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Abstract
In many applications, visual analytics (VA) has developed into a standard tool to ease data access and knowledge generation.
VA describes a holistic cycle transforming data into hypothesis and visualization to generate insights that enhance the data.
Unfortunately, many data sources used in the VA process are affected by uncertainty. In addition, the VA cycle itself can
introduce uncertainty to the knowledge generation process but does not provide a mechanism to handle these sources of
uncertainty. In this manuscript, we aim to provide an extended VA cycle that is capable of handling uncertainty by quantifi-
cation, propagation, and visualization, defined as uncertainty-aware visual analytics (UAVA). Here, a recap of uncertainty
definition and description is used as a starting point to insert novel components in the visual analytics cycle. These components
assist in capturing uncertainty throughout the VA cycle. Further, different data types, hypothesis generation approaches, and
uncertainty-aware visualization approaches are discussed that fit in the defined UAVA cycle. In addition, application scenarios
that can be handled by such a cycle, examples, and a list of open challenges in the area of UAVA are provided.

Keywords Visual analytics · Uncertainty analysis · Uncertainty-aware visualization

1 Introduction

Huge amounts of data are created every day that need to be
properly analyzed. This need drove the development of a new
data processing concept, called visual analytics (VA) [21]. It
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states that analytic reasoning should be supported by inter-
active visual interfaces that allow users to explore datasets
according to their needs and perform decision-making tasks.

Keim et al. [65] described the VA process as a graph
consisting of four major components (dataset, hypothesis,
visualization, and insight). These components are connected
by functions that allow to transform and analyze given input
datasets while creating new insights, as shown in Fig. 1. In
many applications, VA is applied as a standard tool to find
novel insights and perform decision making [69].

The role of uncertainty in the VA process has been
described by Sacha et al. [96]. It mainly states that uncer-
tainty has to be properly communicated, allowing decision
makers to perform their tasks properly. The term VA has
been constantly refined throughout the last two decadeswhile
including the human in the loop and refining knowledge gen-
eration [2,97,109]. These definitions are all valid, providing
different levels of detail and emphasis in the description of
VA, while the description by Keim et al. provides a compact
and prominent mapping of the VA process.

Keim et al. [64] stated that the integration of uncertainty is
oneof themajor challenges inVA.Bynow,manyapplications
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Fig. 1 VA cycle introduced by Keim et al. [65]. The cycle consists of
four major components (dataset, hypothesis, visualization, and insight)
that are connected, including a feedback loop that inserts insights back
into the VA process

have started incorporating uncertainty analysis in their VA
tools, summarized in Sect. 2.

The data, models, and the proper interaction of users in
real-world applications are often affected by uncertainty due
to a variety of effects such as data incompleteness, imprecise
measurements, reconstruction artifacts, or model impreci-
sion [43], as shown in Sect. 3. Each component in the VA
cycle can be affected by uncertainty that needs to be quan-
tified, propagated, and communicated throughout the VA
cycle. Although a variety of approaches in different appli-
cations for uncertainty-aware VA (UAVA) exist, there is a
lack of a unified description that defines the necessary steps
to achieve this goal.

This forms the motivation for the presented work. We aim
to provide a general description of a UAVAcycle (see Sect. 4)
by revisiting the VA definition of Keim et al. [65], extending
it to provide uncertainty-aware quantification and transfor-
mation approaches along the VA cycle. Furthermore, we
added novel connections and steps in the VA process, when
required, to achieve uncertainty awareness. In its entirety,
this formulates an uncertainty-aware description of the VA
process. The description of this cycle is assisted by a hands-
on example originating from the medical domain. Here, each
step is explained and correlated with the generalized descrip-
tion of the UAVA process.

In Sect. 5, we show the applicability of the presented
approach by offering a summary of potential uncertainty-
aware solutions of specific components in the VA cycle.
Based on the presented description of a UAVA cycle, Sect. 6
identifies components and connections that require further
research to be properly defined.

In summary, our manuscript allows a starting point for
researchers in the area of VA that face the challenge of
uncertainty while creating VA solutions. The manuscript
is intended to provide a guide to understanding sources of
uncertainty, how they interfere with the VA cycle, and shows
potential solutions. Although we do not provide a state-of-

the-art analysis, we aim to summarize potential sources for
further reading in specific subtasks of the VA cycle.

Therefore, in this work, we contribute:

• A comparative analysis of existing UAVA approaches,
framing the need of an unified approach (see Sect. 2)

• Aquickguide touncertaintyanalysis allowing researchers
to identify the existing sources of uncertainty in a VA
cycle (see Sect. 3)

• An uncertainty-aware extension of the VA cycle
defined by Keim et al. [65], building a unified frame-
work to handle uncertainty in VA (see Sect. 4)

• A summary of potential solutions of UAVA that builds
a starting point for selecting potential solutions in UAVA
(see Sect. 5)

• A summary of open problems in UAVA, building the
research agenda in the presented area (see Sect. 6)

2 Related work

In Sect. 2.1, we aim to summarize the most important def-
initions in VA and show why these approaches are not able
to handle uncertainty systematically. Then, the uncertainty-
aware visualization approaches essential in UAVA are exam-
ined in Sect. 2.2. Based on these findings, Sect. 2.3 aims to
summarize approaches that target the challenge of including
UAVAfor specific scenarios. In addition, a variety ofworks in
related disciplines, such as sensitivity analysis, are examined
in Sect. 2.4.Here,we aim to summarize themost relatedwork
in the context of the given approach. The approaches have
been selected according to the keywords of the presented
work (VA, uncertainty analysis, and uncertainty-aware visu-
alization). If an article contains a minimum of two of these
keywords, it was considered in this analysis. The work found
in this section will be summarized and compared in Sect. 2.5
to define the target and scope of the presented work.

2.1 Definition of visual analytics

The definition of VA has been constantly developed through-
out the years. Thomas andCook [109] developed the termVA
and highlighted the need for systematic development in this
area. Keim et al. [65] developed a systematic description of
the VA cycle while defining four components that transform
data into hypothesis and visualization to create insight. This
insight can be fed back into the cycle as novel data. The feed-
back loop has been further separated and examined by Sacha
et al. [97]. This resulted in the knowledge generation model
in VA. Further, Andrienko et al. [2] interpreted the term VA
as model building, refining the original definition of Keim et
al. Unfortunately, all these definitions do not include uncer-
tainty in their considerations. Still, they provide a systematic
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description of the VA cycle, which forms the motivation of
the presented work.

MacEachren [82] stated that a classic visualization approach
is not sufficient to deal with uncertainty. They proposed that
UAVA is required as it provides the user with an approach
to tackle data not restricted to visualization. We use this
statement as a starting point for the presented description
of UAVA. This statement is also evaluated for a specific use
case, showing that the visual communication of uncertainty
is necessary [73].

2.2 Uncertainty-aware visualization

The VA process is highly dependent on the contained com-
ponent visualization, as it can be seen as a key component.

Surveys on uncertainty visualization are manifold but do
not have a relation to UAVA. Potter et al. [88] achieved a
taxonomy of uncertainty visualization. Brodlie et al. [14]
followed a similar classification scheme to provide a general
taxonomy. Based on previous work, Bonneau et al. [9] pre-
sented a STAR on uncertainty visualization which forms a
basis for Jena et al. [56] to build an online browsing tool to
explore several uncertainty-aware visualization approaches.
Here, uncertainty visualization approaches were classified
based on the underlying data. Olston et al. [85] presented a
STAR report regarding the visualization of bounded uncer-
tainty, whereas Hullman et al. [54] presented a STAR report
targeting the evaluation of uncertainty visualization.

Kamal et al. [59] provided a summary of recent challenges
in uncertainty visualization. The challenges are presented in
a structuredmanner, leading to a summary of open challenges
that are mainly centered around the inclusion of the user in
the visualization process.

Bhatt et al. [8] provided guidelines that aim to suggest the
use of uncertainty visualization. Still, these findings need to
be transferred to VA.

Although these taxonomies are a useful starting point for
the presented research area, it solely covers the visualiza-
tion component in VA. We, therefore, aim to extend these
approaches to the entire VA process.

2.3 Uncertainty-aware visual analytics

UAVAapproaches have been designed formultiple data types
and computational models such as: multi-variate time-series
[10], principal component analysis [42], merge-trees [124],
moving object detection [50], or tensor analysis [35].

Based on the classic definition of the VA cycle by Keim
et al. [65], a massive amount of VA applications have been
developed and applied. Still, the field of VA holds a set of
open problems. One is the proper quantification, communi-
cation, and visualization of uncertainty in the VA cycle [65].

Sacha et al. [96] formulated requirements that need to be
fulfilled to obtain an uncertainty-aware visualization. Their
suggestions include uncertainty quantification, uncertainty
propagation, visualization of uncertainty in each component,
and suitable interactionwith uncertainty-aware visualization.
These requirements will be used to adapt the classic VA cycle
in this work.

Correa et al. [19] showed how the requirements by Sacha
et al. could be described mathematically. Although this gives
first hints on the requirements needed to implement a UAVA
cycle, it does not clearly state where this information comes
from and how it can be applied. In contrast to the presented
work, we aim to provide an adapted and extended VA cycle
that incorporates the suggestion by Sacha et al.

Karami [60] provided a UAVA cycle that allows the
processing of big datasets. Their work includes precise
descriptions of each component in theVAcyclewhen consid-
ering big data. This limitation neglects further flavors of data
that will be targeted in the presented work by a description
of UAVA.

Senaratne [100] described the role of uncertainty for
spatiotemporal data and presented solutions for uncertainty-
aware image-based volunteered graphic information, explo-
ration of location-based mobile communication data, and
bi-dimensional numerical data. We use these approaches as
a starting point for available techniques.

Although the problemof uncertainty inVA is quite known,
a generalized uncertainty-aware description of the VA cycle
does not exist. As parts of the VA cycle highly depend on
the underlying dataset, we aim to include uncertainty-aware
descriptions of different data types.

UAVA plays an important role in a variety of applications.
These include medicine [37–39], biochemestry [80], envi-
ronmental sciences [91], urban planning [31], mechanical
engineering [70], and digital humanities [58,67]. Unfortu-
nately, although the issue of including uncertainty in the VA
process is quite known in these disciplines, the existing solu-
tions are highly specialized and cannot be applied to further
use cases right away. Therefore, we aim to provide a general
description of UAVA that allows targeting all applications.

2.4 Uncertainty-awareness in related disciplines

Uncertainty awareness is highly related to a set of other dis-
ciplines including sensitivity analysis or VA of ensembles.
We aim to shed light on these approaches and define starting
points for our research. Tofind these approaches,we searched
terms that are considered related to uncertainty as shown in
the taxonomy by Rocha et al. [95].

VA in the context of ensemble datasets is highly related
to the presented topic, as ensemble data can be transformed
into uncertainty data (including loss of knowledge) and vice
versa. Wang et al. [117] provided a state-of-the-art analysis
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for VA of ensembles and showed that a suitable communi-
cation of variability in an ensemble can be achieved by VA
approaches. We would like to derive important knowledge
from this work to achieve a UAVA cycle.

Liu et al. [78] showed that the quality of data is an impor-
tant aspect that needs to be monitored in the VA cycle. In
their work, they provided a mechanism that extends the VA
cycle to enhance data quality and create awareness of data
flaws. The quality of data is highly affected by data uncer-
tainty. Resulting from this, we will include the data quality
defined by Liu et al. in this proposed approach.

Sensitivity analysis [98] is highly related to uncertainty
analysis as this discipline examines the effect of chang-
ing input variables to the output variable(s). Especially in
machine learning, VA approaches are derived to conduct sen-
sitivity analysis [107]. This also highly relates to uncertainty
analysis as uncertainty expresses the variability of param-
eters in a system. We will include sensitivity analysis in
the presented work if it is applicable. Although we found
several related disciplines to uncertainty analysis and visual-
ization, these sciences cannot build a UAVA cycle right away.
This is based on two reasons. First, the related disciplines
are themselves not solved and second uncertainty cannot be
transformed into another problem without loss. Therefore,
this work aims to provide a UAVA cycle.

2.5 Summary and implications

We showed that there exist a variety of approaches that deal
with uncertainty in relation to VA. Table 1 provides a sum-
mary of the examined approaches. It shows which of the
considered approaches provide a theoretic approach in the
area of VA, which of them allow a systematic approach in
the respective area independent from the application, and
which approaches consider uncertainty awareness (UA).

There does not exist an approach that provides a theory
that describes a systematic approach for UAVA. This results
in a clear research gap that we aim to tackle in this work.

3 Definitions

This section defines the mathematical basics of uncertainty.
Here, we describe how to define, quantify, propagate, and
accumulate uncertainty as a reference for the remaining
manuscript.

3.1 Definition of uncertainty

Independent of the data source, task, and user, datasets are
usually acquired by measuring or simulating a phenomenon
creating data points. As this work is dedicated to incorporate
uncertainty into the visual analytics cycle, wewill not discuss

Table 1 Approaches related to the presented concept. Theory sum-
marizes work that aims to develop general concepts of VA. Systematic
approaches aim to describeUAVA in a systematicmanner. UAdescribes
general considerations on uncertainty-aware concepts in general. None
of the related approaches is able to provide a theoretical and systematical
description of UAVA

the influence of tasks and users in general, as a variety of
approaches have been tackling these effects [65].

Measurements can be distorted by a variety of effects
leading to measurement errors and uncertainty. Error and
uncertainty are referring to two different aspects when con-
sidering measurements.

Let a ∈ (−∞,∞) be ameasurand and a∗ be the true value
of this measurand. When performing the measurement, the
result will be a′. a∗ and a′ may be the same value, but in
reality, their values differ due to a variety of effects. The
error e of the performed measurement can be defined as the
difference between the measured value and the true value
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of the measurand [12]. This means: e = ‖a∗ − a′‖. As a
consequence, the quantification of an error requires a ground
truth that clearly shows the difference between the actual
value and themeasured value. Naturally, as there is no unique
definition of uncertainty, errors can be communicated using
a variety of visualization techniques in the VA cycle. Further,
computations of data points that are affected by an error can
be performed right away.

The uncertainty of ameasurement is a quantification of the
doubt about themeasurement result [46]. If this uncertainty is
known, the measurand is defined to be uncertainty-aware. In
contrast, if this uncertainty is unknown, ameasurand is called
uncertain. As there is no unique description of uncertainty,
it has a massive affect to the VA process. In particular, a
variety of uncertainty events can occur at different stages in
the process, which can lead to wrong decision making. We
will list these sources in discussion of this manuscript.

Unfortunately, there is no unique definition of how to
compute uncertainty. Arbitrary functions can be considered
to achieve uncertainty quantification. In many cases, uncer-
tainty is described as a boundary around the measurand
[85]. It defines an interval around the measurand that can
be defined as: uB(a) = [a′ − u, a′ + u]. This description
of uncertainty is chosen when the distribution of the occur-
rences is not important. Instead, it is important to know the
limits in this variation [7].

Another popular definition of uncertainty utilizes proba-
bilistic distribution functions [79] uPDB(a). These functions
allow describing the probability density of a measurand to be
located at an arbitrary point in some space. Here, the mea-
surand usually defines the most probable location of the true
value that was captured. A prominent choice of probabilis-
tic distribution functions are Gaussian distribution functions.
[47].

3.2 Quantification of uncertainty

To achieve an uncertainty definition, proper uncertainty
quantification is required. Themost importantmethodologies
can be roughly separated into four categories: forward uncer-
tainty quantification, sensitivity analysis methods, response
surface methods, and dimension reduction methods [76]. We
will explain each category briefly in the following.

Most of the uncertainty forward propagation techniques
aim to assign a statistical distribution for each of the model
parameters considered to be uncertain. A summary of these
techniques can be found in [72] and these techniques are
referred to as forward uncertainty quantification (FUQ).

Sensitivity analysis methods (SAM) can be used for
uncertainty quantification. Here, the idea is to provide amea-
sure of the variability of input parameters in a system. As a
result, the effect of variability of input parameters on the
output of a system can be described [4].

Response surface method (RSM) approximation tech-
niques aim to build a mathematical model by providing
a simplified meta-model mostly using linear or quadratic
functions [41]. These methods are used to reduce the com-
putational effort in large and complex systems.

As parameter analysis can be computationally expen-
sive, dimension reduction methods (DRM) can be utilized
for uncertainty quantification [17]. These techniques aim
to reduce the set of input parameters to facilitate uncer-
tainty quantification. A summary of dimension reduction
approaches can be found in [103].

As there exist a variety of uncertainty quantification
approaches, a proper approach fitting the current applica-
tion has to be chosen. Unfortunately, there is no clear way to
choose the right approach, as this decision is always depend-
ing on the use case, the underlying data, and the goal. Still,
Skyu et al. [101] proposed guidelines that should be consid-
ered when selecting an uncertainty quantification, which will
be summarized in the following.

• Uncertainty quantification should be invariant to data
transformation and parameterization of the model

• Uncertainty quantification should reflect the informative-
ness of the observed data for the underlying process

• Uncertainty quantification should be amenable to be
probed empirically for possible violations

• If an uncertainty quantification is not sufficiently accu-
rate, it should be possible to diagnose potential problems
in the model and ways to correct them

3.3 Propagation of uncertainty

The propagation of uncertainty is an important issue when
data (including their uncertainty) is transformed. Although
there is an explicit component that is in charge of handling
the incoming data in the VA cycle, all other components of
the VA cycle produce data in some manner. While piping
data through the VA cycle, this data gets manipulated by the
hypothesis, visualization, and insights component.

Data is mostly propagated through mathematical opera-
tions O . This is not limited to the data component itself,
but can also express data points inherent in the hypothesis,
visualization, and insights component. These operations do
not solely affect the data, but also the attached uncertainty.
Besides, mathematical operations are affected by the uncer-
tainty of their operands. This results in the need to adjust
mathematical operations to be able to handle uncertainty, as
shown in Fig. 2.

In order to extend mathematical operations, an operation
O is modified to O , where O : a → a∗. This means that
in addition to the attribute a itself, an uncertainty quantifica-
tion u(a) is required. To accomplish a manipulation of a∗,
three computational paths are required: first, the manipula-
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Fig. 2 Pathways of uncertainty propagation. When an operation O is
applied to an attribute a at an arbitrary point in the VA cycle, an adapted
function O needs to be applied to the uncertainty of the attribute. Note
that these attributes can be arbitrary point in the VA cycle and are not
limited to the data component. The uncertainty of the attribute influences
the function O . In addition, uncertain values need to be adapted by a
damping factor d

tion of the attribute itself (O(a)). Second, the manipulation
of the uncertainty quantification of the attribute (O(u(a))),
and third, a damping factor that manipulates the influence of
an attribute according to its uncertainty d(u(a)).

An uncertainty-aware formulation of O can be achieved
by:

O∗(a) = (O(a) · d(u(a)), O(u(a))) (1)

where d(a) is the damping factor of each attribute. d(a) can
be defined as:

d(u(a)) =
{
e−u(a) u(a) > 0
1 else

(2)

This means that every time an attribute is utilized in a
mathematical operation, the attribute value will be damped
when the respective uncertainty is high. When uncertainty
is zero, the attribute value will be fully considered. Fur-
thermore, all mathematical operations that are applied to
an attribute will be applied to the uncertainty quantification
of this attribute. Here, the function O is dependent on the
mathematical function O and can be derived considering the
uncertainty propagation rules summarized by Gillmann et al.
[36].

3.4 Accumulation of uncertainty

As shown above, uncertainty can be introduced into the VA
cycle at all components, or multiple sources of uncertainty
can affect one component. This results in the need for amech-
anism that allows the accumulation of uncertainty.

The accumulation of uncertainty can, in principle, be
achieved by arbitrary accumulation functions. Cai et al. [16]
presented a survey of aggregation functions. In the VA pro-
cess, a proper aggregation function needs to be able to
aggregate all sources of uncertainty in the VA cycle in an
orderly manner, also allowing the user to adjust the impor-
tance of all sources of uncertainty in the VA cycle. This is

required, as users may need to determine which sources of
uncertainty are more important than others or even discard
specific sources.

3.5 The role of uncertainty in visual analytics

Keim et al. [64] proposed that the inclusion of uncertainty
into the VA cycle is a non-trivial task. This is due to a variety
of sources of uncertainty in this cycle. This section aims to
summarize these sources to create a basis for the required
adaptations in the VA cycle to make it uncertainty-aware.

In fact, each main component of the VA cycle can intro-
duce uncertainty, as shown in Fig. 3. The sources of uncer-
tainty can have different origins: uncertainty based on the
underlying model (epistemic uncertainty), statistical uncer-
tainty resulting from variations in the measurement result
when running an experiment multiple times (aleatoric uncer-
tainty), and subjective uncertainty resulting from humans
interacting with the VA system.

Data Starting from the input dataset, uncertainty can be
introduced into the VA cycle by data incompleteness, finite
instrument resolution, non-representative sampling, varia-
tions in observations, and incomplete knowledge about the
measurand [11]. An example would be medical measure-
ments of blood sugar over time, where patients miss to
perform the measurement on a regular basis. By definition,
these sources of uncertainty are aleatoric. In this area, for-
ward uncertainty quantification can be used to tackle all
mentioned sources.

Hypothesis When considering hypothesis, uncertainty
can be introduced by parameter uncertainty. This means that
computational models often require parameters, which can
be hard to find in many cases or it is hard to determine if
a chosen parameter is optimal [83]. By model, we refer to
the computational theory that is used to transform the input
data. Furthermore, the computational model itself introduces
uncertainty into the VA cycle. Models are incomplete or
approximate physical behavior of natural phenomena by def-
inition. As our knowledge of the world and computational
power is limited, hypothesis forming is affected by uncer-

Fig. 3 Sources of uncertainty in the VA cycle
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tainty [33]. An example would be a simulation of stiffness in
a particular material where boundary conditions need to be
set, as not all physical behavior in the world can be modeled.

Visualization In terms of visualization, uncertainty can
be introduced by the mapping of visual variables of the visu-
alization algorithm, as well as the resolution of the display
device [84]. Also, users reviewing the shown visualization
can introduce uncertainty into the VA process that stems
from perceptual uncertainty, memory uncertainty, and think-
ing uncertainty [28]. Here, an example would be that users
might fail to perceive depth in a volume rendering due to
inappropriate visualization approaches.

Insight At last, uncertainty can be introduced into the
VA cycle while creating a hypothesis. Here, users can intro-
duce uncertainty through a decision-making bias. Thismeans
that users may tend to ignore VA results, as they might be
biased by previous results. The experience and knowledge
of domain experts can also introduce uncertainty into the VA
cycle [114]. This also relates to further disciplines as cog-
nition theory and psychology, as uncertainty in the human
component is hard to handle [29]. Enke andGraeber provided
a theoretical framework to address this issue and performed
experiments on how humans deal with uncertainty. Their
findings indicate that uncertainty is perceived very differently
depending on the decision maker. Still, the authors indicate
that uncertainty needs to be communicated and discussed to
allow a secure decision making.

Please note that not all mentioned sources of uncertainty
are present in each scenario where VA is applied. Also, cases
exist where a specific source of uncertainty may be present,
but is neglected as its influence is too small. This decision
is highly dependent on the use case, data source, and user.
Still, one or even multiple sources of uncertainty are likely
introduced into a specific implementation of the VA cycle.

4 Uncertainty-aware visual analytics

In this work, we aim to provide a description of UAVA that
allows visualization researchers to get a quick overview of
the necessary steps that need to be accomplished when being
confronted with an application affected by uncertainty.

This includes two important adaptations to the traditional
VA cycle. First, all existing components and connections in
the VA cycle need to be extended or adapted to incorporate
uncertainty information. Second, the existing traditional VA
cycle does not hold mechanisms to insert uncertainty knowl-
edge into the VA cycle and keep track of them, which means
that there are missing components and connections in the
classic VA cycle that need to be added.

To make this process more understandable, we would like
to use a hands-on example that shows how the different
steps and components that are defined in the following can

be implemented explicitly. Therefore, we use a real-world
example from the domain of medicine [36]. Here, a key-
hole surgery is planned to remove a brain tumor. Therefore,
a secure way through the patient’s brain is required under
uncertain conditions.

At first, we will follow the definition of the VA cycle by
Keim et al. [65], as shown in Fig. 1. The adapted cycle is
shown in Fig. 4, where all components and connections are
listed in Table 2. In this work, the VA cycle is composed of
four components:

• Dataset (�)
• Hypothesis (�)
• Visualization (�)
• Insight (�)

The components are connected by operations required in
the VA process. These operations are encoded as connections
between components and are defined as functions that trans-
form one component into another. We sort these operations
into the four main components according to where they fit
best.

Please note that all connections originating from the clas-
sic VA process will be marked by a box (�) in the respective
color of the category they belong to.

To describe a complete UAVA cycle, we need to introduce
two novel components and several connections to already
existing components. Namely, the novel components are:

• U-Dataset (�)
• Provenance (�)

The novel connections include uncertainty quantification
and provenance generation concerning the existing compo-
nents and connections of the VA cycle. Please note that all
novel components will be marked by a triangle (�) in the
respective color throughout the entire manuscript for smooth
reading. The presented description will be structured along
with the six components we defined.

4.1 Dataset S

Adataset S is a very general concept that consists of n records
(r1, r2, . . . , rn), where each record ri , consists ofm observa-
tions, variables, or attributes (a1, a2, ..an). An attribute ai is
a single entity such as a number or symbol. A dataset holds a
structure that can be syntactic or semantic [118]. They can be
generally defined as a function t . These relations are normally
used to differentiate various types of data, e.g., attributes that
are aligned on a grid are usually referred to as image data.

Based on the respective problem description, a dataset
S is generated to be analyzed in the VA cycle. In contrast
to the classic definition of the VA cycle, an UAVA cycle
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Fig. 4 UAVA. Starting from an input dataset, a U-Dataset can be cre-
ated. This U-Dataset can be utilized to create an uncertainty-aware
hypothesis or an uncertainty-aware visualization. Based on these anal-

ysis techniques, an uncertainty-aware insight can be generated through
user interaction and provenance creation. The uncertainty-aware insight
can be fed back into the Dataset or U-Dataset component

requires mechanisms that allow extending the dataset into
an uncertainty-aware U-Dataset. The required steps in this
process will be explained in the following.

4.1.1 Preprocessing DW �

The classic VA cycle allows processing of the input dataset
by four different operations: data transformation DT , data
cleaning DC , data selection DS , and data integration DI . Up
to the point, where no uncertainty definition or quantifica-
tion has been performed, these operations can be applied as
defined in the classic VA cycle. Although data preprocessing
is an important or even indispensable step in the VA cycle, it
is not recommended to apply it before uncertainty definition
and quantification have been achieved [15].

4.1.2 Uncertainty quantification QS �

Depending on the data format, application, and task that
the user needs to fulfill, proper uncertainty quantification is
required. In this scenario, aleatoric uncertainty is of interest.
This holds for each record (and its attributes) in a dataset, as
well as for the relations defined in the dataset. There exist
a variety of datasets that are acquired in conjunction with
an uncertainty quantification such as molecular data. In this
case, uncertainty quantification of the input dataset can be
neglected if the provided uncertainty quantification expresses
the uncertainty of the input dataset well enough.

Hands-OnExample In our hands-on example, the dataset
consists of magnetic resonance imaging of the patients’ brain
that shows the tumor. Therefore, forward uncertainty quan-
tification can be used to provide an understanding of which
areas in the medical record are more trustworthy than others.

Table 2 UAVA cycle components and transformations overview

Dataset S

DW � Preprocessing

QS � Uncertainty quantification

U-Dataset S

DW � Uncertainty-aware data preprocessing

U-Visualization V

QV � Uncertainty quantification

VS � Generation from U-datasets

UV � User interaction

VH � Hypothesis generation

U-Hypothesis H

QH � Uncertainty quantification

HS � Generation from U-datasets

UH � User interaction

HV � Visualization generation

UA Insight I

QI � Uncertainty quantification

UCH � Generation from hypothesis

UCV � Generation from visualization

F(S) � UA Feedback loop

Provenance

PS � Generation for U-datasets

PV� Generation for UA visualization

PH� Generation for UA hypothesis

PI� Generation for UA insight

As a result, each pixel of the image obtains an uncertainty
quantification.
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4.2 U-dataset S

Resulting from the input dataset S in conjunction with the
extracted uncertainty quantification QS̄ , we aim to achieve
an uncertainty-aware dataset (U-Dataset) S.

As a first definition, we require the uncertainty of an
attribute. Let a be an attribute, and A be the set of all
possible values for a, then a = (a, u(a))) is the uncertainty-
aware description of the attribute a. Here, u(a) describes
aleatoric uncertainty, and A holds all possible uncertainty-
aware descriptions of the set of attributes a. Attributes can
be single measurands, but in the following, they can also
contain entire datasets (large and complex data). This means
that dataset combinations such as multi-field data or ensem-
ble datasets are explicitly possible.

The uncertainty quantification of a dataset can also affect
the function t , expressing the relation within the dataset.
Resulting from this, uncertainty quantification can result
in a novel function t = (s, u(t)) that allows to express
uncertainty within the relation function. One example is the
connection between points within a graph. Here, the func-
tion that defines the relationship between data points can be
adapted to capture the degree of certainty that the respective
points are connected.

4.2.1 Uncertainty-aware data preprocessing DW �

Once an uncertainty-aware dataset is achieved, preprocess-
ing operations can be applied to transform the dataset into
a format that allows the creation of hypotheses or apply
visualization approaches. Here, data transformation DT , data
cleaning DC , data selection DS , and data integration DI are
available, as defined in the original VA cycle. Still, they need
to be adapted to be uncertainty-aware.

The transformation of data is concerned with an appli-
cation of mathematical functions to describe the transfor-
mation. As we consider U-Datasets in the UAVA cycle in the
form S = (S, u(s)), we require mathematical operations that
can be applied in this setting. Here, three different pathways
have to be followed, as shown in Fig. 2.

In the classic VA cycle as well as in most other data anal-
ysis scenarios, datasets are cleaned, selected, and integrated
into each other to provide a stable dataset that can be pro-
cessed. When considering data cleaning, we propose two
important adaptations in this process: Do not eliminate any
captured data point and merged data points, including their
uncertainty.

When eliminating a data point, the information, no matter
how uncertain it is, is neglected in the VA cycle. No matter
how well selected these points are, the selection is based on
a hypothesis or metric that could be wrong or incomplete. To
avoid this, we propose to find a suitable uncertainty quantifi-

cation that assigns very high uncertainty to the selected data
point.

The merging of data points arises when a phenomenon
is captured in the data multiple times. Here, data points are
merged to avoidmultiple occurrences of the samephenomena
in the dataset. In this case, one must not only merge the
data points. In addition, the uncertainty of the data points
needs to be merged as well, resulting in an accumulation of
uncertainty. This accumulation can be computed based on
the suggestion in Sect. 3.4.

Hands-On Example As usual, the images generated in
medicine require further processing. Histogram equalization
is to enhance the underlying image. In this example, the his-
togram equalization is not solely manipulating the image
itself, but also the underlying uncertainty quantification. The
result is a contrast enhanced MRI with an included uncer-
tainty quantification.

4.3 U-hypothesis H

A hypothesis is a supposition or proposed explanation made
based on limited evidence as a starting point for further
investigation. To achieve this, the null hypothesis is usually
utilized. In this case, a hypothesis is formed and tested. Then,
the hypothesis can be either rejected or fail to be rejected.

In the classic VA cycle, the component hypothesis H is
described as a general tool to create insight or knowledge
based on statistical analysis. When considering hypotheses
that are based on uncertainty-aware datasets, we need to
define an uncertainty-aware Hypothesis H = (H , u(H)).
Here, u(H) describes epistemic uncertainty. As shown in the
UAVA cycle, the hypothesis can be further built from visual-
ization. Still, the visualization can be considered as an input
dataset that allows creating hypothesis. Here, u(H) describes
a confidencevalue for the formulatedHypothesis. Thismeans
that whatever the output of a statistical analysis method is, a
result is composed of the derivedHypothesis H and an uncer-
tainty quantification u(H) of the generated hypothesis. The
generation of an uncertainty-aware hypothesis and possible
interaction methods will be shown in the following.

4.3.1 Uncertainty quantification in hypothesis QH �

As shown in Sect. 3.5, uncertainty can be introduced by
a hypothesis itself, namely through parameter uncertainty,
incompleteness, and approximation of models. For input
parameter uncertainty, we suggest utilizing sensitivity analy-
sis uncertainty quantification approaches [101], or for a high
number of input parameters dimension reduction uncertainty
quantification approaches should be used.

The incompleteness and approximation approach in a
model can be described using model reliability approaches.
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A summary, including an evaluation of these approaches, can
be found in [93].

The quantified uncertainties need to be combined with
the uncertainty quantification that is attached to the input
dataset or the visualization using an uncertainty accumula-
tion approach as described in Sect. 3.2.

4.3.2 Generation from U-datasets�

The generation of an uncertainty-aware hypothesis H can
be described by a function starting from two sources: an
uncertainty-aware dataset (HS : S → H ) and an uncertainty-
aware visualization (HV : V → H ). The latter is part of
the hypothesis/visualization subcycle of VA that will be dis-
cussed in Sect. 4.5.

In the classic VA cycle, the generation of hypothesis
H can be based on a dataset utilizing a set of statistical
analysis tools { fS1, fS2, . . . , fSq}. These statistical opera-
tions need to be redefined to provide an uncertainty-aware
creation of a hypothesis. Fortunately, physicians and engi-
neers are concerned with this issue for decades and massive
literature is available that summarizes the hypothesis gener-
ation based on statistical analysis. Devore [24] summarized
uncertainty-aware descriptions of all standard statistical tests
for uncertainty-aware datasets. It includes average, variance,
standard deviation, the sum of squares, root sum of squares,
pooled variance, linear interpolation, linear regression, sen-
sitivity coefficient, covariance, and correlation. For statistical
approaches that have not been described yet, we suggest the
uncertainty propagation rules described in Sect. 3.3.

During the last decades, machine learning approaches
became increasingly important in the generation of hypothe-
ses and are a standard tool by now. In this context, clustering
approaches are a popular form ofmachine learning. A survey
on uncertainty-aware clustering approaches was presented
by Aggarwal and Reddy [1]. These algorithms are capable
of transforming uncertainty throughout their computational
model and provide an uncertainty-aware hypothesis form-
ing. Neural networks are increasingly popular in providing
hypotheses, as well. Here, Gal provided a state-of-the-
art analysis of uncertainty-aware approaches [34]. Most
popular in this context are deep learning approaches that uti-
lize Bayesian theory [116] to output an uncertainty-aware
hypothesis.

4.3.3 User interaction with hypothesis�

User interaction with a hypothesis usually concerns oper-
ations such as selecting a proper hypothesis generation
algorithm or adapting previous choices. In this context,
the interaction is only allowed to select uncertainty-aware
hypothesis forming operations. In addition, a user may be
enabled to adapt input parameters required for computing

uncertainty-aware hypothesis forming. Here, users need to
be able to not solely set the input parameter J . In addition,
the input parameter needs to be expressedwith an uncertainty
quantification u(J ) as well. Thus, the user should be enabled
to manipulate this uncertainty quantification. The resulting
uncertainty-aware input parameter J = (J , u(J )) needs to
be considered in the uncertainty-aware computation based on
the propagation rules defined in Sect. 3.3. Here, sensitivity
analysis can be utilized to quantify this uncertainty.

Hands-On Example In the hand-on example, the goal
is to understand surgery paths that are planned to remove
a brain tumor. As the choice of these surgery paths mas-
sively affects the patients’ health, depending on the areas
that will be intersected, the goal is to identify different areas
in the patient’s brain. This results in a clear segmentation task
for the given MRI dataset. Therefore, a fuzzy segmentation
approach is selected that assigns a probability to each pixel
to be contained in a specific area. The chosen approach is
highly interactive guiding the user through the segmentation
process. Here, users can review their segmentation results
and adjust the settings of the segmentation algorithm.

Based on the segmentation of the patient’s brain, a probing
is applied that samples different surgery paths according to
their intersection with the identified brain regions. To create
a hypothesis about what surgery paths are more suitable than
others, a query procedure is provided that allows sorting the
tested surgery paths based on user-defined criteria such as
the exclusion of specific areas.

4.4 U-visualization V

Visualization is a key component in the VA cycle. It allows
users to gain valuable insight into the dataset and provide
a natural understanding of the underlying uncertainty [53].
In the UAVA cycle, an uncertainty-aware visualization is
defined as V = (V , u(V )), where u(V ) can describe all
types of uncertainty.

4.4.1 Uncertainty quantification QV �

The visualization process itself introduces uncertainty into
the VA process, namely mapping, perceptual, memory, and
thinking uncertainty, as shown in Sect. 3.5. Dasgupta and
Kosara [23] summarized the need for quality metrics in
visualization that can quantify uncertainty such as mapping
uncertainty. Diamond [25] provided a survey on perceptual
uncertainty and how it can be expressed. Coutinho et al. [20]
described the role of memory and thinking uncertainty when
reviewing a visualization. They propose that the description
of these uncertainties is hard to achieve as human cognition is
very complex and parts of its functionality is still unknown.
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4.4.2 Generation from U-datasets�

The generation of an uncertainty-aware hypothesis V can
be described by a function starting from two sources: an
uncertainty-aware dataset (VS : S → V ) and an uncertainty-
aware visualization (VH : H → V ). The latter is part of
the hypothesis/visualization subcycle of VA that will be dis-
cussed in Sect. 4.5.

Uncertainty-aware visualization is a very active field that
has been researched for decades resulting in a variety of visu-
alization approaches. Still, it only represents one component
of the VA process. Therefore, visualization can be seen as
one computational step in the pipeline.

In general, the utilized visual variables that are considered
to express uncertainty in visualization can be listed as fol-
lows: comparison techniques, attribute modification, glyphs,
and image discontinuity [88]. The choice of uncertainty visu-
alization and the visual variable expressing the uncertainty is
highly dependent on the underlying dataset and the use case,
the VA cycle is designed for.

4.4.3 User interaction with visualization�

User interaction with visualizations can be quite manifold.
A summary of available interaction techniques was given by
Brodbeck et al. [13]. In terms of interaction with uncertainty
visualization, Sacha et al. [96] proposed a suitable user inter-
action with uncertainty-aware visualization approaches as a
fundamental requirement to provide a suitable UAVA cycle.
Still, a summary of all necessary interaction metaphors is
not available. In this context, we would like to suggest the
following considerations when designing uncertainty-aware
interactions for visualization.

First, there needs to be specific selection or zooming oper-
ations that are based on the data uncertainty, not on the data
itself. Second, the result of the current interaction methodol-
ogy needs to provide information about the currently shown
uncertainty and overall uncertainty captured in the dataset.

Hands-On Example The hypothesis generation in the
presented case is highly connected to visualization. First,
the segmentation of different brain regions is achieved via
an interactive visualization. Users are enabled to define and
review brain regions individually to control the result of
the fuzzy segmentation approach. Second, the selection of
surgery paths is assisted with visualization as well. Here,
the surgery paths are mapped and color-coded to provide
an understanding of which brain areas will be affected by
the surgery paths. This also includes the visualization of the
underlying fuzzy segmentation result. The visualization also
provides an interactive backend to control the surgery path
selection.

4.5 The interplay of hypothesis H and visualization V

Hypothesis and visualization together form a subcycle in the
VA cycle defined by Keim et al. This connection forms the
core of the VA cycle and needs to be preserved in the UAVA
cycle that we construct. This cycle can be run arbitrarily
often, which requires specific handling for the uncertainty
accumulated along with these runs.

As shown in Sect. 3.3, there exist propagation rules for
uncertainty. These rules can technically be applied in the
hypothesis/visualization subcycle. Still, the question arises
what knowledge can be extracted from uncertainty-aware
hypothesis and visualization if the amount of captured
uncertainty constantly increases. Here, we suggest setting a
user-selected threshold that allows indicating data points con-
taining a higher uncertainty quantification as this threshold.
As a result, the userwould interactwith the uncertainty-aware
hypothesis and visualization and in each step, increasing the
uncertainty attached to this process. When the user-defined
threshold is exceeded for specific data points, they will be
highlighted and the user can adapt the selections.

The interplay of an uncertainty-aware hypothesis H
and an uncertainty-aware visualization uncertainty-aware
hypothesis V happens in both directions, which will be
explained in the following.

4.5.1 Generation from hypothesis�

The process of generating an uncertainty-aware visualization
based on an uncertainty-aware hypothesis can be described
as VH : H → V . Here, we assume that an uncertainty-
aware statistical analysis has been conducted requiring a
proper visualization. Depending on the output of the statis-
tical analysis, a U-dataset can be created. The specific data
type depends on the underlying statistical analysis approach
and requires a sophisticated visualization approach.Here, the
same rules apply as in Sect. 4.4.2.

4.5.2 Generation from visualization�

Building uncertainty-aware hypothesis from uncertainty-
aware visualizations is defined as the function HV : V → H .
Unfortunately, this process cannot be determined analytically
in its entirety, as it involves the subjective impression of a user
to refine a hypothesis when regarding the available visual-
ization. What can be determined is the user input that leads
to a hypothesis. Here, we suggest letting the user quantify
how certain his selections are to express the uncertainty of
the hypothesis generation at least partially.

In these considerations, user bias are an important aspect
to consider. Szafir [105] provided five suggestions to deal
with this bias:
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• Use diverging colors instead of rainbow color tables
• Avoid animation in the visualization, instead encode
movement statically

• Instead of truncating axes, show relative between values
• Avoid 3D visualization if possible
• Provide a transparent description of the visualization pro-
cess

Hands-On Example In the presented example, the inter-
play between visualization and hypothesis is a crucial
component. Here, uncertainty-aware segmentation results
(hypothesis) are visualized. In addition, the computation of
intersections of surgery tunnels and different areas in the
brain are computed and mapped into a visualization. On the
other hand, the visualization is used as an indicator to cap-
ture if parameters need to be adjusted. In this example, this
can be adaptations of the segmentation approach input or
the selection of desired areas in the human brain. Here, the
description of the subcycle is clearly visible, as this process
can be repeated arbitrarily often.

4.6 Insight I

The term insight I can be defined as knowledge that is gained
during analysis and has to be internalized, synthesized, and
related to prior knowledge [96]. In terms of uncertainty, an
uncertainty-aware insight I = (I , u(I )) is composed of the
insight generated from the UAVA cycle and quantification of
the credibility of the derived result u(I ). Here, u(I ) describes
subjective uncertainty. In reality, insight cannot be defined
mathematically inmany cases, as it is a subjective impression
of the user, often affected by personal bias that runs the VA
cycle. Based on this problem, it might not be possible to
describe the respective uncertainty quantification.

4.6.1 Uncertainty quantification QI �

Insight generated in the VA cycle can be affected by uncer-
tainty due to decision-making bias or experience and knowl-
edge that may keep a user from accepting novel findings.
Lewandowsky et al. [74] stated that knowledge is always
affected by uncertainty. Unfortunately, insights are subjec-
tive, such that uncertainty quantification is hard to achieve.
Most considerations are philosophical rather than computa-
tional [22]. For evaluation purposes, benchmark tasks have
shown to be useful for identifying and assessing analytic find-
ings. Still they are not sufficient in most cases [87]. Here, a
clear strategy of uncertainty quantification is missing.

4.6.2 User interaction to create insights from hypothesis
UCH �

Uncertainty-aware insight generated from an uncertainty-
aware Hypothesis can luckily be quantified mathematically
(to the point where analysis results are interpreted). Here,
uncertainty-aware hypothesis directly implies the uncertainty
of the derived uncertainty-aware insight. In fact, they are
identical, which means u(I ) = u(H).

4.6.3 User interaction to create insights from visualization
UCV �

Throughout the interaction of the user with uncertainty-
aware visualization, insight is generated. This insight can
usually not be described mathematically as it is depending
on a subjective user experience. Here, visualization evalu-
ation approaches come into play, as they offer metrics and
approaches to quantify the amount of insight generated by a
visualization.

In terms of uncertainty visualization, Hullmann et al. [54]
presented a state-of-the-art report that summarizes uncer-
tainty visualization evaluation approaches. These approaches
can be used to at least approximate the insight generated by
an uncertainty-aware visualization approach.

4.6.4 Feedback loop F(S)� and uncertainty-aware
feedback loop F(S)�

As indicated by the classic VA approach, VA is designed
to be a cycle F(S). When generating new knowledge, this
knowledge can act as further data input. As already shown,
generated insight from the UAVA cycle can be of two types:
insight, with uncertainty quantification, and insight without
uncertainty quantification. These types of insight need to be
treated differently. Insights without uncertainty quantifica-
tion that need to be reinserted into the VA cycle are fed back
into the dataset component. This is the reason why an UAVA
cycle still requires the dataset. Starting from here, a suitable
uncertainty quantification needs to be found according to the
data structure of the insight. As the uncertainty of insight
cannot be computed directly in many cases, insight can be
modeled as a normal dataset and then be transferred into a
U-Dataset through a suitable uncertainty quantification as
described in Sect. 3.2.

On the other hand, insights that have an uncertainty quan-
tification need to be inserted in the U-Dataset component, as
there is no uncertainty definition or quantification required.

Hands-OnExample In thepresented example, uncertainty-
aware insights can be made in various ways. Here, users
can use the hypothesis to understand different regions in the
patients’ brain as well as obtain an impression of how safe
the selection of a specific surgery path is. This results in
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the creation of the mentioned feedback loop. First, the seg-
mentation and surgery path analysis result in novel insight
into the structure and composition of the human brain and
the uncertainty inherent in this computation. As shown, this
knowledge can be directly fed back into the VA cycle. On the
other hand, subjective considerations on trust in the visual-
ization and computation techniques cannot be quantified in
terms of uncertainty and need to be fed back into the original
data component.

4.7 Provenance generation�

When running an UAVA cycle, uncertainty will be propa-
gated and accumulated along with the performed operations
of the VA cycle. The importance of provenance analysis and
visualization has been described by Varga et al. [111]. This
implies the tracking of uncertainty throughout each com-
putational step of the VA cycle, referred to as provenance.
Therefore, each time an uncertainty-aware dataset, a hypoth-
esis, or a visualization is created, the current uncertainty
quantification and the respective operation need to be stored
and are subject to further analysis.

We encourage to provide a visualization and interac-
tion tool to let users follow the development of uncertainty
throughout the VA process. This can give users important
hints on which operations caused a drastic increase of uncer-
tainty or at which point the accumulated uncertainty exceeds
a threshold that is known to be the highest amount of uncer-
tainty that still allows for interpretation. Herschel et al. [49]
provided a survey on provenance creation.

4.7.1 Provenance generation for U-datasets PS � and
uncertainty-aware hypothesis PH�

The provenance of data focuses on the history of changes
and movement of data. Data provenance is often heavily
emphasized in computational simulations and scientific visu-
alization, in which significant data processing is conducted.
The history of data changes can include subsetting, data
merging, formatting, transformations, or execution of a simu-
lation to ingest or generate new data [90]. This can be directly
transferred to the uncertainty of a U-Dataset and the uncer-
tainty of a hypothesis.

4.7.2 Provenance generation for uncertainty-aware
visualization PV�

As Ragan et al. [90] stated, visualization provenance is con-
cerned with the history of graphical views and visualization
states. This process is tightly coupled with data transforma-
tion and the interactions used to produce the visualization.
These concepts need to be adapted to provide a prove-
nance generation for the uncertainty in uncertainty-aware

visualization. A survey on available methods in provenance
visualization and user interaction was conducted by Xu et al.
[122].

4.7.3 Provenance generation for uncertainty-aware insight
PI�

The provenance of uncertainty-aware insights needs to
include the component of uncertainty as well. Unlike data
computations, insights are not directly observable in all cases
and so their uncertainty is not observable directly, as shown
in Sect. 4.6. Here, solely quantifiable insights can be included
in the provenance generation of uncertainty.

Hands-OnExample In the described example, there exist
a variety of computational steps as well as a variety of
potential user interactions. To implement the principle of
provenance, all computational steps, their intermediate com-
putational results, and the attached uncertainty to each of
these results are stored and visually communicated in a story
graph. This allows users to understand each computational
step in the UAVA cycle.

5 Opportunities of uncertainty-aware visual
analytics

Based on the proposed UAVA cycle, we aim to provide
prominent approaches that fit in this scope and that can be
considered when designing an UAVA cycle. Here, we struc-
ture the approaches along the components of theUAVAcycle:
(U-)Data (Sect. 5.1), hypothesis (Sect. 5.2), and visualization
(Sect. 5.3).As alreadymentioned, the component insight can-
not be expressed properly; therefore, a clear research gap is
visible and does not obtain a dedicated section here.

5.1 (U)-data

To apply the provided definition of uncertainty to different
data types, the characteristics of each data type has to be
considered. Table 3 shows the most prominent data types
occurring in the context of VA. It holds a short description of
the dataset characteristics as well as a list of different types
of uncertainties occurring in specific data types.

Geospatial data S1 uses geospatial locations or trajec-
tories L . Here, various attributes A are assigned to such a
domain L by a function f : L → A. Therefore, two types of
uncertainty, namely spatial uncertainty and attribute uncer-
tainty [75], are found in such datasets. Spatial uncertainty
origins from the underlying areas or trajectories that can be
displaced or shifted in shape, deviating from the stored data.
Attribute uncertainty, on the other hand, describes the uncer-
tainty of data attributes themselves. Both types of uncertainty
are illustrated in Fig. 5a by showing positional and attribute
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uncertainty. Li et al. [75] described how analytic models can
be utilized to achieve uncertainty quantification.

Graph data S2 connects a set of nodes V via links E
creating a network called graph. These nodes and links can
hold various attributes, provided by functions f : V → A
and g : E → A. Graph data can hold three different types of
uncertainty [61]. First, the presence of a node can be uncer-
tain. Second, a link between nodes can be uncertain, and
third, the attributes contained in nodes or links can be uncer-
tain. It should be noted that the position of visualized nodes
is not a fundamental uncertainty, as it is derived from the
graph description or some graph-drawing algorithm. Engel
et al. [27] provided an uncertainty quantification for graph
data. A visual indication of these types of uncertainty can be
found in Fig. 5b.

Field data S3 can contain scalars, vectors, and tensors
(attributes A), often arranged on some grid. This grid is
defined by a set of positions and neighborhood relations on
those given positions. The result are cells or positions with
neighborhood information about their adjoined cells or posi-
tions,while each cell holds its attribute L . They are connected
by a function f : P → A where P is the set of positions
or set of cells. Here, two types of uncertainty can occur, as
depicted in Fig. 5c. Both positions, as well as the attributes
defined over P can be uncertain [45]. It is important to note
that each attribute valuemay be affected by uncertainty to dif-
fering extents. This means, for example, that vector entries
can have varying uncertainty depending on their dimension.
Potter et al. [88] provided a summary on uncertainty quan-
tification for field data.

High-dimensional data S4 is defined by a dimension N
that determines the number of attributes A contained in one
entry. N is a larger number, usually higher than 10, even
though someauthors talk about high-dimensional data if N >

3. Here, only attribute uncertainty needs to be considered, as
shown in Fig. 5d.

Temporal data S5 contains attributes A that are sorted
along a time line T utilizing a function f : T → A. These
attributes can bemanifold andmay be of any type of data that
was mentioned before. Here, two types of uncertainty arise:
time uncertainty and attribute uncertainty [18], as shown in
Fig. 5e. Each point in time can be affected by uncertainty
as well as the attribute attached to this point in time. Zhen
et al. [52] demonstrated the quantification of uncertainty in
temporal data.

Text/Document data S6 is data in the form of text or doc-
uments that hold attributes A at a specific character position
P . This connection is given by the function f : P → A.
Here, two types of uncertainty can arise, as shown in Fig. 5f:
Document uncertainty and attribute uncertainty [66]. Each
document can have an overall uncertainty and all of its entries
can be affected by uncertainty. Quantification of uncertainty
in textual data was given by Kerdjoudj et al. [66].
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(a) Spatial Data [89] (b) Graph Data [99] (c) Field Data [57]

(d) High-dim. Data [48] (e) Time-dependent Data [55] (f) Document Data [115]

Fig. 5 Different types of data and potential sources of uncertainty. Blue figures represent fixed values, whereas purple figures represent uncertainty
that can be contained in the data. a Spatial data. b Graph data. c Field data. d High-dimensional data. e Time-dependent data and document data (f)

5.2 Hypothesis

In the area of hypothesis, Keim et al. [63] described five
different types of data analysis approaches for hypothe-
sis forming: statistical analysis, supervised learning, cluster
analysis, rule mining, and dimension reduction.

In general, each computation that is made based on U-
Data needs a propagation of uncertainty. Here, error and
uncertainty propagation approaches can be used [71]. These
computations provide rules that can transform uncertainty
attached to data points, according to the underlying transfor-
mation of these points. Alternatively, these computations can
be accomplished by Bayesian error propagation [92].

Supervised learning aims to learn a function thatmaps an
input to an output based on example input-output pairs. Here,
machine learning, especially using neural networks, plays an
important role. Naturally, models, such as machine learning,
hold a high potential for epistemic uncertainty. The work
that has been accomplished targeting epistemic uncertainty
in supervised learning was summarized by Zhou et al. [126].

Cluster analysis is a common approach for hypothe-
sis generation. It defines a broad field where a variety of
approaches have been developed [123]. A subgroup of these
approaches is well suited for UAVA, defined as fuzzy cluster
analysis [125]. Here, data points are not strictly distributed

into different classes. Instead, fuzzy clustering aims to com-
pute a probability that a data point can be contained in a
class.

Rule mining is a rule-based machine learning method for
discovering interesting relations between variables in large
databases [62]. Due to the nature of these rules, they are
often not able to express and handle uncertainty. Still, there
exist approaches that aim to extend these computations such
that the determined rules can cover uncertainty information
[101].

Dimension reduction approaches aim to minimize the
dimensionality of data points to find important dimensions
and ease the understanding of the data. The approaches are
manifold [32]. Unfortunately, there does not exist a struc-
tured summary of dimension reduction approaches that can
handle uncertainty. Still, there exist examples of prominent
dimension reduction approaches such as the uncertainty-
aware principal component analysis [42].

5.3 Visualization

Visualization plays a crucial role when uncertainty-aware
data or a hypothesis is generated. The chosen visualization
is highly related to the underlying data (or the dataformat
of the hypothesis). In the following, we aim to summarize
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(a) Spatial Data [89] (b) Graph Data [99] (c) Field Data [57]

(d) High-dim. Data [48] (e) Time-dependent Data [55] (f) Document Data [115]

Fig. 6 Uncertainty-aware visualization approaches for different types of data. a Spatial data. b Graph data. c Field data. d High-dimensional data.
e Time-dependent data and f document data

visualization approaches that can be used to visualize the
data categories in Sect. 5.1.

Visualizations of uncertainty-aware spatial data include
earth, space, and environmental sciences [119], urban sci-
ence [104,106], terrain visualization , [110], and geo-
graphic/geospatial visualization [81]. An example is shown
in Fig. 6a, providing the uncertainty in predicting wildfires,
color-coding a map of terrain at risk.

Uncertainty-aware graph-baseddata, occurring in applica-
tions like business and finance [44,113], social and informa-
tion sciences [6], sensor networks [26,102], bioinformatics
[112], and cybersecurity [3], can be visualized by a vari-
ety of approaches. These approaches are usually based on
uncertainty-aware graph-drawing algorithms. An example
where edge and node attributes that contain uncertainty are
visually encoded by areas of varying sizes is given in Fig. 6b.

Uncertainty-aware field data visualizations can be found
in mathematics, physical sciences and engineering [77],
multimedia(image/video/music) [120], biomedical andmed-
ical [45,68,94] applications. Here, the visualization highly
depends on the attributes that are encoded in the respective
field and can be seen as tables containing a variety of values.
An example of uncertainty-aware visualization using diffu-
sion tensors is shown in Fig. 6c. The surrounding transparent
surfaces indicate the varying visual appearance of the visu-
alized tensor.

Uncertainty-aware high-dimensional data can be found in
a variety of applications. Hoffmann et al. [51] provided a
survey of potential visualization approaches. An example of
uncertainty-aware parallel coordinates visualization is given
by Fig. 6d. Instead of visualizing lines between axes, the
images visually indicate areas with varying occurrences of
connecting lines.

Uncertainty-aware time-dependent data often occurs in
digital humanities [108], as well as robotics [86]. A timeline
visualization utilizing different glyphs to indicate the uncer-
tainty of specific time steps is shown in Fig. 6e.

Uncertainty-aware text/document data can occur in nearly
all kinds of applications. Prominent examples are digital
humanities [108] and software visualization [5].

The visualization strongly depends on the underlying text
that is visualized.Avisualization of a tag cloud that is adapted
according to the uncertainty of the underlying words is pro-
vided by Fig. 6f. Uncertain words are shown with a lower
opacity compared to certain words.

6 Open challenges

Although we described an UAVA cycle and show how it can
be applied to a variety of cases, there remain open prob-
lems that need further investigation. They separate into two
groups: open problems that result from the VA cycle (see

123



Uncertainty-aware visual analytics: scope, opportunities, and challenges 6361

Sect. 6.1) itself and open problems that result from the inclu-
sion of uncertainty (see Sect. 6.2).

6.1 Open problems that result from the visual
analytics cycle

Generalization In this paper, we showed that the VA cycle
can be extended to include uncertainty. Although this is
a suitable extension for many real-world problems, there
exist further cases that cannot be treated with the classic
VA cycle. These cases include ensemble datasets or multi-
modal datasets. Here, proper extensions of the VA cycles are
required.

Proper description of the insight As shown in this
manuscript, the insight that can be generated using a VA
cycle, regardless of whether it incorporated uncertainty or
not, cannot be quantified properly. This is because the insight
is mainly depending on the user of the provided cycle. Here,
proper quantification approaches of the insight are required
that may drive the development of VA cycles.

Approximation of the amount of knowledge that is gen-
erated by a visualizationAs shown in Sect. 4, the amount of
insight that can be generated based on visualization cannot
be quantified so far. Based on this problem, the uncertainty
of the insight also lacks proper quantification. Although the
amount of knowledge that can be created by visualization is
a highly subjective process depending on the user, at least an
approximation of the knowledge would be beneficial. This
would contribute to classic VA as well as UAVA.

6.2 Open problems that result from the inclusion of
uncertainty

Selection of proper scenariosA further open problem is the
question whether UAVA is required in a specific scenario.
Naturally, the extension of the classic VA cycle requires fur-
ther resources. There might exist cases where the effect of
uncertainty can be neglected or where the effort in extend-
ing an UAVA cycle might be too big in comparison with the
insight that is generated.

Survey of existing techniques We showed that there
exists a variety of work that deals with UAVA in many
applications and for many data types. Still, a holistic state-
of-the-art report in this area is missing. Such a report may be
a good starting point for researchers that start in the field and
need to understand what possibilities they have. In addition,
further open problems in the field could be identified.

Construction of UAVA cycles In this work, we showed
that an UAVA cycle can be described. A logical next step
would be to determine a standardized way to construct such
a cycle. A good starting point might be the use of a classic
VA cycle, then deriving rules on how to provide uncertainty

awareness. There exist several approaches to construct a VA
cycle that may assist as a starting point [30,121].

Frameworks/libraries with ready-to-use UAVA appr-
oaches In this work, we identified multiple steps in the
UAVApipeline that can be accomplished by existingmethod-
ologies. Examples are the determination and description of
uncertainty-aware datasets, adaptation of preprocessing and
hypothesis generation approaches, and provenance genera-
tion. In this context, frameworks or libraries that provide at
least the uncertainty-aware visual analytic steps that can be
standardizedwould be amassive contribution to theVA com-
munity. Gillmann et al. [40] provided a survey on uncertainty
awareness in open-source visualization solutions, which can
be a great starting point for the creation of an UAVA frame-
work. To the best of our knowledge, the implementation of
such a framework was not conducted so far.

Teaching of uncertainty-aware principles Although
uncertainty is an effect that is occurring in nearly all data
acquisition processes, the application of uncertainty-aware
analysis techniques, in general, is often a neglected point.
This can be due to a variety of reasons. One major rea-
son is that uncertainty-aware analysis principles are rarely
taught to students. Here, lectures on UAVA would help new
visualization researchers to understand the problems of data
that is affected by uncertainty, giving them the awareness of
principles that have to be kept in mind when dealing with
uncertainty in datasets.

Approximation of knowledge uncertainty As men-
tionedbefore, the amount of uncertainty in insight canonly be
quantified in the case that the extracted knowledge is based on
an uncertainty-aware hypothesis. This is an important open
problem for UAVA as this distorts the feedback loop in the
analysis cycle. Although we proposed two feedback cycle
connections, the right one has to be picked. Here, suitable
approaches to quantify insight and its uncertainty are highly
requested.

The missing link between ensemble visualization and
uncertainty visualization In contrast to uncertainty visual-
ization, an ensemble visualization is concerned with visu-
alizing multiple datasets representing the same captured
scenario. Still, these disciplines are closely related. There are
approaches available, where uncertainties can be generated
from ensembles or ensembles that can be generated from an
uncertainty distribution. Ensemble visualization is a highly
active research field [117], providing a massive amount of
VA solutions. Unfortunately, the link between these two
disciplines is not defined properly. If one could arbitrarily
transform ensemble datasets into uncertainty datasets, both
disciplines could benefit from each other.
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7 Conclusion

In this work, we described an UAVA cycle. Here, the original
VA cycle is extended such that uncertainty can be quanti-
fied, propagated, and communicated in each component of
the VA cycle. This results in a holistic mechanism to tackle
uncertainty originating from data, models, and humans in
VA approaches. We showed how to use this concept to tackle
different types of input data as well as various use cases. As
a result, we were able to formulate a variety of open prob-
lems originating from the VA cycle and the incorporation of
uncertainty.
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