
Math.Comput.Sci. (2022) 16:21
https://doi.org/10.1007/s11786-022-00539-2 Mathematics in Computer Science

Using Semicontinuity for Standard Bases Computations

Gert-Martin Greuel · Gerhard Pfister ·
Hans Schönemann

© The Author(s) 2022, corrected publication 2023

Abstract We present new results on standard basis computations of a 0-dimensional ideal I in a power series ring
or in the localization of a polynomial ring over a computable field K . We prove the semicontinuity of the “highest
corner” in a family of ideals, parametrized by the spectrum of a Noetherian domain A. This semicontinuity is used
to design a new modular algorithm for computing a standard basis of I if K is the quotient field of A. It uses the
computation over the residue field of a “good” prime ideal of A to truncate high order terms in the subsequent
computation over K . We prove that almost all prime ideals are good, so a random choice is very likely to be good,
and whether it is good is detected a posteriori by the algorithm. The algorithm yields a significant speed advantage
over the non-modular version and works for arbitrary Noetherian domains. The most important special cases are
perhaps A = Z and A = k[t], k any field and t a set of parameters. Besides its generality, the method differs
substantially from previously known modular algorithms for A = Z, since it does not manipulate the coefficients.
It is also usually faster and can be combined with other modular methods for computations in local rings. The
algorithm is implemented in the computer algebra system Singular and we present several examples illustrating
its power.

Keywords Standard bases · Algorithm for zero-dimensional ideals · Semicontinuity · Highest corner

Mathematics Subject Classification 1304 · 13P10 · 1404 · 14B05 · 14Q20

Dedicated to the memory of Vladimir Gerdt.

G.-M. Greuel · G. Pfister · H. Schönemann (B)
Kaiserslautern, Germany
e-mail: hannes@mathematik.uni-kl.de

G.-M. Greuel
e-mail: greuel@mathematik.uni-kl.de

G. Pfister
e-mail: pfister@mathematik.uni-kl.de

http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-022-00539-2&domain=pdf

21 Page 2 of 11 G.-M. Greuel et al.

1 Introduction

When studying numerical invariants of singularities of an algebraic variety X at a point one is often led at some
point to compute the dimension dimK K [x]〈x〉/I for some field K and I an ideal in K [x]. Typical examples are
the Milnor number or the Tjurina number of an isolated hypersurface singularity, but also many others. These
computations are usually done by computing a standard basis of I . Due to intermediate coefficient growth this can
be very time and space consuming for K = Q or K = k(t), the quotient field of k[t] for some field k and finitely
many parameters t = (t1, . . . , ts).

In the present paper we provide a modular version of an algorithm for the computation of dimK K [x]〈x〉/I =
dimK K [[x]]/I (which we assume to be finite), where K = Quot(A) is the quotient field of a Noetherian integral
domain A. Let p be a prime ideal in A and k(p) its residue field. We use a modular computation over k(p) and
then use the bound given by the highest corner of the modular computation to cut off high order terms from the
polynomials during the subsequent standard basis computation over K . To simplify notation we set

R(0) := K [x]〈x〉 and R(p) := k(p)[x]〈x〉.
We start the algorithm (Algorithm 5.2) by choosing an arbitrary prime ideal p �= 〈0〉 and compute a standard

basis of the induced ideal I (p), the image under the natural map A[x] → R(p). The computation decides if p is
“half-good”, i.e.,

dimk(p) R(p)/I (p) < ∞.

Then the ideal I (p) has a so called “highest corner” HC(I (p)), introduced in [4], which is the smallest monomial
(w.r.t. to the local monomial order) not contained in the leading ideal L(I (p)). HC(I (p)) can be read from the
leading terms of the standard basis of I (p). We then compute a standard basis of the ideal I (0) = I R(0) over K ,
but during the computation we cut off high order terms from the involved polynomials.

The bound for cutting off is deduced from HC(I (p)) (Theorem 4.2). The result is a standard basis of an ideal
I ′(0) ⊃ I (0), which is equal to I (0) if dimk(p) R(p)/I (p) = dimk(0) R(0)/I ′(0) (Proposition 3.5). If this is the
case we say that p is ”good” and a standard basis of I (0) has been computed (if p is not half-good, we restart the
algorithm with another choice of p).

To prove correctness of the algorithm, i.e., that the result is in fact a standard basis of I (0), we will prove that the
highest corner is lower semicontinuous in the Zariski topology of Spec A (Proposition 3.5). This is in turn deduced
from a general semicontinuity theorem in [5] (see Theorem 3.1). An important fact is that half-good and good prime
ideals form a open dense subset of Spec A if A contains infinitely many prime ideals (Theorem 5.2), so that the
algorithm terminates for a “sufficiently general” choice of p. We remark that just one sufficiently general p suffices.
For A a principal ideal domain, only finitely many prime ideals are bad, so that the algorithm terminates always
after finitely many steps for any choice of p (Corollary 5.4). After each run the algorithm shows whether the chosen
prime ideal was good or bad.

In Sect. 5 we illustrate the results for the special cases A = Z (with K = Q and k(p) = Fp, p a prime number)
and for A = k[t1, . . . , ts] (with K = k(t1, . . . , ts) and k(p) = k, p = 〈t1 − p1, . . . , ts − ps〉 for some point
(p1, . . . , ps) ∈ ks) and for these rings we provide non-trivial examples in Sect. 6 that demonstrate the impressive
speed up over the non-modular algorithms. The examples show also that Algorithm 5.2 is often faster than previously
known modular methods for A = Z. The high performance of the algorithm is due to the reduction of the number
of terms of the polynomials involved (and not to the avoidance of coefficient growth when A = Z) and thus it can
be combined with previous modular algorithms.

The computations are done in the computer algebra system Singular [3] and the examples show how this can
be done in general with a few Singular-commands.1

While our algorithm is of course based on the standard basis theory for non-well orderings developed in [4], the
main new ingredient is the semicontinuity theorem in [5], a result that has nothing to do with any computational

1 The coming Singular version 4.3 provides an option “HC” for the groebner command such that Singular chooses Algorithm 5.1
automatically whenever possible.

Using Semicontinuity for Standard Bases Computations Page 3 of 11 21

aspects. It is used to prove both correctness and termination of Algorithm 5.1, but the proofs are by no means
obvious. The main new theoretical results are Proposition 3.5, Theorems 4.2, and 5.2. Algorithm 5.1 not only
provides (in the local case) a new modular method for A = Z, it is also valid for a general Noetherian domain A
(with computable residue fields) and we are not aware of any modular algorithm that works in this generality.

2 Notation

The following is used throughout the paper. A denotes a Noetherian integral domain, A[x], x = (x1, . . . , xn), the
polynomial ring over A and I ⊂ A[x] an ideal (the symbols ⊂, resp. ⊃, mean ⊆, resp. ⊇, in this paper). For
a prime ideal p in A let k(p) := Ap/pAp = Quot(A/p) be the residue field of the local ring Ap. In particular,
k(0) := k(〈0〉) = Quot(A). The map A → k(p) induces natural maps A[x] → k(p)[x] → k(p)[x]〈x〉 →
(k(p)[x]〈x〉)∧ = k(p)[[x]], with ∧ the 〈x〉-adic completion. We set

R(p) := k(p)[x]〈x〉 and R̂(p) := k(p)[[x]],
and denote by I (p) resp. Î (p) the ideal in R(p) resp. in R̂(p) generated by the image of I under the above maps.
Instead of R(〈0〉) and I (〈0〉) we write R(0) and I (0). Note that

dimk(p) R(p)/I (p) < ∞ ⇐⇒ dimk(p) R̂(p)/ Î (p) < ∞
and that then the dimensions coincide.

3 Semicontinuity of the Highest Corner

The following semicontinuity theorem is a special case of [5, Theorem 42]. It is the main ingredient for the
correctness of our algorithm.

Theorem 3.1 For any fixed p ∈ Spec A there is an open neighbourhood U of p in Spec A such that

dimk(q) R̂(q)/ Î (q) ≤ dimk(p) R̂(p)/ Î (p) for all q ∈ U.

The inequality is of interest only if dimk(p) R̂(p)/ Î (p) < ∞ since it holds trivially if dimk(p) R̂(p)/ Î (p) = ∞.

Corollary 3.2 For each N = 0, 1, 2, . . . ,∞ the set

DN := {p ∈ Spec A| dimk(p) R(p)/I (p) ≤ N }
is open in Spec A and for each p ∈ Spec A we have

dimk(0) R(0)/I (0) ≤ dimk(p) R(p)/I (p).

Moreover, dimk(0) R(0)/I (0) = dimk(p) R(p)/I (p) for p in an open dense subset of Spec A.

Proof Since the prime ideal 〈0〉 is contained in every neighbourhood of any prime ideal p, Theorem 3.1 and the last
statement of Sect. 2 imply the openness of DN and the inequality dimk(0) R(0)/I (0) ≤ dimk(p) R(p)/I (p). Taking
p = 〈0〉 in Theorem 3.1 we get the other inequality and hence equality for an open set. If dimk(0) R(0)/I (0) = ∞,
this set is Spec A and if dimk(0) R(0)/I (0) < ∞, this set is non-empty, hence dense since A is an integral domain.

��
We recall now the definition of the highest corner from [4, Definition 1.7.11]. It uses the notion of a local

monomial ordering > on a polynomial ring A[x1, . . . , xn]2, A any ring.

2 A monomial ordering > is a linear ordering on the set of monomials Mon(x1, ..., xn) = {xα |α ∈ N
n}; it is called local if 1 > xi for

each i (see [4, Section 1.2] for details).

21 Page 4 of 11 G.-M. Greuel et al.

Fig. 1 L(〈y4+ x5, x3y3〉)
(for the local degree
ordering ds) is generated
by the monomials
y4, x3y3, x8 (marked by a
•). The highest corner is
x7y2 (marked by a �)

Definition 3.3 Let K be a field, I ⊂ K [x] a proper ideal, and > a local monomial ordering on K [x]. A monomial
m is called the highest corner of I (with respect to >), denoted by HC(I), if

1. m /∈ L(I), where L(I) ⊂ K [x] is the leading ideal 3 of I ,
2. if m′ is a monomial with m′ < m �⇒ m′ ∈ L(I).

It shown in [4, Lemma 1.7.13] that HC(I) is the smallest monomial (with respect to >) not contained in I .
In the following we need local weighted degree orderings 4, where the variables have negative weights (see [4,

Definition 1.2.9]). It is called a local degree ordering if weight(xi) = −1 for each i 5, see Fig. 1 for an example.

Lemma 3.4 Let p be a fixed prime ideal in A such that dimk(p) R(p)/I (p) < ∞ and let > be a local weighted
degree ordering on Mon(x1, . . . , xn). Then HC(I (q)) exists for all q in some open neighbourhood of p in Spec A.
In particular, HC(I (0)) exist.

Proof This follows from [4, Lemma 1.7.14] and Corollary 3.2. ��
We prove now the semicontinuity of the highest corner.

Proposition 3.5 With the assumptions of Lemma 3.4 letM be a set of monomials m such that m < HC(I (p)) and
set I ′(0) := I (0) + 〈M〉R(0).

(i) If dimk(p) R(p)/I (p) = dimk(0) R(0)/I ′(0) then I ′(0) = I (0).
(ii) If dimk(p) R(p)/I (p) = dimk(0) R(0)/I ′(0) withM the set of all monomials < HC(I (p)), then

HC(I (0)) ≥ HC(I (p)).

Proof (i) From Corollary 3.2 we get

dimk(0) R(0)/I ′(0) ≤ dimk(0) R(0)/I (0) ≤ dimk(p) R(p)/I (p).

The assumption implies dimk(0) R(0)/I ′(0) = dimk(0) R(0)/I (0) and hence I ′(0) = I (0).
(ii) Now let M be the set of all monomials < HC(I (p)). Since I ′(0) = I (0), m ∈ I (0) and hence m ∈ L(I (0))

for all m < HC(I (p)). It follows that HC(I (0)) ≥ HC(I (p)). ��
Remark 3.6 Theorem 3.1 is proved in [5] more generally for submodules I ⊂ A[x]m with R̂(q)/ Î (q) replaced by
R̂(q)m/ Î (q), such that Corollary 3.2 holds also for modules. The highest corner can be defined in the same way for
submodules of K [x]m and then Lemma 3.4, Proposition 3.5 and Algorithm 5.2 hold analogously for modules (but
we do not pursue this here).

3 The leading ideal of I is the ideal generated by the leading monomials (i.e. the biggest monomials w.r.t. >) of all elements �= 0 of I .
4 A local weighted degree ordering < is a monomial ordering such that there exists a vector w = (w1, ..., wn) of negative integers
(weights) such that w-deg(xα) > w-deg(xβ) ⇒ xα > xβ , with w-deg(xα) := ∑

wiαi the weighted degree of xα .
5 A local degree order satisfies deg(xα) < deg(xβ) ⇒ xα > xβ for the usual degree deg(xα) = |α| = ∑

αi . Examples of local degree
orderings in Singular are ds and Ds and of local weighted degree orderings ws and Ws.

Using Semicontinuity for Standard Bases Computations Page 5 of 11 21

4 A Bound for Truncation

Proposition 4.1 Let K be a field, > a local weighted degree ordering on K [x], I ⊂ K [x] an ideal with
dimK K [x]〈x〉/I < ∞, and m ≤ HC(I) a monomial. Let g1, . . . , gs be a minimal standard basis 6 of I and
xi0 the biggest variable w.r.t. > appearing in LM(gi). Then

w- deg(LM(gi)) ≥ w- deg(m) + w- deg(xi0) for all i.

In particular, if > is a local degree ordering we have

deg(LM(gi)) ≤ deg(m) + 1 for all i.

Proof Let (w1, . . . , wn), wi < 0, be a weight vector defining >. By definition of HC(I), all monomials < HC(I)
are contained in L(I). Since we have a local weighted degree ordering, all monomials of w-deg < w- deg(m)

are contained in L(I). We have w-deg(xi0) = wi0 and setting mi0 = LM(gi)/xi0 , we have w-deg(mi0) = w-
deg(LM(gi)) − wi0 . If w-deg(LM(gi)) < w- deg(m) + wi0 for some i , we have w-deg(mi0) < w- deg(m) and
hence mi0 ∈ L(I). Thus mi0 and hence LM(gi) is divisible by some LM(g j), contradicting the minimality of the
standard basis. ��
Theorem 4.2 Let K be a field, > a local degree ordering on K [x], I ⊂ K [x] an ideal with dimK K [x]〈x〉/I < ∞,
and m ≤ HC(I) a monomial. Let f1, . . . , fk be a set of generators of I . Set d := deg(m) + 1 and for a fixed
monomial m′ with deg(m′)>d set

f̂i := fi + aim
′

with ai ∈ K arbitrary. Then f̂1, . . . , f̂k generate I K [x]〈x〉.
Moreover, if we omit any monomial of degree > d from the involved polynomials during the standard basis

computation of I , the result is a standard basis of I .

Proof We prove the second statement first. Let M be the set of all monomials m′ of degree = d + 1. Then m′
will not occur as a leading monomial of a minimal standard basis of I by Proposition 4.1. Moreover, m′ ∈ I since
m′ < HC(I) (by [4, Lemma 1.7.13]), and I is generated by G0 = { f1, . . . , fk} ∪ M.

Now consider the algorithm for computing a reduced standard basis7 from [4, Algorithms 1.7.1 and 1.7.6].
Starting with G0 we build s-polynomials and (completely) reduce them by previously computed polynomials. In
the i-th step of the algorithm we get a set of generators Gi of I which finally will become a reduced standard basis
of I . We have for f, g ∈ Gi

spoly(f, g) =
∑

cαx
α =

∑

|α|≤d

cαx
α +

∑

|α|>d

cαx
α,

where the second summand will be reduced to 0 when building the reduced normal form, due to the monomials in
M. We see that the effect of the monomials in M during reduction is the same as omitting all monomials of degree
> d. The algorithm stops with a reduced standard basis of I and thus the second part of the corollary follows.

We just proved that f1, . . . , fk and f̂1, . . . , f̂k lead to the same reduced standard basis. Since any standard basis
generates the ideal I K [x]〈x〉 in K [x]〈x〉 by [4, Lemma 1.6.7], the first statement follows. ��
Remark 4.3 (1) For special degree orderings we can delete even more terms during the standard basis computation.

Let > denote the negative degree reverse lexicographical ordering ds ([4, Example 1.2.8]) and xn < ... < x1 <

1. Then all monomials m′ < xnm can be deleted.

6 A standard basis of I w.r.t. > is a set of elements G = {g1, . . . , gs} ⊂ I s.t. L(I) = 〈LM(g1), . . . , LM(gs)〉K [x]. By [4, Lemma
1.6.7] G generates I K [x]〈x〉. G is called minimal if no gi can be deleted, i.e., the leading term of gi is not divisible by LM(g j), j �= i .
7 A reduced standard basis of I is a minimal standard basis G = {g1, . . . , gs} such that for each i the leading coefficient of gi is 1
and all monomials of gi different from its leading monomial are not in the leading ideal L(I). For zero-dimensional ideals a reduced
standard basis always exists since all monomials smaller than the highest corner are in the ideal.

21 Page 6 of 11 G.-M. Greuel et al.

(2) For a local weighted degree ordering let d be the smallest integer such that 〈x〉d ⊂ I . Then each monomial m′
in 〈x〉d satisfies m′ < HC(I) and the same arguments as above show that Proposition 4.1 and Theorem 4.2 hold
with deg(m) + 1 replaced by d. This can be used to design an algorithm for local weighted degree orderings
analogous to Algorithm 5.2.

(3) We cannot use the first estimate in Proposition 4.1 in order to get an improved algorithm for local weighted
degree orderings, just because w-deg(xi0) is not semicontinuous (in contrast to the highest corner)

5 Special Cases and Algorithm

We use the notation from the introduction, with I ⊂ A[x] an ideal.

5.1 Special Cases

For the sake of convenience, we illustrate our results for the perhaps most important special cases A = Z and
A = k[t].
• A = Z, computations over Q and Fp:

Let p ∈ Z be an arbitrary prime number. For the prime ideals p = 〈0〉 resp. p = 〈p〉, we have k(p) = Q resp.
k(p) = Fp. Then R(0) = Q[x]〈x〉 resp. R(p) = Fp[x]〈x〉. Let I (0) resp. I (p) denote the induced ideal in R(0)

resp. R(p). If I (p) is a 0-dimensional ideal we have by Corollary 3.2

dimQ Q[x]〈x〉/I (0) ≤ dimFp Fp[x]〈x〉/I (p).
• A = k[t], t = (t1, . . . , ts), k any field, computations over k(t) and k:

Let p ∈ ks be an arbitrary element. For the prime ideals p = 〈0〉 resp. p = 〈t − p〉, we have k(p) = k(t) resp.
k(p) = k.8 Let I (0) ⊂ R(0) = k(t)[x]〈x〉 resp. I (p) ⊂ R(p) = k[x]〈x〉 be the induced ideals with I (p) being
0-dimensional. By Corollary 3.2 we have

dimk(t) k(t)[x]〈x〉/I (0) ≤ dimk k[x]〈x〉/I (p).
The K -dimensions in the above formulas do not change if we replace K [x]〈x〉 by K [[x]] for the various fields
K .

For A = Z[t] and I ⊂ Z[t][x] we can of course reduce modulo a prime number p and substitute t by a ∈ Z at
the same time and get the ideal I (p, a) ⊂ Fp[x]〈x〉. We then have dimQ(t) Q(t)[x]〈x〉/I (0) ≤ dimQ Q[x]〈x〉/I (a)

≤ dimFp Fp[x]〈x〉/I (p, a) (Corollary 3.2) and a standard basis computation of I (p, a) is usually much faster than
of I (a) ⊂ Q[x]〈x〉, and HC(I (p, a)) can be used for deleting monomials. This is what we did in the examples 5
to 8 in Sect. 6.

5.2 Algorithm

Let A be Noetherian domain of dimension ≥ 1, such that K := k(〈0〉) = Quot(A), and k(p) = Quot(A/p), p ⊂ A
a prime ideal, are computable fields.9 Let I be an ideal in A[x]. We want to compute

dimk(p) k(p)[x]〈x〉/I (p) = dimk(p) k(p)[[x]]/ Î (p),
p ∈ Spec A, for p = 〈0〉 by using the computation for p �= 〈0〉. Here I (p) resp. Î (p) is the ideal generated by I in
k(p)[x]〈x〉 resp. in k(p)[[x]].
8 We could choose any other maximal ideal p of k[t]. Then k(p) would be a finite field extension of k and the algorithm works as well.
9 If dim A = 0, then A is a field and the algorithm is trivial. The results apply analogously to every reduced Noetherian ring A and
K = Quot(A/P), P a generic point of Spec A.

Using Semicontinuity for Standard Bases Computations Page 7 of 11 21

Choose a fixed local degree ordering > on Mon(x). For the standard basis computation in the following algorithm
we use the generalized Mora algorithm [4, Algorithm 1.7.1 and 1.7.6].

Algorithm 5.1 [LocStdHC(S)]

INPUT: S ⊂ A[x] a finite set of polynomials.
Assume that d(0) := dimK K [x]〈x〉/I (0) < ∞,
with I (0) the ideal generated by S in K [x]〈x〉.

OUTPUT: G ⊂ K [x] a standard basis w.r.t. > for the ideal I (0).

1. Choose a prime ideal p �= 〈0〉 in A and compute a standard basis G(p) w.r.t. > of the ideal I (p) generated by S
in k(p)[x]〈x〉.

2. Use G(p) to compute d(p) := dimk(p) k(p)[x]〈x〉/I (p).
3. If d(p) = ∞ and if there are untried primes p �= 〈0〉 pick one and continue from step 1. Otherwise drop through

to step 8.
4. Compute HC(I (p)). (HC(I (p)) exists since d(p) < ∞ at this step.)
5. Compute a standard basis G, starting with S ⊂ K [x], and omit any non-vanishing term of degree >

deg(HC(I (p))) + 1 during the computation. G is a standard basis of an ideal I ′(0) ⊃ I (0) in K [x]〈x〉.
6. Compute d ′(0) := dimK K [x]〈x〉/I ′(0).
7. If d ′(0) = d(p) return G, else

continue with step 1 by choosing a non-used p �= 〈0〉 if it exists. Otherwise go to step 8.
8. Compute a standard basis G of I without omitting terms and return G.

Theorem 5.2 1. The algorithm is correct.
2. If A contains infinitely many prime ideals, there exists an open dense and infinite subset U ⊂ Spec A such that

the leading ideals of I (0) and I (p) coincide for p ∈ U. In particular, the algorithm terminates with step 7. for
p ∈ U in steps 3. and 7. of the algorithm.

3. If A contains finitely many prime ideals, the algorithm terminates with step 7. or 8. of the algorithm.
The statement in (2), that the algorithm terminates for all p ∈ U, means that the algorithm terminates for all

points outside a closed subvariety of lower dimension. Losely speaking, the algortihm terminates for a random
choice of p, with a precise (though not constructive) definition of random.

Proof (1) Let M be the set of monomials of degree = deg(HC(I (p))) + 2. Omitting all monomials of degree
> deg(HC(I (p))) + 1 is the same as computing a standard basis of the ideal I ′(0) ⊃ I (0) generated by S ∪ M
(see the proof of Theorem 4.2). If d(0) = d(p) then I ′(0) = I (0) by Proposition 3.5 (i), showing that the algorithm
is correct.

(2) Since d(0) < ∞ by assumption, the set U1 of primes p with d(p) < ∞ is open in Spec A by Corollary 3.2.
We claim that U1 � 〈0〉 �= ∅. Assume the contrary. Then the point 〈0〉 is open in Spec A and Spec A � 〈0〉 is
closed and hence equal to a proper affine subvariety V (J) = Spec A/J with J containing an element f �= 0. Then
V (f) = Spec A/〈 f 〉 = Spec A � 〈0〉 and A/〈 f 〉 contains infinitely many primes and has dimension one less than
A. Continuing with A/〈 f 〉 we reduce by induction to the case of a 0-dimensional ring with infinitely many primes.
This is a contradiction and thus we reach step 4 for p ∈ U1 � 〈0〉.

During the standard basis computation in step 5 only finitely many coefficients of polynomials are involved
and we may use (for theoretical purposes) the symmetric form of the s-polynomials and the normal form without
division to compute a pseudo standard basis in the sense of [4, Exercise 2.3.7]. This has coefficients in A and is a
standard basis of the ideal I ′(0) over the field K and of I ′(p) = I (p) over A/p if we specialize modulo a maximal
ideal p (c.f. [4, Exercise 2.3.6 - 2.3.9]). Let a ∈ A be the product of the leading coefficients of the elements of the
pseudo standard basis (hence a �= 0) and setU2 := Spec A�V (a), where V (a) denotes the hypersurface in Spec A
defined by a.

For p ∈ U2 � 〈0〉 the coefficients of the leading monomials of a pseudo standard basis will not vanish mod p

and the leading ideals of I ′(0) and I (p) coincide. In particular, d(p) = d ′(0) for p ∈ U2, and hence the algorithm
terminates for p ∈ U2 � 〈0〉.

21 Page 8 of 11 G.-M. Greuel et al.

We show that U2 is infinite if Spec A is infinite. We have U2 = Spec B, B = A[T]/〈aT − 1〉 irreducible,
dim B = dim A and V (a) = Spec A/〈a〉 with dim A/〈a〉 = dim A − 1. Assume that SpecU2 is finite, i.e., B
contains only finitely many prime ideals. Then dim A = dim B = 1 by Remark 5.3 and dim A/〈a〉 = 0. Then V (a)

is finite and this implies Spec A = V (a)∪U2 is finite, a contradiction. Since A is irreducible U := U1 ∩U2 is open
and dense in Spec A and a random choice of p will hence pick p ∈ U � 〈0〉. (3) The algorithm terminates if A has
only finitely many prime ideals, since it will be decided after finitely many steps whether the equalities in step 3.
and 7. hold. If this is not the case, the algorithm stops with step 8. ��
Remark 5.3 (1) Every Noetherian ring A of dimension ≥ 2 contains infinitely many prime ideals. This follows

from [6, Theorem 31.2].
(2) By Euclid, Z contains infinitely many prime ideals. The same argument shows that every polynomial ring

A = k[t1, . . . , ts], s ≥ 1, contains infinitely many irreducible polynomials and hence infinitely many prime
ideals (since A is a UFD every irreducible polynomial generates a prime ideal).

(3) On the other hand, any local one-dimensional domain has only two prime ideals.
(4) If A has only finitely many prime ideals, the algorithm may terminate with step 7. if the equalities in 3. and 7.

hold for some p �= 0. But this may not happen and we added the step 8. only for completeness (without anything
new).

Corollary 5.4 Let A be a principal ideal domain with infinitely many prime ideals. Then any non-zero prime ideal
p is maximal with k(p) = A/p and the set {p ∈ Spec A| d(0) �= d(p)} is finite. Hence the algorithm terminates after
finitely many steps with step 7. for any (not necessarily random) choice of p in steps 3. and 7. of the algorithm.

Proof By Corollary 3.2 the set {p ∈ Spec A| d(0) �= d(p)} is closed and hence finite since dim A = 1, proving the
theorem in a non-construtive way.

A constructive proof goes as follows. Any non-zero prime p is a maximal ideal since the Krull dimension of A
is 1. Since A is a UFD, the element a ∈ A in the Proof of Theorem 5.2 is a product of finitely many irreducible
factors defining the prime ideals p such that d(0) �= d(p). ��

For example, the corollary applies to A = Z and to A = k[t], t one variable, k any field. For k infinite there are
even infinitely many maximal ideals of the form 〈t − p〉, p ∈ k.

In practice d(0) = d(p) will be usually the case for the first choice of a random p.

Remark 5.5 We like to comment on modular algorithms to compute Gröbner or standard bases over the rational
numbers, which are often much faster than a direct computation. Although not explicitly stated, these modular
algorithms use some kind of semicontinuity:

(1) In the standard modular algorithm one computes several standard bases for different prime numbers, lifts
them to Q (e.g. by Chinese remainder or Hensel lifting) and gets a potential standard basis over Q (cf. [2] for
global and [7] for arbitrary monomial orderings). To verify correctness a standard basis computation of the lifted
basis has to be performed over Q, which is usually the most time consuming part. Implicitly the authors use the
semicontinuity of the Hilbert function resp. the Hilbert–Samuel function (in the local case) of an ideal over Q and
over Fp.

(2) Another modular algorithm “MBM” for 0-dimensional ideals and global degree orderings has been proposed
in [1, Theorem 5.1], where the authors avoid a final correctness verification over Q. Instead they run two copies of
a Gröbner basis algorithm, one over Q, the other on the modular reduction of the input in Fp. If the two runs follow
the same path then the final modular result is just the modular reduction of the result over Q (the prime number p
is then called “good”). Otherwise the authors consider the point where the two runs first differ. Then they use linear
algebra and a semicontinuity argument to detect when the modular result is not good and start a new Gröbner basis
computation over Fp for a different p, until p is good. The authors mention some advantages of “MBM” over a
modular algorithm “M” that follows the line as in (1), but the timings are practically identical.

Using Semicontinuity for Standard Bases Computations Page 9 of 11 21

Remark 5.6 Our modular approach (for A = Z) is of a type different from the methods described in (1) and (2) of
Remark 5.5. Let us call a prime number p half-good if Algorithm 5.1 reaches step 4 and good if it finishes with step
7. One standard basis computation over Fp decides if p is half-good or not. If p is half-good, another standard basis
computation over Q of the HC-truncated ideal decides then if p is good or not. The half-good primes provide a
rather sharp bound where truncation is allowed and this is the reason for the impressive speed up of Algorithm 5.2.
Since all but finitely many primes are good by Corollary 5.4, a random choice is very likely to be good. Since our
algorithm consists of the reduction of the number of terms and not in the manipulation of the coefficients, it may
be combined with any of the algorithms in (1) and (2) of Remark 5.5.

The examples in Sect. 6 show that Algorithm 5.1 is often faster than the modular algorithms described in
Remark 5.5 (we use modStd in Singular, which realizes the algorithm from Remark 5.5 (1)).

6 Examples

The following examples demonstrate the effect of Algorithm 5.2. We show the Singular code for the examples,
list then the examples of ideals to be computed, and finally give a table of timings10.

ring R = 0,(x,y,z),ds;
poly F = x3y3+x5y2+2x2y5+x2y2z3+xy7+z9+y13+x25;
ideal I = jacob(F),F;
ring r = 32003,(x,y,z),ds;
ideal I = imap(R,I); //maps I from R to r
ideal J = std(I);
poly HC = highcorner(J); //x24z7
setring R;
noether = z*imap(r,HC);
ideal J = std(I);
noether = 0;
ideal J = std(I);

Comment on the Singular code:

ring R = 0,(x,y,z),ds;: the ring Q[x, y, z]〈x,y,z〉 with local degree reverse lexicographical ordering
ds,
ideal I = jacob(F),F;: the ideal generated by F and the partials of F,
ideal J = std(I);: a standard basis in Fp[x, y, z]〈x,y,z〉, p = 320039,
poly HC = highcorner(J);: the highest corner of J , x24z7in this case,
noether = z*imap(r,HC);: the Singular command for truncating terms bigger (w.r.t. ds) than z∗HC .
ideal J = std(I);: a standard basis in Q[x, y, z]〈x,y,z〉 using HC for truncation,
noether = 0;: disables truncation during standard basis computation,
ideal J = std(I);: a standard basis in Q[x, y, z]〈x,y,z〉 not using HC .

The first 4 examples are computed over Q and Fp. The Singular code is the same for the first 3 examples, with
monomial ordering ds and computations in F32003[y, x, z]〈x,y,z〉 resp. in Q[y, x, z]〈x,y,z〉.
1. F = x3y3 + x5y2 + 2x2y5 + x2y2z3 + xy7 + z9 + y13 + x25,

I = 〈F, ∂F
∂x , ∂F

∂y , ∂F
∂z 〉.

2. F = xyz(x + y + z)2 + (x + y + z)3 + x15 + y15 + z15,
I = 〈 ∂F

∂x , ∂F
∂y , ∂F

∂z 〉.
10 Example 4 is for modStd only slightly slower (cf. Fig. 2) than our new algorithm since an ideal generated randomly has usually a
dense Gröbner basis with truncation of high order terms at a late stage.

21 Page 10 of 11 G.-M. Greuel et al.

Fig. 2 Table of timings

3. F = x8y6 + x10y5 + x8y7 + 2x7y8 + x7y6z2 + x16 + x6y10 + y18 + z20,

I = 〈 ∂F
∂x , ∂F

∂y , ∂F
∂z 〉.

4. I = ideal in the ring Z[x, y, z, w]〈x,y,z,w〉 having 5 generators, which are random linear combinations of
polynomials of degree 5, 7 and 10, with integer coefficients in the interval [-99,99]. The Singular code for
creating this:

LIB "random.lib";
ring R = 0,(x,y,z,w),ds;
system("random",100); //sets the start value of random
ideal I=randomid(maxideal(5)+maxideal(7)+maxideal(10),5,99);

In the following 4 examples the ring has a (single) parameter t and we want to compute the ideals in
Q(t)[x, y, z]〈x,y,z〉 resp. in Q(t)[x, y, z, w]〈x,y,z,w〉. We set the parameter to t = 1 to compute the highest
corner in F32003[y, x, z]〈x,y,z〉 resp. in F32003[x, y, z, w]〈x,y,z,w〉.

ring R = (0,t),(x,y,z),ds;
poly F = y10+(t2)*x7y7+x15+x9y6+(2t)*x6y9+x6y6z3+x5y11+z21;
poly F1 = subst(F,t,1); //setting t=1
ring r = 32003,(x,y,z),ds;
poly F = imap(R,F1);
ideal I = jacob(F);
ideal J = std(I);
poly HC = highcorner(J); //x7y2z37
setring R;
noether = z*imap(r,HC);
ideal I = jacob(F);
ideal J = std(I);
noether = 0;
ideal J = std(I);

5. F = y10 + t2x7y7 + x15 + x9y6 + 2t x6y9 + x6y6z3 + x5y11 + z21,

I = 〈 ∂F
∂x , ∂F

∂y , ∂F
∂z 〉.

6. F = xyz(x + y + z)2 + (x + y + z)3 + t (x15 + y15 + z15),
I = 〈 ∂F

∂x , ∂F
∂y , ∂F

∂z 〉.
7. F = x8y6 + x10y5 + x8y7 + 2x7y8 + x7y6z2 + x16 + x6y10 + t y18 + t2z20,

I = 〈 ∂F
∂x , ∂F

∂y , ∂F
∂z 〉.

8. I = ideal in the ring Z(t)[x, y, z, w]〈x,y,z,w〉 having 5 generators, which are random linear combinations of
polynomials of degree 5, 7 and 9, with integer coefficients in the interval [-99,99]. The Singular code for
creating this:

LIB "random.lib";

Using Semicontinuity for Standard Bases Computations Page 11 of 11 21

ring R = (0,t),(x,y,z,w),ds;
system("random",100); //sets the start value of random
ideal I=randomid(maxideal(5)+maxideal(7)+t*maxideal(9),5,99);

Timings
The examples were computed on a Linux machine with i7-6700 CPU @ 3.40 GHz. The times in the columns
“Algorithm 5.1” (referring to our algorithm LocStdHC) and “std without HC” (referring to the usual standard basis
algorithm), and “modStd” (referring to the modular algorithm described in Remark 5.5 (1)) are in seconds, > 2h
means that the computation did not finish after 2 hours. RAM is the maximum memory requirement (for the usual
algorithm) in MB. modStd is the modular standard basis algorithm in Singular, it is not implemented for rings
with parameters.

Acknowledgements We like to thank the anonymous referees for useful comments and questions, which improved the presentation
of the paper.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

References

1. Abbott, J., Kreuzer, M., Robbiano, L.: Computing Zero-dimensional Schemes. J. Symb. Comput. 39(1), 31–49 (2005)
2. Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symb. Comput. 35(4), 403–419 (2003)
3. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-2-1 – A computer algebra system for polynomial computations

(2021). http://www.singular.uni-kl.de
4. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. With contributions by O. Bachmann, C. Lossen and

H. Schönemann. 2nd Edition, Springer, Berlin (2008)
5. Greuel, G.-M., Pfister, G.: Semicontinuity of Singularity Invariants in Families of Formal Power Series, arXiv:1912.05263v3 (2020).

To appear in the Proceedings of the Némethi60 Conference
6. Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986)
7. Pfister, G.: On modular computation of standard basis. An. Stiint. Univ. Ovidius Constanţa, Ser. Mat. 15, No. 1, 129-138 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://www.singular.uni-kl.de
http://arxiv.org/abs/1912.05263v3

	Using Semicontinuity for Standard Bases Computations
	Abstract
	1 Introduction
	2 Notation
	3 Semicontinuity of the Highest Corner
	4 A Bound for Truncation
	5 Special Cases and Algorithm
	5.1 Special Cases
	5.2 Algorithm

	6 Examples
	Acknowledgements
	References

