∥
∥

2

H⊗n
C

. (6)

Observe that we consider on the symmetric spaceH⊗̂n
C the scalar product n!(·, ·)H⊗n

C
,

where (·, ·)H⊗n
C

is the usual scalar product on H⊗n
C , see also [15, Appendix 2]. From

the polarization identity we obtain that elements
∑

i∈I αiϕ
⊗n
i ∈ H⊗̂n

C as above form

a dense subset of the complex symmetric tensor product H⊗̂n
C . Hence, via (6) and

an approximating sequence, for an element f (n) ∈ H⊗̂n
C we obtain an element Fn ∈

Wn(μ) which we denote by Fn = 〈
f (n), :·⊗n :〉 satisfying

‖Fn‖2L2(μ)
= n!

∥
∥
∥ f (n)

∥
∥
∥
2

H⊗n
C

.

Conversely, representing usual monomials via Hermite polynomials, we obtain that
every element Fn ∈ W(n)(μ) has a representation as Fn = 〈

f (n), :·⊗n :〉 where
〈
f (n), :·⊗n :〉 denotes again the L2(μ)-limit of elements as in (5). Let �(H) be the

symmetric Fock space over H, i.e.,

�(H) :=
{
f = (

f (0), f (1), f (2), . . .
) ∣
∣ f (n) ∈ H⊗̂n

C for all

n ∈ N0,
∞∑

n=0

n!
∥
∥
∥ f (n)

∥
∥
∥
2

H < ∞
}
. (7)

Observe that we used the abbreviation
∥
∥ f (n)

∥
∥H for the norm

∥
∥ f (n)

∥
∥H⊗n

C
in (7) and

use henceforth similar notation for corresponding scalar products to keep the notation
simple. The space �(H) carries the scalar product

(f, g)�(H) =
∞∑

n=0

n!( fn, gn)H , for f, g ∈ �(H).

The above derived decomposition of L2(μ) is the subject of the Wiener–Itô–Segal
theorem.
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Theorem 2.3 (Wiener–Itô–Segal isomorphism) The mapping

I : �(H) → L2(μ), f →
∞∑

n=0

〈
f (n), : ·⊗n :

〉
(8)

is a unitary isomorphism.

Hence, each F ∈ L2(μ) has a unique chaos decomposition F = ∑∞
n=0

〈
f (n), :·⊗n :〉

with kernels f (n) ∈ H⊗̂n
C , n ∈ N0, and ‖F‖2

L2(μ)
= ∑∞

n=0 n! ∥∥ f (n)
∥
∥2H . From this

point we can easily define spaces of random and generalised random variables via the
concepts of second quantisation, for more details see [15, Chapter 3.C]. Let (A, D(A))

be a closed and densely defined linear operator on H with ‖A f ‖H ≥ ‖ f ‖H for all
f ∈ D(A). We define the Hilbert space (GA, ‖·‖GA

) as the domain of the second
quantisation of A, i.e.,

GA =
{

F =
∞∑

n=0

〈
f (n), :·⊗n :

〉
∈ L2(μ)

∣
∣
∣
∣
∣

f (n) ∈ D(A)⊗n),

∞∑

n=0

n!‖A⊗n f (n)‖2H < ∞
}

,

‖F‖2GA
: =

∞∑

n=0

n!‖A⊗n f (n)‖2H , F ∈ GA.

The main objective of this paper is to study and characterize the space GA for a special
choice of A. To this end we first lift the rigging in (1). Therefore we need the following
lemma.

Lemma 2.4 Let (A1, D(A1)) and (A2, D(A2)) be two closed and densely defined
linear operators on H satisfying ‖Ai f ‖H ≥ ‖ f ‖H for all f ∈ D(Ai ) and i = 1, 2.
Assume that D(A1) is continuously and densely embedded into D(A2), where both
spaces are equipped with ‖A1·‖H and ‖A2·‖H , respectively. Then the space GA1 is
densely and continuously embedded into GA2 .

Proof This follows as in [15, Chapter 3.B, pp. 54–55]. ��
From the theory of closed and symmetric bilinear forms, see e.g. [26], there exists

for every p ∈ N a linear closed and densely defined linear operator (Ap, D(Ap))

on H s.t. for all f , g ∈ Hp it holds ( f , g)p = (Ap f , Apg)H . By the previous
considerations and Lemma 2.4 we can form the Hilbert spaces (Hp) := GAp together
with their dual spaces (H−p) := (Hp)

′, p ∈ N, and obtain the chain of continuous
and dense embeddings

(N ) ⊆ (Hp) ⊆ (Hq) ⊆ L2(μ) ⊆ (H−q) ⊆ (H−p) ⊆ (N )′, p ≥ q,

where (N ) = ⋂
p∈N(Hp) is equipped with the projective limit topology of the spaces

(
(Hp)

)

p∈N, see also [28, Sect. II.5.], and (N )′ = ⋃
p∈N(H−p) is the dual space of
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(N ) carrying the inductive limit topology of the spaces
(
(H−p)

)

p∈N, see also [28,

Sect. II.6.]. The dual pairing between elements F ∈ (N ) and � ∈ (N )′ is denoted by
〈〈F,�〉〉 := �(F).

We now specify the assumption on an operator (K , D(K )) for which we want to
study the space GK and its dual space in greater detail.

Assumption 2.5 Let (K , D(K )) be a densely defined self-adjoint operator onH with
the properties:

(i) The spectrum spec(K ) of K satisfies spec(K ) ⊆ [1,∞),
(ii) N ⊆ D(K ) and the closure of (K ,N ) equals (K , D(K )), i.e., N is a core for

(K , D(K )),
(iii) K : (N , d) −→ (N , d) is continuous and bijective, where d is defined in the

beginning of Sect. 2.

For an operator (K , D(K )) satisfying Assumption 2.5 we denote by (K s, D(K s)),
s ∈ N, the closure of (K s,N ) defined on H. In particular, (K s, D(K s)) satisfies
Assumption 2.5, too. Thus, by the same arguments as above, for such an operator
(K , D(K )) we define GK ,s := GK s and GK ,−s := G′

K ,s . Once more, we obtain the
continuous and dense embeddings

GK ⊆ GK ,s ⊆ GK ,l ⊆ L2(μ) ⊆ GK ,−l ⊆ GK ,−s ⊆ G′
K , s ≥ l,

where GK = ⋂
s∈N GK ,s is equipped with the projective limit topology of the spaces(GK ,s

)

s∈N and G′
K = ⋃

s∈N GK ,−s is the dual space of GK carrying the inductive limit
topology of the spaces

(GK ,−s
)

s∈N.

Definition 2.6 For � ∈ (N )′, its S-transform is defined by

S� : N → C, ϕ → 〈〈:exp (〈ϕ, ·〉) :,�〉〉,

where :exp (〈ϕ, ·〉) : = ∑∞
n=0

1
n!
〈
ϕ⊗n, :·⊗n :〉 = exp

( 〈ϕ, ·〉 − 1
2 〈ϕ, ϕ〉 ) ∈ (N ) is the

Wick exponential of ϕ ∈ N .

For the next theorem, we need the notion of U-functionals:

Definition 2.7 A map U : N → C is called a U-functional, if the following two
conditions are fulfilled

(i) U is ray-entire, i.e. for all ϕ,ψ ∈ N , the function

R � x → U (ϕ + xψ)

extends to an entire function on C,
(ii) U is uniformly bounded of exponential order 2, i.e. there exist 0 ≤ A, B < ∞

and p ∈ N s.t. for all ϕ ∈ N and λ ∈ C it holds

|U (λϕ)| ≤ A exp
(
B |λ|2 ‖ϕ‖2p

)
,

here U denotes the extension of U to NC given in (i).
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The following important characterisation theorem shows that there is a bijection
between (N )′ and the set of U-functionals. For a proof see [18, Theorem 11].

Theorem 2.8 The S-transform is a bijection between (N )′ and the set of U-functionals.

Our goal is to characterize the spaces GK ,s , s ∈ Z, in terms of U -functionals. To
this end we first explain how the pairs of spaces ((N ), (N )′) and (GK ,G′

K ) are related,
using Lemma 2.4.

Lemma 2.9 Assume (K , D(K ) satisfies Assumption 2.5. The space (N ) is continu-
ously and densely embedded into GK . Hence the following chain of continuous and
dense embeddings holds true

(N ) ⊆ GK ⊆ L2(μ) ⊆ G′
K ⊆ (N )′. (9)

Proof Let s ∈ N be arbitrary. Since K s : (N , d) −→ (N , d) is continuous there
exists a p ∈ N and C ∈ (0,∞) s.t. ‖K sϕ‖H ≤ K

∥
∥Apϕ

∥
∥H for all ϕ ∈ N . By

the closedness of (K s, D(K s)) and (Ap,Hp) we obtain that the norms ‖K s ·‖H ,∥
∥Ap·

∥
∥H are compatible on N . Thus we obtain that (A1, D(A1)) = (Ap,Hp) and

(A2, D(A2)) = (K s, D(K s)) satisfy the assumption of Lemma 2.4. Therefore we
obtain the dense and continuous embedding of (Hp) into GK ,s . The first embedding
in (9) follows now by the definition of (N ) and GK . The second embedding follows
by the same argument for (K , D(K )) and the identity operator on H. The remaining
assertions follow immediately by the previous ones. ��

Observe that the triple (N ,H, (K , D(K ))) determines our probabilistic set up (9)
completely.

Definition 2.10 Let m ∈ N and (ϕi )
m
i=1 ⊂ N be an orthonormal system inH. We call

P : N ′
C → NC, Pη :=

m∑

i=1

〈ϕi , η〉 ϕi

an orthogonal projection from N ′
C into NC. We denote the set of all orthogonal

projections from N ′
C into NC by P.

Recall the measureμ 1
2
onN ′ from above. On the complexificationN ′

C = N ′ ×N ′
we define the product measure ν = μ 1

2
⊗ μ 1

2
. Now we can formulate the following

characterisation of the spaces GK and G′
K which is the main result of this paper.

Theorem 2.11 Let (K , D(K )) satisfy Assumption 2.5 and � ∈ (N )′ or equivalently
let U be a U-functional s.t. S−1U = �. Then for s ∈ Z the two statements

(i) � ∈ GK ,s ,
(ii) supP∈P

∫

N ′
C

|U (K s Pη)|2 ν(dη) < ∞
are equivalent. In particular, the following two equivalencies are true.

(i) � ∈ GK ⇐⇒ ∀s ∈ N : supP∈P
∫

N ′
C

|U (K s Pη)|2 ν(dη) < ∞.
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(ii) � ∈ G′
K ⇐⇒ ∃s ∈ N : supP∈P

∫

N ′
C

∣
∣U (K −s Pη)

∣
∣2 ν(dη) < ∞.

In particular, for K = I d and � ∈ (N )′ we obtain the following equivalence

� ∈ L2(μ) ⇐⇒ sup
P∈P

∫

N ′
C

|U (Pη)|2 ν(dη) < ∞.

Before proceeding we present some classical examples of the functional analytic
framework (H,N ) as well as interesting choices for (K , D(K )). In particular, in
Example 2.12(ii) we show how to construct the necessary nuclear rigging (1) for
typical examples arising in the contexts of stochastic partial differential equations, see
Sect. 5.2.

Example 2.12 (i) Let d1, d2 ∈ N. The real Hilbert space H := L2(Rd1;Rd2)

and the nuclear space N = S(Rd1;Rd2) of square integrable functions and
Schwartz test functions mapping from Rd1 to Rd2 respectively. Different exam-
ples for a family of seminorms (‖·‖p)p∈N0 defined on S(Rd1;Rd2) satisfying
the assumptions above can be found in [26, Appendix to V.3]. For d1 = d2 = 1
this setting is called the standard White noise setting. Observe that the process(〈(

⊗d1
i=11[0,ti ]

)×d2
, ·
〉)

t1,...,td1≥0
⊆ L2(N ′, μ) is a modification of a (d1, d2)-

Brownian sheet.
(ii) Let d1, d2 ∈ N. More generally as in (i) assume that σ is a tempered measure

on Rd1 , i.e.,
∫

Rd1
1

1+|ξ |2m σ(dξ) < ∞ for some m ∈ N, which has full topo-

logical support on Rd . Define H to be the completion of N := S(Rd1;Rd2)

w.r.t. the norm ‖ϕ‖H := (∫

Rd1 |Fϕ|2 dσ
) 1
2 , where F denotes the component-

wise Fourier transform and |·| the euclidean norm on Rd2 . Let (‖·‖p)p∈N
denote an increasing family of consistent seminorms on S(Rd1;Rd2) inducing
the Schwartz space topology. Since σ is tempered there exists a q ∈ N s.t.
max{‖ϕ‖L1(Rd1 ,Rd2 ) , ‖ϕ‖H} ≤ ‖ϕ‖q for all ϕ ∈ S(Rd1 ,Rd2). From the full

support of σ and the continuity of F : L1(Rd1 ,Rd2) −→ L∞(Rd1 ,Rd2) one
concludes the consistency of the norms ‖·‖q and ‖·‖H on S(Rd1;Rd2). Thus in
the sense of Gelfand triples we obtain the dense embeddings

S(Rd1;Rd2) ⊆ Hq ⊆ H ⊆ H−q ⊆ S′(Rd1;Rd2).

Consequentlyweobtain theGaussianmeasureμon S′(Rd1;Rd2)with covariance
(·, ·)H, i.e., μ satisfies

∫

S′(Rd+1)

exp(i 〈ϕ, ω〉)μ(dω) = exp(−1

2
(ϕ, ϕ)H), ϕ ∈ S(Rd1;Rd2).

In particular, the elements from the first order chaos 〈h, ·〉 ∈ W(1) ⊆
L2(S′(Rd1;Rd2), μ), h ∈ H, define a Gaussian process index by H. In this
way a huge variety of Gaussian processes, such as fractional Brownian motion,
can be constructed.
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(iii) An important choice for the operator K is given by a multiple λ > 1 of the
identity operator I d on H, i.e., K = λI d. The space GλI d was systematically
introduced in the White Noise setting in [25]. An important feature of GλI d is
that this space is densely and continuously embedded into the Meyer-Watanabe
spaceD, see the last mentioned reference. Thus, elements fromGλI d are infinitely
often Malliavin differentiable and the Malliavin derivatives of arbitrary order are
contained in L p(N ′, μ) for every p ∈ [1,∞).

3 Generalised chaos decomposition and Gaussian analysis on
complex spaces

In this section we state some additional aspects of Gaussian Analysis. For further
reading, see e.g. [2,15,19,22].

3.1 Generalised chaos decomposition

Next we generalise the chaos decomposition (8) of elements from L2(μ) to elements
from the dual spaces GK ,−s , s ∈ N. Let s ∈ N and recall that GK ,s is isometrically
isomorphic to �(D(K s)). Hence, the dual space G′

K ,s = GK ,−s is isometrically iso-
morphic to �(D(K s))′ ∼= �(D(K s)′), where ∼= denotes an isometric isomorphism
and D(K s)′ is the dual space of

(
D(K s), (K s ·, K s ·)H

)
. Observe that D(K s)′ is iso-

metrically isomorphic to the completion ofH w.r.t. the inner product
(
K −s ·, K −s ·)H .

An element � ∈ GK ,−s which is in correspondence with
(
�(n)

)

n∈N0
∈ �(D(K s)′)

we also denote by

� =
∞∑

n=0

〈
�(n), :·⊗n :

〉
. (10)

The correspondence in (10) is called the generalised chaos decomposition of �. The
dual pairing between � and an element ψ ∈ GK ,s with chaos decomposition ψ =∑∞

n=0

〈
ψ(n), :·⊗n :〉 is given by

〈〈ψ,�〉〉 =
∞∑

n=0

n!
〈
ψ(n), �(n)

〉
, (11)

where the dual pairing
〈
ψ(n), �(n)

〉
on the right-hand side of (11) is the one between

the Hilbert space
(

D((K s)⊗n),
∥
∥(K s)⊗n ·∥∥H

)
and its dual space D

(
(K s)⊗n

)′, for
n ∈ N0.

From Lemma 2.9 we obtain that an element � ∈ G′
K has a well-defined S-

transform S� : N −→ C. If � ∈ G′
K has the generalised chaos decomposition
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� = ∑∞
n=0

〈
�(n), :·⊗n :〉 then the S-transform is given by

S�(ϕ) =
∞∑

n=0

〈
ϕ⊗n,�(n)

〉
, ϕ ∈ NC. (12)

3.2 Gaussian analysis on complex spaces

In this part we briefly present the analogue of the orthogonal decomposition of L2(μ)

for a closed subspace E2(ν) of L2(N ′
C, ν). The major difference between the space

L2(μ) and E2(ν) is that in the latter case there is no need for using Hermite polyno-
mials, see Proposition 3.2. The underlying reason is that the monomials of different
order automatically form an orthogonal system in L2(C, e−|z|2euc dz). The proofs of the
next two propositions are elementary and therefore we skip them.

Proposition 3.1 Let ϕ1, ..., ϕn ∈ N , n ∈ N. The image measure of ν under the map

Tϕ1,...,ϕn : N ′
C −→ Cn, η → (〈ϕi , η〉)i=1,...,n

is absolutely continuous w.r.t. the Lebesgue measure dz on Cn and has the Radon-
Nikodym derivative

dν ◦ T −1
ϕ1,...,ϕn

dz
(z) = 1

πn
e−zT Cz, z ∈ Cn

where C = (
(ϕi , ϕ j )H

)

1≤i, j≤n ∈ Rn×n.

The space of polynomials P(N ′
C) on N ′

C is given by collection of all functions
G : N ′

C → C which are given as G(η) = p(〈ϕ1, η〉 , ..., 〈ϕk, η〉), where p is a
complex polynomial in k ∈ N variables and ϕi ∈ N , for i = 1, .., k.

Proposition 3.2 Let m, n ∈ N, ϕ,ψ ∈ N . Then it holds

(〈ϕ, ·〉n , 〈ψ, ·〉m)

L2(ν)
= δm,n · n! · (ϕ⊗n, ψ⊗n)H. (13)

In particular, P(N ′
C) ⊆ L2(ν).

Similar as in the derivation of Theorem 2.3, for f (n) ∈ H⊗̂n
C we can define an ele-

ment in L2(ν) denoted by
〈
f (n), ·⊗n

〉
which is given as the L2(ν)-limit of polynomials,

i.e.,

〈
f (n), ·⊗n

〉
:= lim

m→∞

lm∑

k=1

αk,m
〈
ϕk,m, ·〉n ∈ L2(ν),
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where lm ∈ N, αk,m ∈ C, ϕk,m ∈ N for all k = 1, ..., lm , m ∈ N, and it holds

f (n) = lim
m→∞

lm∑

k=1

αk,mϕ⊗n
k,m ∈ H⊗̂n

C .

In particular, the orthogonality relation (13) stays valid in the limit case, i.e., for
f (n), g(n) ∈ H⊗̂n

C it holds

(〈
f (n), ·⊗n

〉
,
〈
g(n), ·⊗n

〉)

L2(ν)
= δm,n · n! · ( f (n), g(n))H. (14)

In contrast to the real case, the polynomials P(N ′
C) are not dense in L2(ν). Their

closure is the so called Bargmann-Segal space E2(ν), see also [12], which is given by

E2(ν) := P(N ′
C)

L2(ν) =
{ ∞∑

n=0

〈
g(n), ·⊗n

〉 ∣
∣ g(n) ∈ H⊗̂n

C ,
∞∑

n=0

n!
∥
∥
∥g(n)

∥
∥
∥
2

H < ∞
}
.

4 Proof of Theorem 2.11

This section is devoted to the proof of Theorem 2.11, which is our main result.
Recall the chain of continuous embeddings from (1). This chain lifts to the n-

fold symmetric complexified tensor powers, see e.g. [15, Chapter 3.B], i.e, we obtain
continuous embeddings

N ⊗̂n
C ⊆ H⊗̂n

p,C ⊆ H⊗̂n
q,C ⊆ H⊗̂n

C ⊆ H⊗̂n
−q,C ⊆ H⊗̂n

−p,C ⊆ N ′⊗̂n
C , p ≥ q,

where N ⊗̂n
C := ⋂

p∈NH⊗̂n
p,C is equipped with the projective limit topology of the

Hilbert spaces H⊗̂n
p,C, p ∈ N and N ′⊗̂n

C is the dual space of N ⊗̂n
C which satisfies

N ′⊗̂n
C = ⋃

p∈NH⊗̂n
−p,C and carries the inductive limit topology of the spacesH⊗̂n

−p,C,
p ∈ N.

The operator K : N −→ N was assumed to be bijective and continuous, hence
by the inverse mapping theorem K s , s ∈ Z, is also continuous, see [27, Corollary
I.2.12(b)]. By the same procedure which leads to tensor powers of operators between
Hilbert spaces, we can define (K s)⊗n for s ∈ Z and n ∈ N as a well-defined, linear
and continuous operator on N ⊗̂n

C . Observe that (K s)⊗n is bijective from N ⊗̂n
C into

itself and the tensor powers
(
(K s)⊗n, D((K s)⊗n)

)
are self-adjoint on H⊗̂n

C , where

D((K s)⊗n) = H⊗̂n
C if s ≤ 0, for all s ∈ Z. Hence, for all s ∈ Z and n ∈ N we can

define an extension of (K s)⊗n to N ′⊗̂n
C in the following way:

(K s)⊗n : N ′⊗̂n
C −→ N ′⊗̂n

C ,� → (K s)⊗n� := � ◦ (K s)⊗n . (15)
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For the next proposition recall that every element � ∈ (N )′ has a generalised chaos
decomposition � = ∑∞

n=0

〈
�(n), :·⊗n :〉 where for some p ∈ N it holds �(n) ∈

H⊗̂n
−p,C ⊆ N ′⊗̂n

C for all n ∈ N0.

Proposition 4.1 Let s ∈ Z. Then it holds

GK ,s =
{

� =
∞∑

n=0

〈
�(n), : ·⊗n :

〉
∈ (N )′

∣
∣
∣
∣
∣

(K s)⊗n�(n) ∈ H⊗̂n
C ,

∞∑

n=0

n!
∥
∥
∥(K s)⊗n�(n)

∥
∥
∥
2

H < ∞
}

, (16)

where (K s)⊗n�(n) in (16) is defined via (15).

Proof Denote the set on the right-hand side of (16) by As . We split the proof into
two parts. First let s be non-negative. In this case the inclusion GK ,s ⊆ As follows
immediately by thedefinitionofGK ,s .Now let� ∈ As , i.e.,� = ∑∞

n=0

〈
�(n), :·⊗n :〉 ∈

(N )′ s.t. (K s)⊗n�(n) ∈ H⊗̂n
C and

∑∞
n=0 n! ∥∥(K s)⊗n�(n)

∥
∥2H < ∞. To prove that

� ∈ GK ,s it suffices to show that �(n) ∈ D(K s)⊗̂n for all n ∈ N.
By assumption, for all n ∈ N there exists a ψ(n) ∈ H⊗̂n

C s.t.

(
ϕ(n), ψ(n)

)

H =
〈
ϕ(n), (K s)⊗n�(n)

〉
=
〈
(K s)⊗nϕ(n), �(n)

〉
, ∀ϕ(n) ∈ N ⊗̂n

C .

Using [26, Theorem VIII.33] we obtain that (K s)⊗n : D((K s)⊗n) −→ H⊗̂n
C is

bijective and self-adjoint. Hence, we can find a ψ̃(n) ∈ D((K s)⊗n) s.t. (K s)⊗nψ̃(n) =
ψ(n). From the self-adjointness of (K s)⊗n we can conclude �(n) = ψ̃(n), where · is
the natural complex conjugation on the complexified vector spaceH⊗̂n

C , which finishes
the proof for non-negative s.

For the second part we replace s by −s, s ∈ N. Recall that GK ,−s ∼= �(D(K s)′).

Denote by H⊗̂n
C

‖(K −s )⊗n ·‖
the abstract completion of H⊗̂n

C w.r.t.
∥
∥(K −s)⊗n ·∥∥. One

easily checks via the Riesz isomorphism that

H⊗̂n
C

‖(K −s )⊗n ·‖ � (�
(n)
k )k∈N → lim

k→∞

(
(K s)⊗n ·, (K −s)⊗n�

(n)
k

)

H ∈ (
D((K s)⊗n)

)′

(17)

is an isometric complex conjugate linear isomorphism. Hence, the inclusion GK ,−s ⊆
A−s follows. Now let � ∈ A−s with generalised chaos decomposition � =∑∞

n=0

〈
�(n), :·⊗n :〉. It suffices to show �(n) ∈ (

D((K s)⊗n)
)′ for all n ∈ N. By

assumption, for every n ∈ N there exists a ψ(n) ∈ H⊗̂n
C s.t.

〈
ϕ(n), �(n)

〉
=
〈
(K −s)⊗n(K s)⊗nϕ(n), �(n)

〉
=
(
(K s)⊗nϕ(n), ψ(n)

)

H , ∀ϕ(n) ∈ N ⊗̂n
C .
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Since D((K s)⊗n) = (K −s)⊗nH⊗̂n
C is dense inH⊗̂n

C there exists a sequence (χ
(n)
k )k∈N

in H⊗̂n
C s.t. (K −s)⊗nχ

(n)
k −→ ψ(n) as k → ∞ in H⊗̂n

C for all n ∈ N. Hence, by (17)

we obtain �(n) ∈ (
D((K s)⊗n)

)′ which finishes the proof. ��

Now let n ∈ N and P ∈ P be given by P = ∑m
j=1

〈
ϕ j , ·

〉
ϕ j , where (ϕ j )

m
j=1 ⊂ N

is an orthonormal system in H. We consider P as an orthogonal projection on
HC onto the closed subspace spanC{ϕ j , j = 1, ..., m}. Observe that the nth ten-
sor power P⊗n of P defines a orthogonal projection onto the closed subspace

spanC
{
⊗̂n

i=1ϕ ji | ji ∈ {1, ..., m} for i = 1, ..., n
}
of H⊗̂n

C , where

⊗̂n
i=1ϕ ji = 1

n!
∑

σ∈Sn

⊗n
i=1ϕ jσ(i)

and Sn denotes the set of all permutations of n elements in the following way. We
extend P⊗n to a linear operator on N ′⊗̂n

C via

P⊗n : N ′⊗̂n
C −→ N ⊗̂n

C ,� →
∑

α∈{0,1,...n}m
∑m

i=1 αi =n

〈
̂⊗m
i=1ϕ

⊗αi
i ,�

〉
̂⊗m
i=1ϕ

⊗αi
i .

Observe that for n ∈ N, �(n), �(n) ∈ N ′⊗̂n
C and P ∈ P given as above it holds

〈
P⊗n�(n), �(n)

〉 = 〈
P⊗n�(n), �(n)

〉
.

Lemma 4.2 Let �(n) ∈ N ′⊗̂n
C , n ∈ N0, fulfil supP∈P

∑∞
n=0 n!‖P⊗n�(n)‖2H < ∞.

Then it holds

(
�(n)

)

n∈N0
∈ �(H) and sup

P∈P

∞∑

n=0

n!‖P⊗n�(n)‖2H =
∞∑

n=0

n!‖�(n)‖2H.

Proof Since N is separable we can choose a dense set {ẽk}k∈N of N . Applying the
Gram-Schmidt procedure to {ẽk}k∈N we obtain a orthonormal basis (ek)k∈N of H
s.t. ek ∈ N for all k ∈ N.

Define for l ∈ N the projection Pl := ∑l
k=1 〈ek, ·〉 ek ∈ P. By assumption we

know that the sequence
((

P⊗n
l �(n)

)

n∈N
)

l∈N ⊆ �(H) is bounded. Therefore we

can find a weakly convergent subsequence
((

P⊗n
lm

�(n)
)

n∈N

)

m∈N
with weak limit

(
g(n)

)

n∈N0
∈ �(H). In particular P⊗n

lm
�(n) converges weakly to g(n) ∈ H⊗̂n

C as
m → ∞ for all n ∈ N0, i.e.,

〈
ϕ(n), P⊗n

lm
�(n)

〉
=
(
ϕ(n), P⊗n

lm
�(n)

)

H
m→∞−−−−→

(
ϕ(n), g(n)

)

H for all ϕ ∈ H⊗̂n
C .
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It is clear that �(n) and g(n) coincide as distributions on the set{
̂⊗∞
i=1e⊗αi

i | α ∈ NN,
∑∞

i=1 αi = n

}

which is total inN ⊗̂n
C by the choice of (ek)k∈N.

Thus �(n) = g(n) ∈ H⊗̂n
C .

The last part of statement follows by the weak lower semicontinuity of the norm
and the fact that for P ∈ P the restriction of P⊗n toH⊗̂n

C is an orthogonal projection.
��

Now we are ready to prove the main result.

Proof of Theorem 2.11 Recall that GK = ⋂
s∈N GK ,s and G′

K = ⋃
s∈N GK ,−s . Hence,

it suffices to show for s ∈ Z that it holds

� ∈ GK ,s ⇐⇒ sup
P∈P

∫

N ′
C

∣
∣S�(K s Pη)

∣
∣2 ν(dη) < ∞. (18)

We make some observations which rely on (12), (14) and Lemma 4.2. Now let s ∈ Z

and � = ∑∞
n=0

〈
�(n), :·⊗n :〉 ∈ GK ,s . Then it holds

‖�‖2K ,s =
∑

n∈N
n!‖(K s)⊗n�(n)‖2H

= sup
P∈P

∑

n∈N
n!‖P⊗n(K s)⊗n�(n)‖2H

= sup
P∈P

∫

N ′
C

∣
∣
∣
∣
∣

∑

n∈N

〈
P⊗n(K s)⊗n�(n), η⊗n

〉
∣
∣
∣
∣
∣

2

ν(dη)

= sup
P∈P

∫

N ′
C

∣
∣
∣
∣
∣

∑

n∈N

〈
(K s Pη)⊗n,�(n)

〉
∣
∣
∣
∣
∣

2

ν(dη) = sup
P∈P

∫

N ′
C

∣
∣S�(K s Pη)

∣
∣2 ν(dη).

Now let � = ∑∞
n=0

〈
�(n), :·⊗n :〉 ∈ (N )′.

The same calculations yield

sup
P∈P

∫

N ′
C

∣
∣S�(K s Pη)

∣
∣2 ν(dη) = sup

P∈P

∫

N ′
C

∣
∣
∣
∣
∣

∑

n∈N

〈
(K s Pη)⊗n,�(n)

〉
∣
∣
∣
∣
∣

2

ν(dη)

= sup
P∈P

∫

N ′
C

∣
∣
∣
∣
∣

∑

n∈N

〈
P⊗n(K s)⊗n�(n), η⊗n

〉
∣
∣
∣
∣
∣

2

ν(dη)

= sup
P∈P

∑

n∈N
n!‖P⊗n(K s)⊗n�(n)‖2H,

in the second line we used the definition of (K s)⊗n given in (15). Hence, if the left-
hand side is finite we obtain by Lemma 4.2 that

(
(K s)⊗n�(n)

)

n∈N ∈ �(H) which
implies � ∈ GK ,s by Proposition 4.1. ��
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From the proof of Theorem 2.11 we seek the following corollary.

Corollary 4.3 Assume the assumptions of Theorem 2.11 are satisfied and � ∈ (N )′.
Let (ek)k∈N be an orthonormal basis of H contained in N which is chosen as in
the proof of Lemma 4.2. Further for l ∈ N let Pl := ∑l

k=1 〈ek, ·〉 ek ∈ P. The real
sequence

∫

N ′
C

|S�(K s Plη)|2 ν(dη), l ∈ N, is increasing in l. Thus, the limit as l tends

to infinity exists in [0,∞]. Further, for s ∈ Z the statement

lim
l→∞

∫

N ′
C

∣
∣S�(K s Plη)

∣
∣2 ν(dη) < ∞, (19)

is equivalent to the statements in (18). If (19) is satisfied we also obtain

‖�‖2K ,s = lim
l→∞

∫

N ′
C

∣
∣S�(K s Plη)

∣
∣2 ν(dη) < ∞.

Remark 4.4 Via the spectral theorem for self-adjoint operators one could also introduce
the space GK ,s for s ∈ R. In the proof of Theorem 2.11 we used that the operator
K s , s ∈ Z, maps N continuously into itself. If for s ∈ R the operator K s maps N
continuously into itself the exact same proof as above also leads to the corresponding
statement in Theorem 2.11 for s ∈ R.

5 Applications

5.1 An equation from turbulent transport and its regularity

In this subsection we shall apply the derived characterisation to an equation from
turbulent transport. Here, we specify our general setting to be the white noise setting,
i.e., H = L2(R) and N = S(R), see Example 2.12(i). Hence, we write S′(R) for
N ′, the measure μ is called white noise measure. We consider the case K = √

2I d.
The number

√
2 is arbitrary and any number γ > 1 leads to the same space G =

G√
2I d and its dual space G′ = G′√

2I d
. For s ∈ Z we simply write Gs instead of

GK ,s . These spaces were introduced and studied in [25]. Thus, we obtain that the
elements �(n), n ∈ N0, from the generalised chaos decomposition of an element

� = ∑∞
n=0

〈
�(n), :·⊗n :〉 ∈ G′

K satisfy �(n) ∈ ̂L2
C(Rn). In particular, if �(n) = 0 for

all but finitely many n ∈ N0 then we directly obtain � ∈ L2(μ). Observe that for
the choice of the operator K = √

2I d the additional assumption in Remark 4.4 is
obviously satisfied. Hence, in this case we formulate Theorem 2.11 as follows:

Corollary 5.1 Let � ∈ (N )′. Then for s ∈ R it holds

� ∈ Gs <=> sup
P∈P

∫

S′
C(R)

∣
∣
∣S�(2

s
2 Pη)

∣
∣
∣
2
ν(dη) < ∞.

In particular, the spaces G and G′ are characterised as follows:
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(i) � ∈ G ⇐⇒ ∀λ > 0 : supP∈P
∫

S′
C(R)

|S�(λPη)|2 ν(dη) < ∞.

(ii) � ∈ G′ ⇐⇒ ∃ε > 0 : supP∈P
∫

S′
C(R)

|S�(εPη)|2 ν(dη) < ∞.

For the rest of this subsection let us fix a Brownian motion (Bt )t≥0 which rises
from the Kolmogorov continuity theorem as a continuous modification of the fam-
ily

(〈
1[0,t], ·

〉)

t≥0 ⊆ L2(μ). We denote the natural filtration of the Brownian motion

(Bt )t≥0 by (Ft )t≥0, i.e., Ft = σ(Bs | s ∈ [0, t]), t ≥ 0.

In [4,6,11,20,24] a parabolic SPDE modelling the transport of a substance in a
turbulent medium is treated via white noise analysis. There the authors search for a
solution u : R+×R

d ×� :−→ R, (t, x, ω) → u(t, x, ω) describing the concentration
of the substance, where t stands for the time, x for the position and ω for the random
parameter which will be suppressed in the following. For sake of simplicity, we only
consider here the one dimensional case d = 1. All calculations below generalise to
the multidimensional case. The SPDE under consideration is given by

∂ut,x

∂t
= 1

2
ν(t)

∂2ut,x

∂x2
+ ∂ut,x

∂x
σ(t)Ḃt , t > 0, x ∈ R (20)

u(0, ·) = δ0, (21)

where ν describes the molecular viscosity of the medium and d Bt denotes the Itô
integral w.r.t. a Brownian motion (Bt )t≥0 modelling the turbulence in the medium.
The initial condition (21) is a physical idealisation that at time zero the substance
is only concentrated at the point x = 0. Thus, we obtain an analogue of an integral
kernel of the SPDE (22), as known in the field of partial differential equations. Hence,
more realistic and even random initial conditions can be realised via convolution, see
Remark 5.7 below. In [4,24] the stochastic integral is treated in the Stratonovich sense
and existence of an L2-valued solution ut,x is shown. The Itô case is also treated in
[4,24]. In [4] the solution is constructed as a generalised Brownian functional, see the
last mentioned reference as well as [14] for the precise meaning. In [6,24] the solution
ut,x is constructed in the space of Hida distributions (N )′. Furthermore, in the last
mentioned reference explicit conditions on ν and σ in terms of Hölder regularity are
given, such that ut,x ∈ L2(μ).

In the following we use Corollary 5.1 to improve the results in [24] by giving
explicit conditions on the coefficients ν(t), σ (t) s.t. ut,x ∈ Gs ⊆ (N )′, s ∈ Z, see
Theorem 5.2 below.

To formulate (20), (21) in terms of white noise analysis we introduce the white
noise process (wt )t≥0 ⊆ (S)′. The element wt is given by its generalised chaos
decomposition wt = 〈δt , ·〉, where δt ∈ S′(R) denotes the Dirac delta distribution at
t ≥ 0. Furthermore, we introduce theWick product on (S)′. For�,� ∈ (S)′ we define
the Wick product � � � ∈ (S)′ via the S-transform, i.e., S(� � �) = S(�)S(�).
Observe that the product of twoU -functionals is again aU -functional, hence,��� is
well-defined by Theorem 2.8. A rigorous interpretation of (20), (21) in terms of white
noise analysis is now given as follows. We search for a map u : R+ × R −→ (N )′
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fulfilling

∂ut,x

∂t
= 1

2
ν(t)

∂2ut,x

∂x2
+ σ(t)wt � ∂ut,x

∂x
, t > 0, x ∈ R, (22)

(
Sut,·(ϕ)

)

t>0 is a Dirac sequence for all ϕ ∈ S(R). (23)

The initial condition (23) means that for all ϕ, g ∈ S(R) the following is valid

lim
t→0

∫

R

Sut,x (ϕ)g(x) dx = g(0).

We explain the connection between the Itô term in (20) and the so called Hitsuda–
Skorokhod term σ(t) ∂ut,x

∂x � wt in (22) in Remark 5.7 below. In the following we
denote byR the extended real numbers. We formulate our existence result in the next
theorem:

Theorem 5.2 Assume that ν : [0,∞) −→ R is strictly positive and locally integrable
and σ : [0,∞) −→ R is locally square integrable. If the function (0,∞) � t →
κ(t) :=

∫

[0,t] σ 2(s) ds
∫

[0,t] ν(s) ds
∈ R is bounded in the vicinity of 0 then for every T ∈ N there

exists an s ∈ R and a map

u : (0, T ] × R −→ Gs

satisfying (23). Furthermore, for dt-a.e. t ∈ (0, T ] and all x ∈ R the map u is once
differentiable w.r.t. t and twice differentiable w.r.t. x at (t, x) and satisfies (22). In
particular, for s ∈ R and t ∈ (0, T ] satisfying 2sκ(t) < 1 it holds ut,x ∈ Gs for all
x ∈ R.

Proof The same computations as in [23, Sect. 5] yield a candidate for the S-transform
of u:

Sut,x (ϕ) = 1√
2πϑ(t)

exp

(

− 1

2ϑ(t)

(
x − 〈

1[0,t]σ, ϕ
〉)2
)

, ϕ ∈ S(R), (24)

whereϑ(t) = ∫

[0,t] ν(s) ds, t > 0.One easily sees that (24) defines aU -functional sat-
isfying (23). Via Theorem 2.8 we obtain the element ut,x ∈ (N )′ having S-transform
given by (24). If

∫

[0,t] ν(s) ds = ∫

[0,t] σ(s)2 ds the corresponding Hida distribution

ut,x is given by Donskers delta δx (
〈
1[0,t]σ, ·〉), see e.g. [19, Example 13.9.]. The fact

that ut,x satisfies (22) in the weak sense is proven [23]. In the remaining part of
the proof we show that for all T ∈ N there exists an s ∈ R s.t. ut,x ∈ Gs for all
(t, x) ∈ (0, T ] × R.

We divide the proof into two separate parts. In the first part we show that u is
differentiable and satisfies (22) in the above mentioned sense. In the second part we
show that for all T ∈ N there exists an s ∈ R s.t. ut,x ∈ Gs for all (t, x) ∈ (0, T ]×R.

Part 1 To show that u is differentiable and satisfies (22) in the above mentioned
sense we use [15, Theorem 4.41.]. We only show that u is differentiable w.r.t. t at

123



378 Stoch PDE: Anal Comp (2022) 10:359–391

every (t, x) ∈ D × R, where (0, T ]\D is of Lebesgue measure zero. The treatment
of the derivatives w.r.t. x is easier and can be done by the same procedure. The fact
that ut,x satisfies (22) can be seen by considering the corresponding equation for the
S-transform Sut,x . We make the following observation. Let ϕ ∈ S(R) and T ∈ N.
Via the fundamental theorem of Lebesgue calculus, the functions ϑ and t → �(t) :=∫

[0,t] σ(s)ϕ(s) ds are absolutely continuous and differentiable at dt-a.e. t ∈ (0, T ]
with respective derivatives ν(t) and σ(t)ϕ(t). The set of all t ∈ (0, T ] s.t. ϑ and � are
differentiable at t we denote by D1. Hence, Su(·, x)(ϕ) is differentiable at t ∈ D1 and
for a zero sequence (hn)n∈N , s.t. |hn| ≤ t

2 , it holds

∂Sut,x (ϕ)

∂t
= lim

n→∞
Su(t + hn, x)(ϕ) − S(ut,x (ϕ)

hn

= 1

2ϑ(t)
3
2
√
2π

exp

(

− 1

2ϑ(t)

(

x −
∫

[0,t]
σ(s)ϕ(s) ds

)2
)

×
(

−ν(t) − 2σ(t)ϕ(t)

(

x −
∫

[0,t]
σ(s)ϕ(s) ds

)

−
ν(t)

(
x − ∫

[0,t] σ(s)ϕ(s) ds
)2

ϑ(t)

⎞

⎟
⎠ .

Hence, for z ∈ C we obtain the estimate

∣
∣
∣
∣
∂Sut,x (zϕ)

∂t

∣
∣
∣
∣ ≤ 1

2ϑ(t)
3
2
√
2π

exp

⎛

⎝
‖σ‖2

L2
T

ϑ(t)
|z|2 ‖ϕ‖2

L2
T

⎞

⎠

×
(

|ν(t)| + |z|2 ‖ϕ‖2∞ σ(t)2 +
(
|x | + ‖σ‖L2

T
|z| ‖ϕ‖L2

T

)2

+
|ν(t)|

(
|x | + ‖σ‖L2

T
|z| ‖ϕ‖L2

T

)2

ϑ(t)

⎞

⎟
⎠

≤ 1

2ϑ(t)
3
2
√
2π

exp

⎛

⎝
‖σ‖2

L2
T

ϑ(t)
|z|2 ‖ϕ‖2

L2
T

⎞

⎠

×
(
|ν(t)| + exp(|z|2 ‖ϕ‖2∞)σ (t)2 + C1 exp(‖σ‖2

L2
T

|z|2 ‖ϕ‖2
L2

T
)

+ |ν(t)|
C1 exp

(
‖σ‖2

L2
T

|z|2 ‖ϕ‖2
L2

T

)

ϑ(t)

⎞

⎟
⎠

≤ C3(t) exp
(

C2(t) |z|2 ‖ϕ‖2p
) (

|ν(t)| + σ 2(t) + 1
)
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where ‖·‖L2
T
denotes the L2((0, T ))-norm, ‖·‖∞ the L∞(R)-norm, p ∈ N is chosen

s.t. for all ϕ ∈ S(R) it holds max
{
‖ϕ‖L2

T
, ‖ϕ‖∞

}
≤ ‖ϕ‖p := ‖Apϕ‖L2(R) and

C1 = max{2 |x | , 2}, C2(t) = 1

ϑ(t)
‖σ‖2

L2
T

+ 1 + ‖σ‖2
L2

T
,

C3(t) =
max

{
C1, 1 + C1

ϑ(t)

}

2ϑ(t)
3
2
√
2π

.

Observe that C2 and C3 are decreasing. Applying the fundamental theorem of
Lebesgue calculus to Su(·, x)(ϕ) it holds

∣
∣
∣
∣
Su(t + hn, x)(ϕ) − S(ut,x (ϕ)

hn

∣
∣
∣
∣ =

∣
∣
∣
∣
1

hn

∫

[t,t+hn ]
∂Su(s, x)(ϕ)

∂s
ds

∣
∣
∣
∣

≤ C3

(
t

2

)

exp

(

C2

(
t

2

)

|z|2 ‖ϕ‖2p
)

1

|hn|
∫

[t,t+hn ]
|ν(s)| + σ 2(s) + 1 ds

Via the fundamental theorem of Lebesgue calculus it holds for dt-a.e. t

C4(t) := sup
n∈N

1

|hn|
∫

[t,t+hn ]
|ν(s)| + σ 2(s) + 1 ds < ∞. (25)

We denote the set of all t ∈ (0, T ] s.t. (25) holds true by D2. We conclude that for
t ∈ D := D1 ∩ D2 it holds

lim
n→∞

Su(t + hn, x)(ϕ) − S(ut,x (ϕ)

hn
exists,

∣
∣
∣
∣
Su(t + hn, x)(ϕ) − S(ut,x (ϕ)

hn

∣
∣
∣
∣ ≤ C3

(
t

2

)

C4(t) exp

(

C2

(
t

2

)

|z|2 ‖ϕ‖2p
)

.

Nowwe apply [15, Theorem 4.41.] and obtain that u is differentiable w.r.t. t at (t, x) ∈
D × R. The first part is finished.

Part 2 It is left to show that for every time T ∈ N we can find an s ∈ R s.t.
ut,x ∈ Gs for all t ∈ (0, T ] and x ∈ R. We prove this by using Corollary 5.1. To this
end let P ∈ P be a projection as in Definition 2.10, η1 + iη2 = η ∈ S′

C(R), where
η1, η2 ∈ S′(R) and ε > 0.

We obtain

∣
∣Sut,x (εPη)

∣
∣2 =

∣
∣
∣
∣

1√
2πϑ(t)

exp

(

− 1

2ϑ(t)

(
x − ε

〈
1[0,t]σ, Pη

〉)2
)∣
∣
∣
∣

2

=
∣
∣
∣
∣

1√
2πϑ(t)

exp

(

− 1

2ϑ(t)

(
x − ε

〈
P(1[0,t]σ), η

〉)2
)∣
∣
∣
∣

2

= 1

2πϑ(t)
exp

(

− ε2

ϑ(t)

( x

ε
− 〈

P(1[0,t]σ), η1
〉)2

)
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exp

(
ε2

ϑ(t)

〈
P(1[0,t]σ), η2

〉2
)

.

Now we calculate the integral of
∣
∣S
(
ut,x

)
(εP·)∣∣2 w.r.t. the measure ν = μ 1

2
⊗ μ 1

2
.

Observe that the law μ 1
2

◦
〈

P(1[0,t]σ)

‖P(1[0,t]σ)‖L2(R)

, ·
〉−1

is the centered Gaussian measure

with variance 1
2 . Thus we conclude

∫

S′
C(R)

∣
∣S
(
ut,x

)
(εPη)

∣
∣2 dν(η)

= 1√
2πϑ(t)π

∫

R

exp

(

− ε2

ϑ(t)

( x

ε
− y1

∥
∥P(1[0,t]σ)

∥
∥

L2(R)

)2
)

exp
(
− |y1|2

)
dy1

× 1√
2πϑ(t)π

∫

R

exp

(
ε2

ϑ(t)
y22
∥
∥P(1[0,t]σ)

∥
∥2

L2(R)

)

exp
(
− |y2|2

)
dy2

= 1√
2πϑ(t)π

∫

R

exp

⎛

⎝−
⎛

⎝1 +
ε2
∥
∥P(1[0,t]σ)

∥
∥2

L2(R)

ϑ(t)

⎞

⎠ y21

+y1
2εx

∥
∥P(1[0,t]σ)

∥
∥

L2(R)

ϑ(t)
− x2

ϑ(t)

)

dy1

× 1√
2πϑ(t)π

∫

R

exp

⎛

⎝−
⎛

⎝1 −
ε2
∥
∥P(1[0,t]σ)

∥
∥2

L2(R)

ϑ(t)

⎞

⎠ y22

⎞

⎠ dy2. (26)

From this pointwe see that a necessary condition for supP∈P
∫

SC(R)

∣
∣S
(
ut,x

)
(εPη)

∣
∣2

ν(dη) to be finite for some ε > 0 is that 1 ± ε2‖P(1[0,t]σ)‖2
L2(R)

ϑ(t) > 0. Since
ε2‖P(1[0,t]σ)‖2

L2(R)

ϑ(t) ≤ ε2κ(t) we choose ε > 0 s.t. 0 < ε2κ(t) < 1.
Now we can evaluate the Gaussian integrals in (26)
and we seek

∫

S′
C(R)

∣
∣S
(
ut,x

)
(εPη)

∣
∣2 dν(η)

=
exp

(
− x2

ϑ(t)

)

2πϑ(t)

1
√

1 − ε4‖P(1[0,t]σ)‖4
L2(R)

ϑ(t)2

exp

⎛

⎝
ε2
∥
∥P(1[0,t]σ)

∥
∥2

L2(R)
x2

ϑ(t)ε2
∥
∥P(1[0,t]σ)

∥
∥2

L2(R)
+ ϑ(t)2

⎞

⎠ .

We conclude by Corollary 4.3 that for 0 < ε2κ(t) < 1 it holds

sup
P∈P

∫

S′
C(R)

∣
∣S
(
ut,x

)
(εPη)

∣
∣2 ν(dη)
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=
exp

(
− x2

ϑ(t)

)

2πϑ(t)

1
√

1 − ε4‖1[0,t]σ‖4
L2(R)

ϑ(t)2

exp

⎛

⎝
ε2
∥
∥1[0,t]σ

∥
∥2

L2(R)
x2

ϑ(t)ε2
∥
∥1[0,t]σ

∥
∥2

L2(R)
+ ϑ(t)2

⎞

⎠ .

Observe that by the assumptions on the coefficients ν and σ it holds that (0,∞) � t →
κ(t) ∈ R is continuous. Consequently, by assumption κ is bounded on finite intervals
(0, T ], T ∈ N. Hence, for every T ∈ N we can choose ε > 0 s.t. 0 < ε2κ(t) < 1
for all t ∈ (0, T ]. Eventually, we conclude by (20) that for s ∈ R satisfying 2

s
2 = ε it

holds

ut,x ∈ Gs, for all t ∈ (0, T ], x ∈ R.

In the case κ(t) < 1 we can choose ε ≥ 1 which implies ut,x ∈ L2(μ). ��
Remark 5.3 (i) As observed in [24], the solution ut,x passes through Donskers delta

δx (
〈
1[0,t]σ, ·〉) each time κ(t) passes through the value 1. In particular, the solution

u satisfies

ut,x

⎧
⎪⎨

⎪⎩

∈ L2(μ), if κ(t) < 1,

= δx (
〈
1[0,t]σ, ·〉), if κ(t) = 1,

∈ G′, if κ(t) > 1.

In the case κ(t) < 1 the solution ut,x is explicitly given by, see [24, Eq. (3.13)],

ut,x =
(

2π
∫

[0,t]
ν(s) − σ 2(s) ds

)− 1
2

exp

(

−(2
∫

[0,t]
ν(s) − σ 2(s) ds

)−1
(x − 〈

1[0,t]σ, ·〉)2
)

.

In particular, in the case κ(t) < 1 Lemma 5.6 below implies that a version of ut,x

is measurable w.r.t. Ft .
(ii) Observe that the calculation in the proof of Theorem 5.2 shows that Donsker’s

delta δx (〈 f , ·〉), x ∈ R, f ∈ L2(R), is an element of Gs for all s ∈ (−∞, 0) and
δx (〈 f , ·〉) /∈ L2(μ).

In the following let � = ∑∞
n=0

〈
�(n), :·⊗n :〉 ∈ G′. Recall that the S-transform of � is

given by

S�(ϕ) =
∞∑

n=0

〈
ϕ⊗n,�(n)

〉
(27)

and the dual pairing
〈
ϕ⊗n,�(n)

〉
is given by the scalar product

(
ϕ⊗n,�(n)

)

L2(Rn)
.

Hence, the S-transform of � admits a natural extension to L2(R) which is also given
by (27). The next lemma follows immediately from the polarisation identity.

123



382 Stoch PDE: Anal Comp (2022) 10:359–391

Lemma 5.4 Let � = ∑∞
n=0

〈
�(n), : ·⊗n :〉 ∈ G′ and I ⊆ R be measurable. Then the

following are equivalent:

(i) supp(�n) ⊆ I n for all n ∈ N.
(ii) S�(ϕ) = S�(1I ϕ) for all ϕ ∈ S(R).

Lemma 5.5 Let F = ∑∞
n=0

〈
F (n), : ·⊗n :〉 ∈ L2(μ) and I ⊆ R. Then there exists a

version F̃ of F which is measurable w.r.t. σ(〈ξ, ·〉 , ξ ∈ S(R), supp(ξ) ⊆ I ) if and
only if supp(F (n)) ⊆ I n for all n ∈ N.

Proof It suffices to prove the statement for F = 〈
F (n), :·⊗n :〉, n ∈ N. Necessity can

be proven as in [14, Proposition 4.5.]. Sufficiency follows from construction of the
element

〈
F (n), :·⊗n :〉 ∈ L2(μ). ��

For the next lemma recall theBrownianmotion (Bt )t≥0 aswell as the corresponding
natural filtration (Ft )t≥0 defined above.

Lemma 5.6 Assume that F : S′(R) −→ C is measurable w.r.t. Ft , t ∈ [0,∞). Then
there exists a G : S′(R) −→ C which is measurable w.r.t. At := σ(〈ξ, ·〉 | ξ ∈
S(R), supp(ξ) ⊆ [0, t)) and it holds F = G μ-a.e. and vice versa.

Proof Using [3, Corollary 2.9] it suffices to show that a version of Bs is measurable
w.r.t.At for s ∈ [0, t] and that a version of 〈ξ, ·〉 is measurable w.r.t. Ft for ξ ∈ S(R)

with supp(ξ) ⊆ [0, t). Both statements follow by the construction of
〈
1[0,s], ·

〉 ∈
L2(μ), s ∈ [0, t]. ��

Several remarks are in order.

Remark 5.7 (i) Let f : R −→ G′ be given s.t. for (t, x) ∈ (0,∞) × R the map

R � y → f (y) � u(t, x − y) ∈ G′

is weakly in L1(R,B, dx), where B is the Borel σ -field and dx the Lebesgue
measure onR, respectively and u is defined in (24). I.e., for every F ∈ G it holds
that R � y → 〈F, f (y) � u(t, x − y)〉 ∈ C is in L1(R,B, dx). Then we can
define the Pettis-integral

u f
t,x :=

∫

R

f (y) � ut,x−y dy ∈ G′, (28)

see also [15, Proposition 8.1] and [25, Proposition 2.6]. Under additional assump-
tions on f we obtain that u f satisfies the initial condition u f

0,x = limt→0 u f
t,x =

f (x) for all x ∈ R. If we assume that the time and space derivatives d
dt ,

d
dx and

d2

dx2
commute with the Pettis-integral (28) we obtain that u f : R≥0 × R −→ G′

satisfies (22) with the initial condition u f
0,x = f (x).

(ii) If we assume for the sake of simplicity that the initial data f in (i) is deterministic
and an element from S(R), all steps in (i) are justified and we obtain that u f given
by (28) is a solution to (22) with initial condition u f

( 0, x) = f (x) for all x ∈ R.
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From Theorem 5.2 and Lemma 5.4 we can conclude that (u f
t,x )t∈[0,T ], x ∈ R, is

a generalised stochastic process and adapted in the sense of [1, Definition 1]. In
particular, if u f

t,x ∈ L2(μ) then it holds by Lemmas 5.5 and 5.6 that a version of

u f
t,x is measurable w.r.t. Ft for all x ∈ R. It is well-known that for such a process

the Itô integral and the Hitsuda–Skorokhod integral coincide, see e.g. [15, Theo-

rem 8.7.]. Indeed, if for x ∈ R and T ∈ [0,∞) the process

(

σ(s) ∂u f
s,x

∂x

)

s∈[0,T ]
is

in L2([0, T ]; L2(μ)) then for t ∈ [0, T ] the following identity is valid

∫ t

0
σ(s)

∂u f
s,x

∂x
� ws ds =

∫ t

0
σ(s)

∂u f
s,x

∂x
d Bs μ-a.e.,

5.2 Stochastic Heat equation with general multiplicative colored Noise

In this subsectionweapply our characterisation theorem toderive new results regarding
the stochastic heat equation with multiplicative noise having a very general covariance
structure. The results in this subsection are an extension of the results in [17, Sect. 3,4].
Indeed, we combine our main result with the calculations made in [17] to improve the
results given in the last mentioned reference. We start by recalling the central objects
introduced in Sects. 3 and 4 of [17] and relate them to our general functional analytic
framework. In Theorems 5.10 and 5.12 we formulate our new results regarding the
heat equation with multiplicative stochastic source term in the case of Skorokhod and
Stratonovich product, respectively.

Beforewe beginwith our considerations let us introduce some notation. Throughout
this entire subsection d ∈ N is fixed and by pt , t > 0, we denote the heat kernel given

by pt (x) = (2π t)− d
2 exp(−|x |2

2t ), x ∈ Rd . Furthermore, let (�,A, P) be an arbitrary
probability space carrying two independent d-dimensional Brownianmotions (Bt )t≥0,
(B̃t )t≥0. For x ∈ Rd we denote by (Bx

t )t≥0 and (B̃x
t )t≥0 the processes (Bt + x)t≥0

and (B̃t + x)t≥0, respectively.
The stochastic partial differential equation we consider is informally given by

∂ut,x

∂t
= 1

2
�ut,x + ut,x Ẇt,x , t > 0, x ∈ Rd , (29)

u0,x = u0(x), x ∈ Rd , (30)

with continuous and bounded initial condition u0. The product between ut,x and the
centered Gaussian process Ẇt,x , t > 0, x ∈ Rd , is treated in the Skorokhod and the
Stratonovich case, see [17]. The covariance structure of Ẇ is given by

E
[
Ẇt,x Ẇs,y

] = γ (t − s)�(x − y), (31)

where γ and � are generalized functions. The rigorous interpretation of (29) and (31)
is given below. We work under the following assumptions on γ and �.
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Assumption 5.8 Let γ : R −→ R+, � : Rd −→ R+ be measurable, non-negative
definite functions, s.t., γ ∈ S′(R) ∩ L1

loc(R) and � ∈ S′(Rd), where S′(R) and
S′(Rd) are the spaces of tempered distributions over R and Rd , respectively. The
Fourier transforms ρ = Fγ and σ = F� are tempered measures on R and Rd ,
respectively and the product measure ρ ⊗σ has full topological support. The measure
σ satisfies

∫

Rd

1

1 + |ξ |2 σ(dξ) < ∞.

To specify our functional analytic framework let γ and � satisfy Assumption 5.8.
Throughout this subsection we chooseN = S(Rd+1) the real-valued Schwartz func-
tions and define H as the abstract completion of N w.r.t. the inner product

( f , g)H =
∫

R2

∫

R2d
f (t, x)g(s, y)γ (t − s)�(x − y) dx dy dt ds

=
∫

R

∫

Rd
F f (α, ξ)Fg(α, ξ)ρ(dα)σ(dξ).

In particular, μ denotes the mean zero Gaussian measure defined on N ′ = S′(Rd+1)

with covariance given by the inner product (·, ·)H. For more details see Example
2.12(ii). As in the previous section we consider K = √

2I d and for s ∈ R we denote
the spaces GK ,GK ,s simply by G,Gs , respectively. Equivalently as in Corollary 5.1
our main result can be formulated under the above mentioned framework as

� ∈ Gs ⇐⇒ sup
P∈P

∫

S′
C(Rd+1)

∣
∣
∣S�(2

s
2 Pη)

∣
∣
∣
2
ν(dη) < ∞,

where s ∈ R. Before we proceed, some comments on Assumption 5.8 in comparison
to the Assumptions in the reference [17] are necessary.

Remark 5.9 (i) The assumptions made in Assumption 5.8 on γ and � are stronger
than the ones made in [17, Theorem 3.6.]. In particular, we assume that γ is
a tempered distribution, which is a stronger assumption than assuming merely
local integrability of γ . The assumption on the support of ρ ⊗ σ = Fγ ⊗ F�

guarantees that the bilinear form (·, ·)H is positive definite on N = S(Rd+1).
Furthermore, this property of γ and � implies that the nuclear space N is con-
tinuously embedded into H, which is necessary to apply our results from the
previous sections.

(ii) One can also drop the assumption that ρ ⊗ σ have full topological support in
Assumption 5.8 by considering instead of N = S(Rd+1) the corresponding
nuclear quotient space N = S(Rd+1) mod N0, where N0 = { f ∈ S(Rd+1) |∫

Rd+1 |F f |2 dρ ⊗ σ = 0}. To simplify our considerations below we stick to the
assumptions as stated in Assumption 5.8.

(iii) Important examples of γ and � can be found in [16,17], corresponding for
example to white or fractional noise.
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5.2.1 Skorokhod case

To treat the Skorokhod case let us recall what has been achieved in [17]. The authors
in [17] investigate the Skorokhod case of (29), (30) by considering an approximate
equation given by

∂uε,δ
t,x

∂t
= 1

2
�uε,δ

t,x + uε,δ
t,x � Ẇ ε,δ

t,x , t > 0, x ∈ Rd , (32)

uε,δ
0,x = u0(x), x ∈ Rd , (33)

where � denotes the Wick product, see [19, Definition 8.11.] as well as [17, Equation
(2.12)], and Ẇ ε,δ

t,x is given by the element with only first order chaos decomposition

Ẇ ε,δ
t,x =

〈
w

ε,δ
t,x , ·

〉
, where w

ε,δ
t,x ∈ H is given by

w
ε,δ
t,x (s, y) = 1

δ
1[0,δ](t − s)1[0,t](s)pε(x − y), s > 0, y ∈ Rd .

By [17, Eq. (3.18)] the mild solution to the approximate equation (32), (33) is given
by the Bochner integral in L p(N ′, μ), p ∈ [1,∞),

uε,δ
t,x = E

[
u0(Bx

t ) :exp
(〈

Aε,δ
t,Bx , ·

〉)
:
]
,

where :exp
(〈

Aε,δ
t,Bx , ·

〉)
: denotes the Wick exponential of Aε,δ

t,Bx ∈ H which is given

by

Aε,δ
t,Bx (r , y) = 1

δ

(∫ δ∧(t−r)

0
pε(Bx

t−r−s − y) ds

)

1[0,t](r), r ∈ R, y ∈ Rd ,

and E denotes integration w.r.t. P in the sense of Bochner. Consequently, the S-
transform of uε,δ

t,x at ϕ ∈ NC is given by

Suε,δ
t,x (ϕ) = E

[
u0(Bx

t )S
(
:exp

(〈
Aε,δ

t,x , ·
〉)

:
)

(ϕ)
]

= E
[
u0(Bx

t ) exp
(
(Aε,δ

t,x , ϕ)H
)]

.

In [17, Theorem 3.6.] it is shown that the limit ut,x = limε→0 limδ→0 uε,δ
t,x exists for

all t > 0, x ∈ Rd in L p(N ′, μ) for all p ∈ [1,∞) and (ut,x )t>0,x∈Rd coincides
with the mild solution of (29), (30), see also the last mentioned reference for the
definition of mild solution. With this notation in mind we can formulate our results
for the Skorokhod case in the following theorem.

Theorem 5.10 Let u0 : Rd −→ R be continuous and bounded and γ and � satisfy
Assumptions 5.8. For every t > 0, x ∈ Rd the element ut,x = limε→0 limδ→0 uε,δ

t,x is
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contained in G and for λ ∈ (0,∞) the Gλ-norm of ut,x can be estimated by

∥
∥ut,x

∥
∥2

λ
≤ E

[

u0(Bx
t )u0(B̃x

t ) exp

(

4λ2
∫ t

0

∫ t

0
γ (r − s)�(Bx

r − B̃x
s ) ds dr

)]

,

(34)

where E denotes integration w.r.t. P.

Proof Let t > 0, x ∈ Rd be arbitrary and λ ∈ (0,∞). To show ut,x ∈ Gλ it suffices

to show that the norm
∥
∥
∥uε,δ

t,x

∥
∥
∥

λ
is uniformly bounded in ε, δ > 0, due to the Banach-

Alaoglu theorem. To this end, we use our main result. Let us also fix ε, δ > 0 and let
(ei )i∈N denote a real orthonormal basis of H which is contained in N . For m ∈ N,
we denote by Pm the projection given by Pm = ∑m

j=1

〈
e j , ·

〉
e j . From Assumption 5.8

we conclude that the real random variable
∥
∥
∥Aε,δ

t,Bx

∥
∥
∥H is bounded. Thus, we can use

Fubinis Theorem and obtain

∫

S′
C(Rd+1)

∣
∣
∣Suε,δ

t,x (λPmη)

∣
∣
∣
2
ν(dη)

= E

[

u0(Bx
t )u0(B̃x

t )

∫

S′
C(Rd+1)

exp

(

λ
〈
Pmη, Aε,δ

t,Bx

〉
+ λ

〈
Pmη, Aε,δ

t,B̃x

〉)
]

= E

[

u0(Bx
t )u0(B̃x

t )

∫

S′
C(Rd+1)

exp

(

λ
〈
η, Pm Aε,δ

t,Bx

〉
+ λ

〈
η, Pm Aε,δ

t,B̃x

〉)

ν(dη)

]

.

Proposition 3.1 yields

∫

S′
C(Rd+1)

exp

(

λ
〈
η, Pm Aε,δ

t,Bx

〉
+ λ

〈
η, Pm Aε,δ

t,B̃x

〉)

ν(dη)

= exp
(
4λ2(Pm Aε,δ

t,Bx , Pm Aε,δ

t,B̃x )H
)

.

Observe that the random variables Xm := (Pm Aε,δ
t,Bx , Pm Aε,δ

t,B̃x )H, m ∈ N, are uni-

formly bounded. Furthermore, we have

Xm m→∞−−−−→
(

Aε,δ
t,Bx , Aε,δ

t,B̃x

)

H

=
∫ t

0

∫ t

0
γ (r − s)

1

δ2

∫ δ∧(t−r)

0

∫ δ∧(t−s)

0

∫

Rd

∫

Rd

× �(y1 − y2)pε(Bx
t−r−t1 − y1)pε(Bx

t−s−t2 − y2) dy1 dy2 dt1 dt2 dr ds

δ→0−−→
∫ t

0

∫ t

0
γ (r − s)

∫

Rd

∫

Rd

× �(y1 − y2)pε(Bx
t−r − y1)pε(Bx

t−s − y2) dy1 dy2 dr ds
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ε→0−−→
∫ t

0

∫ t

0
γ (r − s)�(Bt−s − B̃t−s) dr ds ∈ L1(�,P),

where the convergence takes place in L1(�,P), see [17, proof of Theorem 3.6]. The
dominated convergence theorem implies

sup
m∈N

∫

S′
C(Rd+1)

∣
∣
∣Suε,δ

t,x (λPmη)

∣
∣
∣
2
ν(dη) < ∞.

From Corollary 4.3 we conclude

∥
∥
∥uε,δ

t,x

∥
∥
∥
2

λ
= lim

m→∞E
[
u0(Bx

t )u0(B̃x
t ) exp

(
4λ2Xm

)]

=E
[
u0(Bx

t )u0(B̃x
t ) exp

(
4λ2

(
Aε,δ

t,Bx , Aε,δ

t,B̃x

)

H

)]
.

From the boundedness of u0 and [17, Eq. (3.27)] we eventually obtain

sup
0<ε,δ≤1

∥
∥
∥uε,δ

t,x

∥
∥
∥

λ
< ∞,

which showsut,x ∈ Gλ. The estimate (34) follows from theweak lower semi-continuity
of the norm. ��

5.2.2 Stratonovich case

In this part we consider the product of Ẇt,x and ut,x in (29) in the sense of the
Stratonovich integral. We proceed similar as in Theorem 5.10 and use the results
made in [17, Sect. 4]. In [17, Sect. 4] amild solution (ut,x )t>0,x∈Rd of the Stratonovich
version of (29), (30) is constructed. As in the Skorokhod case we show that for all
t > 0, x ∈ Rd the random variable ut,x is contained in G. We first state additional
assumption on the covariance γ and �, see [17, Hypothesis 4.1], and recall some of
the results achieved in [17, Sect. 4].

Assumption 5.11 Let γ and � be given as in Assumption 5.8. Assume additionally
that there exists a constant 0 < β < 1 s.t. for any t ∈ R,

0 ≤ γ (t) ≤ Cβ |t |−β

for some constant 0 < Cβ < ∞ and the measure σ satisfies

∫

Rd

1

1 + |ξ |2−2β σ (dξ) < ∞.

The candidate solution (ut,x )t>0,x∈Rd of (29), (30) for the Stratonovich case is

given as a limit of approximations (uε,δ
t,x )t>0,x∈Rd where ε, δ > 0 are cut off parameters

and tend to zero. The convergence takes place in L p(N ′, μ) for every p ∈ [1,∞)
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and uniformly in t > 0, x ∈ Rd , see [17, Proposition 4.7]. The approximations
(uε,δ

t,x )t>0,x∈Rd are given as a Bochner integral in L p(N ′, μ), p ∈ [1,∞) as above,

see [17, Equation (4.15)]. Indeed, for t > 0 and x ∈ Rd uε,δ
t,x is given as

uε,δ
t,x =E

[
u0(Bx

t ) exp
(

Aε,δ
t,Bx

)]

=E

[

u0(Bx
t ) exp

(
1

2

∥
∥
∥Aε,δ

t,Bx

∥
∥
∥
2

H

)

:exp
(〈

Aε,δ
t,Bx , ·

〉)
:
]

.

Now we can formulate our result regarding the process (ut,x )t>0,x∈Rd .

Theorem 5.12 Let u0 : Rd −→ R be continuous and bounded and γ and � satisfy
Assumption 5.11. For every t > 0, x ∈ Rd the element ut,x = limε→0 limδ→0 uε,δ

t,x is
contained in G and for λ ∈ (0,∞) the Gλ-norm of ut,x can be estimated by

∥
∥ut,x

∥
∥2

λ
≤ E

[

u0(Bx
t )u0(B̃x

t ) exp

(
1

2

(∫ t

0

∫ t

0
γ (r − s)�(Bx

r − Bx
s ) ds dr

+
∫ t

0

∫ t

0
γ (r − s)�(B̃x

r − B̃x
s ) ds dr

))

× exp

(

4λ2
∫ t

0

∫ t

0
γ (r − s)�(Bx

r − B̃x
s ) ds dr

)]

,

where E denotes integration w.r.t. P.

Proof Weshow this results as in theproof ofTheorem5.10. Indeed, the samearguments
as above lead to the fact that for every ε, δ, λ, t > 0 and x ∈ Rd the Gλ-norm of uε,δ

t,x
is given by

∥
∥
∥uε,δ

t,x

∥
∥
∥
2

λ
= E

[

u0(Bx
t )u0(B̃x

t ) exp

(
1

2

(∥
∥
∥Aε,δ

t,Bx

∥
∥
∥
2

H +
∥
∥
∥Aε,δ

t,B̃x

∥
∥
∥
2

H

)

+4λ2
(

Aε,δ
t,Bx , Aε,δ

t,B̃x

)

H

)]
.

Using [17, Eq. (4.17) ff.] we conclude that

sup
0<ε,δ≤1

∥
∥
∥uε,δ

t,x

∥
∥
∥

λ
< ∞,

implying that ut,x ∈ Gλ for all λ ∈ (0,∞). The last part of the statement follows by
the same argument as in 5.10 and [17, Eq. (4.6)]. ��
Remark 5.13 We want to point out that the results of Theorems 5.10 and 5.12 give
some additional insight into the solution of the stochastic heat equation (29), (30) for
the Skorokhod and Stratonovich case. In particular, in both cases the random variable
ut,x , t > 0, x ∈ Rd , is contained in G. This implies that ut,x is infinitely often
Malliavin differentiable and the derivatives of arbitrary order are integrable of order

123



Stoch PDE: Anal Comp (2022) 10:359–391 389

p, where p ∈ [1,∞) can be arbitrarily large, see [25]. As far as the authors know, this
has not been shown for this general class of covariances.

6 Outlook: application to stochastic currents

The concept of current is fundamental in geometric measure theory. The simplest
version of current is given by the functional

ϕ →
∫ T

0

(
ϕ(γ (t)), γ ′(t)

)

Rd dt, 0 < T < ∞,

where ϕ : R
d → R

d , d ∈ N, and γ : [0, T ] → R
d is a rectifiable curve. Its vector

valued integral kernel informally is given by

ζ(x) =
∫ T

0
δ(x − γ (t))γ ′(t) dt, x ∈ R

d ,

where δ is the Dirac delta. The interested reader may find comprehensive account on
the subject in the books [7,21].

A stochastic analog of the current ζ arises if we replace the deterministic curve γ

for example by the trajectory of a Brownian motion (B(t))0≤t≤T taking values in R
d .

In this way, we obtain the following functional

ξ(x) :=
∫ T

0
δ(x − B(t)) d B(t), x ∈ R

d . (35)

In the forthcoming manuscript [5] a rigorous definition of (35) is given. Using Wick
products the stochastic integral w.r.t. R

d -valued Brownian motions can be defined in
the space of Hida distributions. Then our improved characterization of G′ is applied
to analyze the regularity of ξ(x), x ∈ R

d .
There have been some other approaches to study stochastic current, such as Malli-

avin calculus and stochastic integrals via regularization, see [8–10,13], among others.
In [9] ξ was constructed in a negative Sobolev space, i.e., in a generalized function
space in the variable x ∈ R

d . Then the constructed distribution was applied to a model
of random vortex filaments in turbulent fluids. The construction in [5] gives for the
same object a rigorous definition pointwise in x ∈ R

d\{0}.
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