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Abstract
In this contribution a phase field model for ductile fracture with linear isotropic

hardening is presented. An energy functional consisting of an elastic energy, a plas-

tic dissipation potential and a Griffith type fracture energy constitutes the model.

The application of an unaltered radial return algorithm on element level is possible

due to the choice of an appropriate coupling between the nodal degrees of freedom,

namely the displacement and the crack/fracture fields. The degradation function

models the mentioned coupling by reducing the stiffness of the material and the

plastic contribution of the energy density in broken material. Furthermore, to solve

the global system of differential equations comprising the balance of linear momen-

tum and the quasi-static Ginzburg-Landau type evolution equation, the application

of a monolithic iterative solution scheme becomes feasible. The compact model is

used to perform 3D simulations of fracture in tension. The computed plastic zones

are compared to the dog-bone model that is used to derive validity criteria for KIC

measurements.
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1 INTRODUCTION

Before a material fails it can sustain external loads by deforming itself in such a way, that once the external loads are withdrawn,

it does not return to its initial shape, that is, the material performs a plastic transformation. Dependent on how strong the

capability of a material to perform a plastic transformation is developed, different theories have to be employed to describe

the failure process of the respective material. From an engineering point of view however, generalized failure parameters are

often of greater interest than the actual failure mechanism. Thus, for example, validity criteria for CT-specimen that have to be

met in tensile testing exist to measure a valid fracture toughness KIC. These criteria shall guarantee that assumptions of small

scale yielding and linear fracture mechanics are fulfilled as well as a state of plane strain dominates at the crack tip. The latter

assumption is based on the so called “dog-bone” model, predicting a state of plane strain in the center of the specimen and a

plane stress state at the surface. However, the validity of the criteria is frequently questioned.[1,2]

Assessing failure of ductile materials by means of numerical simulations has been proved to be difficult so far. The con-

cept of J-integrals, where, analogously to the K-concept in linear elastic fracture mechanics, the parameter J is a measure for
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the load exerted by the surrounding material on the process zone, is widely used in industrial applications, but exhibits cer-

tain drawbacks. It cannot model the nucleation of new cracks, and thus, relies on preexisting cracks. Furthermore, JC is not

an intrinsic material parameter, but dependent on geometry of the specimen and, thus, can hardly be applied to complex struc-

tures, such as welds.[3] Concerning fracture simulations within the finite element method another challenge is the tracking

of fractures since displacement jumps across crack faces have to be addressed by special algorithmic treatment. Such treat-

ments comprise on the one hand remeshing techniques, where the finite element mesh is adapted frequently to the new crack

topology and on the other hand techniques like the extended finite element method (XFEM), where a discontinuous func-

tion and the two dimensional asymtotic crack tip displacement field are added to the displacement based FE approximation in

3D.[4,5] However, these approaches still require either the a priori knowledge of the crack path or the introduction of additional

failure criteria.

In contrast to the aforementioned discrete approaches towards fracture, diffuse modeling approaches relying on a phase field

formulation are conceptually different and can overcome shortcomings of the former. In phase field models a scalar valued

order parameter is employed to distinguish between different phases. Each phase is assigned to a certain value of the phase field

parameter. Within the phases the phase field parameter is constant. The transition between two phases is modeled by a diffuse

transition zone, where the phase field parameter interpolates smoothly between the values assigned to the adjoining phases. The

constitutive equation and the gradient type evolution equations of the underlying model are determining the evolution of the

phase field parameter such that the interfaces between the phases evolve naturally, rendering the tracking of interfaces unneces-

sary as transition conditions between the phases are fulfilled automatically. In the context of fracture mechanics distinct values

of the phase field parameter are associated to intact and fractured material, respectively. The different phases evolve such that

cracks are modeled as lines/surfaces in 3D. The formal foundation of the phase field models for fracture originating from the

mechanics community arises from the variational formulation for brittle fracture by Francfort and Marigo[6] which was regular-

ized by Bourdin.[7] In case of brittle fracture an appropriate energy functional consisting of an elastic energy contribution and a

Griffith type fracture energy provides the coupling between the displacement field and the phase field fracture parameter. The

solution of the coupled system of equations comprising a Ginzburg-Landau type evolution equation and the balance of momen-

tum determines the evolution of fracture. Due to the implicit modeling of cracks by a continuous field coupling discontinuities

in the displacement field occur, thus, rendering the explicit tracking of crack interfaces unnecessary and enable a straightfor-

ward implementation in the FE framework. This is particularly beneficial in the context of plasticity, where the transfer of plastic

variables during the remeshing procedure has been proved to be a demanding task.[8] Phase field modeling of quasi-static brit-

tle fracture has been target of intensive research in recent years[7,9–14] and is well established today. Dynamic brittle fracture

has been studied.[15,16] Attempts towards ductile dynamic fracture were undertaken by Hofacker and Miehe[17] and Ulmer and

Hofacker.[18] A phase field model for brittle fracture in elastic-plastic solids where the evolution of the fracture field is driven

by elastic strains only has been proposed by Duta et al.[19] A phase field fracture model is combined with a thermal softening

shear band model.[20] Ambati et al. proposed a ductile fracture model where an elaborated degradation function accomplishes

the coupling between fracture field and strains such, that an adjustment of the model parameters allows for good reproduction

of experimental data. Due to the chosen coupling a computationally expensive staggered scheme is required to solve the cou-

pled system of equations.[21] A model using a combination of a cubic degradation function providing a stress-strain response

prior to crack initiation that approximates more accurately the linear elastic behavior and a yield surface degradation function

different from the degradation function of the elastic energy is presented.[22]

In the ductile phase field model[23] the same quadratic degradation function for the elastic energy and the plastic dissipation

potential is used. By using the same degradation function the handling of the numerics is greatly alleviated. However, the usage

of a quadratic degradation function renders a reinterpretation of the plastic parameters necessary, thus, the model is enhanced

in this contribution. As the application of a quadratic function leads to degradation prior to the onset of plastic deformation

the combination of a cubic degradation function is used instead. Due to its manageable amount of material parameters which

allow a clear interpretation with respect to experimentally measurable fracture mechanical and elastic-plastic material parame-

ters, this model is used to investigate the size and shape of the plastic zone for specimen under tensile loading in 3D. In Section

2 the ductile phase field model is sketched. Subsequently, it is investigated how the model can describe the plastic deforma-

tion along the crack front in a single notched specimen of varying thickness under tensile loading compared to the dog-bone

model and numerical simulations performed with classical approaches. The numerical results comprising the quest for suit-

able finite element meshes and the fracture simulations in 3D are presented in Section 3. Some concluding remarks are given

in Section 4.
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2 DUCTILE PHASE FIELD FRACTURE MODEL

2.1 Elastic phase field model
As the ductile phase field fracture model represents an extension to the elastic phase field fracture formulation, the latter is

introduced at first. The potential energy

Ψ(𝜺, 𝑠) = 𝑔(𝑠)𝑊el(𝜺)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=Ψel

+ 𝑐

(
1

4𝜖
(1 − 𝑠)2 + 𝜖|∇𝑠|2)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=Ψfr

, (1)

forms the basis of the model with the elastic strain energy given by

𝑊el(𝜺e) = 1

2
𝜺el ∶ (C𝜺

e). (2)

The potential consists of two parts: an elastic part Ψel and a fracture part Ψfr. The elastic strain energy, where 𝜺
e is the small

strain tensor and C the fourth-order stiffness tensor, is subject to the degradation function g(s), where s represents the fracture

field accounting for the loss of stiffness in fractured material. The value s = 1 indicates an intact material, while s = 0 represents

broken material. The stiffness tensor is assumed to be isotropic throughout this contribution. The choice of the degradation

function g(s) is discussed in Section 2.2. The fracture surface energy is represented by Ψfr. The parameter 𝑐 is the fracture

resistance and can be related to the fracture toughness. The length parameter 𝜖 describes not only the width of the transition

zone between fractured and intact material, but can be also related together with 𝑐 and the elastic stiffness to a fracture stress

in homogeneous stress states.[7,24] It is thus decisive for crack nucleation. The stress is derived from the potential by

𝝈 = 𝜕Ψ
𝜕𝜺

= 𝑔(𝑠)C𝜺. (3)

The balance of linear momentum is given by

div𝝈 = 0, (4)

where volume forces have been neglected. The time dependent Ginzburg-Landau equation describes the evolution of the fracture

field by relating the rate of s to the variational derivative of the potential

�̇� = −𝑀
𝛿Ψ
𝛿𝑠

= 𝑀

[
2𝑐𝜖Δ𝑠 − 𝑔′(𝑠)𝑊el(𝜀e) + 𝑐

2𝜖
(1 − 𝑠)

]
. (5)

2.2 Plastic phase field model
In contrast to the elastic phase field fracture model, in the ductile model the total strain 𝜺 is not identical to the elastic strain

𝜺
e = 𝜺 − 𝜺

p. (6)

Furthermore a plastic dissipation contribution

Πpl =
(
𝜎𝑌 + 1

2
𝐻𝛼

)
𝛼 (7)

is added to the potential, where 𝛼 is the hardening variable accounting for the accumulated plastic strain. The parameter 𝜎Y and

H represent the initial yield stress and the linear isotropic hardening modulus. The coupling of plastic deformation to the crack

field is accomplished by the degradation function. A parameterized cubic degradation function

𝑔(𝑠) = 𝛽(𝑠3 − 𝑠2) + 3𝑠2 − 2𝑠3 + 𝜂 (8)

suggested by Borden et al.[22] is used, where 𝜂 is the residual stiffness, introduced for numerical reasons. The parameter 𝛽 can

vary between 0 and 2, where 𝛽 = 2.0 yields the common quadratic degradation function found in many phase field fracture

approaches. The benefit of a cubic degradation function with 𝛽 = 0 will be illustrated by a discussion of a 1D bar under tensile
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loading in Section 2.3. Two solutions for the fracture variable s exist, one with s≠ 0, represented by the green curve, and a

second one with s = 1, represented by the blue curve, corresponding to intact material. As initially, that is, for small loading, only

the second solution is admissible, the linear stress-strain relation is recovered, thus no degradation occurs and a differentiation

between effective and nominal elastic plastic parameters as conducted by Kuhn et al.[23] becomes unnecessary. Taking the

modification outlined above into account the elastic-plastic potential becomes

Ψ(𝜺, 𝑠; 𝜺p, 𝛼) = 𝑔(𝑠)𝑊el(𝜺 − 𝜺
p) + 𝑔(𝑠)

(
𝜎Y + 1

2
𝐻𝛼

)
𝛼

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Πpl

+ 𝑐

(
1

4𝜖
(1 − 𝑠)2 + 𝜖|∇𝑠|2) (9)

with

𝑊el(𝜺 − 𝜺
p) = 1

2
(𝜺 − 𝜺

p) ∶ [C(𝜺 − 𝜺
p)] (10)

The stress is computed analogously to the elastic model, but with taking (6) into account becomes

𝝈 = 𝜕Ψ
𝜕𝜺

= 𝑔(𝑠)C(𝜺 − 𝜺
p). (11)

The balance of linear momentum (4) remains unaltered. The Ginzburg-Landau equation derived from the elastic-plastic potential

(9) reads

�̇� = −𝑀
𝛿Ψ
𝛿𝑠

= 𝑀

[
2𝑐𝜖Δ𝑠 − 𝑔′(𝑠)

(
𝑊 (𝜺 − 𝜺

p) +
(
𝜎Y + 1

2
𝐻𝛼

)
𝛼
)
+ 𝑐

2𝜖
(1 − 𝑠)

]
. (12)

Thus, the fracture field is not only driven by elastic strains, but also by the accumulated plastic strain 𝛼. In von Mises plasticity

it is assumed, that only the deviatoric part of the the strain is subject to plastic deformation. The deviatoric parts of the stress,

the elastic and the plastic strain quantities are

s = dev(𝝈), e = dev(𝜺), and ep = dev(𝜺p) (13)

respectively, where the deviator is defined as dev(⋅) = (⋅) − 1

3
tr(⋅)1, with tr(⋅) indicating the trace of (⋅) and 1 the unity tensor.

Plastic material behavior is characterized by the von Mises type yield criterion stating

𝑓 (s, 𝛼) = ‖s‖ +√
2

3
𝑞 = 0, (14)

where

𝑞 = −𝜕Ψ
𝜕𝛼

= −𝑔(𝑠)(𝜎Y +𝐻𝛼) (15)

is the driving force for the plastic deformation. As isotropic material behavior is considered throughout this contribution, the

relation between deviatoric stress and strain is

s = 𝑔(𝑠)2𝜇(e − ep), (16)

where 𝜇 is the shear modulus or second Lamé constant. With (13), (16), and (15) the yield criterion states

𝑓 (s, 𝛼) = 𝑔(𝑠)‖2𝜇(e − ep)‖ − 𝑔(𝑠)
√

2

3
(𝜎Y +𝐻𝛼) = 0. (17)

By choosing the same degradation function for the elastic potential Wel and the plastic contribution Πpl in (9) it is feasible to

formulate an undegraded counterpart of the yield criterion

𝑓 ∗(s∗, 𝛼) = ‖s∗‖ −√
2

3
(𝜎Y +𝐻𝛼) = 0, (18)
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= 1

0 0

F I G U R E 1 Sketch of a 1D bar under tensile loading

with the undegraded counterpart of the stress deviator s*. The undegraded counterpart of the yield function does not depend

on the fracture field and thus allows for direct application of the usual “radial return”-algorithm for plasticity.[25]

2.3 1D problem
In order to illustrate some features of the model the case of a 1D bar under linear increasing tensile loading as depicted in

Figure 1 shall be briefly discussed.

In the quasi-static case and if M →∞ for the homogeneous solution of the fracture field the relation

𝑔(𝑠)′(𝑊el + Πpl) − 𝑐
1 − 𝑠

2𝜖
= 0 (19)

holds. If the parameters of the degradation function are chosen 𝛽 = 0 and 𝜂 = 0, dependent on whether the yield stress is already

reached or not the sum of the undegraded elastic energy and the plastic dissipation contribution is given by

𝑊el + Πpl =
⎧⎪⎨⎪⎩

1

2
𝐸𝜺

2
0

if 𝜺0 ≤
𝜎Y

𝐻

1

2
𝐸

(
𝜺

2
0
− 𝐸

𝐸+𝐻

(
𝜺0 −

𝜎Y

𝐻

)2
)

if 𝜺0 >
𝜎Y

𝐻
.

(20)

Two solutions for the fracture field are obtained from Equation (19) in dependence of Wel +Πpl,

𝑠1 = 1, (21)

𝑠2 = 𝑐

12𝜀(𝑊el + Πpl)
, (22)

where s2 is only admissible (ie, s2 ≤ 1) if 𝑊el + Πpl >
𝑐

12𝜖
. For 𝑊el + Πpl >

𝑐

12𝜖
the degraded solution s2 is energetically favorable

compared to s1, which corresponds to the solution for intact material. By setting s2 = 1 in the second solution of Equation (21)

the critical strain for the onset of degradation

𝜺𝑠 =

√√√√𝐸 +𝐻

𝐸𝐻

(
𝜎2

Y

𝐻
+ 1

6

𝑐

𝜖

)
− 𝜎Y

𝐻
(23)

is obtained. For the undegraded stress 𝜎*

𝜎∗ =
⎧⎪⎨⎪⎩
𝐸𝜺0 if 𝜺0 ≤

𝜎Y

𝐻
𝐸𝐻

𝐸+𝐻

(
𝜺0 + 𝐸

𝐻

𝜎Y

𝐻

)
if 𝜺0 >

𝜎Y

𝐻

(24)

holds. The local maximum of the stress, corresponding to the fracture stress is obtained by

d

d𝜺0

(𝑔(𝑠)𝜎∗) = 0. (25)
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0 5 10 15 20
0

0.5

1

1.5

2

F I G U R E 2 Stress-strain curve of a 1d bar under tensile loading

T A B L E 1 Material, geometry and loading properties used in

the simulations. The relation of the non-dimensional quantities to E,

𝑐 , l, and T correspond to dimensionless model by Kuhn et al.[23]

Poisson's ratio, 𝜈 0.25

Regularization length, 𝜖 0.02l

Residual stiffness, 𝜂 10−4

Deg. fct. parameter, 𝛽 10−6

Mobility constant, M 10
𝑙

𝑐𝑇

Length, l 1.0l

Hardening modulus, H 0.1E

Yield stress, 𝜎Y 1.0

√
𝑐𝐸

𝑙

Loading rate, 𝑢∗
0

1.0

√
𝑐 𝑙

𝐸

From Equation (25) an expression for the fracture strain in case of elastic-plastic failure

𝜺𝑐 =

√√√√√√√1

3

𝐸 +𝐻

𝐸𝐻

⎡⎢⎢⎢⎣
(

𝜎2
Y

𝐻
+ 5

18

𝑐

𝜖

)
+

√√√√√4

(
𝜎2

Y

𝐻

)2

+ 8

9

𝜎2
Y
𝑐

𝐻𝜖
+ 25

324

(
𝑐

𝜖

)2
⎤⎥⎥⎥⎦ −

𝜎Y

𝐻
(26)

is obtained. The resulting stress-strain curve is depicted in Figure 2. Until the loading reaches the initial yield fracture load

𝜺0 = 𝜺Y = 𝜎Y

𝐻
the elastic stress-strain relation is linear and merges to the less steep, however still linear, elastic-plastic regime,

described by the continuous blue line, representing the stress field for solution s1. When the load 𝜺0 = 𝜺s is reached, indicated

by the vertical blue line, s2 becomes admissible and the stress-strain relation is described by the continuous green curve from

that point on. The maximum value of the stress is reached at 𝜺0 = 𝜺c, denoted by vertical line in green.

3 NUMERICAL RESULTS

The numerical simulations presented in this section were performed within the finite element framework FEAP on a cluster

comprising 8 AMD Opteron 6140 8 core nodes at 64 GB RAM. An implicit time integration scheme is applied to solve the
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F I G U R E 3 Fracture field (left) and hardening variable (right) for simulations with an 80× 80× 1 (A) and an 200× 200× 1 (B) uniform mesh

from bottom to top

weak forms of (4) and (12) discretized in time and space on the global level. The plastic updates are performed on local level

where a “radial-return” algorithm,[25] convenient in numerical plasticity, is applied. A monolothic Newton-Raphson solution

strategy is chosen for the solution of the non-linear global system of equations in u and s. If necessary a line-search proce-

dure is invoked. Dependent on the number of Newton iterations needed to meet the convergence criterion, the time step size

is increased or decreased, respectively. Healing of fractured material is prevented by fixing nodes where the fracture field

drops below a small threshold value (s≤ 10−8) to zero and corresponding nodal values are canceled from the global system of

equations.

In order to perform 3D simulations in an efficient way, an appropriate finite element mesh is needed. As a reference the

domain of a quadratic single notched tension probe of edge length l and thickness d = l/10 depicted in Figure 6 on the right is

discretized in 200× 200× 1 eight node brick elements. The initial crack is generated by prescribing the initial condition s = 0

from x1 = −l/2 to x1 = 0 in the plane, where x2 = 0. A linear increasing normal tensile loading u* on the bottom and top of the

specimen with

𝑢∗ = 0.5 ⋅ 𝑡 ⋅ 𝑢∗
0

(27)

is applied to enable stable crack growth. The mobility constant is chosen high enough to ensure quasi-static crack growth.

Material geometry and loading properties are summarized in Table 1.

Any quantity mentioned in this section is a dimensionless quantity in relation to a given Youngs modulus E, a given fracture

toughness 𝑐 , a unit length l and a unit time T .[23] However, for the sense of simplicity no extra symbol is introduced for the

dimensionless quantities. Contour plots of the fracture field and the hardening variable are shown in Figure 3B at four different

instances of time. With increasing load plastic deformation emerges in a 45◦ angle to the notch direction. Thereupon the crack
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F I G U R E 4 Load displacement curve, where F2 is the reaction force acting on the initially undamaged, right part of the structures x2-surface

(left) and CPU time spent in the respective simulation time intervals for unrefined meshes (right)

T A B L E 2 Simulation data of mesh convergence simulations with certain refinements prior to the cleanup step

Mesh Refinement

No. Base Elements Nodes dr w Elmt. size degree Trans. elmts

1 200× 200 40 000 80 802 0 0 0.005l 0 0

2 20× 20 4560 9242 0.1l 2 0.0056l 2 640

3 40× 40 2720 5614 0.05l 2 0.0083l 1 80

4 40× 40 3360 6902 0.1l 4 0.0083l 1 80

5 40× 40 5920 12 504 0.2l 6 0.0083l 1 80

6 80× 80 12 480 25 318 0.1l 8 0.0042l 1 160

field drops slightly in the first instance in the same direction, while the crack eventually grows in straight direction. However,

the initial drop of the crack field remains and causes the widened profile of the crack.

A comparison of the respective fields with a simulation on a 80× 80× 1 (see Figure 3) mesh yields a smaller crack width

and stronger pronounced plastic zone in case of the 200× 200× 1 mesh. Furthermore, the load-bearing capacity of the structure

is overestimated in the simulation with the coarser mesh, see Figure 4. An adjustment of the fracture toughness 𝑐 in order

to keep the total energy in the system for the modified ratio
ℎ𝑒

𝜀
as proposed by Bourdin and Frankfort,[26] was not conducted,

since in the dimensionless description applied here the relation between other parameters, that were assumed to be given,

would have been influenced. Thus, a higher peak force of the 80× 80× 1 mesh compared to the finer mesh is expected as a

result of the higher effective 𝑐 for larger he. According to Miehe et al.[9] a ratio of
ℎ𝑒

𝜀
= 0.5 between element size he and

the regularization length 𝜀 is required to resolve the regularized crack surface. This requirement is fulfilled only in case of

the finer mesh, which in turn is very demanding in terms of computational effort. Thus, for the simulations in which a finer

disrcetization in the x3-direction is desired a more feasible mesh with finer parts only in the regions where the crack propagates

is needed.

3.1 In plane refinement
Five different refined meshes listed in Table 2 were tested in terms of resembling the 200× 200× 1 mesh and their numerical

efficiency. The region in the center of the domain, where the crack is expected to grow, is refined.

The refined meshes were generated by the strategy sketched in Figure 5. In the first step, the elements marked in green are

refined by a factor of three, and in order to preserve mesh conformity, the transition elements, marked in orange, are introduced

by the 3-refinement procedure.[27] Nodes attached to six edges in the plane, that is, of lateral valence of six (encircled in Figure 5

in the middle), formed in this step lead to a mesh of poor quality. Thus, in a second step a topological cleanup is performed. The
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NOLL ET AL. 9 of 16

F I G U R E 5 Refinement procedure: unrefined mesh on the left, refined mesh in green, transition elements in orange and the resulting nodes

with valence of six circled in the middle. In blue elements created in the topological cleanup step with additional nodes circled

1

2
h

F I G U R E 6 Unrefined 200× 200× 1 mesh with boundary conditions (right), 20× 20× 1 mesh with refinement of degree 2 without (middle)

and with subsequent topological cleanup (right)

valence of the six valent nodes can be decreased by an operation called “element open.” A new three valent node, encircled in

Figure 5, is introduced and a new element, marked in blue, is created.[28] The refined meshes were generated with refinement

templates implemented in the open source software package Blender.

The mesh density of the coarse part of the mesh and the width of the refined region dr were varied. Mesh number 2 (Table 2)

is composed of a 20× 20× 1 base mesh and is refined by two degrees, that is, a coarse element is subdivided into nine elements,

which are each subdivided into nine elements again. The width of the refined region is dr = 0.1l, see Figure 6 in the middle.

The mesh after subsequent topological cleanup is shown in Figure 6 on the right.

The CPU time spent to perform a simulation until the specimen is fully fractured is depicted in Figure 7 on the bottom left.

Blue bars represent meshes without, while yellow bars represent meshes with a subsequent cleanup step. A comparison between

the different refined meshes demonstrates that the higher the number of elements of the mesh, the higher the CPU time (c.f.

Table 2). Merely mesh 2 with the coarsest unrefined mesh and highest degree of refinement does not obey to that sequence as

the simulation with the respective mesh is running slower than the respective one of mesh 6 with the largest refined region. The

large proportion between the number of transition elements to the total number of elements, that lead to a poorer mesh quality

most likely accounts for that. The benefit of a cleanup step subsequent to the refinement step appears to depend on the respective

mesh. While a strong benefit is observed for meshes 3 and 4, there is on the contrary even a slight loss in performance for mesh

2. For mesh 5 and mesh 6 the simulation failed without the subsequent topological cleanup. The CPU time spent per simulated

time step is shown in Figure 7 on the bottom left for the meshes with topological cleanup. Meshes 2 and 6 with more transition

elements exhibit more prominent spikes than the other meshes. Every mesh features its most prominent spike in the vicinity of

simulation time t = 1.0, corresponding to u1 = 0.5. Taking into account the load-displacement relation (see Figure 7), this instant

of time is related to the transition from the linear elastic to the elastic-plastic regime. The most important result, however is,

that a kink in the load-displacement curve is observed for any of the meshes emanating from the 40× 40× 1 coarse mesh with
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F I G U R E 7 Load-displacement curves for varying width of refined region on the top left and for varying coarse mesh width on the right,

where F2 is the reaction force acting on the initially undamaged, right part of the structures x2-surface. Distribution of CPU time with respect to the

simulated time on the bottom left. Comparison CPU time spent on the full simulation for different meshes on the bottom left

only one degree of refinement. The respective kink is not present in the simulations with meshes 2 and 6. This can be explained

by the fact that the element size in the refined regions of the latter two meshes is only slightly above (mesh 2) or slightly below

(mesh 6) the element size of the reference mesh. Due to that qualitative distinction from the unrefined mesh, those meshes are

not sufficient to be applied for the considered of problem.

3.2 3D tensile loading
In order to perform fracture simulations in 3D mesh 2 in the state after the performed cleanup step is chosen as template for the

in plane discretization. Although, mesh 2 without the cleanup step performed superior compared to mesh 2 with the subsequent

cleanup, the latter was chosen because, with regard to the other meshes the cleanup step was considered to enhance the stability

of the solution scheme.

In order to evaluate a suitable out-of-plane resolution, the domain was subdivided in direction of the notch front (x3-direction)

in n3 = 5 and n3 = 8 elements. Apart from that the same simulation conditions were used as in the previous simulations. The

accumulated plastic strain at the crack tip in direction of the crack front at t≈ 2.8 (corresponding u2 = 1.4) is shown in Figure 8

on the right for a structure of d = 0.4. Independent from the discretization a symmetric profile of the accumulated plastic strain

with a maximum in the center of the structure develops. The higher amount of plastic strain leading to degradation of the von
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F I G U R E 8 Von Mises stress (left) and accumulated plastic strain (right) at x1 = 0.03 and x2 = 0.0 in out-of-plane direction of the specimen

with d = 0.4 with meshes of two different numbers of elements in x3-direction
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F I G U R E 9 Von Mises stress (left) and accumulated plastic strain (right) at x1 = 0.03 and x2 = 0.0 in out-of-plane direction of the specimen

with d = 0.6 with meshes of two different numbers of elements in x3-direction

Mises stress in the center of the structure can be observed in Figure 8 on the left. Even if a distinct quantitative difference

between the distretizations in von Mises stress at the surface of the structure is discernable, the profiles of von Mises stress and

accumulated plastic strain over the whole thickness of the structure resemble each other nonetheless. Particularly in the center

even the qualitative agreement is quite well. An entirely different picture emerges for a specimen with thickness of d = 0.6. Both,

the profiles of von Mises stress and accumulated plastic strain (Figure 9) do not even agree qualitatively. Due to the insufficient

disretization of only five elements in x3-direction no symmetric profile of the accumulated plastic strain is observed and thus,

also a non-symmetric profile of the von Mises stress. A comparison of the plastic zones of both discretizations in Figure 10

reveals accordingly a distinctly larger plastic zone at the surface where z = d. In the center of the structure the crack has already

propagated further in case of the finer discretization. Supported by the observation of an enormous amount of computational

time (see Figure 13 on the right) for the simulation, leads to the conclusion that a discretization in x3-direction of 5 elements is

too coarse for d = 0.6l.
Due to the observations described above for the following computations an out-of-plane discretization of eight elements

was chosen for specimen with d > 0.4. The fracture field of a specimen with a thickness of d = 0.4l at four instances of time

is plotted in Figure 11 on the top. The four instances of time correspond to the load states illustrated in the load-displacement

plot in Figure 13 on the left. While at t1, in the linear-elastic regime, the crack front appears to be flat, a slight thumbnail

 15222608, 2020, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202000008 by R

heinland-Pfälzische T
echnische U

niversität K
aiserslautern-L

andau, W
iley O

nline L
ibrary on [04/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 16 NOLL ET AL.

F I G U R E 10 Slices of the plastic zone of the specimen with d = 0.4 at simulation time t = 2.8 (corresponding u2 = 1.4) at x3 = d/2 (A) and at

x3 = d (B). Each plot on the left originates from a mesh with out-of-plane discretization with n3 = 5 elements, the plot on the right to n3 = 8

F I G U R E 11 Fracture field (top) and hardening variable in the upper left quarter of the structure (bottom) at simulation time t1, t2, t3, and t4

from left to right

shape is building up after the transition to the elastic-plastic region at t2. Around the instance when the reaction force reaches

its maximum, the thumbnail shape is more pronounced (t3) and remains at this level during the propagation of the crack front

through the specimen (t4). A widening of the transition zone between cracked and intact material in the region was the crack

had propagated through compared to the pre-notched region is noticeable. The evolution of the accumulated plastic strain in

the upper right quarter of the specimen is depicted in Figure 11 on the bottom. As the plastic zone is lightly developed only at

t2, a band of at least slight plastic deformation has been formed from the crack tip to the top right corner. When the crack front

has propagated almost through the entire specimen at t4 a profile of plastic deformation has been formed where the descent of

plasticity becomes less steep in x2-direction the larger the distance from the initial notch in x1-direction.

The shape of the plastic zone is presented in Figure 12. Therefore, regions where the amount of accumulated plastic strain is

very low or zero (𝛼 < 1.0
𝑐

𝐸𝑙
) are masked. Even when the amount of plastic deformation is still small at t2, a difference in lateral

extension of the plastic zone between the surface and the center of the specimen is apparent. When the amount of plasticity

increases further (t3) the difference becomes more pronounced. At the surface of the specimen the enlargement of the plastic

zone in a 45◦ angle from the crack plane develops. The onset of plastic deformation at the surface of the structure accompanying
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NOLL ET AL. 13 of 16

F I G U R E 12 Plastic zone at simulation time t2, t3, and t4 (from left to right) for d = 0.4
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F I G U R E 13 Load-displacement curve, where F2 is the reaction force acting on the initially undamaged, right part of the structures x2-surface

and distribution of CPU time for simulation of a specimen of thickness d = 0.4l

the beginning of fracture in the center turns out to be the computationally most demanding part of the simulation, see Figure 13

on the right. Towards the end of the simulation further demanding parts emerge.

In order to assess the lateral expansion of the plastic zone in dependence of the position in direction of the crack front

(x3-direction), several slices at the instance, when the reaction force is almost at maximum level (t = t3) are depicted in Figure 15.

At the surface of the specimen the strongly shaped flanks in 45◦ angles from the crack propagation direction are noticeable.

Thus, building up an extraordinary wide sickle resembling, concave shape in front of the crack tip. At x3 = 0.1 the flanks are

less pronounced, hence the extension of the plastic zone in x2-direction is smaller and the concavity in front of the crack less

pronounced. In the center of the specimen the shape is almost identical. The larger extension of the plastic zone in x1-direction

is due to fact, that the crack tip in the center has already propagated a little further than in the outer parts of the specimen. A

similar picture unfolds for the specimen of thickness d = 0.6l shown in Figure 16. The flanks and the concavity in front of the

crack tip become less prominent the larger the distance from the surface. Even from x3 = 0.1 to x3 = 0.2 and further to the center

a distinction is discernible. Compared to d = 0.4l the surface feature seems to decay less strong, while due to the higher distance

from the surface in the effect is almost fully decayed in the center. In case of the specimen with d = 0.8l the trend holds also true,

see Figure 17. At x3 = 0.2l concavity is still more pronounced compared to d = 0.6l, leading to the assumption that decay is even

less strong. Like for d = 0.6l the concavity is almost fully decayed in the center. However, the crack front and also the plastic

zone in front of the crack tip are not perfectly symmetric as the slice at the surface with x3 = l, where the concavity is almost not

existent, shows. Hence, following the observations above, the discretization in x3-direction in eight elements is not fine enough.

As a conclusion from the observations regarding the discretization in direction of the crack tip a rough estimate of a suitable

element length in x3-direction of 𝑛3 ≥
50

4

𝑑

𝑙
can be drawn. An element width of 𝑑𝑛3 = 0.8𝑙

8
= 0.1𝑙 proved to be insufficient.

The trend of a decreasing size of the plastic zone towards the center of the specimen across the crack front observed here

is related to the out-of-plane constraint, describing the structural obstacle against plastic deformation, due to the specimen

dimension parallel to the crack front.[29] For the specimen with d = 0.6l the out-of-plane constraint increases from the sur-

face to x3 = 0.1 significantly and slightly from x3 = 0.1 to the center. In case of the smallest specimen thickness the out of

plain constraint reaches its maximum value almost at x3 = 0.1. Hence, the out-of-plane constraint at the center is still closer

to that at the surface compared to the thicker specimen. A plastic zone in cylindrical shape where the cross section is largely

dominated by the larger expansion at the surface for thinner specimens, while the cross section is mostly dominated by the
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14 of 16 NOLL ET AL.

F I G U R E 14 Slices of the plastic zone at the time when the reaction force is at maximum for a specimen with d = 0.05 approximating the

plane stress state (left) and for a specimen under plane strain conditions (right). In the center a schematic sketch of the dog-bone model

F I G U R E 15 Slices at x3 = 0, x3 = 0.1, x3 = 0.2, x3 = d/2, and x3 = d (from left to right) of the plastic zone at simulation time t3 for the

specimen with d = 0.4

smaller extension in the center for thicker specimens is also observed.[2] The deminishing extension of the plastic zone at the

crack front in direction of propagation as predicted in the dog-bone model, sketched in Figure 14 in the middle, where a plane

stress state at the surface and plane strain state in the center of the specimen are predicted, however, is not observed. The

scenario predicted in the dog-bone is observed neither by Fernandez Zuñiga et al.[2] nor by Kudari and Kodancha,[1] though.

Hence the results at hand are in accordance with observations of the works named above. A comparison between the shapes

of the plastic zone at the surface of the 3D specimen and the shape in a plane stress simulation (Figure 14 on the left) as well

as between the shapes in the center of the specimen and the shape in a plane stress simulation (Figure 14 on the right) reveals

an obvious distinction. Thus, neither a plane stress state on the surface nor a plane strain state in the center of the structure is

established at the instance of time, when the reaction force is at its maximum in the 3D simulations. However, the shape of

the crack front at this instance is already thumbnail like, while in the dog-bone model the crack front is assumed to be smooth.

The front of plastic deformation on the other hand seems to be flat and thus, further ahead of the crack front on the surface

then in the center, giving rise to the concave shape at the surface of the specimen in Figures 15–17. Furthermore, taking the

size requirement criterion for KIC-measurements into account, stating that the specimen thickness is large enough such that

plane stress state dominated regions at the surface are negligible compared to plane strain state dominated regions inside the

specimen if 𝑑 ≥ 2.5
(

𝐾IC

𝜎Y

)2

,[2] by applying the relation 𝑐 =
𝐾2

IC
(1−𝜈)
𝐸

and assuming unaltered simulation parameters as above, a

specimen thickness of d ≥ 3.3 would be required. This is more then 5 times the largest specimen thickness considered, above.

4 REMARKS AND OUTLOOK

In this contribution a phase field model for ductile fracture that is able to reproduce the main characteristics of ductile fracture

on the one hand and gets along with a manageable amount of parameters, which can be related to experimentally measurable

data, that, furthermore allows for the application of a monolithic solution scheme to solve the arising system of non-linear

partial differential equations on the other hand, is enhanced. The implementation of a cubic degradation function rendered a

reinterpretation of the plastic parameters unnecessary, but preserves the properties regarding its simplicity.
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NOLL ET AL. 15 of 16

F I G U R E 16 Slices at x3 = 0, x3 = 0.1, x3 = 0.2, x3 = d/2, and x3 = d (from left to right) of the plastic zone at simulation time t3 for the

specimen with d = 0.6

F I G U R E 17 Slices at x3 = 0, x3 = 0.1, x3 = 0.2, x3 = d/2, and x3 = d (from left to right) of the plastic zone at simulation time t3 for the

specimen with d = 0.8

The model is tested by investigating the plastic zone at the crack front of a single notched tension specimen under tensile

loading in 3D. In order to do so, an appropriate mesh consisting of eight node brick elements with a sufficiently fine resolved

crack propagation zone was developed. Several differently refined meshes were tested. The necessary incorporation of transition

elements in between regions with a coarser and regions with a finer mesh in order to establish a mesh conformity, turned out to

impair the convergence of the solution scheme. A subsequent cleanup step provided only minor enhancement in terms of spent

CPU time, but enhanced overall stability of the solution scheme. Moreover, it has to be stated, that the approach of prerefining

the mesh in regions, where the crack is expected to grow requires the knowledge of the crack path in advance and thus, negating

a substantial benefit of the phase field method. As on the other hand a sufficiently fine, unrefined mesh exceeds the available

computational capacities, the only alternative is an adaptive remeshing procedure, which is both beyond the scope of this con-

tribution and comprises the generation of new mesh parts during the simulation, hence, deteriorates another advantage of phase

field models over conventional models and strongly complicates the implementation due to the required transfer of variables.

Alessi et al.[30] note that due to the application of identical degradation functions for the elastic strain energy and the hardening

contribution plastic strain developed in regions, where the material is already fully broken, which might cause convergence

issues. However, as the degradation function weakens the impact of 𝛼 on the total plastic energy in the simulations considered

here a saturation of the plastic energy is observed. Thus, from the authors' point of view no convergence issues can be explicitly

related to the stated context.

The insights regarding the plastic zone at the crack front qualitatively conform with the results from Kudari and Kodancha[1]

and Fernandez Zuñiga et al.[2] The out-of-plane constraint has a significant influence on the in-plane shape of the plastic zone.

While for specimen of lower thickness the shape of the plastic zone is more dominated by the surface and is further extended in

45◦ angle to the crack propagation direction, in specimen of larger thickness the plastic zone tends to be more compact. Thus

far, the results are in accordance with the classical dog-bone model. However, the dog-bone model predicts further plain strain

states accompanied by almost no plastic deformation in front of the crack tip. This is neither observed in the work at hand nor

in Kudari and Kodancha[1] and Fernandez Zuñiga et al.[2] and furthermore not expected as the thicknesses of the computed

structure were to small. Furthermore, at the instant of time when the plastic zone is considered, the crack has formed a thumbnail

shape already, while the dog-bone model assumes a flat crack front.
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16 of 16 NOLL ET AL.

The computing power necessary to perform simulations in 3D is quite demanding. While a simulation with a mesh of 4560

elements in a single layer run for 40 h the simulation with a mesh of the same number of elements in five layers took 350 h.

As structures with a thickness large enough to expect states close to plane stress at the surface and close to plane strain in the

center would require a multiple of elements in x3-direction, those simulations are beyond the scope of this approach. Measures

to optimize the 3D simulations of ductile fracture might lead in several directions depending on where the focus is set, whether

details on a smaller scale or phenomenological aspects on larger scales are of interest. More sophisticated mesh refinement

procedures comprising for example, constrained Laplacian smoothing after performing the topological cleanup steps, require

on the one hand attention to ensure that elements are not inverted, but promise to improve element quality dramatically.[28] The

application of exponential shape functions, which approximate the shape of cracks better than conventional polynomial shape

functions eases the requirement of mesh fineness.
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