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Abstract
Dataflow process networks (DPNs) are intrinsically data-driven, i.e., node actions are not synchronized among each other 
and may fire whenever sufficient input operands arrived at a node. While the general model of computation (MoC) of DPNs 
does not impose further restrictions, many different subclasses of DPNs representing different dataflow MoCs have been 
considered over time. These classes mainly differ in the kinds of behaviors of the processes. A DPN may be heterogeneous in 
that different processes in the network belong to different classes of DPNs. A heterogeneous DPN can therefore be effectively 
used to model and to implement different components of a system with different kinds of processes and, therefore, different 
dataflow MoCs. This paper presents a model-based design based on different dataflow MoCs including their heterogeneous 
combinations. In particular, it covers the automatic software synthesis of systems from DPN models. The main objective is 
to validate, evaluate and compare the artifacts exhibited by different dataflow MoCs at the implementation level of systems 
under the supervision of a common design tool. Moreover, this work also offers an efficient synthesis method that targets and 
exploits heterogeneity in DPNs by generating implementations based on the kinds of behaviors of the processes. The proposed 
synthesis method provides a tool chain including different specialized code generators for specific dataflow MoCs, and a 
runtime system that finally maps models using a combination of different dataflow MoCs on cross-vendor target hardware.

Keywords Dataflow process networks · Heterogeneity · Automatic synthesis

Introduction

The State of the Art

In a model-based design of embedded systems, we start by 
focusing on models that describe the functional behavior of 
the system. These models are hardware independent and are 
based on a particular model of computation (MoC). A MoC 
determines why, when, which atomic action of a system is 
executed. A model-based design is typically equipped with 
a tool chain that following a correctness-by-construction 
approach finally produces executable code. The code can 

then be deployed on the target hardware such as a CPU, 
a GPU or even an FPGA depending on the target applica-
tion. Depending on the application as well as on the target 
architecture, different MoCs have their own advantages and 
disadvantages.

For example, when it comes to real-time systems, the 
synchronous reactive (SR) [5, 6, 43] MoC greatly simpli-
fies many efforts in the validation and verification. In fact, it 
has proven its usefulness both on single-core and multi-core 
platforms, as well as on application-specific hardware plat-
forms in safety critical applications such as avionics [12] and 
other embedded system industries. However, when it comes 
to soft real-time applications such as streaming and signal 
processing [28], performance and design flexibility are often 
dominant factors over safety, and commercial off-the-shelf 
(COTS) heterogeneous hardware platforms are preferred 
[2]. The generation of distributed implementations is often 
desired for such applications where different components are 
mapped and executed on different computing units (devices). 
For such applications, especially when implemented on het-
erogeneous platforms, synchronization and communication 
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overheads caused by synchronous semantics often reduce 
the performance [1].

Instead, asynchronous models or dataflow process net-
works (DPNs) [11, 22, 23] are well-suited for the implemen-
tation of such systems. In particular, they explicitly expose 
the concurrency of applications and thereby simplify their 
execution on parallel and heterogeneous architectures. How-
ever, it is not beneficial to start with DPNs in model-based 
designs since DPNs do not lend themselves well for simula-
tion and verification. In particular, major correctness proper-
ties like buffer boundedness and absence of deadlocks are 
not decidable for general DPNs [18, 29]. Therefore, both 
SR and DPNs have their own advantages and disadvantages.

As an alternative, desynchronization of synchronous 
models [4, 19] has been developed that benefits both from 
the static analysis methods for synchronous systems and the 
performance of the finally synthesized asynchronous sys-
tems. Desynchronization techniques [1, 4, 31] are used to 
convert synchronous models into asynchronous ones to more 
efficiently support distributed implementations. These tech-
niques preserve the functional specification of the synchro-
nous models and, moreover, preserve properties like dead-
lock-freedom and bounded memory usage that are otherwise 
difficult to ensure in DPNs. These desynchronized models 
[1, 3] are the starting point of this work. The resulting data-
flow models are free from deadlocks and even buffers with 
only single entries are sufficient for a successful execution.

Motivation and Problem Setting

DPNs consist of statically defined process nodes with first-
in-first-out (FIFO) buffered point-to-point connections. The 
process nodes are not synchronized among each other and 
may fire whenever sufficient data is available for a node. 
While the general MoC of DPNs does not impose further 
restrictions, many different classes of DPNs have been con-
sidered over time like Kahn process networks (KPN) [22], 
(cyclo-)static dataflow (SDF) [30] networks and Boolean 
dataflow (BDF) [10] networks. Each class defines a specific 
dataflow MoC by specifying a particular execution and com-
munication semantics [16]. These classes mainly differ in 
the kinds of behaviors of the processes which affect on the 
one hand the expressiveness of the DPN class as well as 
the methods for their analysis (predictability) and synthesis 
(efficiency). These behaviors are precisely described based 
on the underlying semantics of how each process is trig-
gered for an execution, and how each execution of a process 
consumes/produces data. A process in a static DPN exhib-
its a static behavior where a statically determined amount 
of data is consumed and produced in each execution. Sec-
ond, a process in a KPN has a sequential behavior where 
a dynamically determined amount of data is consumed 
and produced sequentially in each execution. In contrast, a 

process in a dynamic dataflow (DDF) network may have a 
parallel behavior that can consume and produce a dynami-
cally determined amount of data in parallel. A DPN may 
be heterogeneous in that different processes in the network 
may belong to different classes of DPNs. A heterogeneous 
combination of particular kinds of processes can be used 
to model and implement different components of a system 
with different kinds of processes and, therefore, different 
dataflow MoCs. A simple example of a heterogeneous DPN 
consisting of different kinds of behaviors of the processes is 
visualized in Fig. 1.

Design tools for modeling [9, 14, 20, 24, 42, 49] are used 
to model and to design parallel embedded systems using 
certain MoCs, including different dataflow MoCs. However, 
there is a lack of automatic synthesis methods to analyze and 
to evaluate the artifacts exhibited by particular MoCs. Sec-
ond, the existing design tools for synthesis like [8, 28, 45] 
are usually restricted to the weakest classes of DPNs, i.e., to 
cyclo-static and static DPNs where each tool only supports 
a specific dataflow MoC. For heterogeneous DPNs offering 
heterogeneous combinations of different kinds of behaviors 
of the processes, the synthesis method should exploit this 
heterogeneity by generating efficient implementations based 
on the dataflow MoC of each process.

Apart from efficiency, another crucial challenge is the 
portability of applications on different cross-vendor plat-
forms which is not systematically handled by the traditional 
design flows. In general, a non-trivial manual effort is finally 
required for deploying automatically generated code to a 
particular target architecture.

The overall motivation of this work is to enable the auto-
matic software synthesis of systems using different data-
flow MoCs including their heterogeneous combinations. 
The main objective is to validate, evaluate and compare the 
artifacts exhibited by different dataflow MoCs at the imple-
mentation level of systems under the supervision of a com-
mon design tool. Moreover, the idea is to offer an efficient 
synthesis method that exploits heterogeneity in dataflow net-
works by generating implementations based on the kinds of 
behaviors of the processes. Finally, this work also considers 
the challenge of systematically handling the portability of 

Fig. 1  A simple visualization of a heterogeneous DPN. It consists 
of different kinds of processes ( p0,… , p5 ) characterized by static, 
sequential and parallel behaviors. The processes ( p0 … p5 ) are con-
nected together via FIFO buffered point-to-point channels ( f0,… , f5)
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modeled systems on cross-vendor heterogeneous platforms 
as an integral part of the synthesis process.

Contributions

We propose a synthesis design flow that essentially enables 
the automatic software synthesis of systems based on dif-
ferent dataflow MoCs. In particular, it supports three differ-
ent dataflow MoCs, namely synchronous (static) dataflow 
(SDF) [26], Kahn process networks (KPN) [21], and a deter-
ministic variant of dynamic dataflow (DDF). The common 
design tool can be effectively used to generate implementa-
tions based on the individual dataflow MoCs [32, 35, 41]. 
Moreover, in contrast to existing dataflow oriented synthe-
sis methods, the proposed method efficiently targets and 
exploits heterogeneity in dataflow networks by generating 
implementations purely based on the kinds of behaviors of 
the processes or the underlying dataflow MoC of each pro-
cess [36].

The target DPN model of our desynchronization method 
is based on a limited subset of the Cal actor language (CAL) 
[13]. The proposed synthesis design flow provides a com-
prehensive tool chain, including different specialized code 
generators for specific dataflow MoCs, and a runtime sys-
tem that finally maps models using a combination of differ-
ent dataflow MoCs on the target hardware. The tool chain 
essentially offers a platform-independent code synthesis 
method based on the open computing language (OpenCL) 
[47] abstraction that enables a more generalized synthesis 
targeting COTS heterogeneous architectures. In particular, 
this work focuses on mapping modeled systems on cross-
vendor multi-core CPUs and many-core GPUs.

The main contributions of this work can be summarized 
as follows:

• We propose an automatic model-based synthesis that 
allows us to synthesize systems using different dataflow 
MoCs, namely the SDF MoC, the KPN MoC and a deter-
ministic variant of the DDF MoC.

• We implemented a platform-independent code synthesis 
method for CAL DPN models. In particular, we offer a 
synthesis tool chain that automatically synthesizes CAL 
models into platform-independent OpenCL code.

• We offer a single back-end based on OpenCL which is 
comprised of different specialized code generators for 
specific dataflow MoCs.

• We present the runtime system designed under the 
OpenCL abstraction for finally deploying DPNs on cross-
vendor COTS target hardware.

Related Work

A number of model-based design tools have been presented 
over time for the design and development of embedded 
systems. This section covers a number of well-established 
design tools, categorized mainly from the perspective of 
desired goals, employed strategies and usage as given in the 
following sections.

Design Tools for Modeling

The Ptolemy project [9, 14] is a design tool originally con-
structed in a Java-based environment to support the mod-
eling and simulation of behaviors based on different MoCs, 
including particular dataflow MoCs. Although the main 
focus is to study and analyse different MoCs at the mod-
eling level, it also provides preliminary code generators.1 
It requires a supporting helper code for each process which 
is provided manually using a fairly complex procedure. 
FERAL [24] is another framework developed to provide a 
holistic model-based design approach to enable the coupling 
of specialized simulators in offline scenarios, i.e., without 
connecting them to real hardware. This project very inter-
estingly adopts and extends the concepts from the Ptolemy 
project.

The formal system design (ForSyDe) [42] tool offers a 
formal design methodology for embedded systems based on 
different MoCs including the SR MoC and two particular 
dataflow MoCs. Although the major focus of this design 
tool is the modeling framework, it also provides a hardware 
synthesis tool that has been mainly elaborated for translat-
ing models limited to the SR MoC into the corresponding 
VHDL code. Another synthesis plug-in called f2cc2 has been 
introduced for generating GPGPU software code from mod-
els limited to the SR MoC.

The SystemC models of computation (SysteMoC) [20] 
is an actor-oriented dataflow programming language built 
on top of SystemC. Besides supporting different dataflow 
MoCs, it also offers the automatic MoC identification of 
processes (actors), which is not featured in frameworks 
like Ptolemy and ForSyDe. Although the main focus of 
SysteMoC has been at the design level, the System-CoDe-
signer [20] framework specializes in automatic design space 
exploration starting from SysteMoC models. In particular, 
the framework offers a platform-based automatic system 
generation from SysteMoC models.

SDF for free ( SDF3 ) [49] is a versatile experimental tool 
that can generate random static dataflow graphs (SDFGs) 

1 http:// ptole my. berke ley. edu/ ptole myII/ ptII10. 0/ ptII10. 0.1/ ptole my/ 
cg/.
2 https:// github. com/ forsy de/ f2cc/ wiki.

http://ptolemy.berkeley.edu/ptolemyII/ptII10.0/ptII10.0.1/ptolemy/cg/
http://ptolemy.berkeley.edu/ptolemyII/ptII10.0/ptII10.0.1/ptolemy/cg/
https://github.com/forsyde/f2cc/wiki
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with support to analyse and visualize these graphs. It sup-
ports three different classes of static DPNs, namely the static 
dataflow (SDF) [26], the cyclo-static dataflow (CSDF) [15] 
and the scenario-aware dataflow (SADF) [48]. The tool 
includes an extensive library of SDFG analysis and trans-
formation algorithms as well as functionality to visualize 
and simulate them.

Design Tools for Synthesis

Model-based design tools for synthesis in the related state-
of-the-art mainly differ by their employed MoCs. A number 
of dataflow-oriented design tools have been presented where 
each tool usually only supports a specific dataflow MoC. To 
this end, some of the inspiring model-based design tools for 
synthesis are presented in [8, 28, 44, 45] (to name a few).

The framework presented in [45] introduces a design flow 
for executing applications specified as SDF graphs on het-
erogeneous systems using OpenCL. However, it only sup-
ports the execution of behaviors limited to SDF.

The work presented in [28] translates DPNs mod-
eled using a subset of CAL to parallel programs based on 
OpenCL. The methodology incorporates static analysis and 
transformations and thus confined to the synthesis of SDF 
models. Similarly, the dataflow oriented framework [8] pro-
poses a dataflow MoC as a symmetric-rate dataflow, a vari-
ant of SDF where the token production rate and the token 
consumption rate per FIFO channel is symmetric.

The distributed application layer (DAL) framework [44] 
presents a scenario-based design flow for mapping streaming 
applications onto heterogeneous on-chip many-core systems. 
Behaviors are modeled based on a specific dataflow MoC, 
namely the KPN MoC [22], and the execution scenarios are 
coordinated using a finite state machine (FSM).

Design Tools Used in Industry

One of the most popular and commercially recognized 
model-based design tool Matlab3 has introduced a variety of 
supporting toolkits over time. Interestingly, Matlab Simulink 
introduced the dataflow domain4 where applications can be 
modeled and simulated based on the SDF MoC. The main 
objective of introducing the dataflow domain is to improve 
the simulation throughput with multithreaded execution.

The Signal Processing Worksystem (SPW) from Cadence 
Design Systems5 supports the modeling and analysis of sig-
nal processing algorithms based on static as well as dynamic 
dataflow models. The design flow mainly focuses on the 

simulation and manual refinement of modeled systems. Sim-
ilarly, CoCentric System Studio from Synopsys6 is a system-
level design solution consisting of tools, methodologies, and 
libraries that enables the design and simulation of systems-
on-a-chip. The modeling paradigms can be hierarchically 
mixed at all levels for e.g., based on nested dataflow models 
and FSMs. The main emphasis of the design flow is the 
modeling and analysis of complex systems.

Summary

In general, model-based design tools for embedded systems 
that support heterogeneous combinations of MoCs including 
different dataflow MoCs are of particular interest for mod-
eling and analysis of complex systems. These frameworks, 
developed and evolved over decades, are used to formally 
analyse different MoCs for modeling and designing embed-
ded systems. Some of the design tools in this category also 
introduced a synthesis facility, supporting platform-depend-
ent synthesis methods usually restricted to implementations 
based on particular MoCs. In general, there is a lack of auto-
matic synthesis methods to analyse and to evaluate differ-
ent dataflow MoCs. Second, the existing design tools for 
synthesis are usually dedicated to automatically implement-
ing systems based on a specific dataflow MoC. Therefore, 
a common synthesis design flow is still needed that mainly 
focuses and emphasizes on the automatic software synthesis 
of systems based on different dataflow MoCs. Moreover, an 
efficient software synthesis method is desired that targets 
and essentially exploits heterogeneity in dataflow networks 
by generating implementations based on the dataflow MoC 
of each process. The features offered by the proposed tool in 
comparison to related tools are summarized in Fig. 2.

Fig. 2  Comparison of the proposed framework with related tools

3 http:// www. mathw orks. com/ matla bcent ral/.
4 https:// www. mathw orks. com/ help/ dsp/ ug/ datafl ow- domai ns. html/.
5 https:// www. caden ce. com/. 6 https:// www. synop sys. com/.

http://www.mathworks.com/matlabcentral/
https://www.mathworks.com/help/dsp/ug/dataflow-domains.html/
https://www.cadence.com/
https://www.synopsys.com/
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Preliminaries

This section highlights the background of this work by pre-
senting some important preliminaries. This includes the 
tools and specifications used as essential parts of the pro-
posed design flow.

Dataflow Process Networks

A dataflow process network (DPN) [11, 22, 23] describes the 
behavior of a system by distributing it in a set of independ-
ent process nodes that interact with each other only through 
FIFO buffered point-to-point channels, as shown in Fig. 1. 
Each process performs a computation by firing where it con-
sumes data tokens from its input buffers and produces data 
tokens for its output buffers. The behavior of each process 
is described by firing rules which are triggered by the avail-
ability of data. The general MoC of DPNs does not impose 
further restrictions. However, a number of different classes 
of DPNs representing different dataflow MoCs have been 
considered over time [16]. These classes mainly differ in 
the kinds of behaviors of the processes. These behaviors are 
precisely described based on the underlying semantics of 
how each atomic process is triggered for an execution, and 
how each execution of a process consumes/produces data, 
in particular, whether a statically or dynamically determined 
amount of data is consumed and produced. Based on that, 
the most commonly known classes can be categorized into 
static and dynamic DPNs as depicted in Fig. 3.

The latter accommodates DPNs like Kahn process net-
works (KPN) [22], Boolean dataflow (BDF) [10] and the 
dynamic dataflow (DDF) networks. Whereas, the former 
includes DPNs like static dataflow (SDF) [26, 30], homo-
geneous synchronous dataflow (HSDF) [26] and the cyclo-
static dataflow (CSDF) [15] networks. Static DPNs are 
generally characterized as having only processes where the 
consumption and production of tokens are neither influenced 
by the values of the consumed tokens nor are they depend-
ent on the points in time at which tokens arrive on the input 

buffers. Thus, processes in static DPNs always consume the 
same number of input tokens from particular input buffers 
and produce the same number of output tokens to particular 
output buffers. However, they may read different number of 
tokens from different input buffers and may write different 
number of tokens to different output buffers. On the one 
hand, these characteristics allow powerful design-time anal-
ysis techniques (e.g., for performance analysis and verifica-
tion), but on the other hand, they limit the expressiveness by 
excluding dynamic behaviors (like select and switch nodes).

In contrast to static DPNs, processes in dynamic DPNs 
can vary the consumption and production of tokens in each 
firing dependent on the history of the consumed tokens and 
also on the tokens to be consumed. This allows conditional 
or data-dependent executions of processes; in particular, 
each process can produce and consume a different number of 
tokens in every firing. This generalization results in higher 
expressiveness and flexibility but makes the analysis more 
difficult.

In general, DPNs offer a modeling paradigm well suited 
for the modeling of concurrent embedded systems. How-
ever, model-based designs starting with dynamic DPNs have 
to deal with analyzability issues, i.e., the undecidability of 
checking major correctness properties like buffer bounded-
ness and absence of deadlocks. Therefore, implementations 
of concurrent and distributed embedded systems from DPNs 
like KPNs may suffer from problems like deadlocks and 
buffer overflows [18, 29].

Desynchronized DPN Model

As a long-term project, our group developed the Averest7 
tool for a model-based design process starting with syn-
chronous models. The Averest project aims at providing a 
complete set of tools for the development of reactive sys-
tems. Moreover, the work presented in [1, 3] further pre-
sents a desynchronization design flow based on Averest. The 
complete design flow based on Averest is presented in [2]. 
Since synchronous models are particularly well suited for 
analysis, the design flow starts with synchronous models, 
verifies them for desynchronization and then translates them 
to DPNs for the synthesis of concurrent and distributed sys-
tems. The underlying language of the target DPN model is a 
limited subset of CAL. Since, the proposed synthesis method 
targets the execution and deployment of DPNs on hetero-
geneous platforms consisting of different types of devices 
including GPUs, the desynchronization method generates 
stateless dataflow processes. This simplifies not only the tar-
get DPN specification for the final synthesis, but also paves 
the way for dynamically handling parallelization in OpenCL 

Fig. 3  Categorization of various dataflow MoCs. Different dataflow 
MoCs are categorized into static and dynamic ones. The static DPNs 
are ones having fixed consumption and production rates. Whereas, 
the dynamic DPNs involve variable consumption and production 
rates. The analyzability of DPNs is inversely related to their expres-
siveness. The dataflow MoCs supported in this work are highlighted 
by colored boxes

7 http:// www. avere st. org.

http://www.averest.org
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based synthesized implementations. Moreover, because of 
the great similarity between synchronous guarded actions 
(SGAs) as the Averest intermediate format (AIF) and CAL 
guarded actions, the correctness of the translation method 
is easily verified.

The target subset of CAL, therefore, simply consists of a 
set of guarded actions. Thereby, each generated stateless pro-
cess essentially consists of a set of guarded actions where the 
guards are applied to the values of the input tokens. Depend-
ing on the behavior of a particular synchronous module, the 
generated process possesses a particular kind of behavior 
that precisely determines a particular dataflow MoC. To 
exemplify, CAL processes based on different supported 
dataflow MoCs are illustrated in Figs. 9, 10, and 11.

Apart from processes, the topology of the network is usu-
ally described using the functional network language (FNL) 
based on the XML format [7]. A simple producer-consumer 
dataflow network, as shown in Fig. 4, is specified in FNL as 
shown in Listing 1. This example shows the two most basic 
elements of FNL, namely the Instance and the Connection. 
Each Instance field defines a process instance (Lines 2–4 and 
5–7), and possibly can even refer to another network. Each 
Connection field defines a connection between an input port 
and an output port of two instances (Lines 8–11).

Hence, the generated desynchronized CAL code consists 
of two parts: the CAL processes and the network description.

Open Computing Language

The open computing language OpenCL [47] has been 
designed for parallel computing on cross-vendor and het-
erogeneous architectures. In contrast to proprietary speci-
fication languages with limited hardware choices, OpenCL 
allows task-parallel and data parallel heterogeneous comput-
ing on a heterogeneous collection of modern central process-
ing units (CPUs), graphical processing units (GPUs), digital 
signal processors (DSPs), and other microprocessor designs 
organized into a single platform [25, 46].

A primary benefit of OpenCL is a substantial acceleration 
in parallel processing. OpenCL supports both coarse-grained 
(task-level) as well as fine-grained (data-level) parallelism. 
Second, it provides the ability to write vendor-neutral cross 
platform applications. These benefits can be derived by 
understanding and exploiting a set of abstract models pro-
vided by OpenCL, as depicted in Figs. 5 and 6. Platform Model

Fig. 4  A simple example of a producer-consumer network

Fig. 5  Overview of the OpenCL architecture: the platform model 
provides a standard abstraction of the target hardware. The program 
model specifies the behavior of a system typically organized as a host 
and several kernels. The execution model describes the mapping of 
the program model onto the platform model

Fig. 6  OpenCL memory model consists of five regions: The host 
memory is only accessible to the host processor. The global memory 
is accessible to both the host and device. The constant memory is 
fully accessible to the host and write-protected for the device. The 
local memory is only visible to the host and is local to a single com-
pute unit. The private memory is private to an individual work-item 
executing within an OpenCL processing element https:// www. khron 
os. org/ regis try/ OpenCL/ specs/2. 2/ html/ OpenCL_ API. html 

https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_API.html
https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_API.html
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The OpenCL platform model provides users with a con-
venient abstraction of the target hardware. It is defined 
as a host connected to one or more compute devices, each 
having multiple compute units (CUs), each of which fur-
ther consists of multiple processing elements (PEs).

A host is typically a CPU running a standard operat-
ing system (OS), while a compute device may be a GPU, 
a DSP, a further multicore CPU or any other specific 
microprocessor. Each device, therefore, consists of a col-
lection of one or more CUs where each CU can be con-
ceived as, for instance, a core of a CPU, or a streaming 
multiprocessor of a GPU. A CU is further composed of 
one or more PEs that execute instructions. Each PE can, 
therefore, be conceived as, for instance, a streaming core 
(or SIMD lane) of a GPU. An OpenCL device, therefore, 
executes the instruction computations on the PEs within 
the device.

Program Model

The OpenCL program model is comprised of two main 
components: the host program and kernels. The host pro-
gram executes on the host, defines device contexts, sets 
up command queues of devices and enqueues instances 
of kernel executions on devices.

Kernels: A kernel is a C-like function that actually imple-
ments the abstract behavior of the system or part of the 
system. OpenCL targets the parallel execution of a kernel 
on compute devices by organizing it into a computation 
domain. This computation domain is defined when a ker-
nel is mapped for execution on the command queue. Each 
independent element of this domain represents the execution 
instance of the kernel and is termed as the work-item. Each 
work-item performs the same kernel function but on differ-
ent data. OpenCL also allows grouping work-items together 
into work-groups, as shown in Fig. 5. All work-items in the 
same work-group are executed together on the same com-
pute unit.

Host Program: It resides and executes on the host and is 
responsible for setting up and handling the execution of ker-
nels on the compute devices using the defined context. The 
context essentially sets up the environment for executing 
kernels and is created with a set of devices. After the context 
is created, command queues are created where the kernels 
are mapped to get executed on the OpenCL devices associ-
ated with the context. Each command queue can represent 
a complete device (e.g., a CPU) or even a compute unit of 
that device (e.g., a CPU-core).

Execution Model

The OpenCL execution model can be understood as the map-
ping of kernels on the platform model which is implemented 
in the host program. Depending on the target compute device 
(e.g., a CPU or a GPU), kernels are mapped differently. In 
case of GPUs, OpenCL only allows the user to create a com-
mand queue at the level of a compute device. Hence, for a 
GPU, a kernel is typically allocated on a compute device, a 
work-group is ideally mapped on a CU, and work-items of 
that work-group are executed by PEs of that CU, as depicted 
in Fig. 5. In contrast, for CPUs, a command queue can be 
created at the level of a compute device as well as at the level 
of a CU. For the latter, the whole kernel (all work-groups) 
are mapped to the same CU (i.e., a core of a CPU).

Memory Model

OpenCL offers a disjoint memory model to programmers 
as shown in Fig. 6. This is mainly because OpenCL targets 
heterogeneous platforms where most platforms utilize dis-
joint memory systems due to different memory requirements 
of different architectures. OpenCL visualizes its target as a 
system where data sharing between the host and compute 
devices is performed explicitly by a system network, such 
as a peripheral component interconnect (PCI) bus. The 
OpenCL memory model is organized in five regions con-
sisting of host, global, constant, local and private memo-
ries. For heterogeneous architectures consisting of multi-
ple devices integrated on a single platform, host memory 
and device memory are independent of one another. This 
requires the explicit handling of data from host memory to 
device memory and back to host.

The Design Flow: Overview

The overall design flow can be understood in two parts, i.e., 
the modeling part and the synthesis part as shown in Fig. 7. 
In general, the starting point of this work is a desynchronized 
model. The desynchronization method based on our Averest 
tool finally generates a CAL DPN based on the supported 
dataflow MoCs. To this end, a general CAL DPN model is 
considered that relies on an abstract notion of a process. A 
process is composed of a finite set of actions where each 
action can perform a computation by consuming tokens from 
input buffers and producing tokens to output buffers. This 
general model is used with specific constraints and restric-
tions to specify the precise dataflow MoCs. Each supported 
dataflow MoC interprets the behavior of the CAL process 
in two parts: (i) process triggering or scheduling and (ii) 
process execution. The triggering behavior determines the 
conditions under which the dataflow MoC triggers a process 
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for an execution whereas the execution behavior determines 
how a process consumes/produces data when it is triggered 
for an execution. The framework supports three different 
dataflow MoCs, namely the synchronous (static) dataflow 
(SDF) [26] MoC, the Kahn process networks (KPN) [21] 
MoC and a deterministic variant of the dynamic dataflow 
(DDF) MoC. The general DPN model based on the used 
CAL subset and the supported dataflow MoCs are described 
in Sect. “Modeling: Dataflow Models”. The desynchronized 
model consisting of CAL processes and the network specifi-
cation is provided as input to the synthesis phase.

The synthesis part as shown in Fig. 7 provides a compre-
hensive tool chain, including a single back-end that offers 
different specialized code generators for different dataflow 
MoCs, and a runtime system which finally executes DPNs 
on the target hardware. Using OpenCL [47], it incorporates 
a standard hardware abstraction for cross-vendor heterogene-
ous hardware architectures. The proposed framework con-
ceptually employs OpenCL as an operating system (OS) in 
the sense that it provides: common services for managing the 
target hardware, software resources and the implementation 
of modeled systems based on the supported dataflow MoCs. 
As discussed, OpenCL offers a programming model consist-
ing of a host and several kernels where the host is a cen-
tralized entity that is connected to one or more computing 
devices and is responsible for the execution of kernels [33].

The framework adopts this idea of host and kernels for the 
synthesis as shown in Fig. 7. The synthesis method uses a 
combination of different code generators which generates an 
OpenCL kernel for each process in the network based on the 
underlying dataflow MoC of that process. In particular, the 
generated kernel implements the execution behavior of the 

process. A single back-end based on OpenCL is developed 
that provides different specialized code generators for spe-
cific dataflow MoCs. Each code generator generates kernel 
code based on its underlying dataflow MoC. The runtime 
system systematically employs OpenCL as an integral part 
of the synthesis and manages the scheduling of processes 
and their communication based on the dataflow MoC of each 
process. A scheduler is designed for each dataflow MoC that 
schedules a process based on the triggering semantics of 
the underlying MoC. The runtime system is organized in a 
centralized host and kernels architecture under the OpenCL 
abstraction. The host accommodates different essential com-
ponents along with the Runtime-Manager. The Runtime-
Manager exploits other components of the host and provides 
different low-level implementations to finally execute the 
modeled DPNs (kernels) on the target hardware. The back-
end comprising of different code generators and the runtime 
system based on OpenCL are presented in Sect. “Synthesis: 
The Toolchain”.

Modeling: Dataflow Models

The target dataflow process network (DPN) model is based 
on a limited subset of CAL that is comprised of stateless 
processes having guarded actions. The main purpose of this 
section is not to present the formal specification of dataflow 
models of computation (MoCs) as this has been thoroughly 
considered in the literature [17, 18]. Instead, the main idea 
here is to informally illustrate how CAL is used to specify 
general DPNs and how this general model is restricted to 
specify different classes of dataflow MoCs. We, therefore, 
first present the syntax and the informal semantics of the 
general DPN model based on the used CAL subset and then 
illustrate the constraints to specify the supported dataflow 
MoCs.

The General Model of DPN

Recall that a DPN is a set of processes P = {p0,… , pm−1} 
with static point-to-point connections via FIFO buffers 
F = {f0,… , fn−1} . We also assume a total order ⪯ on the 
FIFO buffers so that we can unambiguously switch from 
sets to tuples of FIFO buffers by simply ordering the cor-
responding set to a tuple. For this reason, we often ignore 
the difference between sets and the corresponding tuples. 
For any tuple t = (t0,… , t

�
) , we denote its components as 

ti = ����i(t) . Processes of the DPN communicate with each 
other by consuming data tokens from their input buffers 
and adding data tokens to the output buffers. Therefore, we 
define for each process p ∈ P , the tuple of its input buffers 
����� (p) and its output buffers ������ (p).

Fig. 7  The basic building block diagram [35] of the proposed frame-
work. It can be understood in two phases: the modeling phase is in 
general provided with the desynchronized CAL DPN models. The 
synthesis phase employs the OpenCL abstraction and features a tool 
chain involving the specialized code generators and the runtime sys-
tem that finally executes and maps the desynchronized models on the 
OpenCL abstracted target hardware
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In the following, we informally present and elaborate the 
syntax and the semantics of the general model of a process 
based on the used subset of CAL.

Syntax

The syntax of a process p ∈ P based on the used subset 
of CAL is illustrated with an abstract example as shown in 
Listing 2. A process generally consists of a set of input and 
output buffers and several actions.

Semantics

The abstract example of a process as shown in Listing 2 
illustrates the general model based on the used sub-
set of CAL. The head of a process p ∈ P specifies the 
input buffers ����� (p) = (X1,… ,XM) and output buffers 
������ (p) = (Y1,… , YN) , including the type of tokens com-
municated via the buffer (Line 1). The used CAL subset 
provides three data types: Boolean, integer and real num-
bers. The behavior of every process p ∈ P is determined 
by a set of actions �������(p) = {�1,… , �h} . Actions are 
preceded by action labels which in the general model 
need not to be unique, i.e., the same label can be used 
for more than one action (Lines 2 and 12). The head of 
an action � ∈ �������(p) specifies for the input buffers in 

����� (p) the number of data tokens to be read (Line 2). 
It may or may not specify all input buffers in ����� (p) . If 
the action is fired, these data tokens are consumed from 
the heads of input buffers and are assigned to the vari-
ables xi,j such that xi,1 is the head of the input buffer Xi . 
Analogously, the action interface determines for the out-
put buffers in ������ (p) the number of data tokens to be 
written. Thereby, the values yi,1,… , yi,qi are added in this 
order to the tail of output buffer Yi . The body of the action 
is, therefore, a sequence of statements that compute val-
ues based on expressions ei,1,… , ei,qi and assign them to 
output variables yi,1,… , yi,qi (Lines 5–9). An expression 
may compose of variables, values, and both arithmetic 
and Boolean expressions. Since only a subset of ����� (p) 
may be used by an action � ∈ �������(p) , we also define 
�����(𝛼) ⊆ ����� (p) as the subset of input buffers used by 
that action. Similarly, we define ������(𝛼) ⊆ ������ (p) as 
the subset of output buffers used by the action. For an 
action � ∈ �������(p) that requires that input tokens have 
particular values, an additional condition can be specified 
using a guard (Line 3) which is a predicate on the tokens 
of (some prefixes of) the input buffers in �����(�) . Since 
only a subset of �����(�) may be used by a guard, we also 
define �����(𝛼) ⊆ �����(𝛼) as the subset of input buffers 
whose values are considered by the guard �� of action �.

For the semantics, we consider a domain D of values that 
may be the union of integers, booleans and real numbers. We 
denote the set of finite sequences on D as D∗ and the set of 
infinite sequences on D as D� , and the union of both as D∞ , 
i.e., D∞ ∶= D

∗ ∪D
� . For sequences �1, �2 ∈ D

∞ , we intro-
duce the prefix ordering 𝜎1 ⊑ 𝜎2 ∶⇔ ∃𝜎3 ∈ D

∞
. 𝜎2 = 𝜎1 ⋅ 𝜎3 

where �1 ⋅ �3 means the concatenation of the sequences �1 
and �3 which demands that �1 ∈ D

∗ . The prefix ordering 
on sequences �1, �2 ∈ D

∞ is lifted to tuples of sequences 
�1 = (�1,0,… , �1,�) and �2 = (�2,0,… , �2,�) in that we 
demand 𝜎1,i ⊑ 𝜎2,i for all i ∈ {0,… ,�}.

Each process p ∈ P defines a function that maps the con-
sumed input tokens to produced output tokens. This function 
is determined by a set of actions �������(p) of the process 
p where the semantics of each action � ∈ �������(p) is a 
function of type (D∗)m → (D∗)n with the following mean-
ing: The action consumes tokens from m input buffers and 
produces tokens to n output buffers, thus, m ∶= |�����(�)| 
and n ∶= |������(�)|.

Any action � ∈ �������(p) as shown in Listing 2 is enabled 
iff the following conditions are all satisfied:

• each input buffer Xi ∈ �����(�) has enough tokens, i.e., 
Xi must have at least pi many tokens

• each output buffer Yi ∈ ������(�) has enough space, i.e., 
Yi must have at least space for qi many tokens

• the guard condition � which is a condition on the input 
tokens xi,j in �����(�) is satisfied
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The general model of DPN does not impose further restric-
tions and, therefore, actions consisting of common inputs 
and/or outputs may be enabled in the same execution, as 
depicted in Listing 2. As a result, this gives rise to read 
and write conflicts in buffers, ultimately ending up in non-
deterministic behaviors. A read conflict means that two 
actions are enabled in an execution that read a token from 
the same input. Whereas, a write conflict means that two 
actions are enabled in an execution that write a token to the 
same output. A simple example of a non-deterministic pro-
cess is illustrated in Fig. 8. It consists of two actions act1 and 
act2 that consume tokens from different inputs X1 and X2, 
respectively, and produce tokens to the common output Y1. 
Depending on the availability of tokens on the inputs, both 
actions may be enabled in the same execution, and, there-
fore, may give rise to write conflict in Y1. Hence, the output 
produced on Y1 depends on the arrival time of tokens on the 
inputs and, therefore, exhibits a non-deterministic behavior.

We, therefore, demand and use the general CAL DPN 
model with specific constraints and restrictions to specify 
the precise dataflow MoCs.

Static Dataflow Model

The static dataflow (SDF) [26] MoC allows one to model 
static (synchronous) behaviors. It is a more restricted DPN 
class such that the decision on whether to consume and 
produce tokens in each execution can be made statically at 
compile-time. Each execution of a process consumes and 
produces a fixed number of tokens. The number of tokens 
consumed or produced on each buffer must be independent 
of the value as well as the arrival time of data. A process 
in SDF becomes enabled if and only if all its inputs have 
required tokens and all its outputs have required space. An 
enabled process may fire, and once fired, consumes the stati-
cally specified number of tokens from its inputs and pro-
duces the statically specified number of tokens to its outputs.

We demand and assume certain restrictions on the general 
DPN model to represent the SDF MoC. In the following, we 
present an abstract example of a static process based on the 
SDF MoC and informally illustrate its semantics.

Syntax

The syntax of a static process in SDF is illustrated with an 
abstract example as shown in Listing 3. 

Semantics

A process p ∈ P  in SDF consists of a set of actions 
�������(p) = {�1,… , �h} . The action labels need to be 
unique, i.e., the same label must not be used for more 
than one action (Lines 2 and 12). For each action �i , we 
define its guard ��i . Each action �i ∈ �������(p) speci-
fies for all input buffers ����� (p) and all output buffers 
������ (p) the number of tokens to be read and written, 
respectively. Thus, the input and output buffers are always 
same across all actions i.e., �����(�1) = … = �����(�h) and 
������(�1) = … = ������(�h) . Second, the number of tokens 
to be consumed and the number of tokens to be produced 
are always same for the same input and output buffers, 
respectively, across all actions. This restricts the execution 
of processes to fixed consumption and production rates. 

Fig. 8  A simple example of a non-deterministic process in CAL. The 
output produced on Y1 depends on the arrival time of tokens on the 
inputs X1 and X2 
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Regardless of which action is executed, the same number 
of tokens are consumed and produced in the same buffers 
in each firing of a process. Moreover, we demand that the 
guard conditions should always be mutually exclusive across 
actions. This ensures that for each execution of a process, the 
actions will never compete for an execution. Hence, in each 
execution of a process only a specific action is fired whose 
guard is enabled.

Execution of Actions
Each time a process p ∈ P is triggered for an execution, 

a particular action is executed, mainly dependent on which 
guard is enabled. The guards of actions �������(p) are always 
evaluated sequentially in the same order of their actions 
definitions. Since all actions in a process have same input 
buffers with same consumption rates, hence for any action 
�i ∈ �������(p) , the specified fixed number of tokens are 
first consumed from all input buffers �����(�i) = �����(p) . 
Finally, the enabled action is fired whose guard is true. Upon 
firing, the defined computations are performed and the spec-
ified fixed number of tokens are produced to all output buff-
ers ������(�i) = ������ (p).

Triggering Processes for Execution
Each process p ∈ P in SDF is triggered for an execu-

tion if and only if all input buffers �����(�i) of an action 
�i ∈ �������(p) have enough input tokens and all output buff-
ers ������(�i) of that action have enough space. The pro-
cess shown in Listing 3 is triggered for an execution iff for 
any action �i , each input buffer Xj ∈ �����(�i) has at least pj 
many tokens and each output buffer Yj ∈ ������(�i) has at 
least space for qj many tokens.

SDF Process Example
A simple example of the static if-then-else (ITE) opera-

tion is illustrated in Fig. 9. In each execution, the ITE pro-
cess consumes a token each from all three inputs and pro-
duces a token to its only output. It consists of two actions 
i.e., act1 and act2, having same inputs X1, X2 and X3, 
and the same output Y (Lines 2 and 7). Both actions use 

the input X1 for the guard with mutually exclusive guard 
conditions (Lines 3 and 8). In each execution, depending 
on which guard is enabled, either act1 or act2 fires for an 
execution. ITE is only triggered for an execution if there 
is a token available in all three inputs X1, X2 and X3 and 
if there is space available for a token to be produced at the 
output Y. The tokens are denoted by small letters x1, x2, 
x3 and y.

Kahn Process Networks Model

Kahn process networks (KPNs) [21] are dynamic DPNs 
where processes can consume and produce different num-
ber of tokens in every firing depending on the history of the 
consumed tokens and also on the tokens to be consumed. 
KPNs exhibit latency-insensitive deterministic behaviors 
that do not depend on the timing or the execution order of 
the processes. The KPN MoC is typically specified with the 
following restrictions and properties:

• processes are not allowed to test input buffers for the 
existence of tokens

• reading from input buffers is blocking, and writing to 
output buffers is non-blocking

• processes must implement deterministic sequential func-
tions

• processes do not need all of their inputs to get triggered 
for execution

Based on these restrictions/properties, it can be implied that 
a process in KPN can be any sequential program where the 
firing rules can be tested sequentially in a predefined order 
in each execution using blocking reads [27]. This reflects 
the ability to uniquely consume the inputs in each firing 
without timing information provided by the input signals. 
A KPN process is only triggered for execution if the exact 
information on inputs required to produce the output is avail-
able. A process, therefore, becomes enabled if the required 
values on inputs are available to perform the computation 
and produce the output. A process once enabled, may fire, 
and once fired, it may consume different number of tokens 
from different inputs based on the history of the consumed 
tokens. The KPN MoC can capture both static as well as 
sequential behaviors. Since buffers with unbounded capacity 
cannot be realized in real implementations, the used KPN 
model only supports blocking write. However, since the 
starting point of this work is the desynchronized models, 
desynchronization preserves properties like deadlock-free-
dom and bounded memory usage that are otherwise difficult 
to ensure in KPNs [2].

Next, we present an abstract example of a sequential pro-
cess based on the KPN MoC and illustrate its semantics.

Fig. 9  The static if-then-else (ITE) node: a simple example of a static 
process in SDF. An example behavior is illustrated with a set of input 
values and the computed output values as shown inside arrows
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Syntax

The syntax of a sequential process in KPN is illustrated with 
an abstract example as shown in Listing 4. 

Semantics

A process p ∈ P in KPN consists of a set of actions 
�������(p) = {�1,… , �h} . The action labels need to be 
unique, i.e., the same label must not be used for more than 
one action (Lines 2 and 12). For each action �i , we define 
its guard ��i . Each action �i ∈ �������(p) specifies for the 

input buffers �����(𝛼i) ⊆ ����� (p) and the output buffers 
������(𝛼i) ⊆ ������ (p) the number of tokens to be read and 
written, respectively. In general, the input and output buffers 
can be different across different actions. However, since pro-
cesses in KPN consist of sequential functions, we demand 
that all actions in a process must have at least one common 
input. This implies that �����(�1) ∩ … ∩ �����(�h) ≠ {} . 
Moreover, we demand that the guard conditions are always 
mutually exclusive across actions. This ensures that for each 
execution of a process, the actions will never compete for 
an execution. Hence, in each firing of a process only a spe-
cific action is executed mainly dependent on which guard 
is enabled. Second, this enables the execution of processes 
with dynamic consumption rates and dynamic production 
rates, mainly dependent on which guards are enabled on 
each execution.

Evaluation and Execution of Actions
As discussed, the KPN MoC does not allow processes 

to test input buffers for the existence of tokens. A process 
is only triggered for execution if the exact information on 
inputs required to execute an action is available. Therefore, 
each time a process p ∈ P is triggered for an execution, a 
particular action �i ∈ �������(p) is executed whose guard 
��i

 is enabled. The enabled action �i , once fires, consumes 
a finite number of tokens from the input buffers �����(�i) 
and produces a finite number of tokens to the output buffers 
������(�i) as specified for that action.

Triggering Processes for Execution
Since processes in KPNs consist of sequential programs, 

the availability of tokens on the inputs, the availability 
of space on the outputs, and the guards can be evaluated 
sequentially in a predefined order of their actions defini-
tions. Each process p ∈ P is triggered for an execution if 
there exists one particular action �i ∈ �������(p) having: 
enough input tokens in �����(�i) , required values on the 
guarded inputs �����(�i) , and enough space in ������(�i) . 
For instance, the process shown in Listing 4 is triggered 
for an execution when for a particular action (say �h ), each 
input buffer Xj ∈ �����(�h) has at least fj many tokens, each 
output buffer Yj ∈ ������(�h) has at least space for gj many 
tokens, and the guard ��h is true. In case if one of the inputs 
does not have enough tokens, the process is blocked (i.e., 
the blocking behavior of KPN) until sufficient tokens are 
available on that input.

KPN Process Example
A simple example of a sequential process, namely the 

split node is illustrated in Fig. 10 that splits a single input 
channel to a number of individual output channels. The split 
node consists of two actions act1 and act2 that depending on 
the value of a token at the input X1 splits the tokens from the 

Fig. 10  The split node: a simple example of a sequential process in 
KPN. An example behavior is illustrated with a set of input values 
and the computed output values as shown inside arrows
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input X2 to outputs Y1 and Y2. The guards are composed of 
mutually exclusive conditions (Lines 3 and 8). Both actions 
declare the input X2 with different consumption rates (Lines 
2 and 7). The action act2 has an additional output Y2. In 
each execution, depending on which guard is enabled, either 
act1 or act2 fires for an execution. In the case where act1 
fires, a single token each is consumed from X1 and X2, and 
a single token is produced to Y1 (Line 5). On the contrary, 
when act2 fires, a single token is consumed from X1, two 
tokens are consumed from X2 and a token each is produced 
to Y1 and Y2 (Lines 10–11). Hence, in each execution, a dif-
ferent number of tokens can be consumed from the input X2 
and a different number of tokens can be produced to outputs 
Y1 and Y2. The split node is only triggered for an execution 
if there exists one action i.e., either act1 or act2, having 
required number of tokens in X1 and X2, required space in 
outputs Y1 and Y2, and required values on the input X1.

Dynamic Dataflow Model

The dynamic dataflow (DDF) also sometimes referred to as 
the non-determinate dataflow is a dynamic DPN class that 
allows one to model dynamic and asynchronous processes. 
It offers a more generalized data dependent and asynchro-
nous execution semantics than the KPN MoC. In particular, 
the DDF MoC allows one to model processes with parallel 
programs consisting of concurrent and independent com-
putations where more than one action can be executed in 
each firing. This generalization results in higher expressive-
ness and flexibility, however, may lead to non-deterministic 
behaviors, e.g., a non-determinate merge [27]. We use a vari-
ant of the DDF MoC that only supports concurrent and inde-
pendent actions with specific restrictions. It can be used to 
model well-behaved parallel nodes that exhibit deterministic 
behaviors, e.g., the parallel OR (POR) node as illustrated in 
Fig. 11 (discussed in the next subsection).

The considered variant of DDF MoC offers a more flex-
ible semantics where each process becomes enabled for an 
execution if only one of its inputs has required tokens and 
only one of its outputs has required space. The decision on 
whether to consume/produce tokens and to execute each 
action of an enabled process is made dynamically at runt-
ime when that particular process is triggered for an execu-
tion. A process once enabled, may fire, and once fired, it 
may trigger multiple actions for execution. A process can 
produce and consume different number of tokens in every 
firing. The considered variant of DDF MoC can capture 
static, sequential and well-behaved parallel processes.

Fig. 11  The parallel OR node: a simple example of a well-behaved 
parallel process in DDF. An example behavior is illustrated with a 
set of input values and the computed output values as shown inside 
arrows
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In the following, we present an abstract example of a 
well-behaved parallel process based on the DDF MoC and 
informally illustrate its semantics.

Syntax

The syntax of a well-behaved parallel process in DDF is 
illustrated with an abstract example as shown in Listing 5.

Semantics

A process p ∈ P in DDF consists of a set of actions 
�������(p) = {�1,… , �h} . The action labels need to be 
unique, i.e., the same label must not be used for more 
than one action (Lines 2, 12 and 22). For each action �i , 
we define its guard ��i . Different actions in �������(p) may 
specify completely different input and output buffers e.g., 
�����(�1) ∩ �����(�k) = {} and ������(�1) ∩ ������(�k) = {} . 
This enables the modeling of processes with independ-
ent actions consisting of completely different inputs 
and outputs. Moreover, different actions in �������(p) 
may also specify common input and output buffers e.g., 
�����(�1) ∩ �����(�h) ≠ {} and ������(�k) ∩ ������(�h) ≠ {} . 
The associated number of token variables (i.e., token con-
sumption rates) of common input buffers can be different 
across actions. Multiple actions may fire in the same execu-
tion of a process. However, we demand that these firings 
must be consistent and do not give rise to non-deterministic 
behaviors. In particular, we demand that the guard con-
ditions of actions with common input buffers are always 
mutually exclusive. Hence, in each firing of a process only a 
specific action from all actions having at least one common 
input buffer is executed whose guard is enabled.

This ensures that for each execution of a process, the 
actions with common input buffers will never compete for an 
execution for any set of tokens. Moreover, for actions with 
at least one common output buffer, we demand that each 
action upon firing produces the same sequence of tokens 
at the common output buffer. Hence, the firing of actions 
with common output buffers do not lead to different output 
streams. Altogether, these restrictions enable the execution 
of processes consisting of well-behaved parallel programs 
with dynamic consumption rates and dynamic production 
rates, mainly dependent on which guards are enabled on 
each execution. An example of a well-behaved parallel node 
exhibiting such a behavior is illustrated in Fig. 11.

Evaluation and Execution of Actions
Each action �i ∈ �������(p) of a process p ∈ P is evalu-

ated for an execution dynamically when that particular 
process is triggered for an execution. Each action �i fires 
for an execution iff: there are enough tokens available in 
�����(�i) , enough space available in ������(�i) , and the 

required values on the guarded inputs �����(�i) are avail-
able, i.e., the guard ��i is true. When the action �i fires, 
it consumes a finite number of tokens from �����(�i) and 
produces a finite number of tokens to ������(�i).

Since the actions are evaluated dynamically only after 
a particular process is triggered for an execution, there 
may be a case when for an action �i , although the guard ��i 
is true, however, either at least one of the input buffers in 
�����(�i) does not have enough tokens, or at least one of the 
output buffers in ������(�i) does not have enough space. 
In this case, neither the input tokens are consumed from 
�����(�i) , nor the output tokens are produced to ������(�i) . 
Instead, the tokens are preserved in their respective input 
buffers.

Triggering Processes for Execution
As the decision to execute each action of a process 

and consume/produce data tokens is made dynamically at 
runtime, when that process is triggered for an execution. 
Therefore, each process p ∈ P is triggered for an execution 
if there exists at least one input buffer Xj ∈ �����(�i) hav-
ing enough input tokens and there exists at least one output 
buffer Yj ∈ �����(�i) having enough space. For instance, 
the process shown in Listing 5 is triggered for an execu-
tion when for a particular action (say �1 ), any input buffer 
Xj ∈ �����(�1) has at least pj many tokens and any output 
buffer Yj ∈ ������(�1) has at least space for qj many tokens.

DDF Process Example
A simple example of the parallel OR (POR) node is 

illustrated in Fig. 11 that performs the logical OR opera-
tion on two Boolean inputs. The POR node consists of 
three actions act1, act2 and act3 that depending on the 
values of tokens in either or both of the inputs X1 and X2 
produces tokens in the only output Y. The actions act1 
and act3 share a common input X1 (Lines 2 and 12). The 
actions act2 and act3 share a common input X2 (Lines 7 
and 12). All actions share the same output Y (Lines 2, 7 
and 12). In each execution, depending on which guards are 
enabled, either one or both of the actions act1, act2 can 
be fired. In case if both the actions are enabled, a token 
each is produced to the output Y by both actions (Lines 
5 and 10). Since they share a common output, hence, the 
same sequence of tokens is produced at the output Y by 
both actions. In contrast, if the guard is true for act3, the 
actions act1, act2 become disabled where only the action 
act3 is fired. Therefore, the actions with common inputs 
never compete for firing in any execution of the process. 
The POR node is only triggered for an execution if there 
is a token available in at least one of the inputs i.e., either 
X1 or X2, and there is a space available for one token to be 
produced in the only output Y.
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Synthesis: The Toolchain

In this section, we present the synthesis tool chain which is 
depicted in Fig. 12. It offers a set of tools that work together 
to finally implement the CAL DPNs on commercial off-the-
shelf (COTS) target hardware. The tool chain is composed 
of two main parts: a special back-end comprising of special-
ized code generators for particular dataflow MoCs and the 
runtime system. Each code generator generates an OpenCL 
kernel for each process based on the underlying dataflow 
MoC. Second, the runtime system is organized in a cen-
tralized host and kernels program model, built under the 
OpenCL abstraction. The host features different components 
including the Runtime-Manager that schedule and deploy 
processes (generated kernels) on the target hardware.

Back‑end

The back-end is designed to work in two different modes, 
namely the manual mode and the auto mode. In the manual 
mode, the back-end targets homogeneous implementations 
based on a specific user given dataflow MoC. In the auto 
mode, the back-end automatically classifies the processes 
into three categories mainly according to their kinds of 
behaviors that determine the dataflow MoCs. This classi-
fication of different kinds of behaviors involves: the static 
ones based on the static dataflow (SDF) MoC, the sequential 
ones based on the Kahn process network (KPN) MoC, and 
the parallel ones based on a variant of the dynamic dataflow 
(DDF) MoC. As a result, the back-end provides three dif-
ferent specialized code generators for particular dataflow 
MoCs: one for the SDF MoC, second for the KPN MoC, 
and finally for the used DDF MoC. We identify the kinds of 
behaviors of processes during desynchronization based on 
a succinct formalization of input/output (I/O) firing rules 
of synchronous components [38, 39]. The identified data-
flow MoC of each process is divulged to the synthesis phase 
through the network description file.

In the following, we present the specialized code genera-
tors based on the supported dataflow MoCs.

Code Generators: Kernel Code Generation

Each code generator is determined by the underlying seman-
tics of the used dataflow MoC. It, therefore, generates an 
OpenCL kernel for each process based on the underlying 
dataflow MoC. This section presents the schemes employed 
for generating OpenCL kernel code based on all the sup-
ported dataflow MoCs. Moreover, we also illustrate the gen-
erated kernel code for each supported dataflow MoC based 
on the CAL models presented in Figs. 9,  10 and 11.

Each code generator generates kernel code in two seg-
ments: First, the OpenCL specific code is targeted which 
involves the generation of the kernel header, the declaration 
of used inputs and outputs, and most importantly, the gener-
ation of generic kernel code that enables the host to dispatch 
multiple executions of the kernel on the device. This code 
segment is more or less same for all used dataflow MoCs. 
The second segment targets the code generation based on the 
underlying semantics of the used dataflow MoC. We mainly 
present the schemes designed for generating code for the lat-
ter segment. The former segment is explained in detail with 
the generated kernel code examples.

SDF Code Generator
In SDF, it is statically determined that each firing of a 

process consumes/produces fixed number of tokens. A pro-
cess in SDF is, therefore, simply scheduled by the host for 
execution if there is enough data available in all inputs and 
if there is enough space available in all outputs. The guards 
of actions are evaluated within kernels on the device side. 
The SDF code generation is relatively straightforward and is 
illustrated by the pseudo code given in Algorithm 1.

For a static process, the proposed scheme works as fol-
lows: First, the code is generated to consume tokens from 
all input buffers of the process (Line 1). The algorithm then 
iterates through the set of modeled actions in the order of 
their definitions (Line 2) where for each action, it proceeds 
as follows: First, the code is generated to evaluate the guard 
(Line 3). Next, the code is generated for the case if the guard 

Fig. 12  The proposed synthesis tool chain is composed of two main 
parts: the back-end features the specialized code generators for the 
supported dataflow MoCs. The runtime system organized in a host 
and kernels program model schedules and maps the modeled system 
on the target hardware
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is fulfilled (Lines 4–7). To this end, the code to perform the 
modeled computations is generated (Line 5), and then to 
produce the final output (Line 6). The generated kernel for 
a static process ITE as shown in Fig. 9 is listed in Listing 6.

OpenCL specific code segment. This segment (Lines 1–18) 
is mainly composed of the following parts: The generated 
kernel header uses the name of the process and defines the 
argument list (Line 1). The argument list mainly describes 
the OpenCL memory objects for the input and output FIFO 
buffers of the process. These memory objects are used by 
the host for data communication to and from the kernels 
(device side). These objects are defined with the global 
address space name that allocates them in the global mem-
ory shared between the host and devices. For better mem-
ory performance, the kernel instances (work-items) do not 
directly perform operations on the slower global memory. 
Instead, an array each is declared for the sequences of input/
output tokens with the private address space name (Lines 
4–15), which refers to a faster memory region only visible 
to individual instances. In each execution of a SDF process, 
only a particular action is executed, which depends on the 
enabled guard. To avoid unnecessary duplication, an array is 
declared for each input/output based on the statically deter-
mined consumption/production rate (Lines 4–7). Second, 
the individual input/output token variables are declared 

and pointed to their respective sequences i.e., arrays (Lines 
8–15).

Moreover, the code generator generates generic kernel 
code (Lines 17–18) to enable the centralized host to dispatch 
multiple execution (instances) of kernels on the device at a 
time. The generic code involve two main components: First, 
the OpenCL function get_global_id(0) provides the unique 
global ID for the particular kernel instance or thread based 
on the number of instances dispatched by the host to execute 
the kernel. These dispatched instances are ideally executed 
in parallel on the device where each instance operates on 
data based on its own unique ID. We further introduced an 
additional parameter, namely blockSize (Lines 17–18) that 
allows us to manage the amount of workload associated 
with each instance. blockSize coalesces multiple instances 
in a single instance and executes them sequentially inside a 
loop (Line 18). Consequently, increasing blockSize implies 
increasing the workload per instance and hence decreasing 
the total number of parallel instances. The combination of 
the unique global ID and blockSize can be effectively used 
by the host to fine tune the amount of data level parallelism 
according to the available resources, and most importantly, 
based on the kinds of behaviors of processes. For example, if 
the target device is a CPU offering only a few cores, a larger 
blockSize usually achieves better performance [34]. Second, 
if a process exhibits a dynamic behavior, multiple instances 
can not be executed in parallel and, therefore, a blockSize 
equal to the number of instances can be used by the host.

SDF MoC specific code segment. This code segment (Lines 
19–31) is generated based on the scheme presented in Algo-
rithm 1. First, the tokens are consumed from all inputs of the 
process (Line 20–22). Finally, a particular action (i.e., either 
act1 or act2) is executed based on the activation of guard. 
To this end, if the guard is true for act1 (Line 23), a token 
consumed from the input X2 is written to the output Y (Lines 
24–25). On the other hand, if the guard is true for act2 (Line 
27), a token consumed from the input X3 is written to the 
output Y (Lines 28–29).

KPN Code Generator
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The KPN MoC supports static as well as sequential 
behaviors. Since processes in KPNs are sequential, their 
firing rules (including guards) can be evaluated sequen-
tially in a predefined order. In particular, a process is only 
triggered by the host for execution if it is already known 
that the guard of one of the actions is evaluated to true. 
In contrast to the SDF MoC, the guards are, therefore, 
evaluated at the time of scheduling on the host side. This 
essentially simplifies the kernel code generation, however, 
on the other hand, relatively complicates the scheduling. 
The code generation based on the underlying semantics 
of the KPN MoC is illustrated by the pseudo code given 
in Algorithm 2.

For a process in KPN, the proposed algorithm works as 
follows: It iterates through the set of modeled actions in the 
order of their definitions (Line 1) where for each action, it 
proceeds as follows: First, the code is generated that checks 
if the already evaluated guard is valid for the action (Line 2). 
Next, the code is generated for the case if the guard is valid 
(Lines 3–5). To this end, the code is generated to consume 
tokens from all inputs of the action (Line 3). Second, the 
generated code for the modeled computations is inserted 
(Line 4), prior to generating the code for writing the com-
puted results on the outputs (Line 5). In contrast to the SDF 
MoC, where data is consumed from all inputs of the process 
in each execution, the KPN MoC only consumes data from 
the inputs of an enabled action.

The generated kernel for a sequential process split as 
shown in Fig. 10 is listed in Listing 7.

OpenCL specific code segment. As discussed, this code seg-
ment is largely same for all supported dataflow MoCs. In 
contrast to the SDF MoC, where the guards are evaluated 
within kernels at the device side, in the case of KPN, the 
guards are evaluated at the host side typically at the time of 
scheduling. The host provides the information regarding the 
evaluated guards to the kernel using a data structure evalu-
atedGuard through the argument list (Line 1). In particular, 
each element of evaluatedGuard holds the identifier for an 
action whose guard is valid for a particular instance. In each 
execution of a process, only a particular action is executed, 
which depends on the enabled guard. To avoid unnecessary 
duplication, an array is declared for each input/output with 
the highest consumption/production rate of all actions. For 
instance, an array is declared for the input X2 with the high-
est consumption rate of both actions (Line 5). The remaining 
code of this segment is exactly the same as explained for the 
SDF MoC.

KPN MoC specific code segment. This code segment (Lines 
19–34) is generated based on the scheme presented in Algo-
rithm 2. The generated code simply fires the enabled action 
whose guard is evaluated true at the time of scheduling. As 

discussed, evaluatedGuard provides the identifiers of actions 
whose guards are valid for particular iterations.

A particular action (i.e., either act1 or act2) is executed in 
each iteration based on the activated guard. To this end, if the 
guard is true for act1 (Line 20), a single token is consumed 
from X1 and a single token is consumed from X2 which is then 
written to the output Y1 (Lines 21–24). On the other hand, if 
the guard is true for act2, a token is consumed from X1, and 
two tokens are consumed from X2, where the first token of X2 
is written to Y1, and the other to Y2 (Lines 27–32). 

DDF Code Generator
In DDF, the decision on whether to consume tokens and 

to fire each action of a process is made dynamically at runt-
ime when that particular process is triggered for execution. 
A process is simply scheduled by the host for execution if 
only one of its inputs has required tokens and only one of 
its outputs has required space. In contrast to SDF and KPN 
MoCs, the firing rules (including guards) of processes in 
DDF are completely evaluated within kernels at the device 
side. Each DDF kernel, therefore, must indicate to the host 
the number of tokens consumed/produced in each FIFO 
buffer for the dispatched execution instances. This fairly 
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complicates the code generation of kernels. In particular, 
the code generator incorporates a number of DDF MoC 
specific library functions designed to enable the dynamic 
evaluation of actions within kernels. The code generation 
based on the underlying semantics of the used DDF MoC is 
illustrated by the pseudo code given in Algorithm 3.

First, the code is generated to peek tokens from all inputs 
for all actions of the process (Line 1). The algorithm then 
iterates through the modeled set of actions in the order of 
there definitions (Line 2). For each action, the algorithm 
proceeds as follows: First, the code is generated to check if 
enough tokens are available in the inputs used by the guard 
(Line 3). Second, code evaluating the guard is generated 
(Line 4). Next, the code is generated to fire an action (Lines 
5–9). This involves code for checking if the guard is valid, 
the required number of tokens are available in all inputs and 
the required amount of space is available in all outputs (Line 
5). The code is then generated for the enabled action (Lines 
6–8) which involves code for consuming all inputs, per-
forming modeled computations, and writing the computed 
results on the outputs. The code generator further generates 
code for the case if although the guard is true, however, 
either at least one of the inputs does not have enough tokens, 
or at least one of the outputs does not have enough space 
(Lines 10–12). In this case, code is generated to ascertain 
the status of tokens and space in each input and output FIFO 
buffer of the action, respectively. The status of each buffer 
in this respect is written and conveyed to the host using 
a data structure (Line 11). This case is typically used to 
indicate which input buffers lack the required number of 
tokens and/or which output buffers lack the required space. 
The generated kernel for a parallel process POR as shown in 
Fig. 11 is listed in Listing 8. For brevity, we illustrate here 
the generated code for the first two actions (act1 and act2).

OpenCL specific code segment. This code segment is 
exactly generated in the same way as generated in the case 
of the SDF MoC.

DDF MoC specific code segment. This code segment (Lines 
14–47) is generated based on the scheme presented in Algo-
rithm 3. First, the tokens are peeked from all inputs for all 
actions of the process (Lines 15–16). The generated code 
then simply evaluates each action for firing. If there are 
enough tokens available in the inputs used for guard (Lines 
19 and 33), the guard is evaluated (Lines 20 and 34). If the 
guard is valid and the required number of tokens and the 
required amount of space is available in all input and output 
FIFO buffers, respectively, the action is fired (Lines 24–28 
and 38–42). Depending on the availability of tokens/space 
and the enabled guard, either one or both of the actions (act1 
and act2) can be executed in each iteration. In particular, if 
both actions are enabled, a token each is consumed from 
both inputs X1 and X2 (Lines 25 and 39) and a token each is 
produced to the output Y (Lines 26–27 and 40–41) by both 
actions. In case if the guard is enabled for one of the actions 
(say act1), however, there is no space available in the output 
Y, the status of tokens and space in X1 and Y, respectively, 
are determined and written using the DDF MoC specific 
library function writeStatus (Lines 30–31).

Runtime System

The runtime system systematically employs OpenCL in the 
composition of the synthesis components to finally map and 
execute models based on different dataflow MoCs on COTS 
target hardware. It is typically designed in a centralized host 
and kernels architecture under the OpenCL abstraction as 
shown in Fig. 12. The host accommodates different essen-
tial components along with the Runtime-Manager that work 
together to implement low-level details such as: the sched-
ulers, the communication mechanism, resource allocation, 
kernels mapping and handling etc.

Process and Device Queues

The Process-Queue is generated for the host at the back-
end. Each element of this queue provides a special object 
of a process. Each object provides the specific attributes of 
the process to the host. This includes: the process name, 
the identified dataflow MoC, the associated FIFO buffers, 
the type of each buffer, and the process type. The queue, 
once generated, is maintained and updated by the host. In 
particular, the host assigns each object the process’s status 
(idle, running or blocked) and the associated kernel.

Apart from the Process-Queue that is provided by the 
back-end, the host also generates a queue, namely the 
Device-Queue, using the OpenCL specification as depicted 
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in Fig. 12. The Device-Queue lists all the available devices 
of the target hardware. Each element of this queue provides 
a special object of a device. The device object provides an 
interface that is used by the host to access and to use the 
device for systematically executing kernels. In particular, 
each object features a command queue of a device, where the 
processes (kernels) can be mapped for execution. Each com-
mand queue can represent a complete device (e.g., a CPU) 
or even a compute unit of that device (e.g., a CPU-core).

  

The Runtime‑Manager

The core component of the runtime system is the Runtime-
Manager, as shown in Fig. 12. It is a part of the host that 
uses the Process-Queue and the Device-Queue, and pro-
vides: the schedulers for scheduling processes based on the 
supported dataflow MoCs, the communication mechanism 
between the host and kernels, a dispatcher for mapping 
kernels to devices, and a handler mechanism for kernels 
using specialized callbacks.

Schedulers The schedulers are designed to schedule 
processes in the network based on the underlying data-
flow MoC of each process. To support the execution of 
heterogeneous dataflow models characterized by differ-
ent kinds of behaviors, the Runtime-Manager provides 
a two-level hierarchical scheduling scheme. At the first 
level, a baseline global scheduler is used that works in 
a dynamic round robin scheme. At the second level, 
specialized local schedulers are used, where each local 
scheduler is designed for a particular dataflow MoC. 
Altogether, the baseline global scheduler iterates through 
the Process-Queue in a round-robin fashion, and invokes 
the corresponding local scheduler for each process based 
on its underlying dataflow MoC. All the local schedulers 
are designed based on the dynamic data-driven schedul-
ing schemes mainly because of the following reason: The 
target DPNs involve heterogeneous dataflow models con-
sisting of static as well as dynamic behaviors. A common 
consistent dynamic environment is, therefore, needed to 
systematically schedule and execute heterogeneous mod-
els. Nevertheless, for a fully SDF network only consisting 
of static processes, one can generate a static scheduler at 
compile time.

Baseline Global Scheduler: The Runtime-Manager employs 
a simple global scheduler typically designed to handle the 
invocation of the specialized local schedulers for schedul-
ing heterogeneous dataflow models. The global scheduling 
scheme is depicted in Algorithm 4.



 SN Computer Science (2022) 3:249249 Page 20 of 34

SN Computer Science

As DPNs do not generally enforce any termination cri-
teria, the global scheduler runs forever (Line 1). It works 
in a round-robin fashion and selects the next process in the 
Process-Queue that is not currently running, in particular, 
has no pending dispatched executions (Lines 2–3). In case 
if a process has a pending call i.e., all dispatched kernel 
instances are not completely executed, the next invoca-
tion of this process is delayed until the process is idle 
again. The scheduler simply invokes the local scheduler of 
the selected process according to the underlying dataflow 
MoC of each process.

In the following, we present the specialized local sched-
ulers based on the supported dataflow MoCs.

SDF Scheduler: The scheduling scheme based on the SDF 
MoC is depicted in Algorithm 5. A process based on the 
SDF MoC always consumes and produces a fixed number of 
tokens in each execution. This greatly simplifies the schedul-
ing, in particular, a process is simply scheduled for execution 
if there is enough data available in all input buffers (Line 2) 
and if there is enough space available in all output buffers 
(Line 3).

KPN Scheduler: As discussed, the KPN MoC supports 
static as well as sequential behaviors. A process is only 
scheduled for execution if it is already known that the firing 
rules (including guard) of one of the actions are valid. The 

firing rules in a process are, therefore, evaluated at the time 
of scheduling. This relatively complicates the scheduling. 
The scheduling scheme based on the KPN MoC is illustrated 
by the pseudo code given in Algorithm 6.

Since the KPN MoC supports processes having sequential 
behaviors, it schedules a process for execution by evaluating 
the firing rules (including guards) sequentially in a prede-
fined order. The KPN scheduler iterates through the set of 
modeled actions in the order of their definitions where for 
each action, it works as follows: First, the scheduler checks 
if enough tokens are available in the input buffers used by 
the guard (Line 3). If enough tokens are available and if the 
guard is valid (Line 5), the remaining (non-guarded) input 
buffers of the action are checked for enough tokens (Line 6). 
Only if there are enough tokens available, the output buffers 
are checked for space (Line 7). If enough space is available, 
the action is finally scheduled for execution (Line 8). In case 
if one of the conditions does not meet, the process is blocked 
until that condition is fulfilled (Lines 11 and 15).

Since the host and generated kernels are independent 
components, the evaluation sequence or order needs to be 
extracted from modeled processes at compile time. The 
extracted sequence can be used by the KPN scheduler at 
runtime to schedule processes for execution. To this end, 
we propose a systematic way of extracting the evaluation 
sequence by introducing the input–output tree wrapper 
(IOT-wrapper). The IOT-wrapper wraps the exact infor-
mation of inputs/outputs required to schedule a process 
in a standard tree structure, while taking into account the 
underlying semantics of the KPN MoC. For each process, 



SN Computer Science (2022) 3:249 Page 21 of 34 249

SN Computer Science

a wrapper is generated at compile time from the modeled 
behavior. The IOT-wrapper generation based on the underly-
ing KPN semantics is presented in [35].

The IOT-wrapper generated for a sequential process 
split as illustrated in Fig. 10, is shown in Fig. 13. The root 
node only involves the input X1 as it is the only input used 
for guard by the process. The StepFunction generated and 
assigned to each node is shown in dashed boxes. The set of 
branches originating from the root node and extending up 
to the leaf node represents a particular action. For instance, 
act2 is represented by branches originating from the root 
node (X1) and extending up to the leaf node (Y2).

KPN Scheduler based on IOT-wrapper: The KPN scheduler 
is provided with the generated IOT-wrappers of all processes 
in the used network. It uses a variant of the depth-first search 
(DFS) method [50] that starts at the root of the tree, selects a 
branch, and traverses through that branch as deep as possible 
until the leaf node is reached. In general, for each node, the 
scheduler calls the assigned StepFunction, and only moves 
to the next node if the function returns true. In particular, 
the StepFunction of the root node returns a number num 
∈ ℤ mainly dependent on which guard is true. This number 
is used to select a specific branch originating from the root 
node that directs to a specific action whose guard is true. In 
case if the leaf node is reached and its StepFunction returns 
true, the scheduler triggers the process for execution. On 
the contrary, if the StepFunction of one of the nodes returns 
false, the process gets blocked until that node returns true. 

DDF Scheduler: The DDF MoC evaluates the firing rules 
(including guard) of each action in a process as a part of the 
kernel at the device. This greatly simplifies the scheduling 
at the host and in fact the scheduler based on the DDF MoC 
is the simplest of all supported dataflow MoCs. The sched-
uling scheme based on the DDF MoC is illustrated by the 
pseudo code given in Algorithm 7. It follows an optimistic 
scheduling strategy that expects the firing of actions even if 
there is data available in only one input buffer and if there is 
space available in only one output buffer of the process. A 
process is therefore simply scheduled by the host for execu-
tion if there is enough data available in at least one of the 
input buffers (Line 2) and if there is enough space available 
in at least one of the output buffers (Line 3).

With that, we illustrated all the specialized schedulers 
based on the supported dataflow MoCs. In the following, 
we present two of the main components of the Runtime-
Manager, namely the dispatcher and the handler.

Fig. 13  Generated IOT-wrapper 
for split process as shown 
in Fig. 10: it consists of two 
branches where each branch 
corresponds to a particular 
action i.e., act1 or act2 of the 
process. The step functions 
of all nodes are illustrated in 
dashed boxes
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Dispatcher In general, a dispatcher is a special program 
which comes into play after the scheduler. When the sched-
uler completes its job of selecting a process, it is the dis-
patcher that gives a process control over the target device. 
The runtime system of the proposed framework also pro-
vides a special dispatcher built under the OpenCL abstrac-
tion. The global scheduler evokes one of the local schedul-
ers based on the dataflow MoC of a process. The evoked 
scheduler fetches a ready process from the Process-Queue 
and provides it to the dispatcher as depicted in Fig. 14. The 
dispatcher acquires the device object from the Device-Queue 
and finally maps the fetched process on the command queue 
of the target device. The generated kernel of the dispatched 
process is then executed based on the used dataflow MoC.

Communication Mechanism and Handlers The proposed 
framework implements the FIFO buffers as bounded cir-
cular ring buffers. In general, this design enables the buff-
ers to work as if the memory is contiguous and circular in 
nature. The communication between the host and kernels is 
realized using OpenCL memory objects (buffers). For each 
bounded FIFO buffer, an OpenCL buffer is created with the 
same design and size of the FIFO buffer. Each process object 
provided by the Process-Queue stores and links the address 
of each FIFO buffer with the associated OpenCL buffer. 
During the execution of a process, i.e., when the kernel of 
a process is being executed, data is read/written from/to the 
associated OpenCL buffers. When all the instances of the 
kernel are executed, i.e., the dispatched process executions 
are completed, the Runtime-Manager is then automatically 
notified to update the components. For that purpose, a han-
dler mechanism is developed using callbacks as shown on 
the left part of Fig. 14.

The Runtime-Manager generates a callback interface 
each, for every existing device in the Device-Queue during 
the initialization of the queue. Based on the used dataflow 
MoC, the Runtime-Manager provides the MoC specific 
implementations for each generated callback interface. As 
a result, the dataflow MoC specific handler mechanism is 
invoked. The dispatcher sets up a callback event for each 
fetched process and links it with the callback handler of 
the device where it is dispatched. Hence, the completion of 
the kernel of the dispatched process automatically invokes 
the callback handler of the used device. The callback han-
dler performs a set of general tasks including: retrieving 
data from the kernel (OpenCL buffers), updating all the 
FIFO buffers of the process, updating the status of the pro-
cess, updating the Process-Queue, updating the device’s 
load, and finally updating the OpenCL buffers. However, 
updating the FIFO buffers is a dataflow MoC specific task, 
and is therefore managed differently for the supported 
dataflow MoCs. Based on the SDF MoC, the data rate of 
a process remains fixed in each execution, and therefore 

each FIFO buffer is simply updated based on the speci-
fied static data rate. Based on the KPN MoC, since the 
processes are only scheduled if there exists one enabled 
action, each FIFO buffer is simply updated based on the 
enabled actions of dispatched instances. On the contrary, 
based on the DPN MoC, the processes are evaluated for 
their firing rules within kernels. Therefore, the amount of 
data consumed and produced is first measured at the host 
(handler) using the status of buffers, and finally each FIFO 
buffer of the process is updated accordingly.

Experimental Evaluation

We organized our experimental evaluations into two parts: 
The first part features simple standalone benchmarks that 
perform simple operations and are especially designed to 
evaluate and compare the homogeneous versions gener-
ated by all individual supported dataflow MoCs for each 
benchmark (when possible). The second type presents a 
particular case study of the ConceptCar [37, 40] where dif-
ferent configurations of the ConceptCar’s architecture are 
used to model and automatically generate implementations 
based on the individual dataflow MoCs as well as based on 
their heterogeneous combinations.

Experimental Setup

A variety of OpenCL supported devices have been 
employed for evaluation as listed in Fig.  15. The list 
involves five devices featuring three different device types 
from three different vendors. In particular, two different 
CPUs (CPU1 and CPU2), one integrated GPU (GPU1) 
and two dedicated GPUs (GPU2 and GPU3) featuring 
Intel, AMD and NVIDIA have been employed. The inte-
grated GPU (GPU1) is built into the processor, and uses 
the system memory that is shared with the CPU (CPU2). 

Fig. 14  The dispatching and handling mechanism of the Runtime-
Manager. The dispatcher provided with the scheduled process maps 
the associated kernel on the command queue of the target device. The 
handler is mainly responsible for updating the runtime components at 
the host after the dispatched executions are performed
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In contrast, the dedicated GPUs (GPU2 and GPU3) fea-
ture their own processors and their own source of memory.

For different target devices, different vendor-specific 
OpenCL implementations have been installed. This 
involves the software development kits (SDKs) from 
device vendors and the appropriate device drivers support-
ing OpenCL runtimes. The complete software environment 
used for executing generated versions on the target devices 
is summarized in Fig. 16.

Standalone Benchmarks

We designed a set of simple benchmarks consisting of pro-
cesses having static, sequential or parallel functions. These 
benchmarks are therefore typically designed to offer a vari-
ety of processes having different kinds of behaviors that 
enable the evaluation and comparison of implementations 
based on all three different dataflow MoCs of the frame-
work. Each benchmark only features processes based on 
a particular dataflow MoC. Each benchmark is organized 
in a network of three processes which are connected in a 

producer-worker-consumer setting. The worker process pro-
vides the main functionality of the benchmark and there-
fore performs the main operation. The designed standalone 
benchmarks along with their function types are listed in 
Fig. 17. A brief description of each benchmark is given as 
follows:

The sequential dynamic switch (SeqDySwitch) benchmark 
is designed to switch the only data input channel to any one 
of a number of individual output channels by the applica-
tion of a control input. In contrast, the sequential dynamic 
worker (SeqDyWorker) benchmark performs the operation 
by taking one single input channel and copying its data to the 
only output channel based on the value of data of the only 
input channel. The sequential dynamic select (SeqDySelect) 
benchmark is a multiplexer that processes the information 
from multiple input channels into a single output channel by 
the application of a control input. It can simply be under-
stood as a dynamic version of the if-then-else operation that 
sequentially consumes data from input channels based on 
the value of data on a control input. In contrast, the static 
if-then-else (StITE) benchmark is a static version of the 

Fig. 15  The experimental setup: 
list of target devices employed 
to evaluate the proposed synthe-
sis design flow. The specifica-
tion of each target device is 
shown in the figure
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if-then-else operation that always consumes data from all 
input channels in each execution. The sequential dynamic 
merge (SeqDyMerge) benchmark is designed to merge sev-
eral input channels to a single common output channel by 
the application of a control input. In contrast, the sequen-
tial dynamic split (SeqDySplit) benchmark is designed to 
split a single input channel to a number of individual output 
channels by the application of a control input. The parallel 
dynamic OR (ParDyOR) benchmark performs the logical 
OR operation on two Boolean input channels and produces 
the result on the only output channel. It is a parallel version 
of the logical OR operation that can consume and produce 
tokens in parallel based on the availability of data on each 
input channel. In contrast, the static OR (StOR) benchmark 
is a synchronous version of the logical OR operation that 
always consumes tokens from both inputs in each execution. 
Apart from ParDyOR that incorporates the parallel func-
tion, all other benchmarks employ either static or sequential 
functions. In particular, apart from StITE and StOR which 

involve only static processes, all sequential benchmarks 
exhibit dynamic behaviors.

Each benchmark is modeled and automatically synthe-
sized (when possible) based on all three supported dataflow 
MoCs of the framework. Thereby, three different implemen-
tations are automatically generated, namely the SDF MoC 
version, the KPN MoC version and the DDF MoC version. 
Since the SDF MoC only supports static behaviors, it could 
model and synthesize the StITE and StOR benchmarks. The 
KPN MoC supports both static and sequential functions 
and therefore able to model and synthesize all static and 
sequential benchmarks. However, it could not model and 
synthesize the only benchmark with the parallel function, 
namely the ParDyOR benchmark. The DDF MoC being the 
most generalized dataflow MoC of the lot supports static, 
sequential as well as parallel functions and therefore gen-
erated implementations for all designed benchmarks. The 
information regarding the implementations generated by the 
supported dataflow MoCs for the designed benchmarks is 
depicted in Fig. 17.

The generated versions for each benchmark based on dif-
ferent dataflow MoCs are evaluated based on their code size 
and the end-to-end performance. The code size for each gen-
erated version (implementation) of benchmark is measured 
as the sum of lines of code of all generated kernels for that 
version. The end-to-end performance, i.e., the total execu-
tion time of the network to process the complete input data 
set including initialization and termination of the program 
is considered as the comparison metric. The data set used 
has a maximum of ten thousand samples per input and the 
average of 50 repetitions is taken for each version.

Evaluation: Generated Code Size

The SDF MoC only supports static behaviors and therefore 
triggers a process when the data/space is available for all 
inputs/outputs. In each execution it consumes and produces 
statically determined fixed number of tokens from all inputs 

Fig. 16  The software environ-
ment: list of software toolkits 
and drivers installed to enable 
the OpenCL implementations

Fig. 17  The designed standalone benchmarks. Each benchmark offers 
processes based on a particular kind of behavior as depicted by the 
function type. The right-hand side indicates the supported dataflow 
MoCs that were able to generate implementations for the particular 
benchmarks
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and outputs, respectively. This simplifies the code genera-
tion and in particular generates very succinct kernel code for 
static processes. The KPN MoC supports static as well as 
sequential behaviors. Since processes in KPNs are sequen-
tial, their firing rules can be evaluated in a predefined order. 
It only triggers a process for execution when the exact infor-
mation on inputs/outputs required to fire an action is avail-
able. This essentially simplifies the kernel code generation 
and therefore generates succinct kernel code for sequential 
processes. In contrast, the DDF MoC supports sequential as 
well parallel functions, and therefore dynamically evaluates 
actions including their inputs/outputs when the process is 
triggered for execution. Therefore, it accommodates addi-
tional code for enabling the dynamic evaluation of actions 
within kernels at runtime. The KPN MoC, therefore, gener-
ates more concise kernel code for sequential processes than 
the DDF MoC. The generated code size of each benchmark 
for the complete network based on all three dataflow MoCs 
is depicted in Fig. 18.

The additional kernel code overhead associated with the 
DDF MoC can therefore be observed from the number of 
lines of the generated code for each benchmark. For static 
benchmarks StITE and StOR that consist of only static pro-
cesses, the SDF MoC generated the most succinct code of 
all generated versions. In particular, the generated code 
size based on the SDF MoC for StITE is about 83% and 
3 % lesser than the DDF and KPN versions, respectively. 
Similarly for StOR, the SDF version demonstrated a code 
reduction of about 90% and 3 % in comparison to the DDF 
and KPN versions, respectively.

For all benchmarks consisting of sequential processes, 
the KPN MoC generated the most succinct code of all gen-
erated versions. For all sequential benchmarks, the KPN 
MoC generated at least 74% less lines of code than the 
DDF MoC. In particular, the biggest difference is recorded 
in SeqDyWorker where the generated code size based on 
the KPN MoC is 95% lesser than the DDF version. The 
ParDyOR benchmark features a parallel function and 
could only be modeled and synthesized based on the DDF 
MoC. The DDF MoC, therefore, offers a more generalized 
dataflow MoC that supports both sequential as well as par-
allel behaviors but at the cost of the additionally generated 
lines of kernel code.

Evaluation: The End‑to‑End Performance

Each generated version of a benchmark is either executed 
on CPU1 (Intel) or GPU2 (AMD) at a time to evaluate and 
compare the end-to-end performance of all used dataflow 
MoCs. On each target hardware, i.e., CPU1 and GPU2, 
the average execution time of each generated version 
of a benchmark is measured against the number of data 

samples. The results are demonstrated for the maximum 
number of samples (i.e., ten thousand samples per input) 
where the biggest differences in execution times have been 
recorded as shown in Figs. 19 and 20.

Results: GPU2

The end-to-end performance of all generated versions of 
benchmarks on GPU2 is shown in Fig. 19. As discussed 
for static benchmarks, the SDF MoC generated the most 
succinct kernel code. Considering the fact that the designed 
benchmarks only involve simple operations, the SDF MoC 
demonstrated the best end-to-end performance for StITE and 
StOR. In particular, the SDF version of StITE executed 1.74× 
faster than the DDF version and performed only slightly 
better than the KPN version. Similarly for StOR, the SDF 
version executed 1.59× faster than the DDF version and 
executed about 3 % faster than the KPN version. Similarly, 
for all sequential benchmarks, the additional runtime over-
head associated with the DDF MoC is propagated to the 
total execution time of the network resulting in elevated 
execution times. As a result, the KPN versions performed 
substantially better than the DDF versions. For all sequential 
benchmarks, the KPN versions executed at least 1.15× faster 
than the DDF versions. In particular, the biggest difference is 
observed in the case of SeqDySelect where the KPN version 
executed 2.87× faster than the DDF version.

Results: CPU1

In comparison to GPU2, the average execution time of each 
benchmark version is substantially reduced on CPU1 as 
shown in Fig. 20. In contrast to OpenCL CPU where the 
host and the kernels reside on the same device, in the case of 
GPU, the data has to be transferred to the GPU and back to 
the main memory (host). This overhead therefore contributes 

Fig. 18  The generated code size for standalone benchmarks based on 
all three supported dataflow MoCs
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in elevating the total execution time. On average, the gener-
ated versions on CPU1 executed 1.75× faster than on GPU1. 
Similar to GPU2, the same trend of end-to-end performance 
has been observed on CPU1. The SDF MoC demonstrated 
the best end-to-end performance for static benchmarks StITE 
and StOR. The SDF version of StITE executed 7 % and 3.5% 
faster than the DDF and KPN versions, respectively. Simi-
larly for StOR, the SDF version performed slightly better 
than the DDF and KPN versions. For all sequential bench-
marks, the KPN versions performed substantially better than 
the DDF versions. To this end, the KPN versions executed 
on average 1.4× faster than the DDF versions. In particular, 
the biggest difference is observed in the case of SeqDySelect 
where the KPN version executed 1.83× faster than the DDF 
version.

Results: Summary

The SDF MoC generated the most succinct kernel code and 
demonstrated the best end-to-end performance for simple 
static benchmarks. The KPN MoC performed significantly 
faster than the DDF MoC for all sequential benchmarks. 
The DDF MoC offers the most expressive semantics of all 
supported dataflow MoCs and therefore was able to gener-
ate implementations for all designed benchmarks. The DDF 
MoC enables one to model static, sequential as well as paral-
lel behaviors but at the cost of additional runtime overhead. 
Thus, even for the simplest of the benchmarks, we observed 
that generating implementations based on the kind of behav-
ior or the underlying dataflow MoC of each process results 
in substantially improved end-to-end performance. In other 
words, using a more generalized dataflow MoC for schedul-
ing and executing rather restricted dataflow behaviors could 
result in inefficient system implementations.

Case Study: The ConceptCar’s Dataflow Emulation

The ConceptCar [37, 40] (designed and developed by our 
group) is an experimental embedded system with the objec-
tive of testing and verifying car features by deploying differ-
ent classes of applications. The ConceptCar, although not as 
big as a conventional car, has been built and engineered as 
close to a modern car as possible.

Hardware Design: The ConceptCar is a research plat-
form remotely operated via a standard 2-channel (throttle 
and steering) 27 MHz radio transmitter system. It incor-
porates a set of sensors (wheel speed, gyro/accelerometer, 
distance etc.) for interacting with the environment and sur-
roundings. It uses an air-cooled sensorless brushless elec-
trical motor for driving, and a servo motor for steering. 
The power train of the ConceptCar features two independ-
ent power sources: one for the heavy load electric system 
(motors/actuators), and another one for powering up all the 
electronic control units (ECUs).

Computational Architecture: Although not incorpo-
rated with as many ECUs as a modern car can carry, the 
ConceptCar still features seven different ECUs, as shown in 
Fig. 21. These ECUs are organized in three processing units. 
The SensorBoard ECUs, as incorporated with different sen-
sors, form the input processing unit which is responsible for 
interacting with the environment. The multicore ECU also 
known as DataBoard is used as a data processing unit and 
only comes into play when complex mathematical computa-
tions are required. The ActorBoard ECU forms the output 
processing unit and is responsible for creating the PWM 
signals to drive the actuators (dc motor and servo). The 
selector switch on ActorBoard chooses the source of data, 
either receiving processed data from DataBoard or normal-
ized data from SensorBoards. Similar to a modern car, all 

Fig. 19  End-to-end performance on GPU2 for the generated versions 
of the standalone benchmarks. The results depicted in the figure are 
measured for 10K samples per input

Fig. 20  End-to-end performance on CPU1 for the generated versions 
of the standalone benchmarks. The results depicted in the figure are 
measured for 10K samples per input
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ECUs interact with each other via a centralized CAN bus 
architecture. Since the powertrain of the ConceptCar fea-
tures two independent power sources, a special ECU called 
EmergencyBoard is integrated which separates the actuators 
from the other ECUs by galvanic isolation. EmergencyBoard 
therefore isolates functional sections of electrical systems 
to prevent current flow. This ECU only accepts the input 
from the radio receiver and ActorBoard, and bypasses it to 
SensorBoards and the actuators, respectively.

Dataflow Emulation: A dataflow emulation of the Con-
ceptCar is devised where the operations of all the ECUs 
are emulated in a network of processes. The computations 
performed by each ECU are therefore modeled in a DPN 
process. This dataflow emulation allows us to produce two 
different test cases: The first test case as shown in Fig. 22 
emulates the initial design of the ConceptCar without gal-
vanic isolation i.e., the actuators are directly fed by Actor-
Board. The second test case as shown in Fig. 27 considers 
the design with galvanic isolation provided by Emergency-
Board. For both test cases, the input data provided by the 
process RadioRemoteReceiver is collected from the cen-
tralized CAN bus and the results are validated against the 
logged outputs of the ConceptCar.

A number of implementations (versions) are automati-
cally generated by the synthesis framework for both test 
cases where each test case is focused to evaluate particular 

aspects of synthesis. Each generated version is executed on 
three different devices, namely CPU2 from Intel, GPU1 
from Intel and GPU3 from NVIDIA as listed in Fig. 15. 
The target hardware for this case study, therefore, features 
three different types of devices involving a CPU, an inte-
grated GPU and a dedicated GPU. Each generated version 
is evaluated for the resulting code size, the total network 
build time, and the end-to-end performance. The code size 
of each generated version is described as the sum of lines 
of code of all generated kernels. The network build time is 
defined as the total time taken by the OpenCL just-in-time 
(JIT) compiler to build all the kernels in the network and the 
MoC specific API functions of the used dataflow MoC(s). 
The build time is measured only by using CPU2. The end-
to-end performance is defined as the total execution time of 
the network to process the complete input data set including 
initialization and termination of the program. The data set 
used has a maximum of five thousand samples per input and 
the average of 50 repetitions is taken for each version.

Test Case I: Open‑Loop Configuration

The dataflow emulation of the design where ActorBoard 
directly feeds the actuators resulted in the open-loop con-
figuration of the ConceptCar, as shown in Fig. 22. The origi-
nal network features a heterogeneous DPN of different kinds 
of processes exhibiting static as well as sequential behaviors. 
The function or behavior type of each process is described at 
the bottom of each node as shown in Fig. 22. The main focus 
of this test case is to generate homogeneous implementations 
based on the individual dataflow MoCs of the framework 
and evaluate them for their resulting code size, the total 
network build time, and the end-to-end performance. The 
open-loop configuration is therefore modeled and automati-
cally synthesized thrice, once for each individual dataflow 
MoC. Hence, three different versions are automatically gen-
erated by the synthesis framework, i.e., first based on the 
SDF MoC, second using the KPN MoC, and finally based on 
the DDF MoC. The original dataflow model of ActorBoard 
exhibits a sequential behavior as it utilizes data either from 
DataBoard or SensorBoards based on the input provided 

Fig. 21  Architecture of the ConceptCar

Fig. 22  The original dataflow 
network of the ConceptCar 
based on the open-loop configu-
ration. As shown in the figure, 
the actuators are directly fed by 
ActorBoard. The behavior type 
of each process is described 
at the bottom of each node in 
square brackets
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by SelectorSwitch. A static version of ActorBoard is also 
modeled that consumes data from all inputs in each execu-
tion. This allowed us to design a fully static network and to 
generate an implementation of the open-loop network based 
on the SDF MoC.

Generated Code Size and Network Build Time

The generated versions of the open-loop network based on 
all three dataflow MoCs are illustrated in Fig. 23. In par-
ticular, the generated kernel code size of each DPN process 
and the total build time for the complete network are given 
for each version.

The SDF MoC generated the most succinct kernel code 
for static processes. On the other hand, the KPN MoC gen-
erated the most concise code for sequential processes. In 
contrast to SDF and KPN MoCs, the DDF MoC offers a 
more flexible semantics where the decision on whether to 
consume/produce data in each execution is taken dynami-
cally at runtime in the kernel code. Consequently, the gen-
erated DDF version accommodates additional kernel code 
for enabling the dynamic evaluation of actions at runtime 
when the process is triggered for execution. This overhead 
can therefore be observed from the number of lines of the 
generated code for each process and the total network build 
time. The generated code size of the DDF version for the 
complete network is 65% and 59% greater than the KPN and 
SDF versions, respectively. This results in an additional 
build time overhead of 391% and 384% in comparison to 
the build times of KPN and SDF versions, respectively. The 
overhead also reflects the additional time taken to build the 
DDF MoC specific API functions used for dynamic execu-
tion within kernels.

Finally, we also observed that the KPN version has 
slightly less code size than the SDF version for the com-
plete open-loop network. This is mainly because the static 
version of ActorBoard consumes data from all inputs in each 
execution and therefore the corresponding generated kernel 
accommodated more lines of code. Precisely, the generated 
code for the static version of ActorBoard based on the SDF 
MoC is about 20% more than the dynamic version generated 
based on the KPN MoC.

End‑to‑End Performance

Each generated version of the open-loop network is executed 
on each target hardware at a time to evaluate and compare 
the end-to-end performance. On each target hardware. i.e., 
CPU2, GPU1 and GPU3, the average execution time (in 
seconds) of each version is measured against the number of 
data samples as shown in Figs. 24,  25 and 26, respectively.

Regardless of which target hardware is used, the SDF 
version demonstrated the best end-to-end performance of 

all generated versions. Apart from ActorBoard, all pro-
cesses in the original open-loop network are static. As 
already observed in the previous section, the SDF MoC 
generated the most succinct kernel code for static pro-
cesses. Second, since the SDF MoC also simplifies the 
scheduling of processes, this further contributes to the 
improved end-to-end performance for the SDF version. 
The KPN version although offered a slightly less code size, 
however, induced a slight overhead in scheduling static 
processes in comparison to the SDF version. The SDF 
version, therefore, performed only slightly better than the 
KPN version, in particular, executed only 7% and 4.5% 
faster on CPU2 and GPU1, respectively. On GPU3 how-
ever the difference in performance is negligible.

In contrast to SDF and KPN MoCs, the additional runt-
ime overhead associated with the DDF MoC is propagated 
to the end-to-end performance resulting in elevated execu-
tion times. Based on the results, as the number of samples 
increases, this effect induced by the overhead can be clearly 
observed. On CPU2, the DDF version took twice as much 
time as taken by the SDF version and took about 90% more 
time than the KPN version to execute the complete network 
for five thousand samples. On GPU1, the DDF version 
yielded about 145% and 135% more execution time than the 
SDF and KPN versions, respectively. Finally, on GPU3, 
the DDF version required 50% more time to process five 
thousand samples in comparison to the SDF and KPN ver-
sions. The DDF MoC although offers semantics to model 
sequential as well as parallel behaviors, but at the cost of the 
additional runtime overhead. Therefore, it exhibits a trade-
off between expressiveness and overall performance.

All generated versions executed substantially faster on 
the CPU than on the used GPUs mainly because of the com-
munication overhead associated with the OpenCL GPU. For 

Fig. 23  ConceptCar’s open-loop setting: comparison of generated 
code size and network build time of all supported dataflow MoCs
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instance, the SDF version on CPU2 executed 4.75× and 1.4× 
faster than on GPU3 and GPU1, respectively. Since, the 
integrated GPU (GPU1) share the same memory of the host, 
the versions executed substantially faster on GPU1 than on 
the dedicated GPU (GPU3). For example, the SDF version 
on GPU1 executed 1.39× faster than on GPU3.

Test Case II: Closed‑Loop Configuration

The dataflow emulation of the design where the Emer-
gencyBoard ECU separates the actuators from the rest of 
the ECUs by galvanic isolation resulted in the closed-loop 
configuration of the ConceptCar. The closed-loop setting 
therefore introduces a feedback loop in the network from 
ActorBoard into EmergencyBoard as shown in Fig. 27. The 
original network features a heterogeneous DPN of different 
kinds of processes exhibiting static, sequential and parallel 
behaviors. In particular, EmergencyBoard exhibits a parallel 
behavior as it features independent actions operating on the 
independent sets of inputs from RadioRemoteReceiver and 
ActorBoard and producing data to the independent sets of 
outputs. This test case focuses on observing how the feed-
back loop in the network affects the performances of the 
individual homogeneous implementations of all supported 
dataflow MoCs. Second, and most importantly, it also dem-
onstrates how the proposed synthesis method effectively 
exploits the heterogeneity by generating implementations 
based on the underlying dataflow MoC of each process to 
further improve the end-to-end performance.

The closed-loop configuration is modeled and automati-
cally synthesized four times, once for each individual data-
flow MoC and once based on the heterogeneous combina-
tion of all dataflow MoCs. Hence, four different versions are 
automatically generated by the synthesis framework, i.e., 
first based on the SDF MoC, second using the KPN MoC, 
third based on the DDF MoC, and finally the heterogeneous 
version based on the combination of all used dataflow MoCs. 
Since, the original dataflow model of EmergencyBoard 
exhibits a parallel behavior, a static version is also designed 
that consumes data from all inputs in each execution. This 
allowed us to generate implementations of the closed-loop 
network based on the SDF and KPN MoCs.

Generated Code Size and Network Build Time

The generated versions of the closed-loop network are illus-
trated in Fig. 28. The generated homogeneous versions based 
on the individual dataflow MoCs demonstrated the same 
pattern in code size as observed in the case of the open-loop 
network. The generated code size of the DDF version for the 
complete network is 67% and 61% greater than the KPN and 
SDF versions, respectively. This resulted in an additional 
build time overhead of 385% and 379% in comparison to the 
build times of KPN and SDF versions, respectively.

The heterogeneous version is automatically generated 
based on the kind of behavior or the underlying dataflow 
MoC of each process in the network. The generated code 
size of the heterogeneous version is only slightly greater 
than the KPN and SDF versions. Since the heterogeneous 

Fig. 24  Open-loop setting: comparison of end-to-end performance of 
all supported dataflow MoCs on CPU2 

Fig. 25  Open-loop setting: comparison of end-to-end performance of 
all supported dataflow MoCs on GPU1 

Fig. 26  Open-loop setting: comparison of end-to-end performance of 
all supported dataflow MoCs on GPU3 
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version employed the MoC specific API functions of all the 
used dataflow MoCs, this resulted in the build time overhead 
of about 40% and 38% in comparison to the build times of 
KPN and SDF versions, respectively. However, the code size 
of the DDF version is 56% greater than the heterogeneous 
version and therefore required 247% more time to build the 
complete network.

End‑to‑End Performance

Each generated version of the closed-loop network is exe-
cuted on each target hardware at a time to evaluate and com-
pare the end-to-end performance. On each target hardware. 
i.e., CPU2, GPU1 and GPU3, the average execution time (in 
seconds) of each version is measured against the number of 
data samples as shown in Figs. 29,  30 and  31, respectively.

Regardless of which target hardware is used, it can be 
observed that the introduction of the feedback loop in the 

network elevates the execution times of the SDF and KPN 
versions to an unacceptable level. As discussed, the origi-
nal dataflow model of EmergencyBoard exhibits a parallel 
behavior. Since, the SDF MoC only supports static behav-
iors, a static version of EmergencyBoard is designed to 
generate the SDF and KPN versions. The static version 
of EmergencyBoard therefore requires data in all inputs 
before it can be scheduled for execution. With a feedback 
loop introduced into EmergencyBoard, the SDF and KPN 
versions only schedule and communicate a single execu-
tion at a time for all processes (except RadioRemoteR-
eceiver) at the device. Consequently, this induces a lot 
of scheduling and communication overhead between the 
host and device, and, therefore, resulted in excessively 
elevated execution times. The DDF version on the other 
hand employs a parallel version of EmergencyBoard and 
therefore attempts to schedule and communicate as many 
executions at a time as possible based on the availability 
of data on independent sets of inputs. Thus, even with 
the associated runtime overhead, the DDF version outper-
formed the SDF and KPN versions.

On CPU2, the DDF version executed 31× and 41× faster 
than the SDF and KPN versions, respectively, in execut-
ing the complete network for five thousand samples. Simi-
larly, the end-to-end performance of SDF and KPN versions 
on both the used GPUs reached to an unacceptable level. 
On GPU1, the SDF executed 66× and the KPN version 
executed 149× slower in comparison to the DDF version. 
On GPU3, the SDF and KPN versions are 51× and 45× , 
respectively, slower than the DDF version. The difference 
in execution times is bigger on the GPUs than on the CPU 
mainly because of the communication overhead associated 
with OpenCL GPUs. The SDF version performed substan-
tially better than the KPN version on the CPU and the inte-
grated GPU, in particular, executed about 1.33× and 2.2× 
faster, respectively. This is mainly because the KPN version 

Fig. 27  The original dataflow 
network of the ConceptCar 
based on the closed-loop 
configuration. As shown in 
the figure, a feedback loop is 
introduced into the network 
from ActorBoard into Emergen-
cyBoard. The behavior type of 
each process is described at the 
bottom of each node in square 
brackets

Fig. 28  Closed-loop setting: comparison of generated code size and 
network build time of all supported dataflow MoCs including their 
heterogeneous combination
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induced an overhead in scheduling static processes for a 
large number of single executions. Interestingly, the KPN 
version executed about 1.13× faster than the SDF version 
on the dedicated GPU. The KPN version only dispatches a 
process for execution on the device if there exists one of the 
actions whose firing rules are satisfied. It therefore evalu-
ates the firing rules at the scheduling time on the host side. 
This relaxes the computation on the device side. Since the 
dedicated GPU uses its own CPU and memory, the execu-
tion of simpler operations on less powerful processing cores 

contributed in the improved end-to-end performance for the 
KPN version.

The heterogeneous version: The main highlight of this 
test case is to evaluate the ability of the proposed synthe-
sis method to efficiently exploit the heterogeneity of dif-
ferent kinds of behaviors of processes in the network. The 
heterogeneous version is therefore automatically generated 
based on the underlying dataflow MoC of each process in 
the network. Regardless of which device is used for execu-
tion, the heterogeneous version demonstrated a substantial 
improvement in performance in comparison to the most effi-
cient homogeneous version of the closed-loop network. The 
performance comparison between the heterogeneous version 
and the DDF version is especially shown on the right-hand 
side graphs of Figs. 29,  30 and  31. In particular, the het-
erogeneous version demonstrated a speedup of 2.2× , 2.4× 
and 1.86× in comparison to the DDF version on CPU2, 
GPU1 and GPU3, respectively. This speedup achieved by 
the heterogeneous version on all target devices is illustrated 
in Fig. 32. The speedup is calculated with reference to the 
computation time (in seconds) of the generated homoge-
neous DDF version. The heterogeneous version therefore 
significantly improved the performance by eliminating the 
overhead induced by the feedback loop in the SDF and KPN 
versions, and by avoiding the additional runtime overhead 
of the DDF version.

Hence, it can be concluded from this particular test case 
that the ability to exploit the heterogeneity of different kinds 
of behaviors of processes in DPNs contributes in efficient sys-
tem implementations with substantially improved end-to-end 
performance.

Summary

The first test case featured an open-loop network which is 
mainly designed to generate and evaluate homogeneous imple-
mentations based on all individual supported dataflow MoCs. 
Considering the fact that most of the processes in the network 
exhibit static behaviors, the SDF version demonstrated the best 
end-to-end performance of all generation versions. The DDF 
version induced the runtime overhead of evaluating actions 
within kernels and performed the slowest of all generated ver-
sions. In particular, the DDF version took about 145% and 
135% more execution time than the SDF and KPN versions, 
respectively.

The second test case introduced a feedback loop from 
ActorBoard to EmergencyBoard that resulted in a closed-loop 
network. We observed that the introduction of the feedback 
loop in the network greatly degraded the end-to-end perfor-
mance of SDF and KPN versions. In particular, the DDF ver-
sion even with the associated runtime overhead outperformed 
the SDF and KPN versions. However, the heterogeneous 
version that exploited the heterogeneity of different kinds of 

Fig. 29  Closed-loop setting: comparison of end-to-end performance 
of all supported dataflow MoCs on CPU2. The right-hand side graph 
particularly shows the performance comparison between the DDF 
version and the heterogeneous version

Fig. 30  Closed-loop setting: comparison of end-to-end performance 
of all supported dataflow MoCs on GPU1. The right-hand side graph 
particularly shows the performance comparison between the DDF 
version and the heterogeneous version

Fig. 31  Closed-loop setting: comparison of end-to-end performance 
of all supported dataflow MoCs on GPU3. The right hand side graph 
particularly shows the performance comparison between the DDF 
version and the heterogeneous version
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processes significantly improved the performance, in particu-
lar, executed up to 2.4× faster than the fastest homogeneous 
DDF version. Hence, the ability of the proposed synthesis 
method to exploit heterogeneity in a DPN effectively contrib-
uted in achieving the best end-to-end performance.

Conclusions

This paper presented the automatic software synthesis of 
systems based on three different well-defined dataflow MoCs 
including their heterogeneous combinations. We proposed a 
synthesis design flow that offers a comprehensive tool chain 
including specialized code generators and the runtime sys-
tem for the supported dataflow MoCs. First, this allowed us 
to meet the objective of validating, evaluating and compar-
ing the artifacts exhibited by different dataflow MoCs at the 
implementation level under the shed of a common design 
tool. Second, an efficient and smarter synthesis method is 
presented that targets and exploits heterogeneity in dataflow 
networks by generating implementations based on the kinds 
of behaviors of the processes. Finally, this work also tackled 
the challenge of systematically handling the portability of 
systems on COTS heterogeneous platforms.

Based on our evaluations, we observed that even for the 
simplest of the benchmarks, the generated versions based on 
the kinds of behaviors of the processes demonstrated the best 
end-to-end performance. In particular, using a more gener-
alized dataflow MoC for scheduling and executing rather 
restricted dataflow behaviors resulted in inefficient system 
implementations. Based on our case study, we observed 
that the heterogeneous versions generated by the proposed 
synthesis method demonstrated a substantial improvement 
in performance. In particular, the heterogeneous versions 
demonstrated up to 2.4× speedup than the most efficient 
generated homogeneous version. Based on the evaluations, 
it can be concluded that the ability to exploit the heteroge-
neity of different kinds of behaviors of processes in DPNs 

contributes in efficient system implementations with sub-
stantially improved end-to-end performance.
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