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Abstract
Quantum Annealing (QA) is a metaheuristic for solving optimization problems in a time-efficient manner. Therefore, quantum 
mechanical effects are used to compute and evaluate many possible solutions of an optimization problem simultaneously. 
Recent studies have shown the potential of QA for solving such complex assignment problems within milliseconds. This 
also applies for the field of job shop scheduling, where the existing approaches however focus on small problem sizes. To 
assess the full potential of QA in this area for industry-scale problem formulations, it is necessary to consider larger problem 
instances and to evaluate the potentials of computing these job shop scheduling problems while finding a near-optimal solu-
tion in a time-efficient manner. Consequently, this paper presents a QA-based job shop scheduling. In particular, flexible job 
shop scheduling problems in various sizes are computed with QA, demonstrating the efficiency of the approach regarding 
scalability, solutions quality, and computing time. For the evaluation of the proposed approach, the solutions are compared 
in a scientific benchmark with state-of-the-art algorithms for solving flexible job shop scheduling problems. The results 
indicate that QA has the potential for solving flexible job shop scheduling problems in a time efficient manner. Even large 
problem instances can be computed within seconds, which offers the possibility for application in industry.
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Abbreviations
JSS  Job shop scheduling
JSSP  Job shop scheduling problem
FJSSP  Flexible job shop scheduling problem
DJSSP  Dynamic job shop scheduling problem
PPC  Production planning and control
QA  Quantum Annealing
QPU  Quantum processing unit
BQM  Binary quadratic model
DQM  Discrete quadratic model
CQM  Constrained quadratic model
CHS  Classical hybrid solver
HBQM  Leap hybrid BQM solver
HDQM  Leap hybrid DQM solver
HCQM  Leap hybrid CQM solver

1  Introduction and state of the art

The concept of Industry 4.0 is closely linked to the objective 
of economical and flexible production of customized prod-
ucts in small batch sizes. To meet this objective, unexpected 
failures of machines in a production system or disruption 
errors in supply chains e.g., caused by a pandemic situation 
or sudden disturbances in supply chains have to be consid-
ered. An essential aspect that is affected by these influences 
is production planning and control (PPC) [1]. This includes, 
among other steps, the planning of material requirements, 
the scheduling of orders, and capacity planning. The goals 
are a reduction of work in progress, a minimization of pro-
cessing times, a reduction in inventory costs, or the ability 
to react to changes in demand or supply [2]. Therefore, PPC 
has to be dynamic, adaptive, and integrative and has to con-
sider material requirements planning, enterprise resource 
planning, just-in-time manufacturing, and collaborative 
planning, forecasting, and replenishment, among other 
activities [3].

In order to meet these requirements, PPC needs tools for 
decision-making and planning. Thus, process scheduling, 
also known as job shop scheduling (JSS), is a crucial task 
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of the PPC. JSS aims at determining the chronological pro-
cessing sequence of given orders. In this process, the goal 
is to allocate a set of tasks (jobs) to available functional 
units (machines) as efficiently as possible with regards to a 
certain objectives [4]. These objectives can be e.g., minimiz-
ing the makespan (i.e., the completion time of all the jobs), 
minimizing the tardiness of each job [5], minimizing the 
energy consumption [6], or maximizing machine utilization 
[7]. Objectives can be considered individually or on a multi-
criteria basis. In consequence, optimization problems can be 
formulated, which range under the term of job shop sched-
uling problem (JSSP). The general assumption is that the 
operations of a job have to be processed in a given order and 
a machine cannot process two operations at the same time, 
which builds constraints of the JSSP. Constraints and objec-
tives vary between JSSP types. One important expansion of 
the JSSP towards industrial applicability is the flexible job 
shop scheduling problem (FJSSP), in which operations can 
be processed by more than one machine [8]. Furthermore, 
in the dynamic job shop scheduling problem (DJSSP) e.g., 
availability states of machines are considered [9].

In order to solve these various optimization problems, 
computer-aided methods like optimization algorithms can be 
used. Using exact optimization methods for NP-hard prob-
lems such as JSSP is linked with an exponential growth in 
runtime with the problem size. Therefore, approximation 
methods are deployed to find solutions, since exact meth-
ods are mostly not able to compute these in a time-efficient 
manner [10]. Mokhtari and Hasani used a combination of 
genetic and simulated annealing algorithms in order to solve 
multi-objective FJSSP [11]. Besides, Zhang et al. used a 
digital twin to improve the solution of a DJSSP. The digital 
twin is used as a basis for forecasting machine failures, as 
well as for intelligent JSS by means of a genetic algorithm 
[12]. These methods show capabilities for finding solutions 
in a time efficient manner. However, the computational effort 
increases rapidly with the problem size even with approxi-
mation methods. Furthermore, current developments in the 
field of Quantum Annealing (QA) show huge potential for 
application.

QA is a metaheuristic, which is proposed showing advan-
tages solving combinatorial optimization problems com-
pared to algorithms on classical computers [13]. Therefore, 
quantum annealers based on the adiabatic theorem, are 
realized in order to make QA applicable. Basic units of a 
quantum annealer are quantum bits or qubits, which describe 
the lowest information unit in the quantum processing unit 
(QPU). Similar to bits of classical computers, qubits can 
attain the states of 0 or 1. However, qubits are quantum 
objects, which results in the possibility of assuming an infi-
nite number of states between 0 and 1 at the same time. 
This phenomenon is known as superposition [14]. Before a 
QA process is initiated, the qubits are in superposition. The 

superposition ends when the QA process is finished and the 
qubits collapse to either 0 or 1. The probability in which 
state a qubit collapses can be influenced by biases applying 
external magnetic fields. In addition, through the quantum 
physical phenomenon of entanglement, qubits can be linked 
together so that they influence each other. Entanglement can 
be controlled analog to biases by couplers that apply external 
magnetic fields during the QA. Through couplers, the end 
states of entangled qubits are influenced [15]. During QA, an 
energy landscape for qubits is defined through couplers and 
biases in which the quantum annealer finds the minimum 
energy state. These states can be assigned to possible solu-
tions of a minimization problem, where low energy states are 
linked with good solutions. In finding an optimal solution 
along the energy profile, states of higher energy usually have 
to be overcome to find a state of lower energy. However, 
during QA, quantum tunneling makes it possible to find the 
lowest energy level by passing through higher energy levels 
[16]. This procedure is shown in Fig. 1, which summarizes 
the QA process. Based on the described effects, QA is able 
to represent many solutions of a combinatorial optimization 
problem at the same time through superposition and finds 
a good solution through tunneling and entanglement within 
milliseconds, even for large problem sizes [17]. In differ-
ence to gate-based quantum computers the latest versions of 
quantum annealers have over 5000 Qubits and are already 
able to address realistic problem sizes. In addition, the use-
ability of QA for industrial applications came along with the 
possibility of controlling QA via cloud services by providers 
such as D-Wave1 [18]. For example, to show the potential 
of QA for industrial applicability an approach for factory 
layout planning using QA was proposed by Klar et. al [19].

The inputs for quantum annealers are specific formula-
tions of an energy optimization problem in the form of Ising 
models. Many optimization problems can be formulated in 
this way using the formulation as a hamilton function [20]. 
A hamilton function (Eq. 1) maps certain states of an optimi-
zation problem to their specific energy levels. The hamilton 
function is described through the sum of the initial hamilton 
and the final hamilton, also called tunneling and problem 
hamilton.

A(s) and B(s) are energy scaling functions that increase or 
decrease monotonically with the progress of the QA. At the 
beginning of a QA process, all qubits are in superposition 
and the system is in its lowest energy state mainly described 
by the initial hamilton (i.e., A(s) = 1,B(s) = 0 ). During the 

(1)Hising = A(s)Hinital + B(s)Hfinal

1 Naming of specific company is done solely for the sake of com-
pleteness and does not necessarily imply an endorsement of the 
named companies nor that the products are necessarily the best for 
the purpose.
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QA the influence of the initial hamilton decreases and the 
final hamilton increases. The lowest energy state of the final 
hamilton describes the solution of the minimization prob-
lem, including qubit biases and couplings. At the end of 
QA process (i.e., A(s) = 0,B(s) = 1 ), the qubits remain in a 
state described by the final Hamilton, which can be applied 
to annealers formulated as [18]:

with scalar weights Qii , Qij and binary variables xi , xj.
Recent studies regarding JSS have shown the potential 

of QA to solve such complex assignment problems within 
milliseconds using the hamilton formulation [21, 22]. QA 
offers the potential to compute the JSSP while finding a 
near-optimal solution in a time-efficient manner. Thus, 
Venturelli et al. proposed a valuable approach for solving 
small JSSP under finding optimal solutions [21]. The feasi-
bility to solve JSSP with QA could successfully be shown in 
this approach. However, the full potential of QA should be 
explored by testing larger problem sizes. Besides, Kurowski 
et al. proposed how JSSP can be decomposed into a set of 
smaller optimization problems that requires less quantum 
hardware capacity [22], which makes the solution of larger 
problems possible. Aiming at industrial scale problems, 
Denkena et al. use a digital annealer, which simulates the 
principles of a quantum annealer, to solve larger instances 
of FJSSP [23]. Especially through the solutions of the con-
sidered problem sizes this approach shows perspectives for 
application in industry. Nevertheless, digital annealers only 
simulate quantum mechanical effects. Therefore, it can be 
assumed that a quantum annealer with an adequate number 
of qubits performs better in solving problem instances for 
industrial applicability regarding computation time.

Consequently, this paper presents a QA-based FJSSP 
for varying problem sizes. In a first step, the mathemati-
cal formulation for mapping FJSSP to a quantum annealer 

(2)Hfinal =
∑

i

Qiixi +
∑

i<j

Qijxixj

will be shown. Furthermore, the different solvers of QA are 
evaluated through a scientific benchmark to demonstrate the 
efficiency of the approach regarding scalability, solutions 
quality, and computing time.

2  Problem formulation and solver 
description

2.1  Framework

In this paper, the QA-based job shop scheduling approach 
is presented to solve FJSSP for different job sizes using 
D-Wave solvers. Where the QPU solvers only use the QPU 
of the quantum annealers, the hybrid solvers use both clas-
sical and quantum resources to solve problems. In this paper 
only hybrid solvers are applied, which are suitable for solv-
ing large problem instances. D-Wave offers access to leap 
hybrid solvers and classical hybrid solvers (CHS). The leap 
hybrid solvers support different kinds of quadratic models 
as input. Sets of binary variables defined in a hamilton for-
mulation as binary quadratic model (BQM) are suitable for 
the leap hybrid BQM solver (HBQM). In contrast, discrete 
variables, which can assume e.g., integers, are combined in 
a discrete quadratic model (DQM) that the leap hybrid DQM 
solver (HDQM) supposes. Besides, constrained quadratic 
models (CQM) containing integer and binary variables are 
required for the leap hybrid CQM solver (HCQM). CHS 
support only BQM. Where the leap hybrid solvers use the 
QPU only once for computing a submitted problem, the CHS 
are programmed to decompose the problem into smaller 
instances and compute iteratively.

The proposed approach aims at finding feasible schedules 
for given sets of jobs and machines in a time-efficient man-
ner so that multiple schedules can be computed, and the best 
solution can be evaluated (shown in Fig. 2). In addition, it 
will be examined which solver is best suited for the various 

Fig. 1  Quantum Annealing process
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problem sizes by testing different solvers. Therefore, the leap 
solvers will be used as well as one CHS. Though the CHS 
support the decomposer to split large problems into multiple 
small sub-problems, an additional iterative approach is pro-
posed to achieve faster computing time by using a CHS. As 
the starting point, it is essential for the QA approach to deter-
mine the input variables, constraint conditions and objec-
tives, and summarize them in a mathematical formulation.

FJSSP aims to schedule A jobs J = {j1,⋯ , jA} on B 
machines M = {m1,⋯ ,mB} with given optimization objec-
tives. Each job consists of various operations that must be 
performed in a predefined sequence. Oi is denoted as the set 
of operations for any job i ∈ J . Furthermore, any operation 
oi ∈ Oi can be processed on at least one machine out of the 
given set Moi

 . For any oi ∈ Oi and m ∈ Moi
 , the processing 

time of the operation on machine is defined as poi,m and the 
starting time of the operation is denoted as t , which is in the 
given timeline T = {0,… , Tmax}.

Additionally, the solution for the FJSSP should satisfy the 
following three constraints:

1. Processing constraint: During the processing of any job 
i ∈ J , each operation oi ∈ Oi must start only once on a 
single machine m ∈ Moi

.
2. Procedure constraint: For any job i ∈ J , each opera-

tion oi ∈ Oi must be processed in the given order 
LOi

= {0,… , loi ,… , loi,last} , in which oi,last indicates the 
last operation of the job i.

3. Overlapping constraint: Each machine m ∈ M cannot 
process more than one operation at the same time.

The objectives for FJSSP can be varied (e.g., energy 
consumption, job completion time and processing costs). 
However, the proposed approach focuses on the optimization 
of job completion time. Therefore, only one optimization 
objective is implemented, the makespan objective.

2.2  Mathematical formulation

In order to exploit and evaluate the full potential of the vari-
ous solvers for computing FSJP, the constraints and objec-
tives have to be formulated using the specific kind of sup-
ported variables.

Fig. 2  Proposed framework
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2.2.1  BQM formulation

In the BQM formulation (Table 1) according to [23], a set of 
binary variables is used to denote all the possible starting times 
of each operation on the corresponding machine. The binary 
variable koi,m,t is equal to 1 if the referred operation oi ∈ Oi 
starts on the corresponding machine m ∈ Moi

 to the allocated 
discrete time t ∈ T (Eq. 3). The constraints and objectives are 
defined as binary polynomials in a hamilton formulation and 
summarized in a binary polynomial H (Eq. 11) which serves 
as a cost function for the optimization problem. The binary 
polynomials H1,H2,H3,H4 are added together with non-neg-
ative scalar weights �, �, � , � which determine the impact of 
the respective polynomial. With H1 a processing constraint is 
formulated (Eq. 4). Obviously, the constraint is satisfied for 
H1 = 0 . Here, combinations of binary variables which don’t 
fulfill the constraint result in bigger values, e.g., if an opera-
tion has multiple starting times. The procedure constraint is 
fulfilled analog to the first constraint for H2 = 0 (Eq. 5). Here 
the constraint is violated if the given order of a job is not con-
sidered. The third constraint leads to H3 = 0 if no machine is 
occupied by two operations simultaneously. To accomplish 
the optimization objective of completing each task in the 
shortest time, a binary polynomial H4 is defined to penalize 
the completion time late operations (Eq. 9). The makespan 
objective,H4 penalizes the completion time of any operation 
that is later than minimum predecessor time of the operation 

Poi
 , which is the sum of the minimum processing times of the 

preceding operations of operation oi  (Eqs. 9, 10).

2.2.2  DQM formulation

In the DQM formulation (illustrated in Table 2), the start 
time of the operation can be determined by a discrete vari-
able instead of a set of binary variables in the BQM formula. 
To assign the corresponding machine to the operation, voi is 
an integer in the range from 0 to Noi

⋅ Tmax , where Noi
 is the 

number of selectable machines for the operation and Tmax is 
the defined maximum completion time (Eq. 15). The starting 
time of the operation on the machine is determined using the 
following equation:

where noi,m ∈ [1,… ,Noi
] indicates the machine number of 

the assigned machine m ∈ Moi
 in the available machines for 

operation oi.
As in the BQM formulation, a binary variable is used 

in DQM to determine if the operation starts on the indi-
cated machine to the assigned discrete time (Eq. 13), and 
a polynomial H summarizes the constraints and objectives 
correspondingly (Eq. 22). The polynomials H2 , H3 , H4 , 
H5 with non-negative scalar weights �, �, � , � are added 
corresponding to the constraints and objectives. However, 
compared to BQM, DQM does not require processing 
constraints. Since the starting time of each operation is 

(12)xoi,m = voi −
(

noi,m − 1
)

Tmax

Table 1  Constraints and objectives in BQM formulation

Variables
koi ,m,t =

{

1 ∶ operation oi starts onmachine m ∈ Moi
at time t

0 ∶ otherwise

(3)

Processing constraint
H1 =

∑

oi∈Oi

�

1 −
∑

t∈T

∑

m∈Moi

koi ,m,t

�2 (4)

Procedure constraint H2 =
∑

i∈J

∑

oi, o
�
i
∈ Oi

loi < lo�
i

∑

t� − t < poi ,m
(m,m�) ∈ Moi

×Mo�
i

koi ,m,t ⋅ ko�i ,m
� ,t� (5)

Overlapping constraint H3 =
∑

m∈Moi
∩Moj

∑

�

oi, oj
�

∈ Oi × Oj
�

i, j, t, t�
�

∈ G ∪ H

koi ,m,t ⋅ koj ,m,t� (6)

where

G =

{

(

i, j, t, t�
)

∶ i, j ∈ J, i ≠ j, t, t� ∈ T , 0 ≤ t − t� < poj ,m

}

(7)

H =
{(

i, j, t, t�
)

∶ i, j ∈ J, i ≠ j, t, t� ∈ T , 0 ≤ t� − t < poi ,m
}

(8)
Makespan objective H4 =

∑

oi ∈ Oi

m ∈ Moi

koi ,m,t ⋅
�

t + poi ,m − Poi

�

(9)

where
Poi

=
∑

lo�
i
<loi

min
m�∈Mo�

i

po�
i
,m� (10)

Objective function H = �H1 + �H2 + �H3 + �H4 (11)
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already defined by Eq. 14, no more than one machine can 
be assigned to an operation.

Moreover, to satisfy the makespan objective, a discrete 
variable Tsum is directly defined as makespan (Eq. 15) and a 
makespan constraint is added by the polynomial H5 . Here, 
if the completion time of the last operation of any task 
is greater than Tsum , the constraint is violated (Eq. 20). 
H5 = 0 means that the makespan constraint is satisfied.

2.2.3  CQM formulation

Both BQM and DQM are unconstrained models that all con-
straints and objectives are contained in the polynomial. The 
optimal solution is found by controlling the scalar weights 
corresponding to the polynomial. In contrast, CQM is a 
constrained quadratic model, which sets the independent 
equations corresponding to the constraints. The objective 
is expressed in terms of minimizing a polynomial. Analog 
to DQM, CQM supports integer variables and binary varia-
bles. In the CQM expression (presented in Table 3), a binary 
variable is defined by an operation and the corresponding 
machine. If the operation is assigned to the corresponding 
machine, the variable equals 1 (Eq. 23). Another binary vari-
able is defined by two operations and a machine, in order to 
determine whether two operations are assigned to the same 
machine (Eq. 24). In addition, the starting time of the opera-
tion is defined by a positive integer variable (Eq. 25). Similar 

to DQM, the makespan is determined by an integer variable 
(Eq. 26). In CQM, the processing constraint is formulated in 
Eq. 27. The sum of the binary variables yoi,m of all the differ-
ent machines for any one operation equals to 1.

To fulfill the processing constraint, the difference between 
the start time of operation and the next operation in the same 
job is greater than the duration time required to the operation 
(Eq. 28). Equation 29 forms the overlapping constraint. If 
two operations are assigned on the same machine, the dif-
ference between their starting times can not be less than the 
processing time of the previous executed operation. Moreo-
ver, the makespan objective minimizes the makespan that is 
defined by an integer variable (Eq. 31). Equation 30 for the 
makespan constraint is used to control the completion time 
of last operation for any job not to exceed the makespan.

2.2.4  Variable pruning

In addition to a minimum predecessor time Poi
 , non-final 

operations in any job have a minimum successor time Soi , 
which is the sum of the minimum processing durations of 
all subsequent operations including the processing duration 
of current operation oi (Eq. 32).

(32)
Soi =

∑

lo�
i
≥loi

min
m�∈Mo�

i

po�
i
,m�

Table 2  Constraints and objectives in DQM formulation

Binary variable
c
x
oim

=

{

1 ∶ operation o
i
starts onmachine m ∈ M

o
i

at time x
o
i
,m

0 ∶ otherwise

(13)

Discrete variables xoi ∈
[

0,⋯ ,Noi
⋅ Tmax

]

(14)
Tsum ∈ T (15)

Processing
constraint

_

Procedure
constraint

H2 =
∑

i∈J

∑

oi, o
�
i
∈ Oi

loi < lo�
i

∑

t� − t < poi ,m
(m,m�) ∈ Moi

×Mo�
i

coi ,m ⋅ co�
i
,m� (16)

Overlapping
constraint

H3 =
∑

m∈Moi
∩Moj

∑

�

oi, oj
�

∈ Oi × Oj
�

i, j, xoi ,m, xoj ,m

�

∈ B ∪ I

cxoi ,m
⋅ cxoj ,m

(17)

where

B =

{

(i, j, xoi ,m, xoj ,m) ∶ i, j ∈ J, i ≠ j, xoi ,m, xoj ,m ∈ T , 0 ≤ xoi ,m − xoj ,m < poj ,m

}

(18)

I =
{

(i, j, xoi ,m, xoj ,m) ∶ i, j ∈ J, i ≠ j, xoi ,m, xoj ,m ∈ T , 0 ≤ xoj ,m − xoi ,m < poi ,m

}

(19)

Makespan
constraint

H4 =
∑

i∈J

∑

m ∈ Moi,last

xoi,last ,m + poi,last ,m > Tsum

Tsum ⋅ cxoi,last ,m
(20)

Makespan objective H5 = Tsum (21)
Objective function H = �H2 + �H3 + �H4 + �H5 (22)
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The starting time of the operation oi should be in the 
range of [Poi

, Tmax − Soi] . Therefore, variables that are not in 
this time range in BQM can be pruned directly to reduce the 
computation time and decrease the size of the computational 
problem. Analog in the DQM formulation, the range of the 
discrete variable can be pruned leading to less interactions 
between variables and smaller problem sizes. Furthermore, 
in the CQM, the set of binary variables can be reduced by 
non-feasible combinations of machines as well as non-valid 
starting times. In addition, for the parameter Tmax a as small 
as possible value should be chosen in order to minimize the 
problem size for all solvers. Therefore, an estimation has to be 
done which depends on the number of operations in the given 
jobs, available machines, and the corresponding processing 
times. For each job, the processing times of the operations 
can be summarized. The maximum processing time through 
all jobs leads to a lower bound of Tmax . Additionally, the sum 
of all jobs processing times leads to an upper bound for Tmax . 
In order to use suitable values for the different problem sizes 
starting from the lower bound, the value will be increased with 
the number of operations as well as processing durations and 
decreased with the number of machines.

2.2.5  Iterative approach for large problems

In order to reduce the number of variables, an iterative 
approach is proposed by decomposing large problems into 
multiple small sub-problems in addition to the decompos-
ing mechanic of the CHS mentioned above. The approach is 

illustrated in Fig. 3. As the starting point, the given problems 
are split into different samples to determine the number of jobs 
and corresponding operations scheduled in each iteration. The 
chosen sample sizes depend on the number of jobs. To fulfill 
the makespan objective, the jobs are selected in priority order 
according to the minimum processing times of all the opera-
tions. Moreover, the initial range of times that each job can be 
processed on the corresponding machine T (0)

i,m
 and scalar weight 

of the objective function are required to be defined. Therefore, 
an estimation according to chapter 2.2.4 has to be done. To 
reduce the number of variables, the initial maximum comple-
tion time is set, which is then gradually increased with each 
iteration and the processing times of the operations that have 

Table 3  Constraints and objectives in CQM formulation

Binary variables
yoi ,m =

{

1 ∶ operation oi starts onmachine m ∈ Moi

0 ∶ otherwise

(23)

zoi ,oj ,m =

{

1 ∶ operations oi,oj start on themachine m ∈ Moi
∩Moj

0 ∶ otherwise

(24)

Integer variables xoi ∈ T (25)
Tsum ∈ T (26)

Processing constraint
∑

i∈J

∑

m∈Moi

yoi ,m = 1 (27)

Procedure
constraint

yoi ,m

(

xoi − xo�
i

)

≥ yoi ,m ⋅ poi ,m
(28)

where
xoi , xo�i

∈ T ,m ∈ Moi
, loi < lo�

i
, i ∈ J, oi, oi� ∈ Oi

Overlapping
constraint

zoi ,oj ,m

(

xoj − xoi − poi ,m

)(

xoi − xoj − poj ,m

)

≤ 0 (29)

where
xoi , xoj ∈ T ,m ∈ Moi

∩Moj
, i, j,∈ J, oi, oj ∈ Oi × Oj

Makespan
constraint

Tsum ≥ xoi,last + poi,last ,m (30)
where
x
o
i, last

∈ T ,m ∈ M
o
i, last

, i ∈ J, o
i, last ∈ O

i

Makespan objective min
(

Tsum
)

(31)

Fig. 3  Workflow of the iterative approach
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already been scheduled are removed. Consequently, Tmax is 
updated if the estimated completion time of the remaining jobs 
in the loop is beyond Tmax . Afterwards, each sample is solved 
using the CHS. The iteration is completed until all the samples 
are completed. The solution to the problem is the combination 
of the solutions of all the samples in the loop.

3  Benchmark

For evaluation of the different approaches, various FJSSP 
were computed, and the solvers were examined regarding 
performance and solution quality. Therefore, FJSSP were 
computed with the different hybrid QA solvers under consid-
eration of various problem instances. Hence, statements could 
be made which QA-based solver is best suitable to which 
problem sizes. For that purpose, the input parameters of the 
solver were adjusted until feasible solutions could be found. 
These results are shown in Table 4 in which “–“ expresses that 
the solution is not found.

The results of computing various FJSSP show that very 
small problem instances can be solved by every solver under 
finding good solutions. However, the iterative CHS needs sig-
nificantly less computation time than the other hybrid solvers 
for these instances. Since the leap hybrid solvers like HDQM 
and HCQM can’t go below a minimum computing time of five 
seconds due to input parameter restrictions, the iterative CHS 
shows advantages over the leap hybrid solvers when com-
puting small problem instances regarding computing time. 
In addition, the solution quality of all solvers is comparable 
which leads to advantages using iterative CHS for small prob-
lem instances. With increasing problem sizes, the computing 
time for the leap hybrid solvers initially remains the same 
and starts to increase noticeably only from the 20 × 10 × 10 
instance. In comparison, the computation time of the itera-
tive CHS does not increase with the size of the problem due 
to the iteration approach. The computing time of the itera-
tive CHS is affected by the number of iterations, which also 
has an influence on the quality of the solution. Therefore, the 
computing time for the large problem instances (30 × 20 × 10 
and 30 × 20 × 15) is essentially the same as the small prob-
lem instances (3 × 3 × 3 and 6 × 6 × 6). The solution quality is 
comparable yet for the HDQM, the HBQM, and the iterative 
CHS. However, the solution quality for the HCQM worsens in 
comparison with the other hybrid solvers. For some instances 
the HCQM does not even find a solution because the permis-
sible variable number is exceeded. It can be concluded that 
for medium-sized instances, the HDQM as well as HBQM 
show the highest suitability for finding good solutions, while 
the iterative CHS can be used for evaluating many solutions 
due to the significantly lower computing time. Moreover, the 
computing time for solving medium sized instances increases 
faster with the HBQM than with the HDQM. Consequently, 

for the 20 × 15 × 15 instance, the computing time is almost five 
times higher. Regarding large problem instances (30 × 20 × 10 
and 30 × 20 × 15), the HDQM requires higher computing 
times as well. While the solution times of the iterative CHS 
are still in the range of milliseconds or seconds, the solution 
time for the leap hybrid solvers is in the scope of minutes. 
Regarding the solution quality, the HDQM produces the best 
solutions, where the HBQM only reaches poor makespan val-
ues. The solution quality of the iterative CHS is lower than the 
HDQM solution, but under consideration of the low comput-
ing time, many solutions adapting the solver parameters can 
be achieved and evaluated in a time efficient manner. The 
computing times are shown in Fig. 4.

Since the HDQM and iterative CHS achieved the best results 
regarding solution quality and computing times, they will be 
chosen for an additional scientific benchmark according to [24]. 
The benchmark includes ten FJSSP (MK01-MK10) with vari-
ous amount of machines, operations, and processing times that 
has already been performed by several authors, e.g., by [23, 
25–28]. The objective is the minimization of the makespan. 
For comparison, the results of the benchmark are illustrated in 
Table 5. Furthermore, solutions and computing times of differ-
ent approaches are shown in Table 6. So, the comparison of the 
QA approaches with state-of-the-art algorithms is guaranteed. 
However, it has to be mentioned that the best-known solutions 
are computed with approximative methods because of the NP-
hardness of the problem. Therefore, it might be possible that 
the best-known solution is not the optimal solution.

Table 4  Results of various FJSSP

1 Jobs × operations × machines
2 Makespan/Computing time (s)

HCQM HDQM Iterative CHS HBQM

Problem 
 size1 

Solution2 Solution2 Solution2 No. of 
Itera-
tions

Solution2

3 × 3 ×  3 8/5 8/5.00 8/0.23 1 8/3.02
6 × 6 ×  6 18/5 17/5.00 16/0.27 4 16/3.42
8 × 8 ×  8 – 22/5.00 19/0.36 5 19/3.65
10 × 15 x 

10
– 38/6.01 42/0.50 7 38/12.02

20 × 10 x 
10

– 62/18.63 64/0.61 15 59/52.68

20 × 15 x 
10

– 61/21.12 75/0.20 4 56/51.20

20 × 15 x 
15

– 52/10.05 68/0.14 3 57/48.41

30 × 20 x 
10

– 113/153.67 146/0.26 6 158/282.30

30 × 20 x 
15

– 85/81.01 107/0.27 6 –
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According to Table 6, the approach proposed by [28] 
demonstrates a significantly higher computing time range 
from 3.02 to 122.52  min relative to other approaches. 
Though the approach using memetic algorithms proposed 
by [26] shows all the best-known solutions for 10 MK 
problems, the highest computing time for MK 06 reaches 
80 s. Therefore, it is obvious that the proposed approach 
using iterative CHS in this paper has a great advantage in 

computing time compared to other proposed approaches. 
Even for the largest problems, the computing time is within 
1 s. However, in the iterative approach, the jobs are pri-
oritized according to the length of the required processing 
time, which can affect the solution quality. However, the 
results of the benchmark exhibit a good performance of the 
HDQM. It finds solutions for every MK-problem. For MK03 
and MK08 it even achieves the best-known benchmark solu-
tion. Furthermore, no solution deviates from the best-known 
solution over 19%. The computing time increases with the 
problem instances, but is still much lower than the times e.g., 
[28] or [25] achieved.

In conclusion, QA bears potentials for solving FJSSP. In 
particular, computing many solutions in a short time offers 
the advantage of computing many solutions to a given prob-
lem and evaluating the solutions with respect to different 
objectives or constraints. Consequently, the QA-based job 
shop scheduling approach using hybrid solvers can solve 
FJSSP relative efficiently.

4  Conclusion and Outlook 

Modern manufacturing in the context of Industry 4.0 
increases the frequency and complexity of scheduling. In 
order to meet these requirements efficient algorithms for 
scheduling are needed. Consequently, this paper presents 
a QA-based approach for solving FJSSP. After present-
ing the framework of the approach, the mathematical 

Fig. 4  Computing times for 
various FJSSP

Table 5  Results of scientific benchmark

1 Makespan/Computing time (s)
2 Best known benchmark solution/average value of solutions presented 
in Table 6

DQM Iterative CHS Benchmark solution

Problem size Solution1 Solution1 No. of 
Itera-
tions

Solution2

MK01 42/6.08 42/0.43 6 37/40.6
MK02 31/9.01 28/0.34 5 26/26.6
MK03 204/221.36 213/0.35 5 204/204
MK04 66/12.14 69/0.26 5 60/63
MK05 176/60.03 180/0.40 6 172/174,2
MK06 67/90.09 71/0.43 4 57/63.8
MK07 153/112.56 152/0.38 5 139/144.4
MK08 523/220.10 549/0.64 14 523/523
MK09 317/297.23 333/0.58 14 307/310.2
MK10 225/273.12 241/0.57 13 197/221.8
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formulations for the different kind of solvers are shown. 
Afterwards FJSSP with various sizes were solved using 
the HBQM, HDQM, and HCQM solver as well as itera-
tive CHS. In this process, FJSSP are computed to analyze 
the suitability of the various problem sizes to the differ-
ent solvers. Based on these results, a scientific benchmark 
with other state-of-the-art algorithms was performed with 
a makespan objective. The scientific benchmark has shown 
the huge potential of QA for solving FJSSP by solving 
problems within seconds or milliseconds under finding 
good solutions. Consequently, the presented approach 
demonstrated its ability to find high-quality solutions in 
a short time and can be used to generate different sched-
ule variants that can be evaluated against each other. 
Nevertheless, efficient algorithms for solving FJSSP are 
still quite far away from industrial application. In indus-
try, many dynamic factors have to be considered such as 
unexpected failures of machines in a production system 
or disruption errors in supply chains. Furthermore, jobs 
are gradually received and order inquiries fluctuate. This 
leads to a demand for algorithms with consideration of 
these dynamic conditions.

In future research, the complexity of the allocation prob-
lem will be increased, by incorporating additional boundary 
conditions such as unavailabilities of machines. Moreover, 
objectives such as energy costs or machine utilization will be 
incorporated to realize a multi-objective optimization prob-
lem. In addition, it will be investigated how the mathematical 
formulations must be adjusted for different problem types 
(e.g., dynamic, flexible, multi-objective). Also, the solu-
tion quality of the HDQM and the iterative CHS have to be 
improved. For this purpose, the approach by using HDQM 
will be enlarged through an iterative solving technique. 
In addition, it would be desirable to develop a method to 
estimate the gap between optimal and approximative solu-
tion. Therefore, further research based on the results will 

be developed incorporating techniques to choose suitable 
sample sets for the iterative approach. Since the iterative 
solution method of the BQM formulation has already been 
shown to improve computation time, the same approach can 
be expected for the iterative formulation of DQM problems. 
In addition, the iterative CHS will be enlarged through bottle-
neck factors according to [23] for improving the job selection 
method for each iteration. Besides, a software demonstrator 
will be developed to enable intuitive interaction for planners 
without extensive experience with the QA interface structure.
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