
Real-time Depth Estimation from
Light Fields on Embedded

Hardware

Thesis approved by
the Department of Computer Science
University of Kaiserslautern-Landau
for the award of the Doctoral Degree

Doctor of Engineering (Dr.-Ing.)
to

Yuriy Anisimov

Date of Defense: 15.03.2024
Dean: Prof. Dr. Christoph Garth
Reviewer: Prof. Dr. Didier Stricker
Reviewer: Prof. Dr. Karsten Berns

DE-386

iii

Abstract
In recent years, there has been a growing need for accurate three-dimensional
(3D) scene reconstruction. Recent developments in the automotive industry
have led to the increased use of advanced driver-assistance system (ADAS)
where 3D reconstruction techniques are used, for example, as part of a col-
lision detection system. For such applications, scene geometry reconstruc-
tion is usually performed in the form of depth estimation, where distances to
scene objects are obtained.

In general, depth estimation systems can be divided into active and pas-
sive. Both systems have their advantages and disadvantages, but passive
systems are usually cheaper to produce and easier to assemble and integrate
than active systems. Passive systems can be stereo- or multiple-view based.
Up to a certain limit, increasing the number of views in multi-view systems
usually results in improved depth estimation accuracy.

One potential problem for ensuring the reliability of multi-view systems
is the need to accurately estimate the orientation of their optical sensors. One
way to ensure sensor placement for multi-view systems is to rigidly fix the
sensors at the manufacturing stage. Unlike arbitrary sensor placement, using
of a simplified and known sensor placement geometry further simplifies the
depth estimation.

We meet with the concept of light field (LF), which parameterizes all vis-
ible light passing through all viewpoints by their intersection with angular
and spatial planes. When applied to computer vision, this gives us a two-
dimensional (2D) set of 2D images, where the physical distances between
each image are fixed and proportional to each other.

Existing LF depth estimation methods provide good accuracy, which is
suitable for industrial applications. However, the main problems of these
methods are related to their running time and resource requirements. Most
of the algorithms presented in the literature are typically sharpened for ac-
curacy, can only be run on high-performance machines and often require a
significant amount of time to process and obtain results.

Real-world applications often have running time requirements. Also, of-
ten there is a power-consumption limitation. In this dissertation, we investi-
gate the problem of building a depth estimation system with an LF camera
that satisfies the operating time and power consumption constraints without
significant loss of estimation accuracy.

First, an algorithm for calibrating LF cameras is proposed, together with
an algorithm for automatic calibration refinement, that works on arbitrary
captured scenes. An algorithm for classical geometric depth estimation us-
ing LF cameras is proposed. Ways to optimize the algorithm for real-time
use without significant loss of accuracy are presented. Finally, the ways
how the presented depth estimation methods can be extended using modern
deep learning paradigms under the two previously mentioned constraints
are shown.

v

Acknowledgements
I would like to express my deepest gratitude to my supervisor, Prof. Dr.
Didier Stricker, for his invaluable guidance and support throughout my dis-
sertation. His expertise and insights have been instrumental in shaping my
research and helping me to develop as a researcher. Also, I would like to
thank Prof. Dr. Berns for reviewing my dissertation and Prof. Dr. van Wav-
eren for being a chairman of my viva.

I would also like to thank Dr. Oliver Wasenmüller for his collaboration on
the project that formed the core of my dissertation. His dedication, expertise,
and enthusiasm for the project were essential to its success, and I am grateful
for the opportunity to have worked with him.

I would like to acknowledge the Department of Computer Science of
RPTU and German Research Center for Artificial Intelligence for providing
me with a stimulating and supportive academic environment. The resources,
facilities, and staff of the department have been instrumental in enabling me
to conduct my research and to develop as a researcher.

I would also like to express my appreciation to my colleagues and stu-
dents, who provided me with invaluable feedback, support, and inspira-
tion throughout my academic journey. Their encouragement and enthusiasm
have been essential to my success, and I am grateful for the opportunity to
work with such a talented and dedicated group of individuals.

I would like to express special thanks to David Haase, whose help in set-
ting up the hardware has bailed me out more than once, and with whom
conversations have become an outlet from routine work.

I would like to thank Nikolai Markov, who was my supervisor during
my studies in Moscow, who introduced me to computer vision, and thanks
to whom I decided to continue my studies in this direction.

Finally, I would like to thank my friends Aleksandr, Aleksei, Kirill and
Sergei for their friendship and brotherhood, and my mother Tatiana for ev-
erything good she has done. I must express my deepest gratitude to my wife
Polina, whose support and faith helped me to finish this dissertation.

Thank you all for your contributions to my research and for helping me
to achieve my academic goals.

Yuriy Anisimov, 31.03.2024

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Overview . 3
1.4 Publications . 3

2 Background 5
2.1 Single Camera . 5

2.1.1 Definition . 5
2.1.2 Historical background 5
2.1.3 Components of the modern camera 6
2.1.4 Pinhole Model . 8
2.1.5 Lens distortion . 8
2.1.6 Image projection . 9
2.1.7 Spatial camera coordinates 10
2.1.8 Matrix form . 11
2.1.9 Distortion model . 12
2.1.10 Camera calibration . 12
2.1.11 View remapping . 13

2.2 Stereo Camera . 13
2.2.1 Definition . 13
2.2.2 Historical background 14
2.2.3 Parallax . 15
2.2.4 Stereo calibration . 16
2.2.5 Triangulation . 16
2.2.6 Advantages and disadvantages 16
2.2.7 Multi-view stereo . 17

2.3 Light Field . 17
2.3.1 Definition . 19
2.3.2 Parameterization . 19
2.3.3 Connection with multi-view stereo 20
2.3.4 Duality . 21
2.3.5 Acquisition . 21

viii

2.4 Other concepts . 24
2.4.1 Depth Estimation . 25
2.4.2 Embedded Hardware 25

2.5 Conclusion . 25

3 Survey on Related work 27
3.1 Light field calibration methods 27
3.2 Light field depth reconstruction methods 29

3.2.1 Classical methods . 29
3.2.2 Deep Learning-based methods 33

3.3 Conclusion . 40

4 Light Field Calibration 41
4.1 Light field calibration algorithm 41

4.1.1 Pattern-based camera calibration 41
4.1.2 Calibration extension for multi-view cases 44

4.2 Calibration Auto-Refinement 46
4.3 Findings on Light Field Auto-Calibration 49
4.4 Experiments . 55

4.4.1 Calibration algorithm 55
4.4.2 Auto-refinement algorithm 56
4.4.3 Auto-calibration algorithm 59

4.5 Conclusion . 60

5 Geometrical depth estimation 61
5.1 Algorithm outline . 61

5.1.1 Image similarity measurements 61
5.1.2 Matching cost construction 65
5.1.3 Optimization methods 71
5.1.4 Sub-pixel refinement . 74
5.1.5 Disparity-to-depth conversion 76
5.1.6 Point Cloud extension 76
5.1.7 Post-processing techniques 77

5.2 Evaluation . 78
5.2.1 Dataset . 79
5.2.2 Metrics . 79
5.2.3 Parameters . 80
5.2.4 Results . 81
5.2.5 Discussion . 84

5.3 Conclusion . 89

6 Implementation and applications 91
6.1 Light Field Camera . 91

6.1.1 Images pre-processing 92
6.1.2 Images cropping and remapping 97
6.1.3 Camera and algorithm accuracy estimation 97

6.2 Computational platform . 98
6.2.1 Algorithms platform-specific optimizations 100

ix

6.2.2 Results . 101
6.2.3 Running time . 102
6.2.4 Communication interface 102
6.2.5 Fixed-point depth representation format 104

6.3 Applications . 105
6.3.1 Application: Industrial assistant systems 106
6.3.2 Application: ADAS obstacles detection 107

6.4 Conclusion . 108

7 Deep Learning extension 109
7.1 Neural network compression techniques 110

7.1.1 Pruning . 110
7.1.2 Quantization . 111

7.2 Neural network real-world adaptation technique 112
7.2.1 Images reprojection . 113
7.2.2 Differentiable census transform 115
7.2.3 Loss function design . 116
7.2.4 Experiments . 116

7.3 Conclusion . 120

8 Conclusion 121
8.1 Summary . 121
8.2 Potential future work directions 122

8.2.1 Light field calibration 122
8.2.2 Light field depth estimation 122

Bibliography 123

xi

List of Figures

2.1 Enhanced version of "View from the Window at Le Gras". Source:
Rebecca A. Moss, Coordinator of Visual Resources and Digital
Content Library, College of Liberal Arts Office of Information
Technology, University of Minnesota. Public Domain 6

2.2 An example of (a) film camera and (b) instant camera. Public
Domain . 7

2.3 Simplified representation of pinhole camera model 8
2.4 An image plane with defined camera center 9
2.5 A representation of different lens distortion types: (a) grid

without distortion, (b) grid with applied barrel distortion, (c)
grid with applied pincushion distortion 10

2.6 A drawing of stereoscope, proposed by Wheatstone in [169].
Public Domain . 14

2.7 A drawing of portable stereoscope, developed by Brewster.
Public Domain . 15

2.8 A stereo card for stereoscope. Public Domain 15
2.9 Triangulation of a 3D point from its 2D projections [46]. 17
2.10 Multi-view visualization of a point projection. 18
2.11 Visualization of the plenoptic function. Public domain 18
2.12 Visualization of two-plane parameterization of LF, proposed

by Levoy and Hanrahan in [86] 20
2.13 Formulation of a LF as a set of 2D images based on two-plane

parameterization . 20
2.14 Visualization of the LF duality 21
2.15 Demonstration of LF capturing using moving stage based on

the smartphone [81] . 22
2.16 A LF capturing device, consisting of five independent single

red-green-blue (RGB) cameras 22
2.17 A LF capturing device, consisting of single RGB camera with

4x4 lens array in front of the image sensor 23
2.18 Illustration of a twelve-hole camera obscura from Bettini’s Api-

aria universae philosophiae mathematicae [16]. Public Domain 24

4.1 A pipeline of pattern-based calibration algorithm 42
4.2 Examples of calibration patterns: (a) squares-based, (b) checkerboard-

based. 43

xii

4.3 A subset of (a) original and (b) rectified LF after applying the
presented algorithm. 46

4.4 A pipeline of auto-refinement algorithm 47
4.5 Visualization of views traversing in chain manner 48
4.6 A pipeline of intrinsics auto-calibration algorithm 49
4.7 An example of checkerboard pattern, used for LF camera cali-

bration . 54
4.8 Depth error for EPnP = 0.246 pixels 55
4.9 An example of synthetic scene for verifying the auto-refinement

algorithm . 56
4.10 Reprojection error of auto-refinement algorithm dependently

of the applied noise for synthetic images 57
4.11 Auto-refinement depth error . 59

5.1 An example of sparse pattern for census transform within 7x7
window. Black pixels represent assigned pixels for census trans-
form . 64

5.2 Visualization of census transform and Hamming distance . . . 64
5.3 Visualization of the matching cost 65
5.4 Visualization of pixel relation in LF 66
5.5 Reference (red) and anchor (blue) views of the LF 68
5.6 Initial disparity post-processing steps: (a) initial disparity map,

(b) per-layer disparity filtering, (c) holes filling, (c) difference
between (a) and (c) . 70

5.7 Visualization of the local matching cost estimation problem:
uncertainty in the minimal value 71

5.8 Examples of the disparity maps, regressed from individual
semi-global matching (SGM) paths 72

5.9 Disparity map, obtained by summarizing the matching costs
among different paths, based on Fig. 5.8 73

5.10 Visualization of the fragment of matching cost after applying
SGM on it. 74

5.11 Visualization of the parabolic interpolation 75
5.12 Center images of LFs from [55]: first row – "stratified" scenes,

middle row – "testing" scenes, last row – "training" scenes;
(a) "backgammon", (b) "dots", (c) "pyramids", (d) "stripes", (e)
"bedroom", (f) "bicycle", (g) "herbs", (h) "origami", (i) "boxes",
(j) "cotton", (k) "dino", (l) "sideboard" 78

5.13 Comparison of the three algorithms, developed in scope of this
dissertation: (BSL [6], FSL [8], PSL [5]) on the median of three
metrics (lower is better), generated by [1] 84

5.14 Qualitative result for "dino" scene from 4D LF Benchmark [55] 85
5.15 Effect of the per-layer disparity filtering and holes filling on

PSL [5] (a) disparity map from FSL [8], (b) disparity map from
PSL [5], (c) difference between two disparity maps 86

5.16 Effect of disparity boundaries on the point cloud: (a) point
cloud without borders, (b) point cloud with borders 87

xiii

5.17 Qualitative results for real-world scenes with different com-
parison function for matching cost construction: first three rows
– EPFL dataset from [127], the rest – Middlebury dataset [54,
133]. 90

6.1 Overview of the system implementation 92
6.2 Pre-processed frame (a) and the principles of views cropping (b) 93
6.3 Steps of pre-processing: (a) raw (bayered) image, (b) debay-

ered image, (c) gamma-corrected image 95
6.4 Demonstration of auto white balance 96
6.5 Setup of the distance measurement device on top of the used

LF camera . 98
6.6 Dependency of the camera accuracy on the specific distances . 99
6.7 Nvidia Jetson platforms: (a) Jetson TX2, (b) Jetson Xavier . . . 100
6.8 Qualitative results of the proposed system. The scenes are

reconstructed with a high level of detail – even for homoge-
neous regions (wall), filigree objects (pillar) and crowded ob-
jects (plant hedge). 102

6.9 Example of test recordings for inspection scenario 107
6.10 Example of test recordings for ADAS scenario 108

7.1 Demonstration of visual artifacts in occluded areas caused by
disparity-based warping and the proposed masking of there
artifacts. First row: leftmost view in reference row (ŝ, 0) warped
to reference view coordinates (ŝ, t̂), reference view (ŝ, t̂), right-
most view in reference row (ŝ, |t|) warped to reference view
coordinates (ŝ, t̂); second row: filtered leftmost view, sub-images
demonstrating the artifacts with color encoding, filtered right-
most view. 114

7.2 Colored visualization of two census-transformed images: (a)
original census transform, (b) proposed census transform . . . 116

7.3 Demonstration of the evaluation on 4×4 synthetic images from
4DLFB [55], namely "boxes", "cotton", "dino" and "sideboard":
(a) reference LF view, (b) results of supervised network from
[163], (c) unsupervised network with L1 loss, (d) unsupervised
network with census loss . 118

7.4 Demonstration of the evaluation on 4x4 real-world images,
first row – Stanford LF Dataset [2], second row – our dataset:
(a) reference LF view, (b) results of supervised network from
[163], (c) unsupervised network with L1 loss, (d) unsupervised
network with census loss . 119

xv

List of Tables

4.1 Results of: (a) pattern-based calibration, (b) auto-calibration . 58
4.2 Difference between Tables 4.1a and 4.1b 60

5.1 Comparison of the configurations of different algorithms used
in the dissertation . 79

5.2 Evaluation of different algorithms with BadPix(0.07) metric
on 4D LF Benchmark [55]. Italics indicate articles written in
scope of this dissertation. 81

5.3 Evaluation of different algorithms with mean squared error
(MSE) metric on 4D LF Benchmark [55]. Italics indicate arti-
cles written in scope of this dissertation. 82

5.4 Evaluation of different algorithms with Q25 metric on 4D LF
Benchmark [55]. Italics indicate articles written in scope of this
dissertation. 82

5.5 Evaluation of different algorithms on their running time on 4D
LF Benchmark [55]. Italics indicate articles written in scope of
this dissertation. 83

5.6 Evaluation of different algorithms by the proposed M-metric
on 4D LF Benchmark [55]. Italics indicate articles written in
scope of this dissertation. 83

5.7 Average results on "training" subset of 4DLFB [1] for the con-
figuration with and without per-layer disparity filtering and
holes filling . 88

6.1 System running time for two different computation platforms. 103

7.1 Results of supervised training, unsupervised training with L1-
loss and unsupervised training with Census loss of model from
[163], evaluated on subset of 4DLFB [55] by a BadPix metric . 117

xvii

List of Abbreviations

1D one-dimensional 12

2D two-dimensional iii, xi, 8–13, 16, 19, 20, 25, 34, 42, 43, 61, 62, 73

3D three-dimensional iii, xi, 1–3, 8–12, 14, 16–19, 25, 27–31, 33, 34, 37, 41–44,
47, 48, 65, 89, 109, 113, 118

4D four-dimensional 11, 19, 66

4DLFB 4D light field benchmark 87

5D five-dimensional 18, 19

AC after Christ 5, 6

ADAS advanced driver-assistance system iii, xiii, 1, 105, 107, 108

API application programming interface 22, 91

BC before Christ 5

CCD charge-coupled device 6, 7

CCS camera coordinate system 10, 11

CMOS complementary metal-oxide-semiconductor 6, 7

CNN convolutional neural network 34, 37

CPU central processing unit 84, 86, 99, 101

CUDA compute unified device architecture 86, 98, 99

DLT direct linear transformation 43, 44

DoF degrees of freedom 28

DoG difference of Gaussians 49

EPI epipolar plane image 28–34, 38, 39

FPS frames per second 25

GFTT good features to track 46, 49

xviii

GPGPU general purpose computing on graphics processing unit 98

GPU graphics processing unit 2, 36, 86, 88, 98, 99, 101, 102

GS gold standard 50, 59

ICP iterative closest points 76

KDE kernel density estimation 30

KLT Kanade–Lucas–Tomasi feature tracker 36, 46, 49

LF light field iii, xi–xiii, xv, 2, 3, 5, 12, 13, 17, 19–47, 49, 54–57, 59–61, 66–68,
70, 71, 76–79, 81–85, 87, 89, 91, 94, 96, 98, 101, 106, 108, 109, 112, 113,
116–122

LLS linear least squares 30, 32, 43

LMA Levenberg-Marquardt algorithm 43, 44, 53, 54

LUT lookup table 13, 45, 97, 101

MLA micro-lens array 24

MOS metal–oxide–semiconductor 7

MRF Markov random field 30, 35, 36

MSE mean squared error xv, 79, 82

NLLS nonlinear least squares 31

PC personal computer 29

PnP perspective-n-point 44

PSO particle swarm optimization 53

RAM random access memory 99, 109

RANSAC random sample consensus 47, 50

RGB red-green-blue xi, 1, 19, 22, 23, 96, 105–107, 117

SAD sum of absolute differences 32

SGM semi-global matching xii, 72–74, 79, 80, 84, 101

SGrD sum of gradient differences 32

SIFT Scale-Invariant Feature Transform 49, 59

SoA state-of-the-art 27, 40

SSD sum of squared differences 35

xix

SVD singular value decomposition 48, 52, 53, 60

SVM support vector machine 33

WCS world coordinate system 8, 10–12

WTA winner-takes-all 67

ZNCC zero-mean normalized cross-correlation 32, 36

1

Introduction

The objective of this work is to study, how to design a system for accurate 3D
reconstruction that can be used in environments with special requirements
for fast computation times and reduced power consumption. Most works
related to this topic either focus more often on the aspect of maximum accu-
racy, or in few cases only on the execution time of the computations, so that
research into the combination of the two requirements is relatively rare.

1.1 Motivation

In the recent years, the demand for accurate and fast 3D reconstruction sys-
tems has been at its peak and continues to grow. One of the most notable pos-
sible applications for systems with fast reconstruction times are various sys-
tems within the group of ADAS. In such systems, fast reconstruction times,
together with high accuracy, are essential. For example, in a collision avoid-
ance system, we would want to know the exact distance to a possible object
as early as possible for the sake of collision avoidance.

In general, 3D reconstruction systems can be divided into active and pas-
sive. In active systems, the device that captures the scene provides data di-
rectly about the geometry of the scene, while in passive systems this data is
represented indirectly and must be retrieved. From this point of view, active
systems would be the preferred tool to use, but the relative cost and com-
plexity of implementation compared to passive systems might incline us to
choose the latter.

Passive 3D reconstruction systems usually consist of two or more percep-
tual devices, which are generally considered to be RGB cameras. Systems
with two sensors are usually called "stereo-view cameras", or shortly "stereo
cameras", while systems with more than two sensors are "multiple-view cam-
eras" or "multi-view cameras".

Increasing the number of sensors generally to a certain limit leads to an
increase in the accuracy of such systems. But this, in turn, also leads to a more
complex system. In particular, for passive 3D reconstruction algorithms, ac-
curate information about the relative position of the sensors in relation to
each other is needed. During the system setup and adjustment phase, cam-
era positions can be calculated with a relatively high accuracy, sufficient for
reconstruction algorithms. But the preservation of the position of the cameras

2

during operation cannot be guaranteed due to e.g. mechanical influences act-
ing on the system. One way to prevent it is to fix the sensors rigidly so that
their displacement relative to each other can either be ignored in operation
or can be relatively easily compensated.

The placement of the sensors also plays an important role. In general,
with known camera positions we can set some limits for the search areas
of the same object (or the same or the same point of the 3D scene) between
images from different sensors. Simplifications of this type can have a positive
effect on the execution time of the reconstruction algorithm. The simplest
in this case seems to be the arrangement of the sensors in a so-called grid,
where the position of each sensor is set and can be derived relative to each
other, provided that the distance between the sensors is fixed and known

Therefore, ideally, we would like to have a device with a fixed placement
of sensors, the configuration of which implies a simplification in the compu-
tational procedures for reconstruction. The concept of a LF camera fits under
this definition. Each sensor in such a camera is located proportionally, and
therefore the theory of LF capturing can be applicable to such a camera.

The problem of energy consumption is critical for various industrial sys-
tems, because in the case of stand-alone systems the energy capacity of bat-
teries is limited, and in the case of systems with the possibility of constant
energy supply the energy costs should be reduced, and ideally each subsys-
tem of large systems should be optimized in terms of energy consumption.
Modern popular hardware for calculations related to reconstruction, made,
for example, on the basis of graphics processing unit (GPU), require power
in the range of hundreds of watts, which for some systems may be unaccept-
able, and for others will lead to additional costs for electricity. In this case
we usually refer to so-called embedded systems, i.e. systems that operate
while being embedded in other systems. Certain stringent requirements ap-
ply to such systems in terms of their design and energy consumption. Such
systems are subject to certain stringent requirements in terms of their design
and power consumption, which makes them an ideal choice for reconstruc-
tion algorithms, taking the above-mentioned requirements into account.

This dissertation will describe how a fast 3D reconstruction system with
low power consumption can be built based on a LF camera, what prob-
lems can be encountered when designing it, and how these problems can
be solved.

1.2 Contribution

Our main contribution is the development of an end-to-end system for 3D
reconstruction using a LF camera that operates in real time and is executed on
embedded hardware with relatively low power consumption. In particular,
the technical contributions are:

• Development of LF calibration algorithm together with methods of cali-
bration refinement during exploitation and investigation of LF cameras
auto-calibration.

1.3. Overview 3

• Development of real-time algorithm for 3D reconstruction from LF im-
ages, which shows its feasibility on both synthetic and real-world data.

• Investigation of methods for optimization of existing deep learning al-
gorithms for execution on real-world scenes, taking into account hard-
ware and runtime constraints.

1.3 Overview

The dissertation is organized as follows:

• Chapter 2 presents the basic information necessary to understand the
subject of the thesis. In particular, the process of image acquisition by
a camera, the problem of camera calibration, possible methods of 3D
reconstruction, the commonality of the LF concept with multiple-view
cameras are covered.

• Chapter 3 presents a survey of existing calibration methods and algo-
rithms for 3D reconstruction from LFs.

• Chapter 4 describes our research related to the LF camera calibration
algorithm, the possibilities for updating calibration data under condi-
tions where re-calibration is not possible, and our findings in the area
of auto-calibration for such cameras.

• Chapter 5 explains the way in which the algorithm we developed for
3D reconstruction from LF works.

• Chapter 6 describes how the depth reconstruction system has been brought
to life and what are its potential applications.

• Chapter 7 shows how the existing deep learning algorithms can be op-
timized for their usage on real world scenes with real-time constrains.

• Chapter 8 concludes the presented research and shows the potential
future work.

1.4 Publications

Most of the research presented in this dissertation has been approved and
presented at peer-reviewed scientific conferences or in journals. The follow-
ing are publications that have emerged from this research:

1. Yuriy Anisimov, and Didier Stricker (2017). Fast and Efficient Depth
Map Estimation from Light Fields. In 2017 International Conference on 3D
Vision (3DV 2017), Qingdao, China, October 10-12, 2017 (pp. 337–346).
IEEE Computer Society.

4

2. Yuriy Anisimov, Oliver Wasenmüller, and Didier Stricker (2019). A
Compact Light Field Camera for Real-Time Depth Estimation. In Com-
puter Analysis of Images and Patterns - 18th International Conference (CAIP
2019), Salerno, Italy, September 3-5, 2019, Proceedings, Part I (pp. 52–63).
Springer.

3. Yuriy Anisimov, Oliver Wasenmüller, and Didier Stricker (2019). Rapid
Light Field Depth Estimation with Semi-Global Matching. In 15th IEEE
International Conference on Intelligent Computer Communication and Pro-
cessing (ICCP 2019), Cluj-Napoca, Romania, September 5-7, 2019 (pp.
109–116). IEEE.

4. Yuriy Anisimov, Gerd Reis, and Didier Stricker (2021). Calibration and
Auto-Refinement for Light Field Cameras. Computer Science Research
Notes - CSRN, CSRN 3101, 254-262. Vaclav Scala Union Agency.

5. Yuriy Anisimov, Jason Raphael Rambach, and Didier Stricker (2022).
Nonlinear Optimization of Light Field Point Cloud. MDPI Sensors,
22(3), 814. MDPI.

5

Background

This chapter will explain the fundamental ideas that must be comprehended
before moving onto the subsequent chapter of this dissertation. In the corre-
sponding sections we will talk about basic concepts, such as a single camera
and the formation of a stereo camera, and then the representation of the LF
camera as derived from stereo; what is the depth measurement of the scene
and what methods exist for this; what restrictions are imposed by the use of
the embedded hardware.

2.1 Single Camera

A derivation of a LF capturing system begins by introducing the concept
of a single camera with further expansion by adding cameras on different
physical axes.

2.1.1 Definition

Nowadays, a "camera" refers to a device consisting of a housing with a light
opening on one side and a surface for recording on the other. This opening
is called "an aperture". Aperture is generally equipped with a lens to focus
the light rays on the recording surface, but early prototype cameras did not
necessarily contain it.

2.1.2 Historical background
People have been attempting to depict their environments in a variety of
ways since ancient times, using different ways from parietal art to oil paint-
ings. Early attempts to capture light rays can be traced back to the 5th century
before Christ (BC), when the Chinese philosopher Mozi, as noted in [107],
was describing the inversion of light after passing through a point, which
will later be known as a pinhole [175]. In 11th century after Christ (AC)
Ibn al-Haytham was doing experiments with pinholes and candles, explor-
ing the paths of light [140]. In 16th century AC Johannes Kepler [32] created
a room-size experimental setup with the lens in pinhole, where the image
was composed from passed light on the wall. The term camera obscura orig-
inates from his work. It took a lot of research efforts before the actual scene
could be captured with such principles. The earliest known photograph with

6

camera obscura, known as "View from the Window at Le Gras" was done by
Nicéphore Niépce in 19th century AC [51]. This photograph is shown on Fig.
2.1.

FIGURE 2.1: Enhanced version of "View from the Window at
Le Gras". Source: Rebecca A. Moss, Coordinator of Visual Re-
sources and Digital Content Library, College of Liberal Arts Of-
fice of Information Technology, University of Minnesota. Public

Domain

2.1.3 Components of the modern camera

The devices for image capturing have changed a lot since then. Traditional
cameras were using photographic film, made by using emulsion which is
sensitive to light, for storing the captured image. To obtain a visible image the
film had to be processed by sequentially applying a photographic developer,
stop bath solution and fixing solution to it [132].

The intermediate between traditional film cameras and modern cameras
are instant cameras (e.g. Polaroid). In such cameras, film development takes
place directly when the image is captured on the film, and all the chemicals
needed to develop the film are applied automatically inside the camera itself.
The output of this camera is an already printed photo. Fig. 2.2 shows how
the cameras look like. Nowadays, such cameras are hardly ever used for
conventional applications. They have been almost completely replaced by
digital cameras.

The core component of every digital camera is an image sensor. These
sensors consist of the grid of pixels, which perceives a specific color. Usu-
ally is it red, green and blue pixels; following the human trichromatic color
perception model from Young–Helmholtz theory [176, 22].

There are two main types of digital image sensors: Charge-coupled de-
vice (CCD) and Complementary metal-oxide-semiconductor (CMOS) [159].
CCDs were the first developed type of digital sensors. They are based on

2.1. Single Camera 7

(a)

(b)

FIGURE 2.2: An example of (a) film camera and (b) instant cam-
era. Public Domain

metal–oxide–semiconductor (MOS) technology, and every pixel of this sen-
sor is a capacitor. It stores the charge proportionally to the amount of per-
ceived light. Charge of all pixels is converted to the pixel intensity.

In contrast, CMOS sensors consist of the photodiodes with MOS transis-
tors. They serve for the purpose of transferring the charge from one pixel to
another, which makes it easier to transmit and convert the electric signal to
its digital representation.

Nowadays, CMOS sensors took over the place of CCD. It can be explained
by the higher power consumption and lower speed of readout of CCDs com-
pared to CMOS. Another advantage of CMOS sensors is the possibility of
integration of the image sensor with other camera components, while CCDs
are generally designed as separated components.

Usage of image sensors, which can convert the captured image directly to
the digital image is a core of the modern computer vision. Images, captured
by the cameras with these sensors, can be streamed or saved in a digital form,
allowing online or offline processing of them.

Another important part of a modern camera is a camera lens. They are
needed for focusing the incoming light on the camera sensor. Standard type
of lenses tries to mimic a human eye perspective by being constructed with

8

such the focal length, which provides depth of view similar to the human
vision [103].

Often, lenses are equipped with a diaphragm. Opening and closing it
regularizes the aperture of the lens. By that, the amount of incoming light
can be controlled.

2.1.4 Pinhole Model

FIGURE 2.3: Simplified representation of pinhole camera model

The principles of camera obscura image formation became the basis for
what is now known in the literature as "pinhole model" [46]. Its simplified
graphical representation is presented on Fig. 2.3. This model describes the
core idea of 3D point projection to 2D image coordinate system. Having a
point M = (X, Y, Z) in world coordinate system (WCS) the projection m(x̄, ȳ)
of this point to image space I is found as:

x̄ = f
X
Z

, ȳ = f
Y
Z

, (2.1)

where f stands for a focal length, which is defined as the distance between
the center of the lens and the image sensor.

The biggest disadvantage of pinhole camera model derives from the phys-
ical properties of our world: in most instances, a camera without a lens can-
not be used to focus an image. Thus, the presence of a lens must be taken
into account in the problem of projection of light rays.

2.1.5 Lens distortion
Lenses, in turn, introduce various distortions to images. The literature [63]
describe two types of such distortions:

• radial distortion, related to lens form and divided into two concepts:

– barrel distortion, in which the magnification of the image increases
with distance from the optical center,

– pincushion distortion, in which the magnification of the image de-
creases (opposite to barrel distortion) with distance from the opti-
cal center;

2.1. Single Camera 9

FIGURE 2.4: An image plane with defined camera center

• tangential distortion, related to lens misplacement, when the lens is
slightly skewed from being parallel to camera sensor.

While being presented in the literature, effect of the tangential distortion in
modern cameras is considered to be negligible and often ignored. Fig. 2.5
demonstrates how the listed distortions look like.

The presence of any of these lens distortions makes it impossible to un-
ambiguously match a 3D point in the scene with its 2D projection. This raises
the question: is there any way to compensate for lens distortion to switch to
a more comfortable pinhole camera model?

2.1.6 Image projection

Before answering the question from previous chapter, it is needed to discuss
the general projection pipeline.

In order to bring the pinhole camera model to use in real camera systems,
it needs to be extended based on real camera properties. Here comes the
concept of a perspective camera: a camera, behavior of which can be modeled
by perspective transformation [63].

Fig. 2.4 demonstrates the image plane I obtained from the perspective
camera, with defined camera center (cx, cy). This point creates an offset for
the projected points as:

y = ȳ + cy, x = x̄ + cx (2.2)

In order to convert the above coordinates to pixel units, a density of pixels
per length unit needs to be taken into consideration.

Since form of a pixel can be non-squared, two separated parameters for
every image plane axis are defined as mx and my. Based on that, the actual
focal length for every axis is defined as:

fu = f mx, fv = f my (2.3)

10

(a) (b) (c)

FIGURE 2.5: A representation of different lens distortion types:
(a) grid without distortion, (b) grid with applied barrel distor-

tion, (c) grid with applied pincushion distortion

In a similar manner, camera center is transformed as:

cu = cxmx, cv = cymy (2.4)

This conversions allow us to compute the actual pixel coordinate of a pro-
jected point (vd, ud).

ud = fu
X
Z
+ cu, vd = fv

Y
Z
+ cv (2.5)

Focal lengths fv, fu and camera center (cv, cu) are commonly defined as cam-
era intrinsic parameters. They form an intrinsic matrix K as:

K =

 fu 0 cu
0 fv cv
0 0 1

 (2.6)

Earlier K also included image skew; but by analogy with tangential distor-
tion, it is not taken into account for modern cameras.

2.1.7 Spatial camera coordinates
Conversion from Eq. 2.5 is a generalized form of the 3D-2D point transfor-
mation. This only works if the center of camera coordinate system (CCS) is
the same as WCS. Since this is not the case in the real world, the camera pose
must be taken into account for this conversion.

Difference in positions between CCS and WCS can be expressed by two
components, which are rotation R and translation t. Rotation R is expressed
as a set of angles between the basis vectors of CCS and WCS, i.e. Euler angles
(ψ, θ, ϕ) for X, Y, Z axes respectively. Often it formed as a rotation matrix,
which is obtained from Euler angles as:

RX =

1 0 0
0 cosψ −sinψ
0 sinψ cosψ

 , RY =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

, RZ =

cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1

(2.7)

2.1. Single Camera 11

R = RZRYRX =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2.8)

Physical distance between origins of WCS and CCS gives a transition vector
t, expressed in three coordinates as:

t =

tX
tY
tZ

 (2.9)

Based on Eq. 2.8 and 2.9, the translation of a 3D point from WCS to CCS
expressed as:

X = X̂r11 + Ŷr12 + Ẑr13 + tX

Y = X̂r21 + Ŷr22 + Ẑr23 + tY

Z = X̂r31 + Ŷr32 + Ẑr33 + tZ

(2.10)

where [X, Y, Z] is the 3D point, brought from WCS to CCS, [X̂, Ŷ, Ẑ] is a 3D
point in WCS. In literature, R and t are called "extrinsic parameters".

2.1.8 Matrix form

It is much more convenient to project a point from 3D to 2D using matrix
multiplication. To do this, the original 3D point coordinates are converted
into so-called homogeneous coordinates by creating a new dimension for the
point (making it four-dimensional (4D)) with a value of 1. Similar operation
is done on 2D image point, making at 3D and creating the conditions for
matrix multiplication.

Based on all information we know about the camera intrinsic and extrin-
sic values, the conversion can be done as:

ud
vd
1

 =

 fu 0 cu
0 fv cv
0 0 1

r11 r12 r13 tX
r21 r22 r23 tY
r31 r32 r33 tZ

X̂
Ŷ
Ẑ
1

 (2.11)

For convenience, intrinsic and extrinsic parameters are often presented in a
form of projection matrix P:

P = K [R t] , (2.12)

which allows further simplification of notation to:

md =

ud
vd
1

 , M̂ =

X̂
Ŷ
Ẑ
1

 , md = PM̂ (2.13)

12

2.1.9 Distortion model
The resulting 2D points from Eq. 2.11 are still suffering from the lens distor-
tions. For their processing these distortions need to be compensated.

A widely used lens distortion representation is a Brown–Conrady model,
proposed in [23]. There, distortion of lenses are modeled as:

r =
√
(ud − cu)2 + (vd − cv)2 (2.14)

u = cu + (ud − cu)
n

∑
i=1

kir2i

v = cv + (vd − cv)
n

∑
i=1

kir2i,
(2.15)

where ki stands for the distortion coefficients, n is a number of coefficients,
typically up to six, ud and vd are the original (thus, distorted) image points,
and u, v are corresponding undistorted points, which are interesting for us,
since they are used for the depth estimation routines.

2.1.10 Camera calibration

To estimate the intrinsic parameters of cameras and define their relative po-
sitions in WCS we need to do a procedure called camera calibration.

The idea behind it is to use a calibration target, which can be one-dimensional
(1D) [185], 2D [184], or 3D [180], to establish relationships between the as-
sumed 3D positions of calibration target and 2D projection of the target ele-
ments on the image plane. Corners extracted from the target are often used
as elements for calibration, as they are relatively easy to detect in the image
[45]. To reach acceptable accuracy of retrieved camera parameters, position
of target elements on image need to be estimated with subpixel accuracy [36].

Calibration target needs to be captured by all cameras from different view-
points. Practically, at least 20 images with good coverage of image space with
the projections of calibration target are used. A constraint of one fixed object
needs to be preserved; that is, either camera is moving around a static pat-
tern, or the pattern is moved around fixed camera.

The extrinsic parameters of each camera can be determined by observ-
ing the same calibration pattern in two or more views, assuming that the
3D coordinates of the calibration target are known. In order to do this, the
intrinsic parameters of each camera must first be estimated. These intrinsic
parameters are then used to calculate the values of the cameras’ rotations and
translations based on the reprojection of the target elements. Fortunately, the
intrinsic and extrinsic parameters of multi-view cameras, such as a LF cam-
era, can be estimated simultaneously with one dataset of calibration target
capturings.

For the both cases of camera parameters estimation it is solved as an op-
timization problem by using a reprojection error as a criterion. It measures

2.2. Stereo Camera 13

the difference between original image points and the projections, obtained
by estimated parameters using Eq. 2.13. Hence, for the case of intrinsic pa-
rameters estimation, the previously mentioned lens distortion model needs
to be taken into consideration (Eq. 2.15).

Auto-calibration

Calibration can be also done without any particular calibration target. This
process is called auto-calibration. It is based on extraction of image features
from the arbitrary scene and matching of these features in consecutive im-
ages. Generally, matching of these features allows to estimate a homography
matrix, which can be used as a source of intrinsic and extrinsic parameters
[46].

2.1.11 View remapping
By using the known intrinsic parameters and distortion coefficients of a cam-
era, it is possible to correct the distortion in an image and transform it to
the desired intrinsic parameters. This process is non-linear due to the nature
of the distortion model, and can be computationally intensive if performed
on every capturing. This can be a bottleneck for real-time applications that
require fast processing.

Assuming that camera parameters do not change during image sequence
capture, it is possible to precompute the locations of undistorted pixels for
each view and apply this transformation to each new image as it is captured.
For that, a concept of lookup table (LUT) is used. A 2D array stores the de-
sired location of pixels, and for every frame the LUT is applied to it with val-
ues interpolation to provide subpixel accuracy for the relocated pixels. This
can significantly reduce the computational burden of distortion correction in
real-time applications.

2.2 Stereo Camera

One unpleasant thing about images captured with a single camera is the loss
of information about the depth of the scene, or the distance from the camera
to the captured objects. Fortunately, by using similar second camera, placed
with certain constrains, depth information can be retrieved up to some point.
Next step of LF camera derivation is related to principles of stereo cameras.

2.2.1 Definition

Stereo camera is a type of camera which consist of two camera sensors, placed
with knows positions between each sensor. The concept is formulated with
reference to human vision, in which two eyes are used to perceive depth. In
this chapter we will be looking at a combination of two perspective cameras
as a stereo camera.

14

In general, when creating such a setup, we try to position the single cam-
eras in such a way that no relative rotation of one camera to another can occur
(in other words, that the cameras are oriented in the same direction), and that
the relative position of these cameras can only be determined by shifting in
one of the X or Y axes (but not on Z axis, as this would prevent the neces-
sary constraints for calculating depth and would only bring more troubles).
Mathematically it can be expressed as:

R =

1 0 0
0 1 0
0 0 1

 ; t =

tX
0
0

 or t =

 0
tY
0

 (2.16)

This constrains are ensured by proper camera placement and additionally
secured using rectification based on calibration results.

2.2.2 Historical background

FIGURE 2.6: A drawing of stereoscope, proposed by Wheat-
stone in [169]. Public Domain

The theory of stereo, or binocular, image perception was described in 19th

century by Sir Charles Wheatstone [169]. He created a device called "stereo-
scope", utilizing a concept of stereopsis, or the ability of the human brain to
perceive depth from two slightly displaced views of the same scene. Drawing
of this device is demonstrated in Fig. 2.6 In this device, two images, captured
with offset similar to distance between human eyes, were placed opposite to
mirrors, inclined by 45 degrees relative to the planes on which the images are
placed. While looking at the left image by the left eye and the right image
by the right eye, the brain completes these images to a 3D scene, captured on
the images.

Wheatstone’s invention was a crucial moment in photography history as
it marked the first time that a 3D image could be recorded and shown. It
inspired Sir David Brewster to create an improved version of such device
[168], drawing of which is demonstrated in Fig. 2.7.

In contrast to Wheatstone’s, the new stereoscope was using lenses instead
of mirrors to focus the images to the eyes. Such principle allowed to create

2.2. Stereo Camera 15

FIGURE 2.7: A drawing of portable stereoscope, developed by
Brewster. Public Domain

hand-held devices, which were massively produced, and became a motiva-
tion to create stereo cards of various scenes (see Fig. 2.8), which could be
inserted to and viewed by these devices. Further development of image-

FIGURE 2.8: A stereo card for stereoscope. Public Domain

capturing devices allowed to create stereo cameras. Nowadays, stereo cam-
era systems are manufactured by various companies around the world.

2.2.3 Parallax

As said before, stereo cameras can retrieve depth information from the scene,
based on the relative shift of objects in images from two cameras. It is pos-
sible by using the concept of parallax. Parallax refers to the relative shift in
the position of an object when the object is captured from two different view-
points. By comparing the images from the different viewpoints, it can be
observed that objects closer to the cameras will have a greater apparent shift
in position than objects further away.

16

2.2.4 Stereo calibration
For the proper estimation of depth information, the cameras that comprise
the stereo system generally need to have common focal length and principal
point. For that, steps described in Section 2.1.10 need to applied to both cam-
eras in stereo system. It creates a search constraint, which will be explained
in the following section. Proper calibration can even compensate for the case
where the camera is slightly offset from the axis on which in theory there
should be no offset (ı.e. for a slight vertical offset for the horizontal camera
placement, or vice versa).

2.2.5 Triangulation
If we imagine a 3D point M on the scene, captured by two cameras with a
one-direction shift between them, this point will be captured on image planes
of these cameras as m1 and m2 respectively. Considering two cameras with
horizontal placement, for the properly rectified cameras with the same focal
length and principal point projection of the point M will lie on the same axis
in both images. Due to the parallax effect, projection m1 will be shifted from
m2 by a certain number of pixels d. This displacement is usually defined as
disparity. The disparity of every pixel in the scene is inversely proportional
to the distance from the camera system to the corresponding point in the 3D
scene (depth):

Z =
f b
d

(2.17)

where Z is the actual distance to the point, f is the rectified camera focal
length (in pixels), and b is the baseline (in metric units). Using the distance
information, we can retrieve the original position of the 3D point, changing
some terms of the Eq. 2.1 as:

Y =
Zȳ
f

, X =
Zx̄
f

(2.18)

Fig. 2.9 visualizes the relation between 2D and 3D points w.r.t. stereo camera
system.

2.2.6 Advantages and disadvantages
Stereo camera systems are the first solution that comes to mind when we
talk about the task of 3D reconstruction. Compared to other systems, they
are relatively simple, cheap to build and do not require much processing
power for their operation. The reconstruction quality of stereo cameras can
be considered suitable for simple tasks.

However, there are several aspects to consider. Having only two view-
points may not always correctly solve the problem of ambiguity in the re-
construction, which may, for example, appear in repeating textures. Same
stands for occlusions: if part of the scene is visible in one view but covered

2.3. Light Field 17

FIGURE 2.9: Triangulation of a 3D point from its 2D projections
[46].

by another scene object in the other view, it can’t be reconstructed. Also, it is
relatively difficult to obtain disparity measurements with subpixel accuracy
using information from only two images [102]. To handle that, we can use
more than two views for the reconstruction.

2.2.7 Multi-view stereo

Usage of more than two images for the reconstruction using only different
positions of capturing devices can be framed to the definition of multiple-
baseline stereo problem [114]. Such systems are formed by placing the multi-
ple identical capturing devices at the same distance between each other. Data
about the positions of scene points obtained from many devices is accurate
enough to precisely reconstruct the scene in three dimensions. Fig. 2.10 visu-
alizes the idea of point observation from multiple cameras.

Similar to stereo case, for multi-view cameras the points projections will
have certain disparity w.r.t. to each other views. Triangulation of a point for
this case can be extended by involving all points projection to image space by
using the projection matrix concept using the method of direct linear trans-
form [46]. Additional details regarding the connection of this concept with
LFs are provided in the next section.

2.3 Light Field

When we say "light", we can mean two concepts. First of all, light is an elec-
tromagnetic wave of a certain spectrum. If we mean visible light, i.e. light

18

FIGURE 2.10: Multi-view visualization of a point projection.

perceived by the human eye without additional devices, these are wave-
lengths of 380-780 nm. But also, light can be defined as a particle, in this
case a photon. The energy of a photon is inversely proportional to the wave-
length and is related to it by Planck’s constant. In the scientific literature, this
concept is called wave-particle dualism [41].

With this information we can describe the intensity (i.e. color), which is
carried by a certain photon. If we want to describe the direction of flight of
a photon, we need five parameters for this. In 3D space, three spatial coordi-
nates are needed to determine the point from which a photon is emitted. The
orientation in which the photon was released is determined by two angles.
The five-dimensional (5D) function, describing the light direction, is called
"plenoptic function" [3]. Visualization of this function is shown on Fig. 2.11.

FIGURE 2.11: Visualization of the plenoptic function. Public
domain

2.3. Light Field 19

2.3.1 Definition
The plenoptic function as a means of describing finite sampling of the light
was defined in the literature in 1991. However, the original definition of the
LF as an infinite set of vectors determining the direction of light was given by
Gershun in [38]. By him, the LF was defined as a combination of light rays,
passing in every direction through all points in space.

This concept, due to its complexity, is difficult to use in computer vision
tasks. Fortunately, a friendlier concept has been formulated by researchers.

2.3.2 Parameterization
Levoy and Hanrahan [86] proposed a method of parameterizing the LF that
helps in representing the LF in a way that is more comfortable for the com-
puter vision tasks. It is based on the assumption that the light ray’s intensity
will remain constant throughout. Hence, the 5D representation from plenop-
tic function can be simplified to 4D. Authors came up with the concept of
representing a light ray by its intersection with two planes after analyzing
various means.

On its way, the ray intersects a plane of angular coordinates (s, t), which
defines the viewpoint, and a plane of spatial coordinates (u, v), which de-
scribes a view in LF; out of which the whole LF space can be denoted as L,
and a particular ray is:

L(u, v, s, t) (2.19)

Within this dissertation to represent different "layers" of matrices, such as LF,
we will use the concept of slicing, similar to that present in some program-
ming languages for slicing certain layers of a matrix. So, if we want to depict
a two-dimensional matrix for a particular LF viewpoint we use:

L(, , s, t), s ∈ S, t ∈ T, (2.20)

where S and T stand for number of horizontal and vertical LF views. Here
and further in the dissertation, by "view" we mean "2D planar grayscale or
RGB image, defined by (s, t) coordinates". Fig. 2.12 demonstrates how the
light ray intersects the planes, forming its location on themselves.

This representation has the advantage, according to Levoy and Hanra-
han, of simplifying geometry. It is difficult to dispute this because, as will be
demonstrated later, using two planes for the LF actually simplifies the com-
putations. Note that one dimension of the parameterized LF does not have
to be present, downgrading a 4D LF to 3D.

There are alternative ways of parameterizing the LF, e.g. based on the use
of a sphere, such as the intersection of light rays with the surface of a sphere
[186]; however, they are out of scope of this dissertation.

20

FIGURE 2.12: Visualization of two-plane parameterization of
LF, proposed by Levoy and Hanrahan in [86]

2.3.3 Connection with multi-view stereo

Fig. 2.13 shows how the particular LF views can be arranged. Parameteriza-
tion by the above method gives us an important property about the location
of views in the LF. Using the two-plane parameterization, it is easy to ob-
serve that LF can be considered as a rigid case of multi-view setup. Views
of the LF are proportionally arranged in space, i.e. the physical distance be-
tween the views in both dimensions is the same. Hence, we can define the
LF as a set of 2D images, containing the projections of rays, and placed with
same distance between every view on both axes. That allows us to consider

FIGURE 2.13: Formulation of a LF as a set of 2D images based
on two-plane parameterization

2.3. Light Field 21

LFs as an expansion of the multi-view stereo capturing systems, which will
be used as fundamental constrain to achieve real-time performance of depth
estimation algorithm.

2.3.4 Duality
An interesting property coming from the parameterization model of the LF
is its duality, i.e. roles of angular and spatial planes can be changed to get
two different LF structures [27]. In the original definition, LF is represented
as a set of light rays, projected from (u, v) plane to (s, t) plane, organizing the
images in an array manner. But also, the LF can be viewed from the plane
(s, t) position, when rays are projected on (u, v) plane. This concept is vital
for forming the alternative way of LF capturing devices design, as shown in
the following section. Fig. 2.14 demonstrates how the LF takes from different
viewpoints look like.

FIGURE 2.14: Visualization of the LF duality

2.3.5 Acquisition

There are different ways for capturing the LF. In terms of construction the
simplest approach is by moving the single camera on the certain (and equal)
distances, and capturing frames from these viewpoints. But simplicity here
bring problems.

First, camera should be moved very accurately to preserve the equal base-
line constraint. It can be done either by using some kind of a moving stage,
where the movements are performed by electric motor, or by using addi-
tional control pattern. A method to partially overcome this issue is demon-
strated on the Fig. 2.15 from [81]. There, the control pattern photo is taken by
the front camera of the smartphone in the same time as rear camera captures
LF frames. Knowledge of the relative position of capturing device at the time
of capturing helps reducing the misplacement effect. Nevertheless, such ap-
proach is not suitable for the dynamic scenes, where the time of scene object
movement most likely will be one or two order of magnitudes smaller than
the camera movement time. Fig. 2.14 demonstrates how the LF taken from
different viewpoints look like.

22

FIGURE 2.15: Demonstration of LF capturing using moving
stage based on the smartphone [81]

A logical solution to the problem of capturing dynamic LFs is to simulta-
neously capture all views of the LF. These are two approaches of doing so.
First, individual single cameras with isolated lenses can be assembled to the
camera array by placing them in a one- or two-dimensional grid. An example
of such configuration is shown on Fig. 2.16.

FIGURE 2.16: A LF capturing device, consisting of five inde-
pendent single RGB cameras

While being able to capture the dynamics in the scene, this type of LF
devices suffer from another set of problems. The main issue of such a setup
is the synchronization between different cameras of the array. All frames
need to be captured simultaneously, which is hard to supply without addi-
tional devices for hardware-based shutter triggering, i.e. capturing on the
moment of electric impulse detection. The problem is that not all cameras
have this functionality, and for many consumer (and even industrial) cam-
eras that could potentially be made into a LF device, the only option for
simultaneous shutter triggering is so-called software triggering, where the
shutter is triggered by receiving a command through the camera applica-
tion programming interface (API). Another problem of such devices can be
a current spike at the moment of triggering of several cameras, which must
also be considered during the design of such devices by including additional
filtering elements in the power circuit and using special power supplies to

2.3. Light Field 23

maintain operation during spikes, which in turn leads to an increase in the
cost of the final device. Additionally, it is hard to assemble relatively small
device using such a configuration.

All of the previously mentioned problems can be circumvented by using
a more elaborate design for the LF camera. Instead of joining individual
cameras into array, one camera with relatively high resolution can be used
as a basis. Instead of the conventional lens, an array of smaller fixed lenses
can be installed in front of the image sensor. In this case, effective resolution
of every frame will depend on the original sensor resolution and number
of installed lenses. All LF views are captured simultaneously, overcoming
the issue of synchronization; in the same time such a device is simpler in
manufacturing.

FIGURE 2.17: A LF capturing device, consisting of single RGB
camera with 4x4 lens array in front of the image sensor

An example of the camera of this type is shown of Fig. 2.17. It consists
of a camera sensor with 4×4 lens array in front. Early prototypes of such
devices were described in 1960s [110], similar devices in smaller form-factor
aimed for smartphone usage were described and produced by Pelican Imag-
ing in 2013 [158]. This configuration also imposes its own limitations on the
size of the device (e.g. it will be difficult to take high-resolution photos with

24

such a device), but for most possible applications of such a camera the image
resolution should be sufficient.

What is interesting is that the concept of LF capturing by the array can be
"traced" to 17th century, as demonstrated on Fig. 2.18.

FIGURE 2.18: Illustration of a twelve-hole camera obscura from
Bettini’s Apiaria universae philosophiae mathematicae [16].

Public Domain

Another limitation of such a configuration is related to the device size. It
is hard to make relatively small LF camera with full-size lenses. Fortunately,
LF duality principle, described in Section 2.3.4 allows to make LF capturing
device by using a big number of small lenses. In other words, instead of
N × N big lenses capturing M × M pixels in each view the M × M array of
small lenses placed in front of camera sensor provides N × N small images.

This concept is known in the literature as "plenoptic camera" [4]. In gen-
eral, cameras of this type, in addition to the main lens, are equipped with an
additional lens on which there are small lenses (hence often called Micro-lens
array (MLA)). Most of the LF cameras produced operate according to this
principle. An example is the handheld camera produced in the past by Lytro
[111]. However, MLA principle is not limited to the usage of two lenses. An
interesting design utilizing optical fiber as light-receipting device for LF cap-
turing was proposed by Orth et al. [117]. Another notable example of modern
device of this type is inspired by the vision system of extinct trilobite [33].

While being one of the most popular ways of designing LF cameras, due
to the complexity of semi-homemade test cameras of this type and the un-
availability of affordable solutions on the broad market, cameras of this type
are out of scope of this dissertation.

2.4 Other concepts

This section will define the concepts necessary to explain the topic of this
dissertation.

2.5. Conclusion 25

2.4.1 Depth Estimation
Depth is one of the forms of the 3D reconstruction results representation.
In general, it represents a mapping between 2D image coordinates and the
distance from the camera to the corresponding point of the scene [77]. These
distances are relative to the camera position at the moment of capturing.

Another connected concept to the depth map is "disparity map" In con-
trast to depth maps, for every image pixel disparity maps store the informa-
tion about the pixel shift in image coordinates. It is often utilized as and is
subject to conversion to depth, since disparities map are reverse proportional
to depth, as shown by Eq. 2.17.

There are other ways to represent 3D data, such as:

• Point cloud – a set of 3D points, usually in metric coordinates, repre-
senting the actual points positions on the scene. It can be obtained by
depth map post-processing.

• Mesh – a set of vertices (i.e. point cloud) with edges and associated
polygons, which together form the shape of the object. Can be gener-
ated from point cloud by its triangulation.

• Voxels – volumetric pixels grid, consisting of cubic cells, which store
the information about the scene point.

2.4.2 Embedded Hardware

Embedded Hardware usually refers to computer hardware that performs
a specific and limited function by being embedded in other hardware [48].
Such systems are themselves essential components of modern electronic de-
vices and are present in many of them [10].

A number of limitations inherent in such systems follow from this def-
inition. The main limitation is related to the power consumption of such
systems, which it is desirable to keep as low as possible. This results in limit-
ing the computational power of such hardware as an obvious way to reduce
power consumption.

Real-time Requirements

Many usage scenarios involve computation in the real-time domain. In gen-
eral, real time refers to the time constraints on the execution of the algorithm.
Typically, for computer vision algorithm this constraint is usually set to be
equal or more than 30 frames per second (FPS). However, it should be higher
for the critical applications, i.e. autonomous driving.

2.5 Conclusion

In this chapter the main ideas on which this thesis is based were presented.
We showed how the concept of basic single camera can be expanded to stereo
and multi-view cases. Ways of formulating, capturing and describing LFs are

26

explained, followed by its connection to the multi-view camera case. In the
next chapters the literature reviews of existing algorithms for LF processing
related to the main tasks of this dissertation is presented.

27

Survey on Related work

In this chapter we are going to discuss State-of-the-art (SoA) approaches for
the estimation of LF camera parameters and the depth estimation algorithms
from LFs.

3.1 Light field calibration methods

The earliest work describing calibration principles for LF cameras was pub-
lished by Vaish et al. in [157]. The authors address the question of estimating
the minimum required calibration for LFs. They argue that for some appli-
cations it is sufficient to estimate the calibration data up to affine ambiguity.
Assuming that the LF images are aligned close to a common plane, they de-
veloped a framework using planar parallax to obtain the relative position of
the LF views. Although this method is useful for viewpoint rendering and
refocusing, the authors state that its accuracy is insufficient to use in place of
metric calibration for the 3D reconstruction problem. It can be seen e.g. in
[71], where plane and parallax-based calibration was used for the estimation
of the relative depth maps.

Work that showed how the principles of stereo rectification can be used
to align calibrated LF species was presented by Kang et al. in [74]. A com-
mon baseline for the replaced views is estimated iteratively using the views
center positions, which minimizes the distance for the new views placement.
For aligning the views orientation to the common plane transformation with
the assumption of close-to-aligned views their rotations are averaged. The in-
trinsic parameters are adjusted in a similar way by averaging, and the overall
focal distance is chosen as the largest of all the original focal distances. The
efficiency of averaging values for rectification prompted us to use a similar
initialization of the views rectification parameters.

More recent work of Xu et al. [172] shows the end-to-end calibration and
rectification routine for LF cameras. For every viewpoint its intrinsic param-
eters are estimated using classical pattern-based calibration [184]. The extrin-
sic parameters are combined to Jacobian matrix, tailored with the knowledge
of views placement constrain, and optimized together using the Levenberg-
Marquardt algorithm [104].

An interesting approach of LF camera calibration was presented by Zhang
and Chen in [181]. Authors were using the pattern-based calibration from
[20] to obtain the intrinsic camera parameters. Extrinsic parameters were

28

estimated using the Zhang’s calibration [184]. The manner in which their
LF camera is built is one of the aspects that makes their approach especially
fascinating. Individual cameras in the array are mounted on two servomo-
tors, which enables movement in two Degrees of freedom (DoF) (pan and
sidestep) for every camera. Based on the camera position data, obtained from
calibration, cameras are adjusted to face the common plane. However, the vi-
ability of using this method to produce small LF cameras is questionable.

In the works that have been mentioned before, the case of the conven-
tional representation of LF camera as a collection of normal planar cameras
has been taken into consideration. Up to a certain point, these approaches
can be also used for calibration of array-based LF cameras due to the duality
principle, described in Section 2.3.4.

In the publication of Zhou et al. [187] the plenoptic camera calibration
problem is solved in proposed epipolar space geometrical model. In this
model a concept of Epipolar plane image (EPI), which is described in Section
3.2.1, is used. Using this model, relation of 3D point to their LF projections
are described through a 3D vector, which consists of the slope and inter-
cepts of the respective line in EPIs. The calibration task is initially solved
by homography-based solution using the calibration pattern and further op-
timized non-linearly using Levenberg-Marquardt method [104].

Ji and Wu in [68] propose a calibration model for plenoptic cameras, based
on collinear constraints and utilizable with a conventional calibration target.
Working on sub-aperture images, their method finds the positions of center
views and use them as a reference for the rest of the views. Having this
data, the position of other views is estimated based on the calibration pattern
corners projection w.r.t. the reference views. It is done by combining the
equations for the corners to the matrix form and using bundle adjustment
algorithm [154] on them.

In contrast to other approaches, method of Bok et al. [17] use RAW-
captured images instead of preprocessed ones. Using a classical checker-
board pattern, instead of corners line-alike features are extracted from sub-
aperture images. Lenses distortion and misplacement inaccuracies are esti-
mated using these features. Initial estimations are followed by non-linear
optimization.

Similar to [17], Noury in [112] use the RAW images for the calibration pur-
poses. However, they use corners as the features for calibration procedure,
which are extracted from the calibration pattern. The initial camera poses are
refined non-linearly.

A different feature extraction method of plenoptic cameras calibration is
proposed by O’Brien et al. in [113]. Using the checkerboard calibration pat-
tern authors extracts disc features instead of conventional corners for retriev-
ing the LF calibration data.

A so-called "blind calibration" was proposed by Sun et al. in [146]. Au-
thors use three calibration targets, placed proportionally on fixed distances
between them. For the feature matching gradient-based correspondences
search scheme is used.

3.2. Light field depth reconstruction methods 29

In the work of Bergamasco et al. [13] a parameter-free camera model for
the independent LF rays representation is proposed. A flat personal com-
puter (PC) display is used as a source of dense calibration targets, generated
using phase coding technique. Calibration is done based on the triangula-
tion.

3.2 Light field depth reconstruction methods

This sections presents a broad overview of existing methods of LF depth re-
construction.

3.2.1 Classical methods
A concept of EPI was introduced by Bolles et al. in [18]. Their research was
based purely around the question on how to extract 3D data from a given
sequence of pictures and was originally formulated for solving Structure-
from-Motion task. LFs were not involved in their research since the concept
of LF cameras was not yet available. In their experiment Bolles et al. put up
a camera rig on rails and moved the camera lateral to the scene. While the
camera was moving it took a dense sequence of images. Stacked images can
be seen as a solid block and a horizontal or vertical cut through this block
reveals the EPI.

By using a two-plane parameterization of LF, described in Section 2.3.2,
for a light-field L(u, v, s, t) EPI can be obtained by fixing one angular and
one spatial coordinate, e.g. (v, t), which results in a two-dimensional image
of (u, s) coordinates. LF rays are projected to this image as lines. An im-
portant property of the EPI is related to the proportionality of the slope of
this lines to corresponding point depth value. This representation provides
a simplification for the scene analysis and therefore was used in various 3D
reconstruction algorithms.

One of the most notable series of works on the EPI analysis for the depth
reconstruction purposes was published by Wanner and Goldlüecke in [164].
It presents a variational framework for LF analysis with a specialized local
data term for depth estimation, designed to align with the structure of LFs.
This metric is more resilient compared to conventional techniques when ap-
plied to non-Lambertian objects. Their work draws from previous work done
with EPIs, which have already shown the capability of EPIs for detecting
edges, peaks and troughs with a subsequent line fitting in the EPI to recon-
struct 3D structure.

Wanner et al. in [165] expands on their previous paper [164], making sev-
eral enhancements. For disparity estimation, the local slope on EPIs for the
two different slice directions using the structure tensor is found. In 3D space,
a point is projected onto a line, where the slope of the line is related to its
depth. The calculation results in two local disparity estimates for each pixel
in each view. These disparity estimates can then be merged into a single dis-
parity map in two different ways: either by locally choosing the estimate with
the higher reliability, optionally smoothing the result, or by solving a global

30

optimization problem. The algorithm is very robust for relatively small dis-
parity ranges; however, the results get worse for larger disparity values when
impulse noise is added to the input images.

A noticeable work in EPI analysis for the depth reconstruction was pub-
lished by Kim et al. in [75]. It uses densely captured LF from the moving
stage. Authors propose to use fine-to-coarse (sic) strategy for the accurate
reconstruction. In this strategy depth is estimated at edges in the EPI at the
highest resolution, then this information is propagated throughout the EPI,
and analysis continues on the downsampled EPI resolutions. For that, this
method first identifies regions where the depth estimation is expected to per-
form well. Using the edge confidence measurement, depth is estimated for
the edges with a high value of this measurement. The depth estimation is
done based on intensity values comparison on the edge and its neighbors in
angular EPI dimension with kernel density estimation (KDE). Depth is prop-
agated among all pixels within the same line, similarity of which is defined
by Euclidean norm. Depth estimation and propagation is iterated until all
EPI-pixels with a high edge confidence have been processed. The homoge-
neous regions of EPI at this stage are left without the assigned depth. They
are analyzed after the EPI downsampling by applying the previously de-
scribed procedure of edges confidence measurement. In the examples, pro-
vided in paper, relatively big EPI images are extracted from dozens of views.
In order to solve the problem of omission of part of the objects in all the cap-
tured views, the reference line is moved on the angular dimension of EPI.

An interesting feature of LFs is that it can store not only 3D information,
but also information about the focus of the camera. Hence, images taken by
LF camera can be refocused. With some geometrical calculations and knowl-
edge about the lens setup it is possible to calculate to which distance the cam-
era is focused. Thus, if an object in the image is in focus, we can determine
its depth. This information is called defocus cue.

Approach of Tao et al. , published in [150], suggest the analysis of defocus
cues alongside correspondence cues for solving the 3D reconstruction task.
The reason for doing so is that defocus depth estimation performs better in
repeating textures and the results are quite consistent but blurry, whereas
with correspondence cues it is possible to produce sharp results even on
bright features, but the result suffers from inconsistency in noisy regions.
Both cues are extracted from EPI. By shearing EPIs, algorithm tries to find
the shearing value which maximizes the defocus and minimizes the corre-
spondence response. Due to possible inconsistencies of the optimal shearing
value between cues, a peak ratio [53] is applied to provide certain confidence
for the shearing values. These local measurements are further propagated
among all depth map pixels using Markov random field (MRF) [89].

Previously described in Section 3.2.1 work of Tao et al. [150] was extended
by Tao et al. in [151] by adding shading cue, which is used as a source for the
lighting information, estimated by linear least squares (LLS). Authors argue
that for the low-textures object using only depth and correspondence cue is
not enough, since additional wrongly estimated pixels can be found for low-
texture areas. Unlike the original approach, analysis of LF is done without

3.2. Light field depth reconstruction methods 31

EPIs extraction. For each spatial pixel, a small neighborhood patch of the re-
focused image is compared to the corresponding patch in the center pinhole
image, which forms defocus response. The correspondence response is the
difference between the refocused angular pixels at the estimated depth and
their respective center pixel averaged over the number of angular pixels. To
reduce complexity, the minimum values of these responses are considered.
A combined response is obtained by taking the weighted average of the indi-
vidual response measures with their respective confidence values measured
using Attainable Maximum Likelihood [59], which centers a Gaussian dis-
tribution at the minimum cost value of the particular pixel to retrieve the
pixel’s cost. The minimum of the combined response curve is identified as
the optimal depth value for each spatial pixel. The depth constraint for each
spatial pixel is computed as the squared norm of the difference between the
optimized depth and the local depth estimate, weighed by the confidence
measure at that position. The smoothness constraint is obtained by applying
three smoothness kernels on the optimized depth. Since shading constraints
depend on the entire space of spatial and angular pixels, a mapping of spa-
tial pixel space to a combined pixel space is done for the optimized depth.
The error metric for the shading term is formulated as a combination of the
local and non-local shading and albedo constraints and the angular coher-
ence constraint. The three components, depth, smoothness, and shading,
are each regularized using the respective cues to give the new error metric,
which is then solved for minimization using a nonlinear least squares (NLLS)
approach to get the final optimized depth map.

Approach of Zhang et al. [183] aims on handling occlusion cases during
3D reconstruction. Due to the possible presence of noise and occlusion points
in EPI the use of contour detection algorithm for the line estimation (slope of
which, as said before, is proportional to depth) may lead to false estimations.
Since EPI contains linear structures, points around a line can describe the
line orientation. With that in mind, a parallelogram operator is defined on
the segments of the EPI based on the color consistency. The orientation is
found by rotating the parallelogram and maximizing the distance between
the distributions of pixel values on either side of the lines. Sheng et al. in
[136] extend the work from [183] for the multi-orientational EPIs.

Johannsen et al. [70] present an EPI method for depth estimation in LFs
based on the sparse decomposition. Authors propose usage of LF dictionar-
ies, which encode information regarding the depth of the scene points. First
the dictionary is learned for the central view. It is utilized to code a sparse
representation of the LF and then leveraged for the whole LF. Training of the
dictionary is done based on the patches, extracted from EPI. Disparity is esti-
mated by analysis of all values in dictionary, associated with every disparity
level. Data and smoothness term optimizations are done for the depth esti-
mation, while total generalized variation is used for solving the inpainting
problem. It works good for the Lambertian surfaces, but for non-Lambertian
comparison of two nearby depth layers is done for the proper estimation.

In the work of Tomioka et al. [153] the microlens LF views are dynamically

32

remapped based on the certain value, in a similar manner to [150]. How-
ever, instead of remapping EPIs the shifting operation is applied directly to
the views. This step is done instead of introducing the disparity shift dur-
ing matching cost generation. Remapped views are the subject of census
transform, which makes binary strings from the pixel surrounding and will
be explained in Section 5.1.1. For census-based matching cost the way how
images shift can potentially provide better accuracy, since by using disparity
shift on census-transformed images the subpixel accuracy is limited. Authors
propose a scheme of majority operator usage for reducing the effect of noise,
which sets the common bit string values as statistical mode of all values from
the remapped views on the same position. Disparity values are estimated by
minimizing the matching costs. Optimization of the depth map is done based
on variational methods with one data term and two smoothness terms.

Work of Lee and Park [82] propose a unified model of LF depth estima-
tion. It is done based on fusion of stereo, focus and defocus disparity esti-
mators. Unique feature of this approach is the disparity representation using
complex values. It allows to keep depth information in both cartesian and
polar coordinates. Based on this representation disparity is estimated us-
ing a combination of previously listed estimators in a more convenient way
compared to classical cartesian representation. More specifically, the real and
imaginary parts of the complex-valued disparity are derived from the carte-
sian representation, and the disparity magnitude and direction are derived
from the polar representation. Part of the paper is devoted to the structural
analysis of LF gradients. Authors propose average gradient approach instead
of previously used LLS-based method, arguing that geometry of LF can not
be fully computed using LLS.

Approach of Neri et al. [108] uses multi-resolution scheme for the depth
estimation. Motivation of this approach related to the increase of compu-
tational complexity in cases when local optimization methods are replaced
with global ones. Hence, only data term optimization is used. Suggested
method uses patches comparison based on Euclidean norm between refer-
ence and other LF views.

Jeon et al. in [66] suggest an algorithm for depth estimation from Lytro
LF camera, which at that time outperformed the Lytro software approach for
this task. It is based on stereo matching principles, which are extended for
LF case. Here, LF views are transformed using phase shift theorem. It al-
lows further sub-pixel matching cost generation by weighted combination of
sum of absolute differences (SAD) and sum of gradient differences (SGrD).
Initial depth map is estimated by minimizing a cost function. Additionally,
matched SIFT [96] features are used for outlier rejection and depth map fil-
tration. Depth is optimized by using graph cuts [78] and refined by method
from [174]. This work was extended in [67] by using cascades of random
forests on the various matching costs for the depth prediction, based on im-
age similarity measurements such as SAD, SGrD and zero-mean normalized
cross-correlation (ZNCC). Authors argue that for different captured scenes
different combinations of matching costs give the best results. For proving

3.2. Light field depth reconstruction methods 33

that, two random forests are constructed for solving classification and regres-
sion tasks. Classification forest determines which costs have more influence
on the result, while regression forest is used for the depth values prediction
from the selected costs.

In work of Yücer et al. [177] LF gradients are utilized for the depth recon-
struction. Similar to EPI principles, depth estimation relies on angulo-spatial
LF volume. However, instead of full images, patches are extracted from this
volume. Several depth maps are estimated and merged with certain confi-
dence. Filtering is done based on voxelization and depth back-projection.
Depth is then propagated based on the novel edge-aware bidirectional pho-
toconsistency measurement.

Approach of Strecke et al. [143] uses a peculiarity of LF. Integration of LF
volume along different orientations can provide views with different focus
planes. The algorithm is based on the fact that for every depth map pixel
there is a symmetry in the focal stack around the ground truth disparity. Cost
is built on the partial focal stacks (which are done as occlusion-free) with
the robust distance function by comparing the values on the same expected
depth within four partial stacks. Unlike most of the algorithms, this method
also extracts surface normals from the focal stack. This data is used jointly
with depth to improve the quality of the latter by optimizing both modalities
together. As a small drawback, the method gets a slightly reduced noise
resiliency, as it operates only on a crosshair of views around the reference
view as opposed to the full LF.

Hou and Jung in [58] propose an occlusion-aware scheme for the LF depth
estimation. Authors use support vector machine (SVM) for the classifica-
tion of occluded pixels on refocused images. It is based on the observation
that the photoconsistency assumption is satisfied for pixels that are not oc-
cluded, but not for those that are occluded. Classification is done using the
difference between pixel values in original center and refocused LF views.
For the pixel-wise depth estimation occluded and non-occluded pixels are
treated separately. To improve the quality of the result, authors propose
a segmentation-based bilateral filtering post-processing step, where depth
pixel surroundings are checked for consistency to prevent blurring on edges.

3.2.2 Deep Learning-based methods
Interest in deep learning technologies and their use in computer vision appli-
cations has increased in recent years. This can be explained by the fact that
the computational capacity of systems supporting parallelism has greatly in-
creased, which allows to perform a greater number of operations on the data
per unit time. For certain datasets we can say that the result generated by
algorithms based on deep learning will be more accurate than the results of
classical algorithms, which can be indirectly confirmed by analyzing the re-
sults of different groups of algorithms on [1].

However, at the moment these technologies can generally not be used for
real-time 3D reconstruction of LFs on embedded hardware due to the high

34

demands of the algorithms on the hardware specifications, and consequently
on the power consumption.

The fact that it is typically more difficult to obtain a generalized version of
the deep learning algorithm that can be used for any camera imposes its own
limitations. While obtaining such data is not difficult for synthetic datasets,
it provides some complexity for real-world datasets, as it requires the accu-
rate source of the ground truth. In general, algorithms for 3D reconstruction
that use deep learning are trained using supervised learning, where ground
truth, i.e. reliable information about what the 3D scene actually looks like,
is required to determine the depth dependency of the scene on the captured
representation of that scene.

One of the most popular types of neural networks used for image analysis
and 3D reconstruction in particular is Convolutional neural network (CNN)
Heber and Poke’s [49] work uses CNN to estimate depth from LF data. Using
the proposed network, the reconstruction problem is formulated as a predic-
tion of the orientation of the 2D hyperplane associated with each light ray
projection in LF. The orientation of this hyperplane correlates with the depth
value for each scene point. In the consequential work, Heber et al. [50] extract
the features from LF by CNNs. Authors extract 3D subvolumes from the LF,
which are the subject of analysis by 3D convolutions. Network is constructed
in encoder-decoder manner with additional skip connections.

Sun et al. in [145] describes how depth-related features can be extracted
from the EPI. It uses information about EPI edges, which are considered as
borders of homogeneous areas in the LF subset. For the processing EPIs are
enhanced by normalization and edges localization. Additionally, Radon and
Hough transforms are applied to the enhanced EPIs for the reparameteriza-
tion. Similar to previously described methods, CNN is used for the depth
reconstitution.

In method of Luo et al. [98] depth estimation is done on EPI-patches, pro-
cessed by CNN. The use of patches instead of full images is justified by the
desire to reduce the amount of information used by the network. Patches are
selected by the presence of edge information, which is verified using Canny
edge detector [25]. For every detected edge a pair of patches from horizontal
and vertical EPI is formed. Two separated and identical network branches
are used for the features learning from horizontal and vertical patches. Out-
puts of the CNN are the subject of global regularization with data, smooth-
ness and label terms.

In their work [170] Williem and Park are referring to graph cuts [21] as
to a basis of the presented approach, which specifically aims on analysis of
the noisy LFs. They expand it using the LF properties, in particular availabil-
ity of angular resolution. Authors propose two new matching costs, which
analyze correspondence and defocus cues. For the first cue authors use the
probabilistic angular entropy metric, which analyses randomness of photo-
consistency within the angular patch. Defocus cue is designed in an adaptive
way, which not only provides the proper information on noisy areas, but can
also handle occlusions. Having a region extracted from LF it is divided to
subregions, in which the presence or absence of blurring is checked, and the

3.2. Light field depth reconstruction methods 35

response for the region is formed as the minimum of the response from all
subregions. It also involves additional color constraint to reduce ambiguity
between occluder and occluded region. This work was extended by Williem
et al. in [171]. Authors propose two novel data costs for LF depth estima-
tion: constrained angular entropy cost is measured using the angular patch,
in which the pixels are weighted based on color similarity; and constrained
adaptive defocus cost, which is estimated on refocused images.

Approach of [149] aims on the reconstruction of glossy, or non-Lambertian
[80] surfaces. They built the algorithm based on the dependency of color in-
tensity from the light source position and color, which does not remain con-
stant between the LF views. Using the dichromatic model, the color of light
can be distinguished from the surface color [135]. Views of LF can be refo-
cused, which helps to analyse the additional light information. Based on that
specular-diffuse separation can be done. First, the depth information is esti-
mated from the images as-is. Depth is used for estimation of the light source
color based on LF refocusing. This information is used for the separation of
specular-free views from original ones, which are used for the depth refine-
ment and LF update. The procedure is done iteratively till there is no change
in the LF, and the result is refined using MRF.

A framework for depth estimation from LFs, presented by Wang et al.
in [160], aims to handle occlusions by utilizing photo-consistency measure-
ments in angular resolution of LF. It is based on the assumption that hav-
ing an angular patch, occluded by the same occluder in all views, the patch
can be divided to two sub-regions with and without occlusion, in which the
photo-consistency of unoccluded area will remain same after refocusing to
occlusion plane. The method uses previously discussed method from Tao et
al. [150] as a basis for depth estimation. To find possible occlusions candi-
dates an edge detection algorithm [25] is first applied to the angular patch.
Refocus to possible depth values is done by shearing of LF data for every
pixel on the detected edge. In case when occlusion is not present, variance in
the patch compared to the reference view is small. For occluded regions the
assumption of photo-consistency does not hold. Such regions are divided to
two parts, and part with the least variance used in computations of defocus
and correspondence cues. Regularization of depth is done using graph cuts
[21].

Method of Liu et al. [93] proposed a stereo derivation of LF depth estima-
tion process. There, LF captured by microlens-based camera are the subject of
rendering enhancement, where color and vignetting correction are applied to
the LF together with bilateral filter-based denoising. Authors use the stereo-
derived process by analyzing image similarities and building matching cost
using the locally-scaled sum of squared differences (SSD) on sub-aperture
intensities and gradients for the views pairs. Depth maps, obtained by this
method, are filtered by left-right consistency check and fused by weighted
median filtering. Refinement of the resulting depth map is done by smooth-
ing method from [174].

In search for the optimal depth estimation method from LF videos Dabala

36

et al. in [31] proposed multi-resolution approach. There, LF images are down-
sampled using Gaussian pyramid in a similar to Kanade–Lucas–Tomasi fea-
ture tracker (KLT) [97] manner. Matching cost generation is done by analyz-
ing view pairs using Hamming distance measurements on census-transformed
images. Depth and confidence maps are estimated independently on every
pyramid level and further filtered by a consolidation procedure, where per-
view confidences are merged in a weighted manner and used to discard in-
valid pixels. Depth maps are then upsampled to be used as the initialization
on the higher pyramid level.

In work of Sabater et al. [131] the problem of analyzing the LFs captured
by separate cameras of the same model, the color characteristic of the images
of which may differ from each other, is touched upon. To cope with that, the
color homogenization step is performed based on black level measurements,
providing bias and gain maps. For bringing the LF views to the same plane
authors suggest a warping-based scheme for pseudo-rectification, which are
projected from the original views to the reference. Correspondence matching
is done based on ZNCC and exploiting a multi-resolution strategy, similar to
[31].

In the work of Huang [61] an empirical framework based on MRFs was
developed. Global energy function for MRF is formed based on data and
smoothness terms. Author is using pseudo-likelihood approximation [15] for
the terms, where data component relies on view-wise neighborhood, while
spatial neighborhood forms the smoothness component. Disparity map is
estimated by optimizing this energy function.

Method of Lin et al. [92] is based on the symmetry analysis of the LF
focal stack, which is a sequence of LF images with a certain focus. Authors
exploiting the fact that for non-occluded pixels in a focal stack (which can be
either produced by capturing the LF with different focus or be synthesized
using LF properties) a symmetry exist along the depth of focus dimension.
Also, a data consistency measure derived on focal stack synthesized from
estimated depth is proposed. The method is modeled using MRFs with data
and smoothness terms.

Qin et al. [124] propose usage of consistency metric range tensors for
the depth estimation task. By using the fact that angular patch from LF is
photoconsistent if the reference pixels are not occluded method analyzes the
tensor information, extracted from sheared LFs, by measuring the variance
of patches on various depth labels. Authors propose additional confidence
analysis to reject wrong depth estimation. Depth is further propagated by
exploiting the constrain of neighbor pixels depth similarity based on color
consistency. This method if further optimized by authors for GPUs in [123].

The division of depth maps into foreground and background w.r.t. focus
plane is the basis of the method proposed by Lee et al. in [83]. Gradient in-
formation, obtained by Sobel operator, is used to create a constraint for the
voting decision of belonging of the particular angular patch to foreground
or background. Authors propose to accumulate binary maps, obtained from
foreground and background images, for the memory efficient depth estima-
tion.

3.2. Light field depth reconstruction methods 37

Some methods use optical flow reformulation [56] for the LF depth esti-
mation task. Zhou et al. [188] build a LF flow model on the pixels displace-
ments w.r.t. reference view. Authors argue that any two neighbor views of
LF contain a flow and the approach tries to recognize the flow from all planes
using phase shift theorem, similar to previously mentioned approach of Jeon
et al. [66]. To take occlusions into consideration, pixels are verified for the
presence in both original and centro-symmetric views.

Chen et al. in [29] measuring displacements from optical flow and con-
verting them to actual pixel displacements. For one angular dimension a 3D
volume is extracted by combining all LF views on this dimension. Authors
propose usage of coarse-to-fine matching method on angular patches as a
source of initial flow obtained by minimization of the matching cost. This
flow is a subject of edge-aware feature flow filter together with weighting by
a confidence map. Flow-to-depth reformulation is done by optimization on
data and smoothness terms [128].

Work of Navarro and Buades [106] uses optical flow for the depth val-
ues interpolation. They use a coarse-to-fine strategy of stereo estimation on
multiple scales for several view pairs of LF with further fusion of the result.
The optical flow estimation is enhanced by introducing fidelity term, which
verifies how close the estimated flow is to the preestimated disparity.

Shin et al. in [138] presented a network, which works on LF subsets. Sub-
sets are extracted from horizontal, vertical and diagonal angular direction of
LF w.r.t. reference view. These subsets are treated separately by identical
CNNs and the generated features are merged by a similar network. Such a
strategy also allows to use augmentation by shifting the reference view and
extracting different subsets.

Further development of attention-based method was done by Chen et al.
in [28]. There, attention module is based on information regarding scene
occlusions and divided to two branches. First combines features based on
relative amount of the occlusions in the LF views, while second aims on in-
terchanging of information between combined features. It is done to provide
higher contribution of the occlusion-less information to the matching cost.

Zhu et al. [190] proposed a depth estimation algorithm that is robust to
multi-occluder occlusion by exploring the occlusion point and non-occlusion
point. They modeled the multi-occluder occlusion and defined the occluder-
consistency property that corresponds the views of the occluder and back-
ground in spatial patch to the occluded view and un-occluded view in angu-
lar space.

In the work of Leistner et al. [84] a method called EPI-Shift is proposed. To
operate on a wider range of disparity, EPI-Shift utilizes the concept of epipo-
lar lines in image space to represent depth shift. The method divides depth
estimation into classification and regression tasks, with each shift considered
as a discrete disparity label. A sub-CNN extracts local disparity information
from each resulting image stack, and a U-Net architecture integrates and con-
catenates this information to obtain a discrete depth label and a continuous
sub-pixel disparity map. The final result for each pixel is the sum of the high-
est classification based on shift and the corresponding regression value.

38

Another paper by Leistner et al. [85] proposes methods for handling semi-
transparent regions in depth estimation, and introduces a multimodal LFs
depth dataset to handle overlapping objects at different depths. If is based
on three deep learning-driven approaches. The Unimodal Posterior Regres-
sion approach tweaks the loss function of the Maximum Likelihood learning
model by using an extended version of the L1-loss function with a variable
width, to measure uncertainty in a pixel. The EPI-Shift-Ensemble method
uses an ensemble of networks and takes advantage of the nature of LF im-
ages to shift the input and output multiple times. The Discrete Posterior
Prediction method discretizes the output of disparities and uses the softmax
function to represent the posterior, which can result in overconfident but in-
correct predictions.

The paper of Chen et al. [28] proposes an attention-based multi-level fu-
sion network. This method analyses the line structures from EPIs. Occlusion
varies within and between EPIs, so attention is used for proper EPI selec-
tion. Attention-based intra-branch and inter-branch features fusion is used
to select EPI directions with less occlusion.

The paper by Huang et al. [62] introduces a lightweight disparity estima-
tion model. It works by selecting only the sub-images along the horizontal
and vertical directions and grouping them as anchors based on their angular
distance from the center view. Paper introduces bottleneck attention module
and works on multi-disparity-scale cost aggregation with edge feature ex-
traction for the edge guidance to produce better results in regions with fine
and detailed structures.

Tsai et al. [156] proposed an attention-based approach, where specific
weights are assigned to every LF view based on its placement to avoid redun-
dancy in the information for depth map estimation from LF images, achiev-
ing a good balance between accuracy and computational complexity. Their
method generates an attention map for each LF view based on its subjec-
tive importance for the reconstruction process. This attention map is used
to scale the features, preserving information from the views with significant
contributions.

Unsupervised methods

Most of the unsupervised depth estimation algorithms relies on two paradigms.
To a greater extent the core of the unsupervised methods lies in the specific
design of the loss function, which allows to somehow reflect the relationships
between the LF views and the estimated disparity map. Less attention is paid
to the design of the neural network itself, because suitable loss function con-
tributes more decisively to the estimation result. Thus, we can conclude that
a properly engineered loss function can be coupled to any existing algorithm
for disparity map estimation, which we will take advantage of.

In this way, the algorithm presented in the work of Iwatsiki et al. [65]
works. Using the popular supervised method EPINET [138], instead of re-
designing it, the authors propose a general loss function design based on
projections of the LF views into the coordinates of the reference view. After

3.2. Light field depth reconstruction methods 39

warping the set of images to this view, authors propose averaging of the im-
ages to prevent the noise effect. Our work is using slightly different strategy
for dealing with noise by proposing a per-view mask for the warping errors
filtering, which will be explained in the corresponding chapter.

The first method for unsupervised LF depth estimation was proposed by
Peng et al. [120]. There, the idea of LF views warping to the reference view co-
ordinates was presented. Loss function is constructed on the by analyzing the
similarity of these warped views with reference one by Euclidean distance
and in the same time the similarity between all warped views within them by
the same metric. As a reference view, four corner LF views are used, and the
loss is estimated by combining the estimations for the different references.
For dealing with mismatched values during patch-based training, authors
propose optimized warping strategy by padding and consecutive cropping
of the images which are subject to warping. In their consecutive work [121]
the approach was reformulated to become zero-shot method while keeping
the same principles of loss function design.

Li et al. in [87] design a framework for unsupervised depth estimation
from EPIs. They form stacks of EPIs, which are obtained from deformed LF
views and learned by neural network to form the shared weights.

The work of Jin and Hou [69] paid additional attention to the problem of
dealing with image occlusions and propose the occlusion-aware model. It is
based on the assumption that for a particular angular patch, after its division
on four equal parts, at least one of its parts should be consistent with the
reference and hence don’t store any occlusions. Authors use the sub LFs
instead of original ones, which are generated by that, the sub-LFs are used
instead of the full ones. Each subset produces so-called uncertainty-aware
disparity maps, which are optimized individually by the loss function and
further fused based on the reliability maps.

In the work of Zhou et al. [189] LF views are extracted in the "star"-like
manner, and analyzed separately as the central sub-LF and corner views,
namely inter and outer views. They argue that proposed utilization of outer
views helps to prevent vanishing gradients issue during unsupervising train-
ing. Authors propose usage of three different loss components, such as defo-
cus, symmetry and photometric loss.

Li et al. [88] present occlusion pattern-aware network alongside occlu-
sion pattern-aware loss. This loss helps to filter away the occluded views
by verifying the photometric consistency. Network is designed on extracting
features from sub-LFs in the similar manner to [138], followed by transformer
network for the feature fusion. Regressed disparity in this method is refined
by the warping-based aligning with central LF view.

Method of Zhang et al. [182] uses a combination of two networks, de-
signed for disparity and occlusion prediction. First network uses multi-view
feature matching to construct the coarse and residual matching cost, regres-
sion of which provides two disparity maps, which are further combined
to the final disparity map. Second network assists the disparity estimation
based on photometric consistency.

40

Since not many unsupervised estimation methods are available for the
LF, it is worth considering similar methods from the field of stereo vision
and optical flow in connection with the similarities to multi-view stereo dis-
cussed in Section 2.3.3. Based on the scene rigidity assumption, method of
Wang et al. [161] estimates optical flow and stereo depth from videos in an
unsupervised manner. Huang et al. [60] design an encoder-decoder network
with mutual epipolar attention module for the self-supervised stereo depth
estimation.

The first attempt to use the Census transform for deep learning was made
by Meister et al. [100]. It is used as a replacement of brightness constancy con-
straint for the optical flow estimation. Details of their census implementation
for the differentiable case, however, are not provided. In work of Juefei-Xu
et al. [73] the modified local binary patterns, which are similar to census
transform, are obtained by the convolutions with weighted sum of the in-
termediate images. Based on this, authors design modified neural network
layers for the further processing of classification tasks.

3.3 Conclusion

Existing algorithms for calibrating LF cameras are quite efficient. However,
not in all cases their implementation both on the software and hardware side
is an easy task. Also, these algorithms do not cover the issue of changing the
calibration parameters on-the-fly.

The main problem at the beginning of this dissertation was the lack of
suitable SoA methods for running the algorithms under the constraints of
the embedded hardware. In addition to the limitations in the availability of
the hardware itself, the main problem was the extremely low computation
time of the algorithm results. At the same time, analyzing such methods,
most of which are in the field of deep learning, it can be noted that the hard-
ware requirements necessary for their work are at a level higher than can
provide embedded hardware, so at the moment it makes sense to return to
the classical paradigm for the estimation of depth maps from LF.

The following chapters will describe how we dealt with these problems
when designing our system for depth estimation from LF.

41

Light Field Calibration

This chapter covers the pipeline of LF camera calibration, which was devel-
oped and tested on real-world LF camera within the scope of the dissertation.
It describes of LF calibration algorithm, LF views rectification parameters es-
timation, refinement of calibration data from arbitrary scene information and
the findings on the LF auto-calibration. The presented algorithms were ver-
ified on a LF camera with single full-size lenses in an array, details of which
will be provided in Chapter 6. It can be potentially used in micro-lens-based
cameras, however, the potential misplacement of lenses in a manufactured
array is not as large as in cameras with full-size lenses.

4.1 Light field calibration algorithm

The explanation of the used algorithm for LF camera array calibration starts
with the basic concept of single camera calibration procedure.

4.1.1 Pattern-based camera calibration

As stated in Section 2.1.10, calibration is needed for estimation of camera
intrinsic parameters, accuracy of which is vital for the proper 3D reconstruc-
tion. One of the most popular and at the same time easy to perform method
of calibration is calibration using a pattern. The following will describe the
calibration method proposed by Zhengyou Zhang in [184] in the way it was
used for the LF camera calibration in this dissertation.

The single camera calibration technique proposed in [184] is the follow-
ing:

1. Planar calibration pattern creation;

2. Capturing of the calibration pattern pictures by moving either the cam-
era or the pattern;

3. Points of interest (e.g. corners) detection from these images;

4. Initial camera parameters estimation;

5. Radial distortion coefficients estimation;

6. Parameters refinement;

42

FIGURE 4.1: A pipeline of pattern-based calibration algorithm

Calibration pattern in this case is considered to be a planar structure with
known geometry and with easily distinguishable feature points. The known
geometry refers to the data on the relative location of the features in the cali-
bration pattern space. It is important to be able to unambiguously obtain the
relative location of the 3D points corresponding to the projections of these
points on the image space, and accordingly to the pattern’s features. Infor-
mation about the position of these points will be used later at the stage of
calculating the camera parameters.

The requirements for features from the calibration pattern are unambi-
guity of their location and ease of extraction from the general image space.
Zhang suggested using a flat pattern with evenly spaced black squares on
white, where the chips were the four corners of each square. However, more
practical use is made of patterns based on the "chessboard"/"checkerboard"
configuration, in which features are extracted from the corners where two
white and two black squares intersect. Fig. 4.2 demonstrate how both pat-
tern configurations look like.

There are several reasons for choosing the checkerboard-based pattern
over the square-based. First, unlike the configuration with ordinary squares,
in the case of the checkerboard it is easy to make a configuration that un-
ambiguously reflects the orientation of the pattern in space. If you rotate
the board with squares by 180◦ degrees, it is difficult to match the changed
corners of the pattern with the original 3D points. At the same time, in the
case of a checkerboard-based pattern with different parity of its sides, it is
possible to uniquely determine the orientation of the pattern.

Another motivation for using the checkerboard-based pattern related to
the subpixel refinement of the extracted features coordinates. When subpixel
refinement is based on the corner’s surroundings, the accuracy of its result
is expected to be higher for the case of contrastive surroundings, which is
obvious for the case of the checkerboard.

In our algorithm 2D corner points are extracted from images using the
method proposed by Suzuki and Abe in [148]. Their positions are further
refined to achieve subpixel accuracy by the method of Förstner and Gülch
[36].

Without going into the details of how these methods work, since the de-
tails are of no interest within the scope of this dissertation, let us assume
that for every LF view k ∈ L:,:,s,t, s ∈ S, t ∈ T, and for every image with

4.1. Light field calibration algorithm 43

(a) (b)

FIGURE 4.2: Examples of calibration patterns: (a) squares-
based, (b) checkerboard-based.

pattern i ∈ C captured on this view, where C denotes the totality of the cap-
tured images for a particular view k from the LF, we get a set of 2D points
{m}ki, which corresponds to detected pattern features. Based on the known
geometry of the calibration pattern, a common 3D set of points {M} can be
obtained. Important for these points is that the third coordinate, which is
responsible for the depth of the point, is always zero, and the other two co-
ordinates are assigned by multiplying the length of the edge of the square at
the base of the pattern by the relative position of the particular corner.

Using both {m}k, and {M}, the initial solution of matrix K from Eq. 2.6
can be obtained by applying direct linear transformation (DLT) [147]. To esti-
mate distortion coefficients d, all the points for particular view are combined
to the matrix according to the Eq. 2.15 and subjected to LLS [179]. Particu-
lar equations are provided in the original paper [184] and omitted here for
simplicity.

Using the initial solution for K and d we can improve it by applying the
Levenberg-Marquardt algorithm (LMA) [104] for nonlinear reduction of the
reprojection error. For each pattern in each LF view, there is a unique rotation
vector and translation vector that orient that pattern on the 3D scene. With
the information about pattern placement and initial K, for every image we
can build individual projection matrix Pki from Eq. 2.12 and compute the set
of reprojection of {M} to image space as {m̂}ki using Eq. 2.13. 2D points
undistortion is applied following Eq. 2.15.

Resulting points per view k are used as a subject for minimization by
LMA as:

|C|

∑
i=1

∥{m}ki − {m̂}ki∥ (4.1)

where {m̂}ki is retrieved by a reprojection function Q() as:

Q(X, P, d) = PX
[
r r2] [k1

k2

]
, (4.2)

where r is obtained using Eq. 2.14, and k1, k2 ∈ d.

44

4.1.2 Calibration extension for multi-view cases
The previous considered equations describe the process of obtaining the pa-
rameters of the single LF view. If all the views observed the same calibration
pattern, it is possible to do the estimations of LF views relative position by
using the common set of 3D points {M}. Due to the planar (or close-to-
planar in case of some real-world configurations) placement of the captur-
ing sensors, we can assume that changes in the relative views placement are
specified only by two coordinates. After that, to bring all views to similar im-
age plane, the common camera parameters and ideal rotation and translation
vectors can be estimated.

Using all observations of the same calibration pattern in all views C, in
order to find view relative placement, we solve perspective-n-point (PnP)
problem [35]. In general, the PnP problem can be solved with the above-
mentioned DLT. Results of the estimation should be further refined by LMA.

After this step the set of rotation vectors {rO
k } and translation vectors {tO

k }
per view are obtained. Rotation vectors are converted from rotations matri-
ces by applying the Rodrigues transformation [129] to them.

Having the Kk matrices per view, the next step is to find a common intrin-
sic matrix Kr, which will be used for the rectification of all LF views to the
common image space and is defined as the following:

f x
r =

∑|C|
k=1 f x

k
|C| ; f y

r =
∑|C|

k=1 f y
k

|C| ;

cx
r =

w
2

; cy
r =

h
2

;

Kr =

 f x
r 0 cx

r
0 f y

r cy
r

0 0 1

 ,

(4.3)

where C is the number of LF views, and w, h correspond to the width and
height of each view, which are assumed to be the same.

Rotation and translation vectors rO
k , tO

k are used for getting an optimal
value of common rotation and translation vector, to which all views would
be brought after the rectification. Common rotation vector rr is estimated as
an average of all rotation vectors as:

rr =
∑|C|

k=1 rO
k

|C| − 1
, (4.4)

and further converted to rotation matrix Rr by applying Rodrigues trans-
form.

Computations of common translation vector involve the spatial informa-
tion of every view. Since the translation vectors are defined w.r.t. reference
view, we estimate the relative values by involving S and T as vertical and
horizontal spatial dimensions of LF, where S × T = |C|.

4.1. Light field calibration algorithm 45

For a specific LF view k, the translation vector tV
i is formed from per-axis

components as tV
k = [tVx

i tVy
i tVz

i] and estimated as a mean of all components
not in the same row or column as:

a = ⌊k/S⌋; b = k mod S;

tVx
k =

{
tOx
k /(b̂ − b), b̂ − b ̸= 0

0, b̂ − b = 0

tVy
k =

{
tOy
k /(â − a), â − a ̸= 0

0, â − a = 0

tVz
k = 0

, (4.5)

where a, b stand for spatial coordinates of any LF view, and â, b̂ stand for
spatial coordinates of reference view.

All translation vectors form a set tV . Common translation vector t̄r =
[tx

r ty
r 0] is estimated as:

Stx =
|C|

∑
k=1

(1 − δtVx
k ,0); Sty =

|C|

∑
k=1

(1 − δ
t
Vy
k ,0

)

tx
r =

∑|C|
k=1 tVx

k
Stx

; ty
r =

∑|C|
k=1 tVy

k
Sty

, (4.6)

where Stx and Sty are numbers of particular non-zero components in tV ,
found using Kronecker delta:

δx,y =

{
0, x ̸= y
1, x = y

. (4.7)

This vector is a basis for the set of per-view translation vectors tp:

tpx
k = tx

r (b̂ − b̄); tpy
k = ty

r (â − ā); tpz
k = 0. (4.8)

Using the results from Eq. 4.3–4.8 we estimate the rectified projection
matrix Pr per every LF view as:

R̄k = RrRO
k

T

t̄k = R̄ktp
k

Pr
k = Kr[R̄k|t̄k]

(4.9)

The resulting camera projection matrix represents the ideal position of its
corresponding LF view.

The further remapping of pixels to the proper position is done by ap-
plying a LUT, which stores per-pixel coordinates of the rectified image and
generated using Pr

k , distortion coefficients and original intrinsic and extrinsic
values. Fig. 4.3 shows, how LF images changes after applying the described

46

(a) (b)

FIGURE 4.3: A subset of (a) original and (b) rectified LF after
applying the presented algorithm.

pipeline.

4.2 Calibration Auto-Refinement

An auto-refinement algorithm uses the previously found reference calibra-
tion and tries to estimate, how the calibration parameters need to be com-
pensated for the current configuration of the multi-view camera. It is needed
in cases when the placement of views was changed during the camera ex-
ploitation, e.g. camera is mounted on the car and it is a subject of shakes and
other mechanical influences. A pipeline of this method is presented in Fig.
4.4.

The important criteria for the selection of correspondences detection algo-
rithm were the robustness of features in real-world images and the running
time of the algorithm. Among existing methods, a combination of "good fea-
tures to track (GFTT)" method for features extraction [137] with KLT feature
tracker [152] was chosen. Both of these algorithms are considered as compu-
tationally efficient due to the simplicity of the underlying operations, which
was our main criterion for choosing this combination of algorithms.

The GFTT algorithm identifies feature points in the image, which are
likely to be tracked consistently in the consecutive frames. Usually good can-
didates for the accurate features are the corners of the objects. The algorithm
works by calculating corner response function for each pixel in the image,
which measures the intensity changes in the neighborhood of the pixel.

KLT uses spatial intensity gradients of the image to find the positions that
are most likely to correspond to the best match. This approach is faster than
traditional methods because it involves examination of a much smaller set of
potential image matches. In addition, the algorithm can be adapted to handle
image rotation, zooming, and shifting.

4.2. Calibration Auto-Refinement 47

FIGURE 4.4: A pipeline of auto-refinement algorithm

Exploiting the multi-view nature of the LF, in particular the fact that the
projection of 3D points from the scene can be seen in all views, the deter-
mined features are tracked between different views in a chain manner. Cor-
respondences from the reference view are verified in the neighboring view
on the same axis, tracked ones are searched in the next view, and on the last
view in one row features are matched in the upper one. This principle is
demonstrated in Fig. 4.5.

Such a method is needed for reducing the number of possibly mismatched
correspondences, which may occur especially in the small-baseline LF sys-
tems, like the camera used in Chapter 4.4. This method also helps for the ver-
ification of the correspondence inaccuracies, since the very strong matches
have to be preserved in all views.

Additional filtration, based on the estimation of fundamental matrix be-
tween correspondences in adjacent views, and exclusion of non-matched fea-
tures is applied. Having a fundamental matrix F, estimated by e.g. random
sample consensus (RANSAC) method [35], the points from neighboring view
x1 and x2 are checked by the value of xT

2 Fx1 being lower than a certain thresh-
old.

There’s a small number of features, which were extracted more than once
from the image. To remove the possible influence of such correspondences,
we preliminary check the result of the feature detection algorithm by search-
ing of the nearby correspondences using the Euclidean distance between
points.

By empirically setting a certain threshold for these distances we can effi-
ciently filter out the closely placed features. For our experiments it was set to√

2.
Previously described methods of filtration can eliminate a big amount of

wrongly estimated correspondences. However, some false matches, espe-
cially the ones placed close or on the texture-less areas, can survive these
checks. To eliminate such mismatches we propose a filter, based on the re-
projection of triangulated points.

The filtered points are triangulated based on original intrinsic values Kk
and rotation and translation vectors RO

k , tO
k . A projection matrix PO

k is com-
posed as Kk[RO

k |t
O
k]. For every correspondence mk = [xk, yk], matched in ev-

ery view out of C, by taking a vector PrT
ok for every row of the corresponding

48

FIGURE 4.5: Visualization of views traversing in chain manner

projection matrix the matrix A is composed as follows [46]:

A =

x1P3T
O1 − P1T

O1

y1P3T
O1 − P2T

O1
...

xNP3T
ON − P1T

ON

yNP3T
ON − P2T

ON

(4.10)

singular value decomposition (SVD) is applied to this matrix, the triangu-
lated points are extracted from the smallest singular value of A.

Using the PO we project the triangulated points Mt to 2D space and esti-
mate the Euclidean distance between original and projected points:

mt = PMt

distt = ∥mt − mr∥,
(4.11)

where mr stands for an original correspondence from reference view.
We find a median of all distances between each correspondence and its

projection, and filter out all matches, for which the distance is bigger than
the median value.

To finally estimate the the compensation for intrinsic and extrinsic val-
ues, a minimization problem involving criterion from Eq. 4.1 is solved. In
this case, since the 3D points coordinates are also involved, it is wrapped as
bundle adjustment [154].

4.3. Findings on Light Field Auto-Calibration 49

FIGURE 4.6: A pipeline of intrinsics auto-calibration algorithm

4.3 Findings on Light Field Auto-Calibration

This section is covering the work, done within this dissertation towards solv-
ing full autocalibration problem 1.

Similar to auto-refinement, auto-calibration relies on the data from arbi-
trary scene with some constraints. However, there is no preliminary informa-
tion about the camera parameters, which makes the calibration harder. One
of the methods to do the auto-calibration is to form some kind of an abso-
lute target. The most frequently used example of such a target is an absolute
conic [46].

Considering a plane at infinity π∞, absolute conic is an imaginary conic
on this plane, points on which satisfy:

X2
1 + X2

2 + X2
3 = X4 = 0. (4.12)

Analysis of absolute conic properties gives the information about camera in-
trinsic parameters.

Fig. 4.6 shows the workflow of the developed LF autocalibration method.
The method proposed by Lourakis in [95] was chosen as the basis.

The method is based on the computation of fundamental matrices from
the scene images pairs. Estimation of the matrices is done on top of the
matched features. Similar to auto-refinement case, experiments were done
on the combination of GFTT with KLT. Together with that, a method called
Scale-Invariant Feature Transform (SIFT) [96] was tested.

Pipeline of the SIFT algorithm can be described as follows. First, potential
feature points are found using a scale-space extrema detection algorithm. It
is done by applying the convolution with Gaussian filters at the difference
scales to the image and finding the difference between the resulting images,
forming the difference of Gaussians (DoG). To reduce the number of feature
candidates, the proper keypoints are localized by comparing the DoG im-
ages. Based on the finite differences around the survived candidates and the
resulting dominant gradient direction, orientation is assigned to the feature.
Descriptor of the keypoint is estimated by finding the local gradient-based
features and constructing the histogram of gradient orientation. Further,

1This section is partially based on the master thesis "Auto-Calibration Algorithms for
Light Fields", written by Ngoc Thy My Nguyen under our supervision

50

matches of different keypoints within different images can be found based
on these descriptors.

The matched correspondences are further used to find the so-called fun-
damental matrix between two views. Fundamental matrix F [46] described
the relation of corresponding points in two views. It is a 3x3 matrix, which
keeps the geometrical relationships between the views and allows the esti-
mation of epipolar geometry between these views. It can be formed as:

F = K−T
1 [t]×RK−1

2 , (4.13)

where K1 and K2 are the intrinsic matrices of two cameras, and [t]×R de-
scribed the relative placement of these cameras, where for t = (t1, t2, t3): 0 −t3 t2

t3 0 −t1
−t2 t1 0

 . (4.14)

In the ideal case, having homogeneous coordinates of the image points x1
and x2 from these cameras, their relations can be described by:

xT
1 Fx2 = 0 (4.15)

This equation describes the fact that the epipolar lines in one view are con-
strained to pass through the corresponding point in the other view.

There are different methods for the fundamental matrix estimation. The
straightforward approach involves the eight correnspondences, forming a
system of equations, which can be solved by finding a non-trivial solution of
Ax = 0 by the least squares [46]. This method usually implies points normal-
ization for improving its accuracy. While being the computationally efficient,
this method is very sensitive to outliers and noise, potentially providing un-
stable and even unusable solutions.

A good alternative to the direct fundamental matrix estimation is its RANSAC-
based extension. By this method a random minimal set of correspondences
is used to for the eight-point fundamental matrix estimation, and the accu-
racy of the estimation is verified on all the point correspondences by finding
the fundamental matrix which produces the maximum number of inliers, or
the points for which the relationship described by Eq. 4.15 holds to a certain
threshold TF as:

xT
1 Fx2 < TF (4.16)

For the additional accuracy increase, a gold standard (GS) can be used.
It minimizes the reprojection error between the matched points in the two
views in an iterative manner. Having initial fundamental matrix, it is refined
by minimizing the sum of squared distances between the observed and pre-
dicted image points. Besides being the computationally intensive algorithm,
another disadvantage of this method is the necessity of Gaussian distribution
of the image noises.

4.3. Findings on Light Field Auto-Calibration 51

Obtained pairwise fundamental matrices form a core for their further pro-
cessing by building Kruppa equations [34] on them. They used for the esti-
mation of camera intrinsic parameters. Below a derivation of the simpified
Kruppa equations will be shown.

An essential matrix E is defined as E = [t]×R. Based on this and using
the Eq. 4.13, F can be redefined as:

F = K−TEK−1, (4.17)

out of which E is expressed as:

E = KTFK1. (4.18)

Work of Triverdi [155] states that the symmetric matrix EET is independent
from the rotation matrix R, since

EET = [t]×RRT([t]×)T = [t]×([t]×)T. (4.19)

For the further estimations we denote a symmetric matrix A as:

A = KKT =

 f 2
x + c2

x cxcy cx
cxcy f 2

y + c2
y cy

cx cy 1

 , (4.20)

based on which by substitution we obtain:

FAFT = K−T[t]×([t]×)TK−1 (4.21)

Epipoles e1 and e2 defined as a point in one image that corresponds to the
position of the camera center in the other image. In other words, it can be
determined as the point of intersection between the line of sight of a camera
center and the image plane of the other camera. Using the epipolar geometry,
we can state that FTe2 = 0. By Eq. 4.13 e2 must satisfy the following:

F = K−TRT([t]×)TK−1e2 = 0, (4.22)

from which e2 can be found as:

e2 = λKt, (4.23)

where λ is a non-zero scalar. From 4.23 t can be expressed as:

t =
K−1e2

λ
, (4.24)

and the original Kruppa equations are then formed as:

FAFT = γ[e2]×A([e2]×)
T (4.25)

52

Simplified Kruppa equations are considered to be more practically use-
ful for the tasks of auto-calibration, since they do not involve the estimation
of epipole, which is especially important for the real camera cases with the
noise presence. Simplified equations are based on the factorization of the
fundamental matrix based on SVD [39]. It decomposes a matrix into three
matrices: a left singular matrix U, a diagonal matrix of singular values D,
and a right singular matrix VT:

SVD(F) = UDVT. (4.26)

Matrix D is having the form: r 0 0
0 s 0
0 0 0

 , (4.27)

where r and s are eigenvalues of the matrix FFT.
In this case, the epipole e2 can be deduced and the skew matrix [e2]× is

found as:
FTe2 = VDTUTe2 = 0 (4.28)

e2 = δUm, δ ̸= 0, m = [0, 0, 1]T (4.29)

[e2]× = µUMUT, (4.30)

where µ is a nonzero scale factor and M = [m]× is of the form:0 −1 0
1 0 0
0 0 0

 . (4.31)

Based on the listed equations, the new group of Kruppa equations can be
defined as:

FAFT = µUMUT AUMTUT, (4.32)

out of which the simplified Kruppa equations are obtained based on multi-
plication of left and right equations parts by orthogonal U and UT:

DVT AVDT = µMUT AUMT. (4.33)

Eq. 4.33 provides three linearly dependent equations. If u1, u2, u3 are the
column vectors of U, and v1, v2, v3 are the column vectors of V, the Eq. 4.33
can be expressed as:

DVT AVDT =

r2vT
1 Av1 rsvT

1 Av2 0
srvT

2 Av1 s2vT
2 Av2 0

0 0 0

 (4.34)

MUT AUMT =

 uT
2 Au2 −uT

2 Au1 0
−uT

1 Au2 uT
1 Au1 0

0 0 0

 . (4.35)

4.3. Findings on Light Field Auto-Calibration 53

Out of it, three equations can be derived as:

r2vT
1 Av1

uT
2 Au2

=
rsvT

1 Av2

−uT
2 Au1

=
s2vT

2 Av2

uT
1 Au1

(4.36)

The simplified equations allow to determine an intrinsic internal matrix,
which serves as a starting point for the optimization process.

If SF = [r, s, uT
1 , uT

2 , uT
3 , vT

1 , vT
2 , vT

3] is a vector of SVD components of the
fundamental matrix, then by using three ration of Eq. 4.36:

ρi(SF, A)

ϕi(SF, A)
(4.37)

we get two polynomial equations per fundamental matrix as:

ρ1(SF, A)ϕ2(SF, A)− ρ2(SF, A)ϕ1(SF, A) = 0 (4.38)
ρ1(SF, A)ϕ3(SF, A)− ρ3(SF, A)ϕ1(SF, A) = 0 (4.39)

These equations can be treated as quadratic and solved separately. As-
suming that aspect ratio for our case is close to one, we can state that A11 =
A22, hence fx = fy. For N images we get (N − 1) fundamental matrices, and
each of them may have up to 4 solutions. However, not all of these solu-
tions are valid since they can make the matrix A either unreal or not positive
definite.

Quadratic equations have an advantage because they do not require an
initial guess, and solutions can be easily found by considering one equation
at a time. However, this can lead to solutions that are far from the correct
values. Therefore, we need to select appropriate initial solutions for the opti-
mization steps. Some strategies can be used to choose which initial solutions
to use, so that only meaningful solutions are considered.

An alternative to the quadratic equations is the Newton-Raphson method.
The Newton-Raphson method for a nonlinear system of equations considers
all equations of the system simultaneously, unlike the quadratic equations
method. However, this method requires a starting point to initiate the itera-
tion. If the initial guess is close to the actual solution, then the method is very
efficient and can ensure convergence to a root.

To estimate a good starting point for the optimization process, in the orig-
inal publication Lourakis suggests several strategies, including choosing a
solution randomly or using the average value of all solutions. In our work,
we have chosen to use the second option, where we compute the average
value of all valid solutions and pass this value to the optimization process.
Having an initial solution, two approaches for the refinement are considered,
namely LMA and particle swarm optimization (PSO) [19].

For conducting the optimization via LMA, we construct the residual equa-
tion based on Lourakis et al. [95]. Difference of ratios between equations in

54

FIGURE 4.7: An example of checkerboard pattern, used for LF
camera calibration

Eq. 4.39 is denoted as:

πij(SF, A) =
ρi(SF, A)

ϕi(SF, A)
−

ρj(SF, A)

ϕj(SF, A)
, (4.40)

where i, j = 1..3. Variance of πij can be approximated as:

σ2
πij
(SF, A) =

∂πij(SF, A)

∂SF
ΛSF

∂πij(SF, A)T

∂SF
, (4.41)

where
∂πij(SF,A)

∂SF
is a 1 × 20 derivative vector of πij(SF, A) at SF and ΛSF is a

20 × 20 covariance matrix, associated with SF. This covariance matrix can be
approximated as:

ΛSF =
∂SF

∂F
ΛF

∂SF
T

∂F
, (4.42)

where ΛF is a 9× 9 covariance matrix of the fundamental matrix F, computed
using the method from Csurka et al. [30], and ∂SF

∂F is a 20× 9 matrix containing
the value of the Jacobian matrix of SF at F, which can be found using the
method of Papadopoulo and Lourakis [118].

Matrix A is then optimized by LMA as:

A = argmin
N−1

∑
i=1

π2
12(SFi, A)

σ2
π12

(SFi, A)
+

π2
13(SFi, A)

σ2
π13

(SFi, A)
+

π2
23(SFi, A)

σ2
π23

(SFi, A)
. (4.43)

A has five unknowns, so the minimum number of input images needed
for the optimization process to be successful is more than three. In general,
the more input images available, the more constraints are placed on the opti-
mization process, which provides more accurate solution.

After optimizing the A, recalling that A = KKT, we apply the Cholesky

4.4. Experiments 55

FIGURE 4.8: Depth error for EPnP = 0.246 pixels

decomposition [12] to obtain K−T, which after transposing and inversion
serves as intrinsic matrix.

4.4 Experiments

4.4.1 Calibration algorithm

For the tests of pattern-based calibration algorithm we used a custom LF
camera, described in Chapter 6. It composed of 4×4 lenses, providing a
960×960 pixels RGB image per view, which afterward converted to grayscale
for the sake of calculations simplicity. A 12×9 checkerboard pattern with
20×20 mm squares was used for the calibration. An example of the calibra-
tion pattern is presented on Fig. 4.7. We captured 40 scenes with this pattern
for testing purposes.

To control the accuracy of the estimated intrinsic matrix K and distortion
coefficients d, the reprojection error is computed as in Eq. 4.1 for every LF
view. Similar computations are done during the estimation of the extrinsic
values.

For the test dataset the average reprojection errors for monocular calibra-
tion and PnP problem were Emono = 0.159 and EPnP = 0.246 pixels respec-
tively.

A comparison of our method was done with the method of Xu et al. [172].
For the same test dataset we have obtained reprojection errors of Emono =
0.153 and EPnP = 0.156 pixels.

We can state that optimization of all parameters together for the precisely
estimated points make sense in terms of accuracy. However, the potential
drawback is related to higher running time of the joined optimization.

To verify influence of the reprojection error to the actual depth reconstruc-
tion we found a depth error with common focal length values f = fx = fy =
850 pix and baseline between the two most distant views on the same axis
b = 0.018 m as:

56

FIGURE 4.9: An example of synthetic scene for verifying the
auto-refinement algorithm

∆Z =
f b

d − Epnp
+

f b
d + Epnp

, (4.44)

where d is the disparity value, i.e. displacement between pixels, which can
be further converted to actual depth value. This error is visualized on Fig.
4.8.

On a target range of the test camera, which is 0.5-2.0 m, the estimated
reprojection introduces an inaccuracy in the amount of 0.004-0.065 m, which
is lower then the depth accuracy on this specific distance range.

4.4.2 Auto-refinement algorithm

A dataset of synthetic LFs was used for verification of auto-refinement sta-
bility. The rectified and undistorted images with known intrinsic parameters
were generated using Blender and the script from 4-dimensional LF Bench-
mark [1, 55]. 5×5 LFs of size 512×512 pixels per view with a baseline of 100
mm between adjacent views were generated from a simple scene with dif-
ferent overlapping objects, as demonstrated in Fig. 4.9. A sequence of ten
images was used for the tests.

In average, 1/10 of originally detected points were filtered by correspon-
dence chain matching, out of which half of the points survived the triangulation-
based filtering. Processing of one frame takes around one second.

The difference between original and refined intrinsic and extrinsic pa-
rameters was measured and considered as non-informative, since no signif-
icant difference between original and refined values was found. It can be
explained by the quality of correspondences, which is in general good for
the synthetic data.

4.4. Experiments 57

FIGURE 4.10: Reprojection error of auto-refinement algorithm
dependently of the applied noise for synthetic images

To check the accuracy of the auto-refinement algorithm, we applied rota-
tion and translation noise to the captured frames and measured the average
reprojection errors. Results are demonstrated on Fig. 4.10.

In total both types of noise create acceptable level of reprojection error. In
a similar to pattern-based calibration manner we have evaluated the depth
error for maximum reprojection error from the rotation noise, result of which
is presented on Fig. 4.11.

For the noise simulation of rotation was applied only to Z axis. Rotations
on X and Y axes are the subject of tangential distortion. It occurs when the
lens array is not parallel to the camera sensor plane. This type of distortion is
assumed to be zero in the applied camera model. The pattern-based calibra-
tion method used gives adequate results in terms of the resulting reprojection
error. Empirically, we have found that the overall calibration quality depends
largely on the quality of the calibration target, especially its flatness.

For the proper calibration we have come to the number of 25-30 pattern
images in one sequence. All areas on the LF views should be covered with
pattern images in various positions to ensure correct estimation of internal
values.

58

fx fy cx cy fx fy cx cy

Cam 1 881.91 884.22 483.58 444.74 875.23 878.01 495.24 380.42

Cam 2 883.25 885.25 481.79 450.06 874.69 879.53 481.08 455.63

Cam 3 878.58 879.69 472.57 451.03 876.54 878.08 554.69 360.00

Cam 4 875.47 875.05 462.79 449.23 877.99 877.89 509.58 558.97

Cam 5 878.86 882.33 486.36 453.20 877.91 877.98 484.64 473.27

Cam 6 877.71 879.89 477.94 454.04 877.04 879.40 499.58 397.84

Cam 7 875.80 877.29 473.75 453.78 878.52 878.51 477.51 471.94

Cam 8 880.45 881.08 469.48 461.32 878.52 878.51 447.21 485.04

Cam 9 891.05 895.21 488.83 459.81 878.32 878.24 489.16 492.78

Cam 10 873.15 875.59 483.40 461.65 877.53 878.26 493.65 510.49

Cam 11 879.39 881.20 477.26 465.99 877.53 878.26 493.65 510.49

Cam 12 879.62 880.37 471.45 467.93 877.24 878.37 426.24 527.44

Cam 13 871.50 874.76 488.55 466.21 877.43 878.37 434.25 360.00

Cam 14 878.40 881.41 485.91 466.95 878.18 878.11 462.24 389.90

Cam 15 872.14 874.12 477.87 467.60 877.95 878.21 472.86 489.73

Cam 16 875.24 876.00 471.87 474.72 877.91 878.20 486.59 458.45

Average 878.28 880.22 478.34 459.27 877.41 878.37 481.76 457.65

(a) (b)

TABLE 4.1: Results of: (a) pattern-based calibration, (b) auto-
calibration

One of the assumptions of the algorithms was the similarity of the lens
parameters for each view. For cases with a significant shift (in terms of rota-
tion or translation) of at least one of the views over the others, averaging over
extrinsic values cannot be used; it should be replaced by nonlinear methods.

Experiments with the auto-refinement algorithm on synthetic images show
that the reprojection error increases in proportion to the level of lens shift,
while changes in their rotation affect only up to some point with a plateau
thereafter.

During the auto-refinement experiments, we noticed that optimizing all
the parameters together leads to incorrect results. This was the motivation
for dividing the optimization procedure into three steps applied to the same
model. First, only 3D points are optimized, while intrinsic and extrinsic cam-
era values are fixed. This condition is relaxed in the second part, where the
intrinsic values of all views are optimized. Finally, we optimize all camera
parameters together. All of the above steps are repeated with new captured
scenes. It can be stopped either by using a certain number of iterations or by
reaching the desired reprojection error below a threshold value.

Several limitations of the auto-refinement algorithm were identified dur-
ing the tests. It does not work well with repeating textures and with small

4.4. Experiments 59

FIGURE 4.11: Auto-refinement depth error

distances between detected matches, e.g. on keyboards. This problem can be
solved either by applying additional filtering measures or by changing the
match detection algorithm. In addition, the coverage of the image area by
the correspondence is important to obtain correct lens geometry, a similar re-
quirement stands for pattern-based calibration. Additional correspondence
distribution checks can be made to discard images without proper coverage.
Because of this, the distortion coefficients cannot be corrected by our auto-
rectification method and remain locked during the optimization stage.

We have tested the auto-refinement algorithm with and without triangu-
lation filter. Without filtering the results were totally incorrect, so they are
not included in part of the experiments.

4.4.3 Auto-calibration algorithm
Experiments for auto-calibration were done on the similar images set from
4 × 4 LF camera, presented in Section 6. Results of comparison of auto-
calibration results with pattern-based calibration are presented in Tables 4.1
and 4.2.

SIFT was applied to arbitrary scene images for the features extraction. For
each camera, matching points were determined by comparing the features
of one image with those in the subsequent image, following the previously
described correspondence chain matching. The surviving correspondences
were then utilized to estimate the fundamental matrix using the normalized
8-point algorithm. While these matrices were sufficient for the next step,
we applied the GS algorithm to enhance the accuracy of the fundamental
results, which was the most time-consuming process in the entire procedure.
After optimizing the fundamental matrices, we used the method presented
in Section 4.3 to estimate the intrinsic matrices.

Estimated focal lengths were quite similar to those obtained using the
pattern-based method. Unfortunately the method failed to properly estimate
the camera centers, which are deviating in the relatively big range. Also,
the intrinsic parameters obtained using this technique were unstable since

60

fx fy cx cy

Cam 1 6.68 6.21 11.66 64.32

Cam 2 8.56 5.72 0.71 5.57

Cam 3 2.04 1.61 82.12 91.03

Cam 4 2.52 2.84 46.79 109.74

Cam 5 0.95 4.35 1.72 20.07

Cam 6 0.67 0.49 21.64 56.20

Cam 7 2.72 1.22 3.76 18.16

Cam 8 1.93 2.57 22.27 23.72

Cam 9 12.73 16.97 0.33 32.97

Cam 10 4.38 2.67 10.25 48.84

Cam 11 1.86 2.94 16.39 44.50

Cam 12 2.38 2.00 45.21 59.51

Cam 13 5.93 3.61 54.30 106.21

Cam 14 0.22 3.30 23.67 77.05

Cam 15 5.81 4.09 5.01 22.13

Cam 16 2.67 2.20 14.72 16.27

Average 3.88 3.92 22.53 49.77

TABLE 4.2: Difference between Tables 4.1a and 4.1b

different image sequences of the same camera resulted in different intrinsic
matrices. Since the primary process of estimating the internal camera param-
eters relied entirely on the SVD of the fundamental matrix, a small change in
the values of fundamental matrices affected the final results of the estimation.

4.5 Conclusion

The presented algorithm for LF camera calibration is simple to implement
because of the easy availability of the components needed to make it work.
Also, it does not require high skills to calibrate with it, which makes it pos-
sible, for example, to delegate the task of calibrating LF cameras with it to
personnel without additional training. The algorithm we have presented to
compensate for changes in camera parameters allows us to potentially sim-
plify their use in applications where recalibration is not feasible. The findings
related to auto-calibration of LF cameras can be used in the future for the de-
velopment of fully automatic calibration algorithm.

61

Geometrical depth estimation

This chapter covers the main algorithm of the dissertation – the actual depth
estimation from LFs.

5.1 Algorithm outline

In general, algorithms for computing depth maps based on multiple 2D im-
ages have the following structure:

1. Correct the lens distortion and bring all images to the common intrinsic
parameters (i.e. undistort and rectify images)

2. Measure the similarities between images

3. Construct a matching cost based on these similarities

4. Employ the optimization methods on the matching cost

5. Regress the disparity map from the optimized matching cost

6. Apply post-processing operations to the disparity map

7. Convert the post-processed disparity map to depth map

The first step for the presented algorithm is solved using the calibration method,
described in the previous chapters. Further steps with respect to our algo-
rithm will be explained in the following sections step by step.

5.1.1 Image similarity measurements
Estimation of disparity map from 2D images relies on the concept of similar-
ity comparison between these images. By that we want to estimate what is
the degree of coincidence of different image parts between each other. We
will consider various methods for doing so.

Pixel methods

The first group of methods compares just the different pixels in images. Two
most common functions for measuring the similarity of two pixels p1, p2 ∈
Rd are [26]:

62

• L1, or Manhattan distance, defined as

∥p1 − p2∥1 =
d

∑
i=1

|p1i − p2i| (5.1)

• L2, or Euclidean distance, defined as:

∥p1 − p2∥2 =

√√√√ d

∑
i=1

(p1i − p2i)
2 (5.2)

While L1 comparison is faster to estimate, since it involves simple arithmeti-
cal operations, it might not provide enough accuracy due to the limited out-
liers sensitivity compared to L2.

Results of the pixel-based comparison can be either used directly to gen-
erate the matching cost or they can be improved by additional methods. Ex-
amples of them are the Earth Mover Distance [130], which is a measure of
the minimum amount of "work" required to transform one probability dis-
tribution into another, and Kernel Density Estimation [119], which is a non-
parametric method for estimating the probability density function.

Window methods

The second group of image similarity measurement methods based on the
comparison of the pixels within a certain window around each pixel of the
images. Being less computationally efficient than the pixel-based methods,
this group tends to provide higher accuracy results due to the higher number
of comparisons per a certain pixel.

For every 2D pixel in image I with coordinates (u, v) the window D ∈ Z2

defines the set of shifts of the coordinate of this pixel. The common window-
based methods are [54]:

• Sum of absolute differences, defined as:

SAD(I1, I2, D) = ∑
[i,j]∈D

|I1(u, v)− I2(u + i, v + j)| (5.3)

• Sum of squared differences, defined as:

SSD(I1, I2, D) = ∑
[i,j]∈D

(I1(u, v)− I2(u + i, v + j))2 (5.4)

• Normalized cross-correlation, defined as:

NCC(I1, I2, D) =
∑[i,j]∈D(I1(u, v)− Ī1)(I2(u + i, v + j)− Ī2)√

∑[i,j]∈D(I1(u, v)− Ī1)2 ∑[i,j]∈D(I2(u + i, v + j)− Ī2)2
,

(5.5)

5.1. Algorithm outline 63

where Ī1 and Ī2 stand for the average value within the image and the
search window.

All previously listed methods for measuring the similarity between im-
ages lack the important detail, which is crucial for real-world image process-
ing. They are sensitive to the illumination changes between different im-
ages, which means that they can’t provide accurate similarity estimation if
the camera sensors providing images with different brightness and contrast.
Also, these methods tend to fail in case of even slightly different focusing of
the lenses of images capturing devices.

Trying to compensate for these effects, Zabih and Woodfill proposed two
non-parametric (i.e. independent on the actual pixel values) methods for
the image similarity measurement in [178], namely rank and census trans-
form. First method forms a structure, which keeps the sorted radiance val-
ues around the reference pixel in ascending order and assigns the reference
pixel rank based on the corresponding value position in this structure. We
will focus on the second method in more detail, as it forms the main part of
the algorithm used in this dissertation to compute depth maps.

Census transform

Census transform is an image transformation that takes place as a modifica-
tion of the rank transform by binary counting of the radiance value relations
between the reference pixel and the surrounding pixels within a particular
window D. Every pixel of census-transformed image Ic stores the so-called
bit-string of the comparison result. For the source image I it is defined as
follows:

Ic(u, v) =
⊗

[i,j]∈D

ξ(I(u, v), I(u + i, v + j)), (5.6)

where ⊗ stands for bit-wise concatenation. ξ defines the pixels comparison
function, which finds if the value of the pixel within the window is greater
or lower than the reference:

ξ(p1, p2) =

{
0, p1 ⩽ p2

1, p1 > p2
. (5.7)

This transform is somewhat similar to the local binary patterns concept
[47]. The main difference is that the census transform is defined densely, i.e.
for the entire image, while local binary patterns, as their name implies, are
defined sparsely.

The choice of a window for the census transform is another interesting
subject. Since the bit-string is formed as its output, the natural desire would
be to use a number of window elements that is a multiple of or close to a
multiple of 8 (e.g. 8, 16, 32). The reason for this is that the subsequent com-
putation of the coincidence between the two images is done by exclusive
disjunction, which can be effectively implemented on modern hardware by
using a single processor instruction, as will be discussed in the chapter 6.

64

FIGURE 5.1: An example of sparse pattern for census transform
within 7x7 window. Black pixels represent assigned pixels for

census transform

Another motivation for using the sparse pattern is related to the reduction of
the computational time for the census transform. An example of the sparse
census transform pattern is shown on Fig. 5.1.

FIGURE 5.2: Visualization of census transform and Hamming
distance

The interesting feature of the census transform is the ease of implemen-
tation of the comparison of the two census-transformed images. It is based
on estimating the similarity between two strings of bits of the same length,
which is based on counting the number of corresponding non-matching pairs
of bits in this strings. This estimation is called Hamming distance [90]. For
two bit strings from census-transformed images, represented as two vectors

5.1. Algorithm outline 65

xi, xj ∈ Zn
2 , the Hamming distance HD is estimated as a quantity of elements

with different values:

HD(xi, xj) =
n

∑
k=1

xik ⊕ xjk, (5.8)

where ⊕ denotes exclusive disjunction.
Fig. 5.2 visualizes the process of finding the census transform of the image

and the Hamming distance estimation. The next section describes how it is
used to build a matching cost, which will be further utilized to compute the
depth map.

5.1.2 Matching cost construction
A term "matching cost" correspond to the structure, which contains the re-
sults of the similarity comparison between two images 1. A visualization of
the matching cost is shown on Fig. 5.3. It is typically 3D, having the two

FIGURE 5.3: Visualization of the matching cost

dimensions corresponding two the image dimensions (axes y, x on Fig. 5.3),
and the third related to the important concept for 3D reconstruction named
"disparity range" (axis d). This concept is inextricably linked to the defini-
tions of disparity, i.e. the offset of a pixel in one image relative to another, and
the disparity hypothesis, i.e. the assumption of a certain existing value of the
offset. Thus, we can define the disparity range as the range of all possible
disparity hypotheses that will be tested by comparing one image (reference
view) and the pixels of another image with a given offset. From this we can

1In the past, similar structure was called "disparity-space image" [64]; within the scope of
the dissertation we will refer to it as to the "matching cost".

66

define matching cost as a totality of all tested disparity hypotheses, each ele-
ment of which, in the case of two images I1, I2, placed on the same horizontal
axis with aligned camera centers, is defined as:

C(u, v, d) = CMP(I1(u, v), I2(u, v + d)), (5.9)

where CMP() denotes the generic comparison function. Depending on the
type of images and the chosen method, this can be any function from Eq.
5.1-5.5, or Eq. 5.8.

FIGURE 5.4: Visualization of pixel relation in LF

Construction of the matching cost based on the LF images can be derived
from the Eq. 5.9 due to the similarities stated in Section 2.3.3. For that we
will use the previously mentioned two-plane parameterization, discussed in
Section 2.3.2. For the LF, denoted in Eq. 2.19 as L, defining the reference view
as (ŝ, t̂) and a certain disparity hypothesis d, a pixel position, which matches
this hypothesis in another view (u, v) can be determined as:

p̂(u, v, s, t, d) = L(u + (ŝ − s)d, v + (t̂ − t)d, s, t) (5.10)

This relation is illustrated in Fig. 5.4.
Thus, for a particular pair of LF views the similarity can be measured as

CMP(L(u, v, s, t), p̂(u, v, s, t, d)) (5.11)

Speaking of LF, the obvious approach might seem to be the using 4D of
matching cost, since such a structure can store the results of N images com-
parisons in itself, introducing a channel with N − 1 comparisons besides the
discussed three. However, the regression of such a matching cost, especially

5.1. Algorithm outline 67

in the case of large N, seems to be a problem for which, firstly, proportion-
ally more memory costs are assumed to store such a matching cost, and for
which, secondly, proportionally more time should be dedicated to compu-
tations. It is obvious that in the context of real-time embedded processing
requirements such demands are not feasible, which leads to the use of 3D
matching cost.

Thereby, the generic matching cost from the LF is formed as:

C(u, v, d) = ∑
s,t∈L

CMP(L(u, v, s, t), p̂(u, v, s, t, d)) (5.12)

Disparity regression The resulting matching cost can be used for the sub-
sequent disparity map regression, which can be estimated using the winner-
takes-all (WTA) strategy. In this strategy, the disparity value with the lowest
cost is chosen as the winner for each pixel of the disparity map D as:

D(u, v) = arg min
d

C(u, v, d). (5.13)

The WTA strategy is efficient because it only requires finding the mini-
mum cost among the subset of the matching cost. However, a big problem
for real-time estimation is the depth of this matching cost along the d-axis.
The time it takes to regress the disparity map is directly proportional to the
depth of this matching cost. Questioning how this time could be reduced, we
came up with the idea of matching cost bordering, which will be described
later.

Matching cost bordering

There are several ways to reduce the calculation time of the matching cost
estimation and processing. The naïve approach involves reducing the image
size, which leads to a reduction of the number of pixels given for processing.
However, it potentially leads to the problem of decreasing computation accu-
racy. Reducing the number of views greatly affects accuracy in small details
and also poses the additional task of upsampling depth maps later, which in
turn may introduce additional latency.

Another potential method is to use just a part of the provided LF views. It
will reduce the accuracy of the disparity map, again especially on fine details,
but would still keep the disparity of the majority of the scene object in the
values close to the actual disparity. With that in mind, we decided to generate
bordering information of the matching cost by first computing the disparity
map on the full disparity range, but involving only a fraction of LF views,
which further be used as a source of disparity range limitation during the
estimations on the full amount of LF views.

In order to create boundary values for correspondence search in whole
LF space by more computationally-intensive algorithm the initial disparity
map is calculated by using lower computationally-intensive algorithm. Cal-
culations in this step are simplified compared to whole LF space correspon-
dence matching by reducing the number of processed views and preserving

68

changes only in one angular direction. In other words, by bordering we mean
limiting the range of disparity hypotheses along the d-axis.

During the work on this dissertation, we developed a strategy for gen-
erating the initial disparity map used to constrain the matching cost. For
that, we used four LF views, equidistant from each other on the two axes
formed by the reference view positions, named "anchors". In other words,
as anchors we define the views at the borders of the LF, which are lying on
the cross with the reference view in its center. Fig. 5.5 illustrates how the
reference and anchor views are placed in the LF space.

FIGURE 5.5: Reference (red) and anchor (blue) views of the LF

These views are important for the disparity estimation as they cover all
visible scene points, projected to the LF image. It also allows to cover the
maximum possible disparity range, which can be captured by the LF. In the
following, these "anchors" will be denoted as IL, IR, IT, IB as left, right, top
and bottom views respectively. Coordinates of this views w.r.t. to the refer-
ence view (ŝ, t̂) can be set as {(ŝ, 0), (ŝ, tmax), (0, t̂), (smax, t̂)}, where smax and
tmax correspond to horizontal and vertical angular dimensions of the LF.

First, we build four matching costs based on pairs of IL −−IR, IR −−IL,
IT − −IB, IB − −IT. By applying the Eq. 5.13 to the matching costs, a set
of disparity maps V = {DLR, DRL, DTB, DBT} is obtained. These disparity
maps are estimated in the coordinate system of the respective view, and for
their utilization as a source for the bordering information they need to be
re-projected to the coordinate system of the reference view.

For doing so, we can use the relation, described in Eq. 5.10. By chang-
ing the terms, related to the order of the LF view from (ŝ − s), (t̂ − t) to
(s − ŝ), (t − t̂) we can re-project the depth values from the local coordinate
systems of the specific LF view to the coordinate system of the reference view.
It forms a set of re-projected disparity maps VR = {D̂LR, D̂RL, D̂TB, D̂BT},
where every map is stored w.r.t. pixel coordinates in the reference view.

In order to filter away the possible wrongly estimated disparity values
we apply a disparity consistency verification step to every disparity map in
VR. Since disparity maps, which computed from the images placed on one
axis, may contain the information about the scene points, which are not vis-
ible by other pairs from another axis, it makes sense to do the consistency

5.1. Algorithm outline 69

verification pairwise using at first only images which are placed on one axis,
so the potential invisible areas on the other disparity maps won’t be affected
by filtering. For that, for every pair (D̂LR, D̂RL) and (D̂TB, D̂BT) we check if
the per-pixel difference of the pixels as:

|DV1(u, v)− DV2(u, v)| < φ, (5.14)

where DV1 , DV2 are the pair of verified disparity maps, φ stands for confi-
dence threshold. It forms two confidence maps, one per each pair, based
on which certain pixels can be excluded from the process of disparity map
fusion.

CMT(u, v) =

{
1, |DV1(u, v)− DV2(u, v)| < φ,
0, otherwise

(5.15)

Fusion of disparity maps is done as the average of the corresponding pixel
values from VR, respecting their validity in the corresponding confidence
maps, resulting in the fused disparity map DF.

The disparity map thus obtained suffers from the following disadvan-
tages:

• Due to the limited number of images used for the estimation, there will
be noise on the result, which may then be directly transmitted to the
final disparity map, and thus negatively affect its accuracy.

• There will be empty areas on the image, the presence of which nega-
tively affects the execution time, as in areas without certain values it is
impossible to form any hypotheses about their sub-disparity range.

In the earlier publications, we used a single- or double-pass median filter on
DF to partially compensate for the first effect. Over time, we have formed
a new strategy related to the consequent use of per-layer disparity filtering
and holes filling, which will be described below.

Per-layer disparity filtering This filter works as follows. For every avail-
able disparity hypothesis d ∈ T the new image, containing only pixels with
disparity value d is created:

DCd(u, v) =

{
DC(u, v), DC(u, v) = d
0, DC(u, v) ̸= d

. (5.16)

This image is a subject for the morphological closing operation [44], which
stands for erosion, followed by dilation. Filtered disparity maps are com-
bined back with preserving the presence of already associated pixels by pro-
cessing the decomposed disparity maps from far to near. The resulting set of
images is combined to the disparity map, used for the further borders gener-
ation step.

70

(a) (b)

(c) (d)

FIGURE 5.6: Initial disparity post-processing steps: (a) initial
disparity map, (b) per-layer disparity filtering, (c) holes filling,

(c) difference between (a) and (c)

Holes filling After consistency check, merging and following filtering the
disparity map has considerable amount of pixels without associated dispar-
ity value. In order to reduce the number of such pixels we use a holes fill-
ing technique based on the neighborhood pixel information and color con-
sistency. For a missing disparity pixel the filling procedure is based on the
median value of nearby values within a window of a certain size.

For the pixels, placed on the edges, such filling can lead to associating
false values. To prevent it we use values from a corresponding color LF view.
Color pixels in the window are checked for their Euclidean distance from the
reference pixel being below the threshold, based on which they are involved
in the median value estimation.

This algorithm is performed iteratively, and the stopping criteria of this
method are defined as the number of iterations and the number of non-empty
pixels. To prevent jamming of the method on the same pixels after the third
iteration the window size is increased logarithmically and the threshold is
relaxed accordingly. Fig. 5.6 demonstrates the application of these steps to
the initial disparity map. Using these two algorithms positively affected the
edges [142].

Bordering information generation Calculation of disparity maps based on
two LF views allows to sufficiently determine if not close to exact values for
subsequent calculation of disparity maps from many LF views, then at least
reference values, relative to which sub-disparity ranges can be constructed.
The initial disparity map serves for creation of computational limitation for
disparity hypothesis range. It fulfills two purposes. First, the generation of

5.1. Algorithm outline 71

FIGURE 5.7: Visualization of the local matching cost estimation
problem: uncertainty in the minimal value

matching cost from many LF views is a time-consuming task. Limitation
of the disparity search range by the bordering information reduces the run-
ning time of the matching procedure. Second, due to the ambiguities from
the matching cost estimation the wrong estimations and noise pixels can be
present in final disparity map. Bordering information prevents appearance
of these issues.

DF with the applied per-layer disparity filtering and holes filling is used
for generation of boundaries for the further estimation. These boundaries
will limit matching cost generation in the whole LF space. Two structures
named high and low borders (DH and DL respectively) are generated by us-
ing the border threshold λ in such a manner:

DH(u, v) = DF(u, v) + λ; DL(u, v) = DF(u, v)− λ. (5.17)

The values, which lie outside of predefined disparity range (DH > dmax,
DL < dmin) are saturated accordingly. Invalid values from DC are marked in
the corresponding borders for re-computation on the whole disparity range
T.

In the end, to calculate the final matching cost using all the images in
LF these boundaries determine for which specific disparity hypotheses this
matching cost will be calculated. However, the accuracy of a disparity map
regression derived only from the matching cost compiled in this way leaves
much to be desired, since the obtained result may still not be smooth enough
and have some noise in it. To prevent this there are methods for optimizing
the matching cost, which will be discussed in the following section.

5.1.3 Optimization methods
The need for matching cost optimization methods stems from the problem
of having several local minima in different parts of the matching cost. In

72

FIGURE 5.8: Examples of the disparity maps, regressed from
individual SGM paths

computations based on so-called local methods, i.e. the methods we dis-
cussed earlier, which are based only on the similarity of pixel-by-pixel or
window-by-window values, the acquired values usually may be insufficient
for a correct decision on a particular disparity value based on the Eq. 5.13. It
is demonstrated on Fig. 5.7.

A potential method for getting rid of these kinds of problems is to use
so-called global optimization techniques. Typically, such methods involve
optimizing an energy function, when all pixels are taken in the account, in
the way that balances the trade-off between the data term, which shows how
well the estimated disparity suits the observed data, and smoothness term,
which verifies how smooth and consistent the disparity map is. Popular ex-
amples of such algorithms are the graph cuts, proposed by Boykov et al. in
[21], and belief propagation from Sun et al. [144].

While the disparity maps obtained by such methods are quite accurate,
the big problem of these methods is the computation time. Even on the mod-
ern hardware, the computations of maps with these methods take such time
intervals that do not allow such algorithms to be classified as real-time. How-
ever, there is a technique that combines the merits of both local and global
groups of the methods, being relatively fast, but also quite accurate, since it
does not perform matching cost optimization on the entire image space, but
on relatively small paths around each pixel. This method is named SGM and
will be explained below.

5.1. Algorithm outline 73

FIGURE 5.9: Disparity map, obtained by summarizing the
matching costs among different paths, based on Fig. 5.8

Semi-Global Matching

The SGM was proposed by Hirschmüller in [52] as an attempt to replace the
bulky global cost functions for the stereo reconstruction task. This method
can be considered as the optimal one between local-only matching cost col-
lection and the global cost optimization, which can provide the most accurate
result, but with significant computational load.

The idea behind SGM is to use the local matching with partially (semi-)
global optimization of the cost matching. Having the collected matching cost,
this algorithm performs cost aggregation on different traversing directions in
the matching cost space using a cost aggregation function. SGM considers
multiple paths in different directions, such as left-to-right, right-to-left, top-
to-bottom, bottom-to-top, and diagonal directions. This algorithm uses two
types of penalties during the aggregation: P1 for the neighbor disparities and
P2 for the "far" disparities.

The path-wise aggregation for each pixel p = (u, v) and depth hypothesis
d in a predefined range, after traversing in direction r, formulated as a 2D
vector with the coordinate of a pixel traversing r = {∆u, ∆v}, aggregated cost
Lr is:

Lr(p, d) = C(p, d)+
min (Lr(p − r, d),
Lr(p − r, d − 1) + P1,
Lr(p − r, d + 1) + P1,
min

t
Lr(p − r, t) + P2),

(5.18)

where P1 and P2 are penalty parameters, P2 ⩾ P1. Fig. 5.8 shows the result
of disparity regression from individual traversing paths with visible visual
artifacts.

Traversed costs are then summarized through all traversing directions:

Cs(p, d) = ∑
r

Lr(p, d). (5.19)

74

FIGURE 5.10: Visualization of the fragment of matching cost
after applying SGM on it.

Fig. 5.9 shows how the result of the disparity regression of Cs may look like.
These equations are used on the previously generated matching cost by

Eq. 5.9 before applying Eq. 5.13 to it.
Fig. 5.10 demonstrates, how the SGM solves the global minima search

problem.
In our implementation, SGM is performed on the full disparity scale for

the case of initial disparity map estimation, and only on the disparity values,
which are in the predefined bounded range d ∈ [DL(p), DH(p)], for the final
disparity map, so values outside the boundaries do not affect the aggregation
process.

Accuracy of the disparity map after SGM is highly improved. However,
it is possible to further improve the accuracy of the computations by refin-
ing the disparity with additional sub-pixel-level estimates, which will be ex-
plained later.

5.1.4 Sub-pixel refinement
In general, matching cost stores the data for each particular disparity hypoth-
esis. Applying the straightforward approach, described by Eq.5.13, we can
generate a disparity map in integer values of displacements. Sub-pixel esti-
mates refer to computations that are performed within a range of less than
one pixel. These calculations are based on the corresponding matching cost
data, so that a more accurate and complete matching cost allows for more
precise estimations.

Classically, for sub-pixel interpolation of the disparity d value at a point
(u, v), three values of matching cost C(u, v, d − 1), C(u, v, d), C(u, v, d + 1)
are used. One of the most common methods for sub-pixel disparity estima-
tions is parabolic interpolation [134]. Geometrically, it can be visualized as a
parabola, which goes through the three points on a coordinate system, where
the abscissa axis denoted the values of disparity, and corresponding values

5.1. Algorithm outline 75

of matching cost are defined by their coordinate on the ordinate axis. The
minimum value of the parabola fitted to these three points is the sub-pixel
value for the given pixel. This principle is visualized on Fig. 5.11.

FIGURE 5.11: Visualization of the parabolic interpolation

For each pixel (u, v) in interpolated disparity map DN procedure for cal-
culation of the interpolated value based on previously regressed from Cs dis-
parity map D can be expressed as follows:

DN(u, v) = D(u, v) +
CS(u, v, d − 1)− CS(u, v, d + 1)

2 (2 CS(u, v, d)− CS(u, v, d − 1)− CS(u, v, d + 1))
(5.20)

The disadvantage of parabola fitting is the uneven distribution of the re-
sulting sub-pixel results. It potentially can lead to higher level of errors on
the sub-pixel resolution.

To avoid this, Haller and Nedevschi proposed Symmetric-V interpolation
scheme in [42]. For every pixel (u, v) the values of interpolated image DN are
computed as:

DN(u, v) = D(u, v)++
(

0.5 − 0.25
(
(M3−M1)2

(M2−M1)2 +
(M3−M1)
(M2−M1)

))
; M2 > M3

−
(

0.5 − 0.25
(
(M2−M1)2

(M3−M1)2 +
(M2−M1)
(M3−M1)

))
; M2 ⩽ M3

M1 = CS(u, v, d), M2 = CS(u, v, d − 1), M3 = CS(u, v, d + 1)

(5.21)

In the case of the algorithm, presented in this dissertation, due to the
bordered matching cost, interpolation can only be performed on pixels, in
which disparity value D(u, v) ∈ [DL(u, v) + 1, DH(u, v)− 1] and |[DL(u, v) +
1, DH(u, v)− 1]| ⩾ 3. If the disparity value does not satisfy these conditions,

76

then DN(u, v) = D(u, v). Potentially, this could also lead to some loss of ac-
curacy; however, compared to the merits obtained using matching cost bor-
dering, we believe that these errors can be neglected.

5.1.5 Disparity-to-depth conversion
Disparity-to-depth conversion is performed by a classical equation, based on
the focal length f and the baseline b between two cameras on one axis at the
maximum distance. The principles of LF parameterization allows to do it in
the way:

DZ(u, v) =
f b

DI(u, v)
. (5.22)

The obtained result can be further improved by performing computations
when displacing a reference view, as will be discussed later.

5.1.6 Point Cloud extension

Choosing another reference view for further computations aims to make cal-
culations with respect to those areas of the LF that were not visible from the
central reference view.

The disparity map, described in the previous section, is further used as
initialization for the point cloud, which will be optimized using all LF views.
For the point cloud generation the disparity map DI needs to be converted
to the depth map, based on the common focal length of LF views f and the
distance between two adjacent views on one axis b, which remains same for
all view pairs based on the LF parameterization, by applying the Eq. 5.22.

Depth values from DZ are used for getting the 3D points P as:

P = [XYZ]; Z = DZ(u, v)

X = Z
v
f

; Y = Z
u
f

(5.23)

To include the information for scene points, which are not visible in the ref-
erence LF view, we define the reference views in the corners of the LF. The
initial disparity map, which was subjected for the disparity bordering ranges
estimation, is reprojected to the new reference view coordinates by using Eq.
5.10. The reprojected image is then used for the generation of bordering in-
formation for the further estimation of final disparity map for the new refer-
ence view based on the cross-lying views, repeating the previously discussed
steps.

The point clouds are obtained by applying Eq. 5.22 and 5.23 and trans-
posed to the viewpoint of the original reference view. For multiple point
cloud registration we use classical iterative closest points (ICP) approach [9].
While ICP defines the needed transformation for all points, we remove the
already preserved ones from the new point clouds by their projection to the

5.1. Algorithm outline 77

original reference view plane and deleting the matching points. It allows to
construct the joined point cloud by just combining the point sets.

For optimization purposes the information about point origin is stored
alongside with the point. Every point cloud is separately projected to various
LF viewpoints. By that, we are trying to find value of Z, which minimizes the
error between the projected and presented pixel in LF views:

|s|

∑
s=1

∥ p̂(u, v, s, t̂, d)− p(u, v, s, t̂, d)∥+
|t|

∑
t=1

∥ p̂(u, v, ŝ, t, d)− p(u, v, ŝ, t, d)∥,

(5.24)
where p̂ is the projected pixel, estimated by the principles from Eq. 5.23.

Based on the point origin it is optimized only on the frames, where the point
is visible. For simplification we define the possible configuration of view-
points based on the cross-lying LF views.

5.1.7 Post-processing techniques

One of the most popular technique for the disparity map filtering is applying
the median filter on them. It is an edge-preserving technique, meaning that
it keeps original edges, which is especially important for the disparity maps.
This method replaces the pixel values of the disparity map by the median
value of pixels around it within a certain window, typically 3×3 pixels. It
helps to remove the impulse noise from the disparity map.

Output on the non-linear optimization step contains some specific noise,
which requires additional post-processing efforts. For reducing such noise
we found that combined bilateral filter, proposed by Wasenmüller et al. in
[167], suits best. It composes the classical bilateral filter with joint bilateral
filter, published in [79].

78

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 5.12: Center images of LFs from [55]: first row – "strat-
ified" scenes, middle row – "testing" scenes, last row – "train-
ing" scenes; (a) "backgammon", (b) "dots", (c) "pyramids", (d)
"stripes", (e) "bedroom", (f) "bicycle", (g) "herbs", (h) "origami",

(i) "boxes", (j) "cotton", (k) "dino", (l) "sideboard"

5.2 Evaluation

This quantitative evaluation is done based on three versions of the algorithm
developed at different times within the scope of this dissertation, namely BSL
[6], FSL [8] and PSL [5]. The role and purpose of each of the algorithms can
be described as follows

• BSL aims to be the first algorithm to solve the problem of rapid dis-
parity estimation from LFs, on which the basic ideas for subsequent
real-time optimization can be tested.

• FSL was the forerunner of real-time algorithm for real-world embedded
system described in the Chapter 6, in which shortcomings of the previ-
ous method were taken into account and experiments for optimizations
related to fast data processing were carefully performed.

• PSL, despite being a slower version, tested what algorithmic improve-
ments could be made in the future with access to more productive em-
bedded hardware, while remaining a minimalist algorithm in terms of
number of operations performed.

The comparison of these specific features of these algorithms is presented in
Table 5.1.

5.2. Evaluation 79

Distinctive features BSL [6] FSL [8] PSL [5]
Window for census transform Sparse, 7×7 Sparse, 7×7 Dense, 7×9
SGM traversing directions 16 16 8
SGM on initial disparity map ✓ ✓ ✓

SGM on final disparity map ✗ ✓ ✓

Initial disparity map re-projection ✓ ✗ ✓

Per-layer disparity filtering ✗ ✗ ✓

Holes filling ✗ ✗ ✓

Interpolation Parabolic Parabolic Symmetric-V
Interpolation on initial disparity map ✓ ✗ ✗

Point cloud processing ✗ ✗ ✓

Combined bilateral filtering ✗ ✗ ✓

Confidence threshold φ (Eq. 5.14) 3 3 2
Border threshold λ (Eq. 5.17) 2 2 1

TABLE 5.1: Comparison of the configurations of different algo-
rithms used in the dissertation

5.2.1 Dataset

We use the LF images, provided by Honauer et al. [55] through 4D LF Bench-
mark. 12 synthetic scenes are provided for the main evaluation; each scene is
represented by the 9×9 LF, composed from 8-bit RGB images with resolution
of 512×512 pixels. For every image a 512×512 disparity map with sub-pixel
disparity resolution is provided.

Scenes are grouped in three categories: "training" for evaluation and pa-
rameters adjustment, "stratified" with special challenging cases, and "test"
for "blind" verification. Camera settings and disparity ranges provided for
every LF, high resolution disparity and depth maps are provided only for
"training" and "stratified" datasets. In this section we present image result
comparison for "dino" scene; results for other scenes can be found at [1] un-
der corresponding acronyms.

5.2.2 Metrics

Several different metrics for the quality of the result of the different algo-
rithms are provided within the benchmark.

The classical measurement for finding how far the algorithm output d
from the ground truth data gt is MSE, which for the certain pixel mask m,
computed w.r.t. reference view, can be estimated as [55]:

MSE(d, gt)m = ∑
(u,v)∈m

(d(u, v)− gt(u, v))2 100
|m| (5.25)

Another metric presented in the benchmark named BadPix and stands for the
percentage of the properly estimated pixels, for which the difference between
them and the corresponding ground truth is below a certain threshold T (here

80

T = 0.07):

BadPix(d, gt, T)m =
{(u, v) ∈ m : ||d(u, v)− gt(u, v)| > T|}

|m| (5.26)

The last quality metric Q25 is estimated as the maximum absolute disparity
error of the best 25% of pixels.

The classic metric for not the quality, but the performance of an algorithm
is the basic measurement of the execution time. On top of that, for purposes
of interpreting our result in terms of processing time-driven contributions,
in part related to matching cost bordering, we propose a metric M, which
stands for percentage of correctly computed pixels per second, formulated
as

M =
100% − BadPix

Runtime

(%
sec.

)
. (5.27)

The benchmark provides additional photo-consistency metrics, e.g. surface
smoothness; these metrics are not presented within the dissertation and are
available on the benchmark website [1].

5.2.3 Parameters

The parameters of all the algorithms were optimized for the best possible
result on BadPix metric.

We were trying different comparison functions for the matching cost esti-
mation and empirically came up to the following configuration. For the ini-
tial disparity map estimation we were using the matching cost obtained by
the Hamming distance estimation with Eq 5.8 between census-transformed
images. Estimation of final disparity map is done by L2-based matching cost
using Eq. 5.2.

For the census transform different patterns of the aggregation window
have been evaluated. For the experiments in BSL and FSL we use 7×7 sparse
pattern, shown on Fig. 5.1. Another options for sparse Census window are
listed in [94].

Experiments on 7×9 dense census pattern (as the closest to 64-bit word)
were conducted in PSL. While it covers bigger image area and potentially
leads to the higher accuracy, necessity of such a pattern in real-time configu-
ration is questionable due to the potential overhead created by estimation of
transform within relatively big window.

Penalty parameters for the SGM P1 and P2 were set to 21 and 45 for BSL
and FSL configuration, and adjusted to 20 and 40 respectively for PSL for
the final disparity map estimation. Due to the different matching cost values
resolution in case of census-based matching cost, we set these parameters to
30 and 150 for the initial disparity map estimation on PSL and to 17 and 35 on
FSL. Number of disparities hypothesis was adjusted accordingly to the data,
provided in configuration files for each of the scene.

In PSL, holes filling algorithm uses 25 iterations as the stopping criteria
of the optimization. Initial window size is set to 5 and initial threshold for

5.2. Evaluation 81

BadPix, %

Median Average

EPI1 [70] 22.89 24.32
EPI2 [164] 22.94 22.65
EPINET [138] 3.38 4.93
FASTLFNET [62] 8.24 9.07
LF [66] 16.15 16.19
LFOCC [160] 18.45 17.58
OFSY [143] 11.33 12.04
RM3DE [108] 7.99 10.22
RPRF [61] 9.89 10.02
SCGC [139] 10.21 14.3
SPO [183] 8.78 8.47
BSL [6] 13.41 12.74
FSL [8] 11.92 12.95
PSL [5] 11.61 12.79

TABLE 5.2: Evaluation of different algorithms with
BadPix(0.07) metric on 4D LF Benchmark [55]. Italics in-

dicate articles written in scope of this dissertation.

the distance between color values of the pixels is set to 5. Standard deviation
values of 0.5 and 2.5 were set for combined bilateral filter [167].

5.2.4 Results

Tables 5.2-5.6 present the evaluation of the subset of the algorithms on the
aforementioned metrics. We provide a comparison of the proposed algo-
rithms with the state-of-the-art methods, presented in Section 3.2: EPI1 [70],
EPI2 [164], EPINET [138], FASTLFNET [62], LF [66], LFOCC [160], OFSY
[143], RM3DE [108], RPRF [61], SCGC [139], SPO [183]. Additionally, Fig.
5.13 visualizes the differences in values of metrics for BSL, FSL and PSL vari-
ants.

The results of our developed algorithms at the time of publication were
in the middle position relative to the other algorithms on the BadPix metric,
which was our main metric for evaluating algorithm quality, as it is the ba-
sis of the proposed M-metric. A similar conclusion can be drawn from an
analysis of the Q25 results in the Table 5.4.

While the results does not change drastically between proposed algo-
rithms on BadPix, the higher change is noticeable while comparing them on
MSE (Table 5.3). All the additional functionality of FSL allows to outperform
most of the classical algorithms on this metric, losing out to deep learning
methods. However, the advantage of our approaches is that there is no need

82

MSE

Median Average

EPI1 [70] 3.93 5.98
EPI2 [164] 5.72 8.24
EPINET [138] 1.21 2.48
FASTLFNET [62] 1.61 2.46
LF [66] 7.96 9.13
LFOCC [160] 2.80 6.69
OFSY [143] 5.43 7.03
RM3DE [108] 1.46 3.92
RPRF [61] 3.76 5.68
SCGC [139] 3.94 6.58
SPO [183] 3.31 3.97
BSL [6] 5.43 7.28
FSL [8] 3.97 6.64
PSL [5] 2.78 5.14

TABLE 5.3: Evaluation of different algorithms with MSE metric
on 4D LF Benchmark [55]. Italics indicate articles written in

scope of this dissertation.

Q25

Median Average

EPI1 [70] 1.00 1.23
EPI2 [164] 0.71 0.81
EPINET [138] 0.34 0.34
FASTLFNET [62] 0.57 0.58
LF [66] 0.58 0.61
LFOCC [160] 1.70 1.60
OFSY [143] 0.32 0.37
RM3DE [108] 0.73 0.72
RPRF [61] 0.66 0.64
SCGC [139] 1.04 1.09
SPO [183] 0.60 0.71
BSL [6] 0.92 1.01
FSL [8] 0.85 0.95
PSL [5] 0.93 0.89

TABLE 5.4: Evaluation of different algorithms with Q25 metric
on 4D LF Benchmark [55]. Italics indicate articles written in

scope of this dissertation.

5.2. Evaluation 83

Runtime, s.

Median Average

EPI1 [70] 85.045 88.194
EPI2 [164] 8.789 8.406
EPINET [138] 1.972 1.976
FASTLFNET [62] 0.624 0.625
LF [66] 994.311 1009.756
LFOCC [160] 10614.535 10508.469
OFSY [143] 198.299 200.282
RM3DE [108] 45.149 47.434
RPRF [61] 35.456 34.529
SCGC [139] 2052.190 2056.344
SPO [183] 2111.50 2115.417
BSL [6] 5.149 5.962
FSL [8] 1.766 1.716
PSL [5] 28.811 27.939

TABLE 5.5: Evaluation of different algorithms on their running
time on 4D LF Benchmark [55]. Italics indicate articles written

in scope of this dissertation.

M, %
s.

Median Average

EPI1 [70] 0.907 0.858
EPI2 [164] 8.768 9.202
EPINET [138] 48.996 48.112
FASTLFNET [62] 147.051 145.488
LF [66] 0.084 0.083
LFOCC [160] 0.008 0.008
OFSY [143] 0.447 0.439
RM3DE [108] 2.038 1.893
RPRF [61] 2.541 2.606
SCGC [139] 0.044 0.042
SPO [183] 0.043 0.043
BSL [6] 16.817 14.636
FSL [8] 49.875 50.728
PSL [5] 3.068 3.121

TABLE 5.6: Evaluation of different algorithms by the proposed
M-metric on 4D LF Benchmark [55]. Italics indicate articles

written in scope of this dissertation.

84

FIGURE 5.13: Comparison of the three algorithms, developed
in scope of this dissertation: (BSL [6], FSL [8], PSL [5]) on the

median of three metrics (lower is better), generated by [1]

to provide training data. Such approaches can be easily extended to the dif-
ferent configurations of cameras and to be used on various scenes as well,
providing not perfect, but reasonable result.

All these algorithms at the time of the publication were implemented on
CPU and were forced to be run in the single-threaded mode to better under-
stand their performance in non-parallel configuration. As per analysis of the
running time in Table 5.5 we can state that running of BSL and especially
FSL configurations is better than in most of the state-of-the-art algorithms.
The algorithms runtime was measured on central processing unit (CPU) In-
tel Xeon E3-1245 V2 @ 3.40 GHz. Implementation was done in C/C++ with
the help of OpenCV and Google Ceres libraries.

5.2.5 Discussion

Qualitative results

Big effect on the quality in our opinion was achieved by applying SGM not
only to the values of initial, but also to the final disparity map. Practically
in can be visible by checking the transition between BSL and FSL on the bor-
ders of the object, sharpness of which has increased by changing the SGM
application strategy.

However, in the images from both algorithms a so-called "thickening ef-
fect" was observed on the object boundaries, which was due to the window-
ing principle of matching cost construction. By using the per-layer disparity
filtering with subsequent holes filling this problem was mostly eliminated. It
makes the reconstruction look sharper and closer to the color projection. It
can be seen on Fig. 5.15c, that FSL provides different reconstruction on edges,
what usually was a spot of ambiguities for the matching algorithm. It hap-
pens because pixels around edges were considered as a part of a neighbor-
hood disparity layer due to nature of the matching algorithm, which consid-
ers the interpolated color values of pixels among LF views. However, some
wrong pixels can still "survive" the filtering, as it can be seen on the left side

5.2. Evaluation 85

Ground Truth EPI1 [70] EPI2 [164]

EPINET [138] FASLLFNET [62] LF [66]

LFOCC [160] OFSY [143] RM3DE [108]

RPRF [61] SCGC [139] SPO [183]

BSL [6] FSL [8] PSL [5]

FIGURE 5.14: Qualitative result for "dino" scene from 4D LF
Benchmark [55]

86

(a) (b) (c)

FIGURE 5.15: Effect of the per-layer disparity filtering and holes
filling on PSL [5] (a) disparity map from FSL [8], (b) disparity
map from PSL [5], (c) difference between two disparity maps

of the statue’s head on Fig. 5.15b. Potentially it can be fixed by repeating the
per-layer disparity filtering and holes filling several times.

Strong "step" effect on the disparities from BSL and FSL versions of the
algorithm is visually noticeable. This aspect was improved in PSL, as can be
seen on Fig. 5.15a and Fig. 5.15b. This happens partially due to a change in
the subpixel refinement algorithm from the parabola fitting to Symmetric-V.
However, most of the smoothness is brought by point cloud refinement step.
It is not limited to the discrete matching cost values, unlike the interpola-
tion step. In total this corrects the step effect on disparity values, which was
strongly observable in two previous versions of the algorithm.

Running time

Unfortunately, the authors of various algorithms do not always indicate what
time has been measured, in particular, what parts of pre- and post-processing
data for this algorithm have been included in the reported running time. The
methodology by which these measurements were made is also occasionally
wrong, for example in the case of using the compute unified device architec-
ture (CUDA) framework with other neural network frameworks an impor-
tant point for measuring running time is to call the synchronization function,
which is not always done, according to our analysis of open source code, and
can also lead to incorrect (mostly underestimated) measurements of running
time.

The deep learning-based approaches EPINET [138] and FASTLFNET [62]
can be considered as top-of-the-line, providing good results in terms of depth
quality together with the satisfying running time, which is especially notice-
able by the results of proposed M-metric. However, their algorithm is per-
formed on the high-end GPU. The amount of required computing power and
memory consumption for such algorithms exceeds the capabilities of current
embedded hardware solutions by an order of magnitude. Such heavy com-
putational resources are not required by our approach, which utilizes a CPU
without specifically employed thread parallelism.

5.2. Evaluation 87

(a) (b)

FIGURE 5.16: Effect of disparity boundaries on the point cloud:
(a) point cloud without borders, (b) point cloud with borders

Matching cost bordering effect

Borders from the initial disparity map help to reduce the number of sampled
hypotheses by further processing in a range from 50% (real-world scenes) up
to 97% (synthetic scenes). Runtime of the correspondence search in the LF
space is affected proportionally, since usage of borders significantly reduces
the number of sampled hypotheses.

Due to the change of domain from disparity maps to point cloud in PSL
a new advantage of using the boundaries was observed. Previously only the
running time-related changes were noted, however it turns out that image
initialization also prevents the creation of noise pixels on the areas of big
disparity values transition, like it can be observed on Fig. 5.16.

In some scenes, SGM results were eliminated for a large number of pixels,
and line fitting without bordering information for these pixels affected the
runtime (scenes "bicycle", "herbs", "boxes" and "sideboard" from 4D light field
benchmark (4DLFB)). This occurs because of the amount of fine structures
in the scene. Application of a smaller window for census transform seems
to be a solution in terms of accuracy of the borders for the fine structures.
However, it reduces the quality of the whole image, hence we decided not to
use it.

Although bordering of disparity values with the initial map helps to re-
duce disparity mismatching noise, some of the wrongly calculated pixels still
can "survive" this filtering, which is visible in images on Fig. 5.17. These mis-
takes appear either in the areas marked previously as non-consistent or on
the object edges.

FSL configuration fails with disparity estimation on image boundaries for
scenes with a relatively large distance between LF views. The explanation of
this problem is related to our selection of the central LF image as a reference
view. In this case search for a matching pixel from image boundary fails since
there is no match in most of the images and therefore our algorithm can not
aggregate enough depth score for the correct value.

88

BadPix MSE Q25

With 9.89 3.57 0.74
Without 10.23 5.72 0.72

TABLE 5.7: Average results on "training" subset of 4DLFB [1] for
the configuration with and without per-layer disparity filtering

and holes filling

A solution for this problem was proposed by Kim et al. [75], where the
position of reference images changes over time and cost aggregation is per-
formed from the new position. It was further incorporated in PSL configu-
ration as generation of point cloud from the difference reference view with
further point clouds fusion.

Effect of filtering techniques

Table 5.7 shows the quantitative difference of algorithm configurations with
and without per-layer disparity filtering and holes filling, performed on a
subset of images from the benchmark.

Additionally, it can be observed that filtering techniques not only affect
the boundaries of the images, but also improve the accuracy of the algorithm
on MSE metric.

Point cloud refinement and nonlinear optimization

Non-linear optimization step requires a good initialization. Also, such opti-
mization on a full disparity range can unfortunately create additional false
estimations. For that, the searching range is limited to 1.5 pixels around the
initial value from final disparity map.

One way of improvement of this step, as well as general generation of
bordering information, is related to utilization of matching cost confidence
measurements. Different thresholds can be used based on the accuracy for
the specific pixel. An overview of methods for that is presented in [59].

Unlike previous approaches, running time of PSL was significantly higher.
Main reason for that is the non-linear optimization. It can be reduced by us-
ing the architectures which supports parallel estimations, like GPU, for such
optimizations.

Matching cost selection for real-world applications

The main aspects in the problem of choosing matching cost for real systems
is the need to strike a balance between the quality of the result, the compu-
tational simplicity of the computation, and the resource constraints of the
system. In practical applications, the choice of matching cost is crucial as it
directly affects the accuracy of the results.

5.3. Conclusion 89

We experimented with different matching cost configurations to calculate
initial and final disparity maps. In the case of calculating the initial dispar-
ity map for both synthetic and real images, the obvious choice based on the
results of these experiments for us was the matching cost based on census-
transformed images. This decision is based on the quality of the initial map
generation result. In the presence of a small number of images for the match-
ing cost set, the data collected with L2 are less informative in comparison
to the census-based matching cost. More specifically, in the case of L2, the
potentially arising ambiguity in the accuracy of determining neighboring or
noisy regions is intractable. In the case of census transform this is compen-
sated by the presence of a window for the actual collection of the data fro this
transform.

The choice of matching function for the case of estimating the final dis-
parity map from all LF views is less obvious. Data from multiple LF views
is usually enough to dial in a sufficiently representative matching cost and
to smooth out all the problems associated with ambiguity in the calculations.
However, in the case of real-world capturings, the decisive factor is the resis-
tance to noise in the images, which in one way or another will be present in
them. In the case of census transform as a measure of comparison, in addi-
tion to its window-based essence, a crucial aspect is its nonparametric basis,
since it is not the pixels themselves that are compared, but the ratios of these
pixels. Thus the presence of noise in the images is mitigated by this.

Fig. 5.17 shows the comparison of the result of L2 and Hamming-based
matching cost on the real-world images. First three scenes are provided by
EPFL dataset [127], edited and uploaded by C.-T. Huang for the publication
[61]. LFs consist of 3×3 RGB image with resolution 541×376. The rest of
the images are generated using 3D LFs provided by Middlebury 2006 dataset
[54, 133]. Each scene is represented by 7 images in a row with a large baseline
between them. Original resolution is 1240-1396×1110 pixels, we used half-
sized images for our experiments.

5.3 Conclusion

In this chapter the development of the efficient LF depth estimation algo-
rithm was explained. We show the main techniques to reduce the computa-
tional load to compute the depth map with minimal loss of quality. We ex-
amined different methods of matching cost aggregation from the perspective
of their applicability not only in synthetic, but also in real-world scenarios.
The configuration of the method FSL [8] was in the end optimized and used
on the real-world system, published in [7] and discussed in Chapter 6.

90

Original RGB Census
L2 Hamming

FIGURE 5.17: Qualitative results for real-world scenes with dif-
ferent comparison function for matching cost construction: first
three rows – EPFL dataset from [127], the rest – Middlebury

dataset [54, 133].

91

Implementation and applications

The algorithms described in chapters 4 and 5 form the basis for the practical
implementation of an entire system for calculating depth maps in real time.
This chapter will describe how this system was brought to life, what changes
need to be made to the algorithms to run them on the embedded hardware,
and what optimizations are key to their performance.

Fig. 6.1 shows the outline of the proposed depth estimation system al-
gorithm. The main parts of it were discussed in Chapters 4 ("Camera cali-
bration", "Camera refinement") and 5 ("Depth Estimation"). We will explain,
how the LF capturing device was design and exploited, and how the compu-
tational platform is functioning.

6.1 Light Field Camera

The LF capturing device is built on the base of Ximea CB200CG-CM RGB
camera, shown on Fig. 2.17. The camera by itself is based on CMOSIS
CMV20000 image sensor with 20 megapixel resolution. A 4×4 single lenses
array is placed in the front of the image sensor. From 5120×3840 pixels of
original images 16 images of resolution 960×960 can be extracted by crop-
ping. Taking into account the circular region formed by the lens within the
image, the maximum effective resolution of a LF view was determined as
704×704 pixels. The baseline between two lenses is equal to 0,006 m. We de-
fine the working distance of this LF camera as 0,5 – 2,0 m as the compromise
of the acceptable number of verified disparity hypotheses for the real-time
processing (lower bound) and the distance, on which physical error of esti-
mated depth is still acceptable (upper bound).

As stated in Section 2.3.5, such a camera assembly approach is easier
to implement and more robust to manufacture compared to micro-lens ap-
proaches. Our camera setup is somewhat similar to the multi-camera LF
capturing devices presented in [131]; however, since all of the LF views are
captured by a single image sensor, it can be considered as more resilient tech-
nology, because cameras synchronization and compensation of single sensors
deviations do not need to be performed. The connection of the camera to the
computational platform is provided via PCIe interface.

On the driver level the camera provides access to different parameters,
which can be adjusted using the camera’s API during it’s operation. The first
important parameter is camera exposure time, also known as shutter speed,

92

FIGURE 6.1: Overview of the system implementation

which is the length of time that the camera’s shutter remains open, allowing
light to enter the camera and reach the image sensor, measured usually in
fractions of seconds. A longer exposure time allows more light to enter the
camera, resulting in a brighter image. This can be useful in low-light situa-
tions or when trying to capture motion blur in a moving subject. However,
it can also result in blur from camera shake or subject movement, and ap-
parently affect the running time of the whole system, if this time is too big.
Conversely, a shorter exposure time allows less light to enter the camera, re-
sulting in a darker image. This may be desirable when shooting in bright
sunlight or trying to freeze motion in a fast-moving subject.

Images obtained by the camera are requiring some pre-processing for
their usage. Some of them are needed for the basic conversion of the raw
image to perceptible one, while others provide suitability of the system to
real-world work conditions. These methods are discussed in the next sec-
tion. The example of the post-processed frames together with the principle
of view cropping are visualized on Fig. 6.2.

6.1.1 Images pre-processing

Debayering

A color filter array, which captures the specific light waves, was patented by
Bayer [11] and now is widely used for the image sensors in modern cam-
eras. The Bayer pattern consists of a grid of color filters that are arranged

6.1. Light Field Camera 93

(a)

(b)

FIGURE 6.2: Pre-processed frame (a) and the principles of views
cropping (b)

94

in a specific pattern over the sensor pixels. The pattern typically consists of
alternating red, green, and blue filters, with twice as many green filters as
red or blue. This is because the human eye is most sensitive to green light,
and by using more green filters, the camera can capture more detail and color
accuracy in the resulting image. When an image is captured using the Bayer
pattern, each pixel records only one color component - either red, green, or
blue. This means that the resulting image is in a raw format, and needs to be
processed to reconstruct the full color image.

The process of reconstructing a full color image from a Bayer pattern im-
age is known as demosaicing or debayering [76]. This involves using al-
gorithms to interpolate the missing color components from the neighboring
pixels, based on the color filters in the Bayer pattern. This process is quite
time-consuming, since it must be applied to the entire image and involves
interpolation of values. Fortunately, due to the fact that usually groups of
pixels taken with this pattern are independent of each other, it is possible to
process these groups in parallel.

Gamma correction

Gamma correction is non-linear transformation, which serves for the adjust-
ments of brightness and contrast of the images [99]. It tries to compensate
for the differences between the way that human eyes perceive light and the
way that digital sensors capture light. The concept of gamma correction is
based on the fact that the human eye does not perceive brightness in a linear
fashion, as it is provided by the sensor. Instead, our eyes perceive changes in
brightness logarithmically, meaning that we are more sensitive to changes in
darker parts of an image than in brighter parts. Gamma correction involves
applying a power law function [109] to the pixel values of an image to ad-
just the brightness and contrast. This function is typically represented by a
gamma value, which controls the amount of adjustment applied to the pixel
values. A gamma value greater than 1 will darken the image, while a gamma
value less than 1 will brighten the image.

Fig. 6.3 visualizes these two steps of image data pre-processing.

White balance

White balance is one of the methods for the global color balancing, or in-
tensities adjustment, in the image. It is done to ensure that the colors in an
image appear natural and accurate, regardless of the lighting conditions un-
der which the image was captured. The basic principle behind white balance
is that different light sources emit different color temperatures of light. For
example, indoor lighting typically emits warmer, yellowish light, while day-
light tends to emit cooler, bluish light. White balance is needed to bring the
images to the unified color view regardless the temperature of light source.
Also, it helps to correct the cases when specific channels of the image sensor
have a larger multiplier, as it was in the case of our LF camera and can be
visible on the Fig. 6.2, where frames look somewhat yellowish.

6.1. Light Field Camera 95

(a)

(b)

(c)

FIGURE 6.3: Steps of pre-processing: (a) raw (bayered) image,
(b) debayered image, (c) gamma-corrected image

96

FIGURE 6.4: Demonstration of auto white balance

While many white balance algorithms may work with specific presets, we
use completely automatic calculations. The idea of white balance is based on
the gray world assumption [24], which assumes a single grayscale value as
a result of averaging the image. Having a reference LF view in RGB, our
method first finds the mean value of every channel separately, does the con-
version of this view to grayscale and finds the mean value of it. Coefficient
for every channel is then defined as the ratio of the average gray value and
the average value of this channel. Estimation of coefficients for white balance
through the whole image is quite a computationally-intensive operation due
to the involvement of all pixels. During the experiments, we found out that
taking a grid of pixels from the image to estimate the white balance parame-
ters leads to the similar result compared to taking the whole image, but takes
proportionally less time. The values of each of the channels are multiplied
by their respective coefficients for the balance.

Fig. 6.4 shows how the white balance algorithm changes the image. The
photo shows a camera installed in a test room with a color temperature-
controlled light source and an image from the camera subjected to white bal-
ance. It can be observed that the algorithm, despite the yellow light, helps
to display the image in a more unified and light temperature-independent
manner.

Auto-exposure

During the camera exploitation in various conditions it is not possible to
manually adjust the shutter speed according to the incoming light intensity.
Moreover, the selection of the optimal exposure value might be a non-trivial
task for the individual. With that in mind we designed the auto-exposure
method, which can process the images and estimate the proper exposure time
within a small number of captured frames. The auto-exposure algorithm is
used to optimize the shutter speed so that the image sensor can get enough

6.1. Light Field Camera 97

light to capture the image without over- or under-exposure. It changes the
shutter speed accordingly to the total illumination of the scene.

In our pipeline, automatic calculation of exposure occurs together with
the calculation of coefficients for white balance. Having the exposure value
for previous frame, its modification is defined as the ratio between the refer-
ence gray value and average gray value of the current frame.

For both white balance and auto-exposure the grid spacing of 10 pixels for
sampling was empirically determined to be optimal. These algorithm work
in a range of several captured frames, which provides fast adjustment of the
image and camera parameters, which is especially important for the cases of
rapid light conditions change (e.g. when the car with mounted camera drives
out of the parking lot).

6.1.2 Images cropping and remapping
After applying the pre-processing adjustments to the images they need to
the undistorted and remapped in the way as they were taken by cameras
with same intrinsic parameters. As was stated before it is vital for creating
constrains for the further depth estimation.

Based on the position in the original image space, 16 individual views are
cropped from this image. Initial intrinsic parameters of every views and their
distortion coefficients are determined by the calibration described in detail in
Section 4.1. Based on this data, the LUT is generated to store the information
about desired pixels positions after remapping. To actualize this information,
the auto-refinement pipeline, described in Section 4.2, is executed to adjust
the intrinsic values. The used LUT is adjusted accordingly.

6.1.3 Camera and algorithm accuracy estimation

Measuring the accuracy of a camera and algorithm working in the real world
is a non-trivial task. It implies the use of well calibrated ground truth sources
with a certain level of accuracy. Preferably, such sources should not come
from the same domain; in other words, it does not seem right for us to use,
for example, one camera-based depth estimation system to determine the
accuracy of another, since their result might be flawed as well.

Thus, we utilize data from an external laser measurement device (Bosch
Zamo 3) as shown in Figure 6.5. This device has a depth accuracy of 3mm,
which is one order of magnitude higher than our system accuracy and can
thus be considered as reliable. For the evaluation, we place our camera in
front of a flat wall and align the image sensor parallel to it. To create some
invariance to the scene or the texture of the scene and to avoid any influence
of the wall texture, different patterns were projected onto the wall. In total,
twenty randomly selected patterns with different characteristics were used.
Thus, 20 depth images were calculated per distance and their mean depth
error was determined. The experiment was repeated for different distances
ranging from 50cm to 2m.

98

FIGURE 6.5: Setup of the distance measurement device on top
of the used LF camera

Figure 6.6 presents the depth accuracy with respect to the distance. The
error increases quadratically for higher distances, which is mathematically
justifiable. For short distances the depth values have an error of below 2cm,
which was comparable to active devices. For higher distances the accuracy
is still sufficient for many applications.

6.2 Computational platform

In the process of choosing an appropriate embedded hardware platform for
the system design, several essential criteria were taken into consideration,
including the capacity for parallel computing, the presence of suitable input
and output interfaces (e.g. the aforementioned PCIe, Ethernet, and HDMI),
and the compatibility with available drivers for the base camera. Upon thor-
ough evaluation of various options, it became evident that the Jetson com-
puting platform from Nvidia met all of these critical requirements.

What shows that Jetson systems are suitable for embedded computations
is their relatively low power consumption. It is in the range of 10-30 W, which
is comparable to the consumption of a car headlight bulb. The platform sup-
ports different power modes, which can be predefined or switched automat-
ically dependently on the actual workload.

Of particular interest to this platform is its architecture, which is used for
general purpose computing on graphics processing unit (GPGPU) computa-
tions named CUDA. It is a parallel computing platform and programming
model developed by Nvidia Corporation for use with their GPUs. At the
heart of the CUDA platform is the CUDA programming model, which uses
a subset of C programming language and allows to write code that is exe-
cuted in parallel across multiple threads on the GPU. This is accomplished
through the use of CUDA kernels, which are functions that are executed by

6.2. Computational platform 99

FIGURE 6.6: Dependency of the camera accuracy on the specific
distances

multiple threads in parallel on the GPU. The CUDA programming model
also includes support for shared memory, which enables efficient communi-
cation and synchronization between threads on the GPU.

One of the key benefits of the CUDA platform is its ability to significantly
accelerate computationally-intensive tasks that can be paralleled. Another
advantage is the native cross-platform code written in CUDA, which allows
porting code from one CPU architecture to another (e.g. from x86 to ARM)
without much hassle. It also includes libraries and tools for optimized GPU-
accelerated linear algebra, signal and image processing.

An important feature of CUDA-based devices is the possibility of zero-
copy memory access. In this mode, the GPU units have access not only to
its own memory, but also to shared random access memory (RAM), which
saves time on data transfer and thus reduces latency on image acquisition
from the camera. In the platform we have chosen, the memory for GPU and
RAM are physically located on the same chip, which saves even more time
for zero-copy transfers.

Our system was implemented and tested on two products of this plat-
form. The first platform named TX2 was available as an early prototype of
computational hardware of our systems. The device is based on a custom 64-
bit ARMv8 CPU and features a Nvidia Pascal GPU with 256 CUDA cores. Its
successor, Jetson Xavier, was based on a more advanced architecture Volta
with 512 CUDA cores. Both platforms can be considered as complete ma-
chines, suitable for work, in a compact form factor. They are shown in Fig.
6.7.

100

(a) (b)

FIGURE 6.7: Nvidia Jetson platforms: (a) Jetson TX2, (b) Jetson
Xavier

6.2.1 Algorithms platform-specific optimizations

The algorithm, used on this hardware, is based on previously described in
Chapter 5 FSL configuration. Instead of center view, we selected left bottom
corner view as a reference for the depth estimations. This is because the
distance between the images, and therefore the difference in coverage in the
operating range of the camera, is not so significant.

To implement our algorithms in embedded hardware, we used the OpenVX
standard [116]. OpenVX defines high-level abstractions for programming
computer vision scenarios, behind which different acceleration engines can
be used. The description of the algorithm by OpenVX starts by breaking it
down into smaller subtasks, which are wrapped in so-called nodes. These
nodes are subsequently combined into an execution graph. The graph is de-
fined once at the start of the application and remains immutable through-
out its execution. When a graph is created, the nodes are checked for input
and output formats. Low-level calculations are performed inside the nodes.
OpenVX can be used to define cross-platform algorithms that are relatively
easy to port from one architecture to another, provided that the architecture
supports OpenVX.

Using the availability of parallelism, many algorithm details were rethought
when transferring from the CPU to the GPU. They mainly concerned the par-
titioning of easily parallelizable parts of the algorithm into small parts that
can be run on separate CUDA cores and whose results can then be assem-
bled into a single structure. An example of such a structure is the matching
cost, discussed in Section 5.1.2. Matching cost elements based on census-
transformed images can be estimated independently of each other, since they
only involve particular pixel values for that.

Procedure to calculate the actual census transform also undergoes some
changes on the parallel architecture. In our implementation it is done in a

6.2. Computational platform 101

similar manner to [72], where image is divided to multiple 32×32 blocks,
which are consequentially loaded to the shared memory of GPU, in which es-
timation of census transform based on the pixel surroundings is done faster
compared to the naïve approach with pixels comparison in GPU memory.
Same shared window principle is used for median filtering. Hamming dis-
tance between the bit strings is estimated by applying the popcnt operation on
the XOR of these two strings. XOR of the two binary strings generates a new
binary string that has a 1 in each position where the two strings differ, and a
0 in each position where they are the same. The popcnt instruction counts the
number of 1’s in the XORed binary string. This corresponds to the number
of positions where the two strings differ, and thus to the Hamming distance
between the two strings [166].

Operations like matching cost construction, left-right consistency check
and disparity regression are parallelized trivially, by just doing it separately
for every pixel in every considered disparity map. By that, workload can be
efficiently distributed among all computational units. An important point
for such systems are tests to determine the optimal use of either memory
or additional computation. For example, in the case of CPU computing, we
used LUT to locate the pixel position in another view of LF, depending on
the disparity hypothesis. This was done in order to save time in computing
a repetitive operation. However, in the case of the GPU, the computation of
this position during the operation of the algorithm was faster than the time
to access the memory in which the LUT data was stored.

SGM is an algorithm, which is based on dynamic programming paradigm,
in which the results of previous calculations are used for the consecutive
ones. Hence, parallelization of such an algorithm is non-trivial and needs
to be considered from the position of the possible independent estimations.
Luckily, for the case of SGM some estimations can be done in parallel. For
example, while traversing in different directions considers different overlap-
ping areas of matching cost, these directions can be traversed in parallel.
Also, traversing can be done independently not only per direction, but per
disparity hypothesis [72].

6.2.2 Results

Results of the proposed system are shown in Fig. 6.8 The depth result is
filtered in a way that it keeps distances in our target range of 0.5–2.0 meters
only. The objects are reconstructed with a high level of detail as visible e.g.
for the plant hedge. In addition, smaller objects like the pillar are robustly
detected, which is important for applications such as the automotive domain.
For the flat wall with the homogeneous texture the depth is not very dense,
but still depth is sufficiently robust.

102

far

near

FIGURE 6.8: Qualitative results of the proposed system. The
scenes are reconstructed with a high level of detail – even
for homogeneous regions (wall), filigree objects (pillar) and

crowded objects (plant hedge).

6.2.3 Running time
Being in the time, in which our algorithm can be defined as "real-time" was
the crucial part during this work. We measured the running time of the algo-
rithm on Jetson Xavier and compared them with the ordinary PC (CPU: Intel
Xeon E5-1620 v3, GPU: Nvidia GTX 1080 Ti). The running times are given in
Table 6.1. With our algorithm we can achieve the real-time performance on
the different GPU-based architectures, including the embedded one.

6.2.4 Communication interface
In order to facilitate communications between the system and the applica-
tion platform, a server-client model is employed, utilizing the widely-used
TCP/IP sockets via Ethernet interface as the foundation for data exchange.

6.2. Computational platform 103

TABLE 6.1: System running time for two different computation
platforms.

Jetson Xavier GTX 1080 Ti
Capturing 30 ms
Pre-processing, remapping 20 ms 8 ms
Depth (initial) 3 ms 1 ms
Depth (final) 14 ms 5 ms
Sending 10 ms

This approach offers several key advantages. First, it reduces dependency
on the application hardware side, since the Ethernet interface is widely used
and supported, and there’s no need to write additional system-level drivers
to communicate with the devices using this interface. Also, it provides capa-
bility for remote data capturing over extended distances, even at distances
exceeding 5 meters, which is not possible on the e.g. USB devices without
active repeaters. This feature greatly enhances the versatility and potential
applications of the system in various settings.

To transmit images from our system to the application platform we de-
signed a pipeline which is built upon the server-client model, where "server"
is the proposed system together with the relevant hardware, and "client" is
a computing device, which is using images from camera and the depth map
for its application-related purposes. Interaction between server and client
on the transport layer is based on the TCP/IP protocol. Access to the proto-
col is provided via Berkeley sockets API. On the data link layer, the Ether-
net standard is used. After running, the server is waiting for the connection
from a client. Once the connection is established, server sends so-called ”ac-
knowledgement” package in order to verify, whether the connected client is
compatible with the server transmission protocol (not to be confused with
TCP/IP 3-Way Handshake). If this sending is successful and the subsequent
answer from client ”suits” the server, it first sends the camera intrinsics, and
then the size of both color and depth image. Since these parameters are same
for every following package, it is needed to send it only once. After that,
server transmits the information in the following order:

1. Number of a package (int32_t)

2. A timestamp (int64_t)

3. Color image data (char*)

4. Depth image data (char*)

5. Acknowledgement

This transmission goes in the cycle until either client or server side is inter-
rupted.

During the first connection to the server, the client can send a request
for adjusting the depth estimation algorithm settings by selecting different

104

modes, request for the setting of region-of-interest (ROI) and exposure, fram-
erate and camera gain settings (EFG). Request for modes is provided in a
form of 8-bit variable with values, which are explained in the corresponding
document. Requests for ROI and EFG are provided in the numerical form
within the following ranges:

• start_x: 0 - 960 pixels

• start_y: 0 - 960 pixels

• end_x: 0 - 960 pixels

• end_y: 0 - 960 pixels

• p_exposure: 0 - 33000 ms

• p_framerate: 0 - 32 fps

• p_gain: 0 - 512

The following section explains our choice of the depth transmission for-
mat.

6.2.5 Fixed-point depth representation format

The depth information is stored in the memory as a single channel image, in
which each pixel is represented by eight-bit unsigned integer with the value
range 0 — 255. In the next steps the way of depth image conversion to such
a form will be explained.

Metrical depth data is usually stored in floating point numbers. For the
decreasing of the data amount needed to be transmitted without significant
information loss it was decided to use an integer-based fixed point number
format with specified number of fractional bits. This format is presented
in technical literature as a "Q-number" and finds its usage in a variety of
embedded application. In this case 2 integer bits and 6 fractional bits are
used (usually denoted as Q2.6).

Integer part of this number was selected based on the maximum required
depth which is stated in the system specification. Number of fractional bits is
selected as a balanced one, which allows to save the metric data in eight-bit
form and in the same time does not provide a significant information loss,
which will be proven later.

Conversion of the float number to the Q-form can be performed by a sim-
ple multiplication of the original number by 2n, where n corresponds to the
number of fractional bits in the desired Q-number (in our case n = 6), to-
gether with subsequent rounding to the nearest integer (denoted as ⌊. . .⌉.
For the floating point number N f the Q-number NQ can be found as:

NQ = ⌊N f 2n⌉. (6.1)

6.3. Applications 105

The back-conversion is performed as simple as a multiplication of the Q-
number, converted to the floating point format NQ f (20 → 20.0), by 2−n. N f Q
stands for back-converted from Q-number floating point number and can be
found as:

N f Q = NQ f 2−n. (6.2)

Representation of the metric values in such a form is related to the in-
formation loss up to some percentage, which can be roughly represented as
2−(n+1) ∗ 100%. However, for the case of our camera with the specified mini-
mum and maximum distance (0,5 – 2,0 m) such a loss does not affect the final
accuracy. The following calculations were made for the numerical verifica-
tion of this statement. For every N f ∈ R, R = {Rb, Rb + Rs, Rb + 2Rs, . . . , Re},
the conversion error λ:

λ = |N f − N f Q| (m), (6.3)

where N f Q is computed from the NQ using Eq. 6.1 and Eq. 6.2, and |. . .| de-
notes an absolute value of a number. Having a set of λs for different N f val-
ues we can find a maximum λ, which will correspond to the maximum error
value in meters after the conversion. For Q2.6 number format the maximum
error value λmax within the range R where Rb = 1 m, Re = 2 m, Rs = 10−3 m
is equal to 0,00775, which is correlated with the previous rough estimation.

In order to determine the geometrical error of the depth estimation we
convert two nearby values of the pixel displacement to the metric represen-
tation. Assuming that maximal disparity estimation error is ∆d = 1 px and
taking the closest (to the specified depth) pixel displacement values p and
p′ = p − ∆d the maximal depth error on this displacement ∆Zp is based on
Eq. 5.22 and determined as:

∆Zp =
f B
p

− f B
p′

(m). (6.4)

For p = 32, as for the value correspond to the closest computation point, this
error is equal to ∆Z32 = 0, 01449 m. We can see, that this error is about 1,87
times bigger than the conversion error, which proves the sustainability of the
chosen conversion coefficients.

6.3 Applications

Our system was tested on two potential applications. The first is related to
the industrial system for the assembly assistance. The second application is
associated with currently relevant ADAS.

The advantage in case of our system for reconstruction together with tak-
ing full-color images is that both images (depth map and RGB) are already
in the same coordinate system, which saves time for converting images from
one coordinate system to another and allows direct usage of both. Another

106

interesting advantage of such systems is the case of partial failure of one of
the capturing units providing images in LF. In the case of stereo systems
when one camera fails (or in a more optimistic scenario, when it is over-
lapped by some external object) it is impossible to calculate depth maps,
whereas with LF one can restore the depth using other cameras to a certain
limit, or change the reference view and use not all images, but only part of
them, lying on the cross formed by the axes on which this view is.

6.3.1 Application: Industrial assistant systems
Intelligent assistant systems aim to help with the assembly of any mechanism
by guidance using image and scene analysis. An example of such a system is
presented in [14]. Our tests were done on a similar setup to the one presented
in their paper.

Using information from the RGB, one can quite accurately recognize which
tool the assembler is operating at the moment. In the case of our system the
depth of the scene can be used to understand the location of the assembler’s
hand in the scene. For example, in the case of assembling a mechanism on
an assembly machine with boxes of parts, the depth map allows us to under-
stand which box the assembler is taking the parts from. Also, with the help
of depth maps, one can build the so-called forbidden zones, i.e. the zones to
which access is not permitted or from which taking parts is not allowed.

Fig. 6.9 shows how the RGB and depth map of our system on the test
setup look like. The camera was installed on the top of the assembly table,
facing the table. Depth for this case provide the sufficient level of details for
the listed tasks.

6.3. Applications 107

FIGURE 6.9: Example of test recordings for inspection scenario

6.3.2 Application: ADAS obstacles detection

Obstacle detection systems serve as a part of global car ADAS and are de-
signed to help drivers identify and avoid potential collisions with objects on
the road. Usually such systems are working based on radars or lidars [173].
However, passive systems are generally cheaper compared to them, while
still providing acceptable quality level for such task.

Mapping of RGB and depth within the same coordinate system allows to
do more sophisticated analysis of both modalities together. An example of
this would be an object detection system that uses either RGB alone [105], or
RGB and depth together [122, 162] to pinpoint the type of obstacle.

Fig. 6.10 demonstrates the result of our system. The camera was installed
on the backside of the car. One can note good depth quality on small struc-
tures, e.g. elements of the bicycle.

108

FIGURE 6.10: Example of test recordings for ADAS scenario

6.4 Conclusion

In this chapter the way of embedded system design for LF depth estimation
in real-time was presented. The main components were explained. The ways
of optimizing the algorithm for the embedded system, as well as the commu-
nication and format explanation, were shown. The potential applications of
this system were discussed.

The proposed algorithm can work on different cameras without any prior
understanding of the data obtained by that camera. However, the main prob-
lem of our method is its worse quality compared to deep learning algorithms.
In an attempt to find a way to solve the problem of training and tweaking
deep learning algorithms for cases where it is not possible to obtain ground
truth data, we have developed an unsupervised training method that can
be built on top of principally any existing deep learning-based algorithm
for finding a disparity map from LFs. Along with the description of this
method, in the next chapter we describe potential methods of neural net-
work optimization, which are designed to reduce its size and adapt it for the
embedded hardware for the price of some loss of its accuracy.

109

Deep Learning extension

Classical methods of calculating depth maps, based on geometric properties
of the LF, have been used for quite a long time. They allow the computation
of depth maps with sufficiently high accuracy and, as shown in the previous
chapter, can be adapted to do so with limited hardware resources.

However, in the last few years there has been a clear move away from
classical methods towards methods using the deep learning paradigm. Deep
learning is a subset of machine learning, where the artificial neural networks
with multiple layers are used for the problem solving. Theory of deep learn-
ing is well covered in the book of Goodfellow et al. [40].

The switch of main computational paradigm from classical to deep-learning
based methods is explained by the fact that such methods allow to perform
calculations with much higher accuracy in comparison with the classical meth-
ods, as the neural networks are probably universal approximators of func-
tions [57], and with their help it is possible to represent a rather complex
dependence of the result on the provided data.

In essence, such methods rely on a large amount of input labeled data,
in other words, data for which there already exists a ground truth. A large
amount of data in simpler cases can be provided by collecting it and then
manually or semi-automatically marking it up. However, this approach is
hardly feasible for 3D reconstruction tasks. In this case, there are two ways
out: either use a ground truth reference source (for example, as was done for
Kitti dataset [101], where lidar was used to capture the reference 3D recon-
struction) or generate the synthetic data by some rendering engine, which
can provide 3D scene reconstruction together with "captured" images.

However, both of these approaches are not without their shortcomings.
In the first case there is a question of the accuracy of the reference device, the
reduced accuracy of which can lead to incomprehension in the of the neu-
ral network estimations. In the case of generating synthetic images we can
obtain get the most ground truth; however, such images will not always be
similar to what can be shot with a real camera because of their "perfectness".

Another problem is that usually neural networks built on the principles
of deep learning require significant computing resources for their operation,
in particular, they need a relatively large amount of RAM and architectures
that support parallelism on the native level.

As a result of our research on this topic, we will look at existing ways
of dealing with these problems. We will consider ways to compress neural
networks so that they can be run under hardware constraints. Also, we will

110

look at ways to adapt neural networks trained on synthetic data to work on
real images.

7.1 Neural network compression techniques

Neural network compression techniques aim to reduce the size of neural net-
works while maintaining or slightly reducing the accuracy of the result pro-
duced by them [115]. This is important so that such neural networks can be
used in devices with memory and computational resource limitations.

When analyzing what can be reduced in neural networks, two directions
seem to be obvious:

• Reducing the size of the neural network, i.e. the number of neurons in
it.

• Reducing the size of neurons, i.e. their bit width.

These techniques are called pruning and quantization and will be discussed
below.

7.1.1 Pruning

In the literature, "pruning" means the compression technique that removes
either connections between neurons or the neurons by itself [91]. The deci-
sion on the removing criteria is based on the necessity or redundancy of the
specific connection or neuron. In other words, pruning tries to keep network
elements, which impact on the final result is highest.

Reduction of the number of neurons can influence the problem of over-
fitting the neural network, as in was demonstrated in the early works on
neural networks pruning [126]. There, a brute-force pruning method was
formulated as setting every weight to zero and evaluating the error of the re-
sulting network. Due to the computational complexity of such an approach,
it is not currently used, but other alternative methods are described below.

In modern neural networks there are several principles of categorization
of pruning methods [91]. As mentioned earlier, methods can be classified ac-
cording to which elements of the neural network are removed: connections
or neurons. a more detailed classification considers the subdivision into the
static methods, which perform the pruning before the inference of the net-
work, and dynamic methods, which are doing it during the inference.

In general, static methods rely on selecting elements for pruning, remov-
ing them and then optionally adjusting the result [43]. Criteria for selecting
elements for subsequent pruning are magnitude, i.e. the numerical value of a
certain element, which is either equal to zero or below a certain threshold; or
a penalty, which is added to the loss function to detect unimportant network
elements.

Dynamic pruning methods, in turn, do not change the structure of the net-
work post-factum, but try to understand during inference which elements of
the neural network contribute the least to the result. It helps to reconfigure

7.1. Neural network compression techniques 111

the neural network more efficiently for a specific use case on-the-fly. How-
ever, compared to the static methods it potentially creates additional compu-
tational overhead.

Thus, it can be concluded that static pruning methods are more suitable
for use in embedded systems. They directly affect the size of the network
and do not create additional computations at runtime, which directly reflects
the needs caused by the limitations of embedded systems.

An interesting hypothesis was proposed by Frankle and Carbin in [37].
Instead of removing parts of network, their method tries to find subnetworks
(named "winning tickets") inside the bigger networks, which can reach the
accuracy similar to the original network after the training. This hypothe-
sis was supported by the training and evaluation of "winning tickets" from
popular architectures, resulting in 10-20% size reduction while maintaining
similar accuracy.

7.1.2 Quantization

Nowadays, neural network parameters are stored in 32-bit floating-point for-
mat. This is done to better preserve the accuracy of the network weights.
However, such representation for some cases can be considered cumbersome
and overdetermined. Yet another approach to reduce the size of the network
while maintaining either the original or pruned architecture is to reduce the
bit width of the neural network elements, called quantization.

The term "quantization" comes from digital signal processing, where it
means the conversion of an analog signal into a digital one by sampling the
values of this signal at certain time intervals [141]. In the context of neural
networks, the term takes on the meaning of an operation to represent neural
network elements using a smaller bit width compared to the original repre-
sentation [115].

There are different forms of quantization. In general, they can be divided
to post-training quantization and quantization-aware training. First group
of methods perform the bit-width redundancy after the training was done
on the full bit resolution. Typically, these methods involve converting the
weights and activations of the neural network from higher-precision data
types, such as 32-bit floating-point numbers, to lower-precision data types,
such as 8-bit integers or fixed-point numbers. It can be applied to different
elements of the network, such as the weights, activations, or to both.

The second group of methods involves training of the neural network
with low-precision data types from the beginning. During training, the weights
and activations of the network are represented with lower-precision data
types, allowing the network to learn to operate with low-precision data types
from the start. Compared to the first group, it can result in better perfor-
mance and accuracy compared, since the network is optimized to operate
with low-precision data types.

By the principles of used arithmetical operations methods can be divided
into the following [91]:

112

• Lower numerical precision methods involve representing the elements
of the network using lower numerical precision data types, such as
fixed-point or integer. This results in smaller memory requirements and
faster computation times, while keeping multiplications as the main
arithmetic operations.

• Logarithmic quantization converts the network elements to power-of-
two numbers. This allows for the use of bit shifts instead of multiplica-
tion, resulting in even faster computation times.

• Plus-minus quantization, where binary or ternary representation of net-
work elements is used. This allows for the replacement of multiplica-
tions with additions or bitwise operations [125], resulting in significant
reductions in computational complexity.

In general, depending on the requirements coming from the hardware, it
is justified to use a particular method of quantization. In the case of depth
estimation systems, since the accuracy of the algorithms is critical, the choice
of quantization method should start from reducing the bit width of the net-
work elements, and then, if accuracy can still be maintained at an acceptable
level, verified on more extreme size reduction techniques.

7.2 Neural network real-world adaptation technique

A majority of the methods require big amounts of data for its training and,
more important, the available ground truth data. While for synthetic im-
ages the ground truth generation does not pose a problem, for the real-world
dataset it might not be available or its capturing may be associated with cer-
tain difficulties.

Lack of ground truth data can be partially compensated by using so-called
unsupervised training methods. In this type of methods, the dependencies of
the input and output data are formed indirectly based on the network output.

Another problem which may arise with real-world LF data is the quality
of captured images. Images captured by real cameras may suffer from noise
caused by the principles of camera sensor operation. In some cases, individ-
ual camera lenses may have slightly different focus, which also affects the
result of reconstruction. In the case of constructing LF cameras from several
isolated cameras, a potential problem is the slightly different color transmis-
sion of each camera.

Throughout a period of time, window-based matching functions have
been used in classic depth estimation algorithms to deal with these draw-
backs. One of the best examples of such functions are the census and rank
transforms, which were discussed in Section 5.1.1. Being non-parametric,
these transforms utilize the relative ordering of local intensity values rather
than the intensity values themselves.

For the deep learning algorithms, the main limitation for the use of such
transformations is the inability to differentiate them in native form. As an

7.2. Neural network real-world adaptation technique 113

attempt to use the census transform for the deep learning algorithms, we de-
signed a differentiable approximation of the census transform in the form of a
loss function for the unsupervised training of LF depth estimation algorithm.
It is based on the comparison of result of the views warping to the common
image space based on the resulting disparity map, obtained by reconstruc-
tion algorithm, with the reference LF view. The comparison method is based
on the differentiable census transform and the approximation of Hamming
distance estimation, mimicking the original behavior of these functions in
the classical methods. Such an approach can work by being embedded to
any LF depth estimation algorithm, which takes a LF image as an input and
provides the disparity map as an output.

7.2.1 Images reprojection
As mentioned earlier, algorithms that rely on the unsupervised pipeline do
not require ground truth data. Instead, they aim to extract valuable informa-
tion directly from the input and learn the underlying dependencies from it.
If we are considering the computer vision domain within 3D reconstruction
application, information about the correctness of the disparity map estima-
tion from many images can be evaluated by re-projecting these images into
the coordinate space of other images using the disparity map and then com-
paring the coincidence of the re-projected image with the one originally in its
place.

A distinctive feature of the LFs in computer vision, arising from two-
plane parameterization, discussed in Section 2.3.2, is that all its views are
located on a grid, i.e. they are proportionally equidistant from each other and
the relationship between the views can be described straightforwardly using
the information about the location of the views without taking into account
any data about their physical location (of course, in the case of undistorted
and rectified images). Thus, it allows using only the disparity map in refer-
ence view coordinates, to reproject it into the coordinate area of other images
and make a comparison of images to assess the accuracy of the disparity map
estimation. Similar scheme is used in other unsupervised depth estimation
algorithms, mentioned in Section 3.2.2.

In general this idea can be expressed as follows:

1. Take a LF reference view with certain angular coordinates (ŝ, t̂) and a
corresponding disparity map d.

2. Select a LF view (s, t) and find a difference between its coordinates and
the coordinates of reference view: s̄ = ŝ − s, t̄ = t̂ − t.

3. Create two sets of shifted disparity maps (one per coordinate): dy = ds̄,
dx = dt̄.

4. Shift the view (s, t) to the coordinates of the reference one (ŝ, t̂) using
dx and dy.

114

Implementation of the reprojection step is done based on the warping
transformation. Set of disparity maps ds, dt is used to generate two compo-
nents of the sampling grid, in which the coordinates of the output images are
stored. The warping transformation transfers the source image pixels to the
corresponding coordinates in the target image based on this grid using a cer-
tain interpolation scheme. Commonly used interpolation schemes include
bilinear or bicubic interpolation, which can handle non-integer pixel shifts
from the disparity maps.

FIGURE 7.1: Demonstration of visual artifacts in occluded ar-
eas caused by disparity-based warping and the proposed mask-
ing of there artifacts. First row: leftmost view in reference
row (ŝ, 0) warped to reference view coordinates (ŝ, t̂), reference
view (ŝ, t̂), rightmost view in reference row (ŝ, |t|) warped to
reference view coordinates (ŝ, t̂); second row: filtered leftmost
view, sub-images demonstrating the artifacts with color encod-

ing, filtered rightmost view.

Application of warping transformation for images reprojection allows the
differentiable processing of the all reprojections steps, which is vital for neu-
ral network learning. However, it has a significant drawback, which poten-
tially reduces the quality of the disparity map estimation. As demonstrated
on Fig. 7.1, disparity-based warping creates visual artifacts in the occluded
areas. During the image comparison phase these artifacts would prevent net-
work to properly converge on these areas, as by using purely warping they
can’t be eliminated.

In order to address the issue of visual artifacts in occluded areas caused by
disparity-based warping, a mask is used to identify valid pixels in the image
after applying a shift based on the disparity maps. This mask is derived
directly from the disparity map and is generated using the inverted disparity
maps −ds and −dt. Instead of the image, these inverted disparity maps are

7.2. Neural network real-world adaptation technique 115

applied to the two-dimensional grid, which stores ranges of all the possible
image coordinates within the image dimensions. For the leftmost corner of
the image, a 5x5 subset of such grids gx, gy would look like:

g5x5
x =

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

 , g5x5
y =

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

 , (7.1)

All the valid unoccluded pixel indices can be obtained by finding a differ-
ence between gx, gy and corresponding disparity maps dx, dy:

ḡx = gx − dx, ḡy = gy − dy (7.2)

Then, to filter the values these indices are checked for being within the image
borders and for being preserved in both grids as ḡx ∧ ḡy.

Morphological erosion is applied to the resulting mask for removing po-
tentially preserved leftovers of artifacts areas. Resulted mask is used at the
loss estimation stage to filter away the values, in which occluded areas were
used to estimate the loss.

7.2.2 Differentiable census transform

As was stated before, the main problem with census transform is that it is not
differentiable, in other words, it is impossible to obtain its derivative. Conse-
quently, this limits its use in algorithms based on deep learning. To overcome
this, we propose the close approximation of census transform based on the
differentiable operations.

The main problem for creating a differentiated census transform is the op-
eration of comparing the values of the two pixels. A reasonable replacement
is finding the difference between two images, the original and the shifted
one. The image shift is done via warping, mentioned in Section 7.2.1. In this
case, the shift is applied to the entire image.

In order for the difference values to form a structure similar to the census
transform, the results of the difference calculation are used as an argument
for a hyperbolic tangent function with a certain constant C:

IC(u, v, c) = tanh(C(I(u, v)− I(u + i, v + j)))0.5 + 0.5 (7.3)

where the channel ordinal number c is defined by the position of i, j in previ-
ously defined M. It results to the following:

ξ(v1, v2) =

0, v1 < v2

0.5, v1 = v2

1, v1 > v2

(7.4)

As a result, we obtain N-channel census image, every channel of which cor-

116

(a) (b)

FIGURE 7.2: Colored visualization of two census-transformed
images: (a) original census transform, (b) proposed census

transform

respond to the particular bit position from original census transform defini-
tion. Fig. 7.2 shows, how the results of original and proposed census trans-
form look like.

The Hamming distance function from Eq. 5.8 in this case can be replaced
by the sum of the absolute differences between the two images whose simi-
larity is measured:

HD(xi, xj) =
n

∑
k=1

|xik − xjk|, (7.5)

7.2.3 Loss function design
The described algorithms for image reprojection, census transform, and Ham-
ming distance estimation are integrated into a loss function that is indepen-
dent of the neural network model and can be used with any model that op-
erates on LF images.

The loss function takes the LF as input, along with a computed disparity
map and information about the reference view position. The algorithm then
uses reprojection to warp the images, computes the census transforms for the
warped images, and estimates the Hamming distance using an unoccluded
filter mask. The result is an estimation of the loss, which can be further back-
propagated to the neural network model to adjust its weights.

7.2.4 Experiments

To train and verify the feasibility of this method on the real-world data two
datasets were used. First dataset was captured by LF camera, used in the
system presented in Chapter 6. It consists of 310 consecutively captured LF of
angular resolution 4×4, undistorted and rectified by the method from Section

7.2. Neural network real-world adaptation technique 117

Supervised Unsupervised L1 Unsupervised Census
boxes 24.55 35.04 34.73

cotton 3.08 10.85 7.41
dino 7.06 18.56 17.19

sideboard 14.36 23.83 23.91

TABLE 7.1: Results of supervised training, unsupervised train-
ing with L1-loss and unsupervised training with Census loss of
model from [163], evaluated on subset of 4DLFB [55] by a Bad-

Pix metric

4.1, resulting in 16 RGB images of spatial resolution 512×512 pixels, recorded
by moving the camera on the trolley on the parking lot. Compared to the
other dataset, two specific challenges of this dataset are the relatively high
level of image noise and the slightly different focus in every LF view, which
derives from the non-firmly fixes lenses. This brings additional issues for the
depth estimation tasks, with which census transform supposed to deal better
compared to direct image values comparison.

Second dataset is a subset of LF dataset from Stanford [2]. Original dataset
consists of 12 scenes, acquired by a DSLR camera placed on the self-made
gantry, resulting in 17×17 set of images per scene. To properly match with
the angular resolution and the disparity range of the previously described
dataset, from original LFs we first extracted and repositioned 9×9 images
around its central view (inclusively), out of which the resulting 4×4 dataset
was extracted.

Evaluation of the unsupervised approaches on real-world LF data can be
problematic due to the unavailability of the ground truth data. Because of
that we can’t perform the quantitative evaluation of the depth estimation
results on real-world images. Therefore, we perform the evaluation on syn-
thetic dataset with available ground truth for obtaining the statistical mea-
surements. Algorithm’s performance is numerically verified on the synthetic
data from the previously discussed 4DLFB [55].

For the unsupervised training as a baseline neural network model we
used a model, proposed by Wang et al. in [163]. Due to the nature of our
approach it can be used on top of any depth estimation model, which sup-
ports LF; our choice of this model was driven by its code availability within
the desired deep learning framework.

The reference model was originally trained on 4×4 synthetic dataset, ob-
tained from 4DLFB. It is done for the comparison of the unsupervised train-
ing results with supervised ones. In order to properly compare the usability
of the census transform two separated models were trained in the unsuper-
vised manner. One model was trained by directly comparing warped im-
ages using L1 loss, while the other model was trained by comparing census-
transformed images.

118

(a) (b) (c) (d)

FIGURE 7.3: Demonstration of the evaluation on 4×4 synthetic
images from 4DLFB [55], namely "boxes", "cotton", "dino" and
"sideboard": (a) reference LF view, (b) results of supervised net-
work from [163], (c) unsupervised network with L1 loss, (d)

unsupervised network with census loss

Results

Table 7.1 shows the results of the differently trained models on 4DLFB dataset.
For training of all models the combination of dataset categories "additional"
and "training" was used. While the dataset provides the disparity maps per
every LF, they were not used for the unsupervised training part.

We can see that numerically results of unsupervised training are con-
siderably worse compared to the data of supervised training. It confirms
that in the general case, with available ground truth supervised methods can
achieve higher accuracy than unsupervised methods. The fact that depth es-
timation methods based on L1/L2 distance work better on synthetic images,
while census-based method perform better on the real ones, was already ob-
served.

However, the results obtained with unsupervised methods, although not
the most accurate, still to a certain extent can accurately convey the 3D data

7.3. Conclusion 119

(a) (b) (c) (d)

FIGURE 7.4: Demonstration of the evaluation on 4x4 real-world
images, first row – Stanford LF Dataset [2], second row – our
dataset: (a) reference LF view, (b) results of supervised network
from [163], (c) unsupervised network with L1 loss, (d) unsuper-

vised network with census loss

of the scene. The visualized results of all models are presented in Fig. 7.3.
The consistency of our results with the supervised model can be visually
confirmed.

The difference between supervised and unsupervised methods is more
evident in real-world images. Fig. 7.4 shows the results of differently trained
models on the real captured scenes. The difference between supervised and
unsupervised methods becomes especially apparent in this case. We can see
that although supervised methods more accurately represent sharp edges, in
the case of unsupervised training the result looks more dense. Comparing
the L1-based and census-based unsupervised training, the lower amount of
noise on disparity map, which is driven by wrong estimations, is visually
apparent.

A serious disadvantage of such a method of computing census transform
is the need for large amounts of memory to store it during the training. In
the current implementation, every bit of census-transformed images is stored
as a separated channel with at least one byte width, which limits its usage
as an input for the neural network, as every LF view in such case needs to
be transformed. The ways for the proper data compression, which would
work in the census transform case and still remain differentiable, need to be
investigated.

Currently, the warping occlusions in our case are simply masked away.
There are some schemes to take them into consideration, e.g. proposed by
[65]. Potentially, it can lead to the higher accuracy in occluded areas.

120

7.3 Conclusion

In this chapter the main methods of neural network optimization for its oper-
ation under typical constraints of embedded hardware were discussed. Po-
tentially working configurations suitable for this type of hardware have been
suggested.

Also, an approach for the adaptation of LF depth estimation deep learn-
ing algorithms using the census transform in an unsupervised manner was
shown. The way how to make such a transform differentiable, hence usable
for deep learning algorithm, was presented. The method works in a form of
a loss function, which can be used with practically any LF depth estimation
algorithm in a non-invasive way. Its feasibility was verified on the synthetic
and real images, showing its potential for the utilization on the latter.

121

Conclusion

8.1 Summary

This thesis shows, how the depth estimation system from LFs can be de-
signed to operate in real-time domain with embedded hardware constraints.
The environment in which camera operates is defined as challenging, ad-
dressing the efficiency-accuracy balance for the depth estimation process,
which is rarely covered in the scientific literature.

An analysis of existing algorithm for LF calibration and depth estimation
were performed, investigating the existing limitations of these methods to
work in the context of defined constraints. Major challenges in this field are
the demands of these algorithms for the characteristics of the hardware to
perform the computations. The second problem of these algorithms is their
running time, which in most cases also does not allow to run them in real
time, even on advanced modern hardware. Finally, algorithms for calibrating
LF cameras are often difficult in the implementation of components for their
functioning.

Trying to cope with these shortcomings, we developed a LF camera cal-
ibration algorithm together with calibration refinement method. It allows
to conduct simple yet accurate camera calibration, which can be practically
done by anyone. The auto-refinement pipeline helps to exploit the camera in
the working environment where the recalibration in case of a sudden calibra-
tion parameters change is not possible.

Our main contribution is the development of a LF depth estimation algo-
rithm that has low requirements for the hardware on which it is executed. We
analyzed existing methods of data aggregation and checked their suitability
for estimations of real-world scenes. We proposed to use the information ob-
tained from a limited number of LF views to create boundary information for
the subsequent estimations of matching cost from all LF views for the further
regression and sub-pixel refinement of the result.

These algorithms were implemented on the real embedded hardware to-
gether with the custom 4×4 LF camera. We tested the proposed methods
for the optimization of the algorithms to run in the constrained environment
and verified their feasibility for it. The ways how the information should be
encoded and transmitted for using in various applications was shown.

We analyzed the ways of the perspective deep learning algorithms to be
executed on embedded hardware. Methods of reducing the size of neural

122

networks were considered. We suggested to use the unsupervised loss func-
tion to refine the algorithms trained on synthetic data to work on real scenes.

8.2 Potential future work directions

During the development of the algorithms and the end system within the
scope of the dissertation, some drawbacks and limitations were faced. We
believe that these shortcomings can be addressed by future work, the key
points of which we describe below.

8.2.1 Light field calibration
In general, camera calibration is quite a complex task. Even with the pro-
posed procedure, we can see some potential problems, such as the low accu-
racy of the manufacturing of the calibration pattern, improper positioning of
it on the scene, and in general the lack of possibility to make a calibration. Po-
tentially, such problems can be solved by using fully automatic calibration.
The presence of many LF views, their predictable location in the grid, and
the corresponding chain correspondence matching principle potentially al-
low for a fairly high level of autocalibration. The now popular deep learning
methods can achieve high accuracy for this task.

8.2.2 Light field depth estimation

In general, a potential direction for calculating depth maps with high accu-
racy is to migrate the algorithm to the principles of deep learning. For more
rapid operation, the principles of matching cost bordering can also be used
in this paradigm. The use of neural network reduction techniques together
with this will allow to bring such algorithms into the real-time processing
domain with a negligible loss of accuracy.

During the tests with real-world images, we came up with an idea of ad-
justment for border threshold λ from Eq. 5.17 dependent on the initial dis-
parity value, so that for small disparities this threshold is higher rather than
for higher values, making it somewhat adaptive. Such a strategy can help to
determine the more accurate values for the farther objects, where the pixel
discontinuity can be a crucial factor for the right depth estimation.

The topic of occlusion-aware processing is of interest, since the specific at-
tention to it allows the reconstruction of partially visible objects of the scene.
We also consider census transform as potential operation for the reconstruc-
tion tasks due to its stability against image noise and non-parametric nature.
For example, census transform might be reformulated to the adaptive case,
using not only the optimal position, but the optimal sparse kernel configu-
rations. Also, the potential of the differentiable census transform for super-
vised depth estimation is yet to be investigated.

123

Bibliography

[1] 4D Light Field Benchmark — lightfield-analysis.uni-konstanz.de. https://
lightfield-analysis.uni-konstanz.de/. [Accessed 07-May-2023].

[2] Andrew Adams. The (New) Stanford Light Field Archive. http://lightfield.
stanford.edu/lfs.html. [Accessed 05-Apr-2023]. 2008.

[3] Edward H Adelson and James R Bergen. “The plenoptic function and
the elements of early vision”. In: Computational models of visual process-
ing 1 (1991), p. 8.

[4] Edward H. Adelson and John Y. A. Wang. “Single Lens Stereo with
a Plenoptic Camera”. In: IEEE Trans. Pattern Anal. Mach. Intell. 14.2
(1992), pp. 99–106. DOI: 10.1109/34.121783.

[5] Yuriy Anisimov, Jason Raphael Rambach, and Didier Stricker. “Non-
linear Optimization of Light Field Point Cloud”. In: Sensors 22.3 (2022),
p. 814. DOI: 10.3390/s22030814.

[6] Yuriy Anisimov and Didier Stricker. “Fast and Efficient Depth Map
Estimation from Light Fields”. In: 2017 International Conference on 3D
Vision, 3DV 2017, Qingdao, China, October 10-12, 2017. IEEE Computer
Society, 2017, pp. 337–346. DOI: 10.1109/3DV.2017.00046.

[7] Yuriy Anisimov, Oliver Wasenmüller, and Didier Stricker. “A Com-
pact Light Field Camera for Real-Time Depth Estimation”. In: Com-
puter Analysis of Images and Patterns - 18th International Conference, CAIP
2019, Salerno, Italy, September 3-5, 2019, Proceedings, Part I. Ed. by Mario
Vento and Gennaro Percannella. Vol. 11678. Lecture Notes in Com-
puter Science. Springer, 2019, pp. 52–63. DOI: 10.1007/978-3-030-
29888-3_5.

[8] Yuriy Anisimov, Oliver Wasenmüller, and Didier Stricker. “Rapid Light
Field Depth Estimation with Semi-Global Matching”. In: 15th IEEE
International Conference on Intelligent Computer Communication and Pro-
cessing, ICCP 2019, Cluj-Napoca, Romania, September 5-7, 2019. Ed. by
Sergiu Nedevschi, Rodica Potolea, and Radu Razvan Slavescu. IEEE,
2019, pp. 109–116. DOI: 10.1109/ICCP48234.2019.8959680.

[9] K. S. Arun, Thomas S. Huang, and Steven D. Blostein. “Least-Squares
Fitting of Two 3-D Point Sets”. In: IEEE Trans. Pattern Anal. Mach. In-
tell. 9.5 (1987), pp. 698–700. DOI: 10.1109/TPAMI.1987.4767965.

[10] Michael Barr and Anthony J Massa. Programming Embedded Systems.
en. 2nd ed. Sebastopol, CA: O’Reilly Media, 2006.

https://lightfield-analysis.uni-konstanz.de/
https://lightfield-analysis.uni-konstanz.de/
http://lightfield.stanford.edu/lfs.html
http://lightfield.stanford.edu/lfs.html
https://doi.org/10.1109/34.121783
https://doi.org/10.3390/s22030814
https://doi.org/10.1109/3DV.2017.00046
https://doi.org/10.1007/978-3-030-29888-3_5
https://doi.org/10.1007/978-3-030-29888-3_5
https://doi.org/10.1109/ICCP48234.2019.8959680
https://doi.org/10.1109/TPAMI.1987.4767965

124 Bibliography

[11] Bryce E Bayer. Color imaging array. US Patent 3,971,065. 1976.

[12] Commandant Benoit. “Note sur une méthode de résolution des équa-
tions normales provenant de l’application de la méthode des moin-
dres carrésa un systeme d’équations linéaires en nombre inférieura
celui des inconnues. Application de la méthodea la résolution d’un
systeme défini d’équations linéaires (Procédé du Commandant Cholesky)”.
In: Bulletin géodésique 2.1 (1924), pp. 67–77.

[13] Filippo Bergamasco et al. “Adopting an unconstrained ray model in
light-field cameras for 3D shape reconstruction”. In: IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015. IEEE Computer Society, 2015, pp. 3003–3012.
DOI: 10.1109/CVPR.2015.7298919.

[14] Patrick Bertram et al. “Development of a context-aware assistive sys-
tem for manual repair processes-a combination of probabilistic and
deterministic approaches”. In: Procedia Manufacturing 51 (2020), pp. 598–
604.

[15] Julian Besag. “Statistical analysis of non-lattice data”. In: Journal of the
Royal Statistical Society: Series D (The Statistician) 24.3 (1975), pp. 179–
195. DOI: 10.2307/2987782.

[16] Mario Bettini. Apiaria universae philosopiae mathematicae. 1642.

[17] Yunsu Bok, Hae-Gon Jeon, and In So Kweon. “Geometric Calibration
of Micro-Lens-Based Light Field Cameras Using Line Features”. In:
IEEE Trans. Pattern Anal. Mach. Intell. 39.2 (2017), pp. 287–300. DOI:
10.1109/TPAMI.2016.2541145.

[18] Robert C. Bolles, H. Harlyn Baker, and David H. Marimont. “Epipolar-
plane image analysis: An approach to determining structure from mo-
tion”. In: Int. J. Comput. Vis. 1.1 (1987), pp. 7–55. DOI: 10.1007/BF00128525.

[19] Mohammad Reza Bonyadi and Zbigniew Michalewicz. “Particle Swarm
Optimization for Single Objective Continuous Space Problems: A Re-
view”. In: Evol. Comput. 25.1 (2017), pp. 1–54. DOI: 10.1162/EVCO_r_
00180.

[20] Jean-Yves Bouguet. Camera Calibration Toolbox for Matlab. en. Caltech-
DATA, 2022. DOI: 10.22002/D1.20164.

[21] Yuri Boykov, Olga Veksler, and Ramin Zabih. “Fast Approximate En-
ergy Minimization via Graph Cuts”. In: Proceedings of the International
Conference on Computer Vision, Kerkyra, Corfu, Greece, September 20-25,
1999. IEEE Computer Society, 1999, pp. 377–384. DOI: 10.1109/ICCV.
1999.791245.

[22] Michael H. Brill. “Trichromatic Theory”. In: Computer Vision, A Refer-
ence Guide. 2014, pp. 827–829. DOI: 10.1007/978-0-387-31439-6_453.

[23] Duane C Brown. “Decentering distortion of lenses”. In: Photogrammet-
ric Engineering and Remote Sensing (32 1966).

https://doi.org/10.1109/CVPR.2015.7298919
https://doi.org/10.2307/2987782
https://doi.org/10.1109/TPAMI.2016.2541145
https://doi.org/10.1007/BF00128525
https://doi.org/10.1162/EVCO_r_00180
https://doi.org/10.1162/EVCO_r_00180
https://doi.org/10.22002/D1.20164
https://doi.org/10.1109/ICCV.1999.791245
https://doi.org/10.1109/ICCV.1999.791245
https://doi.org/10.1007/978-0-387-31439-6_453

Bibliography 125

[24] G. Buchsbaum. “A spatial processor model for object colour percep-
tion”. In: Journal of the Franklin Institute 310.1 (1980), pp. 1–26. ISSN:
0016-0032. DOI: https://doi.org/10.1016/0016-0032(80)90058-7.

[25] John F. Canny. “A Computational Approach to Edge Detection”. In:
IEEE Trans. Pattern Anal. Mach. Intell. 8.6 (1986), pp. 679–698. DOI: 10.
1109/TPAMI.1986.4767851.

[26] Chaur-Chin Chen and Hsueh-Ting Chu. “Similarity Measurement Be-
tween Images”. In: 29th Annual International Computer Software and
Applications Conference, COMPSAC 2005, Edinburgh, Scotland, UK, July
25-28, 2005. Volume 2. IEEE Computer Society, 2005, pp. 41–42. DOI:
10.1109/COMPSAC.2005.140.

[27] George Chen et al. “Light field duality: concept and applications”.
In: Proceedings of the ACM Symposium on Virtual Reality Software and
Technology, VRST 2002, Hong Kong, China, November 11-13, 2002. Ed. by
Jiaoying Shi et al. ACM, 2002, pp. 9–16. DOI: 10.1145/585740.585743.

[28] Jiaxin Chen, Shuo Zhang, and Youfang Lin. “Attention-based Multi-
Level Fusion Network for Light Field Depth Estimation”. In: Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021, pp. 1009–
1017.

[29] Yang Chen, Martin Alain, and Aljosa Smolic. “Fast and Accurate Op-
tical Flow based Depth Map Estimation from Light Fields”. In: CoRR
abs/2008.04673 (2020). arXiv: 2008.04673.

[30] Gabriella Csurka et al. “Characterizing the uncertainty of the fun-
damental matrix”. In: Computer vision and image understanding 68.1
(1997), pp. 18–36. DOI: 10.1006/cviu.1997.0531.

[31] Lukasz Dabala et al. “Efficient Multi-image Correspondences for On-
line Light Field Video Processing”. In: Comput. Graph. Forum 35.7 (2016),
pp. 401–410. DOI: 10.1111/cgf.13037.

[32] Sven Dupré. “Inside the camera obscura: Kepler’s experiment and
theory of optical imagery”. In: Early Science and Medicine 13.3 (2008),
pp. 219–244. DOI: 10.1163/157338208x285026.

[33] Qingbin Fan et al. “Trilobite-inspired neural nanophotonic light-field
camera with extreme depth-of-field”. In: Nature Communications 13.1
(2022). DOI: 10.1038/s41467-022-29568-y.

[34] Olivier D. Faugeras, Quang-Tuan Luong, and Stephen J. Maybank.
“Camera Self-Calibration: Theory and Experiments”. In: Computer Vi-
sion - ECCV’92, Second European Conference on Computer Vision, Santa
Margherita Ligure, Italy, May 19-22, 1992, Proceedings. Ed. by Giulio
Sandini. Vol. 588. Lecture Notes in Computer Science. Springer, 1992,
pp. 321–334. DOI: 10.1007/3-540-55426-2_37.

https://doi.org/https://doi.org/10.1016/0016-0032(80)90058-7
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/COMPSAC.2005.140
https://doi.org/10.1145/585740.585743
https://arxiv.org/abs/2008.04673
https://doi.org/10.1006/cviu.1997.0531
https://doi.org/10.1111/cgf.13037
https://doi.org/10.1163/157338208x285026
https://doi.org/10.1038/s41467-022-29568-y
https://doi.org/10.1007/3-540-55426-2_37

126 Bibliography

[35] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Image Analysis
and Automated Cartography”. In: Commun. ACM 24.6 (1981), pp. 381–
395. DOI: 10.1145/358669.358692.

[36] Wolfgang Förstner and Eberhard Gülch. “A fast operator for detection
and precise location of distinct points, corners and centres of circular
features”. In: Proc. ISPRS intercommission conference on fast processing of
photogrammetric data. Vol. 6. Interlaken. 1987, pp. 281–305.

[37] Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothe-
sis: Finding Sparse, Trainable Neural Networks”. In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019.

[38] Andrei Gershun. “The light field”. In: Journal of Mathematics and Physics
18.1-4 (1939), pp. 51–151.

[39] Gene H. Golub and Charles F. Van Loan. Matrix Computations, Third
Edition. Johns Hopkins University Press, 1996. ISBN: 978-0-8018-5414-
9.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[41] Walter Greiner. Quantum Mechanics. Springer Berlin Heidelberg, 2001.
DOI: 10.1007/978-3-642-56826-8.

[42] István Haller and Sergiu Nedevschi. “Design of Interpolation Func-
tions for Subpixel-Accuracy Stereo-Vision Systems”. In: IEEE Trans.
Image Process. 21.2 (2012), pp. 889–898. DOI: 10 . 1109 / TIP . 2011 .
2163163.

[43] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Com-
pressing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding. 2015. DOI: 10.48550/ARXIV.1510.00149.

[44] Robert M. Haralick, Stanley R. Sternberg, and Xinhua Zhuang. “Im-
age Analysis Using Mathematical Morphology”. In: IEEE Trans. Pat-
tern Anal. Mach. Intell. 9.4 (1987), pp. 532–550. DOI: 10.1109/TPAMI.
1987.4767941.

[45] Christopher G. Harris and Mike Stephens. “A Combined Corner and
Edge Detector”. In: Proceedings of the Alvey Vision Conference, AVC 1988,
Manchester, UK, September, 1988. Ed. by Christopher J. Taylor. Alvey
Vision Club, 1988, pp. 1–6. DOI: 10.5244/C.2.23.

[46] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004. ISBN: 9780511811685.
DOI: 10.1017/cbo9780511811685.

[47] Li WangDong-Chen He. “Texture classification using texture spec-
trum”. In: Pattern Recognit. 23.8 (1990), pp. 905–910. DOI: 10.1016/
0031-3203(90)90135-8.

https://doi.org/10.1145/358669.358692
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-642-56826-8
https://doi.org/10.1109/TIP.2011.2163163
https://doi.org/10.1109/TIP.2011.2163163
https://doi.org/10.48550/ARXIV.1510.00149
https://doi.org/10.1109/TPAMI.1987.4767941
https://doi.org/10.1109/TPAMI.1987.4767941
https://doi.org/10.5244/C.2.23
https://doi.org/10.1017/cbo9780511811685
https://doi.org/10.1016/0031-3203(90)90135-8
https://doi.org/10.1016/0031-3203(90)90135-8

Bibliography 127

[48] Steve Heath. Embedded Systems Design. en. 2nd ed. London, England:
Newnes, 2002. ISBN: 9780750632379.

[49] Stefan Heber and Thomas Pock. “Convolutional Networks for Shape
from Light Field”. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016.
IEEE Computer Society, 2016, pp. 3746–3754. DOI: 10.1109/CVPR.
2016.407.

[50] Stefan Heber, Wei Yu, and Thomas Pock. “Neural EPI-Volume Net-
works for Shape from Light Field”. In: IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE
Computer Society, 2017, pp. 2271–2279. DOI: 10.1109/ICCV.2017.247.

[51] Robert Hirsch. Seizing the light: a social & aesthetic history of photography.
Routledge, 2017. ISBN: 978-11-3894-425-1.

[52] Heiko Hirschmüller. “Stereo Processing by Semiglobal Matching and
Mutual Information”. In: IEEE Trans. Pattern Anal. Mach. Intell. 30.2
(2008), pp. 328–341. DOI: 10.1109/TPAMI.2007.1166.

[53] Heiko Hirschmüller, Peter R. Innocent, and Jonathan M. Garibaldi.
“Real-Time Correlation-Based Stereo Vision with Reduced Border Er-
rors”. In: Int. J. Comput. Vis. 47.1-3 (2002), pp. 229–246. DOI: 10.1023/
A:1014554110407.

[54] Heiko Hirschmüller and Daniel Scharstein. “Evaluation of Cost Func-
tions for Stereo Matching”. In: 2007 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2007), 18-23 June
2007, Minneapolis, Minnesota, USA. IEEE Computer Society, 2007. DOI:
10.1109/CVPR.2007.383248.

[55] Katrin Honauer et al. “A Dataset and Evaluation Methodology for
Depth Estimation on 4D Light Fields”. In: Computer Vision - ACCV
2016 - 13th Asian Conference on Computer Vision, Taipei, Taiwan, Novem-
ber 20-24, 2016, Revised Selected Papers, Part III. Ed. by Shang-Hong Lai
et al. Vol. 10113. Lecture Notes in Computer Science. Springer, 2016,
pp. 19–34. DOI: 10.1007/978-3-319-54187-7_2.

[56] Berthold K. P. Horn and Brian G. Schunck. “Determining Optical Flow”.
In: Artif. Intell. 17.1-3 (1981), pp. 185–203. DOI: 10.1016/0004-3702(81)
90024-2.

[57] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. “Multi-
layer feedforward networks are universal approximators”. In: Neural
Networks 2.5 (1989), pp. 359–366. DOI: 10.1016/0893-6080(89)90020-
8.

[58] Qiuxia Hou and Cheolkon Jung. “Occlusion Robust Light Field Depth
Estimation Using Segmentation Guided Bilateral Filtering”. In: 19th
IEEE International Symposium on Multimedia, ISM 2017, Taichung, Tai-
wan, December 11-13, 2017. IEEE Computer Society, 2017, pp. 14–18.
DOI: 10.1109/ISM.2017.13.

https://doi.org/10.1109/CVPR.2016.407
https://doi.org/10.1109/CVPR.2016.407
https://doi.org/10.1109/ICCV.2017.247
https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1023/A:1014554110407
https://doi.org/10.1023/A:1014554110407
https://doi.org/10.1109/CVPR.2007.383248
https://doi.org/10.1007/978-3-319-54187-7_2
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/ISM.2017.13

128 Bibliography

[59] Xiaoyan Hu and Philippos Mordohai. “A Quantitative Evaluation of
Confidence Measures for Stereo Vision”. In: IEEE Trans. Pattern Anal.
Mach. Intell. 34.11 (2012), pp. 2121–2133. DOI: 10.1109/TPAMI.2012.
46.

[60] Baoru Huang et al. “H-Net: Unsupervised Attention-based Stereo Depth
Estimation Leveraging Epipolar Geometry”. In: IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, CVPR Workshops
2022, New Orleans, LA, USA, June 19-20, 2022. IEEE, 2022, pp. 4459–
4466. DOI: 10.1109/CVPRW56347.2022.00492.

[61] Chao-Tsung Huang. “Robust Pseudo Random Fields for Light-Field
Stereo Matching”. In: IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society,
2017, pp. 11–19. DOI: 10.1109/ICCV.2017.11.

[62] Zhicong Huang et al. “Fast Light-field Disparity Estimation with Multi-
disparity-scale Cost Aggregation”. In: 2021 IEEE/CVF International Con-
ference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October
10-17, 2021. IEEE, 2021, pp. 6300–6309. DOI: 10 . 1109 / ICCV48922 .
2021.00626.

[63] Katsushi Ikeuchi, ed. Computer Vision, A Reference Guide. Springer, 2014.
ISBN: 978-0-387-30771-8. DOI: 10.1007/978-0-387-31439-6.

[64] Stephen S. Intille and Aaron F. Bobick. “Disparity-Space Images and
Large Occlusion Stereo”. In: Computer Vision - ECCV’94, Third Euro-
pean Conference on Computer Vision, Stockholm, Sweden, May 2-6, 1994,
Proceedings, Volume II. Ed. by Jan-Olof Eklundh. Vol. 801. Lecture Notes
in Computer Science. Springer, 1994, pp. 179–186. DOI: 10 . 1007 /
BFb0028349.

[65] Taisei Iwatsuki, Keita Takahashi, and Toshiaki Fujii. “Unsupervised
disparity estimation from light field using plug-and-play weighted
warping loss”. In: Signal Process. Image Commun. 107 (2022), p. 116764.
DOI: 10.1016/j.image.2022.116764.

[66] Hae-Gon Jeon et al. “Accurate depth map estimation from a lenslet
light field camera”. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Com-
puter Society, 2015, pp. 1547–1555. DOI: 10.1109/CVPR.2015.7298762.

[67] Hae-Gon Jeon et al. “Depth from a Light Field Image with Learning-
Based Matching Costs”. In: IEEE Trans. Pattern Anal. Mach. Intell. 41.2
(2019), pp. 297–310. DOI: 10.1109/TPAMI.2018.2794979.

[68] Yue Ji and Jun Wu. “Calibration method of light-field camera for pho-
togrammetry application”. In: Measurement 148 (2019), p. 106943. DOI:
10.1016/j.measurement.2019.106943.

[69] Jing Jin and Junhui Hou. “Occlusion-Aware Unsupervised Learning
of Depth From 4-D Light Fields”. In: IEEE Trans. Image Process. 31
(2022), pp. 2216–2228. DOI: 10.1109/TIP.2022.3154288.

https://doi.org/10.1109/TPAMI.2012.46
https://doi.org/10.1109/TPAMI.2012.46
https://doi.org/10.1109/CVPRW56347.2022.00492
https://doi.org/10.1109/ICCV.2017.11
https://doi.org/10.1109/ICCV48922.2021.00626
https://doi.org/10.1109/ICCV48922.2021.00626
https://doi.org/10.1007/978-0-387-31439-6
https://doi.org/10.1007/BFb0028349
https://doi.org/10.1007/BFb0028349
https://doi.org/10.1016/j.image.2022.116764
https://doi.org/10.1109/CVPR.2015.7298762
https://doi.org/10.1109/TPAMI.2018.2794979
https://doi.org/10.1016/j.measurement.2019.106943
https://doi.org/10.1109/TIP.2022.3154288

Bibliography 129

[70] Ole Johannsen, Antonin Sulc, and Bastian Goldluecke. “What Sparse
Light Field Coding Reveals about Scene Structure”. In: 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 3262–
3270. DOI: 10.1109/CVPR.2016.355.

[71] Neel Joshi and Larry Zitnick. “Micro-baseline stereo”. In: Technical Re-
port MSR-TR-2014–73 (2014), p. 8.

[72] Daniel Hernández Juárez et al. “Embedded Real-time Stereo Estima-
tion via Semi-Global Matching on the GPU”. In: International Confer-
ence on Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego,
California, USA. Ed. by Michelle Connolly. Vol. 80. Procedia Computer
Science. Elsevier, 2016, pp. 143–153. DOI: 10.1016/j.procs.2016.05.
305.

[73] Felix Juefei-Xu, Vishnu Naresh Boddeti, and Marios Savvides. “Lo-
cal Binary Convolutional Neural Networks”. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017. IEEE Computer Society, 2017, pp. 4284–4293.
DOI: 10.1109/CVPR.2017.456.

[74] Yun-Suk Kang, Cheon Lee, and Yo-Sung Ho. “An Efficient Rectifica-
tion Algorithm for Multi-View Images in Parallel Camera Array”. In:
2008 3DTV Conference: The True Vision - Capture, Transmission and Dis-
play of 3D Video. 2008, pp. 61–64. DOI: 10.1109/3DTV.2008.4547808.

[75] Changil Kim et al. “Scene reconstruction from high spatio-angular
resolution light fields”. In: ACM Trans. Graph. 32.4 (2013), 73:1–73:12.
DOI: 10.1145/2461912.2461926.

[76] Ron Kimmel. “Demosaicing: image reconstruction from color CCD
samples”. In: IEEE Trans. Image Process. 8.9 (1999), pp. 1221–1228. DOI:
10.1109/83.784434.

[77] Reinhard Koch. “Depth Estimation”. In: Computer Vision: A Reference
Guide. Ed. by Katsushi Ikeuchi. Boston, MA: Springer US, 2014, pp. 183–
186. ISBN: 978-0-387-31439-6. DOI: 10.1007/978-0-387-31439-6_125.

[78] Vladimir Kolmogorov and Ramin Zabih. “Multi-camera Scene Recon-
struction via Graph Cuts”. In: Computer Vision - ECCV 2002, 7th Eu-
ropean Conference on Computer Vision, Copenhagen, Denmark, May 28-
31, 2002, Proceedings, Part III. Ed. by Anders Heyden et al. Vol. 2352.
Lecture Notes in Computer Science. Springer, 2002, pp. 82–96. DOI:
10.1007/3-540-47977-5_6.

[79] Johannes Kopf et al. “Joint bilateral upsampling”. In: ACM Trans. Graph.
26.3 (2007), p. 96. DOI: 10.1145/1276377.1276497.

[80] Sanjeev J. Koppal. “Lambertian Reflectance”. In: Computer Vision, A
Reference Guide. 2014, pp. 441–443. DOI: 10.1007/978-0-387-31439-
6_534.

https://doi.org/10.1109/CVPR.2016.355
https://doi.org/10.1016/j.procs.2016.05.305
https://doi.org/10.1016/j.procs.2016.05.305
https://doi.org/10.1109/CVPR.2017.456
https://doi.org/10.1109/3DTV.2008.4547808
https://doi.org/10.1145/2461912.2461926
https://doi.org/10.1109/83.784434
https://doi.org/10.1007/978-0-387-31439-6_125
https://doi.org/10.1007/3-540-47977-5_6
https://doi.org/10.1145/1276377.1276497
https://doi.org/10.1007/978-0-387-31439-6_534
https://doi.org/10.1007/978-0-387-31439-6_534

130 Bibliography

[81] Bernd Krolla, Maximilian Diebold, and Didier Stricker. “Light Field
from Smartphone-Based Dual Video”. In: Computer Vision - ECCV 2014
Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings,
Part II. Ed. by Lourdes Agapito, Michael M. Bronstein, and Carsten
Rother. Vol. 8926. Lecture Notes in Computer Science. Springer, 2014,
pp. 600–610. DOI: 10.1007/978-3-319-16181-5_46.

[82] Jae Young Lee and Rae-Hong Park. “Complex-Valued Disparity: Uni-
fied Depth Model of Depth from Stereo, Depth from Focus, and Depth
from Defocus Based on the Light Field Gradient”. In: IEEE Trans. Pat-
tern Anal. Mach. Intell. 43.3 (2021), pp. 830–841. DOI: 10.1109/TPAMI.
2019.2946159.

[83] Jae Young Lee and Rae-Hong Park. “Depth Estimation From Light
Field by Accumulating Binary Maps Based on Foreground-Background
Separation”. In: IEEE J. Sel. Top. Signal Process. 11.7 (2017), pp. 955–964.
DOI: 10.1109/JSTSP.2017.2747154.

[84] Titus Leistner et al. “Learning to Think Outside the Box: Wide-Baseline
Light Field Depth Estimation with EPI-Shift”. In: 2019 International
Conference on 3D Vision, 3DV 2019, Québec City, QC, Canada, September
16-19, 2019. IEEE, 2019, pp. 249–257. DOI: 10.1109/3DV.2019.00036.

[85] Titus Leistner et al. “Towards Multimodal Depth Estimation from Light
Fields”. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. IEEE, 2022,
pp. 12943–12951. DOI: 10.1109/CVPR52688.2022.01261.

[86] Marc Levoy and Pat Hanrahan. “Light Field Rendering”. In: Proceed-
ings of the 23rd Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH 1996, New Orleans, LA, USA, August 4-9,
1996. Ed. by John Fujii. ACM, 1996, pp. 31–42. DOI: 10.1145/237170.
237199.

[87] Kunyuan Li et al. “Self-Supervised Light Field Depth Estimation Us-
ing Epipolar Plane Images”. In: International Conference on 3D Vision,
3DV 2021, London, United Kingdom, December 1-3, 2021. IEEE, 2021,
pp. 731–740. DOI: 10.1109/3DV53792.2021.00082.

[88] Peng Li et al. “OPAL: Occlusion Pattern Aware Loss for Unsupervised
Light Field Disparity Estimation”. In: IEEE Trans. Pattern Anal. Mach.
Intell. 46.2 (2024), pp. 681–694. DOI: 10.1109/TPAMI.2023.3296600.

[89] Stan Z. Li. Markov Random Field Modeling in Image Analysis. Advances
in Pattern Recognition. Springer, 2009. ISBN: 978-1-84800-278-4. DOI:
10.1007/978-1-84800-279-1.

[90] “Hamming Distance”. In: Encyclopedia of Biometrics. Ed. by Stan Z. Li
and Anil Jain. Boston, MA: Springer US, 2009, pp. 668–668. ISBN: 978-
0-387-73003-5. DOI: 10.1007/978-0-387-73003-5_956.

[91] Tailin Liang et al. “Pruning and quantization for deep neural network
acceleration: A survey”. In: Neurocomputing 461 (2021), pp. 370–403.
DOI: 10.1016/j.neucom.2021.07.045.

https://doi.org/10.1007/978-3-319-16181-5_46
https://doi.org/10.1109/TPAMI.2019.2946159
https://doi.org/10.1109/TPAMI.2019.2946159
https://doi.org/10.1109/JSTSP.2017.2747154
https://doi.org/10.1109/3DV.2019.00036
https://doi.org/10.1109/CVPR52688.2022.01261
https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/237170.237199
https://doi.org/10.1109/3DV53792.2021.00082
https://doi.org/10.1109/TPAMI.2023.3296600
https://doi.org/10.1007/978-1-84800-279-1
https://doi.org/10.1007/978-0-387-73003-5_956
https://doi.org/10.1016/j.neucom.2021.07.045

Bibliography 131

[92] Haiting Lin et al. “Depth Recovery from Light Field Using Focal Stack
Symmetry”. In: 2015 IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, December 7-13, 2015. IEEE Computer Soci-
ety, 2015, pp. 3451–3459. DOI: 10.1109/ICCV.2015.394.

[93] Fei Liu et al. “High quality depth map estimation of object surface
from light-field images”. In: Neurocomputing 252 (2017), pp. 3–16. DOI:
10.1016/j.neucom.2016.09.136.

[94] Maziar Loghman and Joohee Kim. “SGM-based dense disparity esti-
mation using adaptive Census transform”. In: International Conference
on Connected Vehicles and Expo, ICCVE 2012, Las Vegas, NV, USA, De-
cember 2-6, 2013. IEEE, 2013, pp. 592–597. DOI: 10.1109/ICCVE.2013.
6799860.

[95] Manolis I.A. Lourakis and Rachid Deriche. Camera Self-Calibration Us-
ing the Singular Value Decomposition of the Fundamental Matrix: From
Point Correspondences to 3D Measurements. Tech. rep. RR-3748. INRIA,
1999.

[96] David G. Lowe. “Object Recognition from Local Scale-Invariant Fea-
tures”. In: Proceedings of the International Conference on Computer Vision,
Kerkyra, Corfu, Greece, September 20-25, 1999. IEEE Computer Society,
1999, pp. 1150–1157. DOI: 10.1109/ICCV.1999.790410.

[97] Bruce D. Lucas and Takeo Kanade. “An Iterative Image Registration
Technique with an Application to Stereo Vision”. In: Proceedings of the
7th International Joint Conference on Artificial Intelligence, IJCAI ’81, Van-
couver, BC, Canada, August 24-28, 1981. Ed. by Patrick J. Hayes. William
Kaufmann, 1981, pp. 674–679.

[98] Yaoxiang Luo et al. “EPI-Patch Based Convolutional Neural Network
for Depth Estimation on 4D Light Field”. In: Neural Information Pro-
cessing - 24th International Conference, ICONIP 2017, Guangzhou, China,
November 14-18, 2017, Proceedings, Part III. Ed. by Derong Liu et al.
Vol. 10636. Lecture Notes in Computer Science. Springer, 2017, pp. 642–
652. DOI: 10.1007/978-3-319-70090-8_65.

[99] Raman Maini and Himanshu Aggarwal. “A Comprehensive Review
of Image Enhancement Techniques”. In: CoRR abs/1003.4053 (2010).
arXiv: 1003.4053.

[100] Simon Meister, Junhwa Hur, and Stefan Roth. “Unflow: Unsupervised
learning of optical flow with a bidirectional census loss”. In: Proceed-
ings of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018. DOI:
10.1609/aaai.v32i1.12276.

[101] Moritz Menze and Andreas Geiger. “Object scene flow for autonomous
vehicles”. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR, 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer
Society, 2015, pp. 3061–3070. DOI: 10.1109/CVPR.2015.7298925.

https://doi.org/10.1109/ICCV.2015.394
https://doi.org/10.1016/j.neucom.2016.09.136
https://doi.org/10.1109/ICCVE.2013.6799860
https://doi.org/10.1109/ICCVE.2013.6799860
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1007/978-3-319-70090-8_65
https://arxiv.org/abs/1003.4053
https://doi.org/10.1609/aaai.v32i1.12276
https://doi.org/10.1109/CVPR.2015.7298925

132 Bibliography

[102] Yoshiki Mizukami et al. “Sub-pixel disparity search for binocular stereo
vision”. In: Proceedings of the 21st International Conference on Pattern
Recognition, ICPR 2012, Tsukuba, Japan, November 11-15, 2012. IEEE Com-
puter Society, 2012, pp. 364–367.

[103] Rebekah Modrak and Bill Anthes. Reframing Photography. Routledge,
2010. DOI: 10.4324/9780203847596.

[104] Jorge J. Moré. “The Levenberg-Marquardt algorithm: Implementation
and theory”. In: Numerical Analysis. Ed. by G. A. Watson. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1978, pp. 105–116. ISBN: 978-3-
540-35972-2.

[105] Jamuna S Murthy et al. “ObjectDetect: A Real-Time Object Detection
Framework for Advanced Driver Assistant Systems Using YOLOv5”.
In: Wireless Communications and Mobile Computing 2022 (2022). DOI: 10.
1155/2022/9444360.

[106] Julia Navarro and Antoni Buades. “Robust and Dense Depth Estima-
tion for Light Field Images”. In: IEEE Trans. Image Process. 26.4 (2017),
pp. 1873–1886. DOI: 10.1109/TIP.2017.2666041.

[107] Joseph Needham. Science and civilisation in China physics and physical
technology: Volume 4: Physics part 1. Cambridge, England: Cambridge
University Press, 1962. ISBN: 9780521058025.

[108] Alessandro Neri, Marco Carli, and Federica Battisti. “A multi-resolution
approach to depth field estimation in dense image arrays”. In: 2015
IEEE International Conference on Image Processing, ICIP 2015, Quebec
City, QC, Canada, September 27-30, 2015. IEEE, 2015, pp. 3358–3362.
DOI: 10.1109/ICIP.2015.7351426.

[109] MEJ Newman. “Power laws, Pareto distributions and Zipf's law”. In:
Contemporary Physics 46.5 (2005), pp. 323–351. DOI: 10.1080/00107510500052444.

[110] Phillip A. Newman and Vincent E. Rible. “Pinhole Array Camera for
Integrated Circuits”. In: Appl. Opt. 5.7 (1966), pp. 1225–1228. DOI: 10.
1364/AO.5.001225.

[111] Ren Ng et al. Light Field Photography with a Hand-held Plenoptic Cam-
era. Research Report CSTR 2005-02. Stanford university, 2005, Stan-
ford University Computer Science Tech Report.

[112] Charles-Antoine Noury, Céline Teulière, and Michel Dhome. “Light-
Field Camera Calibration from Raw Images”. In: 2017 International
Conference on Digital Image Computing: Techniques and Applications, DICTA
2017, Sydney, Australia, November 29 - December 1, 2017. IEEE, 2017,
pp. 1–8. DOI: 10.1109/DICTA.2017.8227459.

[113] Sean G. P. O’Brien et al. “Calibrating Light-Field Cameras Using Plenop-
tic Disc Features”. In: 2018 International Conference on 3D Vision, 3DV
2018, Verona, Italy, September 5-8, 2018. IEEE Computer Society, 2018,
pp. 286–294. DOI: 10.1109/3DV.2018.00041.

https://doi.org/10.4324/9780203847596
https://doi.org/10.1155/2022/9444360
https://doi.org/10.1155/2022/9444360
https://doi.org/10.1109/TIP.2017.2666041
https://doi.org/10.1109/ICIP.2015.7351426
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1364/AO.5.001225
https://doi.org/10.1364/AO.5.001225
https://doi.org/10.1109/DICTA.2017.8227459
https://doi.org/10.1109/3DV.2018.00041

Bibliography 133

[114] Masatoshi Okutomi and Takeo Kanade. “A Multiple-Baseline Stereo”.
In: IEEE Trans. Pattern Anal. Mach. Intell. 15.4 (1993), pp. 353–363. DOI:
10.1109/34.206955.

[115] James O’Neill. “An Overview of Neural Network Compression”. In:
CoRR abs/2006.03669 (2020). arXiv: 2006.03669.

[116] OpenVX - Portable, Power-efficient Vision Processing — khronos.org. https:
//www.khronos.org/openvx/. [Accessed 05-May-2023].

[117] A. Orth et al. “Optical fiber bundles: Ultra-slim light field imaging
probes”. In: Science Advances 5.4 (2019). DOI: 10.1126/sciadv.aav1555.

[118] Théodore Papadopoulo and Manolis IA Lourakis. “Estimating the ja-
cobian of the singular value decomposition: Theory and applications”.
In: Computer Vision-ECCV 2000: 6th European Conference on Computer
Vision Dublin, Ireland, June 26–July 1, 2000 Proceedings, Part I 6. Springer.
2000, pp. 554–570. DOI: 10.1007/3-540-45054-8_36.

[119] Emanuel Parzen. “On estimation of a probability density function and
mode”. In: The annals of mathematical statistics 33.3 (1962), pp. 1065–
1076.

[120] Jiayong Peng et al. “Unsupervised Depth Estimation from Light Field
Using a Convolutional Neural Network”. In: 2018 International Con-
ference on 3D Vision, 3DV 2018, Verona, Italy, September 5-8, 2018. IEEE
Computer Society, 2018, pp. 295–303. DOI: 10.1109/3DV.2018.00042.

[121] Jiayong Peng et al. “Zero-Shot Depth Estimation From Light Field Us-
ing A Convolutional Neural Network”. In: IEEE Trans. Computational
Imaging 6 (2020), pp. 682–696. DOI: 10.1109/TCI.2020.2967148.

[122] Cristiano Premebida, Gledson Melotti, and Alireza Asvadi. “RGB-D
object classification for autonomous driving perception”. In: RGB-D
Image Analysis and Processing (2019), pp. 377–395. DOI: 10.1007/978-
3-030-28603-3_17.

[123] Yanwen Qin, Xin Jin, and Qionghai Dai. “GPU-based depth estima-
tion for light field images”. In: 2017 International Symposium on Intel-
ligent Signal Processing and Communication Systems, ISPACS 2017, Xia-
men, China, November 6-9, 2017. IEEE, 2017, pp. 640–645. DOI: 10.1109/
ISPACS.2017.8266556.

[124] Yanwen Qin et al. “Enhanced depth estimation for hand-held light
field cameras”. In: 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2017, New Orleans, LA, USA, March 5-9,
2017. IEEE, 2017, pp. 2032–2036. DOI: 10.1109/ICASSP.2017.7952513.

[125] Mohammad Rastegari et al. “XNOR-Net: ImageNet Classification Us-
ing Binary Convolutional Neural Networks”. In: Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part IV. Ed. by Bastian Leibe et al.
Vol. 9908. Lecture Notes in Computer Science. Springer, 2016, pp. 525–
542. DOI: 10.1007/978-3-319-46493-0_32.

https://doi.org/10.1109/34.206955
https://arxiv.org/abs/2006.03669
https://www.khronos.org/openvx/
https://www.khronos.org/openvx/
https://doi.org/10.1126/sciadv.aav1555
https://doi.org/10.1007/3-540-45054-8_36
https://doi.org/10.1109/3DV.2018.00042
https://doi.org/10.1109/TCI.2020.2967148
https://doi.org/10.1007/978-3-030-28603-3_17
https://doi.org/10.1007/978-3-030-28603-3_17
https://doi.org/10.1109/ISPACS.2017.8266556
https://doi.org/10.1109/ISPACS.2017.8266556
https://doi.org/10.1109/ICASSP.2017.7952513
https://doi.org/10.1007/978-3-319-46493-0_32

134 Bibliography

[126] Russell Reed. “Pruning algorithms-a survey”. In: IEEE Trans. Neural
Networks 4.5 (1993), pp. 740–747. DOI: 10.1109/72.248452.

[127] Martin Rerabek and Touradj Ebrahimi. “New light field image dataset”.
In: 8th International Conference on Quality of Multimedia Experience (QoMEX).
CONF. 2016.

[128] Jérôme Revaud et al. “EpicFlow: Edge-Preserving Interpolation of Cor-
respondences for Optical Flow”. In: CoRR abs/1501.02565 (2015). arXiv:
1501.02565.

[129] O Rodrigues. “On the geometrical laws that govern the displacements
of a solid system in space, and on the change of coordinates resulting
from these displacements considered independently of the causes that
can produce them”. In: J Math Pures Appl 5 (1840), pp. 380–440.

[130] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. “The Earth Mover’s
Distance as a Metric for Image Retrieval”. In: Int. J. Comput. Vis. 40.2
(2000), pp. 99–121. DOI: 10.1023/A:1026543900054.

[131] Neus Sabater et al. “Dataset and Pipeline for Multi-view Light-Field
Video”. In: 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, CVPR Workshops 2017, Honolulu, HI, USA, July 21-
26, 2017. IEEE Computer Society, 2017, pp. 1743–1753. DOI: 10.1109/
CVPRW.2017.221.

[132] MRV Sahyun. “Mechanisms in photographic chemistry”. In: Journal of
Chemical Education 51.2 (1974), p. 72. DOI: 10.1021/ed051p72.

[133] Daniel Scharstein and Chris Pal. “Learning conditional random fields
for stereo”. In: 2007 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE. 2007, pp. 1–8.

[134] Daniel Scharstein and Richard Szeliski. “A Taxonomy and Evaluation
of Dense Two-Frame Stereo Correspondence Algorithms”. In: Int. J.
Comput. Vis. 47.1-3 (2002), pp. 7–42. DOI: 10.1023/A:1014573219977.

[135] Steven A Shafer. “Using color to separate reflection components”. In:
Color Research & Application 10.4 (1985), pp. 210–218. DOI: 10.1002/
col.5080100409.

[136] Hao Sheng et al. “Occlusion-aware depth estimation for light field
using multi-orientation EPIs”. In: Pattern Recognit. 74 (2018), pp. 587–
599. DOI: 10.1016/j.patcog.2017.09.010.

[137] Jianbo Shi and Carlo Tomasi. “Good features to track”. In: Confer-
ence on Computer Vision and Pattern Recognition, CVPR 1994, 21-23 June,
1994, Seattle, WA, USA. IEEE, 1994, pp. 593–600. DOI: 10.1109/CVPR.
1994.323794.

[138] Changha Shin et al. “EPINET: A Fully-Convolutional Neural Network
Using Epipolar Geometry for Depth From Light Field Images”. In:
2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018. Computer Vision Foun-
dation / IEEE Computer Society, 2018, pp. 4748–4757. DOI: 10.1109/
CVPR.2018.00499.

https://doi.org/10.1109/72.248452
https://arxiv.org/abs/1501.02565
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1109/CVPRW.2017.221
https://doi.org/10.1109/CVPRW.2017.221
https://doi.org/10.1021/ed051p72
https://doi.org/10.1023/A:1014573219977
https://doi.org/10.1002/col.5080100409
https://doi.org/10.1002/col.5080100409
https://doi.org/10.1016/j.patcog.2017.09.010
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/CVPR.2018.00499
https://doi.org/10.1109/CVPR.2018.00499

Bibliography 135

[139] Lipeng Si and Qing Wang. “Dense Depth-Map Estimation and Geom-
etry Inference from Light Fields via Global Optimization”. In: Com-
puter Vision - ACCV 2016 - 13th Asian Conference on Computer Vision,
Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III.
Ed. by Shang-Hong Lai et al. Vol. 10113. Lecture Notes in Computer
Science. Springer, 2016, pp. 83–98. DOI: 10.1007/978-3-319-54187-
7_6.

[140] A Mark Smith. Alhacen’s Theory of Visual Perception: A Critical Edition,
with English Translation and Commentary, of the First Three Books of Al-
hacen’s De Aspectibus, the Medieval Latin Version of Ibn Al-Haytham’s
Kitab Al-Manazir. Vol. 1. American Philosophical Society, 2001. ISBN:
9780871699145.

[141] Steven W Smith et al. The scientist and engineer’s guide to digital signal
processing. 1997.

[142] Irwin Sobel. “An Isotropic 3x3 Image Gradient Operator”. In: Presen-
tation at Stanford A.I. Project 1968 (2014).

[143] Michael Strecke, Anna Alperovich, and Bastian Goldluecke. “Accu-
rate Depth and Normal Maps from Occlusion-Aware Focal Stack Sym-
metry”. In: 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Com-
puter Society, 2017, pp. 2529–2537. DOI: 10.1109/CVPR.2017.271.

[144] Jian Sun, Nanning Zheng, and Heung-Yeung Shum. “Stereo Matching
Using Belief Propagation”. In: IEEE Trans. Pattern Anal. Mach. Intell.
25.7 (2003), pp. 787–800. DOI: 10.1109/TPAMI.2003.1206509.

[145] Xing Sun et al. “Data-driven light field depth estimation using deep
Convolutional Neural Networks”. In: 2016 International Joint Confer-
ence on Neural Networks, IJCNN 2016, Vancouver, BC, Canada, July 24-29,
2016. IEEE, 2016, pp. 367–374. DOI: 10.1109/IJCNN.2016.7727222.

[146] Xufu Sun et al. “Blind Calibration for Focused Plenoptic Cameras”.
In: IEEE International Conference on Multimedia and Expo, ICME 2019,
Shanghai, China, July 8-12, 2019. IEEE, 2019, pp. 115–120. DOI: 10 .
1109/ICME.2019.00028.

[147] I.E. Sutherland. “Three-dimensional data input by tablet”. In: Proceed-
ings of the IEEE 62.4 (1974), pp. 453–461. DOI: 10.1109/PROC.1974.
9449.

[148] Satoshi Suzuki and Keiichi Abe. “Topological structural analysis of
digitized binary images by border following”. In: Comput. Vis. Graph.
Image Process. 30.1 (1985), pp. 32–46. DOI: 10.1016/0734-189X(85)
90016-7.

https://doi.org/10.1007/978-3-319-54187-7_6
https://doi.org/10.1007/978-3-319-54187-7_6
https://doi.org/10.1109/CVPR.2017.271
https://doi.org/10.1109/TPAMI.2003.1206509
https://doi.org/10.1109/IJCNN.2016.7727222
https://doi.org/10.1109/ICME.2019.00028
https://doi.org/10.1109/ICME.2019.00028
https://doi.org/10.1109/PROC.1974.9449
https://doi.org/10.1109/PROC.1974.9449
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/0734-189X(85)90016-7

136 Bibliography

[149] Michael W. Tao et al. “Depth Estimation for Glossy Surfaces with
Light-Field Cameras”. In: Computer Vision - ECCV 2014 Workshops -
Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part II. Ed.
by Lourdes Agapito, Michael M. Bronstein, and Carsten Rother. Vol. 8926.
Lecture Notes in Computer Science. Springer, 2014, pp. 533–547. DOI:
10.1007/978-3-319-16181-5_41.

[150] Michael W. Tao et al. “Depth from Combining Defocus and Corre-
spondence Using Light-Field Cameras”. In: IEEE International Confer-
ence on Computer Vision, ICCV 2013, Sydney, Australia, December 1-8,
2013. IEEE Computer Society, 2013, pp. 673–680. DOI: 10.1109/ICCV.
2013.89.

[151] Michael W. Tao et al. “Shape Estimation from Shading, Defocus, and
Correspondence Using Light-Field Angular Coherence”. In: IEEE Trans.
Pattern Anal. Mach. Intell. 39.3 (2017), pp. 546–560. DOI: 10 . 1109 /
TPAMI.2016.2554121.

[152] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Fea-
tures. Tech. rep. International Journal of Computer Vision, 1991.

[153] Takayuki Tomioka et al. “Depth Map Estimation Using Census Trans-
form for Light Field Cameras”. In: IEICE Trans. Inf. Syst. 100-D.11
(2017), pp. 2711–2720. DOI: 10.1587/transinf.2017EDP7052.

[154] Bill Triggs et al. “Bundle Adjustment - A Modern Synthesis”. In: Vision
Algorithms: Theory and Practice, International Workshop on Vision Algo-
rithms, held during ICCV ’99, Corfu, Greece, September 21-22, 1999, Pro-
ceedings. Ed. by Bill Triggs, Andrew Zisserman, and Richard Szeliski.
Vol. 1883. Lecture Notes in Computer Science. Springer, 1999, pp. 298–
372. DOI: 10.1007/3-540-44480-7_21.

[155] Harit P Trivedi. “Can multiple views make up for lack of camera reg-
istration?” In: Image and Vision Computing 6.1 (1988), pp. 29–32.

[156] Yu-Ju Tsai et al. “Attention-Based View Selection Networks for Light-
Field Disparity Estimation”. In: Proceedings of the AAAI Conference on
Artificial Intelligence 34.07 (2020), pp. 12095–12103. DOI: 10.1609/aaai.
v34i07.6888.

[157] Vaibhav Vaish et al. “Using Plane + Parallax for Calibrating Dense
Camera Arrays”. In: 2004 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR 2004), with CD-ROM, 27
June - 2 July 2004, Washington, DC, USA. IEEE Computer Society, 2004,
pp. 2–9. DOI: 10.1109/CVPR.2004.257.

[158] Kartik Venkataraman et al. “PiCam: an ultra-thin high performance
monolithic camera array”. In: ACM Trans. Graph. 32.6 (2013), 166:1–
166:13. DOI: 10.1145/2508363.2508390.

[159] Nick Waltham. “CCD and CMOS sensors”. In: Observing Photons in
Space: A Guide to Experimental Space Astronomy. Ed. by Martin C. E.
Huber et al. New York, NY: Springer New York, 2013, pp. 423–442.
ISBN: 978-1-4614-7804-1. DOI: 10.1007/978-1-4614-7804-1_23.

https://doi.org/10.1007/978-3-319-16181-5_41
https://doi.org/10.1109/ICCV.2013.89
https://doi.org/10.1109/ICCV.2013.89
https://doi.org/10.1109/TPAMI.2016.2554121
https://doi.org/10.1109/TPAMI.2016.2554121
https://doi.org/10.1587/transinf.2017EDP7052
https://doi.org/10.1007/3-540-44480-7_21
https://doi.org/10.1609/aaai.v34i07.6888
https://doi.org/10.1609/aaai.v34i07.6888
https://doi.org/10.1109/CVPR.2004.257
https://doi.org/10.1145/2508363.2508390
https://doi.org/10.1007/978-1-4614-7804-1_23

Bibliography 137

[160] Ting-Chun Wang, Alexei A. Efros, and Ravi Ramamoorthi. “Occlusion-
Aware Depth Estimation Using Light-Field Cameras”. In: 2015 IEEE
International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015. IEEE Computer Society, 2015, pp. 3487–3495. DOI:
10.1109/ICCV.2015.398.

[161] Yang Wang et al. “UnOS: Unified Unsupervised Optical-Flow and
Stereo-Depth Estimation by Watching Videos”. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 2019,
pp. 8071–8081. DOI: 10.1109/CVPR.2019.00826.

[162] Yangfan Wang et al. “Recent advances in 3D object detection based on
RGB-D: A survey”. In: Displays 70 (2021), p. 102077. DOI: 10.1016/j.
displa.2021.102077.

[163] Yingqian Wang et al. “Disentangling Light Fields for Super-Resolution
and Disparity Estimation”. In: IEEE Trans. Pattern Anal. Mach. Intell.
45.1 (2023), pp. 425–443. DOI: 10.1109/TPAMI.2022.3152488.

[164] Sven Wanner and Bastian Goldluecke. “Globally consistent depth la-
beling of 4D light fields”. In: 2012 IEEE Conference on Computer Vi-
sion and Pattern Recognition, Providence, RI, USA, June 16-21, 2012. IEEE
Computer Society, 2012, pp. 41–48. DOI: 10.1109/CVPR.2012.6247656.

[165] Sven Wanner and Bastian Goldluecke. “Variational Light Field Anal-
ysis for Disparity Estimation and Super-Resolution”. In: IEEE Trans.
Pattern Anal. Mach. Intell. 36.3 (2014), pp. 606–619. DOI: 10 . 1109 /
TPAMI.2013.147.

[166] Henry S Warren. Hacker’s Delight. en. 2nd ed. Boston, MA: Addison-
Wesley Educational, 2012. ISBN: 978-0321842688.

[167] Oliver Wasenmüller, Gabriele Bleser, and Didier Stricker. “Combined
Bilateral Filter for Enhanced Real-time Upsampling of Depth Images”.
In: VISAPP 2015 - Proceedings of the 10th International Conference on
Computer Vision Theory and Applications, Volume 1, Berlin, Germany, 11-
14 March, 2015. Ed. by José Braz, Sebastiano Battiato, and Francisco H.
Imai. SciTePress, 2015, pp. 5–12. DOI: 10.5220/0005234800050012.

[168] John Werge. The evolution of photography: with a chronological record of
discoveries, inventions, etc., contributions to photographic literature, and
personal reminiscences extending over forty years. Piper & Carter and J.
Werge, 1890.

[169] Charles Wheatstone. “XVIII. Contributions to the physiology of vi-
sion. —Part the first. On some remarkable, and hitherto unobserved,
phenomena of binocular vision”. In: Philosophical Transactions of the
Royal Society of London 128 (1838), pp. 371–394. DOI: 10.1098/rstl.
1838.0019.

https://doi.org/10.1109/ICCV.2015.398
https://doi.org/10.1109/CVPR.2019.00826
https://doi.org/10.1016/j.displa.2021.102077
https://doi.org/10.1016/j.displa.2021.102077
https://doi.org/10.1109/TPAMI.2022.3152488
https://doi.org/10.1109/CVPR.2012.6247656
https://doi.org/10.1109/TPAMI.2013.147
https://doi.org/10.1109/TPAMI.2013.147
https://doi.org/10.5220/0005234800050012
https://doi.org/10.1098/rstl.1838.0019
https://doi.org/10.1098/rstl.1838.0019

138 Bibliography

[170] Williem and In Kyu Park. “Robust Light Field Depth Estimation for
Noisy Scene with Occlusion”. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 2016, pp. 4396–4404. DOI: 10.
1109/CVPR.2016.476.

[171] Williem, In Kyu Park, and Kyoung Mu Lee. “Robust Light Field Depth
Estimation Using Occlusion-Noise Aware Data Costs”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 40.10 (2018), pp. 2484–
2497. DOI: 10.1109/TPAMI.2017.2746858.

[172] Yichao Xu et al. “Camera array calibration for light field acquisition”.
In: Frontiers Comput. Sci. 9.5 (2015), pp. 691–702. DOI: 10.1007/s11704-
015-4237-4.

[173] Zhe Xu et al. “On-road multiple obstacles detection using color im-
ages and LiDAR point clouds”. In: Seventh International Conference on
Optical and Photonic Engineering (icOPEN 2019). Vol. 11205. SPIE. 2019,
pp. 276–282. DOI: 10.1117/12.2541656.

[174] Qingxiong Yang et al. “Spatial-Depth Super Resolution for Range Im-
ages”. In: 2007 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2007), 18-23 June 2007, Minneapolis, Min-
nesota, USA. IEEE Computer Society, 2007. DOI: 10.1109/CVPR.2007.
383211.

[175] Matt Young. “Pinhole optics.” In: Applied optics 10 12 (1971), pp. 2763–
2767. DOI: 10.1364/AO.10.002763.

[176] Thomas Young. “II. The Bakerian Lecture. On the theory of light and
colours”. In: Philosophical transactions of the Royal Society of London 92
(1802), pp. 12–48. DOI: 10.1098/rstl.1802.0004.

[177] Kaan Yücer et al. “Depth from Gradients in Dense Light Fields for Ob-
ject Reconstruction”. In: Fourth International Conference on 3D Vision,
3DV 2016, Stanford, CA, USA, October 25-28, 2016. IEEE Computer So-
ciety, 2016, pp. 249–257. DOI: 10.1109/3DV.2016.33.

[178] Ramin Zabih and John Woodfill. “Non-parametric Local Transforms
for Computing Visual Correspondence”. In: Computer Vision - ECCV’94,
Third European Conference on Computer Vision, Stockholm, Sweden, May
2-6, 1994, Proceedings, Volume II. Ed. by Jan-Olof Eklundh. Vol. 801.
Lecture Notes in Computer Science. Springer, 1994, pp. 151–158. DOI:
10.1007/BFb0028345.

[179] Bozena Zdaniuk. “Ordinary Least-Squares (OLS) Model”. In: Encyclo-
pedia of Quality of Life and Well-Being Research. Ed. by Alex C. Michalos.
Dordrecht: Springer Netherlands, 2014, pp. 4515–4517. ISBN: 978-94-
007-0753-5. DOI: 10.1007/978-94-007-0753-5_2008.

[180] N. Zeller et al. “Metric Calibration of a Focused Plenoptic Camera
based on a 3D Calibration Target”. In: ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences III-3 (2016), pp. 449–456.
DOI: 10.5194/isprs-annals-III-3-449-2016.

https://doi.org/10.1109/CVPR.2016.476
https://doi.org/10.1109/CVPR.2016.476
https://doi.org/10.1109/TPAMI.2017.2746858
https://doi.org/10.1007/s11704-015-4237-4
https://doi.org/10.1007/s11704-015-4237-4
https://doi.org/10.1117/12.2541656
https://doi.org/10.1109/CVPR.2007.383211
https://doi.org/10.1109/CVPR.2007.383211
https://doi.org/10.1364/AO.10.002763
https://doi.org/10.1098/rstl.1802.0004
https://doi.org/10.1109/3DV.2016.33
https://doi.org/10.1007/BFb0028345
https://doi.org/10.1007/978-94-007-0753-5_2008
https://doi.org/10.5194/isprs-annals-III-3-449-2016

Bibliography 139

[181] Cha Zhang and Tsuhan Chen. “A Self-Reconfigurable Camera Ar-
ray”. In: Proceedings of the 15th Eurographics Workshop on Rendering
Techniques, Norköping, Sweden, June 21-23, 2004. Ed. by Alexander Keller
and Henrik Wann Jensen. Eurographics Association, 2004, pp. 243–
254. DOI: 10.2312/EGWR/EGSR04/243-254.

[182] Shansi Zhang, Nan Meng, and Edmund Y. Lam. “Unsupervised Light
Field Depth Estimation via Multi-view Feature Matching with Occlu-
sion Prediction”. In: IEEE Transactions on Circuits and Systems for Video
Technology (2023), pp. 1–1. DOI: 10.1109/TCSVT.2023.3305978.

[183] Shuo Zhang et al. “Robust depth estimation for light field via spinning
parallelogram operator”. In: Comput. Vis. Image Underst. 145 (2016),
pp. 148–159. DOI: 10.1016/j.cviu.2015.12.007.

[184] Zhengyou Zhang. “A Flexible New Technique for Camera Calibra-
tion”. In: IEEE Trans. Pattern Anal. Mach. Intell. 22.11 (2000), pp. 1330–
1334. DOI: 10.1109/34.888718.

[185] Zhengyou Zhang. “Camera Calibration with One-Dimensional Ob-
jects”. In: Computer Vision - ECCV 2002, 7th European Conference on
Computer Vision, Copenhagen, Denmark, May 28-31, 2002, Proceedings,
Part IV. Ed. by Anders Heyden et al. Vol. 2353. Lecture Notes in Com-
puter Science. Springer, 2002, pp. 161–174. DOI: 10 . 1007 / 3 - 540 -
47979-1_11.

[186] Changyin Zhou and Shree K. Nayar. “Computational Cameras: Con-
vergence of Optics and Processing”. In: IEEE Trans. Image Process. 20.12
(2011), pp. 3322–3340. DOI: 10.1109/TIP.2011.2171700.

[187] Ping Zhou et al. “Light field calibration and 3D shape measurement
based on epipolar-space”. In: Opt. Express 27.7 (2019), pp. 10171–10184.
DOI: 10.1364/OE.27.010171.

[188] Wenhui Zhou et al. “Light-field flow: A subpixel-accuracy depth flow
estimation with geometric occlusion model from a single light-field
image”. In: 2017 IEEE International Conference on Image Processing, ICIP
2017, Beijing, China, September 17-20, 2017. IEEE, 2017, pp. 1632–1636.
DOI: 10.1109/ICIP.2017.8296558.

[189] Wenhui Zhou et al. “Unsupervised Monocular Depth Estimation From
Light Field Image”. In: IEEE Trans. Image Process. 29 (2020), pp. 1606–
1617. DOI: 10.1109/TIP.2019.2944343.

[190] Hao Zhu, Qing Wang, and Jingyi Yu. “Occlusion-Model Guided Anti-
occlusion Depth Estimation in Light Field”. In: IEEE J. Sel. Top. Signal
Process. 11.7 (2017), pp. 965–978. DOI: 10.1109/JSTSP.2017.2730818.

https://doi.org/10.2312/EGWR/EGSR04/243-254
https://doi.org/10.1109/TCSVT.2023.3305978
https://doi.org/10.1016/j.cviu.2015.12.007
https://doi.org/10.1109/34.888718
https://doi.org/10.1007/3-540-47979-1_11
https://doi.org/10.1007/3-540-47979-1_11
https://doi.org/10.1109/TIP.2011.2171700
https://doi.org/10.1364/OE.27.010171
https://doi.org/10.1109/ICIP.2017.8296558
https://doi.org/10.1109/TIP.2019.2944343
https://doi.org/10.1109/JSTSP.2017.2730818

140 Bibliography

Curriculum Vitae

Yuriy Anisimov

Education

Jun 2015 MEng (Electrical Engineering)
Moscow State University Of Mechanical Engineering (MAMI)
Moscow, Russia

Sep 2014 - Intern
Feb 2015 University of Ulsan and Hyundai vehicle plant

Ulsan, South Korea

Jun 2013 BEng (Electrical Engineering)
Moscow State University Of Mechanical Engineering (MAMI)
Moscow, Russia

Technical Experience

Nov 2022 - Researcher
now Rheinland-Pfälzische Technische Universität

Kaiserslautern, Germany

Mar 2017 - Researcher
Oct 2022 Deutsches Forschungszentrum für Künstliche Intelligenz GmbH

Kaiserslautern, Germany

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contribution
	Overview
	Publications

	Background
	Single Camera
	Definition
	Historical background
	Components of the modern camera
	Pinhole Model
	Lens distortion
	Image projection
	Spatial camera coordinates
	Matrix form
	Distortion model
	Camera calibration
	View remapping

	Stereo Camera
	Definition
	Historical background
	Parallax
	Stereo calibration
	Triangulation
	Advantages and disadvantages
	Multi-view stereo

	Light Field
	Definition
	Parameterization
	Connection with multi-view stereo
	Duality
	Acquisition

	Other concepts
	Depth Estimation
	Embedded Hardware

	Conclusion

	Survey on Related work
	Light field calibration methods
	Light field depth reconstruction methods
	Classical methods
	Deep Learning-based methods

	Conclusion

	Light Field Calibration
	Light field calibration algorithm
	Pattern-based camera calibration
	Calibration extension for multi-view cases

	Calibration Auto-Refinement
	Findings on Light Field Auto-Calibration
	Experiments
	Calibration algorithm
	Auto-refinement algorithm
	Auto-calibration algorithm

	Conclusion

	Geometrical depth estimation
	Algorithm outline
	Image similarity measurements
	Matching cost construction
	Optimization methods
	Sub-pixel refinement
	Disparity-to-depth conversion
	Point Cloud extension
	Post-processing techniques

	Evaluation
	Dataset
	Metrics
	Parameters
	Results
	Discussion

	Conclusion

	Implementation and applications
	Light Field Camera
	Images pre-processing
	Images cropping and remapping
	Camera and algorithm accuracy estimation

	Computational platform
	Algorithms platform-specific optimizations
	Results
	Running time
	Communication interface
	Fixed-point depth representation format

	Applications
	Application: Industrial assistant systems
	Application: ADAS obstacles detection

	Conclusion

	Deep Learning extension
	Neural network compression techniques
	Pruning
	Quantization

	Neural network real-world adaptation technique
	Images reprojection
	Differentiable census transform
	Loss function design
	Experiments

	Conclusion

	Conclusion
	Summary
	Potential future work directions
	Light field calibration
	Light field depth estimation

	Bibliography

