
Vol.:(0123456789)1 3

Production Engineering (2023) 17:105–115
https://doi.org/10.1007/s11740-022-01145-8

PRODUCTION MANAGEMENT

Solving flexible job shop scheduling problems in manufacturing
with Quantum Annealing

Philipp Schworm1 · Xiangqian Wu1 · Moritz Glatt1 · Jan C. Aurich1

Received: 4 April 2022 / Accepted: 24 June 2022 / Published online: 27 July 2022
© The Author(s) 2022

Abstract
Quantum Annealing (QA) is a metaheuristic for solving optimization problems in a time-efficient manner. Therefore, quantum
mechanical effects are used to compute and evaluate many possible solutions of an optimization problem simultaneously.
Recent studies have shown the potential of QA for solving such complex assignment problems within milliseconds. This
also applies for the field of job shop scheduling, where the existing approaches however focus on small problem sizes. To
assess the full potential of QA in this area for industry-scale problem formulations, it is necessary to consider larger problem
instances and to evaluate the potentials of computing these job shop scheduling problems while finding a near-optimal solu-
tion in a time-efficient manner. Consequently, this paper presents a QA-based job shop scheduling. In particular, flexible job
shop scheduling problems in various sizes are computed with QA, demonstrating the efficiency of the approach regarding
scalability, solutions quality, and computing time. For the evaluation of the proposed approach, the solutions are compared
in a scientific benchmark with state-of-the-art algorithms for solving flexible job shop scheduling problems. The results
indicate that QA has the potential for solving flexible job shop scheduling problems in a time efficient manner. Even large
problem instances can be computed within seconds, which offers the possibility for application in industry.

Keywords Quantum Annealing · Scheduling · Job shop scheduling · Optimization

Abbreviations
JSS Job shop scheduling
JSSP Job shop scheduling problem
FJSSP Flexible job shop scheduling problem
DJSSP Dynamic job shop scheduling problem
PPC Production planning and control
QA Quantum Annealing
QPU Quantum processing unit
BQM Binary quadratic model
DQM Discrete quadratic model
CQM Constrained quadratic model
CHS Classical hybrid solver
HBQM Leap hybrid BQM solver
HDQM Leap hybrid DQM solver
HCQM Leap hybrid CQM solver

1 Introduction and state of the art

The concept of Industry 4.0 is closely linked to the objective
of economical and flexible production of customized prod-
ucts in small batch sizes. To meet this objective, unexpected
failures of machines in a production system or disruption
errors in supply chains e.g., caused by a pandemic situation
or sudden disturbances in supply chains have to be consid-
ered. An essential aspect that is affected by these influences
is production planning and control (PPC) [1]. This includes,
among other steps, the planning of material requirements,
the scheduling of orders, and capacity planning. The goals
are a reduction of work in progress, a minimization of pro-
cessing times, a reduction in inventory costs, or the ability
to react to changes in demand or supply [2]. Therefore, PPC
has to be dynamic, adaptive, and integrative and has to con-
sider material requirements planning, enterprise resource
planning, just-in-time manufacturing, and collaborative
planning, forecasting, and replenishment, among other
activities [3].

In order to meet these requirements, PPC needs tools for
decision-making and planning. Thus, process scheduling,
also known as job shop scheduling (JSS), is a crucial task

 * Philipp Schworm
 philipp.schworm@mv.uni-kl.de

1 Institute for Manufacturing Technology and Production
Systems, TU Kaiserslautern, P.O. Box 3049,
67653 Kaiserslautern, Germany

http://orcid.org/0000-0002-1229-6377
http://crossmark.crossref.org/dialog/?doi=10.1007/s11740-022-01145-8&domain=pdf

106 Production Engineering (2023) 17:105–115

1 3

of the PPC. JSS aims at determining the chronological pro-
cessing sequence of given orders. In this process, the goal
is to allocate a set of tasks (jobs) to available functional
units (machines) as efficiently as possible with regards to a
certain objectives [4]. These objectives can be e.g., minimiz-
ing the makespan (i.e., the completion time of all the jobs),
minimizing the tardiness of each job [5], minimizing the
energy consumption [6], or maximizing machine utilization
[7]. Objectives can be considered individually or on a multi-
criteria basis. In consequence, optimization problems can be
formulated, which range under the term of job shop sched-
uling problem (JSSP). The general assumption is that the
operations of a job have to be processed in a given order and
a machine cannot process two operations at the same time,
which builds constraints of the JSSP. Constraints and objec-
tives vary between JSSP types. One important expansion of
the JSSP towards industrial applicability is the flexible job
shop scheduling problem (FJSSP), in which operations can
be processed by more than one machine [8]. Furthermore,
in the dynamic job shop scheduling problem (DJSSP) e.g.,
availability states of machines are considered [9].

In order to solve these various optimization problems,
computer-aided methods like optimization algorithms can be
used. Using exact optimization methods for NP-hard prob-
lems such as JSSP is linked with an exponential growth in
runtime with the problem size. Therefore, approximation
methods are deployed to find solutions, since exact meth-
ods are mostly not able to compute these in a time-efficient
manner [10]. Mokhtari and Hasani used a combination of
genetic and simulated annealing algorithms in order to solve
multi-objective FJSSP [11]. Besides, Zhang et al. used a
digital twin to improve the solution of a DJSSP. The digital
twin is used as a basis for forecasting machine failures, as
well as for intelligent JSS by means of a genetic algorithm
[12]. These methods show capabilities for finding solutions
in a time efficient manner. However, the computational effort
increases rapidly with the problem size even with approxi-
mation methods. Furthermore, current developments in the
field of Quantum Annealing (QA) show huge potential for
application.

QA is a metaheuristic, which is proposed showing advan-
tages solving combinatorial optimization problems com-
pared to algorithms on classical computers [13]. Therefore,
quantum annealers based on the adiabatic theorem, are
realized in order to make QA applicable. Basic units of a
quantum annealer are quantum bits or qubits, which describe
the lowest information unit in the quantum processing unit
(QPU). Similar to bits of classical computers, qubits can
attain the states of 0 or 1. However, qubits are quantum
objects, which results in the possibility of assuming an infi-
nite number of states between 0 and 1 at the same time.
This phenomenon is known as superposition [14]. Before a
QA process is initiated, the qubits are in superposition. The

superposition ends when the QA process is finished and the
qubits collapse to either 0 or 1. The probability in which
state a qubit collapses can be influenced by biases applying
external magnetic fields. In addition, through the quantum
physical phenomenon of entanglement, qubits can be linked
together so that they influence each other. Entanglement can
be controlled analog to biases by couplers that apply external
magnetic fields during the QA. Through couplers, the end
states of entangled qubits are influenced [15]. During QA, an
energy landscape for qubits is defined through couplers and
biases in which the quantum annealer finds the minimum
energy state. These states can be assigned to possible solu-
tions of a minimization problem, where low energy states are
linked with good solutions. In finding an optimal solution
along the energy profile, states of higher energy usually have
to be overcome to find a state of lower energy. However,
during QA, quantum tunneling makes it possible to find the
lowest energy level by passing through higher energy levels
[16]. This procedure is shown in Fig. 1, which summarizes
the QA process. Based on the described effects, QA is able
to represent many solutions of a combinatorial optimization
problem at the same time through superposition and finds
a good solution through tunneling and entanglement within
milliseconds, even for large problem sizes [17]. In differ-
ence to gate-based quantum computers the latest versions of
quantum annealers have over 5000 Qubits and are already
able to address realistic problem sizes. In addition, the use-
ability of QA for industrial applications came along with the
possibility of controlling QA via cloud services by providers
such as D-Wave1 [18]. For example, to show the potential
of QA for industrial applicability an approach for factory
layout planning using QA was proposed by Klar et. al [19].

The inputs for quantum annealers are specific formula-
tions of an energy optimization problem in the form of Ising
models. Many optimization problems can be formulated in
this way using the formulation as a hamilton function [20].
A hamilton function (Eq. 1) maps certain states of an optimi-
zation problem to their specific energy levels. The hamilton
function is described through the sum of the initial hamilton
and the final hamilton, also called tunneling and problem
hamilton.

A(s) and B(s) are energy scaling functions that increase or
decrease monotonically with the progress of the QA. At the
beginning of a QA process, all qubits are in superposition
and the system is in its lowest energy state mainly described
by the initial hamilton (i.e., A(s) = 1,B(s) = 0). During the

(1)Hising = A(s)Hinital + B(s)Hfinal

1 Naming of specific company is done solely for the sake of com-
pleteness and does not necessarily imply an endorsement of the
named companies nor that the products are necessarily the best for
the purpose.

107Production Engineering (2023) 17:105–115

1 3

QA the influence of the initial hamilton decreases and the
final hamilton increases. The lowest energy state of the final
hamilton describes the solution of the minimization prob-
lem, including qubit biases and couplings. At the end of
QA process (i.e., A(s) = 0,B(s) = 1), the qubits remain in a
state described by the final Hamilton, which can be applied
to annealers formulated as [18]:

with scalar weights Qii , Qij and binary variables xi , xj.
Recent studies regarding JSS have shown the potential

of QA to solve such complex assignment problems within
milliseconds using the hamilton formulation [21, 22]. QA
offers the potential to compute the JSSP while finding a
near-optimal solution in a time-efficient manner. Thus,
Venturelli et al. proposed a valuable approach for solving
small JSSP under finding optimal solutions [21]. The feasi-
bility to solve JSSP with QA could successfully be shown in
this approach. However, the full potential of QA should be
explored by testing larger problem sizes. Besides, Kurowski
et al. proposed how JSSP can be decomposed into a set of
smaller optimization problems that requires less quantum
hardware capacity [22], which makes the solution of larger
problems possible. Aiming at industrial scale problems,
Denkena et al. use a digital annealer, which simulates the
principles of a quantum annealer, to solve larger instances
of FJSSP [23]. Especially through the solutions of the con-
sidered problem sizes this approach shows perspectives for
application in industry. Nevertheless, digital annealers only
simulate quantum mechanical effects. Therefore, it can be
assumed that a quantum annealer with an adequate number
of qubits performs better in solving problem instances for
industrial applicability regarding computation time.

Consequently, this paper presents a QA-based FJSSP
for varying problem sizes. In a first step, the mathemati-
cal formulation for mapping FJSSP to a quantum annealer

(2)Hfinal =
∑

i

Qiixi +
∑

i<j

Qijxixj

will be shown. Furthermore, the different solvers of QA are
evaluated through a scientific benchmark to demonstrate the
efficiency of the approach regarding scalability, solutions
quality, and computing time.

2 Problem formulation and solver
description

2.1 Framework

In this paper, the QA-based job shop scheduling approach
is presented to solve FJSSP for different job sizes using
D-Wave solvers. Where the QPU solvers only use the QPU
of the quantum annealers, the hybrid solvers use both clas-
sical and quantum resources to solve problems. In this paper
only hybrid solvers are applied, which are suitable for solv-
ing large problem instances. D-Wave offers access to leap
hybrid solvers and classical hybrid solvers (CHS). The leap
hybrid solvers support different kinds of quadratic models
as input. Sets of binary variables defined in a hamilton for-
mulation as binary quadratic model (BQM) are suitable for
the leap hybrid BQM solver (HBQM). In contrast, discrete
variables, which can assume e.g., integers, are combined in
a discrete quadratic model (DQM) that the leap hybrid DQM
solver (HDQM) supposes. Besides, constrained quadratic
models (CQM) containing integer and binary variables are
required for the leap hybrid CQM solver (HCQM). CHS
support only BQM. Where the leap hybrid solvers use the
QPU only once for computing a submitted problem, the CHS
are programmed to decompose the problem into smaller
instances and compute iteratively.

The proposed approach aims at finding feasible schedules
for given sets of jobs and machines in a time-efficient man-
ner so that multiple schedules can be computed, and the best
solution can be evaluated (shown in Fig. 2). In addition, it
will be examined which solver is best suited for the various

Fig. 1 Quantum Annealing process

108 Production Engineering (2023) 17:105–115

1 3

problem sizes by testing different solvers. Therefore, the leap
solvers will be used as well as one CHS. Though the CHS
support the decomposer to split large problems into multiple
small sub-problems, an additional iterative approach is pro-
posed to achieve faster computing time by using a CHS. As
the starting point, it is essential for the QA approach to deter-
mine the input variables, constraint conditions and objec-
tives, and summarize them in a mathematical formulation.

FJSSP aims to schedule A jobs J = {j1,⋯ , jA} on B
machines M = {m1,⋯ ,mB} with given optimization objec-
tives. Each job consists of various operations that must be
performed in a predefined sequence. Oi is denoted as the set
of operations for any job i ∈ J . Furthermore, any operation
oi ∈ Oi can be processed on at least one machine out of the
given set Moi

 . For any oi ∈ Oi and m ∈ Moi
 , the processing

time of the operation on machine is defined as poi,m and the
starting time of the operation is denoted as t , which is in the
given timeline T = {0,… , Tmax}.

Additionally, the solution for the FJSSP should satisfy the
following three constraints:

1. Processing constraint: During the processing of any job
i ∈ J , each operation oi ∈ Oi must start only once on a
single machine m ∈ Moi

.
2. Procedure constraint: For any job i ∈ J , each opera-

tion oi ∈ Oi must be processed in the given order
LOi

= {0,… , loi ,… , loi,last} , in which oi,last indicates the
last operation of the job i.

3. Overlapping constraint: Each machine m ∈ M cannot
process more than one operation at the same time.

The objectives for FJSSP can be varied (e.g., energy
consumption, job completion time and processing costs).
However, the proposed approach focuses on the optimization
of job completion time. Therefore, only one optimization
objective is implemented, the makespan objective.

2.2 Mathematical formulation

In order to exploit and evaluate the full potential of the vari-
ous solvers for computing FSJP, the constraints and objec-
tives have to be formulated using the specific kind of sup-
ported variables.

Fig. 2 Proposed framework

109Production Engineering (2023) 17:105–115

1 3

2.2.1 BQM formulation

In the BQM formulation (Table 1) according to [23], a set of
binary variables is used to denote all the possible starting times
of each operation on the corresponding machine. The binary
variable koi,m,t is equal to 1 if the referred operation oi ∈ Oi
starts on the corresponding machine m ∈ Moi

 to the allocated
discrete time t ∈ T (Eq. 3). The constraints and objectives are
defined as binary polynomials in a hamilton formulation and
summarized in a binary polynomial H (Eq. 11) which serves
as a cost function for the optimization problem. The binary
polynomials H1,H2,H3,H4 are added together with non-neg-
ative scalar weights �, �, � , � which determine the impact of
the respective polynomial. With H1 a processing constraint is
formulated (Eq. 4). Obviously, the constraint is satisfied for
H1 = 0 . Here, combinations of binary variables which don’t
fulfill the constraint result in bigger values, e.g., if an opera-
tion has multiple starting times. The procedure constraint is
fulfilled analog to the first constraint for H2 = 0 (Eq. 5). Here
the constraint is violated if the given order of a job is not con-
sidered. The third constraint leads to H3 = 0 if no machine is
occupied by two operations simultaneously. To accomplish
the optimization objective of completing each task in the
shortest time, a binary polynomial H4 is defined to penalize
the completion time late operations (Eq. 9). The makespan
objective,H4 penalizes the completion time of any operation
that is later than minimum predecessor time of the operation

Poi
 , which is the sum of the minimum processing times of the

preceding operations of operation oi (Eqs. 9, 10).

2.2.2 DQM formulation

In the DQM formulation (illustrated in Table 2), the start
time of the operation can be determined by a discrete vari-
able instead of a set of binary variables in the BQM formula.
To assign the corresponding machine to the operation, voi is
an integer in the range from 0 to Noi

⋅ Tmax , where Noi
 is the

number of selectable machines for the operation and Tmax is
the defined maximum completion time (Eq. 15). The starting
time of the operation on the machine is determined using the
following equation:

where noi,m ∈ [1,… ,Noi
] indicates the machine number of

the assigned machine m ∈ Moi
 in the available machines for

operation oi.
As in the BQM formulation, a binary variable is used

in DQM to determine if the operation starts on the indi-
cated machine to the assigned discrete time (Eq. 13), and
a polynomial H summarizes the constraints and objectives
correspondingly (Eq. 22). The polynomials H2 , H3 , H4 ,
H5 with non-negative scalar weights �, �, � , � are added
corresponding to the constraints and objectives. However,
compared to BQM, DQM does not require processing
constraints. Since the starting time of each operation is

(12)xoi,m = voi −
(

noi,m − 1
)

Tmax

Table 1 Constraints and objectives in BQM formulation

Variables
koi ,m,t =

{

1 ∶ operation oi starts onmachine m ∈ Moi
at time t

0 ∶ otherwise

(3)

Processing constraint
H1 =

∑

oi∈Oi

�

1 −
∑

t∈T

∑

m∈Moi

koi ,m,t

�2 (4)

Procedure constraint H2 =
∑

i∈J

∑

oi, o
�
i
∈ Oi

loi < lo�
i

∑

t� − t < poi ,m
(m,m�) ∈ Moi

×Mo�
i

koi ,m,t ⋅ ko�i ,m
� ,t� (5)

Overlapping constraint H3 =
∑

m∈Moi
∩Moj

∑

�

oi, oj
�

∈ Oi × Oj
�

i, j, t, t�
�

∈ G ∪ H

koi ,m,t ⋅ koj ,m,t� (6)

where

G =

{

(

i, j, t, t�
)

∶ i, j ∈ J, i ≠ j, t, t� ∈ T , 0 ≤ t − t� < poj ,m

}

(7)

H =
{(

i, j, t, t�
)

∶ i, j ∈ J, i ≠ j, t, t� ∈ T , 0 ≤ t� − t < poi ,m
}

(8)
Makespan objective H4 =

∑

oi ∈ Oi

m ∈ Moi

koi ,m,t ⋅
�

t + poi ,m − Poi

�

(9)

where
Poi

=
∑

lo�
i
<loi

min
m�∈Mo�

i

po�
i
,m� (10)

Objective function H = �H1 + �H2 + �H3 + �H4 (11)

110 Production Engineering (2023) 17:105–115

1 3

already defined by Eq. 14, no more than one machine can
be assigned to an operation.

Moreover, to satisfy the makespan objective, a discrete
variable Tsum is directly defined as makespan (Eq. 15) and a
makespan constraint is added by the polynomial H5 . Here,
if the completion time of the last operation of any task
is greater than Tsum , the constraint is violated (Eq. 20).
H5 = 0 means that the makespan constraint is satisfied.

2.2.3 CQM formulation

Both BQM and DQM are unconstrained models that all con-
straints and objectives are contained in the polynomial. The
optimal solution is found by controlling the scalar weights
corresponding to the polynomial. In contrast, CQM is a
constrained quadratic model, which sets the independent
equations corresponding to the constraints. The objective
is expressed in terms of minimizing a polynomial. Analog
to DQM, CQM supports integer variables and binary varia-
bles. In the CQM expression (presented in Table 3), a binary
variable is defined by an operation and the corresponding
machine. If the operation is assigned to the corresponding
machine, the variable equals 1 (Eq. 23). Another binary vari-
able is defined by two operations and a machine, in order to
determine whether two operations are assigned to the same
machine (Eq. 24). In addition, the starting time of the opera-
tion is defined by a positive integer variable (Eq. 25). Similar

to DQM, the makespan is determined by an integer variable
(Eq. 26). In CQM, the processing constraint is formulated in
Eq. 27. The sum of the binary variables yoi,m of all the differ-
ent machines for any one operation equals to 1.

To fulfill the processing constraint, the difference between
the start time of operation and the next operation in the same
job is greater than the duration time required to the operation
(Eq. 28). Equation 29 forms the overlapping constraint. If
two operations are assigned on the same machine, the dif-
ference between their starting times can not be less than the
processing time of the previous executed operation. Moreo-
ver, the makespan objective minimizes the makespan that is
defined by an integer variable (Eq. 31). Equation 30 for the
makespan constraint is used to control the completion time
of last operation for any job not to exceed the makespan.

2.2.4 Variable pruning

In addition to a minimum predecessor time Poi
 , non-final

operations in any job have a minimum successor time Soi ,
which is the sum of the minimum processing durations of
all subsequent operations including the processing duration
of current operation oi (Eq. 32).

(32)
Soi =

∑

lo�
i
≥loi

min
m�∈Mo�

i

po�
i
,m�

Table 2 Constraints and objectives in DQM formulation

Binary variable
c
x
oim

=

{

1 ∶ operation o
i
starts onmachine m ∈ M

o
i

at time x
o
i
,m

0 ∶ otherwise

(13)

Discrete variables xoi ∈
[

0,⋯ ,Noi
⋅ Tmax

]

(14)
Tsum ∈ T (15)

Processing
constraint

_

Procedure
constraint

H2 =
∑

i∈J

∑

oi, o
�
i
∈ Oi

loi < lo�
i

∑

t� − t < poi ,m
(m,m�) ∈ Moi

×Mo�
i

coi ,m ⋅ co�
i
,m� (16)

Overlapping
constraint

H3 =
∑

m∈Moi
∩Moj

∑

�

oi, oj
�

∈ Oi × Oj
�

i, j, xoi ,m, xoj ,m

�

∈ B ∪ I

cxoi ,m
⋅ cxoj ,m

(17)

where

B =

{

(i, j, xoi ,m, xoj ,m) ∶ i, j ∈ J, i ≠ j, xoi ,m, xoj ,m ∈ T , 0 ≤ xoi ,m − xoj ,m < poj ,m

}

(18)

I =
{

(i, j, xoi ,m, xoj ,m) ∶ i, j ∈ J, i ≠ j, xoi ,m, xoj ,m ∈ T , 0 ≤ xoj ,m − xoi ,m < poi ,m

}

(19)

Makespan
constraint

H4 =
∑

i∈J

∑

m ∈ Moi,last

xoi,last ,m + poi,last ,m > Tsum

Tsum ⋅ cxoi,last ,m
(20)

Makespan objective H5 = Tsum (21)
Objective function H = �H2 + �H3 + �H4 + �H5 (22)

111Production Engineering (2023) 17:105–115

1 3

The starting time of the operation oi should be in the
range of [Poi

, Tmax − Soi] . Therefore, variables that are not in
this time range in BQM can be pruned directly to reduce the
computation time and decrease the size of the computational
problem. Analog in the DQM formulation, the range of the
discrete variable can be pruned leading to less interactions
between variables and smaller problem sizes. Furthermore,
in the CQM, the set of binary variables can be reduced by
non-feasible combinations of machines as well as non-valid
starting times. In addition, for the parameter Tmax a as small
as possible value should be chosen in order to minimize the
problem size for all solvers. Therefore, an estimation has to be
done which depends on the number of operations in the given
jobs, available machines, and the corresponding processing
times. For each job, the processing times of the operations
can be summarized. The maximum processing time through
all jobs leads to a lower bound of Tmax . Additionally, the sum
of all jobs processing times leads to an upper bound for Tmax .
In order to use suitable values for the different problem sizes
starting from the lower bound, the value will be increased with
the number of operations as well as processing durations and
decreased with the number of machines.

2.2.5 Iterative approach for large problems

In order to reduce the number of variables, an iterative
approach is proposed by decomposing large problems into
multiple small sub-problems in addition to the decompos-
ing mechanic of the CHS mentioned above. The approach is

illustrated in Fig. 3. As the starting point, the given problems
are split into different samples to determine the number of jobs
and corresponding operations scheduled in each iteration. The
chosen sample sizes depend on the number of jobs. To fulfill
the makespan objective, the jobs are selected in priority order
according to the minimum processing times of all the opera-
tions. Moreover, the initial range of times that each job can be
processed on the corresponding machine T (0)

i,m
 and scalar weight

of the objective function are required to be defined. Therefore,
an estimation according to chapter 2.2.4 has to be done. To
reduce the number of variables, the initial maximum comple-
tion time is set, which is then gradually increased with each
iteration and the processing times of the operations that have

Table 3 Constraints and objectives in CQM formulation

Binary variables
yoi ,m =

{

1 ∶ operation oi starts onmachine m ∈ Moi

0 ∶ otherwise

(23)

zoi ,oj ,m =

{

1 ∶ operations oi,oj start on themachine m ∈ Moi
∩Moj

0 ∶ otherwise

(24)

Integer variables xoi ∈ T (25)
Tsum ∈ T (26)

Processing constraint
∑

i∈J

∑

m∈Moi

yoi ,m = 1 (27)

Procedure
constraint

yoi ,m

(

xoi − xo�
i

)

≥ yoi ,m ⋅ poi ,m
(28)

where
xoi , xo�i

∈ T ,m ∈ Moi
, loi < lo�

i
, i ∈ J, oi, oi� ∈ Oi

Overlapping
constraint

zoi ,oj ,m

(

xoj − xoi − poi ,m

)(

xoi − xoj − poj ,m

)

≤ 0 (29)

where
xoi , xoj ∈ T ,m ∈ Moi

∩Moj
, i, j,∈ J, oi, oj ∈ Oi × Oj

Makespan
constraint

Tsum ≥ xoi,last + poi,last ,m (30)
where
x
o
i, last

∈ T ,m ∈ M
o
i, last

, i ∈ J, o
i, last ∈ O

i

Makespan objective min
(

Tsum
)

(31)

Fig. 3 Workflow of the iterative approach

112 Production Engineering (2023) 17:105–115

1 3

already been scheduled are removed. Consequently, Tmax is
updated if the estimated completion time of the remaining jobs
in the loop is beyond Tmax . Afterwards, each sample is solved
using the CHS. The iteration is completed until all the samples
are completed. The solution to the problem is the combination
of the solutions of all the samples in the loop.

3 Benchmark

For evaluation of the different approaches, various FJSSP
were computed, and the solvers were examined regarding
performance and solution quality. Therefore, FJSSP were
computed with the different hybrid QA solvers under consid-
eration of various problem instances. Hence, statements could
be made which QA-based solver is best suitable to which
problem sizes. For that purpose, the input parameters of the
solver were adjusted until feasible solutions could be found.
These results are shown in Table 4 in which “–“ expresses that
the solution is not found.

The results of computing various FJSSP show that very
small problem instances can be solved by every solver under
finding good solutions. However, the iterative CHS needs sig-
nificantly less computation time than the other hybrid solvers
for these instances. Since the leap hybrid solvers like HDQM
and HCQM can’t go below a minimum computing time of five
seconds due to input parameter restrictions, the iterative CHS
shows advantages over the leap hybrid solvers when com-
puting small problem instances regarding computing time.
In addition, the solution quality of all solvers is comparable
which leads to advantages using iterative CHS for small prob-
lem instances. With increasing problem sizes, the computing
time for the leap hybrid solvers initially remains the same
and starts to increase noticeably only from the 20 × 10 × 10
instance. In comparison, the computation time of the itera-
tive CHS does not increase with the size of the problem due
to the iteration approach. The computing time of the itera-
tive CHS is affected by the number of iterations, which also
has an influence on the quality of the solution. Therefore, the
computing time for the large problem instances (30 × 20 × 10
and 30 × 20 × 15) is essentially the same as the small prob-
lem instances (3 × 3 × 3 and 6 × 6 × 6). The solution quality is
comparable yet for the HDQM, the HBQM, and the iterative
CHS. However, the solution quality for the HCQM worsens in
comparison with the other hybrid solvers. For some instances
the HCQM does not even find a solution because the permis-
sible variable number is exceeded. It can be concluded that
for medium-sized instances, the HDQM as well as HBQM
show the highest suitability for finding good solutions, while
the iterative CHS can be used for evaluating many solutions
due to the significantly lower computing time. Moreover, the
computing time for solving medium sized instances increases
faster with the HBQM than with the HDQM. Consequently,

for the 20 × 15 × 15 instance, the computing time is almost five
times higher. Regarding large problem instances (30 × 20 × 10
and 30 × 20 × 15), the HDQM requires higher computing
times as well. While the solution times of the iterative CHS
are still in the range of milliseconds or seconds, the solution
time for the leap hybrid solvers is in the scope of minutes.
Regarding the solution quality, the HDQM produces the best
solutions, where the HBQM only reaches poor makespan val-
ues. The solution quality of the iterative CHS is lower than the
HDQM solution, but under consideration of the low comput-
ing time, many solutions adapting the solver parameters can
be achieved and evaluated in a time efficient manner. The
computing times are shown in Fig. 4.

Since the HDQM and iterative CHS achieved the best results
regarding solution quality and computing times, they will be
chosen for an additional scientific benchmark according to [24].
The benchmark includes ten FJSSP (MK01-MK10) with vari-
ous amount of machines, operations, and processing times that
has already been performed by several authors, e.g., by [23,
25–28]. The objective is the minimization of the makespan.
For comparison, the results of the benchmark are illustrated in
Table 5. Furthermore, solutions and computing times of differ-
ent approaches are shown in Table 6. So, the comparison of the
QA approaches with state-of-the-art algorithms is guaranteed.
However, it has to be mentioned that the best-known solutions
are computed with approximative methods because of the NP-
hardness of the problem. Therefore, it might be possible that
the best-known solution is not the optimal solution.

Table 4 Results of various FJSSP

1 Jobs × operations × machines
2 Makespan/Computing time (s)

HCQM HDQM Iterative CHS HBQM

Problem
 size1

Solution2 Solution2 Solution2 No. of
Itera-
tions

Solution2

3 × 3 × 3 8/5 8/5.00 8/0.23 1 8/3.02
6 × 6 × 6 18/5 17/5.00 16/0.27 4 16/3.42
8 × 8 × 8 – 22/5.00 19/0.36 5 19/3.65
10 × 15 x

10
– 38/6.01 42/0.50 7 38/12.02

20 × 10 x
10

– 62/18.63 64/0.61 15 59/52.68

20 × 15 x
10

– 61/21.12 75/0.20 4 56/51.20

20 × 15 x
15

– 52/10.05 68/0.14 3 57/48.41

30 × 20 x
10

– 113/153.67 146/0.26 6 158/282.30

30 × 20 x
15

– 85/81.01 107/0.27 6 –

113Production Engineering (2023) 17:105–115

1 3

According to Table 6, the approach proposed by [28]
demonstrates a significantly higher computing time range
from 3.02 to 122.52 min relative to other approaches.
Though the approach using memetic algorithms proposed
by [26] shows all the best-known solutions for 10 MK
problems, the highest computing time for MK 06 reaches
80 s. Therefore, it is obvious that the proposed approach
using iterative CHS in this paper has a great advantage in

computing time compared to other proposed approaches.
Even for the largest problems, the computing time is within
1 s. However, in the iterative approach, the jobs are pri-
oritized according to the length of the required processing
time, which can affect the solution quality. However, the
results of the benchmark exhibit a good performance of the
HDQM. It finds solutions for every MK-problem. For MK03
and MK08 it even achieves the best-known benchmark solu-
tion. Furthermore, no solution deviates from the best-known
solution over 19%. The computing time increases with the
problem instances, but is still much lower than the times e.g.,
[28] or [25] achieved.

In conclusion, QA bears potentials for solving FJSSP. In
particular, computing many solutions in a short time offers
the advantage of computing many solutions to a given prob-
lem and evaluating the solutions with respect to different
objectives or constraints. Consequently, the QA-based job
shop scheduling approach using hybrid solvers can solve
FJSSP relative efficiently.

4 Conclusion and Outlook

Modern manufacturing in the context of Industry 4.0
increases the frequency and complexity of scheduling. In
order to meet these requirements efficient algorithms for
scheduling are needed. Consequently, this paper presents
a QA-based approach for solving FJSSP. After present-
ing the framework of the approach, the mathematical

Fig. 4 Computing times for
various FJSSP

Table 5 Results of scientific benchmark

1 Makespan/Computing time (s)
2 Best known benchmark solution/average value of solutions presented
in Table 6

DQM Iterative CHS Benchmark solution

Problem size Solution1 Solution1 No. of
Itera-
tions

Solution2

MK01 42/6.08 42/0.43 6 37/40.6
MK02 31/9.01 28/0.34 5 26/26.6
MK03 204/221.36 213/0.35 5 204/204
MK04 66/12.14 69/0.26 5 60/63
MK05 176/60.03 180/0.40 6 172/174,2
MK06 67/90.09 71/0.43 4 57/63.8
MK07 153/112.56 152/0.38 5 139/144.4
MK08 523/220.10 549/0.64 14 523/523
MK09 317/297.23 333/0.58 14 307/310.2
MK10 225/273.12 241/0.57 13 197/221.8

114 Production Engineering (2023) 17:105–115

1 3

formulations for the different kind of solvers are shown.
Afterwards FJSSP with various sizes were solved using
the HBQM, HDQM, and HCQM solver as well as itera-
tive CHS. In this process, FJSSP are computed to analyze
the suitability of the various problem sizes to the differ-
ent solvers. Based on these results, a scientific benchmark
with other state-of-the-art algorithms was performed with
a makespan objective. The scientific benchmark has shown
the huge potential of QA for solving FJSSP by solving
problems within seconds or milliseconds under finding
good solutions. Consequently, the presented approach
demonstrated its ability to find high-quality solutions in
a short time and can be used to generate different sched-
ule variants that can be evaluated against each other.
Nevertheless, efficient algorithms for solving FJSSP are
still quite far away from industrial application. In indus-
try, many dynamic factors have to be considered such as
unexpected failures of machines in a production system
or disruption errors in supply chains. Furthermore, jobs
are gradually received and order inquiries fluctuate. This
leads to a demand for algorithms with consideration of
these dynamic conditions.

In future research, the complexity of the allocation prob-
lem will be increased, by incorporating additional boundary
conditions such as unavailabilities of machines. Moreover,
objectives such as energy costs or machine utilization will be
incorporated to realize a multi-objective optimization prob-
lem. In addition, it will be investigated how the mathematical
formulations must be adjusted for different problem types
(e.g., dynamic, flexible, multi-objective). Also, the solu-
tion quality of the HDQM and the iterative CHS have to be
improved. For this purpose, the approach by using HDQM
will be enlarged through an iterative solving technique.
In addition, it would be desirable to develop a method to
estimate the gap between optimal and approximative solu-
tion. Therefore, further research based on the results will

be developed incorporating techniques to choose suitable
sample sets for the iterative approach. Since the iterative
solution method of the BQM formulation has already been
shown to improve computation time, the same approach can
be expected for the iterative formulation of DQM problems.
In addition, the iterative CHS will be enlarged through bottle-
neck factors according to [23] for improving the job selection
method for each iteration. Besides, a software demonstrator
will be developed to enable intuitive interaction for planners
without extensive experience with the QA interface structure.

Acknowledgements This research was funded by the Ministerium
für Wirtschaft, Verkehr, Landwirtschaft und Weinbau Rheinland-
Pfalz—4161-0023#2021/0002-0801 8401.0012.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Bueno A, Godinho Filho M, Frank AG (2020) Smart production
planning and control in the Industry 4.0 context: A systematic
literature review. Comput Ind Eng 149:106774. https:// doi. org/
10. 1016/j. cie. 2020. 106774

 2. Stevenson M, Hendry LC, Kingsman† BG (2005) A review of
production planning and control: the applicability of key concepts

Table 6 Comparison of
solutions from other proposed
approaches

1 Makespan/Computing time (s)
2 Makespan/computing time (min)

Bagheri et al. [25] Yuan and Xu [26] Gao et al. [27] Denkena et al. [23] Xing et al. [28]
Problem size Solution1 Solution1 Solution1 Solution1 Solution2

MK01 40/97.21 40/20.16 40/3.36 41/7.8 42/4.78
MK02 26/103.46 26/28.21 26/3.72 27/10.34 28/3.02
MK03 204/247.37 204/53.76 204/1.56 204/10.90 204/26.14
MK04 60/152.07 60/30.52 60/66.58 67/8.15 68/17.74
MK05 173/171.95 172/36.36 173/78.45 176/8.09 177/8.26
MK06 63/245.62 59/80.61 60/173.98 62/10.73 75/18.79
MK07 140/161.92 139/37.42 139/66.19 144/8.10 150/5.68
MK08 523/392.25 523/77.71 523/2.15 523/0,66 523/67.67
MK09 312/389.71 307/75.23 307/304.43 314/18.96 311/77.76
MK10 214/384.54 202/90.75 202/418.19 214/27.06 277/122.52

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cie.2020.106774
https://doi.org/10.1016/j.cie.2020.106774

115Production Engineering (2023) 17:105–115

1 3

to the make-to-order industry. Int J Prod Res 43:869–898. https://
doi. org/ 10. 1080/ 00207 54042 00029 8520

 3. Manufacturing planning and control for supply chain management
(2011) APICS/CPIM, certification. McGraw-Hill, New York

 4. Pinedo ML (2016) Scheduling. Springer, Cham. https:// doi. org/
10. 1007/ 978-3- 319- 26580-3

 5. Gao K, Cao Z, Zhang Le, Chen Z, Han Y, Pan Q (2019) A review
on swarm intelligence and evolutionary algorithms for solving
flexible job shop scheduling problems. IEEE/CAA J Autom Sinica
6:904–916. https:// doi. org/ 10. 1109/ JAS. 2019. 19115 40

 6. Roth S, Kalchschmid V, Reinhart G (2021) Development and eval-
uation of risk treatment paths within energy-oriented production
planning and control. Prod Eng Res Devel 15:413–430. https://
doi. org/ 10. 1007/ s11740- 021- 01043-5

 7. Huang X, Guan Z, Yang L (2018) An effective hybrid algorithm
for multi-objective flexible job-shop scheduling problem. Adv
Mech Eng 10:1–14. https:// doi. org/ 10. 1177/ 16878 14018 801442

 8. Li X, Gao L (2016) An effective hybrid genetic algorithm and tabu
search for flexible job shop scheduling problem. Int J Prod Econ
174:93–110. https:// doi. org/ 10. 1016/j. ijpe. 2016. 01. 016

 9. Shahrabi J, Adibi MA, Mahootchi M (2017) A reinforcement
learning approach to parameter estimation in dynamic job shop
scheduling. Comput Ind Eng 110:75–82. https:// doi. org/ 10. 1016/j.
cie. 2017. 05. 026

 10. Zhang J, Ding G, Zou Y, Qin S, Fu J (2019) Review of job
shop scheduling research and its new perspectives under Indus-
try 4.0. J Intell Manuf 30:1809–1830. https:// doi. org/ 10. 1007/
s10845- 017- 1350-2

 11. Mokhtari H, Hasani A (2017) An energy-efficient multi-objective
optimization for flexible job-shop scheduling problem. Comput
Chem Eng 104:339–352. https:// doi. org/ 10. 1016/j. compc hemeng.
2017. 05. 004

 12. Zhang M, Tao F, Nee A (2021) Digital Twin Enhanced Dynamic
Job-Shop Scheduling. J Manuf Syst 58:146–156. https:// doi. org/
10. 1016/j. jmsy. 2020. 04. 008

 13. Chancellor N (2017) Modernizing quantum annealing using local
searches. New J Phys 19:23024. https:// doi. org/ 10. 1088/ 1367-
2630/ aa59c4

 14. McGeoch CC (2014) Adiabatic quantum computation and quan-
tum annealing: theory and practice. Synth Lect Quant Comput
5:1–93. https:// doi. org/ 10. 2200/ S0058 5ED1V 01Y20 1407Q
MC008

 15. Lanting T, Przybysz AJ, Smirnov AY, Spedalieri FM, Amin MH,
Berkley AJ, Harris R, Altomare F, Boixo S, Bunyk P, Dickson N,
Enderud C, Hilton JP, Hoskinson E, Johnson MW, Ladizinsky E,
Ladizinsky N, Neufeld R, Oh T, Perminov I, Rich C, Thom MC,
Tolkacheva E, Uchaikin S, Wilson AB, Rose G (2014) Entangle-
ment in a quantum annealing processor. Phys Rev X 4:21041.
https:// doi. org/ 10. 1103/ PhysR evX.4. 021041

 16. Cohen E, Tamir B (2014) D-Wave and predecessors: from simu-
lated to quantum annealing. Int J Quantum Inform 12:1430002.
https:// doi. org/ 10. 1142/ S0219 74991 43000 22

 17. Hauke P, Katzgraber HG, Lechner W, Nishimori H, Oliver WD
(2020) Perspectives of quantum annealing: methods and imple-
mentations. Rep Prog Phys 83:54401

 18. Johnson MW, Amin MHS, Gildert S, Lanting T, Hamze F, Dick-
son N, Harris R, Berkley AJ, Johansson J, Bunyk P, Chapple EM,
Enderud C, Hilton JP, Karimi K, Ladizinsky E, Ladizinsky N, Oh
T, Perminov I, Rich C, Thom MC, Tolkacheva E, Truncik CJS,
Uchaikin S, Wang J, Wilson B, Rose G (2011) Quantum annealing
with manufactured spins. Nature 473:194–198. https:// doi. org/ 10.
1038/ natur e10012

 19. Klar M, Schworm P, Wu X, Glatt M, Aurich JC (2022) Quantum
annealing based factory layout planning. Manuf Lett 32:59–62.
https:// doi. org/ 10. 1016/j. mfglet. 2022. 03. 003

 20. Lucas A (2014) Ising formulations of many NP problems. Front
Physics 2:23024. https:// doi. org/ 10. 3389/ fphy. 2014. 00005

 21. Venturelli D, Marchand DJJ, Rojo G (2015) Quantum Annealing
Implementation of job-shop scheduling

 22. Kurowski K, Wȩglarz J, Subocz M, Różycki R, Waligóra G (2020)
Hybrid quantum annealing heuristic method for solving job shop
scheduling problem. In: Krzhizhanovskaya VV, Závodszky G,
Lees MH, Dongarra JJ, Sloot PMA, Brissos S, Teixeira J (eds)
Computational Science—ICCS 2020. Springer, Cham, pp 502–
515. https:// doi. org/ 10. 1007/ 978-3- 030- 50433-5_ 39

 23. Denkena B, Schinkel F, Pirnay J, Wilmsmeier S (2021) Quantum
algorithms for process parallel flexible job shop scheduling. CIRP
J Manuf Sci Technol 33:100–114. https:// doi. org/ 10. 1016/j. cirpj.
2021. 03. 006

 24. Brandimarte P (1993) Routing and scheduling in a flexible job
shop by tabu search. Ann Oper Res 41:157–183. https:// doi. org/
10. 1007/ BF020 23073

 25. Bagheri A, Zandieh M, Mahdavi I, Yazdani M (2010) An artificial
immune algorithm for the flexible job-shop scheduling problem.
Fut Gen Comput Syst 26:533–541. https:// doi. org/ 10. 1016/j.
future. 2009. 10. 004

 26. Yuan Y, Xu H (2015) Multiobjective flexible job shop scheduling
using memetic algorithms. IEEE Trans Automat Sci Eng 12:336–
353. https:// doi. org/ 10. 1109/ TASE. 2013. 22745 17

 27. Gao KZ, Suganthan PN, Chua TJ, Chong CS, Cai TX, Pan QK
(2015) A two-stage artificial bee colony algorithm scheduling
flexible job-shop scheduling problem with new job insertion.
Expert Syst Appl 42:7652–7663. https:// doi. org/ 10. 1016/j. eswa.
2015. 06. 004

 28. Xing L-N, Chen Y-W, Yang K-W (2009) An efficient search
method for multi-objective flexible job shop scheduling prob-
lems. J Intell Manuf 20:283–293. https:// doi. org/ 10. 1007/
s10845- 008- 0216-z

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/0020754042000298520
https://doi.org/10.1080/0020754042000298520
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1109/JAS.2019.1911540
https://doi.org/10.1007/s11740-021-01043-5
https://doi.org/10.1007/s11740-021-01043-5
https://doi.org/10.1177/1687814018801442
https://doi.org/10.1016/j.ijpe.2016.01.016
https://doi.org/10.1016/j.cie.2017.05.026
https://doi.org/10.1016/j.cie.2017.05.026
https://doi.org/10.1007/s10845-017-1350-2
https://doi.org/10.1007/s10845-017-1350-2
https://doi.org/10.1016/j.compchemeng.2017.05.004
https://doi.org/10.1016/j.compchemeng.2017.05.004
https://doi.org/10.1016/j.jmsy.2020.04.008
https://doi.org/10.1016/j.jmsy.2020.04.008
https://doi.org/10.1088/1367-2630/aa59c4
https://doi.org/10.1088/1367-2630/aa59c4
https://doi.org/10.2200/S00585ED1V01Y201407QMC008
https://doi.org/10.2200/S00585ED1V01Y201407QMC008
https://doi.org/10.1103/PhysRevX.4.021041
https://doi.org/10.1142/S0219749914300022
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1016/j.mfglet.2022.03.003
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1007/978-3-030-50433-5_39
https://doi.org/10.1016/j.cirpj.2021.03.006
https://doi.org/10.1016/j.cirpj.2021.03.006
https://doi.org/10.1007/BF02023073
https://doi.org/10.1007/BF02023073
https://doi.org/10.1016/j.future.2009.10.004
https://doi.org/10.1016/j.future.2009.10.004
https://doi.org/10.1109/TASE.2013.2274517
https://doi.org/10.1016/j.eswa.2015.06.004
https://doi.org/10.1016/j.eswa.2015.06.004
https://doi.org/10.1007/s10845-008-0216-z
https://doi.org/10.1007/s10845-008-0216-z

	Solving flexible job shop scheduling problems in manufacturing with Quantum Annealing
	Abstract
	1 Introduction and state of the art
	2 Problem formulation and solver description
	2.1 Framework
	2.2 Mathematical formulation
	2.2.1 BQM formulation
	2.2.2 DQM formulation
	2.2.3 CQM formulation
	2.2.4 Variable pruning
	2.2.5 Iterative approach for large problems

	3 Benchmark
	4 Conclusion and Outlook
	Acknowledgements
	References

