
Vol.:(0123456789)

SN Computer Science (2022) 3:249
https://doi.org/10.1007/s42979-022-01102-3

SN Computer Science

ORIGINAL RESEARCH

Synthesis of Parallel Software from Heterogeneous Dataflow Models

Omair Rafique1 · Klaus Schneider1

Received: 2 October 2021 / Accepted: 21 March 2022 / Published online: 26 April 2022
© The Author(s) 2022

Abstract
Dataflow process networks (DPNs) are intrinsically data-driven, i.e., node actions are not synchronized among each other
and may fire whenever sufficient input operands arrived at a node. While the general model of computation (MoC) of DPNs
does not impose further restrictions, many different subclasses of DPNs representing different dataflow MoCs have been
considered over time. These classes mainly differ in the kinds of behaviors of the processes. A DPN may be heterogeneous in
that different processes in the network belong to different classes of DPNs. A heterogeneous DPN can therefore be effectively
used to model and to implement different components of a system with different kinds of processes and, therefore, different
dataflow MoCs. This paper presents a model-based design based on different dataflow MoCs including their heterogeneous
combinations. In particular, it covers the automatic software synthesis of systems from DPN models. The main objective is
to validate, evaluate and compare the artifacts exhibited by different dataflow MoCs at the implementation level of systems
under the supervision of a common design tool. Moreover, this work also offers an efficient synthesis method that targets and
exploits heterogeneity in DPNs by generating implementations based on the kinds of behaviors of the processes. The proposed
synthesis method provides a tool chain including different specialized code generators for specific dataflow MoCs, and a
runtime system that finally maps models using a combination of different dataflow MoCs on cross-vendor target hardware.

Keywords Dataflow process networks · Heterogeneity · Automatic synthesis

Introduction

The State of the Art

In a model-based design of embedded systems, we start by
focusing on models that describe the functional behavior of
the system. These models are hardware independent and are
based on a particular model of computation (MoC). A MoC
determines why, when, which atomic action of a system is
executed. A model-based design is typically equipped with
a tool chain that following a correctness-by-construction
approach finally produces executable code. The code can

then be deployed on the target hardware such as a CPU,
a GPU or even an FPGA depending on the target applica-
tion. Depending on the application as well as on the target
architecture, different MoCs have their own advantages and
disadvantages.

For example, when it comes to real-time systems, the
synchronous reactive (SR) [5, 6, 43] MoC greatly simpli-
fies many efforts in the validation and verification. In fact, it
has proven its usefulness both on single-core and multi-core
platforms, as well as on application-specific hardware plat-
forms in safety critical applications such as avionics [12] and
other embedded system industries. However, when it comes
to soft real-time applications such as streaming and signal
processing [28], performance and design flexibility are often
dominant factors over safety, and commercial off-the-shelf
(COTS) heterogeneous hardware platforms are preferred
[2]. The generation of distributed implementations is often
desired for such applications where different components are
mapped and executed on different computing units (devices).
For such applications, especially when implemented on het-
erogeneous platforms, synchronization and communication

This article is part of the topical collection “Model-Driven
Engineering and Software Development” guest edited by Slimane
Hammoudi and Luis Ferreira Pires.

 * Omair Rafique
 rafique@cs.uni-kl.de

 Klaus Schneider
 schneider@cs.uni-kl.de

1 Department of Computer Science, University
of Kaiserslautern, Kaiserslautern, Germany

http://orcid.org/0000-0003-3360-5578
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01102-3&domain=pdf

 SN Computer Science (2022) 3:249249 Page 2 of 34

SN Computer Science

overheads caused by synchronous semantics often reduce
the performance [1].

Instead, asynchronous models or dataflow process net-
works (DPNs) [11, 22, 23] are well-suited for the implemen-
tation of such systems. In particular, they explicitly expose
the concurrency of applications and thereby simplify their
execution on parallel and heterogeneous architectures. How-
ever, it is not beneficial to start with DPNs in model-based
designs since DPNs do not lend themselves well for simula-
tion and verification. In particular, major correctness proper-
ties like buffer boundedness and absence of deadlocks are
not decidable for general DPNs [18, 29]. Therefore, both
SR and DPNs have their own advantages and disadvantages.

As an alternative, desynchronization of synchronous
models [4, 19] has been developed that benefits both from
the static analysis methods for synchronous systems and the
performance of the finally synthesized asynchronous sys-
tems. Desynchronization techniques [1, 4, 31] are used to
convert synchronous models into asynchronous ones to more
efficiently support distributed implementations. These tech-
niques preserve the functional specification of the synchro-
nous models and, moreover, preserve properties like dead-
lock-freedom and bounded memory usage that are otherwise
difficult to ensure in DPNs. These desynchronized models
[1, 3] are the starting point of this work. The resulting data-
flow models are free from deadlocks and even buffers with
only single entries are sufficient for a successful execution.

Motivation and Problem Setting

DPNs consist of statically defined process nodes with first-
in-first-out (FIFO) buffered point-to-point connections. The
process nodes are not synchronized among each other and
may fire whenever sufficient data is available for a node.
While the general MoC of DPNs does not impose further
restrictions, many different classes of DPNs have been con-
sidered over time like Kahn process networks (KPN) [22],
(cyclo-)static dataflow (SDF) [30] networks and Boolean
dataflow (BDF) [10] networks. Each class defines a specific
dataflow MoC by specifying a particular execution and com-
munication semantics [16]. These classes mainly differ in
the kinds of behaviors of the processes which affect on the
one hand the expressiveness of the DPN class as well as
the methods for their analysis (predictability) and synthesis
(efficiency). These behaviors are precisely described based
on the underlying semantics of how each process is trig-
gered for an execution, and how each execution of a process
consumes/produces data. A process in a static DPN exhib-
its a static behavior where a statically determined amount
of data is consumed and produced in each execution. Sec-
ond, a process in a KPN has a sequential behavior where
a dynamically determined amount of data is consumed
and produced sequentially in each execution. In contrast, a

process in a dynamic dataflow (DDF) network may have a
parallel behavior that can consume and produce a dynami-
cally determined amount of data in parallel. A DPN may
be heterogeneous in that different processes in the network
may belong to different classes of DPNs. A heterogeneous
combination of particular kinds of processes can be used
to model and implement different components of a system
with different kinds of processes and, therefore, different
dataflow MoCs. A simple example of a heterogeneous DPN
consisting of different kinds of behaviors of the processes is
visualized in Fig. 1.

Design tools for modeling [9, 14, 20, 24, 42, 49] are used
to model and to design parallel embedded systems using
certain MoCs, including different dataflow MoCs. However,
there is a lack of automatic synthesis methods to analyze and
to evaluate the artifacts exhibited by particular MoCs. Sec-
ond, the existing design tools for synthesis like [8, 28, 45]
are usually restricted to the weakest classes of DPNs, i.e., to
cyclo-static and static DPNs where each tool only supports
a specific dataflow MoC. For heterogeneous DPNs offering
heterogeneous combinations of different kinds of behaviors
of the processes, the synthesis method should exploit this
heterogeneity by generating efficient implementations based
on the dataflow MoC of each process.

Apart from efficiency, another crucial challenge is the
portability of applications on different cross-vendor plat-
forms which is not systematically handled by the traditional
design flows. In general, a non-trivial manual effort is finally
required for deploying automatically generated code to a
particular target architecture.

The overall motivation of this work is to enable the auto-
matic software synthesis of systems using different data-
flow MoCs including their heterogeneous combinations.
The main objective is to validate, evaluate and compare the
artifacts exhibited by different dataflow MoCs at the imple-
mentation level of systems under the supervision of a com-
mon design tool. Moreover, the idea is to offer an efficient
synthesis method that exploits heterogeneity in dataflow net-
works by generating implementations based on the kinds of
behaviors of the processes. Finally, this work also considers
the challenge of systematically handling the portability of

Fig. 1 A simple visualization of a heterogeneous DPN. It consists
of different kinds of processes (p0,… , p5) characterized by static,
sequential and parallel behaviors. The processes (p0 … p5) are con-
nected together via FIFO buffered point-to-point channels (f0,… , f5)

SN Computer Science (2022) 3:249 Page 3 of 34 249

SN Computer Science

modeled systems on cross-vendor heterogeneous platforms
as an integral part of the synthesis process.

Contributions

We propose a synthesis design flow that essentially enables
the automatic software synthesis of systems based on dif-
ferent dataflow MoCs. In particular, it supports three differ-
ent dataflow MoCs, namely synchronous (static) dataflow
(SDF) [26], Kahn process networks (KPN) [21], and a deter-
ministic variant of dynamic dataflow (DDF). The common
design tool can be effectively used to generate implementa-
tions based on the individual dataflow MoCs [32, 35, 41].
Moreover, in contrast to existing dataflow oriented synthe-
sis methods, the proposed method efficiently targets and
exploits heterogeneity in dataflow networks by generating
implementations purely based on the kinds of behaviors of
the processes or the underlying dataflow MoC of each pro-
cess [36].

The target DPN model of our desynchronization method
is based on a limited subset of the Cal actor language (CAL)
[13]. The proposed synthesis design flow provides a com-
prehensive tool chain, including different specialized code
generators for specific dataflow MoCs, and a runtime sys-
tem that finally maps models using a combination of differ-
ent dataflow MoCs on the target hardware. The tool chain
essentially offers a platform-independent code synthesis
method based on the open computing language (OpenCL)
[47] abstraction that enables a more generalized synthesis
targeting COTS heterogeneous architectures. In particular,
this work focuses on mapping modeled systems on cross-
vendor multi-core CPUs and many-core GPUs.

The main contributions of this work can be summarized
as follows:

• We propose an automatic model-based synthesis that
allows us to synthesize systems using different dataflow
MoCs, namely the SDF MoC, the KPN MoC and a deter-
ministic variant of the DDF MoC.

• We implemented a platform-independent code synthesis
method for CAL DPN models. In particular, we offer a
synthesis tool chain that automatically synthesizes CAL
models into platform-independent OpenCL code.

• We offer a single back-end based on OpenCL which is
comprised of different specialized code generators for
specific dataflow MoCs.

• We present the runtime system designed under the
OpenCL abstraction for finally deploying DPNs on cross-
vendor COTS target hardware.

Related Work

A number of model-based design tools have been presented
over time for the design and development of embedded
systems. This section covers a number of well-established
design tools, categorized mainly from the perspective of
desired goals, employed strategies and usage as given in the
following sections.

Design Tools for Modeling

The Ptolemy project [9, 14] is a design tool originally con-
structed in a Java-based environment to support the mod-
eling and simulation of behaviors based on different MoCs,
including particular dataflow MoCs. Although the main
focus is to study and analyse different MoCs at the mod-
eling level, it also provides preliminary code generators.1
It requires a supporting helper code for each process which
is provided manually using a fairly complex procedure.
FERAL [24] is another framework developed to provide a
holistic model-based design approach to enable the coupling
of specialized simulators in offline scenarios, i.e., without
connecting them to real hardware. This project very inter-
estingly adopts and extends the concepts from the Ptolemy
project.

The formal system design (ForSyDe) [42] tool offers a
formal design methodology for embedded systems based on
different MoCs including the SR MoC and two particular
dataflow MoCs. Although the major focus of this design
tool is the modeling framework, it also provides a hardware
synthesis tool that has been mainly elaborated for translat-
ing models limited to the SR MoC into the corresponding
VHDL code. Another synthesis plug-in called f2cc2 has been
introduced for generating GPGPU software code from mod-
els limited to the SR MoC.

The SystemC models of computation (SysteMoC) [20]
is an actor-oriented dataflow programming language built
on top of SystemC. Besides supporting different dataflow
MoCs, it also offers the automatic MoC identification of
processes (actors), which is not featured in frameworks
like Ptolemy and ForSyDe. Although the main focus of
SysteMoC has been at the design level, the System-CoDe-
signer [20] framework specializes in automatic design space
exploration starting from SysteMoC models. In particular,
the framework offers a platform-based automatic system
generation from SysteMoC models.

SDF for free (SDF3) [49] is a versatile experimental tool
that can generate random static dataflow graphs (SDFGs)

1 http:// ptole my. berke ley. edu/ ptole myII/ ptII10. 0/ ptII10. 0.1/ ptole my/
cg/.
2 https:// github. com/ forsy de/ f2cc/ wiki.

http://ptolemy.berkeley.edu/ptolemyII/ptII10.0/ptII10.0.1/ptolemy/cg/
http://ptolemy.berkeley.edu/ptolemyII/ptII10.0/ptII10.0.1/ptolemy/cg/
https://github.com/forsyde/f2cc/wiki

 SN Computer Science (2022) 3:249249 Page 4 of 34

SN Computer Science

with support to analyse and visualize these graphs. It sup-
ports three different classes of static DPNs, namely the static
dataflow (SDF) [26], the cyclo-static dataflow (CSDF) [15]
and the scenario-aware dataflow (SADF) [48]. The tool
includes an extensive library of SDFG analysis and trans-
formation algorithms as well as functionality to visualize
and simulate them.

Design Tools for Synthesis

Model-based design tools for synthesis in the related state-
of-the-art mainly differ by their employed MoCs. A number
of dataflow-oriented design tools have been presented where
each tool usually only supports a specific dataflow MoC. To
this end, some of the inspiring model-based design tools for
synthesis are presented in [8, 28, 44, 45] (to name a few).

The framework presented in [45] introduces a design flow
for executing applications specified as SDF graphs on het-
erogeneous systems using OpenCL. However, it only sup-
ports the execution of behaviors limited to SDF.

The work presented in [28] translates DPNs mod-
eled using a subset of CAL to parallel programs based on
OpenCL. The methodology incorporates static analysis and
transformations and thus confined to the synthesis of SDF
models. Similarly, the dataflow oriented framework [8] pro-
poses a dataflow MoC as a symmetric-rate dataflow, a vari-
ant of SDF where the token production rate and the token
consumption rate per FIFO channel is symmetric.

The distributed application layer (DAL) framework [44]
presents a scenario-based design flow for mapping streaming
applications onto heterogeneous on-chip many-core systems.
Behaviors are modeled based on a specific dataflow MoC,
namely the KPN MoC [22], and the execution scenarios are
coordinated using a finite state machine (FSM).

Design Tools Used in Industry

One of the most popular and commercially recognized
model-based design tool Matlab3 has introduced a variety of
supporting toolkits over time. Interestingly, Matlab Simulink
introduced the dataflow domain4 where applications can be
modeled and simulated based on the SDF MoC. The main
objective of introducing the dataflow domain is to improve
the simulation throughput with multithreaded execution.

The Signal Processing Worksystem (SPW) from Cadence
Design Systems5 supports the modeling and analysis of sig-
nal processing algorithms based on static as well as dynamic
dataflow models. The design flow mainly focuses on the

simulation and manual refinement of modeled systems. Sim-
ilarly, CoCentric System Studio from Synopsys6 is a system-
level design solution consisting of tools, methodologies, and
libraries that enables the design and simulation of systems-
on-a-chip. The modeling paradigms can be hierarchically
mixed at all levels for e.g., based on nested dataflow models
and FSMs. The main emphasis of the design flow is the
modeling and analysis of complex systems.

Summary

In general, model-based design tools for embedded systems
that support heterogeneous combinations of MoCs including
different dataflow MoCs are of particular interest for mod-
eling and analysis of complex systems. These frameworks,
developed and evolved over decades, are used to formally
analyse different MoCs for modeling and designing embed-
ded systems. Some of the design tools in this category also
introduced a synthesis facility, supporting platform-depend-
ent synthesis methods usually restricted to implementations
based on particular MoCs. In general, there is a lack of auto-
matic synthesis methods to analyse and to evaluate differ-
ent dataflow MoCs. Second, the existing design tools for
synthesis are usually dedicated to automatically implement-
ing systems based on a specific dataflow MoC. Therefore,
a common synthesis design flow is still needed that mainly
focuses and emphasizes on the automatic software synthesis
of systems based on different dataflow MoCs. Moreover, an
efficient software synthesis method is desired that targets
and essentially exploits heterogeneity in dataflow networks
by generating implementations based on the dataflow MoC
of each process. The features offered by the proposed tool in
comparison to related tools are summarized in Fig. 2.

Fig. 2 Comparison of the proposed framework with related tools

3 http:// www. mathw orks. com/ matla bcent ral/.
4 https:// www. mathw orks. com/ help/ dsp/ ug/ datafl ow- domai ns. html/.
5 https:// www. caden ce. com/. 6 https:// www. synop sys. com/.

http://www.mathworks.com/matlabcentral/
https://www.mathworks.com/help/dsp/ug/dataflow-domains.html/
https://www.cadence.com/
https://www.synopsys.com/

SN Computer Science (2022) 3:249 Page 5 of 34 249

SN Computer Science

Preliminaries

This section highlights the background of this work by pre-
senting some important preliminaries. This includes the
tools and specifications used as essential parts of the pro-
posed design flow.

Dataflow Process Networks

A dataflow process network (DPN) [11, 22, 23] describes the
behavior of a system by distributing it in a set of independ-
ent process nodes that interact with each other only through
FIFO buffered point-to-point channels, as shown in Fig. 1.
Each process performs a computation by firing where it con-
sumes data tokens from its input buffers and produces data
tokens for its output buffers. The behavior of each process
is described by firing rules which are triggered by the avail-
ability of data. The general MoC of DPNs does not impose
further restrictions. However, a number of different classes
of DPNs representing different dataflow MoCs have been
considered over time [16]. These classes mainly differ in
the kinds of behaviors of the processes. These behaviors are
precisely described based on the underlying semantics of
how each atomic process is triggered for an execution, and
how each execution of a process consumes/produces data,
in particular, whether a statically or dynamically determined
amount of data is consumed and produced. Based on that,
the most commonly known classes can be categorized into
static and dynamic DPNs as depicted in Fig. 3.

The latter accommodates DPNs like Kahn process net-
works (KPN) [22], Boolean dataflow (BDF) [10] and the
dynamic dataflow (DDF) networks. Whereas, the former
includes DPNs like static dataflow (SDF) [26, 30], homo-
geneous synchronous dataflow (HSDF) [26] and the cyclo-
static dataflow (CSDF) [15] networks. Static DPNs are
generally characterized as having only processes where the
consumption and production of tokens are neither influenced
by the values of the consumed tokens nor are they depend-
ent on the points in time at which tokens arrive on the input

buffers. Thus, processes in static DPNs always consume the
same number of input tokens from particular input buffers
and produce the same number of output tokens to particular
output buffers. However, they may read different number of
tokens from different input buffers and may write different
number of tokens to different output buffers. On the one
hand, these characteristics allow powerful design-time anal-
ysis techniques (e.g., for performance analysis and verifica-
tion), but on the other hand, they limit the expressiveness by
excluding dynamic behaviors (like select and switch nodes).

In contrast to static DPNs, processes in dynamic DPNs
can vary the consumption and production of tokens in each
firing dependent on the history of the consumed tokens and
also on the tokens to be consumed. This allows conditional
or data-dependent executions of processes; in particular,
each process can produce and consume a different number of
tokens in every firing. This generalization results in higher
expressiveness and flexibility but makes the analysis more
difficult.

In general, DPNs offer a modeling paradigm well suited
for the modeling of concurrent embedded systems. How-
ever, model-based designs starting with dynamic DPNs have
to deal with analyzability issues, i.e., the undecidability of
checking major correctness properties like buffer bounded-
ness and absence of deadlocks. Therefore, implementations
of concurrent and distributed embedded systems from DPNs
like KPNs may suffer from problems like deadlocks and
buffer overflows [18, 29].

Desynchronized DPN Model

As a long-term project, our group developed the Averest7
tool for a model-based design process starting with syn-
chronous models. The Averest project aims at providing a
complete set of tools for the development of reactive sys-
tems. Moreover, the work presented in [1, 3] further pre-
sents a desynchronization design flow based on Averest. The
complete design flow based on Averest is presented in [2].
Since synchronous models are particularly well suited for
analysis, the design flow starts with synchronous models,
verifies them for desynchronization and then translates them
to DPNs for the synthesis of concurrent and distributed sys-
tems. The underlying language of the target DPN model is a
limited subset of CAL. Since, the proposed synthesis method
targets the execution and deployment of DPNs on hetero-
geneous platforms consisting of different types of devices
including GPUs, the desynchronization method generates
stateless dataflow processes. This simplifies not only the tar-
get DPN specification for the final synthesis, but also paves
the way for dynamically handling parallelization in OpenCL

Fig. 3 Categorization of various dataflow MoCs. Different dataflow
MoCs are categorized into static and dynamic ones. The static DPNs
are ones having fixed consumption and production rates. Whereas,
the dynamic DPNs involve variable consumption and production
rates. The analyzability of DPNs is inversely related to their expres-
siveness. The dataflow MoCs supported in this work are highlighted
by colored boxes

7 http:// www. avere st. org.

http://www.averest.org

 SN Computer Science (2022) 3:249249 Page 6 of 34

SN Computer Science

based synthesized implementations. Moreover, because of
the great similarity between synchronous guarded actions
(SGAs) as the Averest intermediate format (AIF) and CAL
guarded actions, the correctness of the translation method
is easily verified.

The target subset of CAL, therefore, simply consists of a
set of guarded actions. Thereby, each generated stateless pro-
cess essentially consists of a set of guarded actions where the
guards are applied to the values of the input tokens. Depend-
ing on the behavior of a particular synchronous module, the
generated process possesses a particular kind of behavior
that precisely determines a particular dataflow MoC. To
exemplify, CAL processes based on different supported
dataflow MoCs are illustrated in Figs. 9, 10, and 11.

Apart from processes, the topology of the network is usu-
ally described using the functional network language (FNL)
based on the XML format [7]. A simple producer-consumer
dataflow network, as shown in Fig. 4, is specified in FNL as
shown in Listing 1. This example shows the two most basic
elements of FNL, namely the Instance and the Connection.
Each Instance field defines a process instance (Lines 2–4 and
5–7), and possibly can even refer to another network. Each
Connection field defines a connection between an input port
and an output port of two instances (Lines 8–11).

Hence, the generated desynchronized CAL code consists
of two parts: the CAL processes and the network description.

Open Computing Language

The open computing language OpenCL [47] has been
designed for parallel computing on cross-vendor and het-
erogeneous architectures. In contrast to proprietary speci-
fication languages with limited hardware choices, OpenCL
allows task-parallel and data parallel heterogeneous comput-
ing on a heterogeneous collection of modern central process-
ing units (CPUs), graphical processing units (GPUs), digital
signal processors (DSPs), and other microprocessor designs
organized into a single platform [25, 46].

A primary benefit of OpenCL is a substantial acceleration
in parallel processing. OpenCL supports both coarse-grained
(task-level) as well as fine-grained (data-level) parallelism.
Second, it provides the ability to write vendor-neutral cross
platform applications. These benefits can be derived by
understanding and exploiting a set of abstract models pro-
vided by OpenCL, as depicted in Figs. 5 and 6. Platform Model

Fig. 4 A simple example of a producer-consumer network

Fig. 5 Overview of the OpenCL architecture: the platform model
provides a standard abstraction of the target hardware. The program
model specifies the behavior of a system typically organized as a host
and several kernels. The execution model describes the mapping of
the program model onto the platform model

Fig. 6 OpenCL memory model consists of five regions: The host
memory is only accessible to the host processor. The global memory
is accessible to both the host and device. The constant memory is
fully accessible to the host and write-protected for the device. The
local memory is only visible to the host and is local to a single com-
pute unit. The private memory is private to an individual work-item
executing within an OpenCL processing element https:// www. khron
os. org/ regis try/ OpenCL/ specs/2. 2/ html/ OpenCL_ API. html

https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_API.html
https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_API.html

SN Computer Science (2022) 3:249 Page 7 of 34 249

SN Computer Science

The OpenCL platform model provides users with a con-
venient abstraction of the target hardware. It is defined
as a host connected to one or more compute devices, each
having multiple compute units (CUs), each of which fur-
ther consists of multiple processing elements (PEs).

A host is typically a CPU running a standard operat-
ing system (OS), while a compute device may be a GPU,
a DSP, a further multicore CPU or any other specific
microprocessor. Each device, therefore, consists of a col-
lection of one or more CUs where each CU can be con-
ceived as, for instance, a core of a CPU, or a streaming
multiprocessor of a GPU. A CU is further composed of
one or more PEs that execute instructions. Each PE can,
therefore, be conceived as, for instance, a streaming core
(or SIMD lane) of a GPU. An OpenCL device, therefore,
executes the instruction computations on the PEs within
the device.

Program Model

The OpenCL program model is comprised of two main
components: the host program and kernels. The host pro-
gram executes on the host, defines device contexts, sets
up command queues of devices and enqueues instances
of kernel executions on devices.

Kernels: A kernel is a C-like function that actually imple-
ments the abstract behavior of the system or part of the
system. OpenCL targets the parallel execution of a kernel
on compute devices by organizing it into a computation
domain. This computation domain is defined when a ker-
nel is mapped for execution on the command queue. Each
independent element of this domain represents the execution
instance of the kernel and is termed as the work-item. Each
work-item performs the same kernel function but on differ-
ent data. OpenCL also allows grouping work-items together
into work-groups, as shown in Fig. 5. All work-items in the
same work-group are executed together on the same com-
pute unit.

Host Program: It resides and executes on the host and is
responsible for setting up and handling the execution of ker-
nels on the compute devices using the defined context. The
context essentially sets up the environment for executing
kernels and is created with a set of devices. After the context
is created, command queues are created where the kernels
are mapped to get executed on the OpenCL devices associ-
ated with the context. Each command queue can represent
a complete device (e.g., a CPU) or even a compute unit of
that device (e.g., a CPU-core).

Execution Model

The OpenCL execution model can be understood as the map-
ping of kernels on the platform model which is implemented
in the host program. Depending on the target compute device
(e.g., a CPU or a GPU), kernels are mapped differently. In
case of GPUs, OpenCL only allows the user to create a com-
mand queue at the level of a compute device. Hence, for a
GPU, a kernel is typically allocated on a compute device, a
work-group is ideally mapped on a CU, and work-items of
that work-group are executed by PEs of that CU, as depicted
in Fig. 5. In contrast, for CPUs, a command queue can be
created at the level of a compute device as well as at the level
of a CU. For the latter, the whole kernel (all work-groups)
are mapped to the same CU (i.e., a core of a CPU).

Memory Model

OpenCL offers a disjoint memory model to programmers
as shown in Fig. 6. This is mainly because OpenCL targets
heterogeneous platforms where most platforms utilize dis-
joint memory systems due to different memory requirements
of different architectures. OpenCL visualizes its target as a
system where data sharing between the host and compute
devices is performed explicitly by a system network, such
as a peripheral component interconnect (PCI) bus. The
OpenCL memory model is organized in five regions con-
sisting of host, global, constant, local and private memo-
ries. For heterogeneous architectures consisting of multi-
ple devices integrated on a single platform, host memory
and device memory are independent of one another. This
requires the explicit handling of data from host memory to
device memory and back to host.

The Design Flow: Overview

The overall design flow can be understood in two parts, i.e.,
the modeling part and the synthesis part as shown in Fig. 7.
In general, the starting point of this work is a desynchronized
model. The desynchronization method based on our Averest
tool finally generates a CAL DPN based on the supported
dataflow MoCs. To this end, a general CAL DPN model is
considered that relies on an abstract notion of a process. A
process is composed of a finite set of actions where each
action can perform a computation by consuming tokens from
input buffers and producing tokens to output buffers. This
general model is used with specific constraints and restric-
tions to specify the precise dataflow MoCs. Each supported
dataflow MoC interprets the behavior of the CAL process
in two parts: (i) process triggering or scheduling and (ii)
process execution. The triggering behavior determines the
conditions under which the dataflow MoC triggers a process

 SN Computer Science (2022) 3:249249 Page 8 of 34

SN Computer Science

for an execution whereas the execution behavior determines
how a process consumes/produces data when it is triggered
for an execution. The framework supports three different
dataflow MoCs, namely the synchronous (static) dataflow
(SDF) [26] MoC, the Kahn process networks (KPN) [21]
MoC and a deterministic variant of the dynamic dataflow
(DDF) MoC. The general DPN model based on the used
CAL subset and the supported dataflow MoCs are described
in Sect. “Modeling: Dataflow Models”. The desynchronized
model consisting of CAL processes and the network specifi-
cation is provided as input to the synthesis phase.

The synthesis part as shown in Fig. 7 provides a compre-
hensive tool chain, including a single back-end that offers
different specialized code generators for different dataflow
MoCs, and a runtime system which finally executes DPNs
on the target hardware. Using OpenCL [47], it incorporates
a standard hardware abstraction for cross-vendor heterogene-
ous hardware architectures. The proposed framework con-
ceptually employs OpenCL as an operating system (OS) in
the sense that it provides: common services for managing the
target hardware, software resources and the implementation
of modeled systems based on the supported dataflow MoCs.
As discussed, OpenCL offers a programming model consist-
ing of a host and several kernels where the host is a cen-
tralized entity that is connected to one or more computing
devices and is responsible for the execution of kernels [33].

The framework adopts this idea of host and kernels for the
synthesis as shown in Fig. 7. The synthesis method uses a
combination of different code generators which generates an
OpenCL kernel for each process in the network based on the
underlying dataflow MoC of that process. In particular, the
generated kernel implements the execution behavior of the

process. A single back-end based on OpenCL is developed
that provides different specialized code generators for spe-
cific dataflow MoCs. Each code generator generates kernel
code based on its underlying dataflow MoC. The runtime
system systematically employs OpenCL as an integral part
of the synthesis and manages the scheduling of processes
and their communication based on the dataflow MoC of each
process. A scheduler is designed for each dataflow MoC that
schedules a process based on the triggering semantics of
the underlying MoC. The runtime system is organized in a
centralized host and kernels architecture under the OpenCL
abstraction. The host accommodates different essential com-
ponents along with the Runtime-Manager. The Runtime-
Manager exploits other components of the host and provides
different low-level implementations to finally execute the
modeled DPNs (kernels) on the target hardware. The back-
end comprising of different code generators and the runtime
system based on OpenCL are presented in Sect. “Synthesis:
The Toolchain”.

Modeling: Dataflow Models

The target dataflow process network (DPN) model is based
on a limited subset of CAL that is comprised of stateless
processes having guarded actions. The main purpose of this
section is not to present the formal specification of dataflow
models of computation (MoCs) as this has been thoroughly
considered in the literature [17, 18]. Instead, the main idea
here is to informally illustrate how CAL is used to specify
general DPNs and how this general model is restricted to
specify different classes of dataflow MoCs. We, therefore,
first present the syntax and the informal semantics of the
general DPN model based on the used CAL subset and then
illustrate the constraints to specify the supported dataflow
MoCs.

The General Model of DPN

Recall that a DPN is a set of processes P = {p0,… , pm−1}
with static point-to-point connections via FIFO buffers
F = {f0,… , fn−1} . We also assume a total order ⪯ on the
FIFO buffers so that we can unambiguously switch from
sets to tuples of FIFO buffers by simply ordering the cor-
responding set to a tuple. For this reason, we often ignore
the difference between sets and the corresponding tuples.
For any tuple t = (t0,… , t

�
) , we denote its components as

ti = ����i(t) . Processes of the DPN communicate with each
other by consuming data tokens from their input buffers
and adding data tokens to the output buffers. Therefore, we
define for each process p ∈ P , the tuple of its input buffers
����� (p) and its output buffers ������ (p).

Fig. 7 The basic building block diagram [35] of the proposed frame-
work. It can be understood in two phases: the modeling phase is in
general provided with the desynchronized CAL DPN models. The
synthesis phase employs the OpenCL abstraction and features a tool
chain involving the specialized code generators and the runtime sys-
tem that finally executes and maps the desynchronized models on the
OpenCL abstracted target hardware

SN Computer Science (2022) 3:249 Page 9 of 34 249

SN Computer Science

In the following, we informally present and elaborate the
syntax and the semantics of the general model of a process
based on the used subset of CAL.

Syntax

The syntax of a process p ∈ P based on the used subset
of CAL is illustrated with an abstract example as shown in
Listing 2. A process generally consists of a set of input and
output buffers and several actions.

Semantics

The abstract example of a process as shown in Listing 2
illustrates the general model based on the used sub-
set of CAL. The head of a process p ∈ P specifies the
input buffers ����� (p) = (X1,… ,XM) and output buffers
������ (p) = (Y1,… , YN) , including the type of tokens com-
municated via the buffer (Line 1). The used CAL subset
provides three data types: Boolean, integer and real num-
bers. The behavior of every process p ∈ P is determined
by a set of actions �������(p) = {�1,… , �h} . Actions are
preceded by action labels which in the general model
need not to be unique, i.e., the same label can be used
for more than one action (Lines 2 and 12). The head of
an action � ∈ �������(p) specifies for the input buffers in

����� (p) the number of data tokens to be read (Line 2).
It may or may not specify all input buffers in ����� (p) . If
the action is fired, these data tokens are consumed from
the heads of input buffers and are assigned to the vari-
ables xi,j such that xi,1 is the head of the input buffer Xi .
Analogously, the action interface determines for the out-
put buffers in ������ (p) the number of data tokens to be
written. Thereby, the values yi,1,… , yi,qi are added in this
order to the tail of output buffer Yi . The body of the action
is, therefore, a sequence of statements that compute val-
ues based on expressions ei,1,… , ei,qi and assign them to
output variables yi,1,… , yi,qi (Lines 5–9). An expression
may compose of variables, values, and both arithmetic
and Boolean expressions. Since only a subset of ����� (p)
may be used by an action � ∈ �������(p) , we also define
�����(𝛼) ⊆ ����� (p) as the subset of input buffers used by
that action. Similarly, we define ������(𝛼) ⊆ ������ (p) as
the subset of output buffers used by the action. For an
action � ∈ �������(p) that requires that input tokens have
particular values, an additional condition can be specified
using a guard (Line 3) which is a predicate on the tokens
of (some prefixes of) the input buffers in �����(�) . Since
only a subset of �����(�) may be used by a guard, we also
define �����(𝛼) ⊆ �����(𝛼) as the subset of input buffers
whose values are considered by the guard �� of action �.

For the semantics, we consider a domain D of values that
may be the union of integers, booleans and real numbers. We
denote the set of finite sequences on D as D∗ and the set of
infinite sequences on D as D� , and the union of both as D∞ ,
i.e., D∞ ∶= D

∗ ∪D
� . For sequences �1, �2 ∈ D

∞ , we intro-
duce the prefix ordering 𝜎1 ⊑ 𝜎2 ∶⇔ ∃𝜎3 ∈ D

∞
. 𝜎2 = 𝜎1 ⋅ 𝜎3

where �1 ⋅ �3 means the concatenation of the sequences �1
and �3 which demands that �1 ∈ D

∗ . The prefix ordering
on sequences �1, �2 ∈ D

∞ is lifted to tuples of sequences
�1 = (�1,0,… , �1,�) and �2 = (�2,0,… , �2,�) in that we
demand 𝜎1,i ⊑ 𝜎2,i for all i ∈ {0,… ,�}.

Each process p ∈ P defines a function that maps the con-
sumed input tokens to produced output tokens. This function
is determined by a set of actions �������(p) of the process
p where the semantics of each action � ∈ �������(p) is a
function of type (D∗)m → (D∗)n with the following mean-
ing: The action consumes tokens from m input buffers and
produces tokens to n output buffers, thus, m ∶= |�����(�)|
and n ∶= |������(�)|.

Any action � ∈ �������(p) as shown in Listing 2 is enabled
iff the following conditions are all satisfied:

• each input buffer Xi ∈ �����(�) has enough tokens, i.e.,
Xi must have at least pi many tokens

• each output buffer Yi ∈ ������(�) has enough space, i.e.,
Yi must have at least space for qi many tokens

• the guard condition � which is a condition on the input
tokens xi,j in �����(�) is satisfied

 SN Computer Science (2022) 3:249249 Page 10 of 34

SN Computer Science

The general model of DPN does not impose further restric-
tions and, therefore, actions consisting of common inputs
and/or outputs may be enabled in the same execution, as
depicted in Listing 2. As a result, this gives rise to read
and write conflicts in buffers, ultimately ending up in non-
deterministic behaviors. A read conflict means that two
actions are enabled in an execution that read a token from
the same input. Whereas, a write conflict means that two
actions are enabled in an execution that write a token to the
same output. A simple example of a non-deterministic pro-
cess is illustrated in Fig. 8. It consists of two actions act1 and
act2 that consume tokens from different inputs X1 and X2,
respectively, and produce tokens to the common output Y1.
Depending on the availability of tokens on the inputs, both
actions may be enabled in the same execution, and, there-
fore, may give rise to write conflict in Y1. Hence, the output
produced on Y1 depends on the arrival time of tokens on the
inputs and, therefore, exhibits a non-deterministic behavior.

We, therefore, demand and use the general CAL DPN
model with specific constraints and restrictions to specify
the precise dataflow MoCs.

Static Dataflow Model

The static dataflow (SDF) [26] MoC allows one to model
static (synchronous) behaviors. It is a more restricted DPN
class such that the decision on whether to consume and
produce tokens in each execution can be made statically at
compile-time. Each execution of a process consumes and
produces a fixed number of tokens. The number of tokens
consumed or produced on each buffer must be independent
of the value as well as the arrival time of data. A process
in SDF becomes enabled if and only if all its inputs have
required tokens and all its outputs have required space. An
enabled process may fire, and once fired, consumes the stati-
cally specified number of tokens from its inputs and pro-
duces the statically specified number of tokens to its outputs.

We demand and assume certain restrictions on the general
DPN model to represent the SDF MoC. In the following, we
present an abstract example of a static process based on the
SDF MoC and informally illustrate its semantics.

Syntax

The syntax of a static process in SDF is illustrated with an
abstract example as shown in Listing 3.

Semantics

A process p ∈ P in SDF consists of a set of actions
�������(p) = {�1,… , �h} . The action labels need to be
unique, i.e., the same label must not be used for more
than one action (Lines 2 and 12). For each action �i , we
define its guard ��i . Each action �i ∈ �������(p) speci-
fies for all input buffers ����� (p) and all output buffers
������ (p) the number of tokens to be read and written,
respectively. Thus, the input and output buffers are always
same across all actions i.e., �����(�1) = … = �����(�h) and
������(�1) = … = ������(�h) . Second, the number of tokens
to be consumed and the number of tokens to be produced
are always same for the same input and output buffers,
respectively, across all actions. This restricts the execution
of processes to fixed consumption and production rates.

Fig. 8 A simple example of a non-deterministic process in CAL. The
output produced on Y1 depends on the arrival time of tokens on the
inputs X1 and X2

SN Computer Science (2022) 3:249 Page 11 of 34 249

SN Computer Science

Regardless of which action is executed, the same number
of tokens are consumed and produced in the same buffers
in each firing of a process. Moreover, we demand that the
guard conditions should always be mutually exclusive across
actions. This ensures that for each execution of a process, the
actions will never compete for an execution. Hence, in each
execution of a process only a specific action is fired whose
guard is enabled.

Execution of Actions
Each time a process p ∈ P is triggered for an execution,

a particular action is executed, mainly dependent on which
guard is enabled. The guards of actions �������(p) are always
evaluated sequentially in the same order of their actions
definitions. Since all actions in a process have same input
buffers with same consumption rates, hence for any action
�i ∈ �������(p) , the specified fixed number of tokens are
first consumed from all input buffers �����(�i) = �����(p) .
Finally, the enabled action is fired whose guard is true. Upon
firing, the defined computations are performed and the spec-
ified fixed number of tokens are produced to all output buff-
ers ������(�i) = ������ (p).

Triggering Processes for Execution
Each process p ∈ P in SDF is triggered for an execu-

tion if and only if all input buffers �����(�i) of an action
�i ∈ �������(p) have enough input tokens and all output buff-
ers ������(�i) of that action have enough space. The pro-
cess shown in Listing 3 is triggered for an execution iff for
any action �i , each input buffer Xj ∈ �����(�i) has at least pj
many tokens and each output buffer Yj ∈ ������(�i) has at
least space for qj many tokens.

SDF Process Example
A simple example of the static if-then-else (ITE) opera-

tion is illustrated in Fig. 9. In each execution, the ITE pro-
cess consumes a token each from all three inputs and pro-
duces a token to its only output. It consists of two actions
i.e., act1 and act2, having same inputs X1, X2 and X3,
and the same output Y (Lines 2 and 7). Both actions use

the input X1 for the guard with mutually exclusive guard
conditions (Lines 3 and 8). In each execution, depending
on which guard is enabled, either act1 or act2 fires for an
execution. ITE is only triggered for an execution if there
is a token available in all three inputs X1, X2 and X3 and
if there is space available for a token to be produced at the
output Y. The tokens are denoted by small letters x1, x2,
x3 and y.

Kahn Process Networks Model

Kahn process networks (KPNs) [21] are dynamic DPNs
where processes can consume and produce different num-
ber of tokens in every firing depending on the history of the
consumed tokens and also on the tokens to be consumed.
KPNs exhibit latency-insensitive deterministic behaviors
that do not depend on the timing or the execution order of
the processes. The KPN MoC is typically specified with the
following restrictions and properties:

• processes are not allowed to test input buffers for the
existence of tokens

• reading from input buffers is blocking, and writing to
output buffers is non-blocking

• processes must implement deterministic sequential func-
tions

• processes do not need all of their inputs to get triggered
for execution

Based on these restrictions/properties, it can be implied that
a process in KPN can be any sequential program where the
firing rules can be tested sequentially in a predefined order
in each execution using blocking reads [27]. This reflects
the ability to uniquely consume the inputs in each firing
without timing information provided by the input signals.
A KPN process is only triggered for execution if the exact
information on inputs required to produce the output is avail-
able. A process, therefore, becomes enabled if the required
values on inputs are available to perform the computation
and produce the output. A process once enabled, may fire,
and once fired, it may consume different number of tokens
from different inputs based on the history of the consumed
tokens. The KPN MoC can capture both static as well as
sequential behaviors. Since buffers with unbounded capacity
cannot be realized in real implementations, the used KPN
model only supports blocking write. However, since the
starting point of this work is the desynchronized models,
desynchronization preserves properties like deadlock-free-
dom and bounded memory usage that are otherwise difficult
to ensure in KPNs [2].

Next, we present an abstract example of a sequential pro-
cess based on the KPN MoC and illustrate its semantics.

Fig. 9 The static if-then-else (ITE) node: a simple example of a static
process in SDF. An example behavior is illustrated with a set of input
values and the computed output values as shown inside arrows

 SN Computer Science (2022) 3:249249 Page 12 of 34

SN Computer Science

Syntax

The syntax of a sequential process in KPN is illustrated with
an abstract example as shown in Listing 4.

Semantics

A process p ∈ P in KPN consists of a set of actions
�������(p) = {�1,… , �h} . The action labels need to be
unique, i.e., the same label must not be used for more than
one action (Lines 2 and 12). For each action �i , we define
its guard ��i . Each action �i ∈ �������(p) specifies for the

input buffers �����(𝛼i) ⊆ ����� (p) and the output buffers
������(𝛼i) ⊆ ������ (p) the number of tokens to be read and
written, respectively. In general, the input and output buffers
can be different across different actions. However, since pro-
cesses in KPN consist of sequential functions, we demand
that all actions in a process must have at least one common
input. This implies that �����(�1) ∩ … ∩ �����(�h) ≠ {} .
Moreover, we demand that the guard conditions are always
mutually exclusive across actions. This ensures that for each
execution of a process, the actions will never compete for
an execution. Hence, in each firing of a process only a spe-
cific action is executed mainly dependent on which guard
is enabled. Second, this enables the execution of processes
with dynamic consumption rates and dynamic production
rates, mainly dependent on which guards are enabled on
each execution.

Evaluation and Execution of Actions
As discussed, the KPN MoC does not allow processes

to test input buffers for the existence of tokens. A process
is only triggered for execution if the exact information on
inputs required to execute an action is available. Therefore,
each time a process p ∈ P is triggered for an execution, a
particular action �i ∈ �������(p) is executed whose guard
��i

 is enabled. The enabled action �i , once fires, consumes
a finite number of tokens from the input buffers �����(�i)
and produces a finite number of tokens to the output buffers
������(�i) as specified for that action.

Triggering Processes for Execution
Since processes in KPNs consist of sequential programs,

the availability of tokens on the inputs, the availability
of space on the outputs, and the guards can be evaluated
sequentially in a predefined order of their actions defini-
tions. Each process p ∈ P is triggered for an execution if
there exists one particular action �i ∈ �������(p) having:
enough input tokens in �����(�i) , required values on the
guarded inputs �����(�i) , and enough space in ������(�i) .
For instance, the process shown in Listing 4 is triggered
for an execution when for a particular action (say �h), each
input buffer Xj ∈ �����(�h) has at least fj many tokens, each
output buffer Yj ∈ ������(�h) has at least space for gj many
tokens, and the guard ��h is true. In case if one of the inputs
does not have enough tokens, the process is blocked (i.e.,
the blocking behavior of KPN) until sufficient tokens are
available on that input.

KPN Process Example
A simple example of a sequential process, namely the

split node is illustrated in Fig. 10 that splits a single input
channel to a number of individual output channels. The split
node consists of two actions act1 and act2 that depending on
the value of a token at the input X1 splits the tokens from the

Fig. 10 The split node: a simple example of a sequential process in
KPN. An example behavior is illustrated with a set of input values
and the computed output values as shown inside arrows

SN Computer Science (2022) 3:249 Page 13 of 34 249

SN Computer Science

input X2 to outputs Y1 and Y2. The guards are composed of
mutually exclusive conditions (Lines 3 and 8). Both actions
declare the input X2 with different consumption rates (Lines
2 and 7). The action act2 has an additional output Y2. In
each execution, depending on which guard is enabled, either
act1 or act2 fires for an execution. In the case where act1
fires, a single token each is consumed from X1 and X2, and
a single token is produced to Y1 (Line 5). On the contrary,
when act2 fires, a single token is consumed from X1, two
tokens are consumed from X2 and a token each is produced
to Y1 and Y2 (Lines 10–11). Hence, in each execution, a dif-
ferent number of tokens can be consumed from the input X2
and a different number of tokens can be produced to outputs
Y1 and Y2. The split node is only triggered for an execution
if there exists one action i.e., either act1 or act2, having
required number of tokens in X1 and X2, required space in
outputs Y1 and Y2, and required values on the input X1.

Dynamic Dataflow Model

The dynamic dataflow (DDF) also sometimes referred to as
the non-determinate dataflow is a dynamic DPN class that
allows one to model dynamic and asynchronous processes.
It offers a more generalized data dependent and asynchro-
nous execution semantics than the KPN MoC. In particular,
the DDF MoC allows one to model processes with parallel
programs consisting of concurrent and independent com-
putations where more than one action can be executed in
each firing. This generalization results in higher expressive-
ness and flexibility, however, may lead to non-deterministic
behaviors, e.g., a non-determinate merge [27]. We use a vari-
ant of the DDF MoC that only supports concurrent and inde-
pendent actions with specific restrictions. It can be used to
model well-behaved parallel nodes that exhibit deterministic
behaviors, e.g., the parallel OR (POR) node as illustrated in
Fig. 11 (discussed in the next subsection).

The considered variant of DDF MoC offers a more flex-
ible semantics where each process becomes enabled for an
execution if only one of its inputs has required tokens and
only one of its outputs has required space. The decision on
whether to consume/produce tokens and to execute each
action of an enabled process is made dynamically at runt-
ime when that particular process is triggered for an execu-
tion. A process once enabled, may fire, and once fired, it
may trigger multiple actions for execution. A process can
produce and consume different number of tokens in every
firing. The considered variant of DDF MoC can capture
static, sequential and well-behaved parallel processes.

Fig. 11 The parallel OR node: a simple example of a well-behaved
parallel process in DDF. An example behavior is illustrated with a
set of input values and the computed output values as shown inside
arrows

 SN Computer Science (2022) 3:249249 Page 14 of 34

SN Computer Science

In the following, we present an abstract example of a
well-behaved parallel process based on the DDF MoC and
informally illustrate its semantics.

Syntax

The syntax of a well-behaved parallel process in DDF is
illustrated with an abstract example as shown in Listing 5.

Semantics

A process p ∈ P in DDF consists of a set of actions
�������(p) = {�1,… , �h} . The action labels need to be
unique, i.e., the same label must not be used for more
than one action (Lines 2, 12 and 22). For each action �i ,
we define its guard ��i . Different actions in �������(p) may
specify completely different input and output buffers e.g.,
�����(�1) ∩ �����(�k) = {} and ������(�1) ∩ ������(�k) = {} .
This enables the modeling of processes with independ-
ent actions consisting of completely different inputs
and outputs. Moreover, different actions in �������(p)
may also specify common input and output buffers e.g.,
�����(�1) ∩ �����(�h) ≠ {} and ������(�k) ∩ ������(�h) ≠ {} .
The associated number of token variables (i.e., token con-
sumption rates) of common input buffers can be different
across actions. Multiple actions may fire in the same execu-
tion of a process. However, we demand that these firings
must be consistent and do not give rise to non-deterministic
behaviors. In particular, we demand that the guard con-
ditions of actions with common input buffers are always
mutually exclusive. Hence, in each firing of a process only a
specific action from all actions having at least one common
input buffer is executed whose guard is enabled.

This ensures that for each execution of a process, the
actions with common input buffers will never compete for an
execution for any set of tokens. Moreover, for actions with
at least one common output buffer, we demand that each
action upon firing produces the same sequence of tokens
at the common output buffer. Hence, the firing of actions
with common output buffers do not lead to different output
streams. Altogether, these restrictions enable the execution
of processes consisting of well-behaved parallel programs
with dynamic consumption rates and dynamic production
rates, mainly dependent on which guards are enabled on
each execution. An example of a well-behaved parallel node
exhibiting such a behavior is illustrated in Fig. 11.

Evaluation and Execution of Actions
Each action �i ∈ �������(p) of a process p ∈ P is evalu-

ated for an execution dynamically when that particular
process is triggered for an execution. Each action �i fires
for an execution iff: there are enough tokens available in
�����(�i) , enough space available in ������(�i) , and the

required values on the guarded inputs �����(�i) are avail-
able, i.e., the guard ��i is true. When the action �i fires,
it consumes a finite number of tokens from �����(�i) and
produces a finite number of tokens to ������(�i).

Since the actions are evaluated dynamically only after
a particular process is triggered for an execution, there
may be a case when for an action �i , although the guard ��i
is true, however, either at least one of the input buffers in
�����(�i) does not have enough tokens, or at least one of the
output buffers in ������(�i) does not have enough space.
In this case, neither the input tokens are consumed from
�����(�i) , nor the output tokens are produced to ������(�i) .
Instead, the tokens are preserved in their respective input
buffers.

Triggering Processes for Execution
As the decision to execute each action of a process

and consume/produce data tokens is made dynamically at
runtime, when that process is triggered for an execution.
Therefore, each process p ∈ P is triggered for an execution
if there exists at least one input buffer Xj ∈ �����(�i) hav-
ing enough input tokens and there exists at least one output
buffer Yj ∈ �����(�i) having enough space. For instance,
the process shown in Listing 5 is triggered for an execu-
tion when for a particular action (say �1), any input buffer
Xj ∈ �����(�1) has at least pj many tokens and any output
buffer Yj ∈ ������(�1) has at least space for qj many tokens.

DDF Process Example
A simple example of the parallel OR (POR) node is

illustrated in Fig. 11 that performs the logical OR opera-
tion on two Boolean inputs. The POR node consists of
three actions act1, act2 and act3 that depending on the
values of tokens in either or both of the inputs X1 and X2
produces tokens in the only output Y. The actions act1
and act3 share a common input X1 (Lines 2 and 12). The
actions act2 and act3 share a common input X2 (Lines 7
and 12). All actions share the same output Y (Lines 2, 7
and 12). In each execution, depending on which guards are
enabled, either one or both of the actions act1, act2 can
be fired. In case if both the actions are enabled, a token
each is produced to the output Y by both actions (Lines
5 and 10). Since they share a common output, hence, the
same sequence of tokens is produced at the output Y by
both actions. In contrast, if the guard is true for act3, the
actions act1, act2 become disabled where only the action
act3 is fired. Therefore, the actions with common inputs
never compete for firing in any execution of the process.
The POR node is only triggered for an execution if there
is a token available in at least one of the inputs i.e., either
X1 or X2, and there is a space available for one token to be
produced in the only output Y.

SN Computer Science (2022) 3:249 Page 15 of 34 249

SN Computer Science

Synthesis: The Toolchain

In this section, we present the synthesis tool chain which is
depicted in Fig. 12. It offers a set of tools that work together
to finally implement the CAL DPNs on commercial off-the-
shelf (COTS) target hardware. The tool chain is composed
of two main parts: a special back-end comprising of special-
ized code generators for particular dataflow MoCs and the
runtime system. Each code generator generates an OpenCL
kernel for each process based on the underlying dataflow
MoC. Second, the runtime system is organized in a cen-
tralized host and kernels program model, built under the
OpenCL abstraction. The host features different components
including the Runtime-Manager that schedule and deploy
processes (generated kernels) on the target hardware.

Back‑end

The back-end is designed to work in two different modes,
namely the manual mode and the auto mode. In the manual
mode, the back-end targets homogeneous implementations
based on a specific user given dataflow MoC. In the auto
mode, the back-end automatically classifies the processes
into three categories mainly according to their kinds of
behaviors that determine the dataflow MoCs. This classi-
fication of different kinds of behaviors involves: the static
ones based on the static dataflow (SDF) MoC, the sequential
ones based on the Kahn process network (KPN) MoC, and
the parallel ones based on a variant of the dynamic dataflow
(DDF) MoC. As a result, the back-end provides three dif-
ferent specialized code generators for particular dataflow
MoCs: one for the SDF MoC, second for the KPN MoC,
and finally for the used DDF MoC. We identify the kinds of
behaviors of processes during desynchronization based on
a succinct formalization of input/output (I/O) firing rules
of synchronous components [38, 39]. The identified data-
flow MoC of each process is divulged to the synthesis phase
through the network description file.

In the following, we present the specialized code genera-
tors based on the supported dataflow MoCs.

Code Generators: Kernel Code Generation

Each code generator is determined by the underlying seman-
tics of the used dataflow MoC. It, therefore, generates an
OpenCL kernel for each process based on the underlying
dataflow MoC. This section presents the schemes employed
for generating OpenCL kernel code based on all the sup-
ported dataflow MoCs. Moreover, we also illustrate the gen-
erated kernel code for each supported dataflow MoC based
on the CAL models presented in Figs. 9, 10 and 11.

Each code generator generates kernel code in two seg-
ments: First, the OpenCL specific code is targeted which
involves the generation of the kernel header, the declaration
of used inputs and outputs, and most importantly, the gener-
ation of generic kernel code that enables the host to dispatch
multiple executions of the kernel on the device. This code
segment is more or less same for all used dataflow MoCs.
The second segment targets the code generation based on the
underlying semantics of the used dataflow MoC. We mainly
present the schemes designed for generating code for the lat-
ter segment. The former segment is explained in detail with
the generated kernel code examples.

SDF Code Generator
In SDF, it is statically determined that each firing of a

process consumes/produces fixed number of tokens. A pro-
cess in SDF is, therefore, simply scheduled by the host for
execution if there is enough data available in all inputs and
if there is enough space available in all outputs. The guards
of actions are evaluated within kernels on the device side.
The SDF code generation is relatively straightforward and is
illustrated by the pseudo code given in Algorithm 1.

For a static process, the proposed scheme works as fol-
lows: First, the code is generated to consume tokens from
all input buffers of the process (Line 1). The algorithm then
iterates through the set of modeled actions in the order of
their definitions (Line 2) where for each action, it proceeds
as follows: First, the code is generated to evaluate the guard
(Line 3). Next, the code is generated for the case if the guard

Fig. 12 The proposed synthesis tool chain is composed of two main
parts: the back-end features the specialized code generators for the
supported dataflow MoCs. The runtime system organized in a host
and kernels program model schedules and maps the modeled system
on the target hardware

 SN Computer Science (2022) 3:249249 Page 16 of 34

SN Computer Science

is fulfilled (Lines 4–7). To this end, the code to perform the
modeled computations is generated (Line 5), and then to
produce the final output (Line 6). The generated kernel for
a static process ITE as shown in Fig. 9 is listed in Listing 6.

OpenCL specific code segment. This segment (Lines 1–18)
is mainly composed of the following parts: The generated
kernel header uses the name of the process and defines the
argument list (Line 1). The argument list mainly describes
the OpenCL memory objects for the input and output FIFO
buffers of the process. These memory objects are used by
the host for data communication to and from the kernels
(device side). These objects are defined with the global
address space name that allocates them in the global mem-
ory shared between the host and devices. For better mem-
ory performance, the kernel instances (work-items) do not
directly perform operations on the slower global memory.
Instead, an array each is declared for the sequences of input/
output tokens with the private address space name (Lines
4–15), which refers to a faster memory region only visible
to individual instances. In each execution of a SDF process,
only a particular action is executed, which depends on the
enabled guard. To avoid unnecessary duplication, an array is
declared for each input/output based on the statically deter-
mined consumption/production rate (Lines 4–7). Second,
the individual input/output token variables are declared

and pointed to their respective sequences i.e., arrays (Lines
8–15).

Moreover, the code generator generates generic kernel
code (Lines 17–18) to enable the centralized host to dispatch
multiple execution (instances) of kernels on the device at a
time. The generic code involve two main components: First,
the OpenCL function get_global_id(0) provides the unique
global ID for the particular kernel instance or thread based
on the number of instances dispatched by the host to execute
the kernel. These dispatched instances are ideally executed
in parallel on the device where each instance operates on
data based on its own unique ID. We further introduced an
additional parameter, namely blockSize (Lines 17–18) that
allows us to manage the amount of workload associated
with each instance. blockSize coalesces multiple instances
in a single instance and executes them sequentially inside a
loop (Line 18). Consequently, increasing blockSize implies
increasing the workload per instance and hence decreasing
the total number of parallel instances. The combination of
the unique global ID and blockSize can be effectively used
by the host to fine tune the amount of data level parallelism
according to the available resources, and most importantly,
based on the kinds of behaviors of processes. For example, if
the target device is a CPU offering only a few cores, a larger
blockSize usually achieves better performance [34]. Second,
if a process exhibits a dynamic behavior, multiple instances
can not be executed in parallel and, therefore, a blockSize
equal to the number of instances can be used by the host.

SDF MoC specific code segment. This code segment (Lines
19–31) is generated based on the scheme presented in Algo-
rithm 1. First, the tokens are consumed from all inputs of the
process (Line 20–22). Finally, a particular action (i.e., either
act1 or act2) is executed based on the activation of guard.
To this end, if the guard is true for act1 (Line 23), a token
consumed from the input X2 is written to the output Y (Lines
24–25). On the other hand, if the guard is true for act2 (Line
27), a token consumed from the input X3 is written to the
output Y (Lines 28–29).

KPN Code Generator

SN Computer Science (2022) 3:249 Page 17 of 34 249

SN Computer Science

The KPN MoC supports static as well as sequential
behaviors. Since processes in KPNs are sequential, their
firing rules (including guards) can be evaluated sequen-
tially in a predefined order. In particular, a process is only
triggered by the host for execution if it is already known
that the guard of one of the actions is evaluated to true.
In contrast to the SDF MoC, the guards are, therefore,
evaluated at the time of scheduling on the host side. This
essentially simplifies the kernel code generation, however,
on the other hand, relatively complicates the scheduling.
The code generation based on the underlying semantics
of the KPN MoC is illustrated by the pseudo code given
in Algorithm 2.

For a process in KPN, the proposed algorithm works as
follows: It iterates through the set of modeled actions in the
order of their definitions (Line 1) where for each action, it
proceeds as follows: First, the code is generated that checks
if the already evaluated guard is valid for the action (Line 2).
Next, the code is generated for the case if the guard is valid
(Lines 3–5). To this end, the code is generated to consume
tokens from all inputs of the action (Line 3). Second, the
generated code for the modeled computations is inserted
(Line 4), prior to generating the code for writing the com-
puted results on the outputs (Line 5). In contrast to the SDF
MoC, where data is consumed from all inputs of the process
in each execution, the KPN MoC only consumes data from
the inputs of an enabled action.

The generated kernel for a sequential process split as
shown in Fig. 10 is listed in Listing 7.

OpenCL specific code segment. As discussed, this code seg-
ment is largely same for all supported dataflow MoCs. In
contrast to the SDF MoC, where the guards are evaluated
within kernels at the device side, in the case of KPN, the
guards are evaluated at the host side typically at the time of
scheduling. The host provides the information regarding the
evaluated guards to the kernel using a data structure evalu-
atedGuard through the argument list (Line 1). In particular,
each element of evaluatedGuard holds the identifier for an
action whose guard is valid for a particular instance. In each
execution of a process, only a particular action is executed,
which depends on the enabled guard. To avoid unnecessary
duplication, an array is declared for each input/output with
the highest consumption/production rate of all actions. For
instance, an array is declared for the input X2 with the high-
est consumption rate of both actions (Line 5). The remaining
code of this segment is exactly the same as explained for the
SDF MoC.

KPN MoC specific code segment. This code segment (Lines
19–34) is generated based on the scheme presented in Algo-
rithm 2. The generated code simply fires the enabled action
whose guard is evaluated true at the time of scheduling. As

discussed, evaluatedGuard provides the identifiers of actions
whose guards are valid for particular iterations.

A particular action (i.e., either act1 or act2) is executed in
each iteration based on the activated guard. To this end, if the
guard is true for act1 (Line 20), a single token is consumed
from X1 and a single token is consumed from X2 which is then
written to the output Y1 (Lines 21–24). On the other hand, if
the guard is true for act2, a token is consumed from X1, and
two tokens are consumed from X2, where the first token of X2
is written to Y1, and the other to Y2 (Lines 27–32).

DDF Code Generator
In DDF, the decision on whether to consume tokens and

to fire each action of a process is made dynamically at runt-
ime when that particular process is triggered for execution.
A process is simply scheduled by the host for execution if
only one of its inputs has required tokens and only one of
its outputs has required space. In contrast to SDF and KPN
MoCs, the firing rules (including guards) of processes in
DDF are completely evaluated within kernels at the device
side. Each DDF kernel, therefore, must indicate to the host
the number of tokens consumed/produced in each FIFO
buffer for the dispatched execution instances. This fairly

 SN Computer Science (2022) 3:249249 Page 18 of 34

SN Computer Science

complicates the code generation of kernels. In particular,
the code generator incorporates a number of DDF MoC
specific library functions designed to enable the dynamic
evaluation of actions within kernels. The code generation
based on the underlying semantics of the used DDF MoC is
illustrated by the pseudo code given in Algorithm 3.

First, the code is generated to peek tokens from all inputs
for all actions of the process (Line 1). The algorithm then
iterates through the modeled set of actions in the order of
there definitions (Line 2). For each action, the algorithm
proceeds as follows: First, the code is generated to check if
enough tokens are available in the inputs used by the guard
(Line 3). Second, code evaluating the guard is generated
(Line 4). Next, the code is generated to fire an action (Lines
5–9). This involves code for checking if the guard is valid,
the required number of tokens are available in all inputs and
the required amount of space is available in all outputs (Line
5). The code is then generated for the enabled action (Lines
6–8) which involves code for consuming all inputs, per-
forming modeled computations, and writing the computed
results on the outputs. The code generator further generates
code for the case if although the guard is true, however,
either at least one of the inputs does not have enough tokens,
or at least one of the outputs does not have enough space
(Lines 10–12). In this case, code is generated to ascertain
the status of tokens and space in each input and output FIFO
buffer of the action, respectively. The status of each buffer
in this respect is written and conveyed to the host using
a data structure (Line 11). This case is typically used to
indicate which input buffers lack the required number of
tokens and/or which output buffers lack the required space.
The generated kernel for a parallel process POR as shown in
Fig. 11 is listed in Listing 8. For brevity, we illustrate here
the generated code for the first two actions (act1 and act2).

OpenCL specific code segment. This code segment is
exactly generated in the same way as generated in the case
of the SDF MoC.

DDF MoC specific code segment. This code segment (Lines
14–47) is generated based on the scheme presented in Algo-
rithm 3. First, the tokens are peeked from all inputs for all
actions of the process (Lines 15–16). The generated code
then simply evaluates each action for firing. If there are
enough tokens available in the inputs used for guard (Lines
19 and 33), the guard is evaluated (Lines 20 and 34). If the
guard is valid and the required number of tokens and the
required amount of space is available in all input and output
FIFO buffers, respectively, the action is fired (Lines 24–28
and 38–42). Depending on the availability of tokens/space
and the enabled guard, either one or both of the actions (act1
and act2) can be executed in each iteration. In particular, if
both actions are enabled, a token each is consumed from
both inputs X1 and X2 (Lines 25 and 39) and a token each is
produced to the output Y (Lines 26–27 and 40–41) by both
actions. In case if the guard is enabled for one of the actions
(say act1), however, there is no space available in the output
Y, the status of tokens and space in X1 and Y, respectively,
are determined and written using the DDF MoC specific
library function writeStatus (Lines 30–31).

Runtime System

The runtime system systematically employs OpenCL in the
composition of the synthesis components to finally map and
execute models based on different dataflow MoCs on COTS
target hardware. It is typically designed in a centralized host
and kernels architecture under the OpenCL abstraction as
shown in Fig. 12. The host accommodates different essen-
tial components along with the Runtime-Manager that work
together to implement low-level details such as: the sched-
ulers, the communication mechanism, resource allocation,
kernels mapping and handling etc.

Process and Device Queues

The Process-Queue is generated for the host at the back-
end. Each element of this queue provides a special object
of a process. Each object provides the specific attributes of
the process to the host. This includes: the process name,
the identified dataflow MoC, the associated FIFO buffers,
the type of each buffer, and the process type. The queue,
once generated, is maintained and updated by the host. In
particular, the host assigns each object the process’s status
(idle, running or blocked) and the associated kernel.

Apart from the Process-Queue that is provided by the
back-end, the host also generates a queue, namely the
Device-Queue, using the OpenCL specification as depicted

SN Computer Science (2022) 3:249 Page 19 of 34 249

SN Computer Science

in Fig. 12. The Device-Queue lists all the available devices
of the target hardware. Each element of this queue provides
a special object of a device. The device object provides an
interface that is used by the host to access and to use the
device for systematically executing kernels. In particular,
each object features a command queue of a device, where the
processes (kernels) can be mapped for execution. Each com-
mand queue can represent a complete device (e.g., a CPU)
or even a compute unit of that device (e.g., a CPU-core).

The Runtime‑Manager

The core component of the runtime system is the Runtime-
Manager, as shown in Fig. 12. It is a part of the host that
uses the Process-Queue and the Device-Queue, and pro-
vides: the schedulers for scheduling processes based on the
supported dataflow MoCs, the communication mechanism
between the host and kernels, a dispatcher for mapping
kernels to devices, and a handler mechanism for kernels
using specialized callbacks.

Schedulers The schedulers are designed to schedule
processes in the network based on the underlying data-
flow MoC of each process. To support the execution of
heterogeneous dataflow models characterized by differ-
ent kinds of behaviors, the Runtime-Manager provides
a two-level hierarchical scheduling scheme. At the first
level, a baseline global scheduler is used that works in
a dynamic round robin scheme. At the second level,
specialized local schedulers are used, where each local
scheduler is designed for a particular dataflow MoC.
Altogether, the baseline global scheduler iterates through
the Process-Queue in a round-robin fashion, and invokes
the corresponding local scheduler for each process based
on its underlying dataflow MoC. All the local schedulers
are designed based on the dynamic data-driven schedul-
ing schemes mainly because of the following reason: The
target DPNs involve heterogeneous dataflow models con-
sisting of static as well as dynamic behaviors. A common
consistent dynamic environment is, therefore, needed to
systematically schedule and execute heterogeneous mod-
els. Nevertheless, for a fully SDF network only consisting
of static processes, one can generate a static scheduler at
compile time.

Baseline Global Scheduler: The Runtime-Manager employs
a simple global scheduler typically designed to handle the
invocation of the specialized local schedulers for schedul-
ing heterogeneous dataflow models. The global scheduling
scheme is depicted in Algorithm 4.

 SN Computer Science (2022) 3:249249 Page 20 of 34

SN Computer Science

As DPNs do not generally enforce any termination cri-
teria, the global scheduler runs forever (Line 1). It works
in a round-robin fashion and selects the next process in the
Process-Queue that is not currently running, in particular,
has no pending dispatched executions (Lines 2–3). In case
if a process has a pending call i.e., all dispatched kernel
instances are not completely executed, the next invoca-
tion of this process is delayed until the process is idle
again. The scheduler simply invokes the local scheduler of
the selected process according to the underlying dataflow
MoC of each process.

In the following, we present the specialized local sched-
ulers based on the supported dataflow MoCs.

SDF Scheduler: The scheduling scheme based on the SDF
MoC is depicted in Algorithm 5. A process based on the
SDF MoC always consumes and produces a fixed number of
tokens in each execution. This greatly simplifies the schedul-
ing, in particular, a process is simply scheduled for execution
if there is enough data available in all input buffers (Line 2)
and if there is enough space available in all output buffers
(Line 3).

KPN Scheduler: As discussed, the KPN MoC supports
static as well as sequential behaviors. A process is only
scheduled for execution if it is already known that the firing
rules (including guard) of one of the actions are valid. The

firing rules in a process are, therefore, evaluated at the time
of scheduling. This relatively complicates the scheduling.
The scheduling scheme based on the KPN MoC is illustrated
by the pseudo code given in Algorithm 6.

Since the KPN MoC supports processes having sequential
behaviors, it schedules a process for execution by evaluating
the firing rules (including guards) sequentially in a prede-
fined order. The KPN scheduler iterates through the set of
modeled actions in the order of their definitions where for
each action, it works as follows: First, the scheduler checks
if enough tokens are available in the input buffers used by
the guard (Line 3). If enough tokens are available and if the
guard is valid (Line 5), the remaining (non-guarded) input
buffers of the action are checked for enough tokens (Line 6).
Only if there are enough tokens available, the output buffers
are checked for space (Line 7). If enough space is available,
the action is finally scheduled for execution (Line 8). In case
if one of the conditions does not meet, the process is blocked
until that condition is fulfilled (Lines 11 and 15).

Since the host and generated kernels are independent
components, the evaluation sequence or order needs to be
extracted from modeled processes at compile time. The
extracted sequence can be used by the KPN scheduler at
runtime to schedule processes for execution. To this end,
we propose a systematic way of extracting the evaluation
sequence by introducing the input–output tree wrapper
(IOT-wrapper). The IOT-wrapper wraps the exact infor-
mation of inputs/outputs required to schedule a process
in a standard tree structure, while taking into account the
underlying semantics of the KPN MoC. For each process,

SN Computer Science (2022) 3:249 Page 21 of 34 249

SN Computer Science

a wrapper is generated at compile time from the modeled
behavior. The IOT-wrapper generation based on the underly-
ing KPN semantics is presented in [35].

The IOT-wrapper generated for a sequential process
split as illustrated in Fig. 10, is shown in Fig. 13. The root
node only involves the input X1 as it is the only input used
for guard by the process. The StepFunction generated and
assigned to each node is shown in dashed boxes. The set of
branches originating from the root node and extending up
to the leaf node represents a particular action. For instance,
act2 is represented by branches originating from the root
node (X1) and extending up to the leaf node (Y2).

KPN Scheduler based on IOT-wrapper: The KPN scheduler
is provided with the generated IOT-wrappers of all processes
in the used network. It uses a variant of the depth-first search
(DFS) method [50] that starts at the root of the tree, selects a
branch, and traverses through that branch as deep as possible
until the leaf node is reached. In general, for each node, the
scheduler calls the assigned StepFunction, and only moves
to the next node if the function returns true. In particular,
the StepFunction of the root node returns a number num
∈ ℤ mainly dependent on which guard is true. This number
is used to select a specific branch originating from the root
node that directs to a specific action whose guard is true. In
case if the leaf node is reached and its StepFunction returns
true, the scheduler triggers the process for execution. On
the contrary, if the StepFunction of one of the nodes returns
false, the process gets blocked until that node returns true.

DDF Scheduler: The DDF MoC evaluates the firing rules
(including guard) of each action in a process as a part of the
kernel at the device. This greatly simplifies the scheduling
at the host and in fact the scheduler based on the DDF MoC
is the simplest of all supported dataflow MoCs. The sched-
uling scheme based on the DDF MoC is illustrated by the
pseudo code given in Algorithm 7. It follows an optimistic
scheduling strategy that expects the firing of actions even if
there is data available in only one input buffer and if there is
space available in only one output buffer of the process. A
process is therefore simply scheduled by the host for execu-
tion if there is enough data available in at least one of the
input buffers (Line 2) and if there is enough space available
in at least one of the output buffers (Line 3).

With that, we illustrated all the specialized schedulers
based on the supported dataflow MoCs. In the following,
we present two of the main components of the Runtime-
Manager, namely the dispatcher and the handler.

Fig. 13 Generated IOT-wrapper
for split process as shown
in Fig. 10: it consists of two
branches where each branch
corresponds to a particular
action i.e., act1 or act2 of the
process. The step functions
of all nodes are illustrated in
dashed boxes

 SN Computer Science (2022) 3:249249 Page 22 of 34

SN Computer Science

Dispatcher In general, a dispatcher is a special program
which comes into play after the scheduler. When the sched-
uler completes its job of selecting a process, it is the dis-
patcher that gives a process control over the target device.
The runtime system of the proposed framework also pro-
vides a special dispatcher built under the OpenCL abstrac-
tion. The global scheduler evokes one of the local schedul-
ers based on the dataflow MoC of a process. The evoked
scheduler fetches a ready process from the Process-Queue
and provides it to the dispatcher as depicted in Fig. 14. The
dispatcher acquires the device object from the Device-Queue
and finally maps the fetched process on the command queue
of the target device. The generated kernel of the dispatched
process is then executed based on the used dataflow MoC.

Communication Mechanism and Handlers The proposed
framework implements the FIFO buffers as bounded cir-
cular ring buffers. In general, this design enables the buff-
ers to work as if the memory is contiguous and circular in
nature. The communication between the host and kernels is
realized using OpenCL memory objects (buffers). For each
bounded FIFO buffer, an OpenCL buffer is created with the
same design and size of the FIFO buffer. Each process object
provided by the Process-Queue stores and links the address
of each FIFO buffer with the associated OpenCL buffer.
During the execution of a process, i.e., when the kernel of
a process is being executed, data is read/written from/to the
associated OpenCL buffers. When all the instances of the
kernel are executed, i.e., the dispatched process executions
are completed, the Runtime-Manager is then automatically
notified to update the components. For that purpose, a han-
dler mechanism is developed using callbacks as shown on
the left part of Fig. 14.

The Runtime-Manager generates a callback interface
each, for every existing device in the Device-Queue during
the initialization of the queue. Based on the used dataflow
MoC, the Runtime-Manager provides the MoC specific
implementations for each generated callback interface. As
a result, the dataflow MoC specific handler mechanism is
invoked. The dispatcher sets up a callback event for each
fetched process and links it with the callback handler of
the device where it is dispatched. Hence, the completion of
the kernel of the dispatched process automatically invokes
the callback handler of the used device. The callback han-
dler performs a set of general tasks including: retrieving
data from the kernel (OpenCL buffers), updating all the
FIFO buffers of the process, updating the status of the pro-
cess, updating the Process-Queue, updating the device’s
load, and finally updating the OpenCL buffers. However,
updating the FIFO buffers is a dataflow MoC specific task,
and is therefore managed differently for the supported
dataflow MoCs. Based on the SDF MoC, the data rate of
a process remains fixed in each execution, and therefore

each FIFO buffer is simply updated based on the speci-
fied static data rate. Based on the KPN MoC, since the
processes are only scheduled if there exists one enabled
action, each FIFO buffer is simply updated based on the
enabled actions of dispatched instances. On the contrary,
based on the DPN MoC, the processes are evaluated for
their firing rules within kernels. Therefore, the amount of
data consumed and produced is first measured at the host
(handler) using the status of buffers, and finally each FIFO
buffer of the process is updated accordingly.

Experimental Evaluation

We organized our experimental evaluations into two parts:
The first part features simple standalone benchmarks that
perform simple operations and are especially designed to
evaluate and compare the homogeneous versions gener-
ated by all individual supported dataflow MoCs for each
benchmark (when possible). The second type presents a
particular case study of the ConceptCar [37, 40] where dif-
ferent configurations of the ConceptCar’s architecture are
used to model and automatically generate implementations
based on the individual dataflow MoCs as well as based on
their heterogeneous combinations.

Experimental Setup

A variety of OpenCL supported devices have been
employed for evaluation as listed in Fig. 15. The list
involves five devices featuring three different device types
from three different vendors. In particular, two different
CPUs (CPU1 and CPU2), one integrated GPU (GPU1)
and two dedicated GPUs (GPU2 and GPU3) featuring
Intel, AMD and NVIDIA have been employed. The inte-
grated GPU (GPU1) is built into the processor, and uses
the system memory that is shared with the CPU (CPU2).

Fig. 14 The dispatching and handling mechanism of the Runtime-
Manager. The dispatcher provided with the scheduled process maps
the associated kernel on the command queue of the target device. The
handler is mainly responsible for updating the runtime components at
the host after the dispatched executions are performed

SN Computer Science (2022) 3:249 Page 23 of 34 249

SN Computer Science

In contrast, the dedicated GPUs (GPU2 and GPU3) fea-
ture their own processors and their own source of memory.

For different target devices, different vendor-specific
OpenCL implementations have been installed. This
involves the software development kits (SDKs) from
device vendors and the appropriate device drivers support-
ing OpenCL runtimes. The complete software environment
used for executing generated versions on the target devices
is summarized in Fig. 16.

Standalone Benchmarks

We designed a set of simple benchmarks consisting of pro-
cesses having static, sequential or parallel functions. These
benchmarks are therefore typically designed to offer a vari-
ety of processes having different kinds of behaviors that
enable the evaluation and comparison of implementations
based on all three different dataflow MoCs of the frame-
work. Each benchmark only features processes based on
a particular dataflow MoC. Each benchmark is organized
in a network of three processes which are connected in a

producer-worker-consumer setting. The worker process pro-
vides the main functionality of the benchmark and there-
fore performs the main operation. The designed standalone
benchmarks along with their function types are listed in
Fig. 17. A brief description of each benchmark is given as
follows:

The sequential dynamic switch (SeqDySwitch) benchmark
is designed to switch the only data input channel to any one
of a number of individual output channels by the applica-
tion of a control input. In contrast, the sequential dynamic
worker (SeqDyWorker) benchmark performs the operation
by taking one single input channel and copying its data to the
only output channel based on the value of data of the only
input channel. The sequential dynamic select (SeqDySelect)
benchmark is a multiplexer that processes the information
from multiple input channels into a single output channel by
the application of a control input. It can simply be under-
stood as a dynamic version of the if-then-else operation that
sequentially consumes data from input channels based on
the value of data on a control input. In contrast, the static
if-then-else (StITE) benchmark is a static version of the

Fig. 15 The experimental setup:
list of target devices employed
to evaluate the proposed synthe-
sis design flow. The specifica-
tion of each target device is
shown in the figure

 SN Computer Science (2022) 3:249249 Page 24 of 34

SN Computer Science

if-then-else operation that always consumes data from all
input channels in each execution. The sequential dynamic
merge (SeqDyMerge) benchmark is designed to merge sev-
eral input channels to a single common output channel by
the application of a control input. In contrast, the sequen-
tial dynamic split (SeqDySplit) benchmark is designed to
split a single input channel to a number of individual output
channels by the application of a control input. The parallel
dynamic OR (ParDyOR) benchmark performs the logical
OR operation on two Boolean input channels and produces
the result on the only output channel. It is a parallel version
of the logical OR operation that can consume and produce
tokens in parallel based on the availability of data on each
input channel. In contrast, the static OR (StOR) benchmark
is a synchronous version of the logical OR operation that
always consumes tokens from both inputs in each execution.
Apart from ParDyOR that incorporates the parallel func-
tion, all other benchmarks employ either static or sequential
functions. In particular, apart from StITE and StOR which

involve only static processes, all sequential benchmarks
exhibit dynamic behaviors.

Each benchmark is modeled and automatically synthe-
sized (when possible) based on all three supported dataflow
MoCs of the framework. Thereby, three different implemen-
tations are automatically generated, namely the SDF MoC
version, the KPN MoC version and the DDF MoC version.
Since the SDF MoC only supports static behaviors, it could
model and synthesize the StITE and StOR benchmarks. The
KPN MoC supports both static and sequential functions
and therefore able to model and synthesize all static and
sequential benchmarks. However, it could not model and
synthesize the only benchmark with the parallel function,
namely the ParDyOR benchmark. The DDF MoC being the
most generalized dataflow MoC of the lot supports static,
sequential as well as parallel functions and therefore gen-
erated implementations for all designed benchmarks. The
information regarding the implementations generated by the
supported dataflow MoCs for the designed benchmarks is
depicted in Fig. 17.

The generated versions for each benchmark based on dif-
ferent dataflow MoCs are evaluated based on their code size
and the end-to-end performance. The code size for each gen-
erated version (implementation) of benchmark is measured
as the sum of lines of code of all generated kernels for that
version. The end-to-end performance, i.e., the total execu-
tion time of the network to process the complete input data
set including initialization and termination of the program
is considered as the comparison metric. The data set used
has a maximum of ten thousand samples per input and the
average of 50 repetitions is taken for each version.

Evaluation: Generated Code Size

The SDF MoC only supports static behaviors and therefore
triggers a process when the data/space is available for all
inputs/outputs. In each execution it consumes and produces
statically determined fixed number of tokens from all inputs

Fig. 16 The software environ-
ment: list of software toolkits
and drivers installed to enable
the OpenCL implementations

Fig. 17 The designed standalone benchmarks. Each benchmark offers
processes based on a particular kind of behavior as depicted by the
function type. The right-hand side indicates the supported dataflow
MoCs that were able to generate implementations for the particular
benchmarks

SN Computer Science (2022) 3:249 Page 25 of 34 249

SN Computer Science

and outputs, respectively. This simplifies the code genera-
tion and in particular generates very succinct kernel code for
static processes. The KPN MoC supports static as well as
sequential behaviors. Since processes in KPNs are sequen-
tial, their firing rules can be evaluated in a predefined order.
It only triggers a process for execution when the exact infor-
mation on inputs/outputs required to fire an action is avail-
able. This essentially simplifies the kernel code generation
and therefore generates succinct kernel code for sequential
processes. In contrast, the DDF MoC supports sequential as
well parallel functions, and therefore dynamically evaluates
actions including their inputs/outputs when the process is
triggered for execution. Therefore, it accommodates addi-
tional code for enabling the dynamic evaluation of actions
within kernels at runtime. The KPN MoC, therefore, gener-
ates more concise kernel code for sequential processes than
the DDF MoC. The generated code size of each benchmark
for the complete network based on all three dataflow MoCs
is depicted in Fig. 18.

The additional kernel code overhead associated with the
DDF MoC can therefore be observed from the number of
lines of the generated code for each benchmark. For static
benchmarks StITE and StOR that consist of only static pro-
cesses, the SDF MoC generated the most succinct code of
all generated versions. In particular, the generated code
size based on the SDF MoC for StITE is about 83% and
3 % lesser than the DDF and KPN versions, respectively.
Similarly for StOR, the SDF version demonstrated a code
reduction of about 90% and 3 % in comparison to the DDF
and KPN versions, respectively.

For all benchmarks consisting of sequential processes,
the KPN MoC generated the most succinct code of all gen-
erated versions. For all sequential benchmarks, the KPN
MoC generated at least 74% less lines of code than the
DDF MoC. In particular, the biggest difference is recorded
in SeqDyWorker where the generated code size based on
the KPN MoC is 95% lesser than the DDF version. The
ParDyOR benchmark features a parallel function and
could only be modeled and synthesized based on the DDF
MoC. The DDF MoC, therefore, offers a more generalized
dataflow MoC that supports both sequential as well as par-
allel behaviors but at the cost of the additionally generated
lines of kernel code.

Evaluation: The End‑to‑End Performance

Each generated version of a benchmark is either executed
on CPU1 (Intel) or GPU2 (AMD) at a time to evaluate and
compare the end-to-end performance of all used dataflow
MoCs. On each target hardware, i.e., CPU1 and GPU2,
the average execution time of each generated version
of a benchmark is measured against the number of data

samples. The results are demonstrated for the maximum
number of samples (i.e., ten thousand samples per input)
where the biggest differences in execution times have been
recorded as shown in Figs. 19 and 20.

Results: GPU2

The end-to-end performance of all generated versions of
benchmarks on GPU2 is shown in Fig. 19. As discussed
for static benchmarks, the SDF MoC generated the most
succinct kernel code. Considering the fact that the designed
benchmarks only involve simple operations, the SDF MoC
demonstrated the best end-to-end performance for StITE and
StOR. In particular, the SDF version of StITE executed 1.74×
faster than the DDF version and performed only slightly
better than the KPN version. Similarly for StOR, the SDF
version executed 1.59× faster than the DDF version and
executed about 3 % faster than the KPN version. Similarly,
for all sequential benchmarks, the additional runtime over-
head associated with the DDF MoC is propagated to the
total execution time of the network resulting in elevated
execution times. As a result, the KPN versions performed
substantially better than the DDF versions. For all sequential
benchmarks, the KPN versions executed at least 1.15× faster
than the DDF versions. In particular, the biggest difference is
observed in the case of SeqDySelect where the KPN version
executed 2.87× faster than the DDF version.

Results: CPU1

In comparison to GPU2, the average execution time of each
benchmark version is substantially reduced on CPU1 as
shown in Fig. 20. In contrast to OpenCL CPU where the
host and the kernels reside on the same device, in the case of
GPU, the data has to be transferred to the GPU and back to
the main memory (host). This overhead therefore contributes

Fig. 18 The generated code size for standalone benchmarks based on
all three supported dataflow MoCs

 SN Computer Science (2022) 3:249249 Page 26 of 34

SN Computer Science

in elevating the total execution time. On average, the gener-
ated versions on CPU1 executed 1.75× faster than on GPU1.
Similar to GPU2, the same trend of end-to-end performance
has been observed on CPU1. The SDF MoC demonstrated
the best end-to-end performance for static benchmarks StITE
and StOR. The SDF version of StITE executed 7 % and 3.5%
faster than the DDF and KPN versions, respectively. Simi-
larly for StOR, the SDF version performed slightly better
than the DDF and KPN versions. For all sequential bench-
marks, the KPN versions performed substantially better than
the DDF versions. To this end, the KPN versions executed
on average 1.4× faster than the DDF versions. In particular,
the biggest difference is observed in the case of SeqDySelect
where the KPN version executed 1.83× faster than the DDF
version.

Results: Summary

The SDF MoC generated the most succinct kernel code and
demonstrated the best end-to-end performance for simple
static benchmarks. The KPN MoC performed significantly
faster than the DDF MoC for all sequential benchmarks.
The DDF MoC offers the most expressive semantics of all
supported dataflow MoCs and therefore was able to gener-
ate implementations for all designed benchmarks. The DDF
MoC enables one to model static, sequential as well as paral-
lel behaviors but at the cost of additional runtime overhead.
Thus, even for the simplest of the benchmarks, we observed
that generating implementations based on the kind of behav-
ior or the underlying dataflow MoC of each process results
in substantially improved end-to-end performance. In other
words, using a more generalized dataflow MoC for schedul-
ing and executing rather restricted dataflow behaviors could
result in inefficient system implementations.

Case Study: The ConceptCar’s Dataflow Emulation

The ConceptCar [37, 40] (designed and developed by our
group) is an experimental embedded system with the objec-
tive of testing and verifying car features by deploying differ-
ent classes of applications. The ConceptCar, although not as
big as a conventional car, has been built and engineered as
close to a modern car as possible.

Hardware Design: The ConceptCar is a research plat-
form remotely operated via a standard 2-channel (throttle
and steering) 27 MHz radio transmitter system. It incor-
porates a set of sensors (wheel speed, gyro/accelerometer,
distance etc.) for interacting with the environment and sur-
roundings. It uses an air-cooled sensorless brushless elec-
trical motor for driving, and a servo motor for steering.
The power train of the ConceptCar features two independ-
ent power sources: one for the heavy load electric system
(motors/actuators), and another one for powering up all the
electronic control units (ECUs).

Computational Architecture: Although not incorpo-
rated with as many ECUs as a modern car can carry, the
ConceptCar still features seven different ECUs, as shown in
Fig. 21. These ECUs are organized in three processing units.
The SensorBoard ECUs, as incorporated with different sen-
sors, form the input processing unit which is responsible for
interacting with the environment. The multicore ECU also
known as DataBoard is used as a data processing unit and
only comes into play when complex mathematical computa-
tions are required. The ActorBoard ECU forms the output
processing unit and is responsible for creating the PWM
signals to drive the actuators (dc motor and servo). The
selector switch on ActorBoard chooses the source of data,
either receiving processed data from DataBoard or normal-
ized data from SensorBoards. Similar to a modern car, all

Fig. 19 End-to-end performance on GPU2 for the generated versions
of the standalone benchmarks. The results depicted in the figure are
measured for 10K samples per input

Fig. 20 End-to-end performance on CPU1 for the generated versions
of the standalone benchmarks. The results depicted in the figure are
measured for 10K samples per input

SN Computer Science (2022) 3:249 Page 27 of 34 249

SN Computer Science

ECUs interact with each other via a centralized CAN bus
architecture. Since the powertrain of the ConceptCar fea-
tures two independent power sources, a special ECU called
EmergencyBoard is integrated which separates the actuators
from the other ECUs by galvanic isolation. EmergencyBoard
therefore isolates functional sections of electrical systems
to prevent current flow. This ECU only accepts the input
from the radio receiver and ActorBoard, and bypasses it to
SensorBoards and the actuators, respectively.

Dataflow Emulation: A dataflow emulation of the Con-
ceptCar is devised where the operations of all the ECUs
are emulated in a network of processes. The computations
performed by each ECU are therefore modeled in a DPN
process. This dataflow emulation allows us to produce two
different test cases: The first test case as shown in Fig. 22
emulates the initial design of the ConceptCar without gal-
vanic isolation i.e., the actuators are directly fed by Actor-
Board. The second test case as shown in Fig. 27 considers
the design with galvanic isolation provided by Emergency-
Board. For both test cases, the input data provided by the
process RadioRemoteReceiver is collected from the cen-
tralized CAN bus and the results are validated against the
logged outputs of the ConceptCar.

A number of implementations (versions) are automati-
cally generated by the synthesis framework for both test
cases where each test case is focused to evaluate particular

aspects of synthesis. Each generated version is executed on
three different devices, namely CPU2 from Intel, GPU1
from Intel and GPU3 from NVIDIA as listed in Fig. 15.
The target hardware for this case study, therefore, features
three different types of devices involving a CPU, an inte-
grated GPU and a dedicated GPU. Each generated version
is evaluated for the resulting code size, the total network
build time, and the end-to-end performance. The code size
of each generated version is described as the sum of lines
of code of all generated kernels. The network build time is
defined as the total time taken by the OpenCL just-in-time
(JIT) compiler to build all the kernels in the network and the
MoC specific API functions of the used dataflow MoC(s).
The build time is measured only by using CPU2. The end-
to-end performance is defined as the total execution time of
the network to process the complete input data set including
initialization and termination of the program. The data set
used has a maximum of five thousand samples per input and
the average of 50 repetitions is taken for each version.

Test Case I: Open‑Loop Configuration

The dataflow emulation of the design where ActorBoard
directly feeds the actuators resulted in the open-loop con-
figuration of the ConceptCar, as shown in Fig. 22. The origi-
nal network features a heterogeneous DPN of different kinds
of processes exhibiting static as well as sequential behaviors.
The function or behavior type of each process is described at
the bottom of each node as shown in Fig. 22. The main focus
of this test case is to generate homogeneous implementations
based on the individual dataflow MoCs of the framework
and evaluate them for their resulting code size, the total
network build time, and the end-to-end performance. The
open-loop configuration is therefore modeled and automati-
cally synthesized thrice, once for each individual dataflow
MoC. Hence, three different versions are automatically gen-
erated by the synthesis framework, i.e., first based on the
SDF MoC, second using the KPN MoC, and finally based on
the DDF MoC. The original dataflow model of ActorBoard
exhibits a sequential behavior as it utilizes data either from
DataBoard or SensorBoards based on the input provided

Fig. 21 Architecture of the ConceptCar

Fig. 22 The original dataflow
network of the ConceptCar
based on the open-loop configu-
ration. As shown in the figure,
the actuators are directly fed by
ActorBoard. The behavior type
of each process is described
at the bottom of each node in
square brackets

 SN Computer Science (2022) 3:249249 Page 28 of 34

SN Computer Science

by SelectorSwitch. A static version of ActorBoard is also
modeled that consumes data from all inputs in each execu-
tion. This allowed us to design a fully static network and to
generate an implementation of the open-loop network based
on the SDF MoC.

Generated Code Size and Network Build Time

The generated versions of the open-loop network based on
all three dataflow MoCs are illustrated in Fig. 23. In par-
ticular, the generated kernel code size of each DPN process
and the total build time for the complete network are given
for each version.

The SDF MoC generated the most succinct kernel code
for static processes. On the other hand, the KPN MoC gen-
erated the most concise code for sequential processes. In
contrast to SDF and KPN MoCs, the DDF MoC offers a
more flexible semantics where the decision on whether to
consume/produce data in each execution is taken dynami-
cally at runtime in the kernel code. Consequently, the gen-
erated DDF version accommodates additional kernel code
for enabling the dynamic evaluation of actions at runtime
when the process is triggered for execution. This overhead
can therefore be observed from the number of lines of the
generated code for each process and the total network build
time. The generated code size of the DDF version for the
complete network is 65% and 59% greater than the KPN and
SDF versions, respectively. This results in an additional
build time overhead of 391% and 384% in comparison to
the build times of KPN and SDF versions, respectively. The
overhead also reflects the additional time taken to build the
DDF MoC specific API functions used for dynamic execu-
tion within kernels.

Finally, we also observed that the KPN version has
slightly less code size than the SDF version for the com-
plete open-loop network. This is mainly because the static
version of ActorBoard consumes data from all inputs in each
execution and therefore the corresponding generated kernel
accommodated more lines of code. Precisely, the generated
code for the static version of ActorBoard based on the SDF
MoC is about 20% more than the dynamic version generated
based on the KPN MoC.

End‑to‑End Performance

Each generated version of the open-loop network is executed
on each target hardware at a time to evaluate and compare
the end-to-end performance. On each target hardware. i.e.,
CPU2, GPU1 and GPU3, the average execution time (in
seconds) of each version is measured against the number of
data samples as shown in Figs. 24, 25 and 26, respectively.

Regardless of which target hardware is used, the SDF
version demonstrated the best end-to-end performance of

all generated versions. Apart from ActorBoard, all pro-
cesses in the original open-loop network are static. As
already observed in the previous section, the SDF MoC
generated the most succinct kernel code for static pro-
cesses. Second, since the SDF MoC also simplifies the
scheduling of processes, this further contributes to the
improved end-to-end performance for the SDF version.
The KPN version although offered a slightly less code size,
however, induced a slight overhead in scheduling static
processes in comparison to the SDF version. The SDF
version, therefore, performed only slightly better than the
KPN version, in particular, executed only 7% and 4.5%
faster on CPU2 and GPU1, respectively. On GPU3 how-
ever the difference in performance is negligible.

In contrast to SDF and KPN MoCs, the additional runt-
ime overhead associated with the DDF MoC is propagated
to the end-to-end performance resulting in elevated execu-
tion times. Based on the results, as the number of samples
increases, this effect induced by the overhead can be clearly
observed. On CPU2, the DDF version took twice as much
time as taken by the SDF version and took about 90% more
time than the KPN version to execute the complete network
for five thousand samples. On GPU1, the DDF version
yielded about 145% and 135% more execution time than the
SDF and KPN versions, respectively. Finally, on GPU3,
the DDF version required 50% more time to process five
thousand samples in comparison to the SDF and KPN ver-
sions. The DDF MoC although offers semantics to model
sequential as well as parallel behaviors, but at the cost of the
additional runtime overhead. Therefore, it exhibits a trade-
off between expressiveness and overall performance.

All generated versions executed substantially faster on
the CPU than on the used GPUs mainly because of the com-
munication overhead associated with the OpenCL GPU. For

Fig. 23 ConceptCar’s open-loop setting: comparison of generated
code size and network build time of all supported dataflow MoCs

SN Computer Science (2022) 3:249 Page 29 of 34 249

SN Computer Science

instance, the SDF version on CPU2 executed 4.75× and 1.4×
faster than on GPU3 and GPU1, respectively. Since, the
integrated GPU (GPU1) share the same memory of the host,
the versions executed substantially faster on GPU1 than on
the dedicated GPU (GPU3). For example, the SDF version
on GPU1 executed 1.39× faster than on GPU3.

Test Case II: Closed‑Loop Configuration

The dataflow emulation of the design where the Emer-
gencyBoard ECU separates the actuators from the rest of
the ECUs by galvanic isolation resulted in the closed-loop
configuration of the ConceptCar. The closed-loop setting
therefore introduces a feedback loop in the network from
ActorBoard into EmergencyBoard as shown in Fig. 27. The
original network features a heterogeneous DPN of different
kinds of processes exhibiting static, sequential and parallel
behaviors. In particular, EmergencyBoard exhibits a parallel
behavior as it features independent actions operating on the
independent sets of inputs from RadioRemoteReceiver and
ActorBoard and producing data to the independent sets of
outputs. This test case focuses on observing how the feed-
back loop in the network affects the performances of the
individual homogeneous implementations of all supported
dataflow MoCs. Second, and most importantly, it also dem-
onstrates how the proposed synthesis method effectively
exploits the heterogeneity by generating implementations
based on the underlying dataflow MoC of each process to
further improve the end-to-end performance.

The closed-loop configuration is modeled and automati-
cally synthesized four times, once for each individual data-
flow MoC and once based on the heterogeneous combina-
tion of all dataflow MoCs. Hence, four different versions are
automatically generated by the synthesis framework, i.e.,
first based on the SDF MoC, second using the KPN MoC,
third based on the DDF MoC, and finally the heterogeneous
version based on the combination of all used dataflow MoCs.
Since, the original dataflow model of EmergencyBoard
exhibits a parallel behavior, a static version is also designed
that consumes data from all inputs in each execution. This
allowed us to generate implementations of the closed-loop
network based on the SDF and KPN MoCs.

Generated Code Size and Network Build Time

The generated versions of the closed-loop network are illus-
trated in Fig. 28. The generated homogeneous versions based
on the individual dataflow MoCs demonstrated the same
pattern in code size as observed in the case of the open-loop
network. The generated code size of the DDF version for the
complete network is 67% and 61% greater than the KPN and
SDF versions, respectively. This resulted in an additional
build time overhead of 385% and 379% in comparison to the
build times of KPN and SDF versions, respectively.

The heterogeneous version is automatically generated
based on the kind of behavior or the underlying dataflow
MoC of each process in the network. The generated code
size of the heterogeneous version is only slightly greater
than the KPN and SDF versions. Since the heterogeneous

Fig. 24 Open-loop setting: comparison of end-to-end performance of
all supported dataflow MoCs on CPU2

Fig. 25 Open-loop setting: comparison of end-to-end performance of
all supported dataflow MoCs on GPU1

Fig. 26 Open-loop setting: comparison of end-to-end performance of
all supported dataflow MoCs on GPU3

 SN Computer Science (2022) 3:249249 Page 30 of 34

SN Computer Science

version employed the MoC specific API functions of all the
used dataflow MoCs, this resulted in the build time overhead
of about 40% and 38% in comparison to the build times of
KPN and SDF versions, respectively. However, the code size
of the DDF version is 56% greater than the heterogeneous
version and therefore required 247% more time to build the
complete network.

End‑to‑End Performance

Each generated version of the closed-loop network is exe-
cuted on each target hardware at a time to evaluate and com-
pare the end-to-end performance. On each target hardware.
i.e., CPU2, GPU1 and GPU3, the average execution time (in
seconds) of each version is measured against the number of
data samples as shown in Figs. 29, 30 and 31, respectively.

Regardless of which target hardware is used, it can be
observed that the introduction of the feedback loop in the

network elevates the execution times of the SDF and KPN
versions to an unacceptable level. As discussed, the origi-
nal dataflow model of EmergencyBoard exhibits a parallel
behavior. Since, the SDF MoC only supports static behav-
iors, a static version of EmergencyBoard is designed to
generate the SDF and KPN versions. The static version
of EmergencyBoard therefore requires data in all inputs
before it can be scheduled for execution. With a feedback
loop introduced into EmergencyBoard, the SDF and KPN
versions only schedule and communicate a single execu-
tion at a time for all processes (except RadioRemoteR-
eceiver) at the device. Consequently, this induces a lot
of scheduling and communication overhead between the
host and device, and, therefore, resulted in excessively
elevated execution times. The DDF version on the other
hand employs a parallel version of EmergencyBoard and
therefore attempts to schedule and communicate as many
executions at a time as possible based on the availability
of data on independent sets of inputs. Thus, even with
the associated runtime overhead, the DDF version outper-
formed the SDF and KPN versions.

On CPU2, the DDF version executed 31× and 41× faster
than the SDF and KPN versions, respectively, in execut-
ing the complete network for five thousand samples. Simi-
larly, the end-to-end performance of SDF and KPN versions
on both the used GPUs reached to an unacceptable level.
On GPU1, the SDF executed 66× and the KPN version
executed 149× slower in comparison to the DDF version.
On GPU3, the SDF and KPN versions are 51× and 45× ,
respectively, slower than the DDF version. The difference
in execution times is bigger on the GPUs than on the CPU
mainly because of the communication overhead associated
with OpenCL GPUs. The SDF version performed substan-
tially better than the KPN version on the CPU and the inte-
grated GPU, in particular, executed about 1.33× and 2.2×
faster, respectively. This is mainly because the KPN version

Fig. 27 The original dataflow
network of the ConceptCar
based on the closed-loop
configuration. As shown in
the figure, a feedback loop is
introduced into the network
from ActorBoard into Emergen-
cyBoard. The behavior type of
each process is described at the
bottom of each node in square
brackets

Fig. 28 Closed-loop setting: comparison of generated code size and
network build time of all supported dataflow MoCs including their
heterogeneous combination

SN Computer Science (2022) 3:249 Page 31 of 34 249

SN Computer Science

induced an overhead in scheduling static processes for a
large number of single executions. Interestingly, the KPN
version executed about 1.13× faster than the SDF version
on the dedicated GPU. The KPN version only dispatches a
process for execution on the device if there exists one of the
actions whose firing rules are satisfied. It therefore evalu-
ates the firing rules at the scheduling time on the host side.
This relaxes the computation on the device side. Since the
dedicated GPU uses its own CPU and memory, the execu-
tion of simpler operations on less powerful processing cores

contributed in the improved end-to-end performance for the
KPN version.

The heterogeneous version: The main highlight of this
test case is to evaluate the ability of the proposed synthe-
sis method to efficiently exploit the heterogeneity of dif-
ferent kinds of behaviors of processes in the network. The
heterogeneous version is therefore automatically generated
based on the underlying dataflow MoC of each process in
the network. Regardless of which device is used for execu-
tion, the heterogeneous version demonstrated a substantial
improvement in performance in comparison to the most effi-
cient homogeneous version of the closed-loop network. The
performance comparison between the heterogeneous version
and the DDF version is especially shown on the right-hand
side graphs of Figs. 29, 30 and 31. In particular, the het-
erogeneous version demonstrated a speedup of 2.2× , 2.4×
and 1.86× in comparison to the DDF version on CPU2,
GPU1 and GPU3, respectively. This speedup achieved by
the heterogeneous version on all target devices is illustrated
in Fig. 32. The speedup is calculated with reference to the
computation time (in seconds) of the generated homoge-
neous DDF version. The heterogeneous version therefore
significantly improved the performance by eliminating the
overhead induced by the feedback loop in the SDF and KPN
versions, and by avoiding the additional runtime overhead
of the DDF version.

Hence, it can be concluded from this particular test case
that the ability to exploit the heterogeneity of different kinds
of behaviors of processes in DPNs contributes in efficient sys-
tem implementations with substantially improved end-to-end
performance.

Summary

The first test case featured an open-loop network which is
mainly designed to generate and evaluate homogeneous imple-
mentations based on all individual supported dataflow MoCs.
Considering the fact that most of the processes in the network
exhibit static behaviors, the SDF version demonstrated the best
end-to-end performance of all generation versions. The DDF
version induced the runtime overhead of evaluating actions
within kernels and performed the slowest of all generated ver-
sions. In particular, the DDF version took about 145% and
135% more execution time than the SDF and KPN versions,
respectively.

The second test case introduced a feedback loop from
ActorBoard to EmergencyBoard that resulted in a closed-loop
network. We observed that the introduction of the feedback
loop in the network greatly degraded the end-to-end perfor-
mance of SDF and KPN versions. In particular, the DDF ver-
sion even with the associated runtime overhead outperformed
the SDF and KPN versions. However, the heterogeneous
version that exploited the heterogeneity of different kinds of

Fig. 29 Closed-loop setting: comparison of end-to-end performance
of all supported dataflow MoCs on CPU2. The right-hand side graph
particularly shows the performance comparison between the DDF
version and the heterogeneous version

Fig. 30 Closed-loop setting: comparison of end-to-end performance
of all supported dataflow MoCs on GPU1. The right-hand side graph
particularly shows the performance comparison between the DDF
version and the heterogeneous version

Fig. 31 Closed-loop setting: comparison of end-to-end performance
of all supported dataflow MoCs on GPU3. The right hand side graph
particularly shows the performance comparison between the DDF
version and the heterogeneous version

 SN Computer Science (2022) 3:249249 Page 32 of 34

SN Computer Science

processes significantly improved the performance, in particu-
lar, executed up to 2.4× faster than the fastest homogeneous
DDF version. Hence, the ability of the proposed synthesis
method to exploit heterogeneity in a DPN effectively contrib-
uted in achieving the best end-to-end performance.

Conclusions

This paper presented the automatic software synthesis of
systems based on three different well-defined dataflow MoCs
including their heterogeneous combinations. We proposed a
synthesis design flow that offers a comprehensive tool chain
including specialized code generators and the runtime sys-
tem for the supported dataflow MoCs. First, this allowed us
to meet the objective of validating, evaluating and compar-
ing the artifacts exhibited by different dataflow MoCs at the
implementation level under the shed of a common design
tool. Second, an efficient and smarter synthesis method is
presented that targets and exploits heterogeneity in dataflow
networks by generating implementations based on the kinds
of behaviors of the processes. Finally, this work also tackled
the challenge of systematically handling the portability of
systems on COTS heterogeneous platforms.

Based on our evaluations, we observed that even for the
simplest of the benchmarks, the generated versions based on
the kinds of behaviors of the processes demonstrated the best
end-to-end performance. In particular, using a more gener-
alized dataflow MoC for scheduling and executing rather
restricted dataflow behaviors resulted in inefficient system
implementations. Based on our case study, we observed
that the heterogeneous versions generated by the proposed
synthesis method demonstrated a substantial improvement
in performance. In particular, the heterogeneous versions
demonstrated up to 2.4× speedup than the most efficient
generated homogeneous version. Based on the evaluations,
it can be concluded that the ability to exploit the heteroge-
neity of different kinds of behaviors of processes in DPNs

contributes in efficient system implementations with sub-
stantially improved end-to-end performance.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visithttp:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Bai Y. Model-based design of embedded systems by desynchroni-
zation. PhD thesis, Department of Computer Science, University
of Kaiserslautern, Germany, 2016. PhD.

 2. Bai Y, Rafique O and Schneider K. A model-based design flow for
asynchronous implementations from synchronous specifications.
In: Design, automation and test in Europe (DATE). Grenoble,
France, 2021. IEEE Computer Society, pp. 862–7.

 3. Bai Y, Schneider K, Bhardwaj N, Katti B and Shazadi T. From
clock-driven to data-driven models. In: Formal methods and mod-
els for codesign. Lausanne, Switzerland, 2014. IEEE Computer
Society, pp. 32–41.

 4. Benveniste A, Caillaud B, Le Guernic P. From synchrony to asyn-
chrony. In: Baeten JCM, Mauw S, editors. Concurrency theory
(CONCUR), vol. 1664. LNCS. Eindhoven: Springer; 1999. p.
162–77.

 5. Benveniste A, Caspi P, Edwards S, Halbwachs N, Le Guernic P,
de Simone R. The synchronous languages twelve years later. Proc
IEEE. 2003;91(1):64–83.

 6. Berry G, Gonthier G. The Esterel synchronous programming
language: design, semantics, implementation. Sci Comput Pro-
gram. 1992;19(2):87–152.

 7. Bhattacharyya SS, Eker J, Janneck JW, Lucarz C, Mattavelli M,
Raulet M. Overview of the MPEG reconfigurable video coding
framework. J Signal Process Syst. 2011;63(2):251–63.

 8. Boutellier J, Wu J, Huttunen H, Bhattacharyya SS. PRUNE:
dynamic and decidable dataf low for signal processing
on heterogeneous platforms. IEEE Trans Signal Process.
2018;66(3):654–65.

 9. Brooks CX, Lee EA, Tripakis S. Exploring models of computation
with Ptolemy II. In: Givargis T, Donlin A, editors. International
conference on hardware/software codesign and system synthesis
(CODES+ISSS). Scottsdale: ACM; 2010. p. 331–2.

Fig. 32 Closed-loop setting: speedup gained by the heterogeneous
version on all target devices. The speedup is calculated with reference
to the computation time (in seconds) of the generated homogeneous
DDF version

http://creativecommons.org/licenses/by/4.0/

SN Computer Science (2022) 3:249 Page 33 of 34 249

SN Computer Science

 10. Buck JT. Scheduling dynamic dataflow graphs with bounded
memory using the token flow model. PhD thesis, University of
California, Berkeley, California, USA, 1993. PhD.

 11. Dennis JB. First version of a data-flow procedure language. In:
Robinet B, editor. Programming symposium, vol. 19. LNCS.
Paris: Springer; 1974. p. 362–76.

 12. Didier K, Potop-Butucaru D, Iooss G, Cohen A, Souyris J, Baufre-
ton P, Graillat A. Correct-by-construction parallelization of hard
real-time avionics applications on off-the-shelf predictable hard-
ware. ACM Trans Archit Code Optim. 2019;16(3):24:1-24:27.

 13. Eker J and Janneck JW. CAL language report. ERL Technical
Memo UCB/ERL M03/48, EECS Department, University of Cali-
fornia at Berkeley, Berkeley, California, USA, 2003.

 14. Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J, Neuen-
dorffer S, Sachs S, Xiong Y. Taming heterogeneity—the Ptolemy
approach. Proc IEEE. 2003;91(1):127–44.

 15. Engels M, Bilsen G, Lauwereins R and Peperstraete J. Cyclo-static
dataflow. In: International conference on acoustics, speech and
signal processing (ICASSP). Detroit, Michigan, USA, 1995. IEEE
Computer Society, pp. 3255–8.

 16. Falk J, Haubelt C, Teich J, Zebelein C. SysteMoC: a data-flow
programming language for codesign. Netherlands: Springer; 2017.
p. 59–97.

 17. Faustini AA. An operational semantics for pure data flow. In:
Nielsen M, Schmidt EM, editors. International colloquium on
automata. Languages and programming (ICALP), volume 140 of
LNCS. Århus: Springer; 1982. p. 212–24.

 18. Geilen M, Basten T. Requirements on the execution of Kahn
process networks. In: Degano P, editor. European symposium on
programming (ESOP), vol. 2618. LNCS. Warsaw: Springer; 2003.
p. 319–34.

 19. Girault A. A survey of automatic distribution method for syn-
chronous programs. In: Synchronous languages, applications, and
programming (SLAP). Edinburgh, Scotland, UK, 2005, pp. 1–20.
(unpublished workshop proceedings)

 20. Haubelt C, Falk J, Keinert J, Schlichter T, Streubühr M, Dey-
hle A, Hadert A, Teich J. A SystemC-based design methodology
for digital signal processing systems. EURASIP J Embed Syst.
2007;2007(1):15–15.

 21. Kahn G and MacQueen DB. Coroutines and networks of parallel
processes. In: Gilchrist B, editor, Information processing. North-
Holland, 1977; pp. 993–8.

 22. Kahn G. The semantics of a simple language for parallel program-
ming. In: Rosenfeld JL, editor. Information processing. Stock-
holm: North-Holland; 1974. p. 471–5.

 23. Karp RM, Miller RE. Properties of a model for parallel computa-
tions: determinacy, termination, queueing. SIAM J Appl Math
(SIAP). 1966;14(6):1390–411.

 24. Kuhn T, Forster T, Braun T and Gotzhein R. FERAL—framework
for simulator coupling on requirements and architecture level. In:
Formal methods and models for codesign. Portland, OR, USA,
2013; pp. 11–22. IEEE Computer Society.

 25. Lee JH, Nigania N, Kim H, Patel K and Kim H. OpenCL per-
formance evaluation on modern multicore CPUs. Sci Programm.
2015; pp. 859491:1–859491:20

 26. Lee EA, Messerschmitt DG. Synchronous data flow. Proc IEEE.
1987;75(9):1235–45.

 27. Lee EA, Parks T. Dataflow process networks. Proc IEEE.
1995;83(5):773–801.

 28. Lund W, Kanur S, Ersfolk J, Tsiopoulos L, Lilius J, Haldin J and
Falk U. Execution of dataflow process networks on OpenCL plat-
forms. In: Euromicro international conference on parallel, distrib-
uted, and network-based processing. Turku, Finland, 2015; pp.
618–25. IEEE Computer Society.

 29. Parks TM. Bounded scheduling of process networks. PhD thesis,
Princeton University, 1995. PhD.

 30. Parks TM, Pino JL and Lee EA. A comparison of synchronous and
cyclo-static dataflow. In: Asilomar conference on signals, systems
and computers. Washington, District of Columbia, USA, 1995; pp.
204–210. IEEE Computer Society.

 31. Potop-Butucaru D, Caillaud B, Benveniste A. Concurrency in
synchronous systems. Formal Methods Syst Design (FMSD).
2006;28(2):111–30.

 32. Rafique O and Schneider K. A model-based synthesis framework
for the execution of dynamic dataflow actors. In: International
conference on internet of things embedded systems and commu-
nications. Hammamet, Tunisia, 2018. IEEE Computer Society.

 33. Rafique O and Schneider K. Employing OpenCL as a standard
hardware abstraction in a distributed embedded system: a case
study. In: Conference on cyber-physical systems and internet-
of-things. Budva, Montenegro, 2020; pp. 1–7. IEEE Computer
Society.

 34. Rafique O and Schneider K. Evaluating OpenCL as a standard
hardware abstraction for a model-based synthesis framework: a
case study. In: International conference on model driven engineer-
ing and software development. Prague, Czech Republic, 2019.

 35. Rafique O and Schneider K. Integrating Kahn process networks
as a model of computation in an extendable model-based design
framework. In: International conference on model driven engi-
neering and software development. SCITEPRESS, 2021.

 36. Rafique O and Schneider K. SHeD: a framework for automatic
software synthesis of heterogeneous dataflow process networks.
In: Euromicro conference on digital system design (DSD),
Portoroz̆, Slovenia, 2020. IEEE Computer Society.

 37. Rafique O, Gesell M, Schneider K. Generating hardware specific
code at different abstraction levels using Averest. In: Corporaal H,
Stuijk S, editors. International workshop on software and compil-
ers for embedded systems (SCOPES). Sankt Goar: ACM; 2013.
p. 90–2.

 38. Rafique O, Bai Y, Schneider K and Yan G. Efficient implementa-
tion of heterogeneous dataflow models using synchronous IO pat-
terns. In: Euromicro conference on digital system design (DSD).
Palermo, Sicily, Italy, 2021; pp. 82–9. IEEE Computer Society.

 39. Rafique O, Bai Y, Schneider K and Yan G. Synthesis of hetero-
geneous dataflow models from synchronous specifications. In:
Computers, software, and applications conference (COMPSAC).
Virtual Conference, 2021. IEEE Computer Society.

 40. Rafique O, Gesell M and Schneider K. Learning various aspects
of a distributed real-time automotive embedded system. In: Mar-
wedel P, Jackson J and Ricks K (eds) Workshop on embedded
and cyber-physical systems education (WESE), Montreal, Canada,
2013. ACM.

 41. Rafique O, Schneider K. Automatic software synthesis of static
and dynamic dataflow process networks. In: International work-
shop on interplay of model-driven and component-based software
engineering. Munich, Germany; 2019.

 42. Sander I, Jantsch A, Attarzadeh-Niaki S-H. ForSyDe: system
design using a functional language and models of computation.
In: Ha S, Teich J, editors. Handbook of hardware/software code-
sign, chapter 4. Berlin: Springer; 2017.

 43. Schneider K. The synchronous programming language Quartz.
Internal Report 375, Department of Computer Science, University
of Kaiserslautern, Kaiserslautern, Germany, 2009.

 44. Schor L, Bacivarov I, Rai D, Yang H, Kang S-H, Thiele L. Sce-
nario-based design flow for mapping streaming applications onto
on-chip many-core systems. In: Jerraya A, Carloni L, Mooney
V, Rabbah R, editors. Compilers, architecture, and synthesis for
embedded systems (CASES). Tampere: ACM; 2012. p. 71–80.

 45. Schor L, Tretter A, Scherer T and Thiele L. Exploiting the paral-
lelism of heterogeneous systems using dataflow graphs on top of
OpenCL. In: IEEE symposium on embedded systems for real-time
multimedia. IEEE Computer Society, 2013; pp. 41–50.

 SN Computer Science (2022) 3:249249 Page 34 of 34

SN Computer Science

 46. Shen J, Fang J, Sips H, Varbanescu AL. An application-centric
evaluation of OpenCL on multi-core CPUs. Parallel Comput.
2013;39(12):834–50.

 47. Stone JE, Gohara D, Shi G. OpenCL: a parallel programming
standard for heterogeneous computing systems. Comput Sci Eng.
2010;12(3):66–73.

 48. Stuijk S, Geilen M, Theelen BD, Basten T. Scenario-aware data-
flow: modeling, analysis and implementation of dynamic applica-
tions. In: Carro L, Pimentel AD, editors. International conference
on embedded computer systems: architectures, modeling, and
simulation (SAMOS). Samos: IEEE Computer Society; 2011. p.
404–11.

 49. Stuijk S, Geilen M and Basten T. SDF3: SDF for free. In: Appli-
cation of concurrency to system design (ACSD). Turku, Finland,
2006; pp. 276–8. IEEE Computer Society.

 50. Tarjan R. Depth first search and linear graph algorithms. SIAM J
Comput (SICOMP). 1972;1(2):146–60.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Synthesis of Parallel Software from Heterogeneous Dataflow Models
	Abstract
	Introduction
	The State of the Art
	Motivation and Problem Setting
	Contributions

	Related Work
	Design Tools for Modeling
	Design Tools for Synthesis
	Design Tools Used in Industry
	Summary

	Preliminaries
	Dataflow Process Networks
	Desynchronized DPN Model
	Open Computing Language
	Platform Model
	Program Model
	Execution Model
	Memory Model

	The Design Flow: Overview
	Modeling: Dataflow Models
	The General Model of DPN
	Syntax
	Semantics

	Static Dataflow Model
	Syntax
	Semantics

	Kahn Process Networks Model
	Syntax
	Semantics

	Dynamic Dataflow Model
	Syntax
	Semantics

	Synthesis: The Toolchain
	Back-end
	Code Generators: Kernel Code Generation

	Runtime System
	Process and Device Queues
	 The Runtime-Manager

	Experimental Evaluation
	Experimental Setup
	Standalone Benchmarks
	Evaluation: Generated Code Size
	Evaluation: The End-to-End Performance
	Results: GPU2
	Results: CPU1
	Results: Summary

	Case Study: The ConceptCar’s Dataflow Emulation
	Test Case I: Open-Loop Configuration
	Generated Code Size and Network Build Time
	End-to-End Performance

	Test Case II: Closed-Loop Configuration
	Generated Code Size and Network Build Time
	End-to-End Performance

	Summary

	Conclusions
	References

