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Zusammenfassung

Im Rahmen des Zubaus erneuerbarer Energieträger in Deutschland verändert sich der
deutsche Energiemix, der sich aus den in Deutschland vorhandenen Stromquellen zusam-
mensetzt. Mit dem Wandel hin zu nachhaltigen Stromquellen wie Wind- und Solar-
energie verändert sich auch die Situation, der sich der Strommarkt gegenübersieht.
Während in der Vergangenheit wenig Unwägbarkeiten in der Stromerzeugung existierten
und nur die Nachfrage stochastische Unsicherheiten aufwies, ist mittlerweile aufgrund
der Wetterabhängigkeit auch die Erzeugung stochastischen Schwankungen ausgesetzt.
Um für diese andersartige Situation einen unterstützenden Rahmen zu bieten, wurden
am Strommarkt unter anderem der Intradaymarkt, Produkte mit halb- und viertelstündi-
gen Zeitscheiben und ein verändertes Regelenergiemarktdesign eingeführt. Damit sind
sowohl die Themen der Strompreisvorhersage als auch die der Optimierung auf den
Strommärkten weiterhin aktuell.

Diese Arbeit beschäftigt sich zunächst mit der Modellierung des Intraday-Markts und
der Prognose von Intraday-Indices. Dafür bewegen wir uns auf die Ebene der einzel-
nen Gebote am Intraday-Markt und modellieren mit diesen die Limitorderbücher der
Intraday-Produkte. Basierend auf ausgewählten statistischen Kenngrößen der model-
lierten Limitorderbücher stellen wir einen neuartigen Schätzer für die Intraday-Indices
vor. Gerade für Produkte mit weniger Liquidität enthalten die Orderbuchstatistiken re-
levante Informationen, die signifikant genauere Vorhersagen als der Vergleichsschätzer
ermöglichen.

Da der Day-Ahead-Markt im Gegensatz zum Intraday-Markt als Markt mit täglicher
Auktion betrieben wird, bietet er kleineren Unternehmen ohne eigene Handelsabteilung
die Möglichkeit, sich am Strommarkt zu beteiligen. Aus deren Perspektive optimieren
wir ihr Flexibilitätsangebot am Day-Ahead-Markt und modellieren dabei die Preise mit-
hilfe eines stochastischen Mehrfaktormodells, welches bereits Einsatz in der Industrie
findet. Um dieses Modell für die stochastische Optimierung aufzubereiten, wird eine
Diskretisierung des Modells in Zeit und Raum mithilfe von Szenariobäumen vorgenom-
men. Hier stellen wir sowohl vorhandene Algorithmen zur Szenariobaumerzeugung als
auch unsere eigenen Erweiterungen und Anpassungen vor. Diese basieren auf der Nested
Distance, welche den Abstand zweier Verteilungen stochastischer Prozesse misst. Auf Ba-
sis der so entstandenen Szenariobäume wenden wir schließlich die stochastischen Op-
timierungsmethoden der stochastischen Programmierung, der dynamischen Program-
mierung und des Reinforcement Learnings an und untersuchen, in welchem Kontext die
Methodiken jeweils geeignet sind.
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Abstract

The German energy mix, which provides an overview of the sources of electricity avail-
able in Germany, is changing as a result of the expansion of renewable energy sources.
With this shift towards sustainable energy sources such as wind and solar power, the
electricity market situation is also in flux. Whereas in the past there were few uncertain-
ties in electricity generation and only demand was subject to stochastic uncertainties,
generation is now subject to stochastic fluctuations as well, especially due to weather
dependency. To provide a supportive framework for this different situation, the electric-
ity market has introduced, among other things, the intraday market, products with half-
hourly and quarter-hourly time slices, and a modified balancing energy market design.
As a result, both electricity price forecasting and optimization issues remain topical.

In this thesis, we first address intraday market modeling and intraday index forecast-
ing. To do so, we move to the level of individual bids in the intraday market and use
them to model the limit order books of intraday products. Based on statistics of the
modeled limit order books, we present a novel estimator for the intraday indices. Es-
pecially for less liquid products, the order book statistics contain relevant information
that allows for significantly more accurate predictions in comparison to the benchmark
estimator.

Unlike the intraday market, the day ahead market allows smaller companies without
their own trading department to participate since it is operated as a market with daily
auctions. We optimize the flexibility offer of such a small company in the day ahead
market and model the prices with a stochastic multi-factor model already used in the
industry. To make this model accessible for stochastic optimization, we discretize it in
time and space using scenario trees. Here we present existing algorithms for scenario
tree generation as well as our own extensions and adaptations. These are based on the
nested distance, which measures the distance between two distributions of stochastic
processes. Based on the resulting scenario trees, we apply the stochastic optimization
methods of stochastic programming, dynamic programming, and reinforcement learning
to illustrate in which context the methods are appropriate.
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1 Introduction

The 1970s saw the birth of a discourse on energy imports and security of supply in Ger-
many, due to the 1973 oil crisis [68]. In the years that followed, this discourse developed
into a call for an ”energy turnaround” (Germ. ”Energiewende”), which included the use
of renewable energy sources. Finally, in 1990, the Electricity Feed Act (Germ. Stromein-
speisungsgesetz) provided the first major support for renewable energy in Germany,
even though that was not explicitly expressed [68]. This law made it compulsory for en-
ergy supply companies to purchase electricity from renewable sources, and in addition,
this electricity had to be remunerated accordingly, which had not been the case before.
This led to the first major expansion of renewable electricity generation in Germany and
started a trend, which accelerated significantly from 2001 onward, when the Renewable
Energy Sources Act came into force. Following the (re)adoption of Germany’s nuclear
phase-out by 2022 in the wake of the Fukushima nuclear disaster in 2011, the expan-
sion of renewable electricity suppliers continued. As of mid-2022, 146.8 GW out of a
total of 225.6 GW of installed net nominal capacity has already been accounted for by
renewables [35]. This is largely made up of solar energy (66.5 GW) and wind energy
(67.3 GW). All shares are collectively presented in Table 1.1. Based on this installed ca-
pacity, renewables generated 244.2 TWh in 2022 from a total of 549.8 TWh of electricity
generation in Germany, thus accounting for 44.4%. The majority of this was provided
by wind power plants, which accounted for a remarkable 22.5% of the 44.4%. Other
major contributors were photovoltaic with 10.6% and biomass with 7.6% [35].1

These figures mean increasing independence from conventional energy sources, but
there is a catch: unlike electricity generated from fossil fuels, electricity from photo-
voltaic and wind is weather-dependent and therefore much more difficult to plan. It
also cannot be generated at will. Because of these two characteristics of some renewable
electricity generation techniques, there is volatility in the supply of electricity. Although
unplanned outages also occur in conventional power generation, they are the exception
rather than the rule. With photovoltaic (PV) and wind, on the other hand, the exact
number of generated kilowatt-hours can usually only be predicted shortly before they
are actually fed into the grid. This uncertainty is a serious issue because the grid itself
cannot store electricity, which would not be a problem if there were a sufficient amount
of electricity storage available. But this is not the case: There are some pumped storage
hydro power stations for electricity storage and some batteries, but they are far from

1The presented numbers vary depending on the data source; e.g. [6] state that 506.8 TWh of electricity
were generated in 2022 in Germany. Furthermore, they announced a renewable share of 48.3%. As
these numbers were published in early January 2023, we assumed the values of [35], that stem from
the end of February 2023, to contain corrections.
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Technology Installed Capacity (GW) Produced Electricity (TWh)

Hydro 4.94 15
Pumped Storage 9.78 6.3
Biomass 8.96 41.9
Uranium 4.06 32.8
Brown Coal 18.90 107.9
Hard Coal 19.04 61.9
Mineral Oil 4.72 1.3
Natural gas 32.09 89.2
Wind onshore 58.23 98.7
Wind offshore 8.13 24.8
Solar 66.50 58.3
Other - 18

Table 1.1: Installed capacity and produced electricity in Germany over several energy
sources, presented for the year 2022 [35].

being able to absorb all the imbalances.2 Consequently, feed-in and off-take must al-
ways be in balance, otherwise the grid will be damaged (e.g. by overheating) and any
difference will cause the actual grid frequency to deviate from the target frequency. The
frequency of the interconnected European grid, now stretching from Portugal to Turkey
and Denmark to Western Sahara, is 50Hz [31]. If this grid frequency becomes too high
or too low because electricity production and demand do not match, large generators
have to be shut down to avoid major damage. This can ultimately lead to a blackout,
i.e. a large-scale power failure.

The increased uncertainty on the production side is therefore a very serious issue,
which was also recognized as such in 2011. Then, ENTSO-E, the European Network of
Transmission System Operators for Electricity, formulated the following [9]:

”Increasing amounts of variable renewable generation will reduce the avail-
ability of traditional balancing resources which tends to increase the cost of
maintaining system security. Higher levels of imbalances will occur at in-
creasing levels of renewable generation which will lead to increased short
term balancing costs.”

Let us take a closer look at this statement: Balancing energy is used to compensate for
deviations from forecasted production or demand levels. To do this, so-called balancing
resources are activated in the amount of the missing difference, i.e. in case of missing
production, electricity producers are switched on or consumers are switched off, and in
case of missing demand, consumers are switched on or producers are taken off the grid.

2In 2022, Germany had access to 9.78 GW pumped storage, 4.03 GW battery storage for power and
6.02 GWh of battery storage capacity [35].
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Since the demand side has always been volatile and largely inelastic in its demand, and
thus unable to react to price fluctuations in the market, the production side has been the
main player in balancing out fluctuations and differences. The fact that this side now
also has its own fluctuations has further increased the need for ways to compensate for
these fluctuations and is the reason for the ENTSO-E statement.

However, in 2019, [38] noted the following:

”Previous studies have noted that, unexpectedly, Germany’s dramatic expan-
sion of wind and solar energy coincided with a reduction of short-term bal-
ancing reserves. This observation has been dubbed the

’
German Balancing

Paradox‘. [. . . ] Since 2011, wind and solar energy have nearly doubled
while both reserve requirements and reserve use have declined by 50%. [. . . ]
One reason for reduced balancing needs: increased and improved short-term
wholesale electricity trading on the intraday market.”

So, contrary to ENTSO-E’s fears, demand for balancing energy has not increased but
actually decreased. [38] attribute this to a change in the design of the electricity market.
We return to the statement from ENTSO-E in [9] to shed more light on this: In fact, it
did not end by painting a bleak future for energy technology. Instead, it put forward
a number of ideas on how markets could be adapted to make it as easy as possible to
integrate renewables into the system. The following suggestions were made:

• Make generators that deviate from their forecasts financially responsible for these
deviations.

• Introduce cross-border balancing markets.

• Allow negative market prices, as these can occur as a natural consequence of mar-
ket decisions.

• In the event of negative market prices, link the feed-in of renewable energy to
market prices.

• Make the day ahead and intraday markets more flexible regarding gate closing
times and time resolution to be able to deal with short-term deviations.

• Encourage the participation of renewable energy providers in the balancing energy
market.

These proposals have all been taken on board and have significantly changed the mar-
ket landscape in Germany and Europe over the last 12 years: Negative prices have been
common for a few years now, renewable energy suppliers are more closely linked to the
market price in periods of negative prices and differ from their usual remuneration in
these situations, virtual power plants have emerged that serve as pools for renewable
energy and are active in balancing energy supply, the first cross-border markets for re-
newable energy are already outdated, and the electricity markets have increased the
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number of products offered. These developments form the basis of the German balanc-
ing paradox.

Despite this development, it is questionable whether the flexibility gained through the
implemented measures will be sufficient to continue to absorb the fluctuations that oc-
cur in the grid. Germany plans to go green and become carbon neutral by 2045, with
the EU following suit by 2050 [10]. In addition, the share of renewable energies in the
electricity sector is to be increased to 80% by 2030. These efforts will result in a further
significant increase in the amount of renewable energy being fed into the grid, and thus
also in the amount of weather-induced fluctuations that need to be absorbed. In Jan-
uary 2023, ENTSO-E again expressed its views on this issue [10]: The decarbonisation
of Europe and the associated sharp increase in the number of renewable energy suppli-
ers in the grid pose major challenges to maintaining system stability, not least because
the reactive power in the grid is decreasing due to fewer and fewer rotating masses
of synchronous generating units. The latter are relevant when demand and supply do
not match as they are able to instantly compensate for small mismatches, and they are
usually contained in big conventional power plants. With fewer synchronous units on
the grid, more alternative sources of compensation must be available and take effect
to maintain grid frequency. The ENTSO-E considers the market to be a very important
factor in this respect [10]:

”The availability of the necessary technical capabilities of grid users and the
consistent improvement of Europe’s electricity market to ensure a reward
system for system flexibility solutions and incentives for market participants
to act in line with system needs remain key priorities.”

This also applies because high flexibility requirements will be normal due to the ex-
pansion of wind and PV. The proposed solution includes ”[...] new roles for thermal
plants, RES participation, demand side response and storage” [10]. Consequently, it can
be concluded that both electricity markets and demand-side management will play an
important role in stabilizing the system in a decarbonised Europe and will continue to
evolve with the demands placed on them.

This thesis is situated in the context of this changing energy landscape and contributes
its share to support the shift towards more renewable energy in the energy mix. In addi-
tion, our goal is to be accurate in our modeling so that our results are easily applicable
in practice. In doing so, we take into account that sometimes we can only approximate
the solution.

We first introduce the reader to the structure of the day ahead and intraday markets in
Chapter 2. Due to their temporal proximity to actual consumption and generation, these
two markets are essential for renewables. The most liquid short-term market in Germany
is the day ahead market that is introduced in Section 2.1. Due to its auction format, not
only companies with their own trading department for electricity can participate in this
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market, but also smaller businesses. We describe the structure of the market, explain its
importance and go into detail about the pricing mechanisms and the merit order curve.

The intraday market, on the other hand, is used for the very short-term balancing of
forecast changes in the feed-in of renewable energy sources or in the consumption fore-
casts. In Section 2.2, we give a brief overview of the market structure, its evolution and
typical price patterns. In addition, we will introduce the topic of intraday indices, with a
special focus on the ID3. The ID3 is an electricity price index that represents the volume-
weighted average price of the last three national trading hours for products traded on
the intraday market.

Indices such as this one provide an indicator of the fair price of a product in an envi-
ronment of highly volatile prices in the intraday market for traders who need to compen-
sate for a change in forecast. Accurate forecasting of this index therefore gives traders
the ability to correctly classify and react to prices in the market, thereby reducing overall
uncertainty. In addition, the index can serve as a hedging product for power producers.
Therefore, in Chapter 3, we present a novel estimator for the ID3 based on limit order
book data, which provides significantly more accurate predictions than the comparison
estimator for some of the products. First, in Section 3.1, we detail the data used to
model the ID3. Then, in Section 3.2, we show how to build a model of the limit order
book from raw order data. The resulting model provides the basis for our initial estimate
of the ID3 price,
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It uses many key figures derived from the limit order book, which are explained in detail
in Section 3.3. Furthermore, two naive forecasting models plus their regression adapta-
tions are introduced. Finally, Section 3.4 puts all theory from before to practice. First,
it is found that regarding all introduced limit order book statistics, only weighted mid
prices have a significant correlation with ID3 prices. In order to keep the calibration
from putting weight in places that would reduce the out-of-sample performance of the
estimator, it is first reduced to the time-weighted mean price, and then compared in its
performance to a benchmark estimator. We find that for hourly products, both estima-
tors perform similarly. For quarter hourly products though, our estimator’s accuracy in
forecasting the ID3 prices is significantly higher than that of the benchmark estimators.
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Finally, an analysis of the regression adaption of the estimator is done in case of extreme
price regimes. The findings from this chapter are concluded in Section 3.5: Our analysis
has indeed found a tool to boost the performance of ID3 estimators, and thus a tool to
reduce uncertainty for traders in a volatile market with renewable energy sources.

In Chapter 4, we turn our attention to the day ahead market. This market is used
to optimize power portfolios in the short term, to take positions on renewable power
generation, and to determine power plant schedules for the next day. It can also be used
to optimally position available flexibility in the market. Of course, flexibility is often
capitalized on in the intraday market, but smaller companies with flexibility may not
have a power trading department to handle this form of trading. This is where the day
ahead market with its auction format offers an opportunity to offer existing flexibility
in a win-win situation: Companies want to buy power at the lowest possible prices and
avoid hours with high electricity prices. In addition, low price hours are often those
when there is a high supply of electricity - for example, at midday in summer due to
high solar input - and high price hours are those when high demand coincides with a
not-yet-large supply of renewable energy. As a result, both companies and renewable
energy producers benefit from such optimization. In order to contribute to this market,
we are working on optimizing the flexibility of power marketing in the form of a battery
with a forecasting horizon of one week.

Section 4.1 discusses the modelling of the day-ahead market, presenting typical fea-
tures and checking whether they are present in the data set we use. We then introduce a
stochastic factor model based on this analysis, which includes these features, and discuss
the calibration of the model.

In Section 4.2, we present methods that reduce possible evolution paths of a stochastic
model to a discrete set of paths that represent optimal proxies for this evolution. To
define “optimal” more precisely, different distance measures are introduced to determine
the quality of an approximations. The distance measure we choose to proceed with is
the nested distance, which is given by the solution to the optimization problem

min
π

´

ż

dpω, ω̃qr πpdω, d ω̃q
¯1{r

s.t. πpAˆ Ω̃ | Ft b F̃tq “ P pA | Ftq for A P Ft,
πpΩˆB | Ft b F̃tq “ P̃ pB | F̃tq for B P F̃t.

Furthermore, this section presents the theory behind scenario trees, which are our tool
of choice to obtain discrete approximations. We show how such trees can be optimally
constructed with respect to the nested distance and introduce a new method to speed
up the generation of a tree.

Thus, in Section 4.3, a discretized scenario tree based on the factor model is available
for which three stochastic optimization methods are described: dynamic programming,
stochastic programming, and reinforcement learning.

Finally, Section 4.4 applies the theory from the previous sections to the German mar-
ket. First, we describe the setting we assume for the optimization. Then, we go into
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more detail about the scenario trees that are generated for the market setting with the
different methods we presented. We discuss the applicability of dynamic optimization
in our setting in more detail and present theoretical conditions under which it can be
applied without restriction. We close with an application of the presented stochastic
optimization methods to the generated scenario trees and an analysis of the obtained
results.

All results from this chapter are gathered and discussed in Section 4.5.

Unless otherwise noted, all figures and tables presented in this thesis were prepared
by us. They as well as the analyses behind them were made either with Python [61] and
the package seaborn [64], or with R [55] and the package ggplot2 [66].
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2 German electricity markets

The German electricity market consists of four main parts: the long-term forward market
and the short-term day ahead, intraday and balancing energy markets, with their order
being determined by how far away the delivery start of a product is during trading. On
the futures market, electricity derivatives are traded that allow electricity transactions
for up to six years. Futures, swaps, and options are traded in various forms. They allow
electricity suppliers or buyers to manage their future price risks and reduce the volatility
of their sales. Short-term markets are used to offset these positions, as more information
may be available on actual expected generation or consumption closer to the delivery
date. The short-term market furthest away from the delivery time is the day ahead mar-
ket. It takes place as an auction on the day before the start of delivery and offers the
possibility to buy or sell electricity for hourly products of the next day. There are also
separate auctions for half and quarter hours, which take place a little later in the day
and belong to the intraday market. Unlike the day ahead market though, the intraday
market also offers the possibility of continuous trading. During the hours when the limit
order books are open, bids are collected and matched against each other. This results
in many prices per product rather than one. In the intraday market, products can be
traded up to 5 minutes before the start of delivery. Finally, the balancing energy market
serves to compensate for the imbalances that occur despite all the efforts made. For
this purpose, the balancing energy market is divided into two sub-markets, the capac-
ity reserve market and the operating reserve market. The former serves to build up an
energy capacity reserve for the event that balancing energy is actually needed, and also
remunerates this reserve accordingly. The latter, on the other hand, only subsidizes and
remunerates bids that actually provide balancing energy.

In the following we will look at the exact rules and regulations of the two markets,
day ahead and intraday.

2.1 Day ahead market design

The German day ahead market at the European Power Exchange (EPEX SPOT SE) of-
fers producers and consumers the option to trade electricity products one day before the
day of their delivery. The day ahead market is the most important electricity market for
close-to-date products, as can be seen from volumes traded on this market that are given
in Figure 2.2. Nonetheless, it is also visible that the importance of the day ahead market
is stagnating or even shrinking, while the intraday market is on the rise. The current
importance of the day ahead market stems from the fact that it was the first market to
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be introduced for close-to-date trading. Even today, it is the main market for selling or
buying produced or needed electricity. One reason for that is its market design, as it
yields transparency and gathers liquidity for all market participants [17]. The following
paragraphs are based on [16] and [17].

The day ahead market is conducted through a daily blind auction, where each hour
of the following day is traded as a single hourly product. The auction is called blind
because market participants do not get to know who else participates on the market or
which other offers are placed. All orders of the participants are gathered anonymously
every day until 12am, when the books finally close. At 12:57 pm every day, the results
of the day ahead auction are published. Each order that is placed must have a volume
of at least 0.1 MWh, and prices are allowed in the interval r´500AC{MWh, 4.000AC{MWhs
with a stepsize of 0.1AC, see [16].1 The products that are available are hour 1 to 24,
where hour 1 starts at 00:00 o’clock and ends at 1:00 o’clock, and hour 24 begins at
23:00 o’clock and finishes at 00:00 o’clock. The auction design of the market allows for
complex bids connecting different volumes with different price levels for a product: A
single hour order can contain up to 256 combinations of prices and quantities for that
one hour. This ensures that a trader can buy or sell more of the respective hourly product
depending on the price that is reached in the market. Block orders, as the name suggests,
are orders that affect several hourly products simultaneously. The classic block order has
a maximum volume of 600 MW in Germany, and can either be entirely executed or en-
tirely rejected, or it is executed when a pre-specified acceptance ratio is surpassed. Other
block order types are also offered, such as linked blocks, exclusive blocks, big blocks or
loop blocks. For their specifications and the detailed rule set in general, we refer to [16]
or [14].

Collections of orders gathered in their respective order book can be used to form
demand and supply curves. Supply curves on the selling side strongly depend on the
merit order curve that is depicted in Figure 2.3. It represents the marginal electricity
generation costs of electricity suppliers. Renewable electricity producers have marginal
costs near zero, closely followed by nuclear power plant. Then, most brown or hard coal
power plants appear, with their order usually depending on the age of the power plant -
the newer it is, the smaller its marginal production costs (usually) are. Some oil based
power plants then enter the game and are finally followed by gas powered plants. These
tended to be much lower in comparison to oil and were only slightly higher than coal
based plants in 2018, see [22]. This changed due to steeply risen gas prices in Germany:
In 2018, marginal costs of gas plants were around 40AC/MWh to 80AC/MWh in 2018, and
around 200AC/MWh to 450AC/MWh in 2022 [22].
The intersections of supply and demand curves determine the market clearing prices,

one for each product. When the auction results are made public, allocated volumes are
announced and all participants - buyers as well as sellers - pay the corresponding market

1Until May 2022, the maximum price allowed was 3000AC [19].
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Figure 2.3: Stylized merit order curve in Germany 2022 based on current merit order
information in [22].

clearing price for their allocated volume and products. This market clearing price is also
called spot price, and we will use this term from now on.

2.2 Intraday market design

The German intraday market that is operated by EPEX SPOT SE is mainly used to adjust
existing positions to the latest generation or consumption forecasts [16]. It compensates
for forecast errors or unplanned changes, for example due to a power plant outage. In
addition, this market allows owners of flexibility in their electricity purchases to mon-
etize this flexibility. As explained in the Introduction 1, the expansion of renewable
energy producers in Germany means that this flexibility is in greater demand than ever.
It is needed to compensate for weather-related forecast errors by wind and solar power
producers. The growing importance of the intraday market is reflected in the volumes
traded there: While 59 TWh were traded across Europe in 2015, this volume has already
more than doubled to 134.6 TWh by 2022, see again Figure 2.2.

The intraday market on EPEX SPOT SE consists of two components: An auction part,
which is designed in the same way as the day ahead auction, and a continuous trading
part. Figure 2.1 shows the timeline of the continuous intraday market. In the intraday
market, there is an auction for both the half-hourly and the quarter-hourly products.
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However, as these play only a minor role in comparison to the continuous market, we
will concentrate on the latter from now on.2 Continuous trading runs seven days a
week, 24 hours a day, every day of the year, see [16], and involves products with hourly,
half-hourly and quarter-hourly maturities. The so-called limit order books (LOBs) of
the next day’s hourly products open at 3:00 pm, soon followed by the start of trading
in half-hourly (3:30 pm) and quarter-hourly (4:00 pm) products. Bids for all products
have a volume tick size of 0.1 MW. Prices must be in the interval r´9.999AC, 9.999ACs,
and must have a step size of minimally 0.01 AC/MWh [16]. Cross-border trading via
Single Intraday Coupling (SIDC), which allows trading with neighbouring countries in
Europe, starts at 18:00. It ends one hour before delivery. Each product can then be
traded nationally up to 30 minutes before delivery, and within the same Transmission
System Operator (TSO) zone up to five minutes before delivery. This period of time dur-
ing which the market is closed for trading is referred to in the literature as ’lead time’.

Unlike the day ahead market, the intraday market is based on a pay-as-bid system.
The orders for the individual products are collected in limit order books, the structure
of which will be explained in more detail in a later section. A trade occurs when an
incoming order matches an order in the limit order book, i.e. when a buy order meets
a sell order or vice versa, and their prices match or exceed the price of the other order.
This is known as a match. Because the price paid depends only on the two orders that
match, there may be many different prices for the same product during the opening
period of the limit order book. As a result, the price paid for a particular product is
highly dependent on the current supply and demand for that product, as well as market
liquidity. Figure 2.4 presents an exemplary development of the transaction prices of one
product over the opening time of the LOB on the left, namely the prices of the hourly
product from 12pm to 1am on the 1st of February. The reason that the time axis begins
only after 10pm on the 31st of January is that before this time, no transaction for that
product is conducted. It is well visible that the liquidity on the market is very low until
around six hours before delivery, and then starts to rise. The histogram on the right of
Figure 2.4 illustrates that the prices to be paid are notably different over the whole time
interval.

In order to give traders signals about the actual price of the various traded products
during their trading time interval, several volume-weighted transaction price indices
exist and can be bought or sold on the exchange. They smooth the volatile prices of
their respective products and guard against price deviations that were not factored in.
Each index is limited to a different time interval. The most popular one is called ID3,and
it is used as the underlying for the German intraday cap and floor futures, see e.g. [28].
It is defined as the volume-weighted average transaction price of all transactions during

2In 2022, all intraday auctions from EPEX SPOT SE over all trading areas combined yielded a volume of
13.5 TWh. In comparison to that, the continuous intraday trading yielded a total trading volume of
121 TWh in the same year [18].
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Figure 2.4: Exemplary transaction price development over the LOB opening time of one
day for the hourly product from 12 am to 1 pm.
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Here, d specifies the timestamp of the delivery start, and i P th, qhu denotes the type of
the product, i.e. whether it is an hourly or quarter hourly product. The ID3 also exists
for half hourly products, but because the traded volume for half hourly products is much
lower than for quarter hourly or hourly products, we will not consider them in this the-
sis.3 Furthermore, T d,i contains all transactions of the product with delivery start at d
and type i that appeared during the ID3 interval, which is also visible in Figure 2.1. As
this interval depends on the national and SIDC trading only, it is e.g. for the ID3 of the
hourly product delivering from 8 am to 9 am given by the time interval 4:30 am - 7:30
am. Finally, pt is the price of transaction t and vt is the corresponding traded volume. As
the ID3 depends on the prices and volumes that were matched on the market in the most
active trading period of each product, it can be considered as a volume-weighted mean
of prices that buyers are willing to pay and sellers are willing to take close to delivery.

To gain a feeling for the ID3 prices, Figure 2.5 presents the ID3 prices for the hourly
product from 12 am to 1 pm over 2019. It is visible that no obvious yearly or weekly
seasonal component is contained in the data, whereas spikes do indeed occur. This is a
result of the fact that most market participants use the day ahead market to clear their
position and use the intraday market for short-term adjustments - the day ahead market
is the one that captures most of the seasonality, whereas the intraday market captures
short-term changes in e.g. weather developments.

An overview over the price distribution of the ID3 values for hourly and quarter hourly
products over the year 2019 is given in Figures 2.6 and 2.7, respectively. We see here
that a daily seasonal component is contained that resembles the one found on the day

3In 2021, the EPEX SPOT SE data present a traded volume of around 28.9 TWh in Germany for the hourly
ID3, the quarter hourly still has a volume of 6.6 TWh and the half hourly ID3 a volume of 0.1 TWh.
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Figure 2.5: Exemplary ID3 price development over 2019 for the hourly product from 12
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Figure 2.6: The distribution of hourly ID3 prices over 2019.

ahead market. Furthermore, the typical sawtooth pattern for intraday prices in one hour
is visible, see also [40].
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17

3 Modelling and prediction on the
intraday market

In 2010, the German government issued plans regarding the electricity supply in Ger-
many for the coming decades [5]. Its goals were to decrease greenhouse gas emissions
as well as dependencies from electricity imports while keeping electricity supply stable,
sustainable and affordable. These goals all have one solution component in common: An
increase of renewable electricity production locally in Germany. The governmental plan
thus included to enlarge the share of renewable electricity in respect of gross electricity
consumption to 80% in 2050. The release of this goal led to a surge in the expansion
of renewable electricity generation capacity in Germany over the last decade. As a con-
sequence, the share of renewable electricity in respect of gross electricity consumption
increased from 17% in 2010 to a remarkable 45.4% in 2020 already. This increase has
indeed been stronger than before, as in the decade from 2000 to 2010, the share only
rose from 6.7% to 17% [59].

The main sources for the rise in the share of renewable electricity in Germany are wind
and solar energy, see [59]; and at the same time, from all possible sources of renewable
electricity, these two are the ones with the most volatile infeed pattern. Solar electricity
heavily depends on whether clouds or other shadows reduce the amount of light that
reaches the panels and with that, the amount of electricity produced. Wind on the other
hand is hard to predict, as every wind farm location and every wind turbine height has
its own physical circumstances. The fact that these two sources are the main drivers for
renewable electricity production in Germany thus leads to new challenges for the cou-
pling of electricity production and demand. Demand is usually quite stable in the sense
that it can be predicted in a reliable fashion, and does not immediately react to price
signals on the market from e.g. a forecast change for renewable infeed. The day ahead
market provided by EPEX SPOT SE, an auction where traders can buy or sell electricity
for the next day, is not close enough to the start of delivery to react to these changes. This
is where the electricity intraday market comes into play: It can be used to run and plan
power generation close to delivery, and therefore close to a better forecast of consump-
tion, as well as to adjust for forecast errors or unforeseen events [16]. These balancing
features in combination with the increase in renewable production led to the electricity
intraday market mirroring the development of renewable electricity production and con-
tinuously growing over the last years. In the year 2020 alone, the continuous intraday
market operated by EPEX SPOT SE for the market area Germany/Luxembourg grew by
19.6% [15]. This indicates that a functioning and flexible electricity intraday market is
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a necessity for a functioning growth in volatile renewable electricity production.

In order to keep up with the increasing need to trade shortly before delivery, the EPEX
SPOT SE electricity intraday market has continued to develop over the last years and
EPEX SPOT SE expanded its service portfolio [13]. Traders can nowadays buy or sell
hourly, half hourly or quarter hourly products on the market. The market principle is
pay-as-bid, i.e. orders are collected and matched when possible during trading hours
via limit order books (LOBs). This market structure leads to many different occurring
prices for the same product, which complicates the assessment of the product’s ”true”
price. In order to facilitate an evaluation of this actual price, several price signals in
form of indices have been introduced for the traders on the intraday market [11]. All
these indices focus on materialized trades for the different products on the market. Two
of these indices take into account price evolutions shortly before delivery e.g. due to
forecast corrections: the ID3 and the ID1. They are limited to the last three hours and
last hour of national trading, respectively. In this thesis, we focus on the ID3, as it is the
index that is used as underlying for German Intraday Cap and Floor Futures, and much
of the existing literature concentrates on it.

Prediction of electricity intraday and especially index prices in Germany is a relatively
new research topic. Nonetheless, a few recent publications address forecasting of in-
traday prices. [43] focus on a small renewable energy producer that wants to place an
optimal amount of electricity on the day ahead and the rest on the intraday market.
Thus, they forecast the spread between day ahead prices and the weighted average of
all intraday trades for each hourly contract. [60] present a thorough study of intraday
electricity forecasting with a focus on ID3-prices. They apply the least absolute shrinkage
and selection operator (LASSO) to an abundance of variables and compare ten of the
emerging models with two benchmarks. A major takeaway is that the most recent intra-
day price as well as the day ahead price for the specific hour seem to have the highest
prediction power, with many other variables by far not as relevant. [47] follow a similar
path and compare different full-information econometric time series models for all ID3-
prices, that are also reduced through the usage of LASSO and elastic nets. All resulting
models are used for forecasting and compared to each other and to benchmark models
in terms of their forecast performance. They find that for hourly products, surprisingly
none of the full-information models outperforms one of their simple naive benchmarks.
[36] concentrate on forecasting the whole price distribution for the ID3 instead of only
the expected value. Their models manage to outperform the naive benchmark from [47]
in the tails of the distribution, but also show no significantly better results for the ex-
pected value. [44] use principal component analysis to average over a pool of forecasts
for ID3-prices to enhance the overall forecasting skill. Their model of the ID3 relies on
lagged ID3-prices as well as day ahead prices, if no lagged prices are available. Their
findings suggest that no forecast averaging outperforms the forecast based on the longest
calibration window. Finally, [45] manage to outperform the naive benchmark from [47]
for hourly products by combining it with a least absolute shrinkage and selection model
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and thus show that fundamental variables still play a role in forecasting electricity prices.

Our approach to electricity index price forecasting relies on the fact that the transac-
tion data tracked by the indices are always a result of the underlying limit order book
movements. We examine how to derive data from the limit order book and then how to
use them to enhance these forecasts. Our findings indicate that lagged time-weighted
mid prices, i.e. time-weighted mean prices between best ask and best bid prices from a
time interval before the index interval, are a valuable source of information for forecast-
ing ID3 hourly and quarter hourly prices. Regarding quarter hourly ID3 prices, they actu-
ally outperform the naive benchmark significantly, partly because of occasionally arising
illiquidity for the corresponding products. Half hourly prices have not been taken into
consideration. As forecasting requires usage of information that is adapted to the time
of the forecast, we will omit the affix “lagged” from here on.

We continue this chapter with Section 3.1, which gives insight into the structure of
limit order book data and discusses available data sets. This is followed by Section 3.2,
where we present an algorithm that is used to model the limit order book from order
book data, and introduces first statistics that can be elicited from it. Then, Section 3.3
presents a collection of order book statistics as well as forecasting models based on them
for the ID3, that are put into practice for the German market in Section 3.4. Finally,
Section 3.5 concludes the topic by summing up the results and presenting further ideas.
This chapter is based on our preprint [24]1.

3.1 Data

This section introduces the structure of an order a trader places on the intraday market.
Furthermore, we present the structure of order book data from EPEX SPOT SE, and it is
explained in detail which information is available during its usage. Finally, the subtleties
and pitfalls of the data set are discussed. As limit orders are mostly used on the market,
we concentrate on them in the following section and only explain basics regarding mar-
ket sweep orders in Section 3.2. The section is based on information from [14] and [16].

3.1.1 Order structure

The intraday market operated by EPEX SPOT SE uses a trading system called M7, which,
aside from allowing to enter the product of interest, a side (buy or sell) as well as a price
and quantity combination, enables the traders to make several specifications for limit
orders. Orders can be specified regarding type, execution restriction and validity restric-
tion. In the following, we present the offered alternatives for these three specification

1I want to thank Nikolaus Luckner for the provision of his code which was used as first draft for the
building of the limit order book code, and for discussions regarding the topic.
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types.

The exchange provides different types of orders:

(i) Regular Order (REG): Regular orders are limit orders that are placed with a cer-
tain limit price and quantity. They have to be executed at their specified limit price
or better.

(ii) Iceberg Order (ICB): An iceberg order is a limit order which is used to conceal
a bigger trade in order to limit the market movement against the trading party.
Only a part of the total wanted quantity is visible to the market participants, even
though the full quantity is available to them. An order with beforehand-specified
quantity is placed at the market, and after matching an existing or incoming order,
a next order with the same quantity is placed. This goes on until deletion of the
iceberg order or complete fulfillment.

(iii) Indicative Order (IND): This order provides an indication that the trader is willing
to negotiate around the specified price for the chosen delivery instrument.

(iv) Over-the-counter Order (OTC): This is an order with a predesignated counter-
part, i.e. a trade which is not available to all market participants.

Furthermore, an execution restriction can be added to the order:

(i) All or None (AON): The order is either matched in its entirety or not matched at
all. There is no partial execution. This order type is not found in the regular order
book, but solely in the order book for user-defined block orders.

(ii) Fill or Kill (FOK): The order is either immediately matched in its entirety or im-
mediately deleted after submission.

(iii) Immediate or Cancel (IOC): The order must be immediately executed or is deleted.
In comparison to ”fill or kill”, it is possible to only partially match other orders.

Finally, the trader has the possibility to choose a validity restriction for the order:

(i) Good for Session (GFS): The order is deleted when the trading end time of the
contract is reached.

(ii) Good till Date (GTD): The order comes with an additional information containing
the time and date at which to delete the order.

Another very important choice for traders is in which book they want to place their or-
der: In the book for local orders or in the book for remote orders [14]. Local orders are
matched locally in M7, whereas remote orders are transferred to the XBID System which
has exclusive access to cross-border capacities. In the latter case, orders can be matched
with orders in another country if cross-border capacity allows it. As the working hours
for the XBID market are a subset of the M7 working hours, traders can first enter their
orders locally, then remove them and insert them remotely, and finally remove them
again and insert them locally again.



3.1 Data 21

3.1.2 LOB structure

The listed specifications lead to a basket of information that is attached to every order.
Some of this information is contained in the data sets for order book data available from
EPEX SPOT SE. Of course though, their structure has seen changes over the last years,
as the intraday market itself has. Therefore, we explain in detail what information the
latest data format D2 (applied from November 2019 onward) as well as its predecessor
D1 (encompassing the period from 2017 to November 2019) contain.

Columns D2 Columns D1

Order ID Order ID
Initial ID Initial ID
Parent ID Parent ID
Entry Time Start Validity Date
Transaction Time End Validity Date
Validity Time Cancelling Date
Action Code
Delivery Start
Delivery End

Delivery Date
Delivery Instrument

Product Instrument Type
Delivery Area Area
Market Area Area
Side Side
Price Price
Currency
Quantity Volume
isOTC
RevisionNo
Is User Defined Block Is Block
Execution Restriction

Is Executed
Execution Price
Execution Volume

Table 3.1: Columns contained in the data formats D2 (valid from November 2019 on-
ward) and D1 (valid from 2017 to November 2019). Columns found in both
data formats are contained in the same row, those without an equivalent stand
alone.

The elements contained for both types are listed in Table 3.1. Columns corresponding
to each other are placed in the same row. Some columns don’t have an exact equivalent,
but their information is nonetheless found in the other data type as well, e.g. Delivery
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Start and Delivery End for D2 can be translated to Delivery Date and Delivery Instrument
and Instrument Type of D1. In comparison, some columns of D2 contain information that
is not found in D1, namely Action Code, Currency, isOTC, RevisionNo and Execution Re-
striction.

An innovation presented in D2 is the introduction of action codes: In the old data
format, one data row contained always at least two different events for one order ID, i.e.
activation and deactivation of the order, and possibly also a timestamp for a modifying
event. The new format has a different approach: Every row accounts for one event
only, and the type of event is denoted by an action code. The action code specifies
which action is applied to the order. The different possible actions and their typical
appearances are listed in the following:

• A for Activation: Following an order through its lifetime, its first appearance
always starts with its activation. An order with action code A also appears after
deletion of the previous order and creation of a (slightly) changed one.

• X for Automatic Deletion: This action determines the end of the lifetime of an
order and is performed by the system itself. Nonetheless, the order could still be
parent order of a new order appearing afterwards.

• D for Manual Deletion: This action also determines the end of the lifetime of an
order, with the small difference that now the order was manually deleted. Again,
the order could still be parent order of a new order appearing afterwards.

• M for Matched: If a transaction takes place and an order is completely matched,
its quantity is denoted by 0.0 and its action code is M. An M furthermore deter-
mines the end of the lifetime of an order.

• P for Partially Matched: In the case of a partial matching of the order, the cor-
responding action code is P and the quantity associated with it is the remaining
quantity after the partial match. If the corresponding order is an Iceberg Order,
even a complete fulfillment of the stated quantity is commented with action code
P. This goes on until complete fulfillment (M) of the Iceberg Order or until its
deletion (X or D).

• I for Insert: If one shown share of an Iceberg Order is matched (action P), the next
equally sized limit order is placed at the market through an insertion I. In this case,
the order ID stays the same. This procedure goes on until complete fulfillment (M)
of the Iceberg Order or until its deletion (X or D).

• C for Changed: This represents technical changes in the M7 trading system and
does not account for any real modification. This leads to the counter-intuitive
behavior that a modification of the order limit is not denoted with C, but instead
the order is deleted and a new order gets activated.



3.2 Modelling of the intraday market 23

• H for Hibernated: Hibernation temporarily deactivates an order until further no-
tice.

The life story of one order is thus presented by filtering for the order ID of interest and
then sorting after revision number.

3.1.3 Discussion about data sets

Listing the advantages of the new data format, one might assume it to be the better fit
for building LOBs or similar tasks. However, the fragmentation of an order into sev-
eral timestamps, namely an entry time, a transaction time and sometimes a validity
time, complicates this. The entry time is the time used in the price/time ranking in M7,
and should therefore also be used for building LOBs. Unfortunately, the data for this
timestamp suffers from inconsistencies due to the export from M7 to the database, es-
pecially for historical files2. This behavior is supposed to have changed in a further M7
release, but prevented us from using the new data format to reliably build LOBs. As a
consequence, we suggest to use the new data format for scientific purposes only after
checking whether this problem has been solved.

The orders in the old format can be subject to the different order type choices as well
as execution and validity restrictions as described above. [34] describe the existence
of an execution restriction as a cause of trouble while building LOBs with the old data
format from the EPEX SPOT SE, as the chosen restrictions are not communicated and
can therefore not be recreated from the data. Nonetheless, we believe this to be easily
handled: As AON orders are part of a separate order book, they are not part of the data.
FOC and IOC orders, if not filled or partly executed, respectively, have a validity dura-
tion of zero and therefore do not enter the LOB. Furthermore, the problem of erroneous
order information in columns ”execution price” and ”execution volume” mentioned in
[34] was removed in 2017.

3.2 Modelling of the intraday market

Based on order data from the exchange, it is possible to model and reconstruct the true
underlying limit order book. The idea for this procedure is found in [34], and is detailed
in the following.

During the trading window of every product, orders for it can be placed on the market.
The trader chooses between placing a limit order or a market sweep order, in the literature
often called market order, see [14].

2This was stated by EPEX SPOT SE in a mail correspondence from November 2021.
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price

volume

Sell sideBuy side

Figure 3.2: This figure represents the state of a limit order book at a fixed moment in
time. In dashed turqoise, the accumulated volume of the buy side is pre-
sented for every price, and in solid red, the accumulated volume of the sell
side is presented for every price. When the highest buy price and the lowest
sell price intersect, a match occurs.

A limit order contains a volume and a limit price at which the trader would buy or sell
the product, with the option to get a better price. If the incoming limit order does not
match an already existing order on the other side, it is placed into the limit order book
(LOB). The LOB contains all orders that are neither immediately (and fully) matched
nor canceled, see Figure 3.2. When a new limit order matches one (or several) orders
inside the book, the latter is (are) removed from the LOB and the initiating one does not
enter the LOB at all. It is also possible that an order is only partly matched. Then, the
remaining volume is again entered into the LOB.

In contrast to a limit order, a market sweep order contains only a volume and will
always be filled completely except for the case that not enough volume is contained
in the whole LOB. The price of the market order is composed by the volume-weighted
prices from the limit orders that were matched. As a market sweep order is always filled
as much as possible and unexecuted quantity is canceled, it never enters the LOB [14].
In everyday business, market orders tend to be replaced by limit orders with their price
equaling the best price of the opposing market side.

In conclusion, only those orders enter the LOB that actually provide liquidity to the
market; those that instead use the provided liquidity do not enter the book.

Each product has its own LOB where orders for it are collected, and ordering as well
as matching in the LOB is based on a price-time ranking: a limit order is sorted into the
LOB first by checking its price, and, if another order with the same price is already part
of the LOB, its execution priority is ranked lower than that of the existing order. Orders
with the same price form a price level, and the LOB depth is defined as the number of
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different price levels. A match of the orders contained in the book with a new incoming
order will always happen first for those orders with the best prices. Consequently, the
buy order with the highest buy price is called best bid and defined as bid˚t for time t, and
the sell order with the lowest sell price is called best ask and respectively defined as ask˚t
for time t. These two orders determine the prices a new bidder has to outbid in order to
be placed first in the book, and also determine the price range that needs to be crossed
by a new order in order to match. The arithmetic mean mt between best bid and best
ask is called mid price mt, and the difference between them is called bid-ask spread st,
see e.g. [41]. Therefore, we have

mt :“
ask˚t ` bid˚t

2
, (3.1)

st :“ ask˚t ´ bid˚t . (3.2)

The concept of looking at mid prices and bid-ask spreads is known from stock price anal-
ysis: The mid price reflects the current value of the product, while the bid-ask spread
yields an indicator for how much liquidity is on the market as well as how high the
incurred transaction costs are. Transaction costs in this sense arise from the fact that
an order in the book provides liquidity, and an order matching it demands, and conse-
quently removes, liquidity from the market, which is paid via the bid-ask spread as well
as through the difference between the best and the realized price.

All order data is commercially available from EPEX SPOT SE, and as described in
Section 3.1, contains among others identification numbers, timestamps, prices and vol-
umes. These can be used to recreate the different states that the LOB attains throughout
its opening time. Consequently, we present in Algorithm 1 how to recreate the LOB for
a certain product.

Moving step by step through Algorithm 1, first, all orders that are entered into the
trading system on the exchange are collected in the variable ob data. Before processing
these orders, they are first filtered (line 4) such that the result only contains orders
regarding the prespecified product. All orders that are specified as block orders for that
product are removed from the data, as they are traded and matched in a different book.
Then, all orders with a live span of zero milliseconds that are not matched are removed
(line 5), as they do not enter the LOB. This concludes the preselection of the data to be
processed. For every remaining order, two events are constructed: its activation event
and its deactivation event, both with the corresponding timestamp of beginning and end
of the order’s lifetime, respectively (line 6). All these events are collected in the variable
all events. After sorting all events by start validity time, order ID, and activation to let
them appear in correct order of appearance, the events are processed one by one. It
is checked whether they enter the LOB (which is the case if they do not match with
an existing order in the book) or match and therefore remove an order from the order
book. The detailed procedure is illustrated from the perspective of a buy order: The
first check verifies if the corresponding event is an activation (line 10). If the answer
is affirmative, the second check verifies whether the offered price is equal to or higher
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Result: The output is a collection of all order book states for a given delivery
product over its lifetime.

begin
Initialize the lists buy OB, sell OB and the numerics best ask, best bid.
Read order book data as ob data.
Filter ob data such that only rows with fitting delivery product remain.
Rows with ob datar”validity duration”s “ 0 & ob datar”is executed”s “ 0
are removed.

Split each row in ob data in two events (activation of the order and
deactivation of the order). Define all events as the data frame with all
those events.

Sort all events by start validity time, order id, activation.
for row in all events do

if rowr”side”s “ ”buy” then
if rowr”activation”s “ 1, i.e. is an activation event then

if rowr”price”s ě best ask & rowr”is executed”s “ 1 then
row contains a market order and is not entered in the order
book.

The corresponding deactivation event with the same order id
is marked s.th. it is omitted later on.

else
buy OB gains a new list entry with the name being the
timestamp rowr”start validity time”s and the content being
the list entry before this one plus row.

else
buy OB gains a new list entry with the name being the timestamp
rowr”start validity time”s and the content being the list entry
before this one minus the entry belonging to row.

Update best buy if necessary.
else

if rowr”activation”s “ 1, i.e. is an activation event then
if rowr”price”s ď best bid & rowr”is executed”s “ 1 then

row contains a market order and is not entered in the order
book.

The corresponding deactivation event with the same order id
is marked s.th. it is omitted later on.

else
sell OB gains a new list entry with the name being the
timestamp rowr”start validity time”s and the content being
the list entry before this one plus row.

else
sell OB gains a new list entry with the name being the
timestamp rowr”start validity time”s and the content being the
list entry before this one minus the entry belonging to row.

Update best ask if necessary.
end
return buy ob, sell ob.

end
Algorithm 1: Order book building for one delivery product
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than the momentary best ask, in combination with a check whether the order is marked
as executed (line 11). This indicates that the order is a market order, and these do not
enter the LOB. Consequently, the corresponding deactivation event is marked such that
it is omitted later on (line 13). If one of the conditions in the second check were not
fulfilled, the order would be entered into the LOB by following the price-time ranking
(line 17). Finally, in the case where the first check was not affirmative, the event is a
deactivation of an order, so the corresponding element in the LOB is deleted (line 19).
This procedure leads to full information about all states of the LOB at every point in time
during its lifetime.

3.3 Prediction of the intraday index ID3

Whether a company wants to predict its electricity costs on the market more accurately,
wants to make a profit by using its temporal flexibility in consumption, or has a struc-
tural interest in predicting a market: In any case, a model of the underlying market is
required. The same is true for many of the applications in the intraday market, but in
the literature, often only a single price is modelled for each product, see e.g. [71] or
[39]. This method, which suits well the day ahead market with its auction structure,
reaches its limits in the intraday market. The many different prices of a product over the
duration of the opening of the associated LOB are an inherent feature of the market, see
again exemplarily in Figure 2.4. Simplifying this by mapping it to a single price – which
is often one of the intraday indices that is being modelled – can lead to misinterpreta-
tion of the price or even of the volume and illiquidity risks that arise. As it is our goal to
model exactly, we follow the approach in [34] and instead model the underlying order
book based on available order book data. One might now assume that the modelling
of the order book on the basis of order book data would be a perfect replication of the
LOB. However, this is not the case due to errors in the data and partially invisible data in
the order books. Therefore, the simulation of the LOB based on order book data is only
an approximation of the true LOB process. In addition, it is of course possible to model
how the market would behave in this respect by adding more orders. We explain how
this modelling is done below.

The best performing models use a huge load of explanatory variables, amounting from
up to 222 in [45] over up to 372 in [60] to up to 26259 in [47]. Model reduction and
selection is managed through the usage of the least absolute selection and shrinkage
operator (LASSO) method or through elastic nets. Neither in these huge sets of explana-
tory variables nor in any of the other contributions though, other LOB information aside
from transaction data is used. Therefore, we want to investigate whether some of the
LOB statistics introduced in Section 3.1 could actually enhance ID3 forecasting perfor-
mance. In order to answer that question, we first introduce interval versions of the LOB
statistics described above for further usage as well as additional statistics.
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Time-weighted LOB statistics From the LOB recreation that is available after the ap-
plication of Algorithm 1, several derived data like mid prices, bid-ask spreads and order
book depths can be calculated for every snapshot during the LOB’s life span. Usually,
a collection of these values for every change in the LOB amounts to a very high num-
ber of entries, most being valid for only seconds. Therefore, we aggregate them over
specified time intervals. A reasonable way to reach interval statistics is to introduce a
time-weighting. The candidate statistics are aggregated over a time interval rfpdq, gpdqs,
where d is again the timestamp of the delivery start of the chosen product, and f, g are
functions of time with fpdq ă gpdq @d. Then, we define the following interval statistics
for the product with delivery start d and product type i:

• Mid price: The time-weighted mid price md,i in the interval rfpdq, gpdqs is defined
as

md,i “
1

gpdq ´ fpdq

ż

rfpdq,gpdqs
md,i
s ds “

J
ÿ

j“0

md,i
sj

psj`1 ´ sjq

gpdq ´ fpdq
, (3.3)

where md,i
s is the mid price at time s, i.e. md,i

s :“ ask˚,d,is `bid˚,d,is
2 . As the mid price

only changes finitely often in the interval rfpdq, gpdqs, the integral can be rewritten
as a sum. Finally, the ordered set of time points with changes in that interval
is denoted by T d,imid and contains J elements s1, ..., sJ . We define s0 :“ fpdq and
sJ`1 :“ gpdq.

• Spread: The time-weighted bid-ask spread ηd,i in the interval rfpdq, gpdqs is defined
as

ηd,i “
1

gpdq ´ fpdq

ż

rfpdq,gpdqs
ηd,is ds “

J
ÿ

j“0

ηd,isj
psj`1 ´ sjq

gpdq ´ fpdq
, (3.4)

where ηd,is is the spread at time s, i.e. ηd,is :“ ask˚,d,is ´ bid˚,d,is . As the spread also
only changes finitely often in the interval rfpdq, gpdqs, the integral can again be
rewritten as a sum. The ordered set of time points with changes in that interval
is denoted by T d,ispread and contains J elements s1, ..., sJ . We define s0 :“ fpdq and
sJ`1 :“ gpdq.

• Skewness: In order to measure skewness in the order book, we consider volumes
v with v P t10, 20, 30, 40, 50, 60u MW. For each v, we compare how much traders
demanding v MW would pay, to how much they would get when instead offering
v MW on the market. The difference between both is defined as skewness and
is supposed to measure the well-balancedness of the LOB. To avoid incorporating
the spread into this definition, we deduct the best prices of both sides from all
respective following price levels. Consequently, we define skewness at one point
in time as

Sd,ipvq “
N
ÿ

j“1

vsj pp
s
j ´ p

s
1q1řj

k“1 vkăv
` vsj˚pp

s
j˚ ´ p

s
1q ´

M
ÿ

j“1

vbjpp
b
j ´ p

b
1q1řj

k“1 vkăv

´ vbj˚pp
b
j˚ ´ p

b
1q,
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where N is the number of price levels on the sell side and M the number of price
levels on the buy side. Consequently, vsj is the volume available on the sell side
at price level j and price psj . Similar roles on the buy side are taken by vbj and pbj .
Finally, pj˚ and vj˚ are the price on the last reachable level and the rest volume
which is still not covered from the price levels before. Defined like this, skewness
incorporates the statistics price levels and LOB depth. Now, we can define

SKd,ipvq “
1

gpdq ´ fpdq

ż

rfpdq,gpdqs
Sd,is pvq ds “

J
ÿ

j“0

Sd,is pvq
psj`1 ´ sjq

gpdq ´ fpdq
, (3.5)

where Sd,is pvq is the skewness at time s for volume v. Again, the set of time points
with changes in that interval can be denoted by T d,i,vskew and contains J elements
s1, ..., sJ . We define s0 :“ fpdq and sJ`1 :“ gpdq.

Note that |T d,imid |, |T
d,i
spread| and |T d,i,vskew | need not be equal. What is left to define is the subtrac-

tion of two timestamps. We follow [33] and specify that subtraction of two timestamps
leads to a duration Durp¨q in minutes. This time unit has been chosen out of convenience
and could be replaced by any other time unit. Regarding the defined statistics, the time-
weighted mid price is assumed to capture the actual value of the product, whereas the
bid-ask spread could be seen as an indicator for how much liquidity is available on the
market. Skewness parameters try to capture well-balancedness of the market and there-
fore indicate whether the market is a buyer’s or seller’s market, i.e. a market where
purchasers have an advantage over sellers due to an abundance of goods for sale or vice
versa. Nonetheless, this should not be mixed up with the skewness of a distribution,
although the idea is inspired from it.

In order to decide for an adequate time interval to aggregate over, we adopt the idea
of [47]: Here, the forecasting results of one of the constructed naive benchmark mod-
els for the ID3 for hourly products could not be significantly outperformed by the best
suggested models, and even though [45] showed that combining it with fundamental
variables improves forecasting quality, the naive benchmark in itself is already a very
good estimator. This specific benchmark model only relies on volume-weighted transac-
tion data from the quarter hour before the ID3 interval. Based on this result, we decide to
restrict ourselves to LOB statistics from that quarter hour as well. Furthermore, we also
include the volume-weighted transaction price as an interval statistic for further anal-
ysis, even though the weighting method is a different one in comparison to the other
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statistics. Consequently, the full model is given by

fullÎD
d,i
3 “ a1

ÿ

sjPT
d,i
midY gpdq

msj

psj`1 ´ sjq

gpdq ´ fpdq
`

a2

ÿ

sjPT
d,i
spreadY gpdq

ηsj
psj`1 ´ sjq

gpdq ´ fpdq
`

6
ÿ

v“1

˜

ak`2

ÿ

sjPT
d,i,v
skew Y gpdq

SKsj pvq
psj`1 ´ sjq

gpdq ´ fpdq

¸

`

ÿ

tPT d,i
trans

ptvt
ř

tPT d,i
trans

vt
. (3.6)

All variables are defined as in Equations (3.3) to (3.5). Regarding the last row of Equa-
tion (3.6), we define pt as the price of transaction t and vt as the corresponding traded
volume. T d,itrans contains all transactions that take place in the interval rfpdq, gpdqs for
products with type i and delivery start d. Again, d denotes the time stamp of the de-
livery start, and as before, i is again contained in th, qhu, representing either hourly or
quarter hourly products. In case there are no transactions in the relevant quarter hour,
the forecasted value is replaced by the corresponding day-ahead price.

In order to build simpler models with less variables as well, we furthermore define the
following models.

The two naive forecasting models We present two naive models, where one is based
on mid prices and the other is based on transaction prices. The former is defined by

midÎD
d,i
3 “

ÿ

sjPT
d,i
midY gpdq

msj

psj`1 ´ sjq

gpdq ´ fpdq
, (3.7)

where all variables are defined as in Equation (3.3). The second model that is based on
transaction prices is denoted as

transÎD
d,i
3 “

ÿ

tPT d,i
trans

ptvt
ř

tPT d,i
trans

vt
. (3.8)

With this definition, transÎD
d,i
3 equals the naive benchmark model from [47] mentioned

above. Now, what is left to define are f and g to determine start and end time of the
interval. As we want to use the quarter hour before the start of the ID3 interval, we
define

fpdq :“ d´ Durp225 MINUTESq

and
gpdq :“ d´ Durp210 MINUTESq.
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Their difference is always equal to Durp15 MINUTESq. Again with the example of the
ID3 of the hourly product 8 am - 9 am, the transactions from 4:15 am to 4:30 am are
contained in T d,itrans.

It is worth mentioning that, even though transÎD
d,i
3 performs very well on hourly prod-

ucts as seen in [47], its performance regarding quarter hourly products fell behind the
results of the other presented models in the publication. Nonetheless, it serves well as a
benchmark to assess whether LOB statistics can contribute to ID3 forecasting.

Regression forecast A simple way to increase the complexity of both models is to add
an intercept as well as a slope to the models, i.e.

P̃ d,i “ ai0 ` a
i
1P̂

d,i (3.9)

for P̂ d,i P tmidÎD
d,i
3 , transÎD

d,i
3 u and ai0, a

i
1 the regression parameters for product type i.

For the resulting new models, the first step is to find adequate sizes for the calibration
windows of the regression parameters. [44] present a model for the hourly ID3 and
test which calibration window size fits the model best. Their findings indicate that for
ID3 prices, the longest possible calibration window indeed performed the best with their
forecasting model.

Equipped with these prediction models, we now move on to a case study on the Ger-
man intraday market.

3.4 Case study on the German intraday market

The data we use for the case study are LOB data as well as transaction data from EPEX
SPOT SE for the time from 01.01.2019 to 15.7.2019. This data set is split in training and
test set, with the split appearing after three-quarters of the data set. Furthermore, all
presented plots were produced using Python 3.6 [61] and the package seaborn 0.11.1
[64]. For calculation of the order book statistics, the Cython package 0.29.24 [1] as well
as the Numpy package 1.19.5 [25] were used.

Figures 3.3 and 3.4 present the time series for hourly as well as quarter hourly ID3

values. We find that in the order book data set belonging to that time period, some rare
anomalies appear due to technical reasons on the side of the exchange, like the order
book emptying and being filled only 20 minutes later again three hours before delivery,
which is usually a very busy time in the order books. This is far from the norm and
thus, we decided to remove periods where the order book is empty on at least one side
for the calculation of mid prices and spreads. The affected time intervals are adjusted
accordingly. Furthermore, we see spikes in the test set with values far over 200 that have
not appeared in the training set. As we assume these spikes to not be well catchable by
any estimator knowing only the presented training data and we cannot be sure whether
they are again artificial artifacts in the data, they are removed prior to further analysis.
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Figure 3.3: ID3 values over the time horizon from 01.01.2019 to 15.07.2019 for hourly
products. The black line indicates the split between training set and test set,
the former being on the left and the latter on the right of the black line.

Figure 3.4: ID3 values over the time horizon from 01.01.2019 to 15.07.2019 for quarter
hourly products. The black line indicates the split between training set and
test set, the former being on the left and the latter on the right of the black
line.
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Figure 3.5: Scatter plots for LOB statistics and the ID3 for hourly products, excluding
order book asymmetry.

To assess which, if any, of the introduced LOB interval statistics have forecasting abili-
ties regarding the ID3 prices, we check in a first step whether we find a (linear) relation-
ship between the LOB statistics and the ID3 values as well as between the LOB statistics
themselves. This is analyzed through the usage of scatter plots as well as through a cor-
relation analysis. Figures 3.5 and 3.6 present scatter plots for hourly and quarter hourly
products, respectively.
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Figure 3.6: Scatter plots for the LOB statistics and the ID3 for quarter hourly products,
excluding order book asymmetry.

Concerning the scatter plots for hourly products, the most prominent feature is the al-
most perfectly linear relationship between mean transaction prices and mean mid prices.
Furthermore, a less pronounced linear relationship between both statistics and ID3 prices
is visible. In comparison to that, the mean spread does not seem to have any sort of lin-
ear relationship with the ID3 prices. A possible nonlinear relationship would require
other analysis techniques which are beyond the scope of this thesis.

For quarter hourly products, the scatter plots present a similar picture. Mean transac-
tion prices and mean mid prices still show a strong linear relationship, even though it
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Figure 3.7: Correlation heatmap for LOB statistics and the ID3 for hourly products.

is much less pronounced in comparison to the hourly products. As before, both have a
linear relationship with the ID3 prices, whereas the spread does not have a visible linear
relationship with them.

Figures 3.7 and 3.8 show heat maps for hourly and quarter hourly products, respec-
tively. Again, we notice the correlation of almost 1 for hourly products, and still 0.94 for
quarter hourly products when comparing mean mid price and mean transaction price.
Furthermore, both statistics show the highest correlation with the ID3 for hourly as
well as quarter hourly products. All asymmetry values show a positive correlation with
ID3 prices, which first grows in numbers with growing asymmetry and then diminishes
again. Finally, the spread has a negative correlation with all considered statistics.
Again inspired by [47] and [60], we furthermore conduct an elastic net analysis that

was first introduced by [70] for variable and model selection. Elastic nets are a regres-
sion method that combines the approaches from LASSO and ridge regression. Both are
regression techniques that incorporate some sort of regularization, with LASSO also sup-
porting variable selection. LASSO uses an l1 regularization, ridge regression an l2 reg-
ularization, and elastic nets combine both by summing them in a convex combination
with choosable parameter λ. Furthermore, the decision for the usage of any regular-
ization at all is made by choosing a second parameter α, with very small values for α
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Figure 3.8: Correlation heatmap for LOB statistics and the ID3 for quarter hourly prod-
ucts.

indicating a negligible influence of the regularization terms. We choose this method due
to the strong correlation between transaction prices and mid prices, as ridge regression is
known to handle that very well, while LASSO reduces unnecessary variables’ coefficients
to zero. The needed parameters can both be determined by cross validation techniques
that are implemented in the SciKit-Learn Python package presented in [48].

We analyze the chosen coefficients for models trained on different time horizons: First,
we look at the model chosen based on the whole training set, then at the models for
every month in the training set and finally for every week. This procedure is chosen
to capture possible time inhomogenities or dependencies in the data. We present the
results for hourly products in Table 3.9, and the results for quarter hourly products can
be found in Table 3.10.

Our main findings from the analysis of the LOB statistics are: For hourly products,
transaction prices are deemed the most relevant indicator over the whole time horizon,
closely followed by mid prices. This pattern repeats when looking at the monthly and
weekly values, with a fluctuation between mostly mid prices and transaction prices re-
garding the biggest coefficient. Overall, they are incorporated in the models most of the
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Time Mid Trans- Spread As. 10 As. 20 As. 30 As. 40 As. 50 As. 60
Price actions

none 0.6 0.4 -0 0 0 0 0 0 0
Month 1 0.2 0.77 -0 -0.03 -0 0 0 0.01 0
Month 2 0.11 0.88 -0.06 0 -0 -0 0 0 -0
Month 3 0.78 0.19 0 0.02 0 0.01 0 0 0
Month 4 1.1 0 0 0 0.01 0 0 0 0
Month 5 0.54 0.52 -0.1 -0 -0 -0 -0 -0 -0
Week 1 0 0.95 -0.57 -0.03 0 -0.03 -0 0.02 0
Week 2 0.52 0.5 1.03 -0.27 0.08 0.01 0 0 0
Week 3 0.45 0.44 0 -0 0 0 0 0 0
Week 4 0.28 0.67 0 -0 -0 0 0 0 0
Week 5 0.54 0.49 1.32 0.09 -0.03 -0 -0.02 0 0.01
Week 6 0 0.98 -0 0 0 0 0 0 -0
Week 7 0.84 0 -0 -0 -0 -0 0 0 0
Week 8 0 0.93 0.99 0 0 0 0 0 0
Week 9 1.12 0 -0 0.03 0.02 0 0 0 -0
Week 10 0.42 0.43 -0 0.05 0.01 0.01 0 0 -0
Week 11 0.78 0.12 -0 -0 0 0 0 0 0
Week 12 0.48 0.54 1.76 0.01 -0.06 0.01 0.03 0 -0.01
Week 13 0.88 0 -0 0 0 0 0 0 0
Week 14 1.09 0 1.44 -0 0 0 0 0 0
Week 15 0 0.94 -0 0 0.03 0 -0 -0 -0
Week 16 0.92 0 -0 0 0 0 -0 -0 -0
Week 17 1.05 0.09 0 0 0.03 0 -0 0 0
Week 18 0.66 0.36 -0 -0 -0 -0 0 0 0
Week 19 0.64 0.4 -0.9 0.07 -0.03 -0 0 0 0
Week 20 0 0.89 -0 -0 -0 -0 -0 -0 -0
Week 21 1.16 0 0 0 -0 -0 -0 -0 -0
Week 22 0 0.76 -0.27 0 0 0 0 0 0

Table 3.9: Values assigned by elastic net to the different variables for hourly ID3 prod-
ucts. The considered time intervals are the whole training set, each month
and each week.
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Time Mid Trans- Spread As. 10 As. 20 As. 30 As. 40 As. 50 As. 60
Price actions

none 0.65 0.28 -0 0 0 0 0 0 0
Month 1 0.46 0.43 -0.06 -0 -0 -0 -0 0 0
Month 2 0.91 0.01 0.22 -0 -0 0 -0 0 -0
Month 3 0.79 0.09 0 -0 0 0 0 0 0
Month 4 0.61 0.46 0.1 -0 0 0 0 0 0
Month 5 0.87 0.06 0 0 0 0 0 0 0
Week 1 0.63 0.25 -0.18 -0 -0 0 0 -0 0
Week 2 0.71 0.28 0.22 -0 -0 -0 -0 -0 -0
Week 3 0.58 0.2 0 0 0 0 0 0 0
Week 4 0.57 0.41 -0.18 -0 -0 -0 -0 -0 0
Week 5 0.69 0.25 0.06 0 -0 -0 -0 -0 -0
Week 6 0.91 0 0.11 -0 -0 0 0 0 0
Week 7 0.52 0.25 0.13 0 -0 0 0 0 -0
Week 8 0.69 0.12 0 0 -0 -0 -0 -0 -0
Week 9 0.95 0.17 -0.09 -0 0 0 0 -0 0
Week 10 0.54 0.26 -0.05 0.01 -0 0 0 -0 0
Week 11 0.84 0 0.06 -0 -0 -0 0 0 0
Week 12 0.87 0.02 0 0 0 0 0 0 0
Week 13 0.62 0.23 -0 -0 0 0 0 0 0
Week 14 1.06 0.06 0 -0 0 0 0 0 0
Week 15 0.5 0.34 0.02 -0 -0 0 0 0 0
Week 16 0.89 0.02 -0.18 -0 0 0 0 0 0
Week 17 0.71 0.53 0.44 -0 -0 -0 -0 -0 0
Week 18 1.05 0 -0 0 -0 0 0 0 -0
Week 19 0.85 0.21 -0.38 0 -0 -0 0 0 0
Week 20 0.7 0.17 -0.15 -0 0 0 0 0 -0
Week 21 0.92 0 0.13 0 0 0 0 0 0
Week 22 0.37 0.3 -0 -0 -0 -0 -0 -0 -0

Table 3.10: Values assigned by elastic net to the different variables for quarter hourly
ID3 products. The considered time intervals are the whole training set, each
month and each week.
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time, but – most likely due to the strong linear relationship with transaction prices – we
do not see a convergence of coefficients here. The spread is also included in roughly half
of the models, but the sign of its coefficient varies. Same holds true for all asymmetry
values. Therefore, including them in the model does not seem reasonable. Adding to the
technical point of view, the models all decided for α ď 0.1, and consequently the result-
ing elastic net regression is close to an unregularized ordinary least-squares regression.

For quarter hourly products, the algorithm again chooses α very close to zero, we find
α ď 0.05 for all considered constellations. Therefore, the regression is nearly identical to
ordinary-least squares. In comparison to the hourly products, now the main component
of nearly all models is the mid price, followed by transaction prices. The spread again is
incorporated in more than half of the considered models, but its sign changes and thus,
we will again not include it in our further analysis. Asymmetry values now are almost
all equal to zero and are also not considered any further.

Based on this analysis, it seems unreasonable to fit the full model given in Equa-
tion (3.6), as most of the contained predictors would only add irrelevant or erroneous
information. As a consequence, we decide to drop all explanatory variables except mid
prices and transaction prices for both hourly and quarter hourly products. Furthermore,
we will not combine these two variables in one model due to the strong correlation be-
tween them, but instead compare them against each other in their predictive ability. This
leads us to analyzing the data based on the naive predictors presented in Equations (3.7)
and (3.8).

Naive forecast We conduct our first analysis by using the models midÎD
d,i
3 and transÎD

d,i
3

defined in Equations (3.7) and (3.8). The error of the forecasted ID3 prices in compar-
ison to the actual observed ID3 prices is calculated via mean absolute error (MAE) as
well as via root mean squared error (RMSE), which are defined by

MAEpP̂ iq “
1

|Di|

ÿ

dPDi

|IDd,i3 ´ P̂ d,i|, (3.10)

RMSEpP̂ iq “

d

1

|Di|

ÿ

dPDi

pIDd,i3 ´ P̂ d,iq2, (3.11)

where Di is the set of all timestamps in the test set that a forecast is calculated for in
regard to product type i, and P̂ d,i P tmidÎD

d,i
3 , transÎD

d,i
3 u. Both are regularly used as er-

ror measures in the literature, see e.g. [47] or [36]. These error measures indicate
differences in forecasting accuracy between both estimators. We present them for both
models in Table 3.11.
The results show that in the naive version of the forecasts, midÎD

d,h
3 and transÎD

d,h
3 perform

similarly well. This is supported by an analysis using the adjusted Diebold-Mariano test
from [26], where we cannot reject the hypothesis that transÎD

d,h
3 and midÎD

d,h
3 differ in accu-

racy regarding their forecasts. In contrast to that, though, we find that for quarter hourly
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Estimator MAEh RMSEh MAEqh RMSEqh

midÎD
d,i
3 4.02 10.64 6.04 12.52

transÎD
d,i
3 4.01 10.62 6.72 13.78

Table 3.11: Forecasting errors for both considered naive models.

products, midÎD
d,qh
3 shows higher accuracy than transÎD

d,qh
3 , with the p-value returned by the

Diebold-Mariano test being 0.03. Thus, in our opinion, the informational gain from using

midÎD
d,qh
3 does justify the somewhat higher computational effort that comes with it.

Figure 3.12: Counts of how often in the whole data set the observation period of the

transÎD
d,h
3 did not contain any transactions.

When looking for the reason of this outperformance, the difference in the liquidity
of the products comes to mind: In [47] it is shown that the liquidity of quarter-hourly
products is about a quarter of the liquidity of hourly products. To test the hypothesis of
this being the decisive point, as a first step we check if, and if so how often, there are
no transactions in the estimators’ quarter hour before the ID3 time interval. Figure 3.12
and 3.13 present count plots for the hourly and the quarter hourly case, respectively.
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Figure 3.13: Counts of how often in the whole data set the observation period of the

transÎD
d,qh
3 did not contain any transactions.

It is visible that while the transaction-based estimators for the hourly products usually
have transactions that can be used for forecasting, the situation for the quarter hourly
transaction-based estimators is much worse. Here, in about 40% of all observations, no
new information is given to the estimators and they refer back to the value of the corre-
sponding day ahead product. Consequently, at least for the quarter hourly products, this
difference in information might be the reason for the higher accuracy of midÎD

d,qh
3 .

To test the strength of the influence of the quarter hours without transactions infor-
mation, we decide to remove the corresponding observations from the test data set, and
repeat the analysis with the naive estimators on the trimmed test set. Results of this anal-
ysis can be found in Table 3.14. For the hourly estimators, only seven observations were
removed from the test set, which is less than 1% of the observations. In comparison to
that, 1,470 observations are removed for the quarter hourly products, which makes up
about 31% of their total number. Both estimators for the hourly products profit visibly

Estimator MAEh RMSEh MAEqh RMSEqh

midÎD
d,i
3 3.91 9.83 6.21 12.75

transÎD
d,i
3 3.90 9.83 6.18 12.75

Table 3.14: Forecasting errors for both considered naive models.

from the removal of the observations where no transactions were recorded. This result
seems somewhat astonishing for the hourly products, as only seven observations were
removed here. A further analysis shows that the main reason for the errors’ decline lies
with one of the seven observations, where the ID3 price was much higher than usually,
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which led to a spike in errors for both estimators. We conclude that this does not give
hints at structural properties of the estimators.

Turning to the quarter hourly products, the picture is more mixed: The errors of

transÎD
d,qh
3 decreased, which shows that there is significant value in the recent transaction

prices in comparison to the corresponding day ahead price for this estimator. In con-
trast to that, the prediction accuracy of midÎD

d,qh
3 grew worse, and even though transÎD

d,qh
3

does not significantly outperform midÎD
d,qh
3 , it puts forward a smaller MAE than midÎD

d,qh
3 .

A deeper analysis finds that during midday, missing transaction observations occur less
often than they should if they were equally distributed over all products. This leads to
the question whether the midÎD

d,qh
3 performs better in general for quarter hourly products

outside of this area.

Consequently, we repeat our analysis for all individual products. This is also supported
by the fact that the ID3, even if it is usually given as a time series over all products of
one type (hourly or quarter hourly), is nevertheless an individual index for each of these
products. The results for hourly products are given in Table 3.15. Although for some
hours the midÎD

d,h
3 performs significantly better than the transÎD

d,h
3 , in general it is clear that

no significant improvement is achieved.
When the ID3 forecasts for the quarter hourly products are evaluated for each product

individually, the picture changes: Now we see a clear outperformance of transÎD
d,qh
3 by

midÎD
d,qh
3 . The error values and corresponding Diebold-Mariano p-values are given in

Tables 3.16, 3.17 and 3.18. The headers are truncated due to the page layout: ”mid”
translates to midÎD

d,qh
3 , ”trans” translates to transÎD

d,qh
3 , and DM 1 and DM 2 stand for the

Diebold-Mariano test based on the l1-norm and the l2-norm, respectively. Looking at the
products around midday, we do find that the ourperformance here is not as strong as it
for most products from other times of the day. Thus, this explains the error growth for

midÎD
d,qh
3 after removing the observations with missing transactions.

In a second step, we analyze the introduced regression versions of the naive forecast.

Regression forecast Before analyzing the performance of the regression estimators

trans
ĄID3

d,i
and mid

ĄID3
d,i

, we need to choose calibration window sizes for their fit. For that,
we perform a rolling window approach on the whole training data set, repeated with
differing window sizes w P r1, 3000s. In order to let all windows roll over the same data
set, we start after the first 3000 data points, which are then used for the first calibration.
This approach is detailed in the following: At every step, we forecast one point in time
only. For each new hourly ID3 price, new information is available that is included in
the calibration. It is important to notice, though, that the most recent information tuple
available for calibration are the ID3 price and its estimate from four hours before, see
Figure 3.19.
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Hour MAE midÎD
d,h
3 RMSE midÎD

d,h
3 MAE transÎD

d,h
3 RMSE transÎD

d,h
3 DM 1 DM 2

0 3.11 5.05 3.22 5.3 0 0.01
1 2.79 4.09 2.77 4.03 0.64 0.73
2 2.69 4.03 2.69 4.05 0.44 0.24
3 2.93 5.1 2.91 5 0.84 0.91
4 2.64 4.56 2.62 4.59 0.66 0.44
5 2.67 4.05 2.69 3.96 0.24 0.9
6 2.9 4.53 2.98 4.54 0.02 0.33
7 3.41 5.22 3.43 5.14 0.19 0.78
8 4.1 6.15 4.09 6.11 0.53 0.63
9 4.03 6.31 4.1 6.34 0.18 0.35

10 3.81 5.39 3.88 5.55 0.05 0.06
11 4.1 6.02 4.15 6.16 0.15 0.17
12 5.23 16.49 5.22 16.54 0.54 0.1
13 5.04 12.46 4.95 12.21 0.98 0.98
14 4.01 7.82 3.99 7.95 0.71 0.15
15 3.79 7.9 3.72 7.77 0.99 0.99
16 3.5 4.94 3.45 4.95 0.86 0.44
17 3.21 4.5 3.22 4.48 0.26 0.8
18 3.17 4.44 3.12 4.4 0.93 0.94
19 3.53 5.36 3.56 5.38 0.16 0.23
20 4.31 11.35 4.37 11.4 0.06 0.13
21 3.47 5.97 3.39 5.89 0.94 0.93
22 3.63 10.15 3.62 10.2 0.61 0.21

Table 3.15: Table containing MAEs and RMSEs for hourly product forecasts of midÎD
d,h
3

and transÎD
d,h
3 as well as their significance level.

Now, for each calibration window size w, the calibration set as well as when the
forecast takes place is rolled through the entire data set. This is depicted in Figure 3.20.
The resulting mean absolute errors for w P r1, 3000s on the training data set and models

mid
ĄID3

d,h
, trans

ĄID3
d,h

are given in Figure 3.21 for hourly and in Figure 3.22 for quarter
hourly products. For hourly products, they indicate the same behavior as described by
[44], i.e. the bigger the calibration window, the better the forecast. In contrast to that,
though, we also notice small errors for smaller window sizes around 260. These two
patterns lead us to the decision to choose calibration window sizes of w P t260, 3000u
for comparing the models on the test set for hourly products. The decision against even
bigger calibration windows is due to the total size of the training data set, as increasing
the calibration window is equivalent to decreasing the number of points for forecasting
in the training set.
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hour0 1 2 3 4 5 6 7 8

Model interval Model interval

IDd,480
3 intervalIDd,240

3 interval

Figure 3.19: Example of available calibration data while forecasting the ID3 for the
hourly product 8 am - 9 am. At the beginning of the model interval, only
information from four or more hours earlier is available.

Figure 3.20: Example for rolling calibration window with window size w “ 4. The blue
dots represent the calibration set, the green one is the point where the
forecast is taking place and the calibration is used, and the gray dots are
data points that are not used in that iteration.

For quarter hourly products, the picture is similar when looking at big calibration

window sizes for trans
ĄID3

d,qh
, where we find the lowest error values. Interesting enough

though, we see a strong dip in the MAE for a window size of w “ 3 for mid
ĄID3

d,qh
. Conse-

quently, we decide for calibration window sizes of w P t3, 3000u for the test set of quarter
hourly products.

Based on the calibration windows found in this first step, we follow the steps from be-
fore and compare the forecast performance of both estimators on the test set. We again
use MAE as well as RMSE as error measures on the test set, with w defined as above.
Results are given in Table 3.23 for hourly and in Table 3.24 for quarter hourly estimators.

We find a pattern similar to the one for the naive forecast for hourly products, with
the transaction price model outperforming the mid price model. When comparing the
values to the errors reached by the naive models in Table 3.11, we see no improvement
regarding MAE. For the RMSE, though, both regression approaches outperform or at
least equal their naive counterparts for w “ 260.

For quarter hourly products, our findings mirror the results of the naive approach:
Again, the mid price model outperforms the transaction price model and does so with a
p-value of p “ 0.001 for the l1-norm and a value of p “ 0.02 for the l2-norm.

It holds true for both estimators that they are dominated by their respective naive
counterpart regarding both MAE and RMSE. To further analyze this behavior, we study
the performance for different price regimes. As the RMSE is more sensitive to extreme



3.4 Case study on the German intraday market 45

Figure 3.21: Mean absolute errors for
both estimators on the
training set for growing
calibration window size
and hourly products.

Figure 3.22: Mean absolute errors for
both estimators on the
training set for growing
calibration window size
and quarter hourly prod-
ucts.

errors in comparison to the MAE, we base the next step on the the lower RMSE errors
for hourly products for the regression estimators: Repeating the error measurements for
different price regimes in order to analyze which of the models performs best in different
market situations, as we attribute some higher error values to extreme price regimes.

Forecast errors for price regimes Electricity index prices, as seen in Figure 2.5, tend
to be stable around a certain value, with sometimes abrupt jumps up- or downwards.
In order to analyze which model performs best in these differently behaved market sit-
uations, the first step is to split the observations into defined regimes. Here, we follow
[60] and introduce three price regimes. [60] define positive, negative, and regular price
regimes through

pos.: µi ` 3σi ă IDd,i3 , neg.: µi ´ 3σi ą IDd,i3 , reg.: µi ` 3σi ě IDd,i3 ě µi ´ 3σi.

The data in the test set is split into these groups and errors are calculated separately
for each of them. Our analysis includes the naive models as well as the regression
models. Tables 3.25 and 3.26 hold the results for hourly and quarter hourly products,
respectively.

We find that for hourly products and the regular price regime, the naive models per-
form best as was to be expected based on all former results. For all error measures
regarding positive or negative price regimes though, the regression models outper-
form their naive counterparts. Here, we notice that in the case of the negative price
regime and MAE, the mid price model actually outperforms the transaction price model.
Nonetheless, these results have to be handled with caution, as the positive price regime
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only contains 8 observations, and the negative one only 10.

In comparison to that, the price regimes for quarter hourly products have a few more
observations, namely 46 in the case of positive and 33 for the case of negative spikes. We
find that for quarter hourly products and positive price regimes, the regression models
again outperform their naive counterparts, which is most visible for both estimators with
w “ 3. In comparison to the hourly products, though, we don’t see an improvement for
the negative price regime. The regular price regime is again dominated by the naive
estimators. A possible reason for these findings is that in market situations based on the
positive price regime, we see a stronger autocorrelation in the prices in comparison to
negative or regular price regimes.

3.5 Discussion and Conclusion

This chapter treats the question whether the usage of limit order book statistics has
the potential to enhance existing models for ID3 prices. Based on our analysis, LOB de-
rived time-weighted mid prices indeed contain much information about index prices. For
hourly products, this information does not seem to enhance the forecasting performance
notably, as the mid price based estimator is slightly outperformed by the naive bench-
mark for most hours. Furthermore, since working with LOB data requires somewhat
more computational resources than working with transaction data only, established es-
timators seem preferable for hourly ID3 products. For quarter hourly products, however,
the time-weighted mid prices carry significantly more information than the transaction
prices, which is highlighted by the superior performance of the mid price estimator with
respect to MAE and RSME for most quarter hours.A closer analysis yields that the smaller
liquidity of quarter hourly ID3 products in comparison to hourly ID3 products is the main
reason for this outperformance. Less liquidity equals less transactions in total, and in a
non-negligible amount of times leads to no transactions in the estimator’s time interval.
Thus, the transaction-based estimator has a worse data base in comparison to its hourly
counterpart. Based on this analysis, we do strongly recommend to include limit order
book information – especially time-weighted mid prices – in full information models for
the ID3 when quarter hourly products are concerned.

A simple increase of model complexity through usage of a regression did not yield the
anticipated improvement of forecasting accuracy. Nonetheless, we find that for extreme
price regimes, regression models tend to outperform their naive counterparts, which
was strongly visible with quarter hourly products and the positive price regime. Even
though these results have to be handled with caution due to small observation numbers
for both regimes, it might be worthwhile to include order book information, and here
again mainly the time-weighted mid price, to estimators that target exactly these ex-
treme price regimes.
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Our results show that a structurally different approach to ID3 price forecasting – re-
lying on a time-weighting and neglecting every volume-related information – is on par
with existing transaction-based estimators. Moreover, it can even contain more infor-
mation than the volume-weighted transaction data themselves, which in itself might be
worth further research. Furthermore, using limit order book information for the forecast
of half hourly ID3 prices is an obvious next step, as the half hourly ID3 is the least liquid
in comparison to its hourly and quarter hourly counterpart and often has no transactions
at all over the course of the whole order book opening time. Therefore, transaction data
provide no helpful information for forecasting, whereas the LOB does contain orders and
thus mid prices that could enhance an estimator’s performance. Finally, an extended
analysis of extreme price regimes based on a bigger data source could yield information
on whether regression models consistently perform better for extreme price regimes and
thus could improve estimators’ accuracies further.
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Hour Minute MAE mid RMSE mid MAE trans RMSE trans DM 1 DM 2

0 0 5.56 7.33 6.65 8.88 0 0
0 15 5.2 7.41 5.63 7.87 0.03 0.01
0 30 4.79 7.44 5.74 8.36 0 0.01
0 45 6.12 9.25 6.62 9.46 0.06 0.37
1 0 4.32 5.75 5.48 8.1 0 0
1 15 4.56 6.64 4.97 6.98 0.13 0.27
1 30 4.51 6.43 4.83 7.03 0.11 0.08
1 45 4.97 7.23 5.43 8.32 0.03 0.02
2 0 4.24 5.85 5.16 8.43 0.01 0.06
2 15 5.07 12.16 4.72 6.33 0.69 0.84
2 30 4.33 6.4 4.81 6.78 0.05 0.25
2 45 4.93 7.38 5.99 9.78 0 0.02
3 0 5.46 11.61 5.57 8.04 0.44 0.81
3 15 4.87 7.18 5.42 8.34 0.01 0.09
3 30 4.84 7.07 5.12 7.01 0.07 0.61
3 45 4.92 7.27 5.46 8.11 0.05 0.17
4 0 5.06 7.93 5.54 9.12 0.14 0.22
4 15 4.23 5.95 5.15 7.66 0 0.05
4 30 4.54 6.45 5.21 7.67 0.01 0.07
4 45 4.33 6.04 5.68 8.83 0 0
5 0 4.55 6.53 5.36 7.48 0 0
5 15 4.45 6.72 5.21 8.24 0.02 0.07
5 30 4.31 6.36 5.03 8.08 0.03 0.09
5 45 4.33 5.93 5.41 7.68 0 0.01
6 0 5 7.66 6.9 10.02 0 0
6 15 4.91 6.82 5.69 8.58 0.01 0.09
6 30 4.57 6 5.66 8.32 0 0
6 45 5.23 7.44 6.07 9.18 0.02 0.02
7 0 5.11 7.26 6.44 9.99 0 0.05
7 15 5.55 7.7 6.66 10.93 0.01 0.04
7 30 6.05 9.96 7 12.32 0.01 0.02
7 45 5.97 10.06 6.82 11.54 0.01 0.06
8 0 6.18 9.12 8.12 13.13 0 0.02
8 15 6.3 9.62 7.22 11.76 0.01 0.01
8 30 5.84 8.84 6.73 11.54 0.01 0.09
8 45 6.41 10.06 7.31 11.02 0 0.01
9 0 6.01 8.85 6.63 10.08 0 0
9 15 5.92 8.62 6.08 8.97 0.23 0.24
9 30 5.58 8.21 6.22 9.9 0.01 0.01
9 45 6.09 9.32 6.59 9.84 0.01 0.07

Table 3.16: Table containing MAEs and RMSEs for quarter hourly product forecasts of

midÎD
d,qh
3 and transÎD

d,qh
3 as well as their significance level.
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Hour Minute MAE M RMSE M MAE T RMSE T DM 1 DM 2

10 0 5.66 7.73 6.57 9.06 0 0
10 15 5.29 7.57 5.56 8.08 0.12 0.14
10 30 6.08 8.21 6.52 9.72 0.09 0.07
10 45 6.49 9.51 7.35 11.57 0.03 0.07
11 0 6.14 9.85 6.64 10.4 0.12 0.35
11 15 6.39 10.08 6.72 10.77 0.15 0.2
11 30 7.35 13.85 7.62 14.3 0.22 0.18
11 45 6.71 9.95 7.03 10.61 0.2 0.28
12 0 6.82 15.51 7.12 15.92 0.13 0.11
12 15 6.42 10.5 6.36 10.15 0.56 0.65
12 30 8.31 19.86 8.62 20.47 0.19 0.22
12 45 8.33 17.31 8.93 17.27 0.09 0.52
13 0 6.57 11.48 7.55 14.74 0 0.11
13 15 6.02 10.07 6.87 13.06 0.01 0.06
13 30 6.09 9.94 6.04 9.36 0.55 0.81
13 45 6.32 10.4 7.14 11.92 0 0.01
14 0 6.03 9.81 7.22 10.99 0.01 0.01
14 15 5.86 9.77 7.01 11.48 0 0
14 30 7.02 14.42 7.42 13.78 0.11 0.84
14 45 6.84 13.93 7.44 14.53 0 0.01
15 0 5.53 8.51 6.53 9.91 0 0.03
15 15 5.62 10.39 6.79 11.67 0 0.01
15 30 5.88 8.72 6.13 8.7 0.2 0.52
15 45 5.74 7.74 6.81 9.66 0 0.01
16 0 5.66 9.22 6.38 9.98 0 0.01
16 15 5.29 7.91 5.97 10.95 0.09 0.14
16 30 5.26 7.6 5.96 10.13 0 0.11
16 45 5.33 7.54 6.76 9.23 0 0
17 0 5.35 7.87 7.34 12.33 0 0.01
17 15 5.27 8.27 5.33 7.79 0.45 0.63
17 30 4.66 6.83 5.74 9.36 0 0.05
17 45 4.57 7.2 5.89 10.43 0 0.06
18 0 4.69 6.54 5.65 7.7 0 0
18 15 4.8 6.38 5.17 6.93 0.01 0.01
18 30 5.99 18.86 5.12 7.39 0.79 0.84
18 45 6.46 14.28 6.53 11.24 0.47 0.72
19 0 5.24 7.9 5.97 8.41 0 0.01
19 15 5.11 7.34 6.06 9.35 0 0
19 30 5.87 10.01 6.61 10.58 0 0.01
19 45 6.97 14.34 7.28 14.78 0.05 0.06

Table 3.17: Continued: Table containing MAEs and RMSEs for quarter hourly product
forecasts of midÎD

d,qh
3 and transÎD

d,qh
3 as well as their significance level.
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Hour Minute MAE M RMSE M MAE T RMSE T DM 1 DM 2

20 0 6.83 14.76 7.67 15.39 0 0.01
20 15 5.04 7.41 5.66 8.58 0.03 0.03
20 30 6.32 16.33 7.1 16.85 0 0.1
20 45 5.96 13.65 6.66 14.16 0.01 0.23
21 0 5.93 14.58 6.76 15.13 0 0
21 15 5.99 14.08 6.92 16.51 0.02 0.17
21 30 5.93 12.83 6.67 13.69 0.02 0.06
21 45 5.96 11.26 6.94 11.88 0 0.17
22 0 4.48 6.22 5.46 7.77 0 0
22 15 5.03 10.31 5.85 10.99 0 0.04
22 30 5 6.36 5.72 7.33 0.01 0.02
22 45 5.18 7.23 5.83 8.25 0.03 0.05
23 0 4.49 6.73 6.02 9.09 0 0.03
23 15 4.43 7.14 5.58 9.59 0 0
23 30 5.08 8.64 6.18 11.43 0.01 0.01
23 45 5.65 9.24 6.5 10.08 0.04 0.28

Table 3.18: Continued: Table containing MAEs and RMSEs for quarter hourly product
forecasts of midÎD

d,qh
3 and transÎD

d,qh
3 as well as their significance level.

Regression Model MAEh RMSEh MAEh RMSEh
pw “ 260q pw “ 260q pw “ 3000q pw “ 3000q

mid
ĄID3

d,i
4.32 10.71 4.06 10.63

trans
ĄID3

d,i
4.31 10.69 4.05 10.62

Table 3.23: Forecasting errors for all hourly regression models.

Regression Model MAEqh RMSEqh MAEqh RMSEqh
pw “ 3q pw “ 3q pw “ 3000q pw “ 3000q

mid
ĄID3

d,i
6.38 14.04 6.13 12.56

trans
ĄID3

d,i
7.05 15.03 6.81 13.82

Table 3.24: Forecasting errors for all quarter hourly regression models.
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Model MAEh RMSEh MAEh RMSEh MAEh RMSEh
pos. pos. neg. neg. reg. reg.

midÎD
d,i
3 86.95 111.94 11.19 12.59 3.39 5.13

transÎD
d,i
3 85.87 111.57 11.32 12.45 3.38 5.16

mid
ĄID3

d,i
with w “ 3000 86.56 111.64 11.09 12.38 3.43 5.16

trans
ĄID3

d,i
with w “ 3000 85.49 111.27 11.23 12.25 3.42 5.18

mid
ĄID3

d,i
with w “ 260 85.97 111.31 10.74 11.75 3.69 5.38

trans
ĄID3

d,i
with w “ 260 84.85 110.9 10.84 11.53 3.69 5.4

Table 3.25: Forecasting errors for all models and three price regimes for hourly products.

Model MAEqh RMSEqh MAEqh RMSEqh MAEqh RMSEqh
pos. pos. neg. neg. reg. reg.

midÎD
d,i
3 75.3 95.88 21.64 25.6 5.24 7.92

transÎD
d,i
3 82.42 100.42 23.77 28.93 5.84 9.28

mid
ĄID3

d,i
with w “ 3000 74.93 95.6 21.68 25.7 5.32 8.01

trans
ĄID3

d,i
with w “ 3000 82.32 100.38 23.52 28.73 5.93 9.35

mid
ĄID3

d,i
with w “ 3 57.35 76.07 29.25 33.5 5.71 11.6

trans
ĄID3

d,i
with w “ 3 62.8 78.51 30.45 36.75 6.32 12.58

Table 3.26: Forecasting errors for all models and three price regimes for quarter hourly
products.
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4 Modelling, prediction and optimization
on the day ahead market

The day ahead market is, as we saw in Section 2.1, still the most important market for
companies to buy and sell short-term electricity. An immediate consequence is that there
are many people with a need to model, predict and eventually optimize on this market
in order to either make more money with the electricity they have or to spend less for
the electricity they need. The latter is mainly then a relevant point when the possibility
exists to shift the own demand or supply in order to match the need of the market to
sell or buy, respectively. Due to this fact, there exists much literature on how to model
and predict the day ahead market and some on how to optimize on it. Most articles
concentrate on how to predict the day ahead market of the very next day. Due to this
research, the day ahead prices of the next day are fairly well known beforehand. That
is not necessarily true for the days from day two onward, even though knowledge about
later days is needed if an optimization is concerned with more than the very short-term
view. To adress this problem, we model the day ahead price for the time window of a
week, condense the modelled paths to a manageable size for optimization purposes, and
finally optimize the use of a battery that trades based on these predictions.

The sections are structured as follows: Section 4.1 gives a deeper insight in how
to model the day ahead market for the days two to seven as prediction horizon and
presents which price model we are going to use. This is followed by Section 4.2, where
we concentrate on how to condense the modelled paths in a reasonable fashion in order
to prepare them for optimization. We elaborate on how to build scenario trees from
modelled paths and how to shrink such a tree from big to small size. Furthermore, we
present own approaches and heuristics for programming and using these techniques in
practice. Finally, the theoretical part is concluded by Section 4.3, where several methods
of how to optimize on scenario trees are presented and their advantages and drawbacks
are discussed. The knowledge from these three sections is then applied to data from
the German day ahead market in Section 4.4. The chapter is concluded by Section 4.5,
which sums up results from the previous section and gives an outlook to further research.

4.1 Modelling of the day ahead market

The survey [65] treats five different classes of electricity price modelling approaches,
namely:
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• Multi-agent models: Models containing agents that interact with each other; the
market and price curves are formed through this interaction.

• Fundamental models: Usually elaborate models that contain physical information
about power plants, grid capacities, weather among others, as well as economic in-
formation e.g. about development plans. Prices are modelled as result of dynamics
considering these information sources.

• Reduced-form models: Black-box models that do not try to explain electricity
prices but instead aim to capture inherent properties of the price movements.

• Statistical models: Models that follow from an application of statistical tech-
niques, either directly on the electricity price or on its influencing factors.

• Computational intelligence models: Models based on machine learning, evolu-
tion or fuzziness that try to capture the underlying dynamic system.

All of these modelling approaches have seen a surge in interest after the liberalization of
many electricity markets from the early 1990s onward [3]. Models from all these classes
often have similar, though not identical, scopes of application. Multi-agent models are
suitable for markets that are highly regulated and hardly subject to price fluctuations,
whereas the other model classes can also represent more heterogeneous markets [65].
Statistical models as well as computational intelligence models are often located in the
short-term forecast range and serve to predict the prices of the next day, whereas fun-
damental models and reduced-form models operate in the medium forecast range of
several days up to a few months and thus are more suitable for risk management. As it
is our goal to optimize over the time horizon of one week, we need to consider medium
term forecasts. This leads to the usage of either a fundamental or a reduced-form model.
Since fundamental models are immanently based on the existence and availability of
huge amounts of well-prepared data, we choose the approach of reduced-form models
instead. Prominent examples of models from this class are regime-switching and jump-
diffusion models, see [65]. We concentrate on the latter in the following.

Expanding the ideas from the classic stochastic model for electricity spot prices in
[57], where the price is defined through the exponential of an Ornstein-Uhlenbeck pro-
cess, [3] introduce the idea of factor models. These are spot price models that contain
several factors, where each factor is defined as a non-Gaussian Ornstein-Uhlenbeck pro-
cess, to capture different traits and behaviors exhibited by spot prices. In order to apply
this modelling class to the German day ahead price market, we first need to identify
which features are present there.

4.1.1 Analysis of the German day ahead market

When gathering insights about the German day ahead market, it is an obvious step to
look on the one hand at existing literature and on the other hand at historical spot price
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data. Regarding the literature, we follow [29] who analyzed German day ahead data
and its stylized features. They identify seven distinct features and test for them on the
historical data from 2011 to 2016:

• Seasonality: Because electricity use depends on people’s consumption and there-
fore their habits, patterns in consumption are also transferred to the electricity
price. Next to other influencing variables like e.g. the weather, this creates daily,
weekly and annual seasonalities that are reflected in the electricity price. Holi-
day effects or those of major events can also be observed. Usually, this seasonal
and cyclical behavior is represented in the literature by means of a seasonality
function. This function often takes either a sinusoidal form or contains dummy
variables. The former choice allows for a continuous seasonality function with the
advantages that result from it, whereas the latter choice is better suited to integrate
singular events like holidays.

• Negative prices: Since negative prices are allowed on the spot market, they do
appear in some hours of the year. The main reason for negative prices is too much
electricity supply combined with too little demand. There are several reasons why
this situation occurs more often today than in the past. For one, the greater amount
of renewable energy in the grid has shifted the merit order curve into regions of
generally lower prices because of their zero marginal costs, see Figure 4.1. Sec-
ondly, some types of power plants have long start-up times, which means that the
costs of shutting down and starting up again are higher than temporarily generat-
ing too much supply in minimum operation mode and thus having to pay negative
electricity prices.

• Mean reversion: As is often the case with commodities, electricity prices show a
return to their seasonal mean, see e.g. [23], [29].

• Spikes: These are defined by strong upward or downward price movements that
occur from time to time, which come quickly and after which the price also quickly
settles back at its previous level.

• Autocorrelation: According to [46], the autocorrelation of spot prices is well rep-
resented by

ρptq “ ρ1e
´t{α1 ` ρ2e

´t{α2 ,

where the parameters can be fitted to spot price data, and according to [29], this
equation is often used to specify mean reversion speeds in spot price models. They
furthermore present another method of how to estimate this mean reversion speed.

• Stationarity: Various studies find that spot prices exhibit stationary behavior, cf.
[46], [29].

• Non-Gaussian distribution: Based on analyses of the moments of spot prices e.g.
in [46], [23], [29], it is widely accepted that the prices are not Gaussian.
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Figure 4.1: Display of changing marginal costs in situations with equal demand, but
more renewable electricity. More renewables cause the current load (orange)
to cross the merit order curve at lower marginal costs (green).

We will now analyze whether these stylized features still match with more recent
spot prices on the German day ahead market: Figure 4.2 shows all spot prices from
the year 2015 up to 2020, whereas Figure 4.4 shows two extracted weeks from May
2019. In direct contrast, we also take a look at the time interval from July 2021 to
June 2022 in Figure 4.3 and two weeks from May 2022 in Figure 4.5. It is noticeable
that prices underwent a strong systematic change beginning roughly in September 2021.
This change is visible in much higher price levels as well as in a much higher volatility
of prices. It can be traced back in its beginnings to Russia using its market maker power
to increase price levels for gas drastically and afterwards on the sanctions against Russia
from the EU [31]. As gas is the fossil with the ability to react the fastest to deviations
in supply or demand, the diminished infeed from it increased prices and volatility. As
important as well as concerning as the new price levels are, they are politically driven
and likely do not represent how spot prices behave regularly. Therefore, we concentrate
on the former time interval, the years 2015 to 2020, in order to determine typical spot
price behavior.

Remark 4.1. Regarding all box plots that follow, the middle line depicted represents the
median, the ends of each box are given by the 25% and 75% quantile, respectively, and
the length of the vertical bars below and above the boxes is determined by the 5% and
the 95% quantile, respectively.

Regarding yearly patterns, we notice a pattern with higher electricity prices in winters
and lower prices in summers, also visible in Figure 4.6. This is explained by a higher
need for electricity in Germany during the winter due to heating and less day light
compared to summer times.

Furthermore, Figure 4.4 shows a strong weekly as well as daily pattern: The weekly
pattern consists of higher prices during the week than on the weekend, whereas the daily
pattern presents two typical peaks during the day, the first around 8am, and the second
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Figure 4.2: Hourly electricity German spot prices from the year 2015 up to 2020.
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Figure 4.3: Hourly electricity German spot prices from July 2021 up to June 2022.
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Figure 4.4: Hourly electricity German spot prices of two weeks in May 2019.
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Figure 4.5: Hourly electricity German spot prices of two weeks in May 2022.
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Figure 4.6: Seasonal spot price distributions in Germany expressed through boxplots.
Spring covers the months March to May, summer covers June to August, au-
tumn covers September to November and finally winter goes from December
to February.

Neg. share Min Mean 5% 25% 50% 75% 95%

1.66% -130.09 -17.10279 -70.064 -19.9575 -7.135 -1.93 -0.05

Table 4.10: Statistics of negative prices on the German spot market from 2015 to 2020

around 7pm. This is confirmed in Figure 4.7, which shows spot prices grouped by their
corresponding weekday, and in Figure 4.8, which presents mean hourly spot prices. Both
figures span the time interval from 2015 to 2020 in Germany. In comparison to that,
we also present the same figure for the time interval from July 2021 to June 2020 in
Figure 4.9. We see that, even though price levels have changed drastically, the pattern
itself stayed the same. This also hints at one of the main features of electricity demand:
A very inflexible demand structure that most often cannot follow given price incentives.
Nonetheless, and as stated above, we stick to spot price behavior in the years from 2015
to 2020.
Combining the information from Figures 4.6, 4.7 and 4.8, it seems reasonable to assume

that spot prices exhibit an underlying deterministic mean, which could be represented
by a seasonality function. Regarding negative prices, Table 4.10 presents their amounts
as well as some statistics of interest. With a share of 1.66%, their relevance cannot be
neglected and it is obvious that a spot price model must be able to simulate these prices.
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Figure 4.7: Box plot of spot prices grouped by weekdays from the time interval of 2015
to 2020.

0

20

40

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

P
ric

e

Hour

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Mean hourly spot price for German day ahead prices

Figure 4.8: Box plot of hourly spot prices from the time interval of 2015 to 2020.
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Figure 4.9: Mean hourly spot prices from the time interval of July 2021 to June 2022.

Concerning mean reversion, Figure 4.2 indicates that the prices never deviate long
from their mean, but tend back to it. This is most obvious when concentrating on the
jumps that lead away from the mean, as prices tend to return quickly instead of deter-
mining a new price regime. These jumps in both directions, positive as well as negative,
are also an obvious feature that is still contained in the prices. It is visible in Figure 4.6
that during spring and summer, the jumps tend to be slightly smaller, which is due to
more solar electricity in the grid, while in autumn and winter, they tend to be of bigger
size.

Regarding stationarity, Figure 4.11 indicates that mean prices have moved over the
years, even though no clear trend is visible. Consequently, we suggest that a factor
covering long-term change should be contained in the model.

Finally, we ask whether the spot price distribution can be modelled via Gaussian distri-
butions. Figure 4.12 contains the density of the spot prices in comparison to a Gaussian
density with the same mean and standard deviation. Their difference is well visible
mainly around the mean. Consequently, we conclude that this is also a valid feature for
the considered time period and should be taken into account.

4.1.2 Factor model for the day ahead market

Following the analysis in Subsection 4.1.1, we deem it necessary to include the described
characteristics in the model. This leads us to use arithmetic jump-diffusion models in-
troduced in [3], which are able to capture all these elements in different factors. In [3],
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Figure 4.11: Mean yearly spot prices from the years 2015 to 2020.

0.00

0.01

0.02

0.03

−100 0 100
Price

P
ro

ba
bi

lit
y

Density plot of German day ahead prices

Figure 4.12: Density of German spot prices from the years 2015 to 2020. The price
density is given in solid blue, the dotted line indicates the mean price, and
dashed purple references a Gaussian distribution with the same mean and
standard deviation as of the spot prices.
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the general arithmetic factor spot price model is given by

Sptq “ Λptq `
m
ÿ

i“1

Xiptq `
n
ÿ

j“1

Yjptq, (4.1)

where Λptq represents a deterministic seasonality function that is assumed to be contin-
uously differentiable, and

dXiptq “ pµiptq ´ αiptqXiptqq dt`

p
ÿ

k“1

σikptq dBkptq, i “ 1, ...,m (4.2)

dYjptq “ pδjptq ´ βjptqYjptqq dt` ηjptqdIjptq, j “ 1, ..., n (4.3)

where µiptq, αiptq, δjptq, βjptq, σikptq, ηjptq are all continuous functions with αiptq ą 0 and
βjptq ą 0 for all t. Furthermore, Bptq “

`

B1ptq, ..., Bpptq
˘

represents a p-dimensional
Brownian motion, and Ijptq a general independent increments process. In this model,
the factors Xi represent the diffusion terms that are identified with long-term and
short-term developments of spot prices, whereas Yj integrate jump components into
the model.

To adapt this model setting to the findings in Subsection 4.1.1, we follow [30] and in-
tegrate a factor for short-term price movements, a factor to account for jumps, and finally
add a geometric Brownian motion multiplied by the seasonality function to represent the
long-term movements of the deterministic seasonality. Consequently, our model for the
spot market price Sptq has the following form:

Sptq “ ΛptqXptq ` Y ptq ` Zptq, (4.4)

where we define the three factors by the following stochastic differential equations:

(i) The first factor is defined as the unique solution to the stochastic differential equa-
tion

dXptq “ σ1XptqdW1ptq, Xp0q “ 1,

a geometric Brownian motion with zero drift. It models long term changes in the
electricity prices. This differential equation has an explicit solution, namely

Xptq “ exp r´
σ2

1

2
t` σ1W1ptqs. (4.5)

(ii) The second factor is denoted as

dY ptq “ ´α2Y ptqdt` σ2dW2ptq, Y p0q “ 0,

an Ornstein-Uhlenbeck process with zero mean and the Brownian motion W2ptq
as driver. This factor captures daily deviations from the mean and has a mean
reverting property with α2 ą 0. Again, this factor has an explicit solution, i.e.

Y ptq “ Y p0q e´α2t `

ż t

0
e´α2pt´sq dW2ptqpsq, (4.6)

where W2ptq again is a Brownian motion.



64 4 Modelling, prediction and optimization on the day ahead market

(iii) The third factor is defined as

dZptq “ ´α3Zptqdt` dNptq, Zp0q “ 0,

an Ornstein-Uhlenbeck process with the compound Poisson process Nptq as its
driver and again a mean reversion α3 ą 0. The compound Poisson process is itself
defined as

Nptq “

P ptq
ÿ

i“1

Di,

with P ptq being a homogeneous Poisson process with mean arrival rate λ3 and
Gaussian i.i.d. jump sizes Di „ Npµ3, σ3q. Zptq represents price jumps through
information that suddenly reach the market. Its explicit solution is given by

Zptq “

P ptq
ÿ

i“1

e´α3pt´τiqDi, (4.7)

where τi represents the arrival time of jump i.

The element of Equation (4.4) that is left to detail is Λptq. So far, the literature suggests
the usage of sinusoidal functions or dummy variables in order to capture relevant deter-
ministic features, see [29]. We combine both approaches in the following: We assume a
seasonality of the form

Λ̃ptq “ a` bt` c sin

ˆ

2π

365
pt´ dq

˙

, (4.8)

i.e. we first follow the sinusoidal approach. In a next step, we want to incorporate the
dependency on factors like weekdays or holidays. Therefore, a day-dependent constant
Aptq is added to the sinusoidal function. The days are separated into the type-days

• Mondays,

• Tuesdays, Wednesdays, Thursdays,

• Fridays,

• Saturdays, bridge days, non-national holidays,

• Sundays and national holidays.

The final seasonality model is then defined as follows:

Λptq “ Λ̃ptq `Aptq. (4.9)

Of course, hourly price forward curves (HPFCs) corresponding to whatever time interval
is chosen are also a valid option. With that, the model is completed. As the factor model
defined in Equation (4.4) has already proven itself in the industry, we believe it is well
suited for our context.
Remark 4.2. Note that the form of the jump process implicitly assumes a symmetric jump
distribution. Furthermore, the jumps are not assumed to be time-dependent. That is a
simplification, but facilitates the calibration.
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Model calibration Obviously, calibration of the three factors including the seasonality
function is essential before the model can be used. The model parameters that need
calibration are the following, see [30] and [21]:

• The volatility of the geometric Brownian Motion in the first factor, σ1,

• The mean reverting rate in the second factor, α2,

• The volatility of the Brownian Motion in the second factor, σ2,

• The mean reverting rate in the third factor, α3,

• The jump arrival rate of the Poisson process in the third factor, λ3,

• The mean jump size of the Poisson process in the third factor, µ3,

• The volatility of the jump size of the Poisson process in the third factor, σ3.

We follow [21] with the explanation of the calibration. The first parameter to be cali-
brated is σ1. As the first factor in itself represents long-term movements in the prices,
it is based on the futures prices available on the market. These prices have been shown
to be approximately log-normally distributed. Therefore, σ1 can be derived through a
volatility estimation based on the log returns of the future prices.

After that, all other parameters are calibrated. As the second and third factor both
are representing short-term developments in the prices, they are calibrated on the mean
daily spot prices instead of the futures prices. The deterministic seasonality is the first
to be calibrated, as it has to be removed from the price time series in order to calibrate
the other parameters. Here, a least squares regression regarding Λ̃ptq is the first step,
followed by the calibration of the corresponding addendum Aptq for every type-day with
least-squares after deduction of Λ̃ptq from the spot prices. This yields the required result,
and the seasonality Λptq is deducted from the time series of the mean daily spot prices.
With this, we assume the deseasonalization to be complete and thus the time series to
be free of deterministic patterns. Furthermore, we assume the effect of the first factor
to be included in the deterministic seasonality and therefore assume that we can ignore
it for the calibration of the second and third factor. Based on the deseasonalized prices,
we can estimate the mean reverting rates α2 and α3 via an exponentially decreasing
autocorrelation function. Then, the second and third factor need to be separated from
each other. This happens through the following repeated procedure: The whole time
series is taken into account and the value deviating the most from the mean is declared
to be the first jump, and is removed afterwards. This is repeated until the jump size of
the next jump to be removed is equal to or less than the volatility of the time series. This
procedure results in the remaining time series, which is assumed to now contain only
the values of the second factor, whereas the removed jumps form the time series for the
third factor. Now, the second factor’s values can be estimated with Equation (4.6) based
on maximum likelihood estimation. Finally, we can estimate the parameters of the third
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process through Equation (4.7), again with maximum likelihood.

Example paths for the final model are shown in Figure 4.13. As is visible, their shape
strongly depends on the underlying deterministic seasonality. This deterministic season-
ality as well as the parameter calibration are based on the year 2020 and on all futures
prices available in that time period. The mean reverting property of the second factor is
well visible, keeping the simulated paths close to its deterministic mean.

Figure 4.13: Example paths of the model in Equation (4.4), over a time horizon of two
weeks.

As described above, models of this kind are not used to forecast exact prices of the
next day, but are rather used to give an impression about how spot prices could develop
over the following weeks or months and which risks or opportunities are faced in their
development. Consequently, for prediction purposes, we assume that the prices of the
next day are predicted by a well-performing short-term price model, and apply the factor
model from Equation (3.6) for the days two to seven. However, for the procedure from
this point onward, it is not necessary to use the specified model from Equation (3.6). All
that is needed is a model from which sample paths can be created for the coming week.

4.2 Prediction of the day ahead market

Now that the model for the day ahead market has been identified and set up, we might
assume that everything has exactly the form needed to optimize on this market. How-
ever, since jump-diffusion processes will have continuous parts due to the diffusion and
discontinuous parts due to the jumps in their distribution, the image measure induced
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from the model in Equation (3.6) necessarily has these properties as well. This leads
to the problem that image measures without closed form that are not discrete measures
cannot be optimized algorithmically, since computers need discrete data or closed form
solutions to work with. To tackle the optimization problem, it is therefore necessary to
reduce the complexity of the model by finding a finite approximation to it. This finite
approximation is called a scenario model. Consequently, we follow [50] and define the
original model as

min
!

F pxq “ RP rQpx, ξqs : x P X, x adapted toF
)

(4.10)

for a real-valued objective function F defined by a cost functional R, that has a cost
function Q as its input. Q itself calculates costs by using as input a decision x from the
set of feasible decisions X as well as a random process ξ with distribution P . To change
the model to its corresponding scenario model, the distribution P is replaced by its finite
approximation P̃ , and the filtration F is replaced by a finite filtration F̃ , see [50]:

min
!

F px̃q “ RP̃ rQpx̃, ξqs : x̃ P X, x̃ adapted to F̃
)

. (4.11)

Since it is essential that the scenario model not only contains only a finite number of
realizations of the stochastic process, but that it also approximates the original model
reasonably well, a trade-off is made between computational complexity and model ac-
curacy.

The approximation of an arbitrary probability measure P on Rm by a discrete proba-
bility P̃ can be accomplished by various methods. The following three different methods
are most commonly used, see [50]:

• Monte Carlo: Here, randomized inputs for the model to be estimated are gener-
ated with the help of Pseudo random numbers, and on their basis the model is
evaluated and mass points of the output distribution are found.

• Quasi-Monte Carlo: The modus operandi is similar to Monte Carlo, but the pseudo-
random numbers are replaced by a low-discrepancy sequence. This can lead to an
improved convergence speed compared to Monte Carlo.

• Optimal quantization: An optimal facility location problem is solved and in this
way mass points of the output distribution are found.

According to [50], the methods are sorted both by increasing accuracy and by increas-
ing computational complexity. Generating pseudorandom numbers is a relatively easy
task, while solving optimal quantization is NP-hard. Nevertheless, the approximated dis-
crete distributions generated by Monte Carlo contain an inherent randomness that is not
present in an optimal quantization. Consequently, a choice between these methods is
also a choice for a realization of the mentioned tradeoff between model accuracy and
computational complexity.
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As it is our goal to model exact and solve approximately, we will focus on the theory
and application of optimal quantization. Therefore, we first mathematically introduce
the concept of how the quality of a process approximation can be measured in the next
subsections. Subsequently, the theory behind scenario trees as discrete approximations
of stochastic processes is presented. We then discuss how to actually construct scenario
trees based on real data or a probability model, and show how to reduce a large scenario
tree to a manageable size. For all these tasks, we mainly follow [49] and [50], but also
[67], [37] and [32]. Finally, a heuristic is presented that aims to reduce the computation
time for large models.

4.2.1 Approximating probability distributions of random variables

In the context of stochastic optimization, as explained above, it is necessary to approxi-
mate the probability distribution of the original model from Equation (3.6), namely P ,
by another finite probability distribution P̃ . We could now choose all of our favorite
process realizations as the discretization, and use their probability distribution as the
desired approximation. Most likely, this would not work very well. However, in order to
be able to quantify whether an approximation P̃ is of high quality or not, we rely on a
distance measure, which is defined in [50] as follows:

Definition 4.3. Let P be a set of probability measures on Rm. Then, a distance d on
P ˆ P has to satisfy the following four conditions:

(i) Nonnegativity: For all P1, P2 P P it holds true that dpP1, P2q ě 0.

(ii) Symmetry: For all P1, P2 P P it holds true that dpP1, P2q “ dpP2, P1q.

(iii) Triangle inequality: For all P1, P2, P3 P P it holds true that dpP1, P2q ď dpP1, P3q`

dpP3, P2q.

(iv) Strictness: For all P1, P2 P P it holds true that iff dpP1, P2q “ 0, then P1 “ P2.

There exist several distances or semi-distances, where the latter do not fulfill the strict-
ness condition in Definition 4.3, that could be considered in order to measure the dis-
tance between two probability distributions.

Remark 4.4. A distance concept that is often chosen in practice is the moment-matching
semi-distance. It is defined over the set of probabilities Pq on R which possess the q-th
moment as

dMqpP1, P2q :“ sup
!

|

ż

ωs P1pdωq ´

ż

ωs P2pdωq | : s P t1, ..., qu
)

.

This semi-distance tests whether all moments up to the q-th moment are identical or not.
The problem with moment-matching is that there exist many distributions that are very
different from each other but still have the same moments, see e.g. [50], Example 2.2.
This illustrates why moment matching yields only a semi-distance.
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As a consequence of Remark 4.4, instead of matching only moments, we want to
match the distribution as a whole. Furthermore, following [50], the distance should
measure the closeness of distributions without regard to the underlying probability
spaces, as well as provide a representation of the weak* topology. The latter is relevant
because the weak* topology offers the possibility to approximate measures by discrete
measures and to show convergence of sequences of measures to a target measure. These
properties are satisfied by the Kantorovich distance, which is defined as follows:

Definition 4.5. The Kantorovich distance is defined over the class H of all Lipschitz
functions:

d1pP1, P2q :“ sup
!

ż

hdP1 ´

ż

hdP2 : hpωq ´ hpω̃q ď }ω ´ ω̃}, h P H
)

.

This distance is a metric for weak convergence on the sets of probability measures that
uniformly have a first moment, see [50]. The Kantorovich distance is generalized by the
Wasserstein distance, which in turn is generalized by [50] as follows:

Definition 4.6. The Wasserstein distance of order r of two Borel measures P on Ω and
P̃ on Ω̃ is given by

drpP, P̃ q :“
´

inf
π

ż ż

dpω, ω̃qr πpdω,d ω̃q
¯1{r

(4.12)

for a distance d, where the infimum is taken over all joint probability measures π on the
product space Ωˆ Ω̃, i.e.

πpAˆ Ω̃q “ P pAq,

πpΩˆBq “ P̃ pBq.

The optimal measure π is often called optimal transport plan.

Thus, if one interprets the distance as a kind of cost function, the Wasserstein distance
represents the minimum cost of transferring one distribution to another, while keeping
the marginal distributions of the joint distribution equal to the two original probability
distributions. Note that computing the Wasserstein distance between two distributions
is an optimization problem in itself and depends on the choice of the distance d.

Remark 4.7. The infimum in Equation (4.12) is attained if both measures P and P̃ are
tight, see Remark 2.6. in [50]. Furthermore, Equation (4.12) is feasible and well de-
fined whenever P P PrpΩ; dq and P̃ P PrpΩ̃; dq, with PrpΩ; dq containing all probability
measures P which satisfy

ż

Ω
dpω, ω0q

r P pdωq ă 8

for any ω0 P Ω.

Remark 4.8. The definition of Wasserstein distance mostly used in the literature is one
where the distance function is not defined over two different spaces Ω and Ω̃, but as
drp¨, ¨q : Ωˆ Ω Ñ R, i.e. only one underlying space is considered.
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The following lemma collects some properties of the Wasserstein distance:

Lemma 4.9. For the Wasserstein distance, the following properties hold true:

(i) Monotonicity: If r1 ď r2, then we find that dr1pP, P̃ q ď dr2pP, P̃ q.

(ii) Triangle equality: drpP, P̃ q ď drpP,
˜̃P q ` drp

˜̃P, P̃ q, i.e. the Wasserstein distance is a
distance.

(iii) Convexity: For 0 ď λ ď 1, it holds that

dr
`

P, p1´ λqP0 ` λP1

˘r
ď p1´ λqdrpP, P0q

r ` λdrpP, P1q
r

and

dr
`

P, p1´ λqP0 ` λP1

˘

ď maxtλ, 1´ λu1{r´1
`

p1´ λqdrpP, P0q ` λdrpP, P1q
˘

;

consequently, the Wasserstein distance is r-convex in any of its components.

Proof. See proof of Lemma 2.10 in [50].

Now, the choice of distance function is left to be discussed. A probability space
pΩ,F , P q is not necessarily endowed with a distance. However, it is always possible
to inherit a distance concept from a random variable mapping from that probability
space to Rm by looking at

dpω1, ω2q :“ }ξpω1q ´ ξpω2q}

with } ¨ } a norm on Rm. As it is our goal to metricize the distance between two differ-
ent probability spaces, it is necessary to extend the distance function from one to two
different underlying spaces. Here, the inherited distance comes into play.

Definition 4.10. Let ξ : Ω Ñ Rm and ξ̃ : Ω̃ Ñ Rm represent two random variables on
distinct spaces. Then, the inherited distance between elements of Ω and Ω̃ is defined by

dpω, ω̃q :“ d
`

ξpωq, ξ̃pω̃q
˘

(4.13)

for a distance d in Rm. Usually, d is defined as a norm on Rm.

Consequently, the Wasserstein distance uses the distance inherited from the random
variables in play to measure the distance between the underlying probability spaces. The
norms we consider in this thesis for the distance are the l1-norm and the l2-norm, with

dppw, vq :“

˜

m
ÿ

i“1

|wi ´ vi|
p

¸1{p

, (4.14)

where p “ 1, 2 correspondingly. Other norms on Rm would of course also be possible.
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Remark 4.11. If the chosen distance on the image space is the inherited distance from ξ,
and it is based on a norm in Rm, then it holds true that P P PrpΩ; dq ðñ ξ has finite
r-th moment [50]. In combination with Remark 4.7, this means that if ξ has finite r-th
moment, then the problem in Equation (4.12) is well defined and feasible.

Endowed with the inherited distance which again is based on a norm } ¨ }, it holds true
that

}EP pξq ´ EP̃ pξ̃q} ď drpP, P̃ q (4.15)

for r ě 1, see [50], Lemma 2.13. One interpretation is that the transport distance that a
particle has to move on average from one distribution to match the other is at least the
distance of the two expected values from each other.

In the following, we present two examples how to calculate the Wasserstein distance
in specific situations that are also found in [50].

Example 4.12. Let ξ and ξ̃ be random variables, taking values in RN and RM , respec-
tively, with discrete measures P “

řN
i“1 piδξi and P̃ “

řM
j“1 p̃jδξ̃j . Then, the computa-

tion of the Wasserstein distance of order r is given through the optimal solution of the
linear program

min
π

ÿ

i,j

πi,j ¨ d
r
i,j

s.th.
N
ÿ

i“1

πi,j “ p̃j for i “ 1, ..., N,

M
ÿ

j“1

πi,j “ pi for j “ 1, ...,M,

πi,j ě 0. (4.16)

Here, di,j “ dpξi ´ ξ̃jq is defined as the distance between ξi and ξ̃j in the chosen norm.

Example 4.13. Given two real valued random variables ξ „ N pµ, σ2q “: P and ξ̃ „
N pµ̃, σ̃2q “: P̃ , we calculate the Wasserstein distance of order 2 between their distribu-
tions. For measures on the real line, it holds true that

drpP, P̃ q
r “

ż 1

0
|G´1

P pαq ´G
´1
P̃
pαq|r dα, (4.17)

where GP pyq “ P pp´8, ysq is the cumulative distribution function of P and G´1
p is its

quantile function, see [50], Thm. 2.15. Thus, we apply Equation (4.17) to the normal
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distribution and find

d2pP, P̃ q
2 “

ż 1

0

`

µ´ µ̃` pσ ´ σ̃qΦ´1pzq
˘2

dz

“

ż 1

0

`

pµ´ µ̃q2 ` 2pµ´ µ̃qpσ ´ σ̃qΦ´1pzq ` pσ ´ σ̃q2pΦ´1pzqq2
˘

dz

“ pµ´ µ̃q2 ` 2pµ´ µ̃qpσ ´ σ̃q

ż 1

0
Φ´1pzq dz ` pσ ´ σ̃q2

ż 1

0
pΦ´1pzqq2 dz

“ pµ´ µ̃q2 ` pσ ´ σ̃q2. (4.18)

Here, Φ corresponds to the cumulative distribution function of the standard Gaussian
distribution. The first equation holds due to ξ „ σZ ` µ with Z „ N p0, 1q. The forth
equation holds due to

ş1
0 Φ´1pzq dz “ 0 and

ş1
0pΦ

´1pzqq2 dz “ 1, both reached by the
substitution z “ Φpxq.

Now, one might wonder whether properties like mean, variance or covariances of two
probability distributions are close when the Wasserstein distance between them is small.
The following proposition and remark yield answers to these questions.

Proposition 4.14. Let ξ „ P and ξ̃ „ P̃ . Then the following hold true:

(i) |Epξq ´ Epξ̃q| ď d1pP, P̃ q.

(ii) |Ep|ξ|q ´ Ep|ξ̃|q| ď d1pP, P̃ q.

(iii) |Epξ ´ aq` ´ Epξ̃ ´ aq`| ď d1pP, P̃ q.

(iv) |Epξqq´Epξ̃qq| ď q ¨ d1pP, P̃ q ¨

˜

ˆ

E
”

|ξ|r
q´1
r´1

ı

˙
r´1
r

`

ˆ

E
”

|ξ̃|r
q´1
r´1

ı

˙
r´1
r

¸

for q P N`.

(v) |Ep|ξ|qq ´ Ep|ξ̃|qq| ď q ¨ d1pP, P̃ q ¨max

#

ˆ

E
”

|ξ|r
q´1
r´1

ı

˙
r´1
r

,

ˆ

E
”

|ξ̃|r
q´1
r´1

ı

˙
r´1
r

+

.

Proof. The proof is found in [50], see Props. 2.20 and 2.21.

Consequently, the distances between all moments are bounded from above by the
Wasserstein distance, and thus a small distance implies a small difference of the mo-
ments. However, since the Wasserstein distance is usually not equal to 0 when a contin-
uous distribution is approximated by a discrete one, equality of moments is usually not
given.

Finally, we take a look at whether a diminishing Wasserstein distance of a sequence
of probability measures to a target measure equals a convergence of the probability
sequence to the target distribution. This is answered by the uniform tightness condition
[50]:
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Theorem 4.15. Let pPnqně1 be a sequence of measures in PrpΞq, where PrpΞq is defined
as in Remark 4.7 above. Furthermore, let P also be a measure contained in PrpΞq. Then,
the following two statements are equivalent:

(i) drpPn, P q
nÑ8
ÝÑ 0.

(ii) Pn
nÑ8
ÝÑ P in a weak* sense, and Pn satisfies the following uniform tightness condi-

tion: For any ξ0 P Ω, it holds true that

lim sup
nÑ8

ż

tdpξ0,ξqěRu
dpξ0, ξq

r Pnpdξq
RÑ8
ÝÑ 0.

Proof. The proof can be found in [62], Thm. 7.12.

This in combination with the separability of
`

PrpΞq, dr
˘

and it being a Polish space
if pΞ,dq is a Polish space, see Thm. 2.25 and Thm. 2.26 in [50], yields the desired
outcome.

Remark 4.16. In [52], a relaxation of the Wasserstein distance called nested Sinkhorn
divergence is introduced. It regularizes the Wasserstein distance and thus gives a much
faster computation time. The reduction in computational time is paid for by a worse
approximation of the true Wasserstein distance.

4.2.2 Approximating probability distributions of stochastic processes

Now that we have found a distance that works well for evaluating approximations of
probability distributions of random variables, the remaining step is to transfer it to the
case of stochastic processes. We will see that the direct reuse of the Wasserstein distance
in its multivariate form does not capture all the information conveyed by stochastic pro-
cesses. Consequently, an extension to the framework of multi-period models must be
applied. This extension is called nested distance or process distance and is introduced
in [49]. It measures the distance between two different stochastic processes, which is
needed to evaluate whether an approximation of a continuous stochastic process by a
discrete approximation is a good fit. The nested distance adapts to multi-period models
by taking into account all filtrations generated by the stochastic process ξ. To define it
properly, we first introduce stochastic processes and translate the induced distance to a
multi-period setting. Furthermore, we show why a direct application of the Wasserstein
distance does not correctly measure distances between stochastic processes. This sub-
section is again guided by [50].

In this subsection, we consider a measurable stochastic process ξ “ pξtpωqqtPR` , that
is defined on pΩ,F “ pF0,F1, ...,FT q,Pq, which is a filtered probability space, with
ξt : Ω Ñ pΞt,dtq. We assume that pΞt,dtq is a Polish space. The index t of the stochastic
process is defined on the positive real numbers, but evaluated in discrete time over T `1
different stages, ξ “ pξ0, ..., ξT q. In this setting, ξ0 is considered to be known and thus
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Figure 4.14: Two stochastic processes with identical states and identical final probabil-
ities. The conditional probability to reach the specified value from its pre-
decessor is written above each node.

deterministic. Furthermore, the various spaces pΞt, dtq can differ from each other. With
T ă 8, we can define the random variable

ξ : Ω Ñ Ξ0 ˆ Ξ1 ˆ ...ΞT , ω ÞÑ pξ0pωq, ξ1pωq, ..., ξT pωqq. (4.19)

Consequently, instead of looking at each time step of the stochastic process as a random
variable in itself, we concentrate on the realization of one ω and map it to its path in
the space Ξ :“ Ξ0 ˆ Ξ1 ˆ ...ΞT . Based on this definition, the law of the process can be
defined.

Definition 4.17. Let ξ be defined as in Equation (4.19). Then, we define the law of the
process ξ as P ξ “ P ˝ ξ´1. It defines a probability measure on Ξ :“ Ξ0 ˆ Ξ1 ˆ ...ΞT .

As pΞ,dq was assumed to be Polish, the Wasserstein distance on PrpΞ,dq is well de-
fined. Here, d could be the l1 or the l2 norm. Nonetheless, the following example shows
why looking at

drpP
ξ, P ξ̃q, (4.20)

which we call multivariate distance from now on, falls short in capturing all informa-
tion provided by the processes ξ and ξ̃. Compare the graphs in Figure 4.14. Both
processes have the same states, and both processes have the same final probabilities.
The Wasserstein distance of both processes is computed as follows. We have Ξ “ Ξ̃ “

tp0, 0, 1q, p0, 0,´1qu, and the distance matrix for r “ 1 is given by d “
ˆ

0 2
2 0

˙

. Fur-

thermore, the transport map π “
ˆ

p 0
0 1´ p

˙

is feasible and optimal. The combination
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of the two gives drpP, P̃ q “
ř

i,j di,jπi,j “ 0. Thus, the Wasserstein distance does not
distinguish between the two processes. Nevertheless, they are clearly not the same: For
the first process at time t “ 1, we do not know which of the final results will occur.
In contrast, for the second process, we have this exact knowledge when we are at time
t “ 1. The Wasserstein distance does not consider conditional probabilities, but only
final probabilities, and thus loses the information contained in the conditional proba-
bilities. Therefore, if we want to use this distance concept for our application with a
seven-stage multi-period model, it must be adapted. Filtrations and conditional prob-
abilities induced by the processes must be taken into account. For this purpose, the
history process and the natural filtration are introduced:

Definition 4.18. The history process of a stochastic process ξ is defined by

ξ0:t :“ pξ0, ..., ξtq. (4.21)

This naturally induces the natural filtration of ξ by

Fξ “ pFξt qTt“0, Fξt :“ σptξ´1
0:t pA0 ˆ ...ˆAtq : As P BpΞsquq. (4.22)

Here, BpΞsq represents the Borel sets on the space Ξs.

The natural filtration yields the possibility to introduce the concept of information
gain over time through the stochastic processes. This idea is addressed by the nested
distance, which is defined as follows for two stochastic processes [50]:

Definition 4.19. The nested distance of order r ě 1 of two filtered probability spaces
P “ pΩ, pFtq, P q and P̃ “ pΩ̃, pF̃tq, P̃ q, for which a distance d : Ω ˆ Ω̃ ÞÑ Rm exists, is
defined as the optimal value of the optimization problem

DrpP, P̃q :“ inf
π

´

ż

dpω, ω̃qr πpdω,d ω̃q
¯1{r

(4.23)

s.t. πpAˆ Ω̃ | Ft b F̃tq “ P pA | Ftq for A P Ft,
πpΩˆB | Ft b F̃tq “ P̃ pB | F̃tq for B P F̃t

for all stages t P t1, ..., T u. The infimum here is taken over all bivariate probability
measures π P PpΩˆ Ω̃q.

The nested distance takes into account information gains by conditioning on the cor-
responding sigma algebra. Of course, just as in the case of random variables, it is pos-
sible to apply the nested distance to the filtered probability spaces of two stochastic
processes. Thus, we are able to use it when comparing an approximation with its ap-
proximated process. We will refer to filtered probability spaces over stochastic processes
pΩ,F, P, ξq as nested distributions in accordance with the term “nested distance” [50].
The well-definedness of the nested distance is given by the following theorem:

Theorem 4.20. Let pΩ,F, P, ξq „ P and pΩ̃, F̃, P̃ , ξ̃q „ P̃ be nested distributions. Further-
more, let F0 “ tH,Ωu and F̃0 “ tH, Ω̃u. Then, the product measure π :“ P b P̃ is feasible
and the nested distance is well defined. Furthermore, it holds true that

drpP, P̃ q
r ď DrpP, P̃qr ď EPbP̃ pd

r
q. (4.24)
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Proof. See the proof of Lemma 2.37 in [50].

Furthermore, the properties of the Wasserstein distance regarding monotonicity, con-
vexity and the triangular equation carry over to the nested distance:

Lemma 4.21. For the nested distance, the following properties hold true:

(i) Monotonicity: If r1 ď r2, we find that Dr1pP, P̃q ď Dr2pP, P̃q.

(ii) Triangle equality: DrpP, P̃q ď DrpP, ˜̃Pq ` Drp
˜̃P, P̃q, i.e. the nested distance is a dis-

tance.

(iii) Convexity: For 0 ď λ ď 1, it holds that

Dr
`

P, CpP0,P1, λq
˘r
ď λDrpP,P0q

r ` p1´ λqDrpP,P1q
r

and

Dr
`

P, CpP0,P1, λq
˘

ď maxtλ, 1´ λu1{r´1
`

λDrpP,P0q ` p1´ λqDrpP,P1q
˘

;

consequently, the nested distance is also r-convex in any of its components. Here,
CpP0,P1, λq is the compound of the two nested distributions P0 and P1 and is defined
by

CpP0,P1, λq :“

"

P0, with probability λ,
P1, with probability 1´ λ.

The compound of two nested distributions is again a nested distribution.

Armed with this distance, we have a tool to measure the quality of an approximation.
However, in order to determine the nested distance between two processes algorithmi-
cally, probability measures with finite support are needed. Therefore, the next subsection
deals with how stochastic processes can be represented as discrete scenario trees.

4.2.3 Scenario trees - Theory

Stochastic processes with a discrete state space can be represented by a scenario tree or
a scenario lattice. The main concepts on which scenario trees are based are stochastic
process theory and graph theory, since trees can be represented as graphs. As stochastic
processes have been treated already, we concentrate on introducing the basics of graphs
shortly.

A scenario tree is a defined as a polytree, i.e. a circle-free, directed graph GpN,Eq
with a single root, and all leaves ending at the same tree height. It contains M ` 1
nodes, numbering starting from 0 for the root node to M for the last leaf node. The set
of all nodes is defined as N :“ tn0, ..., nMu, and the set of M̃ edges between the nodes is
defined as E “ pe1, ..., eM̃ q. Here, every edge ei :“ pnk, nmq determines a route between
two nodes nk, nm P N , with tpeiq “ nk forming the tail of edge ei and hpeiq “ nm
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forming its head. Furthermore, a relation between different nodes is established through
the introduction of parents, children and predecessors: For a node n P N , we define as
E`pnq :“ te P E | tpeq “ nu the set of outgoing and by E´pnq :“ te P E | hpeq “ nu
the set of incoming edges to node n. Based on this relation, the set of children of a
node n is defined by N`pnq :“ tv P N | v “ tpeq, e P E´pnqu, and the set of parents
is consequently defined by N´pnq :“ tv P N | v “ hpeq, e P E´pnqu. Moreover, the
set of predecessors of node n contains all nodes from the root of the tree to n that are
connected through edges and is denoted by N´pnq. Based on these definitions, we can
allocate each node n to a stage t, t “ 0, ..., T, and a set n P Nt that collects all nodes
with exactly t predecessors. Finally, we have a total of T `1 stages, with T `1 also being
defined as height of the tree.

Definition 4.22. A scenario tree T is given by the following three concepts:

(i) The topology of the tree is determined by its list of predecessors,

N´pn0q, ..., N´pnM q.

N´pniq denotes the predecessor of node ni, and we set N´pn0q :“ H. The collec-
tion of all pairs

`

N´pniq, ni
˘

consequently contains all information about the edges
in the tree and because of its circle-free property about the whole tree topology.

(ii) The probability structure of the tree is given by the list of probabilities

p0, ..., pM ,

where pi denotes the conditional probability to reach node ni from its predecessor
in N´pniq. We define p0 :“ 1 for the root node.

(iii) The values of the tree process at the nodes is given by the list of states

ξ̄0, ..., ξ̄M .

Their values correspond to the outcome of the process ξ at the respective nodes
n0, ..., nM . Thus, they may be vectors of any dimension, matching the original
process.

Furthermore, for every node n P NzN0 we have that |N´pnq| “ 1, i.e. its parent is
uniquely determined. As a second consequence, we obtain M̃ “M .

A sample scenario is specified through
`

n0 P N0, n1 P N1 XN`pn0q, ..., nT P NT XN`pnT´1q
˘

,

connecting root and leaf nT by its path through the tree. Here, the numbering of the
nodes is not in correspondence with the general numbering of the nodes in the tree
but is used to count through the tree stages. The scenario’s probability is given by
ppn0, ..., nT q :“ pn0 ¨ ... ¨ pnT . Consequently, a scenario tree where |N´pnq| “ 1 for all
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n P NzN0, i.e. where all nodes have one unique predecessor except for the root (which
has no parents), contains as many scenarios as it has leaves. This is the form of scenario
tree that we consider in this thesis.

A second possible setup is that |N´pnq| ą 1 is true, which indicates that a node can
have more than one parent, and hence the parent is not uniquely determined. This leads
to the definition of scenario lattices.

Definition 4.23. Let T be a tree as given in Definition 4.22, with the difference that
N´pntq “ Nt´1 for all nodes nt on level t and all t “ 1, ..., T . Consequently, all nodes on
level t have all nodes on level t ´ 1 as parents. This construction is denoted as scenario
lattice.

Scenario lattices are the natural way to discretize Markov processes, since their lack of
memory removes the dependence on the preceding path except for the current position,
which is mirrored by this structure. If neither the posed optimization model nor the
depicted process is path dependent, integrating this knowledge into the scenario tree
implementation by choosing a scenario lattice over a scenario tree leads to computa-
tional advantages. Given the same number of nodes, a scenario lattice contains a much
larger number of scenarios than a scenario tree, since its number of scenarios is equal to
the number of the product of all stage nodes

śT
t“1 |Nt|.

Regardless of whether a scenario tree or a scenario lattice is considered appropriate to
approximate the original process ξ, one goal in choosing an approximation is of course
to minimize the difference between the distribution of the original process and the distri-
bution of the discretized scenario process. Consequently, the nested distance introduced
in the previous subsections comes into play. Its construction principle is backwards, i.e.
the computation of the nested distance between two trees of the same height starts with
the leaves and ends with the roots. The nested distance is then given by the distance at
the roots of both trees. For a single period observation, Wasserstein and nested distance
are necessarily equal.

Equipped with the notions of scenario trees, lattices and nested distance, we present
algorithms for constructing scenario trees that fit the original stochastic process well but
are also computationally feasible.

4.2.4 Scenario trees - Construction

This subsection serves as a non-exhaustive introduction to the construction of scenario
trees for an underlying stochastic process and is again based on [50]. Obviously, the best
way to construct a tree would be to minimize DrpP, P̃q over all trees with e.g. a given
number of nodes or leaves, where P represents the nested distribution of the original
stochastic process and P̃ denotes its approximation. Unfortunately, such a computation
is not feasible on today’s computers [50]. Therefore, the general approach to generating
a scenario tree in multi-stage stochastic programming follows these three steps:
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1) Generate a scenario tree with a large number of scenarios that captures the distri-
bution of the underlying stochastic process very well.

2) Reduce the generated scenario tree to a tree with fewer scenarios and a differ-
ent tree structure that still represents the large tree well and is nonetheless small
enough to be processed by optimization algorithms.

3) Adjust the probabilities and values in the reduced tree so that the resulting tree is
an optimal approximation to the original large tree, given its structure.

An underlying assumption for this procedure is that the large tree from the first step ap-
proximates the process distribution well enough to represent it from here on. Goodness-
of-approximation of the tree from the third step is calculated in comparison to this big
tree. For each of the scenario tree generation steps, we introduce algorithms to handle
the described tasks.

The data used to construct a scenario tree usually stems either from a model (where
an infinite number of trajectories can be generated) or from real-world applications,
such as real day ahead prices, which can be collected over comparable time intervals
and thus form the required trajectories. In both cases, trajectories can be denoted by

νj , j “ 1, ...,M

with M P pN Y 8q. Each trajectory contains the values of the process over time, i.e.
νj :“ pνj,0, ...νj,T q, and νj,i P Rm @ j “ 1, ...,M, i “ 0, ..., T . Equipped with these trajec-
tories, we now proceed to the actual construction.

Step 1 - Generation To build a first, large scenario tree, we introduce the nested
clustering algorithm in Algorithm 2, and follow [37] hereafter. The nested clustering
algorithm generates a tree T from a finite number of trajectories νj , j “ 1, ...,M with
M ! 8. The set of these trajectories is also called scenario fan, since the nodes of the
trajectories are usually not bundled and thus, their only common point is the determin-
istic value at time 0. The algorithm starts with the known initial state of the process, i.e.
νj,0 “ νi,0 for all i, j P t1, ...,Mu. From the second stage on, the values of the process
are unknown and must be approximated from the available trajectories. This is done for
each stage subsequently, starting with stage 1. We use the k-means clustering technique
to find cluster means on this stage that minimize the average minimal distance d1 (usu-
ally a l1 or l2 norm), i.e. we look for values ξ̄1

i , representing the cluster means on stage
1, by

1

M

M
ÿ

j“1

min
ξ̄1i PRm

d1pνj,1, ξ̄
1
i q.

Here, i represents the index of the cluster means. The number of cluster means can
be chosen separately for each stage. Moving on to stage 2, what changes now is that
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in most cases none of the trajectories have any of the cluster means of stage 1 as their
predecessor. In order to preserve the path dependencies in the scenario tree, all paths
that were associated with a particular cluster mean ξ̄i1 are considered for the k-means
clustering of the next stage. These paths are again used to find cluster means in stage 2,
and the predecessor of these nodes is ξ̄1

i . This procedure is repeated until the last level
of the tree. Clustering with this method is called Voronoi tesselation.

Result: The output is a scenario tree process ξ̄ with fixed branching structure.

begin
Input: M trajectories ν1, ..., νM; branching structure, i.e. amount of nodes
on each stage.

Set stage t “ 0 and ξ̄0
1 “ ν1,0.

Set the closest mean of all trajectories for level t “ 0 to ξ̄0
1 .

for t “ 0, ..., T ´ 1 do
Set Mt to the amount of nodes on level t.
for i “ 1, ...,Mt do

Consider all trajectories ν, that were associated with ξ̄ti as the closest
mean for ν¨,t, name their set T .

Find new cluster means ξ̄t`1 for stage t` 1 by solving

1

|T |

ÿ

νPT

min
ξ̄t`1
l PRm

dt`1pνj,t`1, ξ̄
t`1
l q (4.25)

for those trajectories.
Here, dt`1 is defined as the chosen distance function on stage t` 1.
Define the set of trajectories for which ξ̄t`1

l is the closest mean for
ν¨,t`1 as T̃l Ă T .

Define the probability to reach ξ̄t`1
l as

p̄ξ̄t`1
l
“
|T̃l|

|T |
. (4.26)

end
end
return The approximating tree ξ̄ for all nodes.

end
Algorithm 2: Nested clustering algorithm

Step 2 - Reduction Now that we have created a large tree, we focus on reducing it
to a manageable size. This is done by merging different subtrees inside T into a single
subtree to reduce the number of nodes. Eligible subtrees for this procedure originate
from the same parent, are close to each other, and yield a merged tree that represents a
good compromise between the two.
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As before, the definition of closeness is given by the nested distance, which can be
computed between two different trees as well as between subtrees in the same original
tree. As described above, it is computed recursively, and the exact procedure is given
in Algorithm 3, where we follow [50]. First, the distance between all combinations of
leaves is computed based on the paths leading from the root to each leaf. Then, in a
backward fashion, the minimization in Equation (4.27) is performed for each step. Its
constraints ensure that the marginal transport values are equal to the conditioned prob-
abilities in the system. Finally, the nested distance between the two trees is returned as
the distance between the roots, and the optimal transport plan for each leaf is given by
a multiplication of all transport values on the paths from the root to the corresponding
leaf.

Example 4.24. We build two trees with differing structures to calculate the nested dis-
tance between them. Tree T is based on a generalized Ornstein-Uhlenbeck process with
a branching structure of p1, 3, 4, 2q and is depicted in Figure 4.15. The second tree T1 is
in comparison based on a generalized Brownian motion and has a branching structure
of p1, 2, 3, 2q. It is given in Figure 4.16. The distance between both trees based on a
calculation with Algorithm 3 is D0 “ 18.1.
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Figure 4.15: A scenario tree based on a generalized Ornstein-Uhlenbeck process calcu-
lated with Algorithm 2 and 100, 000 trajectories.

Now that we are able to compute distances between trees, the way is paved to reduce
a tree in a way that the resulting smaller tree is still close to the original one. But before
we dive into the algorithm, we need to define a subtree:
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Result: The output are two lists, one containing the distances between different
stages of the trees, the other containing the transport plans that were
returned during the optimizations.

begin
Input: Tree T and tree T1, order r.
Initialize: Set t “ T . Calculate for all combinations of leaf nodes ni P NT

and n1j P N
1
T and with respective paths pξ0

ni
, ξ1
ni
, ..., ξTni

q and pξ0
n1j
, ξ1
n1j
, ..., ξTn1j

q

the distance

DrT pni, n
1
jq :“ d

`

pξ0
ni
, ξ1
ni
, ..., ξTni

q, pξ0
n1j
, ξ1
n1j
, ..., ξTn1j

q
˘r
.

Backward iteration:
for t “ T ´ 1, ..., 0 do

For all combinations nk P Nt and n1l P N
1
t , solve the following

optimization problem:

Drt pnk, n
1
lq :“ min

π

ÿ

nPN`pnkq, n1PN`pn
1
lq

πpn, n1 | nk, n
1
lq ¨ D

r
t`1pn, n

1q (4.27)

s. th.
ÿ

nPN`pnkq

πpn, n1 | nk, n
1
lq “ P pn1|n1kq, n1 P N`pn

1
kq,

ÿ

n1PN`pn1lq

πpn, n1 | nk, n
1
lq “ P pn|nlq, n P N`pnkq,

where P p¨ | ¨q represents the conditional probability.
Save the resulting distances and the resulting transport plan in the
respective lists.

end
Final step: The nested distance of the trees to one another equals the
distance at their roots, i.e. at t “ 0. The optimal transport plan of leave
nodes ni P NT and n1j P N

1
T is then given by

πpni, n
1
jq “ π1pi1, j1 | i0, j0q ¨ ... ¨ πT´1pni, n

1
j | iT´1, jT´1q.

return Distance list, transport list.
end

Algorithm 3: Nested distance calculation for order r
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Definition 4.25. A subtree Tkt is part of the scenario tree T, starts on stage t and consists
of the root node nk, its children n1, ..., nm and their corresponding values and probabil-
ities. Furthermore, the children’s children plus all corresponding information up to the
leaves are contained.
Mergeable subtrees have the same parent and start at the same stage t.

The subtree merging algorithm is defined as follows, where we follow [50] as well as
[32]: First, we compute the nested distances of each candidate pair of subtrees. Then
we select the pair pTkt ,Tltq with the minimum distance. If Tkt and Tlt are leaves, i.e.
t “ T , both leaves are removed and replaced by a new node with a score equal to
the probabilistic mean score of nk and nl, and a probability equal to the sum of the
probabilities pk and pl.
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Figure 4.16: A scenario tree based on a generalized Brownian motion calculated with
Algorithm 2 and 100, 000 trajectories.

If Tkt and Tlt are not leaves, only a certain percentage of the calculated transport
values are performed, and thus only a part of the distribution of the original subtrees is
transferred to the merged subtree. This percentage is called retention level p. If p is close
to zero, the merged subtree is only marginally determined by the original ones, whereas
a retention level close to one will result in a subtree approximating the distribution
of the two original subtrees closely. At the same time, it can do so with many nodes,
possibly more than the sum of the old nodes. This is due to the fact that if node nk and
node nl have three children each, nk1 , nk2 , nk3 and nl1 , nl2 , nl3 , transport values are built
for all combinations of children and determine new nodes. Therefore it is possible that
up to nine new nodes pnk1 , nl1q, pnk1 , nl2q, ..., pnk3 , nl3q are created [32]. Therefore, the
choice of p should not be taken lightly. If the subtree pair with minimal nested distance is
found, the elements of the corresponding transportation map are gathered and arranged
in descending order with new indices k̃ and l̃, such that

πk̃1 l̃1 ě ... ě πk̃m ˜lm
. (4.28)
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Here, m is chosen as the smallest integer for which s “
řm
i“1 πk̃i l̃i ě p. Thesem elements

contain the most costly transports and thus determine the elements that differ the most
from each other. Consequently, the new ‘averaged’ distribution will sit on these m points
and the remaining elements will be removed. The new roots are calculated, e.g. for πk̃1 l̃1
again by the mean pξk̃1 ` ξl̃1q{2, and the probability is given by πĩ1j̃1{s. The division by s
ensures that we get a probability distribution again. This procedure is presented in [50]
and is given here by Algorithm 4.

Result: The output is a scenario tree process that does not exceed a
pre-specified size but is still close to the input tree regarding the nested
distance of order r.

begin
Input: Initial tree T, retention level p, maximum number of vertices Mmax,
order r.

while V̂ ąMmax do
Tree Selection: Compute the nested distance of order r between all
subtrees for all stages t. For all t, select the pair with the smallest
nested distance and compute their optimal transport plan π.

Tree Merging:

1) Calculate the new root value as the mean between the two
roots of the selected trees.

2) The new nodes pnk̃1 , nl̃1q, ..., pnk̃m , n ˜lm
q are found first by

following Equation (4.28) and then are calculated as mean of the
original node values.

3) Calculate the new probabilities by πnk̃1
,nl̃1
{s, ..., πn ˜km

,n ˜jm
{s.

4) Then, in a recursive step, merge the subtrees starting from
the new node pairs in step 2).

Calculate new number of nodes V̂ .
end
return The reduced tree T̄.

end
Algorithm 4: Tree reduction algorithm

The described procedure is repeated in a recursive structure with the subtrees starting
from the new root nodes pξk̃i` ξl̃j q{2 determined above. As long as the number of nodes

V̂ exceeds the allowed number of nodes Mmax, the next pair with the second-lowest
nested distance is selected and the procedure continues.

For larger trees, the computation of a single nested distance can become quite time in-
tensive, let alone the computation of many nested distances as described in Algorithm 4.
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The original formulation assumes a recalculation of all nested distances within the orig-
inal tree after each reduction step, which are by far the most computationally intensive
steps. We modify the algorithm in two respects in Algorithm 5: First, instead of comput-
ing the nested distances for all eligible subtrees in a complicated procedure, we compute
the distance of the whole tree to itself. Of course, on level 0 this will be 0, but on all other
levels it gives us the distances between the leaves of the nodes as we need them. The
advantage of this method is that we save the time of cutting the paths to the length of
the specific subtree we are looking at. This procedure is possible because for all subtrees
in T that are considered eligible for the algorithm, the following holds true:

Proposition 4.26. Let T be a tree with stages 0, ..., T , and T1,T2 being subtrees of T, both
beginning on the same stage t and with root nodes n1 and n2, respectively. Furthermore, we
require N´pn1q “ N´pn2q, i.e. that both trees have the same predecessors. Then it holds
true that Drt pn1, n2q|T “ Drt pn1, n2q.

Note that by Drt pn1, n2q|T, we denote the calculation of the nested distance between
T1 and T2 based on the paths of the whole tree T, i.e. they do not start at level t but at
level 0.

Proof. We will prove this by induction. For the initial case, we set t “ T and therefore
T1 “ n1 and T2 “ n2 are degenerated trees, i.e. leaves. Then, we find

DrT pn1, n2q|T “ dpn1, n2q
r|T “ r

g

f

f

e

T
ÿ

i“0

|ξn1
i ´ ξn2

i |
r “ r

b

|ξn1
T ´ ξn2

T |
r

“ DrT pn1, n2q,

where the third equality sign stems from the assumption that both subtrees have the
same predecessors. Now, let t be arbitrary but fixed. Then, we do the induction step and
look at t´ 1 with T1,T2 not being degenerate:

Drt´1pn1, n2q|T :“ min
π

ÿ

nPN`pn1q, n1PN`pn2q

πpn, n1 | n1, n2q ¨ Drt pn, n
1q|T

“ min
π

ÿ

nPN`pn1q, n1PN`pn2q

πpn, n1 | n1, n2q ¨ Drt pn, n
1q

“ Drt´1pn1, n2q, (4.29)

where the second equality sign is based on the initial case.

The second difference between Algorithms 4 and 5 is that the nested distances are not
all recalculated after each reduction. Instead, the calculated nested distances as well
as the tree itself are split into a part that is affected by the reduction and a part that
is unaffected and therefore does not change anyway. After calculating the reduced tree
element based on the affected part of the tree, both affected parts are deleted. Then
the nested distance between the unaffected part and the new reduced tree is calculated
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and merged with the unaffected nested distances. Finally, the reduced tree is merged
with the unaffected tree part. This is done recursively. This method prevents us from
recalculating nested distances that have not changed and therefore do not need to be
recalculated.

Result: The output is a scenario tree process that does not exceed a
pre-specified size but is still similar to the input tree.

begin
Input: Initial tree T, retention level p, maximum number of vertices Mmax,
order r.

Compute the nested distance of order r of the tree to itself.
while V̂ ąMmax do

Find the subtrees T1 and T2 with the smallest distance between them
and calculate their corresponding transport plan.

Separate T and T1 Y T2. Also separate nested distances belonging to T1

or T2.
Tree Merging:

1) Calculate the new root value as the mean between the two
roots of T1 and T2.

2) The new nodes pnĩ1 , nj̃1q, ..., pn ˜im
, n ˜jm

q are found first by
following Equation (4.28) and then are calculated as mean of the
original node values.

3) Calculate the new probabilities by πĩ1,j̃1{s, ..., π ˜im, ˜jm
{s.

4) Then, in a recursive step, merge the subtrees starting from
the new node pairs in step 2).

Calculate the changed nested distance between the merged branches
and the separated main tree.

Assign the separated distance of the main tree as add-on to the changed
nested distance.
Assign the merged branches as add-on to the separated main tree.

end
return The reduced tree T̄.

end
Algorithm 5: Altered tree reduction algorithm

Step 3 - Optimization Our final step is to adjust the probabilities and scenario values
on the reduced tree while keeping the achieved tree topology intact. The probabilities
and values are adjusted to reduce the distance between the reduced tree and the large
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tree. The algorithm we present here is based on stochastic approximation and the idea
to modify tree values and probabilities, again through using trajectories; we follow [37]
and [51] here. The idea behind it is to utilize that we have a model at hand which allows
to generate new trajectories arbitrarily. These trajectories are used to refine the existing
tree values and probabilities while maintaining the tree structure. For a trajectory νj :“
pνj,0, ...νj,T q used in the j-th iteration, we find the tree path pξ̄0

˚, ..., ξ̄
T
˚ q which is closest

to the trajectory. This path is found by

min
ξ̄

T
ÿ

t“0

dt
`

νj,t, ξ̄
t
˚

˘

(4.30)

for all t “ 0, ..., T , where the node corresponding to ξ̄t˚ is contained in Nt and must
have the nodes corresponding to ξ̄1

˚, ..., ξ̄
t´1
˚ as its predecessors. Furthermore, dt repre-

sents the distance measure used on stage t, and ak is a step sequence with ak ą 0 and
ř8
k“1 ak “ 8 as well as

ř8
k“1 a

2
k ă 8. [37] propose ak “ 1{p30` kq, as this has proven

itself in practice. The values of the path pξ̄0
˚, ..., ξ̄

T
˚ q are updated in the k-th iteration to

ξ̄t˚pk ` 1q Ð p1´ akqξ̄
t
˚pkq ` ak νk,t t “ 0, ..., T. (4.31)

The values of all other vertices stay the same. Finally, the algorithm terminates after
Mmax iterations or if the relative change of ξ̄t˚pk ` 1q to ξ̄t˚pkq is small enough. We then
compute the final conditional probabilities of each vertex.

Result: The output is a small tree that is fitted as close as possible to a given
stochastic process.

begin
Input: Initial approximating tree T, number of iterations Mmax, trajectories
of stochastic process ν, step sequence ak, threshold τ .

Set k “ 1. Set d “ τ ` 1.
while k ďMmax and d ą τ do

Use trajectory νk. Find the path pξ̄0
˚, ..., ξ̄

T
˚ q in T through Equation (4.30)

for all t “ 0, ..., T .
Update the path following the update step (4.31).
Set d “ ||ξ̄T˚ pk ` 1q ´ ξ̄T˚ pkq||.
Set k “ k ` 1.

end
Compute new probabilities ppnq for all nodes by using m further trajectories
ppnq “ 1

m#tν : n is corresponding node to one of pξ̄0
˚, ..., ξ̄

T
˚ qu.

return The improved tree T and estimation Drpξ,Tq.
end

Algorithm 6: Stochastic approximation for scenario trees

Example 4.27. As an example, we present a tree T based on a generalized Ornstein-
Uhlenbeck process. Its original form is found in Figure 4.17. After application of Algo-



88 4 Modelling, prediction and optimization on the day ahead market

1

0.27

0.48

0.48

0.47

0.48

0.53

0.48

0.52

0.51

0.52

0.49

0.27

0.52

0.52

0.48

0.52

0.52
0.52

0.48

0.52

0.48

0.48

1 0.46

0.49

0.48

0.48

0.48

0.52
0.49

0.52

0.52

0.52

0.48

0.46

0.51

0.52

0.49

0.52

0.510.51

0.48

0.52

0.48

0.48

1

0.27

0.52

0.47

0.48

0.47

0.520.52

0.53

0.52

0.53

0.48

0.27

0.48

0.52

0.48

0.52

0.52
0.48

0.48

0.52

0.48

0.48

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20

−10

0

10

20

Mai 25 Mai 26 Mai 27 Mai 28 Mai 29
Time

V
al

ue

Scenario tree GOU big

Figure 4.17: A scenario tree based on a generalized Ornstein-Uhlenbeck process calcu-
lated with Algorithm 2 and 100, 000 trajectories.

rithm 4, the reduced tree can be found in Figure 4.18. In comparison to 46 nodes, it
now is based on 20 nodes only and therefore has reduced the amount of nodes by more
than half. The fact that in this example, each branch starting from the root node has the
mirrored structure of the other, is due to the generalized Ornstein-Uhlenbeck process
being a symmetric process. In other cases, a tree structure exploiting the possibility of
nodes on the same stage having a different number of children or different structures
can result from this algorithm as well to best match the underlying process structure. Fi-
nally, the reduced tree is improved by the usage of Algorithm 6. Here, the tree structure
is kept fixed and only values as well as probabilities are allowed to change.

4.2.5 Scenario tree construction - heuristics

Many models consist of several independent factors or stochastic processes to be sim-
ulated. If some of these processes take longer to compute, it is worth analyzing the
importance of each factor for modeling the whole. For example, consider a model in
which one process takes ten times as long to simulate as the other processes, but only
has a minor impact on the overall behavior of the model. However, often a large amount
of overall paths is required for generating a scenario tree. In this case, instead of sim-
ulating the entire model, the idea is to simulate the underlying processes individually
and generate more or fewer paths per process depending on their contribution to the
model, thus keeping the total simulation time low. To make this possible, we first define
a method for adding trees to each other, so that the trees of the individual factors can be
merged:
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Figure 4.18: The reduced scenario tree based on Figure 4.17. It was calculated with
Algorithm 4.

Definition 4.28. For scenario trees T1 and T2 with the same height T and their value
processes in R, we define tree addition as

à

: T1 ˆ T2 Ñ T3,
à

pn1
i , n

2
j q ÞÑ n3

i,j “ pn
1
i , n

2
j q
T @i “ 1, ...,M1, j “ 1, ...,M2.

Consequently, both trees T1 and T2 are merged to one tree T3, with value process in R2.
With this, all information from the original trees is contained in the new tree.

Remark 4.29. This form of tree addition only captures all relevant information when the
underlying stochastic processes are independent from each other and should therefore
only be used in such cases.

Now, based on this form of tree addition, we prove in the case of the model from
Equation (4.4) that joining single factor trees to one large model tree is distributionally
equivalent to building one model tree from the beginning.

Proposition 4.30. For the model in Equation (4.4) and t “ 0, ..., T , it holds true that

ΛTXnptq
à

TYnptq
à

TZnptq
d
“ TΛXn`Yn`Znptq @t

and
ΛTXnptq

à

TYnptq
à

TZnptq
nÑ8
ÝÑ TΛX`Y`Zptq @t

in weak* sense.

Proof. We first consider w.l.o.g. the process X with its distribution at time t given
through PXptq. This is approximated by the tree TXnptq with corresponding distribu-
tion P̃Xnptq, with n representing the number of nodes in the tree. As TXnptq by con-
struction minimizes the Wasserstein distance for the corresponding n, it holds true that
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Figure 4.19: The improved scenario tree based on Figure 4.18. It was calculated with
Algorithm 6.

drpP̃Xnptq, PXptqqÝÑ0 for nÑ8. Using Theorem 4.15, this is equivalent to a conver-
gence in weak* sense, and therefore equivalent to convergence in distribution. This
holds true for all considered trees. Consequently, we now have to prove that this conver-
gence in distribution from the single trees’ distributions equals the convergence of their
sum.

For that, we know from Lévy’s continuity theorem that from convergence in distribu-
tion follows pointwise convergence of the corresponding characteristic functions. Using
this theorem and that we have a bijection between characteristic functions and proba-
bility distributions, we find

ϕΛXn`Yn`Znpaq “ E
´

eiapΛXn`Yn`Znq
¯

“ E
´

eiapΛXnqeiapYnqeiapZnq
¯

“ E
´

eiapΛXnq
¯

E
´

eiapYnq
¯

E
´

eiapZnq
¯

“ ϕΛXnpaqϕYnpaqϕZnpaq

Ñ ϕΛXpaqϕY paqϕZpaq

“ ϕΛX`Y`Zpaq @a. (4.32)

Be reminded that all stochastic processes in model 4.4 are independent; this is used in
the third equality. Consequently, the first assertion holds through the fourth equality
sign, and the second follows from the shown convergence.

Remark 4.31. The proposition is meant to be indicative for the special case in this thesis;
nonetheless, it is easily extended to the setting of M different, independent factors.
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We now present a heuristic to suggest which processes should be given which weight
at the desired level of discretization. We assume that M factors of the original model
are involved, that they are independent of each other and that the model as such has
an additive structure. Then, a number of stages Ts is chosen which is smaller than the
actually desired number of stages T . For the former, the whole model is built as a tree
with Algorithm 2, resulting in tree TO, and a chosen fineness, i.e. a structure ps1, ..., sTsq.
Then, Algorithm 7 is applied. It computes the factor division with M components for
every st, t “ 1, .., Ts, and collects its permutations in a list for every level. Given these
lists, the algorithm computes the corresponding structure for each individual process
tree and builds the trees accordingly. They are then added to a large tree TA and the
nested distance between TA and TO is calculated. This process is repeated for each
possible structure combination and finally the algorithm returns a table with the selected
structures and the resulting nested distances.

Result: The output is a mapping of each process to how many paths of it should
be simulated.

begin
Input: TO as tree of the original model, with Ts stages and structure
p∫1, ..., ∫Tsq. Also, models 1 to M for all independent processes.

For every stages t “ 2, ..., Ts, build a list listptq containing the permutations
of the prime factor division with M components of st.

Create a table res to contain the results later on.
for entry2 P listp2q do

...
for entryTs P listpTsq do

for i “ 1, ...,M do
structi = vector(1, entry2[i],...,entryTsris).
Ti = Algorithm 2 for model i with structure structi.

end
Add all trees Ti, i “ 1, ...,M to TA.
Check nested distance between TA and TO with Algorithm 3.
Append a line with all structures and the final nested distance to res.

end
end
return A table res containing all tested structures as well as the corresponding
nested distance to TO.

end
Algorithm 7: Tree process weighting heuristic

Example 4.32. We demonstrate the functionality of Algorithm 7 with an example. Start-
ing from the day ahead market model from Equation (4.4), we move step by step
through the algorithm. In this example, the factor in Equation (4.7), i.e. the jump
process, is removed from the model. Consequently, we have two sub-processes that we
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can represent individually. Let the desired shorter period be Ts “ 3, so we need to sched-
ule two more periods after step 1. Also, let the desired structure be p1, 24, 24q, i.e., we
reach a tree with 576 scenarios. The prime factorization for two components yields the
elements p1, 24q, p2, 12q, p3, 8q, p4, 6q for both levels. Therefore, for each of these splits,
modeling is now started and the nested distance is calculated. The results of this calcu-
lation can be found in Table 4.20 and 4.21. We see that for the chosen fineness of the
discretization, most weight is placed on the Generalized Ornstein-Uhlenbeck process,
which governs nearly all activity of the whole process. Nonetheless, we find that the
Geometric Brownian Motion process is also slightly taken into account. In comparison,
we find that for a desired structure of p1, 12, 12q with corresponding prime factoriza-
tion elements p1, 12q, p2, 6q, p3, 4q, this changes a little, as visible in Table 4.22. There,
the tree which is closest to the original is the one with a structure of p1, 12, 12q for the
Generalized Ornstein-Uhlenbeck process and only p1, 1, 1q, i. e. one calculated path, for
the Geometric Brownian Motion. Consequently, the chosen fineness of the discretization
puts most emphasis on the former process.

Of course, the approximation of the original tree is worse when each factor is simu-
lated individually than when the whole model is simulated and processed. This is due to
the simple fact that what we are trying to achieve with the heuristic, namely the correct
weighting of the different processes, is done by the whole model itself intrinsically. Also,
fewer process values of each factor are simulated. This is due to the fact that the defini-
tion of tree addition yields M1 ¨M2 nodes for the new tree and for M1 ě 2 and M2 ě 2,
it holds true that M1 `M2 ďM1 ¨M2. Consequently, the resulting nodes of the merged
tree TA will be less well distributed over the image space than the original tree TO.

Nevertheless, this method has the following three advantages: The first is clearly the
smaller number of paths needed to compute the same number of nodes. The second is
the fact that for processes with important, but rarely appearing paths, the initial quan-
tizers can be chosen with more care. This can indeed be necessary for jump processes
with low jump rates, as we will see later in Section 4.4. For jump processes, the initial Ts
quantizers can be initialized as the set of the process value where no jump has happened
in combination with Ts ´ 1 optimal quantizers of the jump distribution. This initializa-
tion helps to stabilize the convergence of the tree even with rare events. Finally, the
third advantage comes into effect when the dimension of the value process ξ is m “ 1.
In [50], two algorithms are presented that can be used in exactly this case and when
the probability distribution of a random variable is known. They use this known distri-
bution to find the optimal quantizers more easily. If some of the factors of the model
have an explicit form of their density and distribution, and others do not, optimal quan-
tizers for the former can be computed much faster. We present both algorithms below.
Algorithm 8 is used for the Wasserstein distance of order r “ 1, whereas Algorithm 9
is optimal for quantizers when using the Wasserstein distance of order r “ 2. Both
algorithms proceed such that they use a set of initial quantizers qi, i “ 1, ..., Ts. This
set is gradually refined. In case of Algorithm 8, this refinement step takes place by first
finding the break points in between the quantizers. For those, the distribution values
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Number Structure GOU Structure GBM Nested Distance

1 (1, 1, 1) (1, 24, 24) 21.86
2 (1, 1, 2) (1, 24, 12) 18.61
3 (1, 1, 3) (1, 24, 8) 17.77
4 (1, 1, 4) (1, 24, 6) 17.53
5 (1, 1, 6) (1, 24, 4) 17.39
6 (1, 1, 8) (1, 24, 3) 17.39
7 (1, 1, 12) (1, 24, 2) 17.34
8 (1, 1, 24) (1, 24, 1) 17.21
9 (1, 2, 1) (1, 12, 24) 14.90
10 (1, 2, 2) (1, 12, 12) 10.55
11 (1, 2, 3) (1, 12, 8) 9.15
12 (1, 2, 4) (1, 12, 6) 8.63
13 (1, 2, 6) (1, 12, 4) 8.33
14 (1, 2, 8) (1, 12, 3) 8.25
15 (1, 2, 12) (1, 12, 2) 8.13
16 (1, 2, 24) (1, 12, 1) 7.89
17 (1, 3, 1) (1, 8, 24) 12.67
18 (1, 3, 2) (1, 8, 12) 8.09
19 (1, 3, 3) (1, 8, 8) 6.56
20 (1, 3, 4) (1, 8, 6) 5.95
21 (1, 3, 6) (1, 8, 4) 5.59
22 (1, 3, 8) (1, 8, 3) 5.50
23 (1, 3, 12) (1, 8, 2) 5.36
24 (1, 3, 24) (1, 8, 1) 5.13
25 (1, 4, 1) (1, 6, 24) 12.02
26 (1, 4, 2) (1, 6, 12) 7.38
27 (1, 4, 3) (1, 6, 8) 5.82
28 (1, 4, 4) (1, 6, 6) 5.23
29 (1, 4, 6) (1, 6, 4) 4.87
30 (1, 4, 8) (1, 6, 3) 4.78
31 (1, 4, 12) (1, 6, 2) 4.61
32 (1, 4, 24) (1, 6, 1) 4.41
33 (1, 6, 1) (1, 4, 24) 11.46
34 (1, 6, 2) (1, 4, 12) 6.77
35 (1, 6, 3) (1, 4, 8) 5.23
36 (1, 6, 4) (1, 4, 6) 4.65
37 (1, 6, 6) (1, 4, 4) 4.29
38 (1, 6, 8) (1, 4, 3) 4.25
39 (1, 6, 12) (1, 4, 2) 4.07

Table 4.20: Result table for Example 4.32 with nested distances for structure p1, 24, 24q,
lowest value in bold face.
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Number Structure GOU Structure GBM Nested Distance

40 (1, 6, 24) (1, 4, 1) 3.88
41 (1, 8, 1) (1, 3, 24) 11.55
42 (1, 8, 2) (1, 3, 12) 6.97
43 (1, 8, 3) (1, 3, 8) 5.53
44 (1, 8, 4) (1, 3, 6) 5.02
45 (1, 8, 6) (1, 3, 4) 4.75
46 (1, 8, 8) (1, 3, 3) 4.65
47 (1, 8, 12) (1, 3, 2) 4.53
48 (1, 8, 24) (1, 3, 1) 4.39
49 (1, 12, 1) (1, 2, 24) 11.08
50 (1, 12, 2) (1, 2, 12) 6.48
51 (1, 12, 3) (1, 2, 8) 5.08
52 (1, 12, 4) (1, 2, 6) 4.57
53 (1, 12, 6) (1, 2, 4) 4.38
54 (1, 12, 8) (1, 2, 3) 4.28
55 (1, 12, 12) (1, 2, 2) 4.12
56 (1, 12, 24) (1, 2, 1) 3.63
57 (1, 24, 1) (1, 1, 24) 10.10
58 (1, 24, 2) (1, 1, 12) 5.69
59 (1, 24, 3) (1, 1, 8) 4.55
60 (1, 24, 4) (1, 1, 6) 4.23
61 (1, 24, 6) (1, 1, 4) 4.22
62 (1, 24, 8) (1, 1, 3) 3.96
63 (1, 24, 12) (1, 1, 2) 3.75
64 (1, 24, 24) (1, 1, 1) 3.65

Table 4.21: Continued: Result table for Example 4.32 for nested distances for structure
p1, 24, 24q, lowest value in bold face.
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Number Structure GOU Structure GBM Nested Distance

1 (1, 1, 1) (1, 12, 12) 21.95
2 (1, 1, 2) (1, 12, 6) 18.88
3 (1, 1, 3) (1, 12, 4) 18.11
4 (1, 1, 4) (1, 12, 3) 17.88
5 (1, 1, 6) (1, 12, 2) 17.81
6 (1, 1, 12) (1, 12, 1) 17.58
7 (1, 2, 1) (1, 6, 12) 15.19
8 (1, 2, 2) (1, 6, 6) 11.07
9 (1, 2, 3) (1, 6, 4) 10.03
10 (1, 2, 4) (1, 6, 3) 9.57
11 (1, 2, 6) (1, 6, 2) 9.37
12 (1, 2, 12) (1, 6, 1) 9.12
13 (1, 3, 1) (1, 4, 12) 13.89
14 (1, 3, 2) (1, 4, 6) 9.64
15 (1, 3, 3) (1, 4, 4) 8.58
16 (1, 3, 4) (1, 4, 3) 8.09
17 (1, 3, 6) (1, 4, 2) 7.93
18 (1, 3, 12) (1, 4, 1) 7.52
19 (1, 4, 1) (1, 3, 12) 12.84
20 (1, 4, 2) (1, 3, 6) 8.53
21 (1, 4, 3) (1, 3, 4) 7.69
22 (1, 4, 4) (1, 3, 3) 7.11
23 (1, 4, 6) (1, 3, 2) 6.94
24 (1, 4, 12) (1, 3, 1) 6.52
25 (1, 6, 1) (1, 2, 12) 13.03
26 (1, 6, 2) (1, 2, 6) 8.90
27 (1, 6, 3) (1, 2, 4) 8.01
28 (1, 6, 4) (1, 2, 3) 7.67
29 (1, 6, 6) (1, 2, 2) 7.56
30 (1, 6, 12) (1, 2, 1) 7.05
31 (1, 12, 1) (1, 1, 12) 10.99
32 (1, 12, 2) (1, 1, 6) 7.24
33 (1, 12, 3) (1, 1, 4) 6.22
34 (1, 12, 4) (1, 1, 3) 6.30
35 (1, 12, 6) (1, 1, 2) 5.92
36 (1, 12, 12) (1, 1, 1) 5.53

Table 4.22: Result table for Example 4.32 for nested distances for structure p1, 12, 12q,
lowest value in bold face.
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Result: The output are optimal quantizers for random variables with dimension
m “ 1 and the Wasserstein distance of order r “ 1.

begin
Input: Initial quantizers qi, i “ 1, ..., Ts ordered by size, threshold τ ,
distribution function F .

Set breakpoints b0 “ ´8, bTs “ 8 and d “ τ ` 1.
while d ą τ do

Find breakpoints bi “ 1
2pqi ` qi`1q for i “ 1, ..., Ts ´ 1.

Find values gi “ F pbiq for all i.
Find new medians of F conditioned on the intervals determined by
breakpoints bi, i.e.

q̃i “ F´1
´gi´1 ` gi

2

¯

.

Set d “
ř

i |q̃i ´ qi|.
Set qi “ q̃i.

end
Compute probabilities pi “ gi ´ gi´1 for i “ 1, ..., Ts. return The optimal
quantizers qi and their corresponding probabilities pi.

end
Algorithm 8: Optimal quantizers for dimension m “ 1 and Wasserstein distance of
order r “ 1

are computed, and the mean of both is then mapped back through the inverse of the
distribution function. This step defines the new values of the quantizers as the median
of the distribution function conditioned on the corresponding intervals. Their order does
not change through this step. Finally, when the difference between old and new quan-
tizer set is small enough, the corresponding probabilities for all quantizers are computed
and both sets are returned. In comparison to that, Algorithm 9 opts for the conditional
mean instead of the median, as the mean is what minimizes the expected quadratic error.

Depending on the order of the Wasserstein distance of interest, one of the algorithms
can be used when the probability distribution of the corresponding stochastic process is
easily computable. In the special case of the model in Equation (4.4), this holds true
for the first two factors - the first is lognormally and the second normally distributed. In
comparison to that, the third factor is defined through a Lévy process whose probability
distribution for each point in time indeed can be written down, but contains an infinite
sum of convolutions and is thus quite difficult to compute and program. Therefore, it
does make sense to compute optimal quantizers for the first two factors with Algorithm 8
or 9, and to use Algorithm 2 for the third factor.
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Result: The output are optimal quantizers for random variables with dimension
m “ 1 and the Wasserstein distance of order r “ 2.

begin
Input: Initial quantizers qi, i “ 1, ..., Ts ordered by size, threshold τ ,
distribution function F .

Set breakpoints b0 “ ´8, bTs “ 8 and d “ τ ` 1.
while d ą τ do

Find breakpoints bi “ 1
2pqi ` qi`1q for i “ 1, ..., Ts ´ 1 and define

intervals Ii “ bi ´ bi´1 for i “ 1, ..., Ts.
Find values gi “ F pbiq for all i.
Compute probabilities pi “ gi ´ gi´1 for i “ 1, ..., Ts.
Find new means of F conditioned on the intervals determined by
breakpoints bi, i.e.

q̃i “
1

pi

ż

Ii

u dF puq.

Set d “
ř

i |q̃i ´ qi|.
Set qi “ q̃i.

end
return The optimal quantizers qi and their corresponding probabilities pi.

end
Algorithm 9: Optimal quantizers for dimension m “ 1 and Wasserstein distance of
order r “ 2
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4.3 Stochastic optimization

After discussing the basis for an optimization, i.e. a method to find a discrete repre-
sentation of the underlying model, it remains to choose a method to optimize strategies
based on the discretized model. Since the setting that we consider includes a look-ahead
period of one week, it is necessary to consider methods that can handle this. In the fol-
lowing, we therefore take a look at stochastic optimization methods.

Stochastic optimization is concerned with incorporating uncertainty in optimization
problems, either in the objective function or in the constraints. Thus, the term “stochas-
tic optimization” is an umbrella term for a collection of methods used to pose and solve
optimization problems with random elements. As the area of stochastic optimization has
been worked on by many different disciplines and research communities, it has devel-
oped a variety of strategies for dealing with uncertainty in some of the parameters of an
optimization problem. Their methods are distinguished by a number of differences, e.g.,
in notation, in decision epochs, in how randomness is incorporated and which elements
may or may not be affected by it, in how transition to another state is handled, and so
on. These differences immediately suggest that there is not one best method for solving
stochastic optimization problems, but rather many, each with its own area of excellence.
There is dynamic programming, which searches for Markov decision rules that optimally
move from one state to another over the entire time horizon. Then there is stochastic
programming, which focuses on optimally solving the first-stage decision based on sce-
narios that capture all randomness. There is also reinforcement learning and others, all
of which approach the problem in their own way, but all of which have similarities to
each other.

Stochastic optimization may be used to optimize decisions under uncertainty where a
one-time decision has to be made. An example for this is to calibrate parameters of a
model to a data set. It also contains techniques that appear when a one-time decision
must be made followed by a recourse decision. Here, one can think of the placements
of warehouses as the one-time decision and the actual transportation management from
the warehouses to customers as recourse decision after demand has become known. A
recourse decision is in common language of the stochastic programming community the
second-stage decision in a two-stage problem, that can be made in response to the reve-
lation of a stochastic exogenous factor after the first-stage decision. In the example, this
exogenous factor would be actual demand from customers, and the recourse decision
manages which customer is supplied from which warehouse. As the setting we consider
does not contain such a one-time decision, but rather a repetition of the same decision
under different conditions over several days, all explanations following will be restricted
to this area. As a further consequence, the functional that will be optimized is the ex-
pectation rather than a lower or upper bound quantile – for repeated decisions and thus
based on the law of large numbers, it makes sense to minimize the incurred costs on
average. For the detailed explanation below, we follow [50].
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We pose the stochastic optimization problem for this setting without settling for a
specific area just yet. For that purpose, we define the following:

• Decision epoch: t P r0, ..., T s denotes the decision epoch from the decision epoch
set r0, ..., T s, where T P N Y 8 represents the final decision epoch. The decision
epochs and the passing time do not have to coincide, but as both are equivalent in
this thesis, t will also be referred to as time.

• Exogenous information: ξt, t P r0, ..., T s, denotes a stochastic process that repre-
sents exogenous information. It is thus our source of randomness. The evolution
or history of ξ over time is denoted by ξ0:t “ pξ0, ξ1, ..., ξtq. We assume ξ0 to be
known; it is thus not a random variable.

• State: Sptq is the state of the system at time t stemming from the set of states
St. It contains information about the system at time t that can depend on ξ0:t and
on the actions x0, ..., xt´1, and will be introduced in more detail in the following
subsections.

• Action: xt P Xt represents a feasible action, i.e. an action that fulfills all given
constraints with probability 1, from action set Xt :“ Xtpxt´1, ..., x0, ξ0:tq. Xt de-
pends on all taken decisions and realized observations up to time t and contains
only actions for which the expected costs are defined for all system states. In the
following, xt will also be called decision, and Xt decision set at time t.

• Cost: Ctps, xt, ξtq, t “ 0, ..., T, represents the cost of choosing action xt based on
the realization of ξt at decision epoch t, when the system state is given by Sptq “ s.
For t “ 0, it holds true that C0pSp0q, x0, ξ0q does not depend on stochastic input,
as ξ0 is known.

The optimization problem to be solved is then given through

min
x0PX0

C0pSp0q, x0, ξ0q ` fT p1q,

fT ptq :“ E
„

inf
xtPXtpxt´1,...,x0,ξ0:tq

CtpSptq, xt, ξtq ` fT pt` 1q



,

fT pT ` 1q :“ 0. (4.33)

Depending on the literature, the system state is used, and then it usually contains ξ al-
ready, or it is not used, then the focus is on ξ only. Nonetheless, to make the explanation
applicable for both approaches, we itemize the system state and the exogenous informa-
tion separately for now. This is equivalent to the following equation, which stresses the
nested nature of the problem:

min
x0PX0

C0pSp0q, x0, ξ0q ` E
„

inf
x1PX1px0,ξ1q

C1pSp1q, x1, ξ1q`

E
”

...` E
“

inf
xT PXT pxT´1,...,x0,ξ0:T q

CT pSpT q, xT , ξT q
‰

ı



. (4.34)
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It is important to mention that the action xt, which is taken at time t, may not depend
on future observations of the stochastic process. This property is called nonanticipativ-
ity. Nonetheless, xt may very well depend on the process ξ0:t, i.e. on all information
available up to time t, and as a consequence becomes a stochastic process itself. The
optimization problem is called linear if the objective function as well as the constraints
are linear.

Equation (4.33) can be reformulated in a second way that switches away from its
focus on the nested structure of the problem. The reformulation stresses the view of
actions xt :“ xtpξ0:tq, t “ 1, ..., T, as functions of the stochastic process ξ up to time t,
which in conclusion denote a sequence of mappings. This sequence is called policy or
decision rule. A policy is feasible if it fulfills all constraints for every possible realization
of ξ, i.e.

xtpξ0:tq P Xtpxt´1pξ0:t´1q, ξtq, t “ 2, ..., T, with prob. 1.

Then, an equivalent formulation to Equation (4.33) is the following:

min
x0,x1,...,xT

E
„

C0pSp0q, x0, ξ0q ` C1pSp1q, x1pξ0:1q, ξ1q ` ...` CT pSpT q, xT pξ0:T q, ξT q



,

(4.35)

s.th. xt P Xt feasible.

Here, the optimization is performed over feasible policies, i.e. over functions instead of
single actions. Consequently, if the process ξ does not have a finite number of observa-
tions, the optimization problem becomes infinite dimensional.

Starting from this general formulation, we introduce with dynamic and stochastic
programming two classical stochastic optimization methods in more detail in the next
subsections. Following those, we introduce with reinforcement learning a third, more
recent method of how to tackle stochastic optimization problems. One property these
three methods all have in common is that they either rely on the Bellman equation or
can be translated to it. Therefore, we introduce it beforehand. Here, the following
additional definition is necessary:

• Value: Vtpsq is the value of being in state Sptq “ s combined with the value of all
following states under the assumption that only optimal decisions are taken from
t onward.

The Bellman equation for the value of state Sptq, that now contains the development of
the exogenous information ξ, has the following form:

VtpSptqq “ min
xtPXt

ˆ

CtpSptq, xtq ` E
“

Vt`1pSpt` 1qq
‰

˙

, (4.36)

with VT`1p¨q :“ 0. The Bellman equation connects the costs incurred by an action taken
at time t and conditioned on being in system state Sptq with the minimal expected costs
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of the possible future costs, where the minimum is taken over the actions that are pos-
sible from that point onward. Thus, it defines a recursive relationship for the values of
subsequent stages.

In order to make the different methods more tangible, we now briefly present a simple
example that we will use for each of the three methods.

Example 4.33. In our example, there is a curry sausage vendor who stands in her stall
every day selling curry sausages. She has her standard butcher who makes her a good
price p1 for his sausages. She orders x sausages from him, and then resells them to her
customers for the price of p2 per sausage with p2 ą p1. When her customers’ demand d
is bigger than expected and they want to buy more sausages than she has prepared for
the day, i.e. x ă d, she can quickly buy the missing amount from a second butcher just
on the other side of the street - his sausages are more expensive and sold to her at price
p3 with p3 ą p1, but they help her to cover the demand that she did not account for.
When on the other side, she bought more sausages than people came around, i.e. x ą d,
she can store the remaining sausages r in her fridge and, because they are high-quality,
she can still sell them on the next day. Nonetheless, the storing leads to operating costs
of p4 per sausage. In total, her costs on day t are

p1 ¨ xt ` p3 ¨ rdt ´ pxt ` rt´1qs` ` p4rpxt ` rt´1q ´ ds` ´ p2 ¨ dt,

where d is the amount of sold sausages and x the amount of bought ones. We define
cost instead of earning, because it is custom to minimize instead of maximize.

For the following paragraphs, we orientate ourselves on [54] in their explanations.

4.3.1 Dynamic programming

The approach of dynamic programming is mainly based on the work of Richard Bellman
[2], who shifted the view from the analysis of the entire time horizon of an optimization
problem to the analysis of recurring, single sub-problems in multi-period decision situa-
tions with a certain structure. This transformation was known earlier from physics, but
until then it was not considered in the context of solving an optimization problem.

Bellman assumed that the underlying system in which optimization is performed can
be described by its state.

Definition 4.34. A state is defined in [53] as ”the minimally dimensioned function of
history that is necessary and sufficient to compute the decision function, the transition
function, and the contribution function”.

In [53], a state is furthermore characterized by its physical resources, by its informa-
tion, and by its assumptions. In addition, there is the possibility of influencing the state
through an action.
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Example 4.35. In the case of the curry sausage vendor, the physical resources would be
the amount of sausages in the fridge as well as the additional amount bought for the day.
The information state covers her knowledge about the prices. Finally, the assumptions
state contains assumptions about her customers’ demand, possibly its distribution based
on empirical observations from the days before. She has the possibility to influence the
state through her decision about how many sausages to buy from her first butcher.

Based on the collected information contained in a state, the state’s value is to be
ascertained. This value is usually not something that can be seen just by knowing a
particular state - instead, the value of a state is calculated from its setup for the future:
If there is little current profit to be made from a state, but there is the possibility of
reaching other states in which much profit can be made, that state may have a higher
value than a state in which there is a great deal of profit to be made, but only states with
little profit can be reached afterwards. Thus, the value of a state contains the prospect
of how much profit can be made in total. These future profits are of course weighted
with the probability of their occurrence. Consequently, the value of a state is equal to
the optimal solution of the entire optimization problem that is conditioned on starting
in that state and is shortened to the time interval from this decision epoch to the last
one. Thus, knowing the value of the starting state means knowing the solution to the
original optimization problem.

Example 4.36. Again based on the curry sausage vendor, we can make the value of a
state with the following example more tangible: Let us assume that her main butcher,
that sells his sausages for a price p1, will go on a vacation for a few days. Then, buying
today an amount of sausages that exceeds today’s demand in order to have enough to
sell on the next days might have a higher value than just buying enough for today’s
demand, even though the cost incurred today would be higher. The reason for that is,
that on the days to come, the curry sausage vendor does not have to buy her sausages
at the higher price p2 from the second butcher but can use the ones she prospectively
bought beforehand and stored in her fridge.

Following this line of thought, only the value of the last stage can be calculated with-
out calculating further values of other stages - and when that is known, the value of the
stage before it can be calculated. This leads to a recursive computing structure, where,
starting with the last stage, the values of all states can be calculated. This is where
dynamic programming finds its place: Following [7], dynamic programming is usually
only applied when a problem has optimal substructure and overlapping subproblems. Op-
timal substructure is given when an optimal solution to a subproblem of the original
problem will also be contained in the optimal solution of the original problem itself.
Furthermore, the solutions to the subproblems must be independent from each other for
optimal substructure to apply. [7] formulate it such that the subproblems cannot share
resources in their solutions: A solution to one subproblem in combination with the so-
lution of a second subproblem must be a solution for the problem containing the two as
well. Now, turning to overlapping subproblems, this occurs when a recursive algorithm
would solve the same problem over and over again while trying to solve the original
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problem. A typical example for that is the calculation of Fibonacchi numbers, where for
example for the computation of the 5th Fibonacchi number, the Fibonacchi numbers of
4 and 3 are needed, and again for the calculation of the 4th Fibonacchi number, those
for 3 and 2 are needed. The same calculations reappear and can be reused is stored in
a smart fashion. Consequently, DP usually takes advantage of overlapping subproblems
by storing once-calculated results and reusing them if necessary.

We write down this approach in a formalized way, sticking to the notation introduced
before and following [54]. Again, we define:

• State: Sptq be the state of the system at time t stemming from the set of states St.

• Action: xt be a feasible action at decision epoch t stemming from the action set
Xt.

• Cost: CtpSptq, xtq be the cost of taking action x in state Sptq at time t.

• Transition probability: pps1 | s, xtq be the probability to move to state Spt`1q “ s1

when being in state Sptq “ s and using action xt.

• Value: Vtpsq be the value of being in state Sptq “ s combined with the value of all
following states under the assumption that only optimal decisions are taken from
that decision epoch onward.

• Decision epoch: t “ 1, ..., T be the decision epochs, i.e. the time points at which
actions can be taken.

The corresponding optimal policy formulation, ranging over all decisions xt, t “ 0, ..., T ,
is consequently given by

πpsq “ arg min
x0PX0,...,xT PXT

ˆ

C0pSp0q, x0q ` E
“

V1pSp1qq
‰

˙

. (4.37)

With St being finite for all t, this can be rewritten to

VtpSptqq “ min
xtPXt

ˆ

CtpSptq, xtq `
ÿ

s1PSt`1

pps1 | Sptq, xtqVt`1ps
1q

˙

,

πpsq “ arg min
x0PX0,...,xT PXT

ˆ

C0pSp0q, x0q `
ÿ

s1PS1

pps1 | Sp0q, x1qV1ps
1q

˙

. (4.38)

The Bellman equation itself is not restricted to applications where the underlying stochas-
tic process is Markovian, i.e. stagewise independent, and the optimization problem has
optimal substructure or overlapping subproblems. Nonetheless, solving these equations
in closed form can be very difficult or even impossible for generally distributed underly-
ing stochastic processes. Even without closed form, the computation of these equations
for non-Markovian processes can quickly exceed feasible limits. Consequently, numerical
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approximations or simplifying assumptions like the stochastic process being Markovian
are therefore resorted to quite often. Nonetheless, if that is not given, then a search
over the whole state-action-space needs to be carried out - that is possible using dy-
namic programing equations, but does not bear advantages regarding computation time
in comparison to regular full state-action-space searches any longer.

Remark 4.37. Typically, the dynamic programming community tries to model the states
in such a way that they are Markovian. Citing [54], they even state ”All properly mod-
eled dynamic programs are Markovian”. A typical solution for processes with history-
dependent variables is to enlarge the state space by the history. Nonetheless, depending
on the problem at hand, it might be easier to use another solution method like stochastic
programming, instead of massively enlarging the state variable such that it contains all
relevant information.

Remark 4.38. It is important to notice that due to its structure, dynamic programming
can integrate differing transition probabilities from one state to another conditioned on
the decision that was taken. This will not be the case for stochastic programming, where
the scenarios are prepared beforehand and are independent from the taken decisions.

4.3.2 Stochastic programming

We now introduce stochastic programming and follow [42] and [4] hereafter: For
stochastic programming, again, the goal is to perform optimization under uncertainty.
Its origin lies with [8] roughly 80 years ago, where first answers on how to incorpo-
rate uncertain demands into an optimization problem were discussed. The standard
approach is to approximate the parameters considered as uncertain by their (empirical)
distribution, to choose scenarios from this distribution, and to optimize on them as basis.

Remark 4.39. The intrinsic assumption that at least an empirical distribution is known
is often justified in practice, since past data of the same or a similar problem can be
used. Furthermore, this approach rules out the possibility to redefine scenarios based on
decisions that were taken; consequently, the underlying stochastic processes should be
independent of the decision to be taken.

The typical problem in stochastic programming is the two-stage recourse problem,
which assumes that a decision must be made in the here and now under the impression
of an uncertain future, and a second decision - the recourse decision - can be made when
whatever future parameter the problem depends on has materialized.

Example 4.40. Returning to the example of the curry sausage vendor, a possible decision
she could face is that of whether she should invest in a bigger sign for her stall to
increase her visibility and thus possibly increase the demand. This decision is about
an action that is performed only once. Therefore, it can be formulated as a two-stage
problem, where in the first stage the decision about which sign to buy is taken. In
the second stage, knowledge about actual increases of customer demand builds and a
recourse decision becomes possible, as for example to increase the amount of sausages
that are ordered daily from her standard butcher. As is immediately visible, the first part
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of the problem contains a one-time decision. In comparison, the second part actually
contains an intrinsic multi-periodicity, which should also be taken into account in the
modeling - not necessarily when deciding over the investment strategy regarding the
new sign where the future demand patters need not be detailed out, but afterwards for
the everyday order.

We formalize the approach in the following. The two-stage formulation of stochastic
programming is in its linear form for x P Rm given by

min
xPX

ˆ

Cpx, ξ0q ` ErQpx, ξ1qs

˙

, (4.39)

s.th. Ax “ b, x ě 0.

Here, A is a matrix of size nˆm and b a vector of size n. The equation system defines the
n constraints of the problem. Qpx, ξ1q is the optimal value of the second-stage problem

min
x̃PX̃

C̃px̃, ξ1q, (4.40)

s.th. T pξ1qx`Wx̃pξ1q “ hpξ1q, x̃ ą 0,

where the constraints now partly depend on the realization of ξ1 and represent a combi-
nation of the first-stage and the second-stage decision. W is also called recourse matrix.
Here, it is assumed to be fix and non-dependent of the realization of the stochastic pro-
cess. Equation (4.39) is equivalent to the deterministic equivalent program. It is called
this way because all stochasticity is contained in the constraints and therefore it can
just be solved like a deterministic program. The main computational work lies with the
computation of ErQpx, ξ1qs, see [4]; consequently, the higher the amount of scenarios,
the bigger the constraint matrices and the longer the computation of this expectation.

Remark 4.41. Equation (4.39) works for ξ being a discrete random variable, but also if
it is a continuously distributed random variable. Nonetheless, fast computation is only
possible if the continuous random variable has specific properties, or is sufficiently small
in dimension such that numerical integration is computationally feasible, see [4]. Con-
sequently, the practical applicability of stochastic programming for continuous variables
has its limits. Knowledge about it for discrete variables is important all the more, as
the possibility exists to approximate a continuous random variable by a finite - and thus
discrete - number of realizations. This is where the methods discussed in Section 4.2
come into play.

The theoretical setting of two-stage problems can be extended to several periods. Con-
centrating on the case of a time-discrete stochastic process, a finite horizon framework
and fixed recourse, its multi-stage version is based on scenarios w P Ωt that represent
possible developments of the random influences. Constraints are omitted for now, but
will be explained later. A multistage stochastic programming model beginning in t and



106 4 Modelling, prediction and optimization on the day ahead market

looking forward up to time t`H is given by

min
xtPXt

Ctpxt, ξtq ` E
„

min
xt`1PXt`1pxt,ξt`1q

Ct`1pxt`1, ξt`1q`

E
”

...` E
“

min
xt`HPXt`Hpxt`H´1,ξt`Hq

Ct`Hpxt`H , ξt`Hq
‰

ı



. (4.41)

Consequently, we optimize over the expected costs for all decision time points up to time
t`H in order to make the best decision for the here-and-now. An example for a solution
method is e.g. Bender’s decomposition [56], if applicable. The actual computation of the
multistage model is often computationally intractable though, if the number of scenarios
is adequately high [54].

Remark 4.42. Equation (4.41) can actually be rewritten in a recursive manner, such that
the costs of future periods are, like with the Bellman equation, contained in a second-
stage value function. The corresponding format is usually called dynamic programming
equation, see e.g. [50], [4].

Because of the tractability issues of many multistage programs, an approximation
to Equation (4.41) is often used in practice [54]: A reduction of computation time is
reached through the two-stage approximation of the multistage model, which is given
in the following:

min
xt,pxt1 pwq,tăt

1ďt`Hq,@wPΩt

ˆ

ctxt `
ÿ

wPΩt

ppwq
t`H
ÿ

t1“t`1

ct1pwqxt1pwq

˙

. (4.42)

Again, we assume that at time t we make a decision based on information known up to
t. The big difference, however, is that after time t a scenario w occurs, which contains all
the information up to time t`H. Consequently, we can optimally make all decisions from
t`1 to t`H when we arrive at t`1. Due to the simplicity of this approach combined with
its prospect to nonetheless integrate assumptions about future behavior of uncertain
parameters, and because it is the approach mainly adopted in practice according to
[54], we choose to work with this in the following.

Remark 4.43. In the case of an originally continuous stochastic process that has been
approximated by a finite number of scenarios, usually only the first from all found de-
cisions over the whole time horizon is actually implemented. This is due to the fact
that, no matter which observation realizes itself, the probability that one of the scenar-
ios from the scenario tree equals it is zero. Consequently, the optimization for the next
period must be carried out from the beginning.

Remark 4.44. The computation of the original multi-stage model is simplified when
the interactions between stages are sufficiently weak. Multi-stage programs with this
property are called block separable, see [4], and exploiting it can reduce the amount of
computation work immensely.
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4.3.3 Reinforcement Learning

Both stochastic programming and dynamic programming are classical methods for solv-
ing optimization problems with random elements. Reinforcement Learning (RL), on the
other hand, is a machine learning method that only gained importance in the last few
decades and is subject of current research. Nonetheless, its core ideas are based on
dynamic programming and the Bellman equation, so similarities do exist between both
methods. For an extensive introduction to RL, we refer to [58] and base our explana-
tions on it from here on.

RL is referred to as a computational approach to learning by interacting with a system
and its possibilities. Specifically, it does not solve an optimization problem like classi-
cal methods, but instead tries to find the solution through educated “trial-and-error”:
It considers a learning agent that can perform certain actions in the given environment
and gains knowledge about the interplay of actions and environment states from these
interactions. Depending on the state of its environment, the agent receives a reward for
the action it chooses and can thus refine its knowledge about this interplay. The agent’s
overall goal is to maximize these accumulated rewards over the course of the program.
Consequently, RL tries to reach the same results as classical solving techniques, but with
less computational effort and less assumptions to the optimization problem, see [58].
For that, it relies on the same idea as DP, namely on the Bellman equation. We go into
detail regarding this statement after introducing relevant assumptions and definitions.

RL is commonly based on the following hypothesis:

Definition 4.45. The reward hypothesis states that all goals can be expressed through
maximizing an expected reward.

A key component of the Bellman equation and thus DP as well as RL is the idea to use a
value function that depends on this reward in order to determine which policy to follow
in the course of the optimization problem. In RL, the value function of a system state –
corresponding to its definition in the other contexts – contains the expected accumulated
reward under the optimal policy from that system state onward. In order to formulate
the RL setting, we add the following definitions to the one made beforehand:

• Environment state: At every point in time, the environment state Set is the en-
vironment’s representation of itself, on whose basis the environment reacts to ac-
tions and moves from one state to another. This representation does not have to
be known to the agent, and usually is not known.

• Agent state: The agent state Sat is the agent’s representation of the system and the
basis of its decisions.

• Reward signal: A reward signal rps, xq P R Ă R provides the agent with a numer-
ical, scalar feedback to the chosen action x in system state s in the short term.
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• Model: A model of an environment provides the agent with a way of estimating
how the environment will behave as a result of a particular action. It is used for
planning, i.e. to estimate in advance which possible future situations will result
from which actions. Methods that make use of models are also referred to as
model-based methods. Techniques that are not model-driven are called model-
free.

Remark 4.46. The classical RL framework is that of finite Markov decision processes,
so the optimal decision must not be dependent on past states. Some extensions to the
classical RL methods do yield the possibility to broaden this framework, but as this one
fits our thesis well, we do not go into detail here.

In our case, the agent state and the environment state will be identical to each other, and
are again represented by Sptq. At every decision epoch t “ 0, .., T , the agent observes
the system state Sptq “ s, then decides for an action that is conditioned on the system
state, i.e. xt P Xpsq, receives a reward rt`1 P R and then, the next state is revealed
based on a transition matrix with prespecified transition probabilities pps1 | s, xtq for all
possible following system states. Consequently, the resulting trajectories are of the form
Sp0q, x0, r1,Sp1q, x1, ..., rT , and the history of observations, actions and rewards up to
time t is respectively defined as

Ht “ pSp0q, x0, r1,Sp1q, x1, ..., rtq.

Bases on this definition of history, the state can be defined as a function of history, i.e.
Sptq “ fpHtq.

Example 4.47. In our example of the curry sausage vendor, the environment contains
information about the amount of stored sausages in the fridge and the prices of the two
butchers. The reward signal of one day is obviously the negative cost of that day. Her
actions are as before given through how many sausages she buys from her main butcher.
The model contains her estimate of the customers’ demand distribution on coming days.

Now, the agent walks through the environment and collects these trajectories. The
knowledge that is gained by this is supposed to be translated to a value and a policy
function, just as was the case for DP. To define them again, their optimal values are
given through

V ˚t psq “ max
xtPXt

E

«

T
ÿ

k“0

γk´tr | Sptq “ s

ff

for all s P St, (4.43)

q˚t ps, xq “ max
xtPXt

E

«

T
ÿ

k“0

γk´tr | Sptq “ s, xt “ x

ff

, (4.44)

where the latter is called optimal action-value function and γ P p0, 1q represents a dis-
count factor. Here, q˚t ps, xq “ Errt`1` γV

˚
t pSpt` 1qq | Sptq “ s, xt “ xs translates to the

Bellman equation with discount factor for future rewards. Now, as RL does not optimize
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in a classical sense, these equations cannot be computed in a classical sense either. The
procedure that is followed here is that of either policy iteration or value iteration. Both
start with guesses of the optimal policy or optimal value function, respectively, and from
there contain a sequence of evaluation and improvement steps that let these guesses
converge to the actual optimal values. We take a closer look at value iteration: This, as
stated in [58], is actually nothing else but using the Bellman equation as updating rule
for the value function. It is given through the following Algorithm 10, where we assume
that the state space contains all possible states independent of t and again follow [58].

Result: Optimal value function V ˚psq and optimal policy π˚psq

begin
Input: Threshold τ .
Initialize the value function V psq arbitrarily for all states s.
Set d “ τ ` 1.
while d ą τ do

Set d “ 0.
foreach State s do

Save old value Ṽ “ V psq.
Calculate the new value from maximizing over all actions x in state s:
V psq “ maxx

ř

s1 pps
1|s, xq prps, xq ` γV ps1qq.

Calcute the change in value d “ maxtd, |V psq ´ Ṽ |u.
end

end
Return the converged value function and the optimal policy π˚psq, which is
found by
πpsq “ arg maxx

ř

s1 pps
1|s, xq prps, xq ` γV ps1qq.

return V ˚psq, π˚psq.
end

Algorithm 10: Value Iteration

The value function and policy of this algorithm converge to the their optimal values
without actually optimizing the whole problem. Instead, each single step is optimized
on its own. This method saves from having to implement sometimes tedious constraint
matrices, but has its own caveats: As for any machine learning method, there are certain
hyper parameters present, e.g. τ, γ, a learning rate and others that need hyper parameter
optimization, that does take some time on its own. Nonetheless, this method yields the
opportunity to solve difficult multi-stage optimization problems.

4.4 Case Study on the German day ahead market

Having now described three fundamental solution approaches to our optimization prob-
lem, we will devote this section to the comparison of their performance and suitability
for the practical application. To remind the reader, we concentrate on the time interval
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from the years 2015 to 2020 based on the analysis from Section 2.1. The first subsection
features the setting in which the stochastic optimization will take place. This is followed
by the scenario tree generation for the model in Equation (3.6) that is calibrated on the
year 2020. In order to test the tree generation as well as the tree generation heuristic
for different initial situations, we have selected both a winter and a summer period on
which to run the overall procedure. The winter period starts at the 1st of February, and
the summer period on the 1st of August. Finally, the presented optimization methods
are compared on the generated trees in a rolling horizon setting of one week each.

4.4.1 Setting

The general setting that we are looking at is one of an electricity trader owning a battery.
The trader does, at this moment, not have the means to produce for or take electricity
from the battery, but can only buy and sell at the market. To link this setting to reality,
one could imagine a cold storage that needs temperatures to be below a certain thresh-
old at all times, or a constantly running water pump of a slowly flooded salt pit that
needs to keep the water level below a threshold. In the second example, the water is
constantly running back into the pit tunnels. The water pump operator has the option
to let the pump run at a base level that equals outflow to inflow and leads to a fixed
water level at a certain height at all times. Then again, the option exists to pump out
more water than is flowing in when electricity is cheap, or to let the water flood in until
the maximum is reached when it is expensive. Both scenarios could follow one after the
other, with breaks of base pumping in between where the water level remains constant
– then, again, inflow and outflow cancel each other out. These examples both present
processes that work like batteries, as the cold storage as well as the water pump have
a range in which it is possible for them to work more or work less. Energy efficiency
is something that could to be taken into account for the cold storage, but we will not
include it in our optimization.

Based on that setting, we assume that the considered battery has a maximal capacity
bmax MW as well as a minimal capacity bmin MW, where without loss of generality we
can set bmin “ 0. Furthermore, the battery’s level bptq is for all t in rbmin, bmaxs, and the
speed at which the battery can at maximum be filled or emptied is ba MW/h.

Example 4.48. We demonstrate the similarity of a water pumped salt pit to a battery
based on these definitions. Figure 4.23 contains water levels over time as well as elec-
tricity used in a salt pit. We notice three intervals where the base pumping speed is used
and inflow equals outflow, i.e. the time intervals r1, 2s, r4, 5s and r8, 9s. For those three
intervals, the water levels remain constant. In the example, we assumed the water levels
to be contained in I “ r0cm, 15cms. Keeping the water level fixed needs 20 MW/h, and
its maximum pumping speed yields 5cm an hour at a cost of 40 MW/h. In combination
with I, this leads us to bmin “ 0 MW/h, bmax “ 120 MW/h and ba “ 40 MW/h.
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We do not include any necessity to have a certain amount of electricity stored at a
specified deadline into the model. Therefore, the trader’s only goal is to buy when prices
are low and sell when prices are high, i.e. to minimize the incurred costs, all while
staying in the capacity range of the battery. As specified before, in order to include
weekly seasonalities of electricity prices, the model has a look ahead period of seven
days and contains hourly prices. Formulating this objective and its constraints in an
optimization problem yields

min
vPV

7˚24
ÿ

t“1

Sptqvptq (4.45)

s.th. bmin ď bp0q `
M
ÿ

t“1

vptq ď bmax, M “ 1, 2, ..., 7 ˚ 24,

|vptq| ď ba t “ 1, 2, ..., 7 ˚ 24,

where Sptq is the spot price quoted and vptq the volume traded on the day ahead market
at time t. The volume strategy v needs to be contained in the set of feasible strategies V,
i.e. it must fulfill all given constraints at all times. The traded volume is positive when
electricity is bought and negative when it is sold. Formulated like this, Equation (4.45)
is a regular linear problem that can be solved with standard methods.

Remark 4.49. We do assume that the trades we place on the market do not shift prices
in any way. This is reasonable, as through the blind auction format, other people cannot
see the prices that were offered and therefore cannot react to them.

Figure 4.23: The water level in cm over time for a salt pit, represented by the blue area.
Its maxmium and minimum height are depicted by the green and black
dashed lines, respectively. Finally, the turquoise line represents the amount
of electricity needed to reach the specified water levels.
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Of course, the setting in Equation (4.45) is a deterministic one, where all prices
Sptq, t “ 1, ..., 7 ˚ 24, would have to be known beforehand. As this will never be the
case in practice, the uncertainty of price forecasts should be taken into account when
deciding for a volume strategy. The part of the uncertainty that is inherent in the re-
alization of volumes on the market is leveraged by a simple mechanism: Since in the
day ahead auction the market clearing price results from the intersection of supply and
demand, see Section 2.1, which is ultimately paid by all or received by all whose bids
are awarded, the maximum price can always be bid as the price bid. This means that the
bidder’s own bid and thus the submitted volume is always awarded, but the price to be
paid is still only the market clearing price. This would not hold true if there was more
total demand than there is total supply or vice versa, but this is something which – to
our knowledge – basically never occurs, so we do not take it into account. Consequently,
uncertainty in realized volumes can be neglected. Of course, this does not apply to price
uncertainty, which is why Equation (4.45) has to be adapted to fit the mathematical area
of stochastic optimization. As a result, we first look at the generation of scenario trees
for this specific setting and then reformulate (4.45) to make it accessible to stochastic
optimization methods.
Remark 4.50. Even though we do not require the battery to meet a specific demand at
a certain point in time, we do require the optimization to plan in such a way that the
final battery level after the seven days meets some predefined value bp24q. This keeps
the strategies from planning to sell all remaining electricity at the seventh day.

4.4.2 Scenario tree for the electricity market model

In order to generate scenario trees for the German electricity market, we apply the
presented algorithms from Subsection 4.2.4 to the introduced electricity market model.
Our goal is to reach a tree with an acceptable amount of nodes that provides a good fit
to the original stochastic process. Following the presented procedure, we first calculate
trees with many scenarios. As elaborated on beforehand, a look-ahead of a week seems
sensible in a periodic market like electricity. Furthermore, it is a general consensus in
stochastic optimization for market prices that a reasonable approach to pricing contains
a more detailed view of the near future and a coarser view of the more distant future. As
a consequence, we introduce a starting tree structure of p1, 8, 4, 3, 2, 2, 2q. This structure
is chosen based on the fact that for real applications, such a tree will only be used to
find a decision for the next day, and is then re-calibrated based on the new realized
values. As the amount of scenarios is given by the accumulated product of the node
structure, this results in a total of 768 considered scenarios. Furthermore, we simulate
N “ 1, 000, 000 paths for each of the factors and apply the nested clustering algorithm,
i.e. Algorithm 2, on them. This results in the trees given in Figure 4.24 for the winter
period and Figure 4.25 for the summer period with the mentioned structure for the
whole model in Equation (4.4).

The computation of these trees is possible, but takes some time, as Algorithm 2 splits
the one million paths repeatedly to find good cluster means. To test whether the heuris-
tic could support in terms of fast computation, we set Ts “ 3 and determine a structure



4.4 Case Study on the German day ahead market 113

●●

●

●

●●

●

●

●

0

25

50

75

100

Mai 01 Mai 03 Mai 05
Time

V
al

ue

Probability

●

●

0.01

0.05

0.10

0.20

Scenario tree winter full

Figure 4.24: A scenario tree based on the model in Equation (4.4) calculated with Al-
gorithm 2 and 1, 000, 000 trajectories. The tree is calculated for the 1st of
February.

of p1, 8, 4q. The results from the computation of the heuristic method presented in Al-
gorithm 7 to test whether it yields comparable results with less computational costs are
found in Tables 4.26 and 4.27 in detail for the summer period and the l1-distance. We
find that with a distance of 12.64, the worst approximation stems from putting all em-
phasis on the jump Ornstein-Uhlenbeck process, i.e. factor 3 from Equation (4.7). In
comparison to that, the closest tree is produced by strengthening the second factor from
Equation (4.6), i.e. the regular Ornstein-Uhlenbeck process, by putting all emphasis
on it with a structure of p1, 8, 4q. This setting yields a distance of 1.01. This is mir-
rored by the results from the l2-distance, where still the structure p1, 8, 4q for the regular
Ornstein-Uhlenbeck process yields the smallest nested distance with 3.06.

For the winter period, results are identical - again, the smallest distance of 1.13 for the
l1-distance and 3.05 for the l2-distance are reached when putting all path flexibility into
the second factor. Consequently, we calculate the added trees for all seven stages based
on the results of the heuristic for both summer and winter with a structure of

p1, 1, 1, 1, 1, 1, 1q for the GBM, i.e. factor 1,

p1, 8, 4, 3, 2, 2, 2q for the GOU, i.e. factor 2,

p1, 1, 1, 1, 1, 1, 1q for the JOU, i.e. factor 3.

The resulting added trees are found in Figure 4.28 for the winter period and in Fig-
ure 4.29 for the summer period. Computation times are given in Table 4.30 for dis-
tances with r “ 1 and l1-norm, respectively, and in Table 4.31 for distances with r “ 2
and l2 norm. It is visible that the computation of the tree that is based on the heuristic
from Algorithm 7 and then added is much faster in comparison to the original method.
The distances incurred between the trees stemming from the original method and their
corresponding added counterparts are given in Table 4.32. It is visible that the incurred
error on this level of the trees is not too large. Because the usage of the l1-norm for the
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Structure Factor GBM Structure Factor OU Structure Factor JOU Nested Distance

(1, 1, 1) (1, 1, 1) (1, 8, 4) 12.64
(1, 1, 1) (1, 1, 2) (1, 8, 2) 11.09
(1, 1, 1) (1, 1, 4) (1, 8, 1) 10.35
(1, 1, 2) (1, 1, 1) (1, 8, 2) 12.43
(1, 1, 2) (1, 1, 2) (1, 8, 1) 10.84
(1, 1, 4) (1, 1, 1) (1, 8, 1) 12.28
(1, 1, 1) (1, 2, 1) (1, 4, 4) 9.15
(1, 1, 1) (1, 2, 2) (1, 4, 2) 7.14
(1, 1, 1) (1, 2, 4) (1, 4, 1) 5.99
(1, 1, 2) (1, 2, 1) (1, 4, 2) 8.85
(1, 1, 2) (1, 2, 2) (1, 4, 1) 6.95
(1, 1, 4) (1, 2, 1) (1, 4, 1) 8.73
(1, 1, 1) (1, 4, 1) (1, 2, 4) 7.52
(1, 1, 1) (1, 4, 2) (1, 2, 2) 5.31
(1, 1, 1) (1, 4, 4) (1, 2, 1) 3.57
(1, 1, 2) (1, 4, 1) (1, 2, 2) 7.16
(1, 1, 2) (1, 4, 2) (1, 2, 1) 4.92
(1, 1, 4) (1, 4, 1) (1, 2, 1) 7.07
(1, 1, 1) (1, 8, 1) (1, 1, 4) 5.81
(1, 1, 1) (1, 8, 2) (1, 1, 2) 3.55
(1, 1, 1) (1, 8, 4) (1, 1, 1) 1.01
(1, 1, 2) (1, 8, 1) (1, 1, 2) 5.42
(1, 1, 2) (1, 8, 2) (1, 1, 1) 3.12
(1, 1, 4) (1, 8, 1) (1, 1, 1) 5.38
(1, 2, 1) (1, 1, 1) (1, 4, 4) 12.02
(1, 2, 1) (1, 1, 2) (1, 4, 2) 10.44
(1, 2, 1) (1, 1, 4) (1, 4, 1) 9.53
(1, 2, 2) (1, 1, 1) (1, 4, 2) 11.80
(1, 2, 2) (1, 1, 2) (1, 4, 1) 10.18
(1, 2, 4) (1, 1, 1) (1, 4, 1) 11.65
(1, 2, 1) (1, 2, 1) (1, 2, 4) 8.76
(1, 2, 1) (1, 2, 2) (1, 2, 2) 6.75
(1, 2, 1) (1, 2, 4) (1, 2, 1) 5.42
(1, 2, 2) (1, 2, 1) (1, 2, 2) 8.45
(1, 2, 2) (1, 2, 2) (1, 2, 1) 6.47
(1, 2, 4) (1, 2, 1) (1, 2, 1) 8.32
(1, 2, 1) (1, 4, 1) (1, 1, 4) 7.00
(1, 2, 1) (1, 4, 2) (1, 1, 2) 4.81
(1, 2, 1) (1, 4, 4) (1, 1, 1) 2.81
(1, 2, 2) (1, 4, 1) (1, 1, 2) 6.65
(1, 2, 2) (1, 4, 2) (1, 1, 1) 4.40
(1, 2, 4) (1, 4, 1) (1, 1, 1) 6.57

Table 4.26: Distances between added trees and original tree for the summer period and
with Wasserstein distance of order 1, both with a structure of (1,8,4); the
lowest value is printed in bold-face.
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Structure Factor GBM Structure Factor OU Structure Factor JOU Nested Distance

(1, 4, 1) (1, 1, 1) (1, 2, 4) 11.90
(1, 4, 1) (1, 1, 2) (1, 2, 2) 10.30
(1, 4, 1) (1, 1, 4) (1, 2, 1) 9.46
(1, 4, 2) (1, 1, 1) (1, 2, 2) 11.61
(1, 4, 2) (1, 1, 2) (1, 2, 1) 10.07
(1, 4, 4) (1, 1, 1) (1, 2, 1) 11.55
(1, 4, 1) (1, 2, 1) (1, 1, 4) 8.52
(1, 4, 1) (1, 2, 2) (1, 1, 2) 6.54
(1, 4, 1) (1, 2, 4) (1, 1, 1) 5.15
(1, 4, 2) (1, 2, 1) (1, 1, 2) 8.22
(1, 4, 2) (1, 2, 2) (1, 1, 1) 6.22
(1, 4, 4) (1, 2, 1) (1, 1, 1) 8.12
(1, 8, 1) (1, 1, 1) (1, 1, 4) 11.81
(1, 8, 1) (1, 1, 2) (1, 1, 2) 10.25
(1, 8, 1) (1, 1, 4) (1, 1, 1) 9.44
(1, 8, 2) (1, 1, 1) (1, 1, 2) 11.61
(1, 8, 2) (1, 1, 2) (1, 1, 1) 10.01
(1, 8, 4) (1, 1, 1) (1, 1, 1) 11.50

Table 4.27: Continued: Distances between product trees and original tree for the sum-
mer period and with Wasserstein distance of order 1, both with a structure
of (1,8,4).

Full model tree s Full model tree w Added tree s Added tree w

1,358s 1,045s 0.99s 1.01s

Table 4.30: Computation times of the big trees for summer (s) and winter (w) period,
both for the full model as well as the added model based on the results from
the heuristic in Algorithm 7. The l1 norm is used for distance calculation.

Full model tree s Full model tree w Added tree s Added tree w

1,399s 1,251s 0.46s 0.46s

Table 4.31: Computation times of the big trees for summer (s) and winter (w) period,
both for the full model as well as the added model based on the results from
the heuristic in Algorithm 7. The l2 norm is used for distance calculation.
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Figure 4.25: A scenario tree based on the model in Equation (4.4) calculated with Al-
gorithm 2 and 1, 000, 000 trajectories. The tree is calculated for the 1st of
August.

Season Treenorm Wasserstein norm Distance

Summer 1 1 7
Summer 2 2 6.55
Winter 1 1 6.91
Winter 2 2 6.49
Summer 1 2 3.59
Summer 2 1 13.91
Winter 1 2 3.59
Winter 2 1 13.77

Table 4.32: Distances between added trees and original trees for different norms.

tree generation yields smaller distances between the resulting trees no matter whether
we use the nested distance of order 1 or the nested distance of order 2, we decide to
continue with the trees generated from it.

In the second and third step, all four trees are reduced with Algorithm 5 and then
finally improved with Algorithm 6. The resulting trees for the original method are given
in Figure 4.33 for the winter and in Figure 4.34 for the summer period.
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Figure 4.28: A scenario tree based on the model in Equation (4.4) based on the results
from Algorithm 7 and using Algorithms 8 and 9. The tree is calculated for
the 1st of February.
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Figure 4.33: The reduced and improved version of the tree stemming from the original
method for the winter period from Figure 4.24.



118 4 Modelling, prediction and optimization on the day ahead market

●●●●●●●●

20

40

60

80

00 02 04 06
Time

V
al

ue

Probability

●

0.01

0.05

0.10

Scenario tree summer heuristic

Figure 4.29: A scenario tree based on the model in Equation (4.4) based on the results
from Algorithm 7 and using Algorithms 8 and 9. The tree is calculated for
the 1st of August.
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Figure 4.34: The reduced and improved version of the tree stemming from the original
method for the summer period from Figure 4.25.

In comparison, resulting trees for the reduced and improved added trees are given in
Figure 4.35 for the winter and in Figure 4.36 for the summer.

Calculating the distances to their corresponding big trees as well as to each other,
matching summer and winter trees, respectively, yields the results given in Table 4.37.
Here, the trees reduced with the Wasserstein distance of order 2 show a smaller distance
to their big trees for distance measures based on the l1-norm as well as on the l2-norm.
Consequently, we choose to go further with the trees that were reduced with this method.

To sum up, our trees generated as follows: The trees with many nodes are created
while using the l1-norm, and then reduced using the nested distance of order 2. As the
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Figure 4.35: The reduced and improved version of the tree from the adding method for
the winter period from Figure 4.28.

Season Type Wasserstein order (red.) Distance order 1 Distance order 2

Summer Original 1 32.6 16.4
Summer Added 1 31.9 15.8
Summer Original 2 30.4 14.8
Summer Added 2 29.6 14.3
Winter Original 1 31.0 15.5
Winter Added 1 32.5 16.2
Winter Original 2 30.3 14.6
Winter Added 2 29.5 14.4

Table 4.37: Distances between all improved trees and their corresponding big trees.

algorithm for improving trees follows the same line of thought as the creation of a big
tree, here again the l1-norm is used.

Remark 4.51. The factors in Equation (4.4) have a Markovian representation; therefore,
we could have implemented a scenario grid instead. In order to keep the procedure
general and the number of paths overseeable, we nonetheless decided for the regular
scenario tree generation.

Hourly prices Now that we have built scenario trees for our electricity price model, we
know which average daily electricity prices are contained in them. Nonetheless, the real
spot market does not yield one price per day, but 24. In order to incorporate this hourly
price structure into the scenario trees, we use the type days defined in Section 4.1 as well
as calendar information and find representatives for all of them based on historical data.
Then, all daily prices in the trees are mapped to their corresponding representatives,
which yields a vertical movement of these hourly prices depending on the correspond-
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Figure 4.36: The reduced and improved version of the tree from the adding method for
the summer period from Figure 4.29.

ing daily average.

In detail, our approach works as follows: Inspired by [63], we choose the following
categories as possible predictors:

• Quarter of the year

• Month of the year

• Weekday, starting with 1 as Monday to 7 as Sunday

• Typeday, where the types are Mondays, Tuesdays to Thursdays, Fridays, Saturdays
and bridge days and partly national holidays, Sundays and national holidays

• Hour of the day

• Quarter-Hour as variable capturing the interdependence between quarter and hourly
behavior

• Month-Hour as variable capturing the interdependence between month and hourly
behavior

• Weekday-Hour as variable capturing the interdependence between weekdays and
hourly behavior

• Typeday-Hour as variable capturing the interdependence between typedays and
hourly behavior

These are used as predictors in a categorical regression. Standard methods for such a
regression are for example ANOVA or group LASSO. ANOVA stands for analysis of vari-
ance and is mainly used for categorical regression with one or two predictors. Group
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LASSO, in comparison, offers the possibility of including all the categories that are po-
tentially relevant in the regression and then reduces them to the predictors that explain
the most variance in the data. Therefore, we use this method, which was first presented
by [69]. In group LASSO, entire categories are always included in or excluded from the
regression. This prevents only certain elements from a category from being included in
the regression, e.g., only two out of four annual quarters. The objective function in the
group LASSO for a problem with J groups is defined as

1

2
|| Y ´

J
ÿ

j“1

Xjβj ||
2 `λ

J
ÿ

j“1

||βj ||Kj , (4.46)

where ||a||K :“ pa1Kaq1{2 for a vector a P Rd and the Kj , j “ 1, ..., J, are symmetric
positive definite matrices with dimension d ˆ d. The first part of the sum represents
the typical least-squares regression, were the latter contains a penalty term. Here, the
design matrix X and covariance vector β have been replaced by collections of J design
matrices and J covariance vectors, respectively. In addition, the penalty term changes in
that it is now defined by a sum over the l2 norm, which in turn are defined per chosen
group by a positive definite matrix Kj .

Now, starting from the reduced and improved scenario trees generated above, we
translate them to their hourly counterpart. Therefore, we first specify a time period
of historical spot data for the model’s calibration. The whole period from the years
2015 to 2020 is selected to serve this purpose. With the method described above, we
find that from all possible defined categories, month, typeday, hour, month-hour and
typeday-hour provide the most relevant information, and thus enter the hourly model.
The resulting model is applied to the days for which we need an hourly simulation. As a
result, we obtain increments to be added or deducted from the daily mean, which makes
the breakdown of daily to hourly values possible. Figure 4.38 presents such a mapping
of the daily improved scenario tree for the original model and the summer period from
Figure 4.34 to its hourly version. As the increments are added to the daily average, the
intensity of the oscillations around it do not depend on its magnitude.

Remark 4.52. An alternative would be to compute factors that are multiplied with the
daily average price instead of adding increments. Our analysis of the data from 2015 to
2019 in comparison with the data from the years 2021 to 2022, that saw much higher
prices than the years before, showed that these oscillation factors stayed within the
same magnitude as before, wherefore absolute deviations of course changed a lot. Con-
sequently, this method also has its advantages. We tested both methods, and the incre-
ment version yielded better fits for our purpose, so we decided to move further with
it.

Equipped with the hourly scenario trees, the next step is to optimize the trading of the
virtual battery based on them. But before we finally turn to that, we make a digression
towards when and how DP is applicable for our setting.
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Figure 4.38: A scenario tree which was transformed from daily to hourly values, corre-
sponding to the daily tree in Figure 4.34.

4.4.3 Conditions for optimality of dynamic programming in our setting

As it was explained in detail in Section 4.3, dynamic programming is based on Bellman’s
optimality principle. Furthermore, the common problem that dynamic programming is
applied to has a certain structure, i.e. an optimal substructure. In addition, dynamic
programming problems are often assumed to also have overlapping subproblems. When
an optimization problem has these two properties, dynamic programming can speed up
the calculation remarkably.

Overlapping subproblems are given in our setting: For each stage, the increments,
that were calculated in order to map the daily average price to the corresponding hourly
values, will be equal for all nodes on that stage. Consequently, knowing the optimal bat-
tery operation mode conditioned on a starting battery level for one node on that level
equals knowing it for all nodes on that level. We did remark though, that there are other
methods to map from daily averages to hourly values, see Remark 4.52. For example,
when looking at factors instead of increments, this special answer does not hold any
longer. Nonetheless, the overlapping subproblem property is given: When all optimal
strategies conditioned on all possible starting battery levels are calculated for one node,
these results can be reused for optimization problems containing that node.

The property of optimal substructure is in comparison not fulfilled in our setting:
Even though one might guess that this is the case, since at each time point only the
starting battery level, the battery constraints, and the possible prices are relevant, the
starting battery level is also associated with costs that depend on the decisions made
in the previous period. This information cannot be included in the current state, which
means that common dynamic programming is not applicable by default in our setting.
Nonetheless, we want to use dynamic programming in order to compare the different
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optimization strategies. Therefore, we first introduce an approximation to the original
dynamic programming program, and then discuss when it still might be applicable.
Remark 4.53. Following Remark 4.37, it would indeed have been possible to make this
problem Markovian as well by including fixed starting battery levels into the system
state. As this would have remarkably enlarged the state space as well as the underlying
scenario tree, we decided against it.

As a first approach to the application of the idea from dynamic programming, a penalty
for the optimization to use a certain battery starting state is introduced into the optimiza-
tion. We use the node-based approach for its definition:

min
vPV,Bnp0q

ÿ

ñPN`pnq

ppñq
24
ÿ

i“1

Spi, ñq vpi, ñq ´ S̄pnq ¨Bnp0q (4.47)

s.th. bmin ď bnp0q `
M
ÿ

i“1

vpi, nq ď bmax, M “ 1, 2, ..., 24, n “ 1, ...,K,

|vipnq| ď ba, i “ 1, ..., 24, n P N,

bñp0q “ Bnp0q, @ñ P N`pnq, n “ 1, ...,K,

bñp0q “ B0p0q, ñ “ 0,

bnp0q `
24
ÿ

i“1

Spi, ñq vpi, ñq “ Bnp0q, @n P N : n R NT .

Here, S̄pnq represents the average electricity price from one stage earlier than the stage
of n, and Bnp0q represents the end battery level on node n and consequently also the
starting battery level for its successor nodes. For each node, electricity costs are min-
imized conditioned on the fact that all nodes with the same parent start at the same
battery level. As described above, a penalty term regarding this battery starting level is
introduced in order to capture the cost to fill the battery to this level on the day before.
This is represented by the product of the starting battery level times the average electric-
ity price from one day earlier. As not all levels are optimized at the same time but rather
level by level and node by node, this does not yet fully qualify as a dynamic program,
but yields an approximation to it.

Concerning the constraints, the first and the second auxiliary constraint ensure the
same as in the case of two-stage approximation optimization: Compliance to the bat-
tery’s statistics. The third constraint serves the fact that all children nodes from a node
are supposed to start with the same battery level into the optimization. This battery
level is now known beforehand except for the case n “ 0, where the battery level at the
beginning of the current day is known. Consequently, it is allowed to optimize over all
but this one starting battery levels in order to find the best compromise starting battery
level for each node. Specifying battery starting levels for n “ 0 happens in the fourth
constraint. Finally, the fifth constraint ensures that battery levels at a node n also end at
Bnp0q, the starting battery level for its children nodes.
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The implementation of penalty dynamic programming equations is straightforward,
but it provides only an approximation of the optimal solution and not necessarily the
optimal solution itself. However, we can show that true dynamic programming is also
possible in our specific optimization setting under certain specifications, as shown by the
following proposition:

Proposition 4.54. Consider a two-stage optimization over nodes n and ñ P N`pnq, i.e.
the children of node n. The children have their end battery levels bñp24q fixed and given. In
contrast to that, the starting battery level bnp0q at node n is unknown, and the same holds
true for the end battery level bnp24q at node n which equals the starting battery level bñp0q
for nodes ñ P N`pnq.

Then, the following holds true: For every realization of prices in nodes n and ñ P N`pnq
and fixed battery minimum bmin and maximum bmax, there exists a battery speed b˚a such
that for every speed ba ě b˚a, the optimal end battery level at node n, i.e. bnp24q, is indepen-
dent of the starting battery level at node n, i.e. bnp0q. Furthermore, there exists an optimal
battery speed b˚˚a such that for every speed ba ě b˚˚a , the optimal end battery level at node
n, i.e. bnp24q, is also independent of the end battery levels bñp24q at nodes ñ P N`pnq.

Proof. The existence of b˚a and b˚˚a is secured through the trivial battery speed in which
b˚a “ b˚˚a “ bmax ´ bmin. This is the battery speed at which the battery can be completely
filled or emptied in every hour.

Going into detail for the trivial battery speed, the first case considered is that all prices
Spi, nq, i “ 1, ..., 24, and Spj, ñq, j “ 1, ..., 24 are equal. In this case, it is obviously
optimal to buy once or to sell once in order to reach the demanded battery level bñp24q
at the end; flexibility cannot be used to gain more reward. If all prices are equal, then
the point of time when this transaction is made is not important, it just needs to lie in
the available time interval. That leads to the fact that each strategy making this trade
at node ñ can be shifted to a strategy that trades during node n. Consequently, we find
that there are optimal strategies that are all aligned before reaching their final battery
level of node n.

Now, the second case considered is where all prices over the two nodes except one are
equal, i.e.

Dpi,mq : Spi,mq ‰ Spj, m̃q for all pj, m̃q P tp1, nq, p2, nq, ..., p24, ñquzpi,mq.

For further analysis we distinguish between Spi,mq ą pS, m̃q and Spi,mq ă pS, m̃q.
Considering the first scenario, we furthermore look at three separate options: The first
is pi,mq “ p1, nq, the second is pi,mq “ p24, ñq and the third is pi,mq ‰ p1, nq ^ pi,mq ‰
p24, ñq. Now, for the first scenario with pi,mq “ p1, nq, all strategies except the one
starting with an empty battery sell everything in the battery at p1, nq, and are thus equal
after this. In the second scenario with pi,mq “ p24, ñq, all strategies except the one
starting with a full battery fill up the battery fully in order to sell bmax´ bñp24q at pñ, 24q.
Filling up the battery takes place during a period of only equal prices and thus is based
on the same argument as the first case. Finally, for pi,mq ‰ p1, nq ^ pi,mq ‰ p24, ñq, all
strategies except the one starting with a full battery fill up the battery at a time point
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earlier than pi,mq. Then, at pi,mq, everything is sold and finally, at a time point later
than pi,mq, the battery is filled such that the battery level equals bñp24q. Consequently,
again we can find strategies starting from each battery level that are optimal and aligned
before passing p24, nq. The argument chain works analogously for Spi,mq ă pS, m̃q.

For all cases with more unequal prices, the argument can be reduced to the arguments
from the case with at least one different price. This is due to the following process: The
existence of a first price which is different from the other prices always immediately
triggers a reaction for all strategies. Either this first different price is higher than the
prices before, then - like in the case with one unequal price - all batteries immediately fill
the battery completely, or it is lower than the prices before, then all batteries immediately
empty the battery completely. As a consequence, all strategies have the same battery
level afterwards, and no matter what prices are observed then, they all use the same
strategy from that point onward. Consequently, the existence of the trivial battery speed
b˚a “ bmax ´ bmin is secured.

The same holds true for b˚˚a under the assumption that at least two different prices
exist for electricity on nodes n and ñ. In this case, we skip the scenario with all prices
being equal. As all strategies exploit the difference between the prices, they align and
therefore move unisono afterwards, no matter where the final battery level is placed.
Consequently, we also find b˚˚a “ bmax ´ bmin.

Remark 4.55. The battery speeds b˚a and b˚˚a need not be equal. Furthermore, a battery
speed ba ą bmax ´ bmin makes sense in real world applications, but is not relevant for a
market setting in the day ahead market, where the smallest traded time interval is an
hour.

Remark 4.56. If the optimal strategy is independent of bnp0q and bñp24q, a scenario
tree extending beyond one day is unnecessary as all necessary information for optimal
decision-making at node n is available.

Example 4.57. Naturally, there are batteries with a battery speed that does not surpass
any of the two battery threshold speeds on a node. An example is the following, in which
we consider a battery with bmin “ 0 MW, bmax “ 120 MW and ba “ 7 MWh. The aspired
end battery level on the children nodes is 60 MW. For a given tree, the optimal strategies
are then given in Figure 4.39.

A battery whose battery speed is greater than or equal to b˚a at every node of the
considered scenario tree is thus eligible for computation with dynamic programming,
because no matter where a node starts, its end - depending on the final battery level of
its children - will still be the same. Of course, b˚a depends on the nodes under considera-
tion, and thus can vary over the range of the tree. A notation like b˚apnq would keep this
dependence on the node n in mind, but we will omit it for notational convenience.

In many applications, battery speeds smaller than the trivial battery speed are of in-
terest. Therefore, we present some procedures to find the corresponding battery speeds
for a given tree and battery, or to test whether the existing battery speed is greater than
the corresponding thresholds b˚a or b˚˚a for a node.
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Figure 4.39: Optimal battery strategies from Example 4.57 depicted through their bat-
tery levels, all starting from different start battery levels.

Algorithm 11 tests the latter for threshold b˚a. It starts by taking in inputs such as
battery statistics (maximum and minimum battery levels, and battery speed), a tree
snippet with one parent node and corresponding children nodes along with their values
and probabilities, and the final battery levels for the children nodes. It then builds two
vectors, one called bstart with the minimum and maximum battery levels and another
vector bnp24q with values of 0. Now, the algorithm loops through the two values of
vector bstart and optimizes over the two-stage tree, inserting the current value of bstart
into the optimization as the starting battery level. The resulting optimal volume strategy
for the node is then added to bstart to calculate bnp24qp1q and afterwards bnp24qp2q. If
the values are equal, the algorithm returns True, otherwise False. The returned value
indicates whether the existing battery speed exceeds the threshold speed.

To check whether the battery speed exceeds the other threshold b˚˚a , Algorithm 12 can
be used, which is a modified version of Algorithm 11 with a double loop to check for
two different final battery levels at stage two, namely bmax and bmin. With that, again
the two possibilities with the biggest distance between them are checked.

It is left to explain why it is enough to check the limit cases of a full and of an empty
starting battery. The reason for that is given by the following proposition.
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Result: The algorithm returns TRUE if the battery speed is greater than or
equal to the corresponding threshold, and FALSE if it is smaller.

begin
Input: Battery statistics bmax, bmin, ba, tree snippet with one parent node n
and corresponding children nodes ñ P N`pnq that contains node values
and probabilities, final battery levels for nodes ñ.

Build vector bstart “ pbmin, bmaxq.
Build vector bnp24q “ p0, 0q.
for i P p1, 2q do

Optimize over the two-stage tree, e.g. with the two-stage approximation
algorithm. Insert bstartpiq into the optimization as starting battery level.
bnp24qpiq “ sum of bstartpiq and the returned optimal volume strategy for
node n.

end
if bnp24qp1q “ bnp24qp2q then

ret “ TRUE.
end
else

ret “ FALSE.
end
return ret.

end
Algorithm 11: Test whether existing battery speed exceeds the threshold battery
speed b˚a in a two-stage optimization problem.

Proposition 4.58. Consider a two-stage optimization based on Equation (4.48) over nodes
n and ñ P N`pnq, i.e. the children of node n. The starting battery level bnp0q at node n is
unknown, whereas the end battery level bnp24q at node n which equals the starting battery
level bñp0q for nodes ñ P N`pnq as well as end battery levels bñp24q are given.

Then, it holds true for battery strategies starting at b1np0q and b2np0q that there always
exist two optimal strategies π1 and π2 starting from the respective battery levels, that for
the same optimization problem do not cross each other.

Proof. We assume without loss of generality that b1np0q ă b1np0q. There are two possible
cases in which the strategies could cross each other: The first is where both strategies’
battery levels align at some point and then, the strategy that started with the higher
starting battery level, i.e. π2, moves below the strategy starting with the lower initial
battery level, i.e. π1. The second case is that both strategies do not align but rather cross
each other between two time points. Both cases can be proved with similar arguments,
and we start with the first case.

In the first case, battery levels of π1 and π2 align at some point in time t with t P
t1, .., 23u. Then, we know by definition that π1 must be optimal for the time horizon
r0, 48s when starting out from battery level b1np0q. Due to the optimality principle from
Bellman, it follows that π1 must also be optimal for the time horizon rt, 48swhen starting
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Result: The algorithm returns TRUE if the battery speed is greater than or
equal to the corresponding threshold, and FALSE if it is smaller.

begin
Input: Battery statistics bmax, bmin, ba, tree snippet with one parent node n
and corresponding children nodes ñ P N`pnq that contains node values
and probabilities.

Build vectors bstart “ bend “ pbmin, bmaxq.
Build vector bnp24q “ p0, 0, 0, 0q.
Counter k “ 1.
for i P p1, 2q do

for j P p1, 2q do
Optimize over the two-stage tree, e.g. with the two-stage
approximation algorithm. Insert bstartpiq into the optimization as
starting battery level, and bendpiq as end battery level.
bnp24qpkq “ sum of bstartpiq and the returned optimal volume strategy
for node n.

Update counter k “ k ` 1.
end

end
if bnp24qp1q “ bnp24qp2q “ bnp24qp3q “ bnp24qp4q then

ret “ TRUE.
end
else

ret “ FALSE.
end
return ret.

end
Algorithm 12: Test whether existing battery speed exceeds the threshold battery
speed b˚˚a in a two-stage optimization problem.

out from battery level b1nptq, which is the battery level reached after making all optimal
decisions at times t0, 1, ..., t ´ 1u. Therefore, no other strategy can be found with lesser
costs for time horizon rt, 48s, and adapting π1 must be optimal for π2 as well. Now we
consider the case where a crossing of battery levels takes place inside a time interval
except for at one of its ends. Here, the same argument as before can be used: If the
strategies have the option to cross each other during one hour and end at different
battery levels, they could have actually arranged themselves to end on the same level,
and consequently adaptation to each other must be optimal as well.

Remark 4.59. If there are equal prices, several optimal strategies can exist that also could
cross each other. Nonetheless, these strategies would not yield a better objective value.
Consequently, we accept that this could be the case, but concentrate on those optimal
strategies that do not cross each other. A possibility to enforce the latter could be to
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allocate transaction costs to single trades.

We state two further behaviors that are exhibited by an optimal strategy:

Proposition 4.60. In the optimization setting given in Equation (4.48), the following must
be true for the optimal strategy π:

(i) Within two times of touching the same battery limit – bmin or bmax – all prices where
π sells must be higher than the prices where it buys.

(ii) For points in time where π does not change its battery level, e.g. during the interval
rt, t`hs, h P N, one of the following must hold true: Either Spt´ 1q ă Sptq, ..., Spt`
hq ă Spt` h` 1q, or Spt´ 1q ą Sptq, ..., Spt` hq ą Spt` h` 1q.

Proof. In order to prove (i), we w.l.o.g. consider the case of bmin, where we assume the
time between hitting it twice is rt, t`hs. For each point in this interval, we know that πpsq
is buying, i.e. s P ts : s P rt, t`hs, πpsq ą 0u, selling, i.e. s P ts : s P rt, t`hs, πpsq ă 0u,
or doing nothing, i.e. s P ts : s P rt, t ` hs, πpsq “ 0u. Now, let us assume there exist
s1 P ts : s P rt, t`hs, πpsq ą 0u and s2 P ts : s P rt, t`hs, πpsq ă 0u with Sps1q ą Sps2q.
Then, a strategy π̃ exists that equals π for all t except ts1, s2u with π̃ps1q “ ´πps1q and
π̃ps2q “ ´πps2q. It earns strictly more than strategy π due to Sps1q ą Sps2q, which is a
contradiction.

Moving onward to (ii), we consider the case Spt ´ 1q ă Spt ` h ` 1q. We know that
@s P rt, t` hs : πpsq “ 0u. Now, if there exists s1 P rt, t` hs with Sps1q ă Spt´ 1q, then
we can define a strategy π̃ that is the same as π except for tt´ 1, s1u. There, it is defined
as π̃pt ´ 1q “ 0 and π̃ps1q “ πpt ´ 1q. Due to Sps1q ă Spt ´ 1q, this is a contradiction
to the optimality of π. The same holds true for the case Sps1q ą Spt` h` 1q. Here, we
define strategy π̃ that is the same as π except for ts1, t ` h ` 1u. There, it is defined as
π̃pt` h` 1q “ 0 and π̃ps1q “ πpt` h` 1q, which again leads to a contradiction.

We have not yet addressed the problem of finding the threshold battery speeds for a
given battery. Algorithm 13 presents a way to calculate the threshold battery speed b˚a
for a given battery minimum and maximum. It calculates the threshold battery speed b˚a
for a two-stage optimization problem. The algorithm takes as input the battery statistics
bmax and bmin and a tree snippet with parent node n and corresponding children nodes
ñ P N`pnq that contains node values and probabilities, plus final battery levels for the
nodes ñ.

The main logic of the algorithm is inside a while loop, which in each iteration tests
whether ba already equals or exceeds the threshold battery speed b˚a. The result of this
test is stored in a variable called res. If res equals true, the value of b1a is updated, and
if res equals false, the value of b2a is updated. Then, the value of b3a is calculated as the
floor of the average of b1a and b2a, and ba is re-calculated.

Finally, after the while loop ends, the function returns the value of ba from the last row
of the table tbl, which equals the battery speed that would have been necessary to apply
DP without limitation. The algorithm follows a divide and conquer strategy: It tries to
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Result: The algorithm returns the threshold battery level b˚a.

begin
Input: Battery statistics bmax, bmin, tree snippet with one parent node n and
corresponding children nodes ñ P N`pnq that contains node values and
probabilities, final battery levels for nodes ñ.

Build vector bstart “ pbmin, bmaxq.
Build vector bnp24q “ p0, 0q.
Set b1a “ 48, b2a “ 0, b3a “ pb

1
a ` b

2
aq{2,

ba “ pbmax ´ bminq{b
3
a.

Define table tbl “ tablepbat, factor, valq, set log “ FALSE.
while log “ FALSE do

Use Algorithm 11 to test whether ba already equals or exceeds the
threshold battery speed b˚a. The algorithm returns res.

Add row pba, b
3
a, resq to table tbl.

if res “ TRUE then
if pb3a ´ 1q P tbl.factor then

Set log “ TRUE.
end
Set b1a “ b3a.

end
else

if pb3a ` 1q P tbl.bat then
Set log “ TRUE.

end
Set b2a “ b3a.

end
Set b3a “ floorrpb1a ` b

2
aq{2s, ba “ pbmax ´ bminq{b

3
a.

end
return Batteryspeed bat from last row of table tbl.

end
Algorithm 13: Find threshold b˚a for a two-stage optimization problem.

find the threshold battery level b˚a by dividing the possible range of values into smaller
subranges, testing the midpoint of each, and updating the subrange based on the results
of the tests until the threshold value is found.

Remark 4.61. When testing the battery from Example 4.57 with bmin “ 0 MW and bmax “

120 MW, we find the following: The optimal battery speed from which on the battery
strategies align, is ba “ bmax{13 « 9.23.

We still have to shed light on why it is enough to check the battery speeds ba P
rpbmax ´ bminq{48, pbmax ´ bminq{1s. The answer for the upper bound pbmax ´ bminq{1 was
given in Remark 4.55 already. For the lower bound pbmax´bminq{48, it holds true that this
is the natural limit given through the 24-step structure of one day: As every strategy can
at most move 24 times on one day, the lower bound is reached when a strategy starting
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Figure 4.40: Both figures contain optimal battery strategies. On the left, the battery has
a speed of ba “ bmax{13 and all strategies align. On the right, the battery’s
speed was reduced to ba “ bmax{13.5; now, the strategies do not align any
longer.
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Figure 4.41: A battery with 48MW capacity and a speed of 1MW/h is depicted as well
as two battery strategies, one starting with a full battery, the other with
an empty one. Both battery levels meet at the end of the considered time
period.

with full battery sells at maximum at every step in combination with a strategy starting
from an empty battery that buys at every step. In this case, both strategies still meet
after all trades of the first stage node. This is physically not possible for even smaller
battery speeds. A plot depicting this situation is given in Figure 4.41. Furthermore, it
is not only enough to concentrate on rpbmax ´ bminq{48, pbmax ´ bminq{1s, but the set to
consider shrinks further to tpbmax ´ bminq{48, pbmax ´ bminq{47, pbmax ´ bminq{1u. This is
caused by the fact that all strategies can only align after a full step, and as we are inter-
ested in the smallest battery speed needed to fulfill that, only these battery speeds need
to be considered.

This subsection shows that there exist batteries for which the direct application of
dynamic programming techniques without any approximation techniques is indeed pos-
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sible. Nonetheless, whether or not that is an option for a battery with given battery
speed also depends on the underlying scenario tree.

The results of this section can also be useful in guiding decisions when buying new
batteries for trading purposes. The presented algorithms allow to test on historical data
which battery speed would have performed in such a way that dynamic programming
would have been applicable. That is not only relevant because it is in general the fastest
of all three presented optimization methods, but also because the optimization of such
a battery needs less price forecasting and thus reduces incurred forecast uncertainty.

4.4.4 Application of stochastic optimization to the German day ahead
market

In order to make the stochastic optimization approaches comparable and more acces-
sible, all three of them are applied to the problem setting from Equation (4.45). First,
we apply two-stage approximation to the mentioned setting, followed by dynamic pro-
gramming in its true form and then in its approximated form with penalty. Thus, we
formulate a forward as well as two backward optimizations for the problem. Lastly, we
formulate the problem for reinforcement learning. The second step is then to apply the
introduced optimization algorithms.

Based on the problem described in Equation (4.45), we formulate a stochastic pro-
gramming counterpart. We use the N scenarios contained in the scenario tree, with ΩN

being the set of all possible paths w. Their probability is given by ppwq for all w P ΩN .
Furthermore, we assume the spot prices Sptq, t “ 1, ..., 24, of the actual day to be fore-
casted precisely enough to be viewed as deterministic instead of stochastic. This is a
common assumption in energy price modelling, see e. g. [27]. Consequently, we reach
the following optimization problem for the two-stage approximation:

min
vPV

24
ÿ

t“1

Sptqvptq `
ÿ

wPΩN

ppwq
7˚24
ÿ

t1“25

pSpt1qqpwq pvpt1qqpwq (4.48)

s.th. bmin ď bp0q `
M
ÿ

t1“1

pvpt1qqpwq ď bmax, M “ 1, 2, ..., 7 ˚ 24, @w P ΩN ,

|pvptqqpwq| ď ba, t “ 1, 2, ..., 7 ˚ 24, @w P ΩN .

The first set of constraints ensures that the battery level never crosses battery boundaries
for all points in time considered, whereas the second constraint set keeps the volume of
a single hour between the limits given through the battery speed. Here, |pvptqqpwq| rep-
resents the decision variable, i.e. the traded volume, at time t during scenario w.

Now, we describe the equations in the dynamic programming case. Due to its recursive
nature, the focus now shifts from realizations w to nodes n P N and their predecessors
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or children. Be reminded that n “ 0 represents the root node and each tree level is
defined through Nt, t “ 0, ..., T . The optimization problem is formulated as follows:

min
vPV, bnp0q

ÿ

n

ppnq
24
ÿ

i“1

Spi, nq vpi, nq (4.49)

s.th. bmin ď bnp0q `
M
ÿ

i“1

vpi, nq ď bmax, M “ 0, 1, ..., 24, n P N,

|vpi, nq| ď ba, i “ 1, ..., 24,

24
ÿ

i“1

vpi, ñq ` bñp0q “ bnp0q, n P NzNp0q, ñ P N´pnq.

Here, the node formulation is chosen again in order to simplify the recursion. Prices
are thus specified by Spi, nq, where i “ 1, ..., 24 represents the corresponding hour and n
specifies the node under consideration. As before, the first set of constraints ensures that
the battery’s limits are adhered to, the second one makes sure that the battery’s speed is
not surpassed, and the last one sets the battery level of a stage equal to the sum of the
battery level of the previous stage plus the volume accumulated in that stage.

Following the same structure, but with added penalty term, we formulate

min
vPV, bnp0q

ÿ

n

ppnq

ˆ 24
ÿ

i“1

Spi, nq vpi, nq ´ S̄pñ P N´pnqq ¨ bnp0q

˙

(4.50)

s.th. bmin ď bnp0q `
M
ÿ

i“1

vpi, nq ď bmax, M “ 0, 1, ..., 24, n P N,

|vpi, nq| ď ba, i “ 1, ..., 24,

24
ÿ

i“1

vpi, ñq ` bñp0q “ bnp0q, n P NzNp0q, ñ P N´pnq

as the DP approximation with penalty. Here, S̄pñ P N´pnqq represents the average elec-
tricity price of the parent node of n.

Finally, we want to apply reinforcement learning via Algorithm 10 to update an orig-
inally randomly initialized value matrix. Because RL as we defined it needs a Markov
decision process, we define the corresponding matrix Q containing the optimal action-
value estimates in the following way: It contains three columns, that represent actions,
namely “buy”, “hold” or “sell”, and as many rows as there are time points where some-
thing can be bought, held or sold, i.e. 7 ˚ 24, times the number of possible battery states
that the battery could start in. Alternatively, we could have decided to implement the
problem in such a way as to look at each day as one point in time only, but we did not
pursue this idea. Consequently, the update equation for system state Sptq and action xt
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is

QrSptq, xts “ QrSptq, xts ` α
´

pSptqvptq ` λmax
x

QrSpt` 1q, ¨sq ´QrSptq, xts
¯

.

This can easily be translated to the value matrix in Algorithm 10. Here, α is a learning
rate that regulates how much a value-action-pair changes after an iteration. In order
to let the RL agent abide to the battery restrictions, the actions it can choose from are
determined conditioned on the distance of the current battery level to the battery limits.
E.g., if the battery is filled up to bmax, the agent does not have the option to choose “buy”
as its action. Regarding the hyper parameters that need to be chosen, we did a simple
grid search to determine the combinations that led to the best results on a test tree.

Before progressing, let us briefly comment on the computation of the optimal bidding
strategy. Through the usage of scenario trees covering seven days, the computed optimal
bidding strategy does not only focus on the next day, but on the whole next week. How-
ever, since newer and possibly better forecasts are available after one day has passed, the
bidding strategy is only executed for today. By recomputing an optimal bidding strategy
for the look-ahead period, we are in a setting in which the bidding strategy adapts each
day to the new information about the price forecasts.

To describe this rolling horizon setting in more detail, we follow [20] and denote the
points in time at which decisions have to be made by t0, t1, . . . . We also denote the days
of the planning horizon by T . At t0, an optimal schedule for the entire planning horizon
is computed and executed for the following day. At the next time t1, the procedure is
repeated. Regardless of whether new price forecasts are available, a new optimal sched-
ule is computed for the entire planning horizon. Thus, at each point in time, a schedule
covering T days is computed and the first day of the schedule is executed. Figure 4.42
presents a schematic representation of the rolling horizon.

In order to apply and compare the four methods, we first define two battery settings
that we want to analyze:

• Fast-charger: Its minimum capacity is bmin “ 0 and its maximum capacity bmax “

100. It starts with an empty battery bp0q “ 0 and has a charging speed of ba “ 100.
Consequently, it can fully charge or discharge in one hour.

• Slow-charger: Its minimum capacity is bmin “ 0 and its maximum capacity bmax “

100. It starts with an empty battery bp0q “ 0 and has a charging speed of ba “ 5.
Consequently, it can fully charge or discharge in 20 hours when using them to go
fully in one direction.

For all optimization methods except the DP approximation, the fast-charger should
reveal the same results, as the battery speed in this setting makes preparation for a
medium-term future unnecessary. In contrast to that, the slow-charger’s battery speed is
much smaller than the total battery capacity; therefore, planning with future prices does
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Figure 4.42: Schematic representation of the mechanics of a rolling horizon approach
with a look-ahead horizon of seven time points. The blue period always
marks the day where a decision is executed, and the grey areas depict the
time horizon that is taken into account for that decision in combination with
the blue period, aka the look-ahead horizon. As new information arrives
after a day has passed, everything is recomputed with new execution day
and new look-ahead horizon.

become more attractive. Regarding DP, it must hold true for the fast-charger that the
battery speed surpasses b˚ and b˚˚, and thus it is readily applicable. In comparison to
that, the slow charger’s battery speed is nearly never greater than b˚. Nonetheless, we
apply the original DP algorithm and in case of several optimal battery end values of the
first stage in a two-stage problem, we choose the first calculated locally optimal solution
and proceed. This method thus does not yield a global optimum in this case, but rather
a compilation of locally optimal solutions.

Now, we analyze the results for the summer period, first looking at the fast-charger,
and then moving on to the slow-charger. Then, the winter period is considered shortly.
Finally, we analyze whether the used methods are suitable for the given task and how
their results compare to each other. The resulting costs for each strategy are presented
in Table 4.43.

Figure 4.44 shows the optimal charging rates given by all four methods for the sum-
mer period and the tree based on the full model. It is visible that the two-stage stochastic
programming, DP and RL all reach exactly the same solution, as was predicted. In con-
trast to that, the DP approximation method deviates once from the common path for the
5th of August. The picture strongly changes when we move to the slow-charger: Fig-
ure 4.45 presents the operation mode for the battery as given by the four methods. Both,
the two-stage approximation as well as DP make use of the prices on the first days in
order to sell them for profit later. Both strategies move closely to each other, but are not
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Season Model Battery Stochastic.P. DP DP.Approx. RL

Summer original fast -225 -225 -219.7 -225
Summer original slow -52.9 -52.7 -43.6 -46.7
Summer added fast -225 -225 -219.7 -224.9
Summer added slow -53 -54.7 -43.6 -46.8
Winter original fast -209.7 -209.7 -238.8 -204.6

Winter original slow -26.9 -26.8 -45.5 -43.8
Winter added fast -209.7 -209.7 -238.8 -202.1
Winter added slow -27 -27 -45.5 -41.3

Table 4.43: Resulting optimal values for all optimization methods, both seasons, both
tree building methods, and both batteries. All values are given in 102 AC, and
lower values indicate better strategies.

identical. In contrast to that, RL and the DP approximation also move closely together,
but in contrast to the other two strategies, they never use the upper half of the battery.
Regarding earnings, two-stage stochastic programming and DP outperform RL and the
DP approximation, see Table 4.43. This outperformance is even stronger than visible in
this table as the latter two strategies end with a battery level of 0, whereas the former
two have some stored electricity left.

Now, turning to the same analysis on the added trees, Figure 4.46 and 4.47 present
the optimized modi operandi for the battery by all four methods for the summer period
and the tree based on the adding method for the fast-charger and the slow-charger, re-
spectively. The battery strategies in Figure 4.46 for the tree stemming from the adding
method are nearly identical to the strategies that are reached when optimizing on the
tree stemming from the original model. Again, the DP approximation deviates once from
the paths given by two-stage stochastic programming and DP, but here, RL also moves
away once. Regarding the resulting cost, they equal the cost from before except for RL
that pays the deviation with 10AC. In comparison to that, the resulting methods for the
fast-charger look very similar to before, but actually yield either lower or equal costs for
all four strategies.

Considering the winter period, we again first look at the trees stemming from the orig-
inal method: Figures 4.48 and 4.49 contain the optimal strategies for the fast-charger
and the slow-charger, respectively. Here, we find that in case of the fast-charger, RL
and the DP approximation have a harder time following the other strategies optimally
in comparison to the summer period. Nonetheless, we find that the DP approximation
yields remarkably lower cost than the other three strategies in Table 4.43. The reason
for that again lies with the battery level after the seven days: All other strategies end
with a battery level of 100, whereas DP approximation finishes with 0.
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Figure 4.44: Battery filling over time for the summer period with the fast-charger and
the tree based on the original method.
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Figure 4.45: Battery filling over time for the summer period with the slow-charger and
the tree based on the original method.
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Figure 4.46: Battery filling over time for the summer period with the fast-charger and
the tree based on the adding method.
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Figure 4.47: Battery filling over time for the summer period with the slow-charger and
the tree based on the adding method.
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Figure 4.48: Battery filling over time for the winter period with the fast-charger and the
tree based on the original method.
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Figure 4.49: Battery filling over time for the winter period with the slow-charger and the
tree based on the original method.
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Figure 4.50: Battery filling over time for the winter period with the fast-charger and the
tree based on the adding method.

Turning to the slow-charger, we find that on the first day, all strategies move unisono,
but afterwards begin to again split into the groups two-stage stochastic programming
and DP, and RL and DP approximation. Again, the latter two never move into the upper
half of the battery. As the former two finish the week with a battery level around 70,
and DP approximation and RL empty or nearly empty the battery at that point, we find
higher returns for the latter two in Table 4.43.

For the same analysis on the added trees, Figure 4.50 and 4.51 present the optimized
battery strategies for all four methods for the winter period and the tree based on the
adding method for the fast-charger and the slow-charger, respectively. For both batter-
ies, the resulting strategies are mostly the same. For the fast-charger, only RL receives
higher costs of 250AC in comparison to trees stemming from the original method. For the
fast-charger, two-stage approximation, DP and the DP approximation all yield equal or
lower cost, and only RL again has higher costs of 250AC. One reason for this difference is
that it ends with a higher battery level when optimizing on the added trees in compari-
son to when optimizing on the original trees.

For all tested trees and optimization methods, the returned costs were negative, so
the batteries did make money. Of course, the total amount is much higher for the fast-
charging battery, because it could buy or sell 20 times more in one hour than the slow-
charger. In comparison to that, the computed rewards for the slow-charger are not
smaller by a factor of 20, but rather around 4.5 times smaller in the summer period
and around 8 times smaller in the winter period. That hints at the fact that flexibility
is worth more in the summer, where solar electricity uses flexibility more than during
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Figure 4.51: Battery filling over time for the winter period with the slow-charger and the
tree based on the adding method.

winter. Furthermore, we see that RL and DP approximation did not perform on par with
the other two optimization methods, which is already visible for the fast-chargers where
the optimal solution is supposedly easy to find. For the DP approximation, the result
depends on the chosen penalty, and for RL, it depends on the hyper parameter tuning.
Probably, the latter would have required more hyper parameter tuning or more trajec-
tories to refine its value matrix. Nonetheless, we tested around 50.000 hyper parameter
constellations and calculated 90, 000 trajectories through the trees for each planning day,
and as the first day is always fixed, all 90.000 trajectories passed that first day and added
information to the value matrix here.

Regarding similarities between the strategies, we find that two-stage approximation
and DP yield very similar results, even when DP is supposedly not optimal on the slow-
chargers. As the latter requires much less computational resources due to less needed
storage – there are no large constraint matrices as is the case for stochastic program-
ming – it yields a valid alternative to the widely-used two-stage approximation, even
when it is not yielding the globally optimal solution. Furthermore, we find that RL and
the DP approximation yield very similar results in our example. This might indicate that
the “look-ahead” over which RL admits negative rewards is similar to DP approximation
with two days. Changing the reward signal for RL could be an idea to counter that:
Apparently, it was problematic for RL to incur high losses in the beginning, so it rarely
chose to move into this direction. If the buy strategy in the beginning did not yield such
a high negative reward, RL could actually manage to use the whole battery for its trad-
ing instead of only the lower half.
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Finally, we notice that the performance of all strategies on the added trees in compar-
ison to the original trees was very similar and showed in all but two cases equal costs or
even an outperformance of the results from the original trees. Consequently, the added
trees with much faster calculation do indeed yield an alternative to the original method.

4.5 Conclusion

The objective of this chapter was to profitably market a battery in the German day ahead
market. To achieve this goal, we first looked at the day ahead market in the period from
2015 to 2020 and analyzed whether characteristics attributed to spot prices in the liter-
ature also play a role in the period we considered. The results of this analysis yield the
basis for our choice of a spot price model from the field of stochastic factor models.

Since the final calibrated model produces price trajectories with continuous compo-
nents in time and space, the next step is to discretize the model. To do this, we introduce
the approximation of continuous random variables by discrete random variables and
then, based on this, the approximation of continuous processes by discrete processes us-
ing the nested distance. For an application to our electricity price model, we also discuss
how the nested distance relates to scenario trees and present algorithms to generate
optimal, computationally tractable scenario trees for the chosen electricity price model.
One of these algorithms is the “adding” method, which yields a coarser approximation,
but has significant speed advantages.

In our final theory chapter, stochastic programming, dynamic programming, and re-
inforcement learning as stochastic optimization algorithms are reviewed and related to
each other.

We apply the introduced concepts to a real battery in Section 4.4. In order to test the
concepts in two different time periods, one week in February and one week in August
are chosen to optimize the battery deployment in the spot market. For this purpose,
scenario trees are generated for the presented stochastic factor model for both periods
using the presented methods. Before starting the optimization on these trees, we discuss
conditions for the applicability of dynamic programming in our setting. We show that
there are realistic battery properties for which dynamic programming is readily applica-
ble. Furthermore, we show how, for given batteries and spot market prices, it is possible
to test whether dynamic programming provides only an approximation to the optimal
solution or actually the true optimum.

The four presented methods are then applied to two different battery types and the
results are compared on each of the four scenario trees. We see that dynamic program-
ming, even if it is applied in a setting where it does not necessarily yield the optimal
result, gives results on par with the commonly used two-stage stochastic programming
method and takes much less time to do so. Furthermore, we see that RL as well as
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the DP approximation yield worse overall results compared to the classical optimization
methods. Therefore, for this rather simple optimization problem, we recommend using
the classical optimization variants. Compared to them, RL does not offer any advantage
in our setting, neither in terms of results nor in terms of computation time, and the
DP approximation has a computational time advantage in comparison to the two-stage
stochastic programming, but not in comparison to the original DP. In any case though,
all four methods achieve profits in the day ahead market and manage to take advan-
tage of the possibility to sell flexibility profitably and in line with the feed-in profiles of
renewable energies.

Finally, the results that the strategies achieve on the trees stemming from the tree
addition method are equal or better than the results based on the original tree method
except for two cases. Consequently, we do recommend this method for our presented
setting.
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[23] Hélyette Geman and Andrea Roncoroni. Understanding the fine structure of elec-
tricity prices. The Journal of Business, 79(3):1225–1261, 2006. ISSN 00219398,
15375374.

[24] Ria Grindel and Nikolaus Graf von Luckner. Forecasting of the ID3 using limit
order book data. SSRN eLibrary, 2022. doi: 10.2139/ssrn.4017248.

[25] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe,
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